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Migratory connectivity is the degree to which populations are linked in space and 
time across the annual cycle. Low connectivity indicates mixing of populations while 
high connectivity indicates population separation in space or time. High migratory 
connectivity makes individual populations susceptible to local environmental condi-
tions; therefore, evaluating migratory connectivity continuously across a species range 
is important for understanding differential population trends and revealing places and 
times contributing to these differences. The common nighthawk Chordeiles minor is a 
widespread, declining, long-distance migratory bird. Variable population trends across 
the nighthawk breeding range suggest that knowledge of migratory connectivity is 
needed to direct conservation. We used GPS tags to track 52 individuals from 12 
breeding populations. We estimated migratory connectivity as 0.29 (Mantel coeffi-
cient: 0 = no connectivity, 1 = full connectivity) between the breeding and wintering 
grounds. We then estimated migratory connectivity at every latitude (spatial connec-
tivity) or day (temporal connectivity) of migration and smoothed those migratory con-
nectivity estimates to produce continuous migratory connectivity ‘profiles’. Spatial and 
temporal connectivity were highest during migration through North America (around 
0.3–0.6), with values generally around 0 in Central and South America due to mixing 
of populations along a common migratory route and similar migration timing across 
populations. We found local peaks in spatial and temporal connectivity during migra-
tion associated with crossing the Gulf of Mexico. We used simulations to estimate 
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the probability that our method missed peaks (spatial: 0.12, temporal: 0.18) or detected false peaks (spatial: 0.11, temporal: 
0.37) due to data gaps and showed that our approach remains useful even for sparse and/or sporadic location data. Our study 
presents a generalizable approach to evaluating migratory connectivity across the full annual cycle that can be used to focus 
migratory bird conservation towards places and times of the annual cycle where populations are more likely to be limited.

Keywords: aerial insectivore, full annual cycle, migration, migratory connectivity, movement, population trend

Introduction

Conservation of migratory birds is complicated by the mul-
titude of natural and anthropogenic factors influencing 
populations across their annual cycle. Research has focused 
on population pressures during the breeding season; how-
ever, the drivers of population declines can also occur dur-
ing migration or on the wintering grounds (Marra  et  al. 
2015). Those drivers can operate at the species level, affect-
ing all populations similarly, or at the population level, 
resulting in differential regional trends (Cresswell 2014). 
Unfortunately, determining what drives population trends is 
limited by our ability to assess migratory connectivity across 
the annual cycle, particularly for migratory species with large  
geographic ranges.

Quantifying migratory connectivity (the degree to which 
populations are linked in space and time) across the annual 
cycle can facilitate understanding population trajecto-
ries and the factors influencing them (Webster et al. 2002, 
Marra et al. 2018). Migratory connectivity is high when indi-
viduals remain spatially separated into populations between 
seasons of the annual cycle and low when individuals from 
multiple populations mix (Fig. 1). When calculated between 
stationary stages of the annual cycle (i.e. breeding and win-
tering), migratory connectivity is due primarily to the spatial 
arrangement of individuals (‘spatial connectivity’). During 
the migratory period, migratory connectivity is also influ-
enced by how populations are separated across time (‘tempo-
ral connectivity’; Bauer et al. 2016). Temporal connectivity 
can be caused by variation between populations in breeding 
ground departure and arrival timing (Gow et al. 2019), the 
timing of stopover (Cohen et al. 2018) or the rate of migra-
tion itself. High temporal connectivity results in spatial sepa-
ration of populations, but only for a specific period of time 
(Fig. 1). It is therefore important to evaluate temporal as well 
as spatial connectivity because populations with low spatial 
connectivity at a particular location (e.g. migratory stopover) 
could have high temporal connectivity if individual popula-
tions migrate through that location at different times (Fig. 1; 
Bauer et al. 2016, Briedis et al. 2016, van Wijk et al. 2018).

Understanding migratory connectivity provides insights 
into population declines by identifying the places and times 
during the annual cycle that could be associated with differen-
tial population trends (Webster and Marra 2005, Marra et al. 
2006, Cresswell 2014). When populations have high connec-
tivity between periods of the annual cycle, each population 
is exposed to different local environmental conditions and 
thus the differences between population-specific vital rates 
may be more strongly influenced by those conditions. When 

populations have low connectivity, environmental conditions 
can affect vital rates at the species level (Cresswell 2014), 
particularly when individuals are constrained to a small 
area or time period (‘bottleneck’; e.g. Isthmus of Panama, 
Bayly  et  al. 2018). Differentiating between the spatial and 
temporal components of connectivity is important for iden-
tifying potential causes of differential population trends 
because high spatial connectivity can cause differential trends 
via environmental conditions that vary in space (e.g. habitat 
loss); however, high temporal connectivity can only influence 
differential trends via factors varying in time (e.g. resource 
availability; Bauer et al. 2016).

If the objective is to understand differential population 
trends, then spatial and temporal migratory connectivity 
should be estimated range-wide and continuously (hereaf-
ter ‘comprehensively’) to avoid missing places and/or times 
during the annual cycle in which populations are most 
connected (Briedis  et  al. 2016). Estimating migratory con-
nectivity during the migratory stages of the annual cycle is 
complex due to the number of locations that individuals 
occupy and the differences in timing of movements between 
populations. Migratory connectivity is thus typically esti-
mated between stationary breeding and wintering ranges 
(Bauer  et  al. 2016, Cohen  et  al. 2017a), or occasionally 
between the breeding grounds and known migratory stop-
over locations (Cohen  et  al. 2018). These approaches may 
miss other locations or times of high migratory connectivity 
during the annual cycle, especially during migration, and so 
may fail to identify where populations experience conditions 
that explain differential trends (Briedis et al. 2016).

Using migratory connectivity to identify places and times 
that may drive differential population trends requires a range-
wide approach because it can reveal patterns that are masked 
at regional scales (Koleček et al. 2016, Phipps et al. 2019). 
Some species show low connectivity at the regional scale, with 
high connectivity only revealed at the range-wide scale due 
to migratory divides (Finch et al. 2015, 2017, Hobson et al. 
2015, Sarà  et  al. 2019). Sampling across the species’ range 
also facilitates the inclusion of populations with varying pop-
ulation trends, which can be used to test specific hypotheses 
about factors driving those trends (Rushing et al. 2016).

We introduce a comprehensive approach to evaluating 
migratory connectivity that identifies places and times during 
the annual cycle with relatively high migratory connectivity 
and could explain differential population trends. Our goal 
was to continuously describe and identify peaks in spatial 
and temporal migratory connectivity across the annual cycle 
for a long-distance migratory bird, the common nighthawk 
Chordeiles minor. The common nighthawk would benefit 
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from a comprehensive evaluation to direct conservation efforts 
because a variety of mechanisms have been hypothesized for 
variable breeding population trends (−6.27 to 2.03% change 
per year, 1966–2015, Sauer et al. 2017) such as habitat loss 
on the wintering grounds and pesticide use at migratory 
stopovers (Brigham et al. 2011, Environment Canada 2016). 
We used GPS tags to track 52 common nighthawks from 12 
breeding populations across the breeding range and estimated 
migratory connectivity during migration and the wintering 
season using the transmitted GPS data. We used the GPS 
data collected during migration to develop ‘connectivity pro-
files’ by estimating migratory connectivity at equally spaced 
intervals across the migration period using predictions from 
movement models. We constructed spatial (longitudinal) and 
temporal connectivity profiles for fall and spring migration 
and identified peaks in those profiles to identify places and 
times that could explain the differential population trends 
observed for common nighthawks. The GPS dataset we used 

had temporal gaps and unbalanced sampling due to battery 
limitations of the tags. To assess the impact of this, we con-
ducted a simple migration simulation to determine the gen-
eralizability of our methods to different sample sizes.

Methods

GPS tag deployment

We selected thirteen locations across the common night-
hawk breeding range to deploy GPS tags (Fig. 2). The loca-
tions were selected to sample the latitudinal and longitudinal 
gradients of the breeding range and the range of differen-
tial population trends reported for the species; therefore, we 
hereafter refer to them as ‘populations’. We deployed 94 
PinPoint GPS-Argos satellite tags (3.5 g) during the breeding 
seasons of 2015–2018 (Supporting information). PinPoint 

Figure 1. Theoretical snapshot of the spatial and temporal components of migratory connectivity during migration. Spatial and temporal 
connectivity combine to create high migratory connectivity (i.e. breeding populations are spatially separated) when either or both are high. 
The scale shown ranges from low (0) to high (1), although migratory connectivity can also be negative if individuals from breeding popula-
tions are further apart than random during migration. Opaque circles represent breeding areas of three distinct populations of a migratory 
bird, transparent circles represent a stopover location during migration, and dots represent individuals from each breeding population 
undertaking migration.
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GPS-Argos satellite tags collect GPS points and transmit the 
stored points via the Argos satellite system (Scarpignato et al. 
2016). Tags deployed had different capacities due to different 
firmware versions; however, all schedules included at mini-
mum one GPS point every 10 days between 10 August and 
15 June (Supporting information).

Adult male and female nighthawks were caught through a 
variety of methods (Supporting information). Each captured 
individual was inspected and weighed prior to harness attach-
ment to ensure it had no injuries and was large enough to 
carry the GPS tag (70–95.5 g, mean = 77.5 g, SD = 5.9 g; 3.5 
g tag and harness ≤ 5% of body mass; Supporting informa-
tion). Individuals weighing at least 70 g and with no injuries 
were fitted with a backpack-style harness (Åkesson et al. 2012; 
negligible mass < 0.05 g) made of 0.7 mm elastic plastic cord 
and aluminum crimp beads. We returned to most locations 
the year following deployment and attempted to retrieve the 
deployed tags to determine whether additional GPS points 
were stored on the tags but not transmitted via the Argos 
satellite system (Supporting information). We retrieved three 
tags by recapturing individuals and two tags through retrieval 
of roadkill carcasses; however, one roadkill bird died before 
the tag began its data collection schedule. We were unable 
to retrieve any tags that failed. All tracking data are stored 
in Movebank (Kranstauber et al. 2011) and are included in 
the Arctic Animal Movement Archive (Davidson et al. 2020).

Screening and processing of raw tracking data

We received GPS points from 61 of the 94 deployed GPS 
tags. Those tags collectively transmitted 2001 GPS points, 
653 of which we removed because they failed the manufac-
turer’s check for accurate transmission (Lotek Wireless Inc.; 

Supporting information). The four tags that we retrieved 
contained an additional 154 GPS points (range: 17–51 per 
tag) that did not transmit via the Argos satellite system. Prior 
to further analysis, we inspected the GPS points for each 
individual in a geographic information system (GIS) to iden-
tify and remove data for nine tags from the dataset: two only 
transmitted from the breeding grounds and seven stopped 
moving or transmitting during migration. At least one tag 
transmitted data for all populations except Quebec. This 
resulted in a final dataset of 52 birds from 12 populations (10 
female, 42 male).

We assigned each GPS point to a season of the annual 
cycle (breeding, fall migration, