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ABSTRACT 

 
Long short-term memory (LSTM) network is a machine learning model which can be used for 

financial series forecasting. We set up LSTM networks for predicting stock prices for the 

constituent stocks of the S&P 500 from 2005 until 2019. We create various LSTM architecture to 

understand the impact on price forecasting. After the selection of the best architecture in terms of 

predictions, we investigate the performance across the various constituents of S&P 500 index. The 

model presents a varying performance in relation to the constituent: in average the stock movement 

accuracy is 57%. We build a portfolio daily rebalanced based on these predictions, for the test set of 

our dataset represented by the last three years (from 2017 to 2019). Despite the accuracy of the 

model is around 70% for 82 stocks, the portfolios constructed do not present a good performance. 

The Sharpe ratio in annual terms after transaction costs are: 1.19 in 2017, -0.57 in 2018 and -0.50 in 

2019. 
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Introduction
The stock price prediction represents a notoriously difficult task in finance considering the
many elements that impact on future price movements. Identifying the stock price evolution
can help investors avoid risks and obtain higher returns; for these reasons, this task has be-
come a hot field and attracted many researchers’ attention.

There are many techniques and statistical models proposed in academic literature to pre-
dict the stock price given its past observed values. In recent years, the computerization of
the markets encourages automation and algorithmic solutions. In particular, the success of
machine learning has attracted the financial communities interest to obtain new models for
various tasks, including stock price predictions. Machine learning is a branch of Artificial
Intelligence (AI) based on a specific approach: learn from data, identify patterns and make
decisions with minimal human intervention. In recent years, Artificial Intelligence and ma-
chine learning innovations have had a strong impact in different fields, from the manufactur-
ing industry to social media services. Furthermore, there are promising finance applications:
process automation, fraud detection, portfolio management and algorithmic trading. Risk
assessment represents another interesting area of application for deep learning models. Ex-
amples of risk assessment problem are: bankruptcy prediction, credit scoring and evaluation,
mortgage evaluation (Ozbayoglu et al. 2020, p. 14). Machine learning algorithms try to make
predictions to solve these tasks thanks to the big dataset.

In the last years, initial evidence has been established that machine learning techniques are
capable of identifying (non-linear) structures in financial market data as explained in vari-
ous works, for instance: Dixon et al. (2015), Krauss et al. (2016), Hao & Gao (2020) and
Fischer & Krauss (2017). The aim of this work is to investigate the effectiveness of the ma-
chine learning approach for stock price predictions. Specifically, we want to apply a specific
model called Long short-term memory: one of the most advanced machine learning archi-
tectures for sequence learning tasks, such as handwriting recognition, speech recognition,
or time series prediction (Graves 2013). Our task is to predict the daily stock prices for the
constituents of S&P500 index, which includes 500 large companies listed on U.S. stock ex-
changes. From these predictions, we can calculate the stock return to build a portfolio of
stocks which contains the best stocks in term of daily returns (long position) and the worse
stocks (short position). The portfolio is rebalanced each day following the stock price pre-
dictions.

We proposed a different LSTM architecture compared to the similar works in literature. Our
goal is try to overcome some drawbacks and extend this model to a different periods than
the studies cited before. We proposed various LSTM architectures to understand how the
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results change. Furthermore, we investigated the model performance across the various con-
stituents. This is the principal contribution of this work, there is a analysis on how the perfor-
mance change across the various S&P500 constituents and the relative impact on portfolio
construction.

This work is organized as follows. The first chapter presents stock price prediction in litera-
ture and the definition of quantitative trading, an investment strategies based onmathematical
models and algorithms. The machine learning approaches are related to these kinds of trad-
ing systems. Then we illustrate our investment strategies to build a portfolio and the relative
metrics to measures its financial performance.

The second chapter illustrates the machine learning approach and the LSTM algorithm. After
a brief overview of the basics concepts, we illustrate the various aspects of our algorithm. We
provide a deep explanation of the mathematics behind this model. We focus our attention on
all the hyperparameters that can influence the model performance and the various strategies
to overcome overfitting problem to improve the performance.

The third chapter presents the hyperparameters selected for our model and the underlying rea-
sons that justify this choice. Then we present the result of our algorithm for the daily stock
price prediction and the various problems that we have encountered. Finally, we present
our daily portfolio strategy based on these predictions to understand this approach’s effec-
tiveness. These portfolios are evaluated considering the of daily returns, the relative risk
metrics, and cumulative return performance with a yearly horizon.
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Chapter 1

Stock price forecasting and quantitative trad-
ing
The stock (or equity) is a security that represents ownership of a fraction of a company. It
gives the right to receive part of cash flows of a company, in form of dividend payments.
Hence, the stock prices can be decomposed as:

stock price = NPV of future expected dividend+ resale value

The value and payments claims (future dividends) can rise and fall according to the finan-
cial markets and the company’s fortunes. The stock price change, knowing as the return,
represents a source of profit for the investors if it is positive. There are various models for
stock prediction. For example, there are statistical approaches which try to identify the stock
price considering its historical observed values, but the stock price predictions with past data
is challenging, given the high degree of noise present in the market. Furthermore, we have
to consider an important theory presented by Fama (1965) and Fama (1970): the efficient
market hypothesis. There are three degrees of market efficiency:

• Weak form: All available information are incorporated in the stock price. Hence, past
price movements are not useful for predicting future prices.

• Semi-strong form: Stock prices adjust quickly to absorb new public information. The
investor cannot benefit from new information and achieves superior returns.

• Strong form: The stock prices reflect all the public and private information. In this
case, not even a corporate insider can achieve superiors returns.

In an efficient market, there is no possibility to predict potential prices from historical data
or from other types of information. The stocks are trading at their fair value. It is impossible
for investors to either buy undervalued stocks or sell overvalued stocks. Hence, they cannot
beat the market.

Yet, there is a plethora of well-known capital market anomalies that are in stark contrast with
the notion of market efficiency (Fischer & Krauss 2017). For example, Jacob (2015) and
Green et al. (2013) provide surveys that collect more than 100 of such capital market anoma-
lies, which effectively rely on return predictive signals to outperform the market.

5



Given this possibility, various trading strategies have been proposed to rely onmarket anoma-
lies. In particular, we want to analyze the profitability of a quantitative trading strategy, in-
troduced in recent years with the automatization of exchange markets and the Information
Technology (IT) revolution.

The following section presents the quantitative trading innovations and our approach to build
a strategy to gain profits based on machine learning. The technical details of this approach
will be present in Chapter 2.

1.1 Quantitative trading

Starting with a general definition of quantitative trading.

Definition 1.1. Quantitative trading consists of trading strategies based on quantitative in-
vestment analysis, which relies on mathematical models to design an automated trading sys-
tem. Market trend, entry and exit trade, price history and volume are the critical factors for
each quantitative trading strategy (Ta et al. 2020).

Quantitative trading works by using data-based models to determine the probability of a cer-
tain outcome happening. The basic idea is to build an architecture to leverage statistics,
computer algorithms, and computational resources for high-frequency trading systems, aim-
ing to minimize risk and maximize return based on the historical performance of the encoded
strategies tested against historical data.

The process involves various steps: after collecting and analyzing historical data, we can
construct an algorithm to make accurate predictions on price or returns and build a spe-
cific investment strategy. Specifically, the algorithm tries to identify recurrent patterns in
stock price and their relative probability to make predictions. This model must be optimized
through back-testing. Finally, the results of the analysis are visualized and become the crite-
ria for investment decision-making.

Figure 1.1: Quantitative investment management system

Source: Ta et al. (2020)

Quantitative trading popularity increased in the last decade, is generally used by financial
institutions and hedge funds. It represents the new era of trading, which provided different
benefits: lower commissions, anonymity, control, and analysis on a big set of stock which is
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difficult for a human being, discipline (weeds out the emotion of fear and greed and promotes
rational decisions), access, competition and reduced transaction costs (Ta et al. 2020).

However, these quantitative models are profitable only for a particular market type or condi-
tion for which the model was made. They need to be redeveloped as the market conditions
evolve. The deep learning algorithm is specifically applied for the stock price prediction and
selection based on the historical dataset.

Quantitative trading involves short term strategy and a substantial Information Technology
structure (IT). The stock price prediction represents the starting point of various strategies
which can be executed with quantitative trading.

Our investment strategy is based on selecting a certain number of stocks which must be hold
over a short horizon of time. The stocks selection is inspired from momentum strategy, pre-
sented in the next section.

1.2 Momentum trading

In academic literature, momentum trading is a famous strategy based on the predictability of
stock returns. Momentum trading is the practice of buying and selling assets according to the
recent strength of price trends. It is based on the idea that if there is enough force behind a
price move, it will continue to move in the same direction.

An important article that demonstrates this strategy is Jegadeesh & Titman (1993). The au-
thors demonstrated that stocks which performed well historically continued to perform well
over a subsequent certain interval of time. In particular, they select stocks based on the rela-
tive returns over the past J months and holds them for subsequentK months (also called J-
month/K-month strategy). The analysis was conducted on New York stock exchange stocks
from 1965 to 1989. J and K are set equal to various period: 3,6,9 and 12 months. At the
beginning of each month, securities are ranked in ascending order based on their returns in
the past J months. Based on these rankings, ten decile portfolios are formed that equally
weight the stocks contained in the top decile, the second decile, and so on. They construct
the portfolios in such a way that the winner portfolio consisted of the best performing stocks,
and the loser portfolio consisted of the worst performing stocks. This strategy leads to a re-
turn of 12.01% per year on average.

The profitability of this strategy, according to the authors, is due to the fact that individuals
tend to overreact to information. Daniel et al. (1998) argue that investors will buy a stock
if good news supports their optimistic indication. On the other hand, investors do not sell
the stock if the negative indication is inconsistent with positive news or their previous opin-
ion. Jegadeesh & Titman (1993) also indicate that the market under-reacts to information
about the short-term prospects of firms but over-reacts to information about their long-term
prospects.

7



The conservatism bias, identified in experiments by Edwards (1968), suggests that individu-
als underweight new information in updating their priors. If investors act in this way, prices
will tend to slowly adjust to information, but once the information is fully incorporated in
prices there is no further predictability in stock returns. Barbens, Shleifer & Vishny (1998)
propose that under-reaction is initiated by the conservatism bias over time horizons of one to
fourteen months.

However, the momentum strategy illustrated above is based on a long-term horizon of in-
vestment. Quantitative trading, introduced in section 1.1, usually works with short-term in-
vestment. For instance, the portfolios constructed with quantitative momentum trading are
daily rebalanced. This means that we buy winners or sell losers stocks with daily frequency.
This strategy’s benefits are that we can obtain excess daily returns, resulting in large profits
for investors. We can capitalize on the large volatility with this strategy. Suppose that a
certain stock is characterized by big daily price variation, this can results in more profits for
investors because the price variation can be high. However, there is also the possibility that
this results in big losses.

Other problems of short-term strategy is that an investor has a huge stock turnover, which
is related to fees and commissions that must be paid. Furthermore, the stock price has a lot
of variation during the day, and it is necessary to understand the perfect timing when it is
optimal to buy or sell a stock.

1.3 Quantitative trading: a new approach

We proposed a strategy based on forecasting daily price of various constituents of S&P500:
the stock market index, which measures the performance of 500 large companies stock lis-
tened on U.S. stock exchange. The predictions are based on a new approach: deep neural
network, a subset of machine learning. The machine learning represents a subset of the arti-
ficial intelligence, which consists in a model that is able to learn the parameters automatically
with limited human intervention.
The theory and all the aspects of the machine learning will be presented in Chapter 2.

We want to predict a daily prices of stock considering its historical pries observation: time
series forecasting. The succession of values in a time series is usually influenced by some
external (or exogenous) information. If this information is not known, only the past values
of the series itself can be used to build a model (Lendasse et al. 2000). We can define the
stock price (P ) prediction with a mathematical function of the form:

Pt+1 = fθ(Pt, Pt−1, Pt−2, · · · , Pt−N+1) (1.1)

Where the unknown value Pt+1 is estimated from the current and past values of P . The
parameters of the model f are chosen according to the information available, i.e. to all
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known values of P ; this step is called learning or fitting. There are various models for time
series predictions, based on linear or nonlinear functions (see Hamilton (1994)).

In the last years, initial evidence has been established that machine learning techniques are
capable of identifying (non-linear) structures in financial market data, as explained in Dixon
et al. (2015), Krauss et al. (2016), and Fischer & Krauss (2017).

After the daily stock price predictions and the calculation of the relative return, we select the
best and worse performing stock in term of daily returns following Ta et al. 2020 and Fischer
& Krauss 2017. We decided to estimate the stock price on daily basis for the characteristic
our deep learning approach, which required a considerable amount of data, and because this
is consistent with the quantitative trading strategy (short term horizon of investment). This
approach is similar to the momentum model proposed by Jegadeesh & Titman (1993), but
the portfolio is daily rebalanced in this case. The various elements of this strategy will be
explained in chapter 3.

1.3.1 Adjusted closing price of the stock

The purpose of our non-linear model is the price forecasting. We collected the value of
historical price series of a particular stock to set our model, but it must be considered that
there are various kind of prices. Specifically, we can have:

• Open price: It is the price at which stock first trades upon the opening of an exchange
on a trading day.

• closing price: It refers to the last price at which a stock trades during a regular trading
session, for example in many U.S. market the regular sessions run from 9:30 a.m. to
4:00 p.m. Eastern Time.

• Adjusted closing Price: It refers to the ’Closing price’ adjusted by accounting any
corporate action. In general, it is used to analyze the historical return.

Regarding the last kind of price, we can have different operations that require adjustments,
for example:

• Stock split: The company issues more share to current shareholder without changing
the market capitalization. This leading to a stock price reduction.

• Right offering: Entitles the shareholders to subscribe to the rights issue in proportion
to their shares. This operation will lower the value of existing shares because supply
increases, hence it have a diluting effect on the existing shares.

• Dividend: Announcement and distribution of cash and stock dividends affect the stock
price.
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We used the adjusted closing price as input data of our daily stock price forecasting model to
avoid the effect of the adjustments presented above. In this way the historical prices series
can be evaluated without consider the company announcements on dividends. Once we ob-
tained the results of this forecasting model, the daily prices of stock, we calculated the daily
variations of price forecasting to obtain the relative returns. Finally, we constructed our port-
folio based on a certain number stocks, the selection strategy will be explained in Chapter 3
section 3.4. The last step is to evaluate these portfolios daily performance.

1.4 Portfolio evaluation and cumulative return

From our strategy of stock selection, we obtained the daily returns which can be positive
(gains) or negative (losses). In chapter 3, we evaluate the portfolios daily return distribution
for a certain horizon of time (e.g. one year) with the classical statistics metrics as mean (µ)
and median. An important measures are variance σ2 and standard deviation (volatility) σ.
These measures indicates the dispersion of daily returns of selected portfolio, high values
indicate that the distribution of return has a certain degree of uncertainty.

Other metrics used are the Skewness and Kurtosis, which can analyze the portfolio daily
return and understanding the impact of eventually outliers values. The Skewness represents
the third moment and is a standard measure of symmetry of a distribution. Given a random
variable X:

skew[X] =
E[(X − E[X])3]

σ3
(1.2)

If the bulk of the data is at the left and the right tail is longer, the distribution is right skewed
or positively skewed; if the peak is toward the right and the left tail is longer, the distribution
is left skewed or negatively skewed.

Kurtosis represents the fourth moment and provides a measure of the relative weight of the
tails with respect to the central body of a distribution.

kurt[X] =
E[(X − E[X])4]

σ4
(1.3)

• A normal distribution has kurtosis exactly 3. Any distribution with kurtosis ≈3 (excess
≈0) is called mesokurtic.

• If kurtosis < 3, the distribution is called platykurtic. Compared to a normal distribu-
tion, its tails are shorter and thinner, and often its central peak is lower and broader.

• If kurtosis > 3 is called leptokurtic. Compared to a normal distribution, its tails are
longer and fatter, and often its central peak is higher and sharper.

Furthermore, we can evaluate the gains of our investments strategy in a horizon of time dif-
ferent from one day (month or yearly). Hence, we extend the definition of the simple return
to the cumulative return, which is the aggregate amount that the investment has gained or lost
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returns for a certain horizon of time (e.g 6 months or one year), we can estimate the risk.

Let us define these two metrics in general terms. Considering a X a random variable with
cumulative distribution function FX(z). The random variable X in our case represents the
daily return, and may have a meaning of loss or gain. In our case, X represents the loss.
(Sarykalin et al. 2008, p. 272).

Definition 1.2. The VaR of X with the confidence level α ∈]0, 1[ is

V aRα(X) = min{z|FX(z) ≥ α} (1.5)

By definition, V aRα(X) is a lower α-percentile of random variable X . The Value-at-risk
is used in different fields involving uncertainty. The VaR is the quantile that represents the
worst scenario of a certain distribution. If we consider the distribution of daily returns over a
specified period of time, the VaRmeasures the amount of potential loss, or in other words the
negative returns, that could happen which a certain probability. For example, the 5% VaR
represents the 5% of total cumulative distribution associated with the worse scenario.

An interesting example of Value-at-risk application regards financial regulation, which are
represented by the three Basel agreement (Basel I, Basel II, Basel III). These are agreements
formed with the purpose of creating an international regulatory framework for managing
credit risk and market risk. Their key function is to ensure that banks hold enough cash re-
serves to meet their financial obligations and absorb unexpected loss derived from financial
and economic distress. The Basel Committee published ’The 1996 Amendment’ which in-
dicates that the capital that a bank must hold on its trading book is calculated as k times the
VaR measured (Hull 2006, p. 495). The regulator chooses the level of k in relation to the
various banks; Basel II and III picked up this measure.

Another measure of risk is called Conditional-Value-at-Risk or CVaR, which was introduced
by Rockafellar & Uryasev (2000). The word ’Conditional’ is due to the fact that for random
variable with continuous distribution function, CV aRα(X) equals the conditional expecta-
tion of X subject to X ≥ V aRα(X).

Definition 1.3. The CVaR of X with confidence interval α ∈]0, 1[ is the mean of the gener-
alized α-tail distribution:

CV aRα(X) =

∫

∞

−∞

zdF α
X(z) (1.6)

where:

F α
X(z) =







0, when z < V aRα(X)

Fx(z)−α

1−α
, when z ≥ V aRα(X)

(1.7)

The CVaR is also called Expected Shortfall. While VaR is a quantile of return distribution
associated with worst-case on a specific horizon of time, CVaR is the expected loss if that
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worst-case threshold is ever crossed. Hence, the definition of Expected Shortfall is derived
from quantifying the expected losses beyond the VaR breakpoint. Figure 1.3 represents these
two percentile risk measures in a general case.

