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Abstract: Knowledge of the stratigraphic architecture and geotechnical properties of surficial soil 

sediments is essential for geotechnical risk assessment. In the Saguenay study area, the Quaternary 

deposits consist of a basal till layer and heterogeneous post-glacial deposits. Considering the strati-

graphic setting and soil type heterogeneity, a multistep stochastic methodology is developed for 3D 

geological modelling and quantification of the associated uncertainties. This methodology is 

adopted for regional studies and involves geostatistical interpolation and simulation methods. Em-

pirical Bayesian kriging (EBK) is applied to generate the bedrock topography map and determine 

the thickness of the till sediments and their uncertainties. The locally varying mean and variance of 

the EBK method enable accounting for data complexity and moderate nonstationarity. Sequential 

indicator simulation is then performed to determine the occurrence probability of the discontinuous 

post-glacial sediments (clay, sand and gravel) on top of the basal till layer. The individual thickness 

maps of the discontinuous soil layers and uncertainties are generated in a probabilistic manner. The 

proposed stochastic framework is suitable for heterogeneous soil deposits characterised with com-

plex surface and subsurface datasets. 
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1. Introduction 

The soil stratigraphy and geotechnical characteristics are important factors in ge-

otechnical risk evaluations over a region. The two factors and their uncertainties are key 

elements, especially for probabilistic seismic risk assessment. The regional properties of 

soil deposits are heterogeneous due to the differences in deposition geometry and process. 

Soil heterogeneity is attributed to two main sources: one is rooted in the lithology and the 

other is the inherent spatial soil variability [1]. The so-called lithological (soil type) heter-

ogeneity is related to the substantial differences in the mineralogy, grain size and others, 

within a relatively uniform soil mass. This heterogeneity is qualified using descriptive 

terms (i.e., soil types), such as sand, clay and stiff/soft soil layers. The second source of 

heterogeneity is rooted in the inherent spatial soil variability, which modifies the spatial 

variation of soil properties due to different deposition conditions and different loading 

histories [1]. 

The spatial variation of soil properties has been modelled using random field theory, 

where the spatial variation of a given soil unit is decomposed into a deterministic trend 

function and residuals [2–5]. Residuals represent the inherent spatial soil variability de-

scribed by the coefficient of variation and the scale of fluctuation [3]. Using this approach, 

predictions are made separately for the trend and the residuals of geotechnical quantita-

tive parameters (shear strength, cone resistance, shear modulus, etc.). Recently, some 
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methods have been developed to model the random field directly from sparse and non-

stationary data [6,7]. In soil and rock engineering practices, investigations use geostatisti-

cal techniques to estimate soil (or rock) geotechnical/geomechanical properties and cap-

ture the heterogeneity [8–11]. 

In seismic hazard assessment, local soil conditions tend to modify the amplitude and 

frequency content of the incoming seismic waves. This condition is known as the site effect, 

which depends on geotechnical (soil type, shear modulus, damping ratio, etc.) and geo-

metrical (3D stratigraphy, basin topography, soil thickness, etc.) properties of the soil de-

posits. A 3D geological model offers solutions to determine the geometrical properties and 

provides a basis for the spatial prediction of geotechnical properties, particularly the soil 

shear wave velocity (Vs) [12]. A 3D model helps determine the seismic site parameters, 

including the average Vs value of the top 30 m of soil (Vs,30), the average Vs of all of the soil 

deposits (Vs,avg) and the fundamental site period (T0) or frequency (f0) [13,14]. In Eastern 

Canada, Rosset et al. [15] developed three different models for the Montreal region using 

predictive equations for Vs as a function of depth: a single-layer model based on the total 

thickness of soft soils, a four-layer model based on geological and geotechnical infor-

mation from borehole data and a composite model that included the characteristics of the 

two former models. Nastev et al. [16] in the Ottawa and St. Lawrence Valleys and Foulon 

et al. [17] in the Saguenay City region assigned a typical Vs depth function for post-glacial 

sediments and a single Vs value to glacial sediments and bedrock units. These studies used 

a deterministic 3D geological model for mapping the spatial distribution of Vs,avg and 𝑇0. 

They analysed the uncertainty propagated to site parameters using the first-order, second-

moment approach, and they considered only the statistical uncertainty related to the Vs of 

soil deposits. This approach ignores the spatial uncertainties related to the 3D geological 

model. Considering the uncertainties related to the type and thickness of the soil layers 

certainly helps the development of reliable seismic hazard maps. 

This study aims to develop a methodology for probabilistic regional 3D modelling of 

soil deposits by considering soil type heterogeneity as the main source of uncertainty. This 

methodology is adopted for regional studies and involves stochastic interpolation and 

simulation methods. The capacities and advantages of the interpolation and geostatistical 

methods applied in each step are discussed. The territory of Saguenay City is used as a 

case study for the application of the methodology. Firstly, empirical Bayesian kriging 

(EBK) is tested and validated to determine the bedrock topography map in terms of the 

total soil thickness and the thickness of the till layer, that is, the basal glacial sediments. 

Available surficial geological maps, borehole logs, rock outcrops (zero soil thickness) and 

shallow till data are used in the interpolation processes. Secondly, sequential indicator 

simulation (SIS) is conducted to predict the occurrence probability of the discontinuous 

post-glacial soil layers on top of the till layer (e.g., clay, sand and gravel). Finally, the esti-

mated probabilities are applied to determine the consistent spatial distribution of discon-

tinuous soil units, the thickness maps and the associated uncertainties. 

