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Abstract

Although deep learning is a very successful AI technology, many concerns
have been raised about to what extent the decisions making process of deep
neural networks can be trusted. Verifying of properties of neural networks
such as adversarial robustness and network equivalence sheds light on the
trustiness of such systems. We focus on an important family of deep neural
networks, the Binarized Neural Networks (BNNs) that are useful in resource-
constrained environments, like embedded devices. We introduce our portfolio
solver that is able to encode BNN properties for SAT, SMT, and MIP solvers
and run them in parallel, in a portfolio setting. In the paper we propose
all the corresponding encodings of different types of BNN layers as well as
BNN properties into SAT, SMT, cardinality constrains, and pseudo-Boolean
constraints. Our experimental results demonstrate that our solver is capable
of verifying adversarial robustness of medium-sized BNNs in reasonable time
and seems to scale for larger BNNs. We also report on experiments on network
equivalence with promising results.
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1. Introduction

Deep learning is a very successful AI technology that makes impact in a variety
of practical applications ranging from vision to speech recognition and natural
language [17]. However, many concerns have been raised about the decision-making
process behind deep learning technology, in particular, deep neural networks. For
instance, can we trust decisions that neural networks make [14, 18, 32]? One
way to address this problem is to define properties that we expect the network to
satisfy. Verifying whether the network satisfies these properties sheds light on the
properties of the function that it represents [7, 23, 31, 34, 37].

One important family of deep neural networks is the class of Binarized Neural
Networks (BNNs) [20]. These networks have a number of useful features that
are useful in resource-constrained environments, like embedded devices or mobile
phones [25, 28]. Firstly, these networks are memory efficient, as their parameters
are primarily binary. Secondly, they are computationally efficient as all activations
are binary, which enables the use of specialized algorithms for fast binary matrix
multiplication. Moreover, BNNs allow a compact representation in Boolean logic [7,
31].

There exist approaches that formulate the verification of neural networks to
Satisfiability Modulo Theories (SMT) [13, 19, 23], while others do the same to
Mixed-Integer Programming (MIP) [11, 15, 36]. In some sense, this work can be
considered to be the continuation of that in [7, 31], which translate all the MIP
constraints to SAT.

The goal of this work to attack the problem of verifying important properties
of BNNs by applying several kinds of approaches and solvers, such as SAT, SMT
and MIP solvers. We introduce our solver that is able to encode BNN properties
for those solvers and run them in parallel, in a portfolio setting. We focus on
the important properties of neural networks adversarial robustness and network
equivalence.

In this paper we introduce how to use our solver and report on experiments
on verifying both robustness and equivalence. Experimental results show that our
solver is capable of verifying those properties of medium-sized BNNs in reasonable
runtime, especially when the solvers MiniCARD + Z3 are run in parallel.

2. Preliminaries

A literal is a Boolean variable 𝑥 or its negation ¬𝑥. A clause is a disjunction
of literals. A Boolean formula is in Conjunctive Normal Form (CNF), if it is
a conjunction of clauses. We say that a Boolean formula, typically in CNF, is
satisfiable, if there exists a truth assignment to the Boolean variables of the formula
such that the formula evaluates to 1 (true). Otherwise, it is said to be unsatisfiable
(UNSAT). The Boolean Satisfiability (SAT) problem is the problem of determining
if a Boolean formula is satisfiable.

Satisfiability Modulo Theories (SMT) is the decision problem of checking satis-
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fiability of a Boolean formula with respect to some background theory. Common
theories include the theory of integers, reals, fixed-size bit-vectors, etc. The logics
that one could use might differ from each other in the linearity or non-linearity
of arithmetic and the presence or absence of quantifiers. In this paper, we use
the theory of integers combined with linear arithmetic and without quantifiers –
denoted as QF_LIA in the SMT-LIB standard [5].

A Boolean cardinality constraint is defined as an expression
∑︀𝑛
𝑖=1 𝑙𝑖 ∘rel𝑐, where

𝑙1, . . . , 𝑙𝑛 are literals, ∘rel ∈ {≥,≤,=}, and 𝑐 ∈ N is a constant where 0 ≤ 𝑐 ≤ 𝑛.
A pseudo-Boolean constraint can be considered as a “weighted” Boolean car-

dinality constraint, and can be defined as an expression
∑︀𝑛
𝑖=1 𝑤𝑖𝑙𝑖 ∘rel 𝑐, where

𝑤𝑖 ∈ N, 𝑤𝑖 > 0.
We assume the reader is familiar with the notion and elementary properties of

feedforward neural networks. We consider a feedforward neural network to compute
a function 𝐹 where 𝐹 (𝑥) represents the output of 𝐹 on the input 𝑥. Let ℓ(𝑥) denote
the ground truth label of 𝑥. Our tool can analyze two properties of neural networks:
adversarial robustness and network equivalence. We call a neural network robust on
a given input if small perturbations to the input do not lead to misclassification, as
defined as follows, where 𝜏 represents the perturbation and 𝜖 ∈ N the upper bound
for the 𝑝-norm of 𝜏 .