Figure 1.3: Risk functions: graphical representation of VaR and CVaR

Source:Sarykalin et al. (2008)

1.6 Sharpe ratio

The Sharpe ratio is an index introduce by William Sharpe is frequently used to evaluate the
performance of an asset and portfolio. Given a certain portfolio w ∈ R

N , the correspond
Sharpe ratio is defined as follow:

SR(w) =
r̃w − rf

σ(r̃w)
(1.8)

r̃w represents the expected return of the portfolio and σ(r̃w) is the associated volatility. rf
indicates the risk-free rate of the asset the return on an investment with zero risk. The yield
for a U.S. Treasury bond, for example, could be used as the risk-free rate.

This equation represents the ratio between the return risk premium of a portfolio and the
standard deviation of the associated random return. We can use the Sharpe ratio to evaluate
a portfolio’s past performance (ex-post), by using the past returns and historical volatility in
the formula. However, the investors can also calculate the ex-ante ratio using the expected
portfolio return and expected risk-free return.
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Chapter 2

LSTM algorithm for stock price predic-
tion
Artificial Intelligence represents the branch of computer science dealing with the simulation
of intelligent behavior in computers to think like a human. Machine learning is a particular
subset of the Artificial Intelligence world regarding building machines that can learn. The
first part of this chapter provides the basics of the machine learning approach. The second
part, from section 2.8, illustrates our daily stock price prediction algorithm: the Long term
short-memory.

2.1 Basics of machine learning

A famous definition of machine learning is provided by Mitchell (1997):

Definition 2.1. “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E.”

Hence we can identify three principal elements of the machine learning algorithms. The first
component is the task (T), which is usually described in terms of how the machine learning
system should processes an example, which is a collection of features that have been quanti-
tatively measured from some objects or events. The process of ’learning’ refers to the ability
to perform the task (Goodfellow et al. 2016, p. 99). Many kinds of task can be solved with
machine learning, some of the most common are:

• Classification: In this type of task, the computer program is asked to specify which
of k categories some input belongs to. An example of a classification task is object
recognition, where the input is an image (usually described as a set of pixel brightness
values), and the output is a numeric code identifying the object in the image.

• Regression: The computer program tries to predict a numerical value given some in-
put. An example of a regression task is the prediction of the expected claim amount
that an insured person will make (used to set insurance premiums) or the prediction of
future prices of securities.

• Structured output: Structured output tasks involve any task where the output is a
vector (or other data structure containing multiple values) with important relationships
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between the different elements. An example is pixel-wise segmentation of images,
where the computer program assigns every pixel in an image to a specific category.

As the second element, we have the performance measure (P) that evaluates a machine learn-
ing algorithm abilities. It is necessary to understand the goodness of the model. There are
various kinds of performance measures, but the choice depends on the algorithm task type.
For example, considering the classification task, we often measure the model’s accuracy to
evaluate P. The accuracy represents the proportion of examples for which the model produces
the correct output. Nevertheless, we can also obtain equivalent information by measuring
the error rate: the proportion of examples for which the model produces an incorrect output
(Goodfellow et al. 2016, p. 103).

The algorithm is allowed to experience (E) on a certain dataset: a collection of examples,
also called data points or collection of data. The dataset is divided into two subsets: the
first is the training set (in-sample data) composed of the observations which served as inputs
in order to train the model (process of learning); the second subset is called the test set or
out-of-sample data and indicates the data used to provide an unbiased evaluation of a final
model fit on the training dataset. In other words, the test set is used to ”test” the machine
learning program, obtained after the training phase. In relation to these three elements, we
have different algorithm approaches.

2.2 Deep learning algorithm

The machine learning algorithm world offers different architectures which can be imple-
mented for various purposes. This work investigates the application of a method called Deep
Learning. An example of this approach is provided by Dixon et al. (2015), which represents
a pioneering application for financial series prediction.

The starting point to understand Deep learning, is a crude electronic model based on the
brain’s neural structure and neurons’ role: the neural network. The biological neurons take
input from numerous other neurons through the dendrites, perform the required processing
on the input and send another electrical pulse through the axon into the terminal nodes from
where it is transmitted to numerous other neurons. We can switch this process in an elec-
tronic model called perceptron, illustrated in Figure 2.1.

The model computes its output through a non-linear function, called activation function, over
the inputs dataset. Its output depends on the input x and weights θ, representing the influence
of various observations of the dataset on output. The activation function indicates how the
inputs are processed to obtain the output desired by the task. The weights have to be learned.
However various relationships between input and output cannot be model using a single per-
ceptron. The quintessential of deep learning is a network of different neurons (or perceptron)
linked each other (like in our brain): the multilayer-perceptron (or feedforward network).
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ure 2.1 and the Equation 2.3, the value of a layer (output or hidden), is given by an activation
function which analyses the sum of inputs with their relative weights plus a specific term b.

The term b indicates the bias parameter of the affine transformation. It does not refer to the
idea of statistical bias concept, which indicates that algorithm’s estimations are not equal to
the true values. The bias term (b) is a constant and represents an additional input into the next
layer that will always have the value equal to 1. Bias units are not influenced by the previous
layer (they do not have any incoming connections) but they do have outgoing connections
with their own weights. The bias unit guarantees that even when all the inputs are zeros, there
will still be activation in the neuron.

The activation function can also be linear, but in this case, the feedforward network as a whole
would remain a linear function of its input. Hence, it is equivalent to a single layer network.
We illustrated a general structure of deep neural network, but there are a lot of models with
different architectures, types of neurons and links between them.

2.3 Activaction functions

The deep learning models try to find a non-linear relationship between input and output by
identifying the function f ∗(x). There are various non-linear functions f which can be used
for this purpose. In this section, we illustrate the functions that we chose for our algorithm.

2.3.1 Sigmoid function

The Sigmoid activation function, sometimes denominated logistic function, is used mostly
in feedforward neural networks. It is a bounded differentiable real function, defined for real
input values (Nwankpa et al. 2020). The Sigmoid function is:

f(x) =
1

1 + e−x
(2.4)

Figure 2.3 provides a graphical representation of this function. The range is between 0 and 1.
The Sigmoid function appears in the output layers of the deep learning architectures, and is
used to predict probability-based output. Sigmoid functions have been applied successfully
in the binary classification problem. We note that the output values of this function are not
zero centered.

2.3.2 Hyperbolic tangent function

The hyperbolic tangent function known as Tanh function, is a smoother zero-centered func-
tion whose range lies between -1 to 1.

f(x) =
ex − e−x

ex + e−x
(2.5)
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Squared Error(MSE) and is given by the following equation:

MSE =

∑T

i=1(yi − y
′

i)
2

T
(2.6)

where Y = (y1, y2, · · · , yT ) is the vector of actual observation, Y
′

= (y
′

1, y
′

2, · · · , y
′

T ) is
the vector of the model predictions, and T is the number of prediction generated. As shown
in equation 2.3, the weights map the influence of the input on output: hence, we have to
determine which are the best weights to obtain a good performance, which is associated with
a lower loss function value.

The deep learning architecture involvesmany variables that make complicated the calculation
of good weights for the model. Hence we introduce a procedure known as optimization: a
searching algorithm that navigates the space of possible sets of weights that the model may
use tomake good or good enough predictions. We usually phrasemost optimization problems
to minimize the objective function, represented in our case by the loss function (also called
error function or cost function).

For simplicity, considering the simple perceptron structure as defined in Figure 2.1, we can
define the model as:

y′i = f(x; θi) (2.7)

Where x is the input vector of the model, and θ represents the vector of weights for each input
observation. Furthermore, let rewrite the loss functionMSE as:

MSE =

∑T

i=1(yi − f(x; θi))2

T
(2.8)

C =MSE = g(θi) (2.9)

The letterC indicates the loss (or cost) function. Our purpose is to minimize this loss function
in relation to the parameters θi, the weight associated to each input xi. We use the classical
concept of derivative in order to identify the point of minimum. However, the machine learn-
ing model involves functions with multiple inputs (as Figure 2.2). In this case we must make
use of the notion of partial derivative: ∂

∂θi
g(θ) which measure how g changes as the vari-

able θi changes while holding all the others constant. The vector that contains all the partial
derivatives is called gradient (∇θg(θ)). To minimize our Loss function, we would like to
find the direction in which g decreases fastest (Goodfellow et al. 2016, p. 85). To do so, we
can use the directional derivative. The directional derivative in direction u (a unit vector) is
the slope of the function f in direction u. The function minimization for the variables θi is:

min
u,u⊤u=1

u⊤∇θg(θ) (2.10)

This is minimized when u points in the opposite direction as the gradient. The positive gra-
dient points directly uphill and the negative gradient directly downhill. We can decrease
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g by moving in the direction of the negative gradient, this is know with the name Gradi-
ent Descend. Hence, we move across different points of the loss function in order to reach
the minimum. Let us introduce a general real-life example that can help us understand this
concept: we can think of a blindfolded man at the top of a mountain and want to reach the
mountain’s lowest point. He will take a step and look for the valley’s slope, whether it goes
up or down. Once he is sure of the downward slope, he will follow that and repeat the step
many times until he has descended completely.

Hence, given the value of loss function with the initial weights, the gradient descent proposes
the new point:

θ′ = θ− ε∇θg(θ) (2.11)

θ′ indicates the new vector of weights and ε is the learning rate, a positive scalar that deter-
mines the size of the step. A popular approach is to set a small value of the learning rate.
Indeed a high value of learning rates puts the model at risk of overshooting the minimum so
it will not be able to converge; because with this learning rate we jump the minimum point
(see figure 2.5). On the other hand, when the value is too small, the time required to learn
the model increases.