2. Methodology 

With the rapid development of computational power and probabilistic methods, de-

veloping 3D geological models from borehole data and providing valuable insights into 

many engineering problems that traditionally rely on 1D and 2D assumptions, such as 

continuous stratigraphic layers simplified in the geological sections, are possible. The pro-

posed methodology is adopted for regional study areas with variable soil thickness of 

more than 100 m in which a basal layer overlies the bedrock. The methodology is imple-

mented in three phases (Figure 1): (I) data preparation, (II) mapping of bedrock and basal 

soil topography and (III) developing the probabilistic 3D geological model. 



Geosciences 2021, 11, 204 3 of 21 
 

 

 

Figure 1. Methodology for developing a regional 3D probabilistic geological model. 

The data preparation step (Figure 2) relies on the acquisition of available data from 

various sources of information, as discussed below. Following the integration of the avail-

able data, the next step in this phase is data verification. It is performed by examining the 

consistency between borehole logs and geological maps and cross-sections, and between 

borehole collars and topographic maps. The observation data are then divided into two 

groups: the soil thickness data represented with points (x, y and thickness) and the soil 

type data represented with 3D borehole data (x, y, z and soil units). 

 

Figure 2. Phase I: workflow of data preparation. 



Geosciences 2021, 11, 204 4 of 21 
 

 

Next, a decision has to be made on the type of predictive model. For a stratigraphic 

soil unit that extends as a continuous layer, the thicknesses distribution can be modelled 

using spatial interpolation methods (Figure 3). In the study region described below, the 

till layer at the base of the Quaternary sequence is in contact with the bedrock and is as-

sumed to be spread all over the territory underneath the recent soil layers. An appropriate 

spatial interpolation method should be selected in this phase corresponding to the pre-

processing results. The trend and parameters, such as skewness or asymmetry of the prob-

ability distribution, and high or peak values, affect the stationarity and must be consid-

ered in choosing the appropriate geostatistical method (details can be found in Sections 3 

and 4). For a soil layer that is discontinuous laterally but maintains a vertical relationship 

with other layers, a random function approach using geostatistical simulation  is used; this 

condition is the case for the sand and clay layers in the study region described below. 

 

Figure 3. Phase II: workflow of the spatial interpolation of total soil thickness and thickness of the 

continuous basal layer. 

Multiple realisations of discontinuous soil types are generated using geostatistical 

simulation. These realisations can then provide the occurrence probability of discontinu-

ous soil layers. The resulting probability values are used to create thickness maps of dis-

continuous soil layers and their associated uncertainties at unsampled locations (Figure 

4). 
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Figure 4. Phase III: methodology for determining soil thickness map(s) and associated uncertain-

ties of discontinuous soil layers using geostatistical simulation. 

The development of a probabilistic 3D geological model must use a spatial prediction 

approach that considers the uncertainties in the spatial variation models and in the ensu-

ing stochastic simulation. This interpolation approach uses a geostatistical method that is 

presented in the following section. 

3. Applied Geostatistical Methods 

3.1. Spatial Interpolation 

Appropriate prediction methods are required for a realistic reconstruction of the soil 

heterogeneity over a region with a complex 3D soil deposit architecture, relatively sparse 

field observations and datasets with clustered sampling patterns. The prediction methods 

for computing spatial data fall into two broad categories: deterministic and stochastic [18]. 

Deterministic predictions are obtained by using mathematical functions with known sam-

ple points. Stochastic methods associate the distribution of unknown values with a similar 

known distribution and can quantify the uncertainty associated with the interpolated val-

ues; this capability makes them superior to the deterministic approaches. Stochastic meth-

ods include those based on geostatistics and hybrid methods that consider machine learn-

ing [19]. In geostatistical methods, the principal concept of statistical inference is based on 

stationarity and requires the independency of the univariate and bivariate probability 

laws from the location; this concept is called second-order stationarity: the mean is constant 

and the variance only depends on separation h [20,21]. Given the data complexity of a 

study on a regional scale, the EBK method is selected to overcome the potential of the 

nonstationarity of data, automate the fitting of variograms and solve the kriging models. 

The process consists of: (i) estimation of a semivariogram model on the basis of the input 

data, (ii) simulation of a new set of data from the semivariogram model, (iii) estimation of 

a new semivariogram model on the basis of the simulated dataset and (iv) calculation of 

a weight for the new model using Bayes’ rule. The repetition of the process results in a 

spectrum of semivariograms rather than a single one. Hence, the uncertainty introduced 

in the variogram arises from using a series of semivariogram models rather than a single 

one [22]. The automated simulation process facilitates the subsetting of data into large 
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datasets typical for regional studies and helps achieve local stationarity in subareas where 

the dataset is a mixture distribution of high and low values. The EBK method is particu-

larly efficient for spatial interpolation in large-scale studies and/or datasets with complex-

ities [22–24]. 

In addition to the EBK method, the results are compared with the conventional de-

terministic interpolation method, triangulated irregular network (TIN). For an area in the 

same region of Eastern Canada as the present study, Chesnaux et al. [25] concluded that 

the expected values predicted with the TIN method are more accurate than the ordinary 

kriging method. 