Definition 2.1 (Adversarial robustness). A feedforward neural network 𝐹 is (𝜖, 𝑝)-
robust for an input 𝑥 if ¬∃𝜏 , ‖𝜏‖𝑝 ≤ 𝜖 such that 𝐹 (𝑥+ 𝜏 ) ̸= ℓ(𝑥).

The case of 𝑝 = ∞, which bounds the maximum perturbation applied to each
entry in 𝑥, is especially interesting and has been considered frequently in literature.

Similar to robustness, the equivalence of neural networks is also a property
that many would like to verify. We consider two neural networks equivalent if they
generate the same output on all inputs, as defined as follows, where 𝒳 denotes the
input domain.

Definition 2.2 (Network equivalence). Two feedforward neural networks 𝐹1 and
𝐹2 are equivalent if ∀𝑥 ∈ 𝒳 𝐹1(𝑥) = 𝐹2(𝑥).

3. Encoding of Binarized Neural Networks

A Binarized Neural Network (BNN) is a feedforward network where weights and
activations are predominantly binary [20]. It is convenient to describe the structure
of a BNN in terms of composition of blocks of layers rather than individual layers.
Each block consists of a collection of linear and non-linear transformations. Blocks
are assembled sequentially to form a BNN.

Internal block. Each internal block (denoted as Block) in a BNN performs a
collection of transformations over a binary input vector and outputs a binary vector.
While the input and output of a Block are binary vectors, the internal layers of
Block can produce real-valued intermediate outputs. A common construction

Portfolio solver for verifying Binarized Neural Networks 185



of an internal Block (taken from [20]) is composed of three main operations:1
a linear transformation (Lin), batch normalization (Bn), and binarization (Bin).
Table 1 presents the formal definition of these transformations. Figure 1 shows two
Blocks connected sequentially.
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Figure 1. A schematic view of a binarized neural network. The
internal blocks also have an additional HardTanh layer during the

training.

Table 1. Structure of internal and outputs blocks which stacked to-
gether form a binarized neural network. In the training phase, there
might be an additional HardTanh layer after batch normalization.
𝐴𝑘 and 𝑏𝑘 are parameters of the Lin layer, whereas 𝛼𝑘𝑖 , 𝛾𝑘𝑖 , 𝜇𝑘𝑖 , 𝜎𝑘𝑖

are parameters of the Bn layer. The 𝜇’s and 𝜎’s correspond to mean
and standard deviation computed in the training phase. The Bin

layer is parameter free.

Structure of 𝑘th internal block, Block𝑘 : {−1, 1}𝑛𝑘 → {−1, 1}𝑛𝑘+1 on 𝑥𝑘 ∈ {−1, 1}𝑛𝑘

Lin 𝑦 = 𝐴𝑘𝑥𝑘 + 𝑏𝑘 , where 𝐴𝑘 ∈ {−1, 1}𝑛𝑘+1×𝑛𝑘 and 𝑏𝑘,𝑦 ∈ R𝑛𝑘+1

Bn 𝑧𝑖 = 𝛼𝑘𝑖

(︁
𝑦𝑖−𝜇𝑘𝑖

𝜎𝑘𝑖

)︁
+ 𝛾𝑘𝑖 , where 𝛼𝑘,𝛾𝑘,𝜇𝑘,𝜎𝑘,𝑧 ∈ R𝑛𝑘+1 . Assume 𝜎𝑘𝑖 > 0.

Bin 𝑥𝑘+1 = sign(𝑧) where 𝑥𝑘+1 ∈ {−1, 1}𝑛𝑘+1

Structure of output block, O : {−1, 1}𝑛𝑚 → [1, 𝑠] on input 𝑥𝑚 ∈ {−1, 1}𝑛𝑚

Lin 𝑤 = 𝐴𝑚𝑥𝑚 + 𝑏𝑚, where 𝐴𝑚 ∈ {−1, 1}𝑠×𝑛𝑚 and 𝑏𝑚,𝑤 ∈ R𝑠

argmax 𝑜 = argmax(𝑤), where 𝑜 ∈ [1, 𝑠]

Output block. The output block (denoted as O) produces the classification
decision for a given binary input vector. It consists of two layers (see Table 1).
The first layer applies a linear (affine) transformation that maps its input to a
vector of integers, one for each output label class. This is followed by an argmax
layer, which outputs the index of the largest entry in this vector as the predicted
label.

1In the training phase, there is an additional HardTanh layer after batch normalization layer
that is omitted in the inference phase [20].
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Network of blocks. BNN is a deep feedforward network formed by assembling
a sequence of internal blocks and an output block. Suppose we have 𝑚−1 internal
blocks, Block𝑚, . . . ,Block𝑚−1 that are placed consecutively, so the output of
a block is the input to the next block in the list. Let 𝑛𝑘 denote the number
of input values to Block𝑘. Let 𝑥𝑘 ∈ {−1, 1}𝑛𝑘 be the input to Block𝑘 and
𝑥𝑘+1 ∈ {−1, 1}𝑛𝑘+1 be its output. The input of the first block is the input of the
network. We assume that the input of the network is a vector of integers, which
holds for the image classification task if images are in the standard RGB format.
Note that these integers can be encoded with binary values {−1, 1} using a standard
encoding. It is also an option to add an additional BnBin block before Block1 to
binarize the input images (see Sections 3.3 and 6.1). Therefore, we keep notations
uniform for all layers by assuming that inputs are all binary. The output of the
last layer, 𝑥𝑚 ∈ {−1, 1}𝑛𝑚 , is passed to the output block O to obtain one of the 𝑠
labels.

Definition 3.1 (Binarized Neural Network). A binarized neural network BNN :
{−1, 1}𝑛1 → [1, . . . , 𝑠] is a feedforward network that is composed of 𝑚 blocks,
Block1, . . . ,Block𝑚−1,O. Formally, given an input 𝑥,

BNN(𝑥) = O(Block𝑚−1(. . .Block1(𝑥) . . .)).

In the following sections, we show how to encode an entire BNN structure into
Boolean constraints, including cardinality constraints.

3.1. Encoding of internal blocks
Each internal block is encoded separately as proposed in [7, 31]. Here we follow
the encoding by Narodystka et al. Let 𝑥 ∈ {−1, 1}𝑛𝑘 denote the input to the kth

block, 𝑜 ∈ {−1, 1}𝑛𝑘+1 the output. Since the block consists of three layers, they
are encoded separately as follows:

Lin. The first layer applies a linear transformation to the input vector 𝑥. Let 𝑎𝑖
denote the 𝑖th row of the matrix 𝐴𝑘 and 𝑏𝑖 the 𝑖th element of the vector 𝑏𝑘.
We get the constraints

𝑦𝑖 = ⟨𝑎𝑖,𝑥⟩+ 𝑏𝑖, for all 𝑖 ∈ [1, 𝑛𝑘+1].

Bn. The second layer applies batch normalization to the output 𝑦 of the previous
layer. Let 𝛼𝑖, 𝛾𝑖, 𝜇𝑖, 𝜎𝑖 denote the 𝑖th element of the vectors 𝛼𝑘,𝛾𝑘,𝜇𝑘,𝜎𝑘,
respectively. Assume 𝛼𝑖 ̸= 0. We get the constraints

𝑧𝑖 = 𝛼𝑖
𝑦𝑖 − 𝜇𝑖
𝜎𝑖

+ 𝛾𝑖, for all 𝑖 ∈ [1, 𝑛𝑘+1].

Bin. The third layer applies binarization to the output 𝑧 of the previous layer, by
implementing the sign function as follows:

𝑜𝑖 =

⎧
⎨
⎩
1, if 𝑧𝑖 ≥ 0,

−1, if 𝑧𝑖 < 0,
for all 𝑖 ∈ [1, 𝑛𝑘+1].
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The entire block can then be expressed as the constraints

𝑜𝑖 =

⎧
⎨
⎩
1, if ⟨𝑎𝑖,𝑥⟩ ∘rel 𝐶𝑖,
−1, otherwise,

for all 𝑖 ∈ [1, 𝑛𝑘+1], (3.1)

where

𝐶𝑖 = −
𝜎𝑖
𝛼𝑖
𝛾𝑖 + 𝜇𝑖 − 𝑏𝑖

∘rel =

⎧
⎨
⎩
≥, if 𝛼𝑖 > 0,

≤, if 𝛼𝑖 < 0.

Let us recall that the input variables 𝑥𝑗 and the output variables 𝑜𝑖 take the
values −1 and 1. We need to replace them with the Boolean variables 𝑥(b)

𝑗 , 𝑜
(b)
𝑖 ∈

{0, 1} in order to further translate the constraints in (3.1) to the Boolean constraints

𝑛𝑘∑︁

𝑗=1

𝑙𝑖𝑗 ∘rel 𝐷𝑖 ⇔ 𝑜
(b)
𝑖 , for all 𝑖 ∈ [1, 𝑛𝑘+1],

where

𝑙𝑖𝑗 =

⎧
⎨
⎩
𝑥
(𝑏)
𝑗 , if 𝑗 ∈ 𝑎+

𝑖 ,

¬𝑥(𝑏)𝑗 , if 𝑗 ∈ 𝑎−
𝑖 ,

𝐷𝑖 =

⎧
⎨
⎩
⌈𝐶 ′

𝑖⌉+ |𝑎−
𝑖 |, if 𝛼𝑖 > 0,

⌊𝐶 ′
𝑖⌋+ |𝑎−

𝑖 |, if 𝛼𝑖 < 0,

𝐶 ′
𝑖 =

(︁
𝐶𝑖 +

∑︁

𝑗

𝑎𝑖𝑗

)︁
/2,

𝑎+
𝑖 = {𝑗 | 𝑎𝑖𝑗 > 0},

𝑎−
𝑖 = {𝑗 | 𝑎𝑖𝑗 < 0}.

