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Abstract— Navigation in unknown indoor environments with
fast collision avoidance capabilities is an ongoing research
topic. Traditional motion planning algorithms rely on precise
maps of the environment, where re-adapting a generated path
can be highly demanding in terms of computational cost. In
this paper, we present a fast reactive navigation algorithm
using Deep Reinforcement Learning applied to multirotor aerial
robots. Taking as input the 2D-laser range measurements and
the relative position of the aerial robot with respect to the
desired goal, the proposed algorithm is successfully trained in
a Gazebo-based simulation scenario by adopting an artificial
potential field formulation. A thorough evaluation of the trained
agent has been carried out both in simulated and real indoor
scenarios, showing the appropriate reactive navigation behavior
of the agent in the presence of static and dynamic obstacles.

I. INTRODUCTION

Autonomous multirotor navigation through unknown, clut-

tered indoor scenarios is a complex task which traditionally

involves an efficient combination of different robotic mod-

ules such as perception, path planning, and state estimation.

The complexity of this task increases when moving objects

are placed in the scenario. Navigating in dynamic scenarios

requires computationally efficient algorithms capable of re-

adapting the path in real-time when a new obstacle appears

in the field of view of the robot. Traditional motion planning

algorithms exhibit some limitations in terms of reactive

behavior owing to the computational effort required to re-

plan a navigation path.

Moreover, another key aspect in path planning is the

representation of the map (e.g. grid-based, polygon-based,

etc). Grid-based methods can suffer from imprecise obstacle

representations or big memory demands especially when the

scenario is substantially large. On the other hand, geometric

representations of the map can be more efficient in terms

of memory consumption while suffering from a high com-

putational cost when representing complex shaped obstacles.

In addition, several traditional path planning algorithms may

require a fine-tuning stage of their parameters in order to

adapt the algorithm to a previously unseen scenario.

In this work, the research effort is focused on the develop-

ment of an efficient reactive navigation algorithm able to deal

with the aforementioned limitations, with special attention to

unknown scenarios with dynamic obstacles. In this direction,

the main contribution of this work is the development and
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experimental validation of a mapless reactive navigation al-

gorithm applied to multirotor aerial robots. For this purpose,

we adopt a recent actor-critic deep reinforcement learn-

ing algorithm named Deep Deterministic Policy Gradients

(DDPG) [1] which is successfully trained in simulation and

directly transferred to a real aerial robotic platform. One

of the key properties of the proposed system is the agent’s

state definition which integrates the relative distance to a

predefined goal together with the linear velocities of the

aerial robot in the x and y directions and the laser scan data

organized in circular sectors. This representation provides the

aerial robot with the ability to deal with obstacles of different

shape and size. The second main contribution of this work

is related to the training process of the agent. To this aim,

we adopt an Artificial Potential Field (APF) formulation in

order to design the reward function, which has proven to

reduce by a large margin the training process of the agent as

compared to similar state-of-the-art approaches. Moreover,

the computational cost of the algorithm is reduced to a

feed-forward pass through the actor network, which leads

to fast avoidance maneuvers. The experiments conducted in

cluttered and dynamic scenarios demonstrate the appropriate

navigation capabilities of the proposed approach, especially

in the presence of obstacles that exhibit sudden movements.

The remainder of this document is organized as follows:

Section II provides an overview of the related work; Section

III introduces the proposed reactive navigation approach. The

experiments conducted and the results obtained in simulated

and real scenarios are presented in Section IV before we

discuss the results in Section V and highlight the conclusions

and future research works in Section VI.

II. RELATED WORK

Autonomous navigation in scenarios with unexpected ob-

stacles is a key challenge for advanced mobile systems [2].

This problem has traditionally been addressed by integrating

localization, global planning, and local planning or reactive

control. We focus on the latter and refer the reader to [3] for

a global planning literature review.

The simplest methods for local motion planning are

based on the well-known Bug algorithm [4]. Other classic

techniques are related to artificial potential field concepts,

applying the idea that the goal generates attractive forces

while the obstacles create repulsive forces for the robot [5].

Elastic band methods [6] consider that the path provided

by a global planner is subject to deformations when objects

are encountered along the way. Alternatively, in narrow

cluttered scenarios the Nearness Diagram representation [7]

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 1024

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/428438064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for different divide-and-conquer strategies has provided very

good results. Recent works have achieved faster and less

oscillatory motion for ground robots [8].

In aerial robotics, several approaches create local maps

and find free-space corridors online [9], [10], but in the case

of platforms with limited resources building complex models

of the environment for reactive control may be unaffordable.

A novel contribution by Lopez and How [11] presented

how using raw point clouds as representation resulted in

impressive aggressive flights of quadrotor vehicles.

Learning abilities for reactive navigation, which is the

main topic of this paper, is showing great potential too.

One of the first ideas was about learning to imitate reactive

human control of Micro Aerial Vehicles (MAVs) from visual

features, based on heading commands provided by an expert

pilot [12]. Gandhi et al. [13] argued that requiring expert

data for learning is a significant limitation and contributed a

dataset of crashes in real world scenarios for vision-based

self-supervised Deep Learning (DL) of heading control.

Crashes in real world scenarios are undoubtedly useful as

negative examples, but sometimes it is not acceptable to

damage the robot in the training phase.

Deep Reinforcement Learning (DRL) has been success-

fully employed to solve difficult navigation problems by

means of trial and error experiences. Going beyond heading

commands, Xie et al. [14] present a DRL strategy to ex-

plore vision-based obstacle avoidance policies. The D3QN

architecture was trained in simulation to infer discretized

linear and angular velocities from raw images. Zhu et al. [15]

pursued reactive navigation towards a visual goal, achieving

fast convergence and good generalization results.

Zhang et al. [16] solve navigation problems in simple

maze-like scenarios as a sequence of related reinforcement

learning tasks with four discrete commands as possible

outputs. Mirowski et al. [17] deal with challenging auxiliary

functions such as depth prediction and loop closure detection.

Kahn et al. [18] proposed a method to combine model-

free and model-based DRL for sample-efficient visual self-

supervised learning of continuous actions in the real world.

Uncertainty was considered so as to improve safety.

Regarding the use of laser sensors for learning navigation

strategies, Pfeiffer et al. [19] developed an end-to-end DL

approach for goal-based local navigation of mobile robots.

The proposed model was trained with data from a global

planner and good reactions to sudden changes were shown.

The authors highlight that for fully operational navigation in

complex environments their motion planner should be inte-

grated with a global planner providing intermediate targets.

The work by Tai et al. [20] is the most closely related to

ours. By means of an Asynchronous DDPG, DRL is applied

to learn continuous control actions for a non-holonomic

differential drive robot from 10 sparse laser measurements

and the relative position of the goal. In contrast, our approach

introduces a method based on potential fields to guide

and improve the learning process and provides enhanced

robustness against outliers and flawed measurements.

III. REACTIVE NAVIGATION APPROACH

A. Background

The principal components in the reinforcement learning

paradigm are the agent and the environment. In this paper,

we model the problem of reactive navigation by means of a

Markov Decision Process (MDP) in which at each time step

t, the agent being at state st executes an action at which

causes its transition to a next state st+1 and receives a reward

rt from the environment. The aim of the agent is to learn the

appropriate policy in order to maximize the expected return

Rt =
∑T

i=t γ
i−tr(si, ai) given the reward function r(si, ai)

and a discount factor γ ∈ [0, 1]. In order to evaluate the

policy, the action-value function (1) is usually utilized, which

computes the expected return starting from state st, taking

action at, and then following policy π afterwards.

Qπ(st, at) = Eπ[Rt|st, at] (1)

where Qπ(st, at) is the action-value function.

In contrast to traditional reinforcement learning tech-

niques, deep reinforcement learning algorithms include neu-

ral networks in order to estimate the action-value function

[1], [21], [22] and learn the policy to be executed by the

agent [1], [21]. Concretely, the DDPG was conceived as

a model-free, off-policy algorithm based on an actor-critic

architecture, where the actor network is in charge of learning

the policy that directly maps a state to a continuous action

for the agent, and the critic network is used as a non-

linear function approximator for estimating the action-value

function.

B. Reactive Navigation Architecture

The reactive navigation system proposed in this work is

based on the architecture presented in Fig. 1. The proposed

architecture has been designed in order to integrate a rein-

forcement learning agent (e.g. DDPG) with an aerial robotics

simulator (e.g. RotorS Gazebo [23]), using the Robot Oper-

ating System (ROS) [24] for communication between the

different components. In the next paragraphs, we explain the

configuration of the selected agent (Agent2), obtained after

the evaluations performed in Sections IV-B and IV-C.

As can be seen in Fig. 1, the environment receives the raw

laser range findings coming from a 2D laser range sensor,

and the position of the aerial robot and the goal. Based on

the previous information, the environment is in charge of

computing the 14-dimensional state (observation) and the

reward to be sent to the agent. The first four components

of the state consist of the x and y relative position of the

aerial robot with respect to the desired goal and the x and

y linear velocities of the former. The rest 10 components of

the state are based on laser data, and are calculated using

the following sequence of computations:

1) Preprocessing: This step consists in saturating the laser

range findings up to a maximum virtual range in order

to reduce the influence of the roll and pitch angles of

the robot (see Fig. 2b). This computation has proven

to be crucial in the learning process of the agent.
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Fig. 1: Architecture of the proposed RL-Reactive Navigation system. The enviroment receives as input raw laser range

findings and the aerial robot position from a state estimator module. The agent which implements the DDPG algorithm,

receives an observation and a reward from the environment and computes the action (linear velocity in the x and y directions)

to be commanded to a velocity controller. The dotted lines represent interactions between the components in training mode

(simulation), while the continuous lines depict the interactions in test mode (e.g. real flights).

2) State term based on laser information: Based on the

preprocessed laser range findings from the previous

step, we divide the whole laser scan into 10 evenly-

spaced circular sectors (see blue lines in Figures 2b and

2c). After that, the average of the laser range findings

within each sector is computed (see black lines in Fig.

2c). This method provides a more stable representation

of the state, reducing its vulnerability to noisy isolated

ranges or possible failures in the sensor.

Regarding the agent’s side of the proposed RL architec-

ture, the DDPG algorithm with batch normalization is used

in order to learn the appropriate policy for generating linear

velocity commands to the velocity controller proposed in

[25]. In this work, the actor and critic neural networks of

the DDPG consist of feed-forward neural networks with 3

hidden layers of 400 units each. The activation function

implemented in each hidden unit is the Rectified Linear Unit

(ReLU). The output layer of the actor network is composed

of two units with a tanh activation function in order to

provide a continuous linear velocity command within the

range [−1, 1] m/s, whereas the output layer of the critic

network is composed of a single linear unit used to predict

the action-value function.

C. Reward function design

In order to achieve the two main objectives of our naviga-

tion system, i.e. reaching a predefined goal while providing

an obstacle avoidance behavior, the reward function has been

designed taking into account an APF formulation. Thus, the

reward function is mainly influenced by two terms which

define the attractive and repulsive potential fields.

In order to calculate the attractive potential field, the

system relies on a state estimation algorithm which can

provide the position of the robot in the world frame of

reference. Based on this information and using (2), the

attractive potential field is computed based on the Euclidean

distance between the position of the aerial robot (tr) and the

goal (tg) at the current time step:

Uatt = αρgoal(tr) (2)

where ρgoal(tr) = ‖tr−tg‖2 and α is a positive gain and

has been empirically obtained to be 100.

Regarding the calculation of the repulsive potential field,

we want that each obstacle contributes with only one com-

ponent to the repulsive field term (3). To this aim, we first

identify the obstacles in the surroundings of the aerial robot

up to the maximum virtual range defined previously. For this,

an artificial image is generated (see Fig. 2d) by projecting the

laser ranges into an image of predefined resolution, where

the robot is always in the image center. Using this virtual

image, we use computer vision techniques in order to find

contours in the image which will represent obstacles in the

surroundings of the robot. Once the obstacles (contours)

have been identified, the distance from the center of the

image (aerial robot) to the closest point in each contour

is calculated. The vectors formed by the minimum distance

to each obstacle in the image (see red arrows in Fig. 2d)

represent the laser range findings, within the corresponding

circular sector, used to compute the repulsive potential field:

Urep = β
N
∑

i=1

(

1

k + li
−

1

k + lmax

)

(3)

where β is a positive gain computed using (4), N is the

number of detected obstacles at the current time step, k is

a constant used to limit the repulsive field and has been

empirically set to 0.04, li is the minimum laser range towards

the obstacle i within the corresponding circular sector, and

lmax is the maximum virtual range value. The last term in
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Fig. 2: State and repulsive field computation steps (best

seen in color). (a) Example of a Gazebo test scenario for

illustrating the process. (b) Saturated laser ranges up to a max

virtual range. (c) Circular sectors (blue color) and average of

the laser ranges within each sector (black lines). (d) Virtual

image generated in order to identify near obstacles, quantify

them, and assign them to the corresponding circular sector.

the equation 1/(k+lmax) is used to soften the repulsive field

in the instant when new obstacles appear in the field of view

of the robot.

β =

{

δ if ρgoal(tr) > dinfl
δ

exp[4(dinfl−ρgoal)]
if ρgoal(tr) ≤ dinfl

(4)

where δ is a positive gain and has been empirically found

being δ = 2, and dinfl = 0.75lmax is the distance of

influence from which the repulsive field starts decreasing.

This term is used for reducing the influence of the repulsive

field when the aerial robot is close to the goal.

Once the attractive and repulsive potential fields are calcu-

lated, we compute the reward term using (6) by considering

first a shaping function (5) which provides information to the

agent about its instantaneous progress while speeding up the

learning process [26]. The reward term is finally computed

taking into account the evolution of the shaping function in

two consecutive time steps:

shapingt = −Uatt − Urep (5)

rt = shapingt − shapingt−1 (6)

where rt is the reward obtained at time step t, and Uatt

and Urep stand for the attractive and repulsive potential fields

respectively.

IV. EXPERIMENTS AND RESULTS

A video demonstration of the reported experiments an re-

sults is available in: https://vimeo.com/259398134.

A. Experimental Setup

In order to train and test the proposed RL-Reactive Nav-

igation system in simulation and real flight scenarios, it has

been integrated within the Aerostack framework [27] using

ROS as the communication middleware. Aerostack is an open

source framework for aerial robotics and is used in this work

in order to provide additional software components (e.g. state

estimator, velocity controller, etc) which are necessary for

simulation and real flight experiments. In all the experiments,

the frequency of the agent has been set to 20 Hz.

Simulation experiments have been conducted using the

RotorS Gazebo simulator, in which an AscTec Hummingbird

quadrotor has been used as the aerial robotic platform.

For training purposes, ChainerRL1 library has been utilized,

which is built on top of the Python-based deep learning

framework Chainer2. Using these libraries, all the models

have been trained on a GPU Nvidia GeForce GTX 970.

Real flight experiments have been performed in order

to evaluate the capabilities of the RL-Reactive Navigation

system in unknown indoor scenarios with static and dynamic

obstacles. The aerial robotic platform utilized for these exper-

iments is the DJI Matrice 100 quadrotor, which is equipped

with a DJI Manifold (ARM-architecture) computer and a

Hokuyo laser rangefinder UTM-30LX (see Fig. 7a). In all

the experiments the only information that the robot receives

at each time step is the laser scan measurements, limited to

the maximum virtual range of 2 m, and the current position

of the aerial robot provided by a state estimator. Then, the

velocities of the aerial robot in the x and y coordinates are

computed by differentiating the position of the former.

B. Training Methodology

The simulation scenario utilized for training the agent is

shown in Fig. 3 and consists of an 8 m × 8 m square area

with 3 main obstacles inside. The simplistic configuration

of the proposed scenario has been purposely designed in

order to evaluate the generalization capabilities of the agent

in further test experiments.

In order to train the aerial robotic agent, the simulation has

been configured in an episodic setting, where each episode is

composed of a sequence of steps. At the beginning of each

episode, the aerial robot and the goal are placed in a random

position of the scenario, where the altitude of the aerial robot

always remains constant at 1.2 m.

At each time step during the training process, the agent ex-

ecutes an action with added noise according to an Ornstein-

Uhlenbeck distribution and receives a reward given by (6).

This process is repeated until the maximum number of steps

(400 steps/episode) is reached or when the aerial robot

reaches a terminal state. A terminal state occurs when the

aerial robot collides with an obstacle or when it reaches the

goal. In the first situation, a negative reward of −100 is given

to the agent, while in the second situation, which represents

the main objective, a positive reward of +10 is provided.

1https://github.com/chainer/chainerrl
2https://github.com/chainer/chainer
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Fig. 3: Gazebo-based simulation scenario used for training

the RL-Reactive Navigation system. Pink cylinder represents

the goal.

During the training process of the actor and the critic

neural networks (see Fig. 4), Adam optimizer [28] has been

utilized with a base learning rate of 10−4 and a minibatch

size of 64. The rest of the hyperparameters are the same

as those presented in the DDPG original work. Using this

configuration, and the reward design presented in Section III-

C, the agent is able to learn an appropriate reactive navigation

policy in 600 episodes, taking approximately 147k simulation

steps (2 hours). In order to select the most appropriate agent,

in this work we perform a thorough comparison between

three different configurations of the DDPG agent varying the

number of neurons in each hidden layer (actor and critic)

and the number of circular sectors that make up the part

of the state corresponding to laser measurements. The first

configuration studied, referred to as Agent1, has been trained

with the actor and critic neural networks being composed

of 3 hidden layers of 400 units each. The state considered

in Agent1 is a 12-dimensional state with 8 circular sectors

as the laser term of the state. The second configuration,

referred to as Agent2, has been trained using the same actor

and critic configuration as Agent1 and a state composed of

10 laser circular sectors. The final configuration considered,

referred to as Agent3, has been conceived as a configuration

for analyzing the influence of the number of hidden units in

the performance of the agent. Thus, Agent3 has been trained

with an actor and critic of 300 hidden units in each hidden

layer. In this case, the state has the same configuration as

Agent2. Table I summarizes the three agent’s configurations

analyzed.

TABLE I: Configuration of the different agents analyzed.

Agent Hidden units (actor) Hidden units (critic) state dim.

1 3 × 400 3 × 400 12

2 3 × 400 3 × 400 14

3 3 × 300 3 × 300 14
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Fig. 4: Training curves (best seen in color). (a) Accumulated

reward per episode. (b) Accumulated action-value function

(Q) per episode. Each curve is depicted considering a moving

average of 200 episodes.

C. Simulation Experiments

The main objective of the simulation experiments pre-

sented in this section is to select the most appropriate

agent configuration for the proposed RL-Reactive Navigation

system while measuring its generalization capability. For this

purpose, a benchmark of three Gazebo-based scenarios has

been created with different levels of complexity. The first

two scenarios contain static obstacles (see Figures 5a and

5b), while the last one is made up of dynamic obstacles (see

Fig. 5c). The last designed scenario is of special interest

owing to the different type of movement that the obstacles

can exhibit (one cylindrical obstacle moves according to a

sinusoidal trajectory, while a quadrilateral obstacle performs

sudden movements in front of the aerial robot). It has to

be noted that, in all the simulation scenarios, the obstacles

are significantly smaller than the ones used in the training

scenario (see Figures 3 and 5) with the aim of evaluating the

generalization capabilities of the proposed system.

In order to obtain a complete evaluation of the different

agents presented in Table I, we perform 100 tests in each of

the three simulation scenarios. In each test, the aerial robot is

initialized at the bottom part of the scenario while the goal

is located at the upper part at 5 m distance in the y axis.

Both of them are randomly placed within a section of 2 m

in the x axis. In all the tests the velocity of the aerial robot

is limited within the range [−0.6, 0.6] m/s.

The results obtained during the execution of the experi-

ment are presented in Table II. In this table, four main metrics

are shown: PF stands for the performance or percentage of

accuracy, which measures the number of tests in which the

agent reached the goal successfully. We consider the goal

reached when the distance between the agent and the goal

is less than 0.3 m. On the other hand, the test is considered

failed when the agent collides with any of the obstacles.