3.2. Spatial Variation 

Spatial variation refers to the dissimilarity of the pairs of values of a random variable 

as a function of their distance [20]. Modelling the spatial variation assists in predicting the 

soil attributes at unsampled locations. In the present study, the spatial variation is deter-

mined for continuous (soil thickness) and categorical (soil units) variables. An experi-

mental variogram, 𝛾(ℎ), is used to statistically determine the average dissimilarity be-

tween data separated by vector h [26] and is assumed as a measure of spatial variability. 

𝛾(ℎ) =
1

2 𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]2𝑁(ℎ)

𝛼=1 , (1) 

where 𝑧(𝑢𝛼) and 𝑁(ℎ) are the values of the variable of interest at location uα and the num-

ber of data pairs within distance h in the respective direction. In practice, the tolerance for 

distance h and its direction is specified. The direction of the separation vectors becomes 

irrelevant when the directional tolerance increases sufficiently. An omnidirectional vari-

ogram is a useful starting tool for structural analysis and provides the prerequisite infor-

mation for calculating the directional variograms, whilst a directional variogram reveals 

the anisotropy pattern and the direction of the maximum and minimum spatial continui-

ties [20]. Equation (1) is applied for continuous variables, whilst an indicator variogram is 

calculated for categorical variables by substituting indicator data 𝑖(𝑢𝛼; 𝑘) for K indicators 

as follows: 

𝛾𝐼(ℎ; 𝑘) =
1

2 𝑁(ℎ)
∑ [𝑖(𝑢𝛼; 𝑘) − 𝑖(𝑢𝛼 + ℎ; 𝑘)]2𝑁(ℎ)

𝛼=1 , k=1, …, K. (2) 

With the determination of the standard variogram characteristics (i.e., range, sill and 

nugget effect), a theoretical model that best fits the experimental variogram is selected 

(e.g., spherical, exponential or Gaussian model). 

3.3. Uncertainty of Spatial Interpolation 

The usual approach to modelling kriging uncertainty applies the error variance of 

kriging as follows [20]: 

�̃�𝑘
2 = �̃�00 + ∑ ∑ 𝑤𝑖𝑤𝑗�̃�𝑖𝑗 − 2 ∑ 𝑤𝑖�̃�𝑖0

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1 , (3) 

where 𝑤𝑖𝑤𝑗  represents the kriging weights, �̃�00 is the variance of point values, �̃�𝑖𝑗 is the 

covariance between measured samples and �̃�𝑖0 is the covariance between measured and 

unknown values. 

3.4. Stochastic Simulation 

The 3D model of categorical variables is constructed by applying deterministic or sto-

chastic approaches. Deterministic modelling is highly dependent on expert judgment and 

is conducted by delineating the boundaries of geological units and verifying and inter-

preting the borehole logs in successive cross-sections. In most cases, field observations are 

insufficient to provide reliable modelling. Thus, stochastic modelling algorithms are ap-

plied to construct multiple realisations. For example, SIS is a widely used technique for 

categorical variable models [27]. A set of alternative high-resolution models of the spatial 

distribution of the considered random variable is created during this process. Each 
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equally probable realisation reproduces the spatial statistics of the target variable [28]. The 

method consists of three steps as follows: 

(i) Transformation of soil types to K indicator variables 

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢 , 𝑘 = 1, … , 𝐾.

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

Indicator transformation facilitates classical statistical analyses to infer representative 

proportions of the indicator variables; 

(ii) Determination of indicator variograms to model the spatial continuity of the indica-

tor soil types; 

(iii) Simulation of the soil types honouring field observation at sampled locations (condi-

tional simulation) in a sequential and reproducible manner. 

4. Saguenay City Data Preparation and Analysis 

4.1. Geologic Framework of the Study Area 

The territory of Saguenay City located in Eastern Canada was selected as the study 

area due to its relatively high seismic hazard (https://earthquakescanada.nrcan.gc.ca/ (ac-

cessed on: 29.04.2021.)) and the presence of layered soil deposits with complex and varia-

ble spatial and vertical distributions. This city is the main municipality within the Sague-

nay‒Lac-Saint-Jean region, and its territory covers 1136 km2, with a population of 147,100. 

It has a hilly topography and lies in the southern portion of the E–W-trending Saguenay 

graben. The regional seismic activity of this region was reassessed following the 1988 M6.0 

Saguenay earthquake. The epicentre of this intraplate earthquake with a midcrustal depth 

of 29 km was 35 km south of the downtown area [29]. The earthquake’s secondary effects 

included liquefaction, rock falls and landslides observed within a distance of 200 km from 

the epicentre [30]. 

The bedrock of the Saguenay region is part of the Grenville Province of the Canadian 

Shield and is mainly composed of crystalline Precambrian rocks [31]. On the basis of the 

geological sections [32,33] and subsurface data [34], the soil deposits are grouped into two 

major geological classes: glacial and post-glacial sediments [35]. They can be further sub-

divided into five categories: till, gravel, clay, sand and other recent sediments (Figure 5). 

• Till: This glacial sediment is located at the base of the stratigraphic soil column; it is 

compact and semiconsolidated. Till is the most widespread soil unit in the study area 

and ranges in thickness from a few meters to >10 m at certain locations. In the high-

lands, the till veneer is frequently discontinuous and results in areas of rock outcrops. 