For further details on the derivation, see [31].

3.2. Encoding of the output block

The output block consists of a Lin layer followed by an ArgMax layer. To encode
ArgMax, we need to encode an ordering relation over the outputs of the linear
layer, and therefore we introduce the Boolean variables 𝑑(b)

𝑖𝑖′ such that

⟨𝑎𝑖,𝑥⟩+ 𝑏𝑖 ≥ ⟨𝑎𝑖′ ,𝑥⟩+ 𝑏𝑖′ ⇔ 𝑑
(b)
𝑖𝑖′ , for all 𝑖, 𝑖′ ∈ [1, 𝑠].
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These constraints can be further translated into Boolean constraints, as proposed
by Narodystka et al. in [31] and supplemented by us as follows:

𝑛𝑚∑︁

𝑗=1

𝑙𝑖𝑖′𝑗 ≥ 𝐸𝑖𝑖′ ⇔ 𝑑
(b)
𝑖𝑖′ , for all 𝑖, 𝑖′ ∈ [1, 𝑠], 𝑖 ̸= 𝑖′,

where

𝑙𝑖𝑖′𝑗 =

⎧
⎪⎪⎨
⎪⎪⎩

𝑥
(b)
𝑗 , if 𝑗 ∈ 𝑎+

𝑖𝑖′ ,

¬𝑥(b)
𝑗 , if 𝑗 ∈ 𝑎−

𝑖𝑖′ ,

0, otherwise,

𝐸𝑖𝑖′ =
⌈︁(︁
𝑏𝑖′ − 𝑏𝑖 +

∑︁

𝑗

𝑎𝑖𝑗 −
∑︁

𝑗

𝑎𝑖′𝑗

)︁
/4
⌉︁
+ |𝑎−

𝑖𝑖′ |,

𝑎+
𝑖𝑖′ = {𝑗 | 𝑎𝑖𝑗 > 0 ∧ 𝑎𝑖′𝑗 < 0},

𝑎−
𝑖𝑖′ = {𝑗 | 𝑎𝑖𝑗 < 0 ∧ 𝑎𝑖′𝑗 > 0}.

In the case of 𝑖 = 𝑖′, 𝑑(b)
𝑖𝑖′ must obviously be assigned to 1.

Finally, to encode ArgMax, we have to pick the row in the matrix (𝑑𝑖𝑖′) which
contains only 1s, as it can be encoded by the Boolean constraint

∑︁

𝑖′

𝑑
(b)
𝑖𝑖′ = 𝑠 ⇔ 𝑜

(b)
𝑖 , for all 𝑖 ∈ [1, 𝑠].

3.3. Encoding of the input binarization block
In our paper, and also in [31], experiments on checking adversarial robustness
under the 𝐿∞ norm are run on grayscale input images that are binarized by an
additional BnBin block before Block1. We now propose how this BnBin block
can be encoded to Boolean constraints.

Let 𝛼0,𝛾0,𝜇0,𝜎0 denote the parameters of the Bn layer. Since adversarial
robustness is about to be checked, the input 𝑥 ∈ N𝑛1 consists of constants, while
the perturbation 𝜏 ∈ [−𝜖, 𝜖]𝑛1 consists of integer variables and the output 𝑜(b) ∈
{0, 1}𝑛1 consists of Boolean variables. The BnBin block can be encoded by the
constraints

𝛼𝑖
𝑥𝑖 + 𝜏𝑖 − 𝜇𝑖

𝜎𝑖
+ 𝛾𝑖 ≥ 0 ⇔ 𝑜

(b)
𝑖 , for all 𝑖 ∈ [1, 𝑛1], (3.2)

where 𝛼𝑖, 𝛾𝑖, 𝜇𝑖, 𝜎𝑖 denote the 𝑖th element of the vectors 𝛼0,𝛾0,𝜇0,𝜎0, respectively.
The constraints in (3.2) further translate to

𝑥𝑖 + 𝜏𝑖 − 𝜇𝑖 +
𝜎𝑖𝛾𝑖
𝛼𝑖

∘rel 0 ⇔ 𝑜
(b)
𝑖 , (3.3)

where

∘rel =

⎧
⎨
⎩
≥, if 𝛼𝑖 > 0,

≤, if 𝛼𝑖 < 0.
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Then (3.3) translates to
𝜏𝑖 ∘rel 𝐵𝑖 ⇔ 𝑜

(b)
𝑖 , (3.4)

where

𝐵𝑖 =

⎧
⎨
⎩
⌈𝐵′

𝑖⌉ , if 𝛼𝑖 > 0,

⌊𝐵′
𝑖⌋ , if 𝛼𝑖 < 0,

𝐵′
𝑖 = 𝜇𝑖 − 𝑥𝑖 −

𝜎𝑖𝛾𝑖
𝛼𝑖

.

Since 𝜏𝑖 is in the given range [−𝜖, 𝜖], we can represent it as a bit-vector of a given bit-
width. In order to apply unsigned bit-vector arithmetic, we translate the domain
of 𝜏𝑖 into [0, 2𝜖]. Thus, we can represent 𝜏𝑖 as a bit-vector variable of bit-width
𝑤 = ⌈log2(2𝜖+ 1)⌉ and apply unsigned bit-vector arithmetic to (3.4) as follows:

𝜏
[𝑤]
𝑖 ∘urel (𝐵𝑖 + 𝜖)[𝑤] ⇔ 𝑜

(b)
𝑖 , (3.5)

where ∘urel denotes the corresponding unsigned bit-vector relational operator bvuge
or bvule, respectively, and the bound 𝐵𝑖+ 𝜖 is represented as a bit-vector constant
of bit-width 𝑤. For the syntax and semantics of common bit-vector operators,
see [24].

The constraints in (3.5) are not even needed to add in certain cases:

• if 𝐵𝑖 ≤ −𝜖, then assign 𝑜(b)
𝑖 to 1 if 𝛼𝑖 > 0, and to 0 if 𝛼𝑖 < 0;

• if 𝐵𝑖 > 𝜖, then assign 𝑜(b)
𝑖 to 0 if 𝛼𝑖 > 0, and to 1 𝛼𝑖 < 0.

Some further constraints are worth to add to restrict the domain of 𝜏𝑖:

𝜏𝑖
[𝑤] ≥u 0[𝑤]

𝜏𝑖
[𝑤] ≤u (2𝜖)

[𝑤]

𝜏𝑖
[𝑤] ≥u (𝜖− 𝑥𝑖)[𝑤]

, if 𝑥𝑖 < 𝜖

𝜏𝑖
[𝑤] ≤u (𝜖+max𝑥−𝑥𝑖)[𝑤]

, if 𝑥𝑖 > max𝑥−𝜖

(3.6)

where max𝑥 is the highest possible value for the input values in 𝑥.2
In our tool, all the bit-vector constraints in (3.5) and (3.6) are bit-blasted into

CNF.

3.4. Encoding of BNN properties

In this paper, we focus on the properties defined in Section 2, namely adversarial
robustness and network equivalence.

2In our experiments, the input represents pixels of grayscale images, therefore max𝑥 = 255.
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3.4.1. Adversarial robustness

We assume that the BNN consists of an input binarization block, internal blocks
and an output block. Let BNN

(︀
𝑥+𝜏 ,𝑜(b)

)︀
denote the encoding of the whole BNN

over the perturbated input 𝑥 + 𝜏 and the output 𝑜(b). Note that 𝑥 ∈ N𝑛1 is an
input from the the training or test set, therefore its ground truth label ℓ(𝑥) is given.
On the other hand, the perturbation 𝜏 ∈ [−𝜖, 𝜖]𝑛1 consists of integer variables. The
output 𝑜(b) ∈ {0, 1}𝑠 consists of Boolean variables. Basically, we are looking for a
satisfying assignment for the perturbation variables 𝜏 such that the BNN outputs
a label different from ℓ(𝑥). Thus, checking adversarial robustness translates into
checking the satisfiability of the following constraint:

BNN
(︀
𝑥+ 𝜏 ,𝑜(b))︀ ∧ ¬𝑜(b)

ℓ(𝑥).

3.4.2. Network equivalence

We want to check if two BNNs classify binarized inputs completely the same. There-
fore we assume that those BNNs do not have BnBin blocks, or if they do, then they
apply the same BnBin block. Therefore, let BNN1

(︀
𝑥(b), 𝑜

(b)
1

)︀
and BNN2

(︀
𝑥(b), 𝑜

(b)
2

)︀

denote the encoding of the internal blocks and the output block of the two BNNs,
respectively, over the same binary input 𝑥(b). Checking the equivalence of those
BNNs translates into checking the satisfiability of the following constraint:

BNN1

(︀
𝑥,𝑜

(b)
1

)︀
∧ BNN2

(︀
𝑥,𝑜

(b)
2

)︀
∧ 𝑜

(b)
1 ̸= 𝑜

(b)
2 .

We translate the inequality 𝑜
(b)
1 ̸= 𝑜

(b)
2 over vectors of Boolean variables into

¬
(︀
𝑜
(b)
1,1 ⇔ 𝑜

(b)
2,1

)︀
∨ · · · ∨ ¬

(︀
𝑜
(b)
1,𝑠 ⇔ 𝑜

(b)
2,𝑠

)︀

which can then be further translated to a set of clauses by using Tseitin transfor-
mation.