Let see an example about gradient descent and the role of learning rate. Starting from the
equation 2.6 which has the form of Y = X2, an equation of parabola in Cartesian coordi-
nates system. The objective of the gradient descend is to find the minimum point by moving
in a small steps. Figure 2.5 illustrates the dynamic of this process; each arrow indicates the
new point of the function reached with Equation 2.11 and the importance of setting a small
learning rate. Considering that the Equation 3.3 can be function of more variables, for ex-

Figure 2.5: Gradient descent process

Source: Donges (2020)

ample the parameter θ and b (bias) as introduced in Equation 2.3 (section 2.2), we can also
illustrate the gradient descent process though a contour plot of three dimensional function;
as shown in Figure 2.6.
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Figure 2.6: Gradient descent process: contour plot

Source: Donges (2020)

2.5 Back-propagation

When we use a feedforward neural network to process an input x and produce an output y′,
information flows forward through the network. The inputs x provide the initial information
that then propagates up to the hidden units at each layer and finally produces the prediction
y′. This is called forward propagation. Finally, we evaluate the model’s performance with
loss function (Equation 2.6). The back-propagation algorithm allows the information from
the cost to then flow backwards through the network in order to compute the gradient (Good-
fellow et al. 2016, p. 204).

The gradient’s analytical expression is straightforward, but the numerical evaluation of this
expression can be computationally expensive. The back-propagation algorithm does so using
a simple and inexpensive procedure.

The back-propagation purpose is to adjust each weight in the network in proportion to how
much it contributes to the overall error. The ”backward” part of the name stems from the
fact that the gradient calculation proceeds backward through the network, with the gradient
of the final layer of weights being calculated first and the gradient of the first layer of weights
being calculated last. Partial computations of the gradient from one layer are reused in the
gradient’s computation for the previous layer.

For simplicity, we analyze how this method works in a simple neural network with two hid-
den layers. Figure 2.7 illustrates this simple network, in this case we set the loss function
(Equation 2.6) as C = g(θi).

Where x represents the input dataset. As illustrated in section 2.2, each layer has a specific
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Figure 2.7: Feedforward model with two hidden layers

activation function. In this case we have the following model’s structure:

h(1) = f (1)(x; θ(1)) (2.12)

h(2) = f (2)(h(1); θ(2), ) (2.13)

y′ = θ(3)h(2) (2.14)

The term θ represents the input weights vector for each layer, the parameters that our model
must learn. The objective of backpropagation is to find the value of θ, the various weights
which minimize the loss function C (Equation 2.6).

Since the deep learning model has more than one layer, the loss function value depends on
the weights value via a chain of many functions. Hence, we use the chain rule to compute the
derivative of the loss function. The chain rule of calculus is used to compute the derivatives
of functions formed by composing other functions whose derivatives are known (Goodfellow
et al. 2016, p. 205). For example, let x be a real number, and let f and g both be functions
mapping from a real number to a real number. Suppose that y = g(x) and z = f(g(x)) =

f(y), the chain rule states:
dz

dx
=
dz

dy

dy

dx
(2.15)

Each component of the derivative ofC for each weight in the network can be calculated indi-
vidually using the chain rule. However, it would be extremely inefficient to do this separately
for each weight. The back-propagation algorithm involves first calculating the derivatives at
the last layer (or output layer). These derivatives are an ingredient in the chain rule formula
for layer N − 1, so they can be saved and re-used for the second-to-last layer. Thus, in
back-propagation, we work our way backward through the network from the last layer to the
first layer, each time using the last derivative calculations via the chain rule to obtain the
derivatives for the current layer. In this way, the back-propagation algorithm allows us to
efficiently calculate the gradient for each weight by avoiding duplicate calculations.

Given the deep learning model as illustrated in Figure 2.7, the back-propagation first calcu-
lates:

∂C

∂θ(3)
(2.16)

then:
∂C

∂θ(2)
(2.17)
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and then:
∂C

∂θ(1)
(2.18)

We can express the loss function C explicitly as a function of all the weights in the network
by substituting in the expression for each layer:

C(y, y′) = C(y; θ(3)h(2))

C(y, y′) = C(y; θ(3)f (2)(θ(2)h(1)))

C(y, y′) = C(y; θ(3)f (2)(θ(2)f (1)(θ(1)x))) (2.19)

Specifically, when we apply the chain rule for each layer of the model (Figure 2.7), we get
the following equation for output layer:

∂C

∂θ(3)
=
∂C

∂y′
∂y′

∂θ(3)
(2.20)

Next, we calculate the gradient of second hidden layer. Since C is now to steps away, we
have to use the chain rule twice:

∂C

∂θ(2)
=
∂C

∂y′
∂y′

∂h(2)
∂h(2)

∂θ(2)
(2.21)

Finally, we can calculate the gradient with respect to the weights of the first layer, this time
using another step of the chain rule.

∂C

∂θ(1)
=
∂C

∂y′
∂y′

∂h(2)
∂h(2)

∂h(1)
∂h(1)

θ(1)
(2.22)

The first two terms in chain rule expression are shared with the second hidden layer’s gradient
calculation. Hence computationally, it is not necessary to calculate the entire expression.

The back-propagation refers to themethod for computing the gradient, while other algorithms
knowing as optimizer (see section 2.13), are used to perform learning using this gradient
(Goodfellow et al. 2016, p. 204).

However, some drawbacks in gradient calculation must be considered. In section 2.3, we
illustrate some examples of non-linear activation function. The back-propagation works with
the derivative of the activation functions with respect to the weights θ, the variables which
we want optimize. Figure 2.8 illustrates the shape of this derivative of the Sigmoid function
(formula 2.4).

The activation function’s value depends on the variable qi = θixi where xi represents the
specific input observation with the associate weight. If the value of q is larger or smaller, the
derivative has a value close to zero. This can cause problems during the application of the
chain rule. The gradient decreases exponentially as we propagate down to the initial layers
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which is defined as the expected value of the error on new input (Goodfellow et al. 2016, p.
110).

We typically estimate the test error by measuring the model performance on a test set of ex-
amples. The loss function can be the same as training error or different. Hence, the good
performance of algorithm depends on its ability to make small the training error and the gap
between test and training error. These two factors correspond to the two main challenges of
machine learning. The first is called ”underfitting” and occurs when the model is not able to
obtain a sufficiently low error value on the training set. On the other hand, in according to
Salman & Liu (2019) and Goodfellow et al. (2016) we can define the second challenge as:

Definition 2.2. Overfitting: The noise or random fluctuations in the training data is picked
up and learned as concepts by the model. This results in a large gap between the training
and test error.

Deep Learning models are exposed to this problem because they have a large number of
parameters that must be learned. However, the models are very flexible and we can adjust
the various parameters to obtain a better performance. Parameters adjustment means that we
can control the model by varying its capacity, defined as the ability to fit a wide variety of
functions. When the capacity is appropriate, we can obtain a good model. A low capacity
means that the model can struggle to fit the training set (underfitting). On the opposite, a high
capacity model can overfit by memorizing properties of the training set that do not serve them
well on the test set.

The Figure 2.10 provides a relation between error and capacity. We can observe that the

Figure 2.10: Underfitting vs Overfitting: Error analysis

Source: Goodfellow et al. (2016)

two errors follow different patterns. At the left of the graph, errors are very high and this
is associated with an underfitting situation. When we increase the capacity of the model by
varying some parameters, the training error decreases. However when we increase capacity,
the gap between training and test error could increase. Furthermore, the size of the gap

26



can outweigh the training error reduction, resulting in the overfitting regime. For the deep
learning model, applied to time series prediction in our case, we must pay attention to this
problem: we can obtain a very good model in terms of training error, but this could be due to
an overfitting regime. The researchers proposed various strategies to avoid this problem and
try to stay in the optimal capacity zone. The chosen strategy for our model will be presented
in section 2.14.

2.7 Recurrent neural network: architecture and optimiza-
tion problem

Recurrent Neural Networks or RNNs are a family of neural network architecture for process-
ing sequential data which measure a specific phenomenon over time or in a given order (of
sequential events) without a concrete notion of time. These models represent an extension of
the classical feedforward neural networks, presented in section 2.2, but with the implemen-
tation of feedback connections.

There are differences between the classical neural network and RNNs. The deep learning
model, introduced in section 2.2 (Figure 2.2), processes the entire input dataset to obtain
the output. In this case, the approach is different: we divide the input dataset into more se-
quences.

For example, consider a generic case where the input dataset x contains 200 sequential ob-
servations, e.g. the daily stock price for a specific time horizon. We divide this dataset into
more subsequences with a specific length. For example, we can set a length of 50 to generate
overlapping rolling window sequences. This overlapping process has the following structure:
the first sequence represents the first 50 observations, the second contains the observations
from 2 to 51. We continue to generate sequences with this length until the end of the dataset,
where the last sequence contains the observations from 151 to 200. In this context, the input
time step represents the portion of the dataset that is processed by the model. Figure 2.11
summarizes this process, the sliding window moves from the left to the right of dataset, and
each increment represents the one sequence as described above.

The recurrent neural network processes the sequences of input data xt, where t indicates the
time steps, to obtain sequential output y′ referring to time step t. The time step index refers
to the sequence position: e.g., t = 1 represents the first sequence. The model time steps are
represented by t = 1, 2, · · · , s, where s is the total number of sequences in which we divided
our model. The sequence of output, obtained from the various timestep, represents the vector
Y

′

= y′1, y
′

2, · · · , y
′

s.