Most of the till outcrops are assumed to be less than 1 m thick on the geological map 

[33]. With the exception of rock outcrops, till continuously covers the bedrock else-

where, representing an important assumption in the 3D modelling approach. 

• Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists 

of gravel, sand and sometimes till. This unit is occasional in the region, often in con-

tact with till or sand units. 

• Clays: These fine post-glacial sediments are the most present soil type by volume in 

the study area. They are composed mainly of silt, silty clays and clay. They have a 

thickness of up to 10 m and may attain a maximum thickness of >100 m in the low-

lands. 

• Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic sedi-

ments and alluvial sands composed of sand and gravely sands. 

• Other sediments: This extremely heterogeneous category comprises all the remaining 

sediments; it mainly includes loose post-glacial sediments consisting of alluvium, 

floodplain sediments, organic sediments and occasional landslide colluvium that can 

be classified into sand, clay and gravel on the basis of grain size distribution. 

The surficial deposit map in Figure 5 shows that till is the most widespread soil type 

at the surface, followed by clay and sand sediments. 
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Figure 5. Saguenay study area: surficial geology map (modified from Daigneault et al. [33]), [34]. 

4.2. Input Data and Analysis 

Subsurface and surface data were collected from various sources of information (Fig-

ure 6). Borehole logs are the main subsurface data where the soil thickness data and soil 

types are obtained. The other invaluable sources of data are rock outcrops with zero soil 

thickness value; the virtual data derived from geological cross-sections and thin till data 

(thickness ≤ 1 m) interpreted from the surficial geological map. Borehole data were ob-

tained from groundwater wells, exploration boreholes and geotechnical drilling logs. The 

brief descriptions of the input data stored in the database are as follows: 

• Borehole logs: The database contains 3524 borehole logs distributed over the study 

area [34]. A total of 2402 boreholes are sufficiently deep to reach the bedrock. The 

remaining 1122 boreholes that do not reach the bedrock indicate that the bedrock is 

deeper than the borehole depth, and a groundwater-bearing layer is possibly encoun-

tered in the coarse soil deposits. 

• Virtual logs: A total of 26 geological cross-sections distributed over the region were 

developed on the basis of expert opinion in previous geological studies [34]. These 

cross-sections include 973 virtual logs distributed in a regular spatial pattern at a dis-

tance of ~500 m to improve the data coverage mainly in the lowland areas (Figure 6). 

• Rock outcrops: During the geographic information system processing of the surficial 

geology map, additional 1033 data points were introduced to indicate rock outcrops. 

Located within the bedrock polygons, they improve the realistic spatial variability of 

the sediment thickness. 

• Till veneer: Till sediments cover most of the study area. Till outcropping areas, with 

a thickness equal to or less than 1.0 m, are located in the highlands and are referred 

to as a till veneer. In these areas, the till thickness is fixed to 1 m, and the till outcrop 

polygons are modelled with a mesh of 75 m, generating an additional 42,649 points 

with a known thickness. 
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Figure 6. Complete set of the available observation points, including borehole logs, rock outcrops 

and shallow till data. 

Rock outcrops (zero soil thickness) and shallow till data (1 m soil thickness) are val-

uable sources of complementary information, mainly in the highlands where they im-

prove the accuracy of the geological model (Figure 6). However, the rock outcrops and till 

veneer points are observed over large areas of the region, in comparison with other data, 

which are limited to the borehole locations [36]. The resulting bias in the simulation of the 

soil types is avoided by using the rock and till outcrop data only to generate the bedrock 

and till topography maps and then excluding these later data for the simulation of other 

soil units. The till veneer data are only applied to create the thickness map of till deposits. 

Figure 7 shows the histograms of the total soil thickness and thickness of glacial de-

posits. A total of 2745 soil thickness values are selected comprising the boreholes that 

reach the bedrock and virtual logs located in areas with sand, clay or gravel soil units. The 

average thickness of sediments over these areas is approximately 17 m with a positive 

skewness and a relatively high standard deviation of 18.7 m, indicating high thickness 

variability (Figure 7a). Important thicker parts are located in two areas: La Baie and Saint-

Jean-Vianney (Figure 5). The incorporation of rock outcrops with zero soil thickness value 

decreases the average thickness (12.89 m), but the effects on the other parameters are mi-

nor (Figure 7b). A total of 1007 data points are selected from the virtual logs and boreholes 

reaching the bedrock at the location where the till sediments are exposed. Figure 7c illus-

trates that the average thickness of till is approximately 5 m in the borehole data, whilst 

the maximum nearly reaches 50 m. Attention must be given to the presence of outliers 

because they have a major influence on the interpolated surfaces [37]. Given that the ex-

pected thickness of till rarely exceeds 20 m, higher thickness values are most probably a 

consequence of poor logging of other soil units considered as outliers. The exact values of 

the outliers are determined using a box plot and are cases with values more than 1.5 times 

the interquartile range. Here, these values are replaced by a maximum of 13.85 m (Figure 

7d). Following the replacement of the outliers of till thickness, the 1007 points are merged 

with till veneer and rock outcrop data in the database. 

On the basis of the statistical summary, we can perceive existing high or low values, 

and the asymmetry of the probability distribution questions the stationarity. The asym-

metry is evident in Figure 7 by comparing the observed thickness histograms and theo-

retical normal distributions of the different soil properties. In this context, traditional 

kriging methods (e.g., ordinary or transformed Gaussian kriging) do not perform well, 

whereas the EBK method is particularly helpful to overcome the nonstationarity by defin-

ing subsets (subareas) and automated variography analysis. 
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(a) (b) 

(c) (d) 

Figure 7. Thickness distributions of soil deposits as observed in borehole logs: (a) total soil thickness, depth to rock; (b) 

total soil thickness, including rock outcrops; (c) till sediments; (d) till sediments following replacement of outliers. The 

black line represents the normal distribution curve. 

Table 1 provides the proportions of each soil unit based either on real or on virtual 

borehole logs. One of the main reasons for the differences in percentages is the clustered 

drilling pattern of the real boreholes drilled mainly in coarse sandy soils for drinking wa-

ter supply. Given that virtual boreholes are designed in a systematic pattern, the percent-

ages of virtual data are deemed reliable estimates for the layer thickness. The percentage 

values indicated in Table 1 denote the marginal probabilities that are applied in the geo-

statistical simulation using the Stanford Geostatistical Modelling Software [38]. 

Table 1. Percentage of each soil type based on real and virtual borehole logs. 

Geological Unit Real Borehole Data (%)  Virtual Logs (%) 

Clay 53.60% 58.54% 

Gravel 6.80% 2.06% 

Sand 35.66% 18.37% 

Till 3.94% 21.03% 

4.3. Modelling Spatial Variation: Variogram Analysis 

Two sets of directional variograms (not shown here) are calculated to determine the 

anisotropy axis and describe the spatial variation of soil types and their thickness. The 

first set uses a 2D coordinate system for the soil thicknesses, and the second set applies a 

3D coordinate system for the soil types. Using the EBK method automates the fitting of 

variograms by simulating variograms per subset of data and then weighting the models 

using Bayes’ rule. The subsequent repetition of the process results in a spectrum of semi-

variograms rather than in a single one [39,40]. 

Mean 17.73
Median 11.22
Standard Deviation 18.77
Kurtosis 2.76
Skewness 1.70
Minimum 0.01
Maximum 112.16
Count 2745

Mean 12.89
Median 5.79
Standard Deviation 17.84
Kurtosis 4.12
Skewness 2.00
Minimum 0.01
Maximum 112.16
Count 3778

Mean 5.74
Median 4.40
Standard Deviation 5.12
Kurtosis 13.75
Skewness 2.84
Minimum 0.00
Maximum 51.45
Count 1007

Mean 5.32
Median 4.40
Standard Deviation 3.67
Kurtosis 0.12
Skewness 0.97
Minimum 0.00
Maximum 13.85
Count 1007
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In the case of categorical variables, soil types, an indicator transformation is first per-

formed. Indicator variograms are then computed to describe their spatial variability. The 

directional experimental variograms are computed using different lag sizes to capture the 

short- and long-scale variabilities. The experimental variograms show nested structures 

(e.g., Figure 8) and can be interpreted as a short- and a long-scale variability. The short-

scale structure captures the variability over a distance of hundreds of meters and can be 

referred to as local soil variability. The long-scale structure captures the variability over a 

distance of thousands of meters and can be referred to as geological (stratigraphic) varia-

bility. In all the anisotropic models, the anisotropy is interpreted as geometric in which 

the range changes with the direction, whereas the sill is constant. Detailed discussion on 

variogram modelling can be found in [20]. 

 

Figure 8. Example of variogram modelling: a nugget and two spherical nested structures are fitted 

on an experimental sample variogram. R1 and R2 refer to the ranges of the two nested models. 

Directional and omnidirectional variograms are analysed using a lag size of 25 m to 

model the variability at the short scale of all soil units. Lag sizes of 300 and 750 m are 

adopted to capture the variability at the long scale for gravel, sand and clay layers. The 

selected bandwidth is three times larger than the lag size to limit eventual deviation 

around the direction of the azimuth vector. The range of short-scale variability can be 

measured within hundreds of meters, as indicated in Table 2, whilst that of long-scale 

variability is within thousands of meters. Significant spatial variances are captured in 

short-scale variability, and the geometrical anisotropy with an azimuth angle of 135° cor-

responds to the geological continuity in the study area (Figure 5). As expected, the vertical 

range in all of the considered models is considerably lower than the horizontal ranges. 

The anisotropy consequently refers to the high density and the remarkable variation in 

data in the vertical direction compared with the horizontal.  
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Table 2. Variogram model parameters of the soil type indicators. 

Variables 

Number 

of Struc-

tures 

Model Properties 

Structure 1 

Model Properties 

Structure 2 

Model 

Type 

Anisotropy Axis 

(amax, amed, amin) 
Model Parameters 

Model 

Type 

Anisotropy Axis 

(amax, amed, amin) 
Model Parameters 

Clay 2 Sp. (135°,45°,90°) 

Nugget: 0.01 

R1: (375,212.5,75) 

Sill1 *: 0.18 

Ex. (135°,45°,90°) 
R2: (12825,4275,75) 

Sill2 *: 0.05 

Sand 2 Sp. (135°,45°,90°) 

Nugget: 0.02 

R1: (412.5187.5,62.5) 

Sill1 *: 0.17 

Sp. (0°,0°,90°) 

R2: 

(12375,12375,62.5) 

Sill2 *: 0.03 

Gravel 2 Sp. - 

Nugget: 0.01 

R1: (150,150,150)  

Sill1 *: 0.026 

Ga. (0°,0°,90°) 
R2: (4600,4600,150) 

Sill2 *: 0.015 

* Partial sill, R: range (meter), Sp.: spherical, Ex.: exponential, Ga.: Gaussian. amax, amed and amin refer to the azimuths of the 

three principal axes of the anisotropy. 

5. Results 

5.1. Construction of the Total Soil Thickness Map (Depth to Bedrock) 

5.1.1. Spatial Interpolation 

The spatial interpolation of the total soil thickness that represents the depth to bed-

rock map is performed by using the EBK method in addition to TIN. The study area is 

discretised into a regular grid of 902 × 637 cells with 75-m spacing. Figure 9a,b illustrate 

the resulting depth to bedrock maps. The estimated thickness of the deposits varies from 

zero to approximately 100 m, with similar variability patterns modelled by the two meth-

ods. The areas covered by till veneers and rock outcrops are excluded; they are indicated 

by the white background on the maps. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 9. Total soil thickness maps obtained with: (a) EBK, (b) TIN; and (c) the map of the kriging standard deviation (�̃�𝑘
 ) 

EBK. The areas with till or rock outcrops are excluded and indicated with white background. 
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Figure 9c shows the spatial distribution of the standard deviation of the kriging with 

EBK (�̃�𝑘
 ). As expected, lower uncertainties are associated with locations in the proximity 

of the existing data. However, relatively higher �̃�𝑘
  values are also observed, where the 

depth to rock is the highest. This phenomenon is a consequence of the locally varying 

mean and variance of the EBK method assumed as reliable results. TIN is a deterministic 

interpolation method and does not allow for the uncertainty of estimation. 

5.1.2. Validation 

Two approaches are applied to validate the estimation of soil thickness. The first ap-

proach is the routine cross-validation procedure in which the measured data are removed 

individually and re-estimated from the remaining dataset, referred to as the “leave-one-

out method”. The second approach is based on a subset of data that is held back from the 

estimation process. In this case, the boreholes not reaching the bedrock are used as the 

validation dataset. 

Cross-validation: The cross-validation procedure is used to optimise the estimation 

parameters. The optimised parameters include the lag size, the minimum and maximum 

numbers of participant data and the subset size in the EBK method. Four parameters are 

used to check the performance of the kriging methods: mean error (ME), root mean square 

error (RMSE), mean standardised error (MSE) and mean square standardised error 

(MSSE). The standardised values consider the kriging variance and are dimensionless. 

They provide an accurate comparison in addition to the statistical ME and RMSE values. 

The MSE values should be close to zero and can be obtained as follows (details can be 

found in [21]): 

𝑀𝑆𝐸 =
1

𝑁
∑

(𝑍∗(𝑢𝛼)−𝑍(𝑢𝛼)

�̃�𝑘
 (𝑢𝛼)

𝑛
𝛼=1 , (5) 

where N is the number of measured data, and 𝑍∗(𝑢𝛼) and 𝑍(𝑢𝛼) are the estimated and 

measured values of random variable Z at the location of 𝑢𝛼 , respectively. �̃�𝑘
 (𝑢𝛼) and 

�̃�𝑘
2 (𝑢𝛼) are the kriging standard deviation and variance of the random variable Z, respec-

tively. 

The MSSE value should be close to one. For an MSSE greater than one, the variability 

in the estimated values is underestimated. Otherwise, the variability is overestimated. The 

parameter can be obtained with the following equation [21]. 

𝑀𝑆𝑆𝐸 =
1

𝑁
∑

((𝑍∗(𝑢𝛼) − 𝑍(𝑢𝛼))
2

�̃�𝑘
2 (𝑢𝛼)

𝑛

𝛼=1

. (6) 

Chiles and Delfiner [21] recommended a tolerance of 1 ±3√(2
𝑁⁄ ) for the accepted 

MSSE. A total of 3778 measurements are used for estimating the total soil thickness in 

which the accepted tolerance is within the [0.93–1.07] range. 

The cross-validation results reveal that (Table 3) the EBK method provides accurate 

and unbiased estimates with low ME and MSE values close to zero. The EBK method also 

gives relatively low values of RMSE and MSSE that vary within the acceptable tolerance 

range. 

Table 3. Cross-validation results for the total soil thickness estimates using EBK methods. 

ME (m) RMSE (m) MSE MSSE 

0.05 8.94 0.01 0.94 

Validation using a test set: The 1122 boreholes that do not reach the bedrock, shown 

in Figure 6, were used as a test set for the soil thickness predictions. The depth of the 

observed point is underestimated when the total soil thickness estimates at these locations 
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are lower than the observed borehole depths. Accordingly, the “thickness error” is consid-

ered the difference between the measured and estimated thicknesses, and only the posi-

tive errors are considered. Table 4 provides the statistical results of the thickness errors 

with respect to the different interpolation methods. The EBK method yields a lower num-

ber of underestimated soil thickness values at 313 boreholes, suggesting that this method 

provides better overall spatial predictions. When the mean error values and the sum of 

the errors are compared, EBK appears to provide slightly better predictions. 

Table 4. Thickness error results at the locations of 1122 boreholes known not to reach the bedrock. 

Thickness error TIN EBK 

Mean (m) 12.2 11.8 

Sum (m) 3889.8 3682.6 

Error count (boreholes) 318 313 

Figure 10 represents the distributions of the thickness error estimated by EBK in ad-

dition to the TIN methods. The thickness error is less than 10 m in approximately 60% of 

the underestimated borehole values. Overall, the results of the validation procedures in-

dicate that the EBK method respects the observed values and provides accurate spatial 

predictions. This method provides a reliable measure of uncertainty at the estimation 

points. 

(a) (b) 

Figure 10. Thickness error distributions for the test set of 1122 boreholes not reaching the bedrock estimated by (a) EBK 

and (b) TIN. 

5.2. Determination of the Till Thickness Map 

The spatial distribution of the till thickness as a continuous soil layer at the base of 

the Quaternary sequence is estimated with a similar procedure to the one applied for in-

terpolation of the total soil thickness using the EBK method. The difference is that the 

outliers are replaced because the till deposits cannot be easily distinguished from the other 

soil types due to difficulties related to the presence of drilling mud. Thus, replacing the 

outliers of the till thickness data can be considered a conservative approach to estimate 

the thickness of other post-glacial deposits. Replacement is also an effective method for 

stabilising the variance. A complete set of observation points, including 2402 real and 973 

virtual boreholes, 1033 rock outcrops and 42,649 points of thin till thickness (1 m), is in-

corporated to create the till thickness map. The thin thickness data dictate the highly 

skewed distribution of the 1 m data. Therefore, subsetting the data is a great advantage in 

using the EBK method. Figure 11 presents the resulting spatial distribution of the till thick-

ness and the associated kriging standard deviation. Replacement of outliers combined 

with the use of shallow till data prevents potential soil thickness overestimation and gen-

erates conservative estimates for the future evaluation of the geotechnical soil parameters. 
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(a) (b) 

Figure 11. (a) Till thickness map and (b) kriging standard deviation, �̃�𝑘
 . 

5.3. 3D Modelling of Discontinuous Soil Layers 

A full 3D volume is required to determine the soil type of discontinuous soil layers. 

The block model fills this volume, and each block represents the smallest unit of soil type 

using geostatistical simulation. For this purpose, the maps of bedrock and till topography 

are created by using digital elevation modelling, and total soil thickness and till thickness 

maps. When the bedrock and till topography maps are created, the space between the top 

and bottom of each surface is filled with 75 × 75 × 2 m blocks. Overall, 100 realisations are 

generated using the conditional SIS method to determine the probability of occurrence for 

each of the post-glacial deposits: clay, sand and gravel. Figure 12 shows a plan and cross-

section through one of the SIS realisations in an area where all four surficial soil units are 

present. 

 
(a) 

 
(b) 

Figure 12. (a) Plan and (b) cross-section of one SIS realisation of sand, clay and gravel. The thickness of the till unit shown 

in the cross-section is determined in Section 5.2. 
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The results of the SIS simulation are visually compared with the deterministic geo-

logical cross-section (Figure 13). Figure 13a represents a part of the main cross-section of 

the study area (Figure 12a). Figure 13b shows the soil units with the highest probability of 

occurrence resulting from 100 realisations. The comparison of Figure 13a,b shows that the 

probabilistic model is consistent with the interpretations of expert geologists; however, it 

yields a realistic soil variability prediction corresponding to the real borehole data. This 

observation is particularly true when comparing the individual borehole logs or the entire 

right-hand portion of the cross-section extending from borehole F1161. This condition is 

mainly due to the nature of the probabilistic estimates that consider the entire set of input 

data and the extent of the geological units in 3D. Figure 13c–e present the probabilities of 

occurrence of the individual soil units. The 3D simulation of the discontinuous soil units 

quantifies the uncertainty of the predictions (Figure 13f) using the total standard deviation 

of the soil thickness computed from the probability of a categorical distribution for each 

block. The thickness standard deviation represents the total uncertainty that reaches its 

maximum in locations where the probabilities tend to be average, such as 0.5. The average 

probabilities are generated in two types of location: in the areas of contact between sand 

and clay or gravel and the areas with a high variability of soil types (locations near bore-

holes F11611 and SIH1340). This variability can be a result of errors in geological logging 

or from the inherent soil variability. The detailed computations of the thickness maps of 

post-glacial deposits and the associated uncertainty are discussed next. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Vertical exaggeration: 15x 

 
(e) 

 
(f) 

Figure 13. Stratigraphic cross-sections: (a) deterministic based on expert opinion (modified from CERM-PACES [34]); (b) 

soil units with the highest probability of occurrence based on conditional SIS; individual probabilities of occurrence for (c) 

clay, (d) sand and (e) gravel obtained from a set of 100 conditional SIS; and (f) total standard deviation (σh) of the thickness 

computed by using the probability of categorical distribution. 

5.4. Thickness Maps of Discontinuous Soil Layers 

The above 3D probabilistic model provides the spatial distribution of the discontin-

uous soil units and their probability of occurrence within the regular 75 × 75 × 2 m blocks. 