4. Encoding of clauses and Boolean cardinality con-
straints

In Section 3, we proposed an encoding of BNNs into clauses 𝑙1 ∨ · · · ∨ 𝑙𝑛 as well as
equivalences over Boolean cardinality constraints in the form

𝑙 ⇔
𝑛∑︁

𝑖=1

𝑙𝑖 ≥ 𝑐, (4.1)

where 𝑙, 𝑙1, . . . , 𝑙𝑛 are literals and 𝑐 ∈ N is a constant where 0 ≤ 𝑐 ≤ 𝑛. Note
that our encoding applies “AtMost” Boolean cardinality constraints as well. Such
a constraint

∑︀𝑛
𝑖=1 𝑙𝑖 ≤ 𝑐 can always be translated to an “AtLeast” constraint∑︀𝑛

𝑖=1 ¬𝑙𝑖 ≥ 𝑛− 𝑐.
Depending on the approaches one wants to apply to the satisfiability checking

of those constraints, they have to be encoded in different ways.
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4.1. Encoding into SAT

There are various existing, well-known approaches expressing Boolean cardinal-
ity constraints into Boolean logic, for example by using sequential counters [35],
cardinality networks [1] or modulo totalizers [30, 33].

Sequential counters [35] encode an “AtLeast” Boolean cardinality constraint into
the following Boolean formula:

(𝑙1 ⇔ 𝑣1,1)

∧ ¬𝑣1,𝑗 for 𝑗 ∈ [2, 𝑐],

∧ (𝑣𝑖,1 ⇔ 𝑙𝑖 ∨ 𝑣𝑖−1,1) for 𝑖 ∈ [2, 𝑛],

∧
(︀
𝑣𝑖,𝑗 ⇔ (𝑙𝑖 ∧ 𝑣𝑖−1,𝑗−1) ∨ 𝑣𝑖−1,𝑗) for 𝑖 ∈ [2, 𝑛], 𝑗 ∈ [2, 𝑐].

All the Boolean variables 𝑣𝑖,𝑗 are introduced as fresh variables and the formula
above can be converted into its CNF [35]. On the top of that, to encode the
constraint (4.1), we only need to additionally encode the formula 𝑙⇔ 𝑣𝑛,𝑐.

Cardinality networks [1] yield another, refined approach for encoding Boolean
cardinality constraints. For improving reasoning about cardinality constraints en-
coded, for example, using sequential counters, a cardinality network encoding of a
cardinality constraint divides the cardinality constraint into multiple instances of
the base operations half sorting and simplified half merging, which basically work
as building blocks.

The modulo totalizer cardinality encoding [33] and its variant for 𝑘-cardinality
[30] improve the above described approach based on cardinality network, espe-
cially in connection with MaxSAT solving. The modulo totalizer approach of [33]
addresses limitations of the half sorting cardinality network approach from [1], by
using totalizer encodings from [3] in order to reduce the number of variables during
CNF encodings. The modulo totalizer cardinality encoding of [33] decreases the
number of clauses used in [3], and hence improves cardinality network encodings
during constraint propagation.

4.2. Encoding into SMT

It is straightforward to encode clauses and constraints (4.1) into SMT over the logic
QF_LIA. We would like to note that bit-vector constraints (3.5), (3.6) are bit-
blasted into CNF in our tool and then added as clauses, even when being encoded
into SMT. As future work, one could try to solve all the constraints over the logic
QF_BV.

4.3. Encoding into Boolean cardinality constraints

The encoding that we proposed for BNNs consists of clauses on the one hand, and
equivalences over Boolean cardinality constraints in the form (4.1) on the other
hand. We show how to encode both type of constraints into a set of Boolean
cardinality constraints.
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A clause 𝑙1 ∨ · · · ∨ 𝑙𝑛 can be encoded as the Boolean cardinality constraint∑︀
𝑖=1 𝑙𝑖 ≥ 1.
A constraint (4.1) can be unfolded into two implications (assume 𝑐 > 0):

𝑙 ⇒
∑︁

𝑖=1

𝑙𝑖 ≥ 𝑐, (4.2)

¬𝑙 ⇒
∑︁

𝑖=1

𝑙𝑖 ≤ 𝑐− 1.

By following the idea on the GitHub page3 of the SAT solver MiniCARD [27], an
implied Boolean cardinality constraints (4.2) can be translated to a (non-implied)
Boolean cardinality constraint

∑︁

𝑖=1

𝑙𝑖 + ¬𝑙 + · · ·+ ¬𝑙⏟  ⏞  
𝑐

≥ 𝑐, (4.3)

which can then be solved by cardinality solvers with duplicated-literal handling,
such as MiniCARD.

4.4. Encoding into pseudo-Boolean constraints
The Boolean cardinality encoding from Section 4.3 can be fed into pseudo-Boolean
solvers as well. The Boolean cardinality constraint (4.3) can naturally be translated
to a pseudo-Boolean constraint

∑︀
𝑖=1 𝑙𝑖 + ¬𝑙 · 𝑐 ≥ 𝑐.

5. Implementation

All the encodings described in the previous sections are implemented in Python,
as part of our solver. Since our solver is a portfolio solver, it executes different
kind of solvers (SAT, SMT, MIP) in parallel, by instantiating ProcessPool from
the Python module pathos.multiprocessing [29], which can run jobs with a non-
blocking and unordered map.

The Python package PySAT [21] provides a unified API to several SAT solvers
such as MiniSat [12], Glucose [2] and Lingeling [6]. PySAT also supports a lot
of encodings for Boolean cardinality constraints, including sequential counters [35],
cardinality networks [1] and modulo totalizer [30, 33]. Furthermore, PySAT offers
API to the SAT solver MiniCARD [27], which handles Boolean cardinality con-
straints natively on the level of watched literals and conflict analysis, instead of
translating them into CNF.

In a similar manner, the Python package PySMT [16] provides a unified API
to several SMT solvers, such as MathSAT [8], Z3 [9], CVC4 [4] and Yices [10].

The Python package MIP provides tools to solve mixed-integer linear program-
ming instances and provides a unified API to MIP solvers such as CLP, CBC and
Gurobi.

3https://github.com/liffiton/minicard
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When running our portfolio solver, one can easily choose the solvers to execute
in parallel, by using the following command-line arguments:

–sat-solver. Choose any SAT solver supported by the PySAT package such as
MiniSat, Glucose, etc., including MiniCARD, or disable this option by
using the value none.

–smt-solver. Choose any SMT solver supported by PySMT such as Z3, Math-
SAT, etc., or disable this option by using the value none. Note that you
might need to install the corresponding SMT solver for PySMT by using the
pysmt-install command.

–mip-solver. Choose any MIP solver supported by the MIP package, most im-
portantly Gurobi, or disable this option by using the value none. Note that
you might need to purchase a license for Gurobi.

–card-enc. Choose any cardinality encoding supported by the PySAT pack-
age such as sequential counters, cardinality networks, modulo totalizer, 𝑘-
cardinality modulo totalizer, etc., or disable this option by using the value
none.

–timeout. Set the timeout in seconds.

Our solver consists of two Python programs bnn_adv_robust_check.py and
bnn_eq_check.py to check adversarial robustness and network equivalence, respec-
tively. If bnn_adv_robust_check.py returns UNSAT, then the given input image
is considered to be robust under the given maximal perturbation value passed as a
command-line argument. In case of SAT answer, the tool displays the perturbated
input values and the label resulted by misclassification.

If bnn_eq_check.py returns UNSAT, then the two given BNNs are considered
to be equivalent. In case of SAT answer, the tool displays the common input values
for which the BNNs return different outputs, which are also displayed. Note that
an output is displayed as a list of Boolean literals among which the single positive
literal represents the output label.

6. Experiments and results

Our experiments were run on Intel i5-7200U 2.50 GHz CPU (2 cores, 4 threads)
with 8 GB memory. The time limit was set to 300 seconds.

In our experiments, the BNN architecture is the same as in the experiments
in [31]: it consists of 4 internal blocks and 1 output block. Each internal block
contains a Lin layer with 200, 100, 100 and 100 neurons, respectively. We use an
additional HardTanh layer only during the training of the network. We trained
the network on the MNIST dataset [26]. The accuracy of the resulting network is
93%.
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6.1. Verifying adversarial robustness

In the first set of experiments, we focused on the important problem of checking
adversarial robustness under the 𝐿∞ norm. From the MNIST dataset, we randomly
picked 20 images (from the test set) that were correctly classified by the network
for each of the 10 classes. This resulted in a set of 200 images that we consider in
our experiments on adversarial robustness. We experimented with three different
maximum perturbation values by varying 𝜖 ∈ {1, 3, 5}.

To process the inputs, we add a BnBin block to the BNN before Block1. The
BnBin block applies binarization to the grayscale MNIST images. We would like
emphasize that our experiments did not apply any additional preprocessing, as
opposed to the experiments in [31] that first try to perturb only the top 50% of
highly salient pixels in the input image. Furthermore, our solver does not apply
any additional search procedure on the top of the solvers being run in parallel,
as opposed to the experiments in [31] that apply a counterexample-guided (CEG)
search procedure based on Craig interpolation. In this sense, our solver explores
the search space without applying any additional procedures.

Figure 2 shows some of the results of our experiments. Each column shows
the number of solved instances out of the 200 selected instances and the average
runtime in seconds. The bar chart under certain cells shows the distribution of
different solvers providing the results. The bottom charts present the results in a
more detailed way, where the distribution of runtimes suggests that our solver can
solve ca. 85–95% of the instances in less than 30 seconds.

Solvers 𝜖 = 1 𝜖 = 3 𝜖 = 5

MiniCARD + Z3 195 (26.8) 198 (10.4) 200 (8.7)

MiniCARD + Z3 + Gurobi 192 (26.4) 197 (12.7) 198 (9.8)

(a) 𝜖 = 1 (b) 𝜖 = 3 (c) 𝜖 = 5

Figure 2. Results on checking adversarial robustness of 4-Block
BNN on MNIST dataset, for different maximum perturbation val-
ues 𝜖. Colors represent the ratio of solved instances by different

solvers: purple for MiniCARD, green for Z3, blue for Gurobi.

As the figure shows, our solver produced the best results when running
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MiniCARD as a SAT solver and Z3 as an SMT solver in parallel. Since, in
our preliminary experiments, Gurobi had showed promising performance, we also
ran experiments with Gurobi parallel to MiniCARD and Z3. Of course, we also
tried different combinations of solvers in our experiments, but we found the ones
in the table the most promising.

In order to investigate how our solver scales for larger BNNs, we constructed
another BNN with 5 internal blocks containing Lin layers of size 300, 200, 150,
100 and 100, respectively, and trained it on the MNIST dataset. The accuracy
of the resulting network is 94%. Figure 3 shows the results of our corresponding
experiments.

Solvers 𝜖 = 1 𝜖 = 3 𝜖 = 5

MiniCARD + Z3 191 (29.3) 197 (24.2) 198 (13.6)

MiniCARD + Z3 + Gurobi 192 (31.6) 192 (26.0) 199 (14.3)

(a) 𝜖 = 1 (b) 𝜖 = 3 (c) 𝜖 = 5

Figure 3. Results on checking adversarial robustness of 5-Block
BNN on MNIST dataset.

6.2. Verifying network equivalence
In the second set of experiments, we focused on the problem of checking network
equivalence. From our 4-Block BNN trained to classify MNIST images, we gen-
erated 20 slightly different variants by altering a few weights in the network. For
this sake, we randomly flip 𝛿 > 0 weights in 𝐴𝑚. Then, we run our solver to check
if the original BNN is equivalent with an altered variant. Since the aim was to
generate difficult benchmark instances, i.e., which are “almost UNSAT”, we chose
small values for 𝛿. Figure 4 shows the results of our corresponding experiments.

6.3. Side notes
In our solver’s source code, there exist implemented features that are not yet ac-
cessible due to the lack of API features of certain Python packages. Although
PySAT’s CNF encodings of Boolean cardinality constraints are accessible via our
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Solvers 𝛿 = 2 𝛿 = 5

MiniCARD + Z3 19 (92.3) 20 (64.5)
MiniCARD + Z3 + Gurobi 17 (124.5) 19 (77.1)

(a) 𝛿 = 2 (b) 𝛿 = 5

Figure 4. Results on checking network equivalence, for different 𝛿
values.

solver’s command-line argument --card-enc, equivalences (4.1) cannot directly
be dealt with PySAT since the output variable of a CNF encoding cannot be ac-
cessed through PySAT’s API. For instance, we would need to access the Boolean
variable 𝑣𝑛,𝑐 when using sequential counter encoding as described in Section 4.1.
Therefore, in our solver’s current version, each equivalence (4.1) is first encoded
into a pair of Boolean cardinality constraints as described in Section 4.3, and the
resulting cardinality constraints are then encoded into CNF. Note that encoding
equivalences (4.1) directly into Boolean logic would result in more easy-to-solve
instances, once PySAT allows. In the latter case, on the other hand, the encoding
into CNF might dominate the runtime, since millions of variables and millions of
clauses are generated even for our 4-Block BNN.

7. Conclusions

We introduced a new portfolio-style solver to verify important properties of bina-
rized neural networks such as adversarial robustness and network equivalence. Our
solver encodes those BNN properties, as we propose SAT, SMT, cardinality and
pseudo-Boolean encodings in the paper. Our experiments demonstrated that our
solver was capable of verifying adversarial robustness of medium-sized BNNs on
the MNIST dataset in reasonable time and seemed to scale for larger BNNs. We
also ran experiments on network equivalence with impressive results on the SAT
instances.

After we submitted this paper, K. Jia and M. Rinard have recently published
a paper about a framework for verifying robustness for BNNs [22]. They devel-
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oped a SAT solver with native support for reified cardinality constraints and, also,
proposed strategies to train BNNs such that weight matrices were sparse and car-
dinality bounds low. Based on their experimental results, their solver might out-
perform our solver on their benchmarks. As part of future work, we would like to
run experiments with both solvers on those benchmarks.

We will try to overcome the problems that originate in using the PySAT Python
packages, in order to make already implemented “hidden” features accessible for
users. Furthermore, we are planning to extend the palette of solvers with Google’s
OR-Tools, which look promising based on our preliminary experiments.
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