This situation occurs when any of the laser ranges provides

a measurement less than 0.3 m. The variable PL represents

the average path length measured in meters, TG is the

average time to reach the goal, and finally, MD provides a

measurement of the mean minimum distance to the obstacles

during the corresponding test.

Based on the results presented in Table II, Agent2 con-

figuration is adopted in order to conduct further real flight

experiments, and its selection will be further discussed in

Section V.
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Fig. 5: Simulation experiments. (a), (b), (c) Gazebo simulation scenarios created for evaluating the agents. (d) Three

illustrative trajectories generated by Agent2 in scenario 1. (e) Three representative trajectories generated by Agent2 in

scenario 2. (f), (g), (h) Three representative trajectories generated by Agent2 in scenario 3. The dotted line shapes represent

moving obstacles, while shapes with solid lines indicate static obstacles. The pink triangle represents the takeoff point of

the agent and the pink cross indicates the location of the goal.

TABLE II: Evaluation of the different agents in the scenarios

of Fig. 5. S stands for scenario and A represents the agent.

S A PF (%) PL (m) TG (s) MD (m)

1

1 86 5.88± 0.40 11.57± 0.85 0.7± 0.03

2 98 5.87± 0.24 11.99± 1.44 0.71± 0.06

3 89 5.81± 0.47 10.92± 0.71 0.71± 0.05

2

1 78 6.05± 0.29 11.31± 0.83 0.81± 0.03

2 100 5.99± 0.21 12.28± 1.06 0.75± 0.03

3 67 5.76± 0.23 10.88± 0.73 0.78± 0.04

3

1 75 6.28± 0.47 14.1± 2.02 0.73± 0.07

2 81 6.88± 0.81 16.3± 3.49 0.73± 0.06

3 51 5.84± 0.16 11.82± 0.6 0.70± 0.05

D. Real Flight Experiments

Three experiments of increasing difficulty have been con-

sidered. The first experiment has been designed in order to

evaluate the long-term navigation capabilities of the proposed

RL-Reactive Navigation system. For this purpose, the objec-

tive of the aerial robot is to navigate through an a priori

unknown indoor scenario in order to reach a sequence of

goals which are defined before takeoff. The scenario consists

of an 11 m × 10 m area and is composed of static obstacles

of varying shape (cylindrical and quadrilateral) and size (see

Fig. 6). Fig. 6b shows the trajectory generated by the aerial

robot while reaching the sequence of goals.

The same scenario is used in the second experiment, which

additionally introduces a mobile obstacle that is handled

by a human operator from within. In this experiment, the

moving obstacle tries to block the trajectory of the aerial

robot during some period of time in two sections of the

scenario. The main objective of this experiment is to evaluate

the long-term and reactive navigation capabilities of the

proposed system as a whole. Fig. 6c depicts the trajectory

generated by the aerial robot while reaching each of the

commanded goals. In this figure, sections A and B of the

trajectory are highlighted for further discussion, where the

aerial robot suddenly encounters the moving obstacle and

performs reactive maneuvers in order to avoid it.

Finally, the third experiment has been designed for test-

ing the reactive behavior of the proposed approach in the

presence of a fast-moving obstacle. For this purpose, a 4 m

× 3 m area is utilized in which OptiTrack motion capture

system is used for capturing the state of the aerial robot and

the moving obstacle (see Fig. 7). For a better understanding

of the last two experiments involving moving obstacles, we

refer the reader to the video demonstration.

V. DISCUSSION

The experiments presented in simulation and real flight

scenarios reveal the outstanding navigation capabilities of

the mapless RL-Reactive Navigation system proposed in this

work. The proposed agent has been only trained in a simple

simulation scenario in order to demonstrate its generalization
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Fig. 6: Real Flight experiments designed for evaluating the

proposed RL-Reactive Navigation system in long missions

with static and dynamic obstacles. (a) Indoor scenario created

for the evaluation. (b) Trajectory generated by the aerial

robot in the first real flight experiment (static obstacles). (c)

Trajectory generated by the aerial robot in the second real

flight experiment (static and dynamic obstacles).

capabilities. The reward function design proposed in this

work for training the agent is based on an artificial potential

field formulation, which introduces attractive and repulsive

field terms. Unlike similar approaches of the state-of-the-

art [20] in which the agent is rewarded negatively only in

the moment of collision, the inclusion of the repulsive field

term allows providing feedback regarding the proximity of

obstacles in each time step. This fact considerably reduces

the training time of the agent as shown in Fig. 4.

The simulation results presented in Table II show the

considerable influence of the number of parameters of the

model in the performance of the agent. A reduction of 106 in

the number of weights of the actor and critic neural networks

(Agent2 to Agent3) led to learning a policy with limited

navigation and generalization capabilities. The final agent

configuration adopted in this work (Agent2) is based on an

actor network with 400 units in each of the 3 hidden layers.

Furthermore, the inclusion of more laser information in the

state of the agent (10 laser circular sectors as compared to

the 8 circular sectors of Agent1) proved to be beneficial.

The results regarding the time to reach the goal (TG) are

of special interest. In all the simulation scenarios, Agent2

obtained higher TG than the other two agents owing to

the complex behaviors learned by this agent. One of these

behaviors has been confirmed in a visual manner and consists
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Fig. 7: Real flight experiment designed for evaluating the

reactive behavior of the proposed RL-Reactive Navigation

system (best seen in color). (a) Indoor scenario created for

the evaluation. (b), (c) Positions of the aerial robot and the

moving obstacle. (d), (e) Linear velocities reached by the

aerial robot and the moving obstacle during the experiment.

in performing a hard braking when an obstacle appears sud-

denly in front of the aerial robot. These learned maneuvers

lead to a safer behavior which is translated into a higher

performance, sacrificing the time to reach the goal.

Regarding the results obtained in real flight experiments,

we would like to emphasize the versatility of the proposed

RL-Reactive Navigation system, which has been only trained

in a Gazebo simulation scenario using a quadrotor (AscTec

Hummingbird) with different dynamics as compared to the

one utilized in real flights (DJI Matrice 100). The results

presented in Fig. 6, demonstrate the appropriate reactive

maneuvers generated by the proposed system in the presence

of a dynamic obstacle which suddenly appears in front of

the aerial robot in the sections A and B of its trajectory.

These reactive maneuvers are further demonstrated in the

results presented in Fig. 7, where the aerial robot is able to

maintain a safety distance in the x direction from the moving

obstacle (see Fig. 7b), which performs aggressive maneuvers

(> 1 m/s) trying to block the trajectory of the aerial robot

towards the goal. The fast response of the aerial robot is

evidenced in Figures 7c and 7e, where the plots are almost

coincident with a little delay in time revealing the avoidance

maneuver of the aerial robot. It should be remarked that,
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even though the agent runs at 20 Hz, the inference time of

the actor network has been measured in 8 ms on average.

Finally, it should be noted that some limitations that might

occur owing to the use of an APF formulation such as dead

ends in U-shaped obstacles can be easily mitigated by inte-

grating the proposed RL-Reactive Navigation system with a

robust global planner. Despite the mentioned limitation, the

results presented throughout this paper demonstrate that the

proposed approach can be utilized as an effective long-term

and fast-reactive navigation system in scenarios with static

and dynamic obstacles. Furthermore, the versatility of the

proposed approach allows its operation in previously unseen

scenarios independently of the obstacle configurations in

terms of number, shape, and size.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel reactive navigation system for mul-

tirotor aerial robots based on Deep Reinforcement Learning

is proposed. Taking as input only laser information and the

position of the aerial robot and the goal, the proposed agent

is successfully trained in a Gazebo simulation scenario. Fur-

thermore, by using a potential field formulation in the reward

function the training process of the agent is accelerated

by a large margin as compared to similar state-of-the-art

approaches. An extensive evaluation of the proposed RL-

Reactive Navigation system has been conducted in simula-

tion and real flight experiments, demonstrating outstanding

long-term and reactive navigation capabilities, especially in

the presence of obstacles that execute sudden movements.

Future work aims towards the extension of the proposed

system with memory-based functionalities (e.g. Long-Short

Term Memory) in order to provide long-term navigation

capabilities in maze-like scenarios. Furthermore, the integra-

tion of the proposed system with a global planner will be

considered in order to leverage the benefits of both systems.
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