In the determination of seismic parameters at a site (e.g., 𝑉𝑠,30 and T0), the geometry (soil 

thickness) and shear wave velocity (𝑉𝑠𝑖
) of each soil layer are important variables. There-

fore, the 3D model must be transformed into a set of 2D thickness maps to obtain the 

thickness of the individual discontinuous soil units. Thus, the thickness mean and vari-

ance of each block are computed on the basis of the discrete probability distribution of the 

random categorical variable (𝑋𝑖) with an event probability 𝑝𝑖  as follows: 

𝐸(𝑋𝑖) = 𝑝𝑖 , 𝑉𝑎𝑟(𝑋𝑖) = 𝑝𝑖(1 − 𝑝𝑖), (7) 

where 𝐸(𝑋𝑖) is the mean, 𝑉𝑎𝑟(𝑋𝑖) is the variance and 𝑥𝑖  ∈  {0,1}, 𝑖 ∈  {1, … , 𝑘}. The thick-

ness mean and the variance are scaled at the 2 m height of the blocks, h, as follows: 

𝐸(ℎ𝑋) = ℎ𝐸(𝑋), (8) 

𝑉𝑎𝑟(ℎ𝑋) = ℎ2𝑉𝑎𝑟(𝑋). (9) 

The thickness maps and the associated variances are obtained by computing the sum 

of the mean thickness and the variance of the blocks in a vertical column. In other words, 

the probabilities of occurrence are considered the weighting factors (Equation (8)) for the 

calculation of the soil thickness. In this case, the resulting thickness maps consider all the 

probabilities of occurrence for each soil type (not only the most probable one). The total 

variance for an individual soil unit (e.g., clay) is computed by summing up the block var-

iance for each variable (Equation (9)) in a vertical column. The standard deviation is then 

computed as the square root of the total variance. 

Figure 14 represents the weighted thickness maps based on the probability of discon-

tinuous post-glacial deposits (clay, sand and gravel units) and the associated standard 

deviations of the thickness. A single pixel on these maps represents the weighted sum of 

the 2-m-high blocks in a vertical column for the same individual soil unit. The comparison 

of the standard deviation and thickness maps reveals that the local thickness uncertainty 

depends mainly on the following factors: differences between the presence of the discon-

Bedrock 

Bedrock 

Gravel 

5000 m 5000 m 5000 m 
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tinuous soil units in the neighbouring boreholes, the soil thickness values and the dis-

tances to the observation points. In other words, the greater the differences in the thick-

ness or the distance, the greater the standard deviation. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  
(g) (h) 

Figure 14. Spatial distribution of the weighted thickness and associated spatial standard deviation (σh) for (a,b) clay, (c,d) 

sand, (e,f) gravel and (g,h) total post-glacial deposits. 
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6. Conclusions 

This study adopted a combined multistep methodology of interpolation and simula-

tion to develop a 3D geological model for geotechnical and seismic hazard evaluation at 

a regional scale. This approach focuses on considering geologic rules of stratification, re-

ducing the effect of skewness of the observation points, and realistically predicting soil 

variability. 

The interpolation procedure incorporates boreholes logs, in addition to the rock out-

crop and shallow till data; these sources of data result in being invaluable in soil thickness 

mapping. Providing bedrock and till deposit maps allows considering the geologic rule 

of stratification of the basal till and the exclusion of low and zero thickness data from the 

simulation process of the discontinuous layers (i.e., clay, sand and gravel). The results of 

the validation and cross-validation verify that EBK is an appropriate interpolation 

method, producing an accurate outcome in regional studies involving extensive data with 

complexity. 

SIS predicts the occurrence probability of discontinuous soil layers, as a representa-

tion of the soil type variability. The results indicate that the assumption of a continuous 

stratigraphic layer for the clay and for the sand and gravel units as drawn in the geological 

sections does not correspond to the real spatial variability of these layers. This observation 

is supported by the abrupt discontinuity and repetition of the deposits in the 3D model. 

The simulation of the soil type shows the benefit of considering the spatial soil variability 

and its associated uncertainty. The advantage is that the areas identified with increased 

uncertainty are characterised with considerable stratigraphic inconsistency and require 

further field measurements. 

The proposed approach provides the basis for developing a reliable 3D shear wave 

velocity model including its uncertainties. The 3D geological and velocity models can en-

hance the mapping of seismic site parameters (e.g., 𝑉𝑠,30 and T0), which are important 

factors in seismic hazard assessment. 
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Nomenclature 

�̃�00 Variance of point values 

�̃�𝑖𝑗 Covariance between measured samples 

�̃�𝑖0 Covariance between measured and unknown values 

EBK Empirical Bayesian Kriging 

fo Fundamental site frequency of vibration 

𝑖(𝑢𝛼; 𝑘) Binary indicator value at location 𝑢𝛼  and for category k 

ME Mean error 

MSE Mean standardised error 

MSSE Mean square standardised error 

RMSE Root mean square error 

SIS Sequential indicator simulation 

TIN Triangulated irregular network 

To Fundamental site period of vibration 

u Coordinates vector 

𝑉𝑠 Shear wave velocity 
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𝑉𝑠,30 Average shear wave velocity of the top 30 m 
𝑉𝑆,𝑎𝑣𝑔 Average shear wave velocity of the entire soil deposit 
𝑤𝑖𝑤𝑗  Kriging weights 

Z(𝑢𝛼) Random variable at location 𝑢𝛼 

𝛾(ℎ) Experimental variogram 

𝛾𝐼(ℎ; 𝑘) Indicator variogram for category k 

�̃�𝑘
2 Error variance of kriging 
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