Given these aspects, we can adapt the hidden layer equation 2.3 in section 2.2 considering
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the final layer to the initial) to compute the derivatives of the initial layers. Applying the
backpropagation to RNN cause a gradient propagation over many stages (due to the time
step sequences), so it tends to either vanish or rarely explode with adverse consequences
for optimization (Goodfellow et al. 2016, p. 401). The vanish problem depends on the fact
that the hidden layers use a non-linear activation function and their derivatives calculated
in each layer have low values. These derivatives are multiplied together, thus, the gradient
value decreases exponentially as we propagate down to the initial layers. Considering that
we apply this procedure to various time steps, we can face a situation where the gradient will
go to zero exponentially fast. Vanishing gradients make it difficult to know which direction
the parameters should move to improve the cost function (Goodfellow et al. 2016, p. 290).
These problems can result in bad weights, which make challenging the training of the model
and lead to a bad performance.

Another problem is that the RNN’s model stores only the previous hidden layer information,
which results in a short memory. Hence the model cannot be able to learn long-term rela-
tions from the different sequences. These problems have represented a challenge for various
researchers who have proposed different solutions. A famous architectural approach that can
solve this problem is called Long short-term memory. It is one of the most advanced deep
learning architectures for sequence learning tasks, such as handwriting recognition, speech
recognition, machine translation, and time series prediction (ibid., p. 410). In the recent years
various LSTMmodel for stock price prediction were proposed: Fischer & Krauss (2017), Ta
et al. (2020) and Hao & Gao (2020). The next sections explain LSTM algorithm structure
and its application for stock price predictions.

2.8 LSTM algorithm

Long short-termmemory networks are specifically designed to learn long-term dependencies
and can overcome the previously inherent problems of RNNs. This model is introduced by
Hochreiter & Schmidhuber (1997) and refined in the following years by various studies as in
Gers et al. (2000). Instead of a unit of the hidden layer that applies a non-linear function when
the information is stored and passed to the next sequences (or time steps) hidden layer unit,
LSTM recurrent networks have LSTM cells that have an internal recurrence (a self-loop),
which are able to store information and analyzes long-term dependencies across sequences.

LSTM networks are composed of an input layer, hidden layers, and an output layer as the
classic feedforward model. However, in this architecture, the cell unit (or neurons in feed-
forward model) does not contain a simple activation function but presents a very complex
structure as shown in Figure 2.14 (Fischer & Krauss 2017).

Each cell has the same inputs and outputs as an ordinary recurrent network but has more pa-
rameters and a system of gating units that control the flow of information (Goodfellow et al.
2016, p. 410). These memory cells or cells state are controlled and adjusted with three gates:
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In the second step, the LSTM decides which new input information should be added to the
network’s cell states (st). The procedure comprises two operations. First, the candidate value
must be computed through the tanh function, which gives weight to the values passed by,
deciding their level of importance (−1 to 1). Second, a sigmoid layer decides whether the
new information (or candidate value s̄t) should be updated or ignored (0 or 1). The equations
of this step are:

s̄t = tanh(Ws̄,xxt +Ws̄,hht−1 + bs) (2.26)

it = sigmoid(Wi,xxt +Wi,hht−1 + bi) (2.27)

The new cell states st are calculated based on the results of the previous two steps with the
symbol ◦ denoting the Hadamard product:

st = ft ◦ st−1 + it ◦ s̄t (2.28)

In the last step, the ht memory cell output is based on the output cell state but is a filtered
version. First, we pass the previous hidden state and the current input (ht−1 and xt) into a
sigmoid function. Then the output of the sigmoid gate (ot) is multiplied by the new values
created by the tanh layer from the cell state st (Le et al. 2019, p. 9).

ot = sigmoid(Wo,xxt +Wo,hht−1 + bo) (2.29)

ht = ot ◦ tanh(st) (2.30)

The LSTM architecture allows to accumulate information over a long duration. Thanks to
the forget gate (ft), the model is able to control the flow of information of the previous
input sequences which are processed. The algorithm manages an huge amount of informa-
tion through various gates and relations derived from the input time steps in order to obtain
the predictions. The information control allows to mitigate the vanishing gradient problem
(Goodfellow et al. 2016, pp. 413–420).

2.9 Stock return prediction model

We built a deep learning model with an LSTM network for the daily adjusted-close stock
price prediction. In this way, we can understand the daily stock movements to construct a
specific investment strategy (see Chapter 3 section 3.4). The following sections presents the
architecture and all the different strategies for our algorithm optimization and performance
improvement.
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2.10 Hardware

Neural networks usually involve large and numerous buffers of parameters, activation val-
ues, the calculation of gradient descend and backpropagation. All these computations must
be completely updated during every step of training. These buffers are large enough to fall
outside the traditional desktop computer’s cache, so the system’s memory bandwidth often
becomes the rate-limiting factor. However, the introduction of Graphics processing units
(GPUs) helps to solve these problems.

The GPUs are specialized hardware components that were initially developed for graphics
applications and offer a compelling advantage over CPUs due to their high memory band-
width. It breaks complex problems into thousands or millions of separate tasks and works
them out at once. Considering that the Neural network training algorithms typically do not in-
volvemuch branching or sophisticated control, they are appropriate for GPU hardware. Since
neural networks can be divided into multiple individual ”neurons” that can be processed in-
dependently from the other neurons in the same layer, neural networks easily benefit from
the parallelism of GPU computing (Goodfellow et al. 2016, p. 445).

For these reasons, we decided to use the hardware GPU provided by Colab, which offers a
different models as NVIDIA K80 with 12 GB RAM. Running and optimizing a deep learn-
ing model with a dataset of 15-year stock requires much memory, and we can perform our
algorithm faster with the GPU. Instead, CPU takes up a lot of memory and time to train this
type of model.

2.11 Hyperparameters selection

The deep learning algorithms have several settings that we can use to control their perfor-
mance. These settings are called hyperparameters. Bengio (2012) defines a hyperparameter
for a learning algorithm A as a variable to be set prior to the actual application of A to the
data, one that is not directly selected by the learning algorithm itself. Setting the correct value
of hyperparameters is crucial to improve the capacity of the algorithm. The main hyperpa-
rameters which we must set in a deep learning algorithm are:

• Minibatch (B): Processing the entire dataset can require a considerable amount of
time. Hence, we can divide the training dataset into more samples (also called mini-
batches).

• Minibatch size: Indicates the size of samples in which we have divided the entire
dataset. For example, a minibatch size equal to 2 indicates that we divide the dataset
into two samples, processed in parallel by the algorithm. This hyperparameter controls
the number of training samples to work through before the model’s internal parameters
are updated. The minibatch size is typically chosen to be a relatively small number
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of examples, ranging from 1 to a few hundred (Goodfellow et al. 2016, p. 152). A
larger value yields faster computation (with appropriate implementations) but requires
visiting more examples to reach a fair value of error. In theory, this hyperparameter
should impact training time and not so much test performance. A value of minibatch
size equal to 32 is considered the default value for the basics computations (Bengio
2012).

• Epoch: Indicates that the entire dataset is processed by the algorithm once, considering
the output calculation and the optimization phase (section 2.4). Usually, the number
of epochs is set greater than one: the algorithm processes the dataset several times to
decrease the loss error function and to find the best weights. A correct epochs number
is crucial to avoid overfitting.

When the training dataset is divided in more samples (B) with a defined size, the number of
the minibatch needed to complete one epoch is called iteration. We can obtain this number
by dividing the size of dataset for the size of minibatch.

Setting the appropriate hyperparameters is crucial to obtain a goodmodel in terms of capacity.
In particular, we have to pay attention to the number of epochs. A huge number of epochs
means that we train our model many times. We can obtain a very low value of training error,
but the algorithm could present an overfitting problem (Section 2.10).

2.12 Feature scaling

One preliminary process of managing the dataset to improve the model performance is known
as feature scaling: the normalization of input dataset range. This process improves model
performance, given its effect on gradient descent. Recall Figure 2.6 (section 2.4) which
explains the gradient descent process in a simple case with a contour plot. Considering
the loss function Equation 2.6 introduced in section 2.4, the output of deep learning model
Y

′

= (y
′

1, y
′

2, · · · , y
′

T ) can have different scale. The contour plot’s topology of the loss
function is different in relation to the scale. For example, Figure 2.15 shows the difference
between a loss function contour plot when data are normalized with respect to unnormalized
data. We can see that the gradient descent reaches the point of minimum in a more clear way
with normalized data.
Considering our task: the daily stock price predictions. The stock price in absolute term could
have big variations across the time. For this reason is better to consider the simple return as
input dataset, which can be defined as:

Definition 2.3. Simple Return
Rs

t,m =
P s
t

P s
t−m

− 1 (2.31)

Where Pt is the price of the stock at time t. Figure 2.16 shows the difference in compari-
son between the adjusted-close stock price and simple return of four stock of the S&P500
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terms of data/parameters.

Figure 2.20 shows a comparison between the two optimizer algorithms, provided by Kingma
& Ba (2014) illustrated in this section. These comparison is based on a multi-layer neural
network model with two fully connected hidden layers with 1000 hidden units each, the task
is to classify the handwritten digits of the MNIST dataset, a database of handwritten digits,
provided by LeCun & Cortes (2010), which has a training set of 60,000 examples, and a test
set of 10,000 examples We can see that ADAM makes faster progress for loss function min-
imization in terms of the number of iterations (ibid.). Given all these benefits for efficiency
and cost function minimization, we decide to use ADAM for optimizing the deep learning
algorithm.

2.14 Regularization strategies: dropout and early-stopping

In section 2.6 we have introduced the concept of underfitting and overfitting (definition 2.2),
based on the gap between training and test error. A good algorithmmust avoid these problems
and should perform well with the new inputs. To pursue this goal, we have to pay attention to
the model’s architecture, particularly to the number of hidden layers and neurons. The LSTM
cell has a complex architecture; hence a huge number of cell (also called neurons) can create
a sophisticated model which can lead the algorithm to overfitting zone. There is no general
rule about the optimal number of neurons for a specific dataset. Our model’s input dataset
contains 15 years daily adjusted-close stock prices, which provides a significant number of
observations to train the algorithm. We decided to consider a structure with a relatively low
number of neurons and layers. This choice is based on various model architectures illustrated
in different studies about LSTM for stock price prediction. We try to set different LSTM ar-
chitecture to understand how to lose function of test and training set varies (see section 3.1
in chapter 3).

Our purpose is to create a model which can obtain a good prediction with a relatively low
number of epochs to avoid the overfitting zone as shown in Figure 2.10 in section 2.6. How-
ever, a simple structure is not the only way to avoid overfitting. Various strategies used in
machine learning are explicitly designed to reduce the test error, possibly at the expense of in-
creased training error. These different types of strategies are known as Regularization: some
of them put extra constraints on a machine learning model, such as adding restrictions on the
parameter values (Goodfellow et al. 2016, p. 228). There is no best form of Regularization,
but we must choose a well-suited form for the particular task we want to solve.

The first regularization strategy implemented is called dropout introduced by Srivastava et al.
(2014). The term dropout refers to dropping out units (hidden and visible) in a neural net-
work. By dropping a unit out, we mean temporarily removing it from the network, along with
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all its incoming and outgoing connections. For simplicity, Figure 2.21 shows an example of
dropout regularization in classical feedforward networks. In the neural networks, which are

Figure 2.21: Dropout model

Srivastava et al. (2014)

based on non-linear relationship, we can effectively remove a unit from a network by multi-
plying its output value by zero (Goodfellow et al. 2016, p. 258). The choice of which units
to drop is random.

The Keras API easily implements the dropout by randomly selecting nodes to be dropped-out
with a given probability each weight update cycle. We can set the rate, which represents the
fraction of the input unit to drop. According to the other LSTM model proposed in Fischer
& Krauss (2017), Ta et al. (2020) and Hao & Gao (2020) the dropout will be applied to each
hidden layer with varying rate: e.g. 0.1, 0.05, 0.2.

Hence, when the dropout is applied, the model will result in a thinned network with the units
survived. The model obtained is a subset of different networks, and for these reasons, it be-
comes less sensitive to a specific weight of neurons. In our case, this means that we take
off some LSTM memory cells from the hidden layer randomly. So training a neural network
with dropout can be seen as training a collection of different thinned networks, this process is
applied during the training phase. Regarding the test phase, we can use a simple approximate
average method, as shown in Figure 2.22. The idea of dropout is the following: during the
training, a specific unit is present with probability p, and it is connected with the units of the
next layer with a vector of weights (w). At test phase, the units (neurons) are always present,
but their weights are multiplied by p.

The dropout has two principal advantages: the first is that this technique is computation-
ally cheaper and it does not significantly limit the type of model or training procedure used.
However, we have to pay attention: the dropout is a regularization technique and reduces the
effective capacity of a model. To offset this effect, we must increase the size of the model.
Typically the optimal test set error is much lower when using dropout, but this comes at the
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Chapter 3

Model results and investment strategy

3.1 Model set up

This section presents our deep learning model with LSTM architecture for daily adjusted-
close price prediction.

We collected the historical daily adjusted-close stock prices, from January 2005 to December
2019, of 500 large-capitalized companies (Standard & Poor’s 500) listed on American Stock
Exchange for the model set-up. These data are collected from Yahoo finance website.
For the model configuration, we used Google Colab: a Python 3.9 cloud facility, which is
especially well suited to machine learning and data analysis. We built the algorithm config-
uration with Keras, an API designed for deep learning model. Each stock contained 3775
observations.

The Training-Test split ratio has been set at 80 : 20, which represents the classical proportions
(Goodfellow et al. 2016, p. 121). Hence, we obtained a training dataset of 3020 observations
and a test dataset of 755 observations (three trading year) for each stock.

The first step was to normalize these data for a better model optimization as introduced in
section 2.12: we decided to use the Min-Max scaled (see definition 2.4). Given this normal-
ized dataset, we defined the input time step (introduced in section 2.7). Recall that the LSTM
model processes the input dataset in various sequences (time steps). We decided to set two
kinds of sequences:

• Length of 90 days: the price of a stock in a t day is based on past prices sequences until
t− 90 (three previous months).

• Length of 240 days: comprising the information of approximately one trading year.

We compared the algorithm performance in relation of these two types of sequences. As in
the example illustrated in Figure 2.11 (section 2.7), we generated overlapping rolling win-
dow sequences. We obtained the daily prices forecasted on the basis of with the previous 90
days (first case) or the previous 240 days. The LSTM model was applied to each constituent
of S&P500, taking into account that they changed across time. Hence we could have a very
different amount of data for each constituent when we train the model. Given our model’s
complexity to learn dependencies between sequential data, this could lead to a different per-
formance concerning companies’ presence in S&P500. For this reason, we decided to select
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Figure 3.1: Time steps (or sequences) of the input dataset

(a) Length of 90 days

(b) Length of 240 days

from the constituents listed in December 2019 only those with historical data from January
2005 and excluded the companies that were listed after this period. This is a relevant disad-
vantage (we cannot include Facebook, for example) but could help to build a model where
each stock has the same dataset length.
The hyperparameters selection is a fundamental operation to obtain a good model perfor-
mance. Various researchers proposed an LSTM approach for daily stock price prediction
with specific hyperparameters, for example:

• Fischer & Krauss (2017) presents a model with one LSTM hidden layer with 25 neu-
rons

• Ta et al. (2020) presents a model with 2 LSTM hidden layers with 512 and 256 neurons
respectively.

• Hao&Gao (2020) presents amodel with 3 LSTMhidden layers with 10, 20, 30 neurons
respectively.

These three models contain many epochs: 1000 and 4000 in the first and second architecture.
In the last model, the authors did not specify this parameter but set an early-stopping strategy
(see section 2.14) with a patience equal to 80, and this suggests that the number of epochs
has a rather large value.

Our model’s task is the stock price daily predictions, but, considering that we used normal-
ized price as the input, the output results were not the stock price in absolute terms. Hence,
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we had to invert the normalization formula to obtain stock price predictions.

We want to obtain a low loss function value (Equation 2.6), which indicates a good model
performance, by setting a reasonable number of epochs. As said before, the model is trained
and optimized at each epoch. Hence its Loss function will decrease after a certain number
of epochs, but we could enter the overfitting zone after a specific time (as illustrated in sec-
tion 2.6 figure 2.10). We applied the two regularization strategies introduced in section 2.14
to determine the correct number of LSTM cells given our dataset. Specifically, the Early
Stopping is based on the mean squared error loss function with patience ψ equal to 15 while
the dropout is applied to the hidden layers with p=0,05. Specifically, we run various LSTM
algorithmswith different hidden layers and neurons to understand how does themodel perfor-
mance change in relation to these parameters. We started from the simple structure proposed
by Fischer & Krauss (2017), and increased the neurons and layers to see the impact on pre-
dictions. Finally, we chose the best among these models considering their performance.

Concerning the performance evaluation, we used the loss function as introduced in section
2.4. We selected two different kinds of loss functions to understand the model performance
during the training. The first was the classical Mean Squared Error (MSE) defined by equa-
tion 2.6 in section 2.4. This function was also used as the Loss metrics to optimize the model
through backpropagation and early-stopping strategy. The second function used is the Mean
Absolute Error or ”MAE” defined by the following equation.

MAE =

∑T

i=1 |yi − y
′

i|

T
(3.1)

This represents another common metric which analysed the average magnitude of the errors
in a set of predictions, without considering their direction. The comparison between these
metrics could provide more information on model performance.

Concerning the test set evaluation, we used the Root Mean Squared Error (RMSE):

RMSE =

√

∑T

i=1(yi − y
′

i)
2

T
(3.2)

The RMSE metric emphasizes the large error (very bad predictions) than the small one; in-
stead of MAE, where all the errors are treated equally. Concerning our task, we could expect
small errors in predictions, but we want to avoid large errors because, from the investors’
point of view, this could lead to a loss of his wealth.

We used RMSE to evaluate both training and test set forecasting. The value near to zero
meaning that the model provides good estimations. The loss metrics evaluate the normalized
data of training set, while the test set evaluation is based on unnormalized prices (predictions
of daily prices). This means that the test set RMSE values are bigger than those of the training
set.
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We had set ADAM as an optimizer and Keras performs backpropagation implicitly with no
need for a particular command. Given the LSTM memory cells complexity, we decided to
build an architecture with a relatively low number of neurons and hidden layers. The table
3.1 summarizes the average performance across constituents of three principal architectures.
The RMSE measures the deviation of test set predicted price without normalization from re-
alized prices. The RMSE values are approximated to two decimal places.
The model performance varied in relation to neurons and hidden layers. The simplest archi-

Table 3.1: LSTM model performance comparison

Sequence length: 90 days
Number of hidden layer Number of neurons per layer Epochs RMSE test set

1 25 50 16.87
1 50 80 15.12
2 50 170 3.75

Sequence length: 240 days
Number of hidden layer Number of neurons per layers Epochs RMSE test set

1 25 130 9.87
1 50 150 9.13
2 50 140 3.59

tectures, one hidden layer with 25 or 50 LSTM neurons, had a high RMSE value across the
constituents if compared to the third model with two hidden layers with 50 neurons for each
layer. The number of epochs in a model with a sequence of 90 days varied considerably in
relation to the architecture set. Recall that we used an early-stopping strategy, which blocked
the model training if there is no improvement after 15 epochs. The lower level of epochs in
one hidden layer case is due to the fact that the Loss function (MSE) last improvement was
at 35 and 65 epochs, respectively. Hence, we chose the third structure: two hidden layers
with fifty neurons each.

We set a number of epochs equal to 200, which could be considered relatively low compared
to similar works for stock price predictions. However, the early-stopping strategy blocked
the training around 140 epochs (240 days) and 170 epoch (90 days) across the constituents
of S&P500. There were only sporadic cases where the training executes all the 200 epochs.
This was a good result in terms of performance; we have obtained a good value of RMSE
after a reasonable number of epochs.

Table 3.2 summarizes all the hyperparameters used for our deep learning algorithm with
Long-short term memory network.

Given all these elements, we can run our algorithm and obtain the predicted stock price. Fig-
ure 3.2 illustrates our algorithm predictions for daily adjusted-close prices of APPLE with
the two kind of input sequences chosen. The predictions, in yellow, follow the realized price
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Table 3.2: LSTM model hyperparametrization setup

Categories Hyperparameters
The number of hidden layers
Neurons of hidden layers
Neurons of output layer

Batch size
Number of epochs

Optimiser

2
50
1
32
200
Adam

movements (in red). However, we can see that the predicted prices are somehow lower than
the realized prices.

The graph on the right represents the returns of stock prices obtained from the series of price
prediction. The returns predicted by the model are in red. In general, the returns obtained
from LSTM are lower in absolute terms and less volatile than the realized return.

The main difference between the two kinds of sequences regards the number of epochs. The

Figure 3.2: Daily adjusted stock price prediction: APPLE

early-stopping blocked the training after 171 epochs in an algorithm with a sequence of 90
days while stopped the execution after 150 epochs in the other case. Figure 3.3 is useful to
understand the loss metrics behavior which influenced this process. Recall that the early-
stopping monitored specific metrics (MSE in our case) and stopped the training if there is no
improvement in the model. The graphs at the top illustrate the MSE patterns across epochs.
In both cases, the first attempts of training the model had relatively high error values, but
after 40 epochs, error value started to decrease. After 100 epochs, it became low, but the
small variations prevent the execution of early-stopping.

The other two loss metrics which followed a similar decreasing pattern across the epochs.
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The loss metrics value across epochs followed this pattern across the various constituents of
S&P500, hence it was not necessary to set a huge number of epochs as in Ta et al. (2020) and
Hao & Gao (2020).

Table 3.3 summarizes the results of LSTM for Apple stocks with a comparison between the

Figure 3.3: Loss metrics on training set: a comparison

two kinds of sequences. We obtained a good result in terms of the stock’s daily average
return: the mean of daily predicted return is around 2% less than the realized return in both
cases. The variance of daily prediction was less than 50% of the realized variance, as illus-
trated in Figure 3.2.

Table 3.3: Apple stock analysis with LSTM model: 01/2017-12/2019

Timestep 90 days 240 days
Mean of realized returns 0.001416 0.001416
Mean of predicted returns 0.001237091 0.001244016
Variance of realized returns 0.000241 0.000241
Variance of predicted returns 0.000100 0.000095
RMSE of test set 3.167366157 3.294366433

The results regarding average daily returns and RMSE were similar between the two kinds
of input sequences, but the epochs value was lower with a sequence size of 240 days. For
this reason, we decided to use this sequence for our algorithm. We processed the constituents
with the LSTM architecture as illustrated in table 3.1 and collected the results for the daily
adjusted stock price predictions to construct our investment strategy.
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these predictions. The short-term horizon of investment is a feature of quantitative trading,
as illustrated in Chapter 1. Our portfolio construction strategy that we present is inspired by
the study of Jegadeesh & Titman (1993): we decided to buy the winners stocks and selling
losers. The winning stocks are stocks with the higher predicted daily returns, while the losers
are the stocks with the lower predicted daily returns. Starting from the price predictions of
the LSTM model, we constructed our daily portfolio as follows:

1. Collect the adjusted-close price prediction across the various S&P500 constituents.

2. Calculate the daily returns from price predictions.

3. Select theK stocks with the higher return for each trading day.

4. Select the Z stocks with the lower return for each trading day.

5. Enter in a daily long position on the K selected stock.

6. Enter in a daily short position on the Z selected stock.

7. Assign the same weights for each stock selected: equally balanced portfolio.

We setK = Z = 10; hence we selected the best (or winners) and worst (or losers) ten stocks.
Each day we changed the stocks selected in our portfolio. We analyzed this strategy’s results
with and without transaction costs. In according to Avellaneda & Lee (2010) we set a trans-
actions costs value of 5bps.

In the previous section we illustrated the problem of accuracy across the constituents. We
must consider this element for the investment strategy evaluation. The LSTM algorithm
provides returns predictions which could be very different from the realized daily return of
selected stocks.

This section is organized as follows: first, we present the results for the daily returns based
on prevision. Then, we illustrate the results of daily return in realized terms. We decide to
make this comparison to show the difference between the prediction and the realized price.
Although the predictions seem to follow the realized price, as shown in the Figure 3.2 and Fig-
ure 3.7, the daily differences are relevant. After this comparison, we analyze our strategy’s
performance with annual metrics and risk indicators (VaR and CVaR illustrated in section
1.5). Finally, we compare the cumulative return derived from our strategy with the S&P 500
index to understand our investment performance properly.

After acquiring the daily return of selected stock, we calculated the daily return of this port-
folio for each day. Table 3.4 illustrates the metrics of the daily returns with predicted values
for the three years representing the test set, while the table 3.5 refers to the realized values of
stocks. The mean return long indicates the mean of the daily return for theK stocks selected;
the mean return short indicates the mean of daily returns for the Z stock. The mean return
indicates the mean of returns of the entire portfolio, considering long and short position. The
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other components refers to the daily returns calculated on entire portfolio for each year of test
set. We selected the stocks with daily higher returns (long position) and lower daily returns

Table 3.4: Statistics metrics of predicted daily returns

Before transaction costs 2017 2018 2019
Mean return long(K) 0.027322 0.031547 0.032456
Mean return short(Z) 0.024775 0.031785 0.028604
Mean return 0.052097 0.063332 0.061060
Median 0.049815 0.060090 0.056512
Standard Deviation 0.013291 0.015506 0.016544
Sample Variance 0.000177 0.000240 0.000274

Table 3.5: Statistics metrics of realized daily returns

Before transaction costs 2017 2018 2019
Mean return long(K) 0.008308 -0.010594 -0.000043
Mean return short(Z) -0.005095 -0.004675 -0.011525
Mean return 0.003213 -0.015269 -0.011568
Median 0.000826 -0.018091 -0.018794
Standard Deviation 0.115806 0.113463 0.125797
Sample Variance 0.013411 0.012874 0.015825
Kurtosis 3.594006 0.788857 2.623446
Skewness -0.449880 0.028102 0.093859
Range 0.959622 0.739518 1.075146
Minimum -0.559301 -0.412962 -0.613190
Maximum 0.400322 0.326556 0.461957

(short position). For these reasons, the means of daily predictions returns of our strategy are
high in table 3.4: the daily return of 5%means that we obtained huge gains in one year. How-
ever, given the model accuracy around 57%, we often had realized daily returns that were
lower or have a different sign. Many stocks selected for their high positive predicted return
can have realized negative returns or the opposite.

Considering these aspects, we can analyze our strategy’s daily returns obtained with the re-
alized data. As shown in table 3.5, the daily returns are positive on average only in the first
year. Despite the presence of some stocks with good performance as explained in the previ-
ous section, the overall accuracy is not sufficient to obtain good results in terms of portfolio.
The performance that we obtained is similar to Fischer & Krauss (2017), despite our period
is different. The results in 2017 are due to the long position (K stocks); probably the selected
stocks in this period included those with better predictions accuracy. The results are negative
in other years (see section 3.5 for more details). The median is lower than the mean value,
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erage return values, respectively 0.003213, −0.015269 and −0.011568 across the years (as
reported in table 3.5), the values of VaR and CVaR are relevant. Our portfolio strategy is
associated with a certain degree of risk in 2017, and some days presented significant negative
returns (losses). For the others two years the portfolio performance is negative, hence the risk
metrics are higher.

Table 3.6: Risk metrics before transaction cost

VaR and CVaR analysis 2017 2018 2019
VaR 1% -0.290331 -0.318290 -0.013443
CVaR 1% -0.534109 -0.384772 -0.479177
VaR 5% -0.168513 -0.186695 -0.192369
CVaR 5% -0.270568 -0.257273 -0.270578

Table 3.10 summarizes the annual metrics: return, volatility and Sharpe ratio (see section
1.6). Following Fischer & Krauss (2017), we derived these annual metrics from the mean of
daily return and standard deviation of the daily return. Given equation 1.8, it is necessary to
determine the risk-free rate. We decided to use the yield rate of 10 years U.S. treasury bonds.
The data are collected from the U.S Department of the Treasury website for the three test set
years (2017, 2018, and 2019). We obtained a positive value in terms of the Sharpe ratio only
2018. In 2018 and 2019 the annual return and Sharpe ratio values are negative, following
the results explained in the previous tables. However these results are similar to other works
as Fischer & Krauss (2017) (see section 3.5). The results are not expressed as a percentage.
There is another important element to consider: the transaction costs. The next tables sum-

Table 3.7: Annual metrics before transaction cost

Annual metrics 2017 2018 2019
Annual Return 2.225264 -0.996362 -0.985693

Annualized Standard Deviation 1.838371 1.801176 1.996969
Risk free rate 0.023295 0.029112 0.021393
Sharpe Ratio 1.197783 -0.569336 -0.504308

marizes the results of our portfolio strategies considering a level of transaction cost of 5bsp.
This is a fixed cost that is applied to each selected stock.

We have the same shape of daily return histogramwith respect to the case without transaction
costs. There was only a small reduction of the various metrics. The VaR and CVaR, as well
as the annual metrics, had slightly smaller values in this case.
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Table 3.8: Statistics metrics of realized daily returns

After transaction costs 2017 2018 2019
Mean return long(K) 0.008267 -0.010541 -0.000043
Mean return short (Z) -0.005069 -0.004652 -0.011467
Mean return 0.003197 -0.015193 -0.011510
Median 0.000821 -0.018001 -0.018700
Standard Deviation 0.115227 0.112896 0.125168
Sample Variance 0.013277 0.012746 0.015667
Kurtosis 3.594006 0.788857 2.623446
Skewness -0.449880 0.028102 0.093859
Range 0.954824 0.735820 1.069770
Minimum -0.556504 -0.410898 -0.610124
Maximum 0.398320 0.324923 0.459647

Table 3.9: Risk metrics after transaction cost

VaR and CVaR analysis 2017 2018 2019
VaR 1% -0.288879 -0.316699 -0.327106
CVaR 1% -0.531439 -0.382848 -0.476781
VaR 5% -0.167671 -0.185762 -0.191407
CVaR 5% -0.269216 -0.255986 -0.269225

Table 3.10: Annual metrics after transaction cost

Annual metrics 2017 2018 2019
Annual Return 2.206465 -0.996257 -0.985384

Annualized Standard Deviation 1.829179 1.792170 1.986984
Risk free rate 0.023295 0.029112 0.021393
Sharpe Ratio 1.193525 -0.572139 -0.506686

3.5 Portfolio LSTM prediction based and S&P500 index: a
comparison

Given the daily returns obtained from our strategy after transaction costs, we compared the
yearly portfolio performance with the S&P 500 index (data collected from the website Yahoo
finance). In particular, we analyzed the cumulative returns introduced in the section 1.4. We
started from an initial wealth of one dollar to understand the evolution across the year.
The 2017 is the only year with a good performance. Figure 3.11 shows that our portfolio’s
cumulative return was lower than the S&P500 index in the first six months of the year, while
the situation was the opposite in the second part of the year. The stocks selected with LSTM
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algorithm structure was characterized by a distinct weakness. This section presents all these
problems.

Algorithm architecture: Table 3.2 (in the section 3.1) illustrated the architecture of our
LSTM algorithm with the relative number of hidden layer and neurons (LSTM cells). How-
ever, its performance varying across the various constituents (section 3.2). There were dif-
ferent elements that could influence the model performance:

• The number of observations of the dataset: we have collected 15 years daily stock
price, but we can increase or decrease our input dataset’s size.

• The length of input sequences

• The choice of regularization strategies

• The choice of hyperparameters

Finding the optimal value of all the elements to obtain a good performance of the algorithm
across the constituents is challenging. There is the possibility that we can have some con-
stituents with bad predictions.

Price movements accuracy: The algorithm could identify the price movement direction, in
other words, if the return is positive or negative, with an average accuracy of 57% following
related works. This had a relevant impact on our strategy. We selected stocks with a posi-
tive return prediction for long position and negative for short position, but we obtained lower
profits because the realized returns were lower or had a different sign.

Understanding the overfitting: The identification of the overfitting problems can be chal-
lenging for a sequential dataset. We understood the evolution of loss metrics during the
training. However, these metrics represented an average of the distance between prediction
and realized value. If we have a relevant test dataset, as in our case (3 years), it is difficult to
understand if the performance is good considering only the loss function for the entire dataset.
As explained in the previous section, there is a possibility that the performance varies across
time.

Time of the algorithm execution: Processing the input dataset required time. For a daily
strategy, this is an element that cannot be underestimated. For example, our algorithm pro-
cessed each stock in five minutes. This problem can be overcome with powerful hardware
(e.g GPU with 32 or 64 Gb ram).

Slippage: The daily return were estimated on the assumption that we bought and sold the
stocks at the adjusted-close price. However, in the real world, trading operations are more
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complicated. Slippage is the term for when the price at which a trade order is executed does
not match the price at which it was requested. One reason is the bid-ask spread, which rep-
resents the difference between ask and bid price. The bid represents the highest price that a
buyer is willing to pay for the stock, and ask is the lowest price that seller is willing to accept.

This phenomenon can have a relevant impact on the portfolio performance. Our strategy was
based on buying and selling stocks with a daily frequency, if the trade implied a lower or
higher price than adjusted-close, the gain could become lower or could disappear.

Impact of unexpected news or event: The predictions were based only on historical data.
However, many elements can lead investors to buy or sell a certain stock. In section we ex-
plained the performance of S&P 500 index performance in December 2018 given the decision
of the Federal Reserve. Bubble, excess of optimism, events that increased the uncertainty in
the future can affect investors’ behavior, and a stock price that the deep learning algorithm
cannot identify. Set an investment strategy considering only the adjusted-close price is too
simple. There are a lot of elements that must be considered: stock volume, news of industrial
sector or political events are some example.
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Conclusion
In this work, we applied the Long-short term memory (LSTM) for stock price prediction on
the constituents of S&P 500 index in a period from January 2005 until December 2019. The
LSTM is a recurrent neural network architecture, which represents a specific model of ma-
chine learning, a particular subset of the Artificial Intelligence regarding building machines
that could learn relationships between variables. We used this approach to predict the daily
stock price from its historical series of past values. These financial time series daily predic-
tions could be used to construct a specific portfolio daily rebalanced following the quantita-
tive trading approach.

Specifically, the daily adjusted close stock price prediction considers the sequences of its
previous 240 observations through the following function.

Pt+1 = fθ(Pt, Pt−1, Pt−2, · · · , Pt−N+1)

The model must ”learn” the value of the parameters θ. Our LSTM algorithm was built with a
principal purpose: avoiding the overfitting problem. We adopted various strategies to create
a non-complex model which was able to make predictions with a relatively small number of
train attempts.

Deep learning models are notoriously difficult to train (Krauss et al. 2016), hence our model
had some drawbacks. It cannot identified historical stock price peak and there were problems
to identify the correct parameters of the forecasting function when the variance of time series
changed across the years; hence the predictions had a considerable degree of error in some
cases. This approach identified if the stock return was positive or negative with a degree
of accuracy of 57% on average. The performance is higher for some constituents, 82 con-
stituents presents an accuracy around 70%, and we have 44 constituents were the accuracy is
very low, less than 40%. The accuracy of daily return cannot be considered satisfactory on
average. Despite in various case we obtain good results, we are not able to overcome all the
problems presented in other works based on similar approach as Fischer & Krauss (2017).

The price predictions obtained were collected to calculate the daily stock return in order to
build a specific portfolio strategy: following the methodology proposed by various work as
Fischer & Krauss (2017), we bought the daily best stocks in terms of return, and we shorted
the worse stocks for the three years of the test set. We changed the stocks in our portfolio
each day: a short-term investment representing the typical horizon of quantitative trading.

We obtained an average daily return after transaction costs of 0.31% in 2017, -1.51% 2018
and -1.15% in 2019. The Sharpe ratios had a value of 1.19 and -0.57 and -0.50 in annual
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terms, respectively in 2017, 2018, and 2019. The LSTM algorithm cannot extract mean-
ingful information from noisy financial time series data with a good performance across the
various constituents, and the strategy based on this approach resulted in a profitable yearly
portfolio in terms of cumulative returns only for the first year. Stock price predictions were
good only in 2017, and probably we were able to select the constituents which are charac-
terized from good accuracy. However, we had different periods where the daily returns are
negative, this situation derived from the fact that in 2018 and 2019 the predictions become
worse. The reason could be the drop of S&P500 index in December 2018 which had a con-
siderable impact of predictions.

The LSTM algorithm and the deep learning model represented a new stock price prediction
approach but involved different drawbacks. The unexpected events could impact on pre-
dictions accuracy, and there was a possibility that the model entered in an overfitting zone
despite the strategies adopted. Furthermore, our prediction model did not consider many el-
ements that could impact our profits: e.g slippage. The stock market has a certain degree of
noise and could fluctuate as the result of macroeconomics factors or individuals’ overreaction
and underreaction to certain news.

Given the results presented in this work, the stock price prediction represents a challenging
task for the machine learning algorithm. The model performance cannot be considered satis-
factory, but these predictions are based only on historical prices. An algorithm must consider
different elements: political policy, industrial development, company news, the volume of
stock traded and historical price. This could represents the direction of future development
of the machine learning approach for stock price prediction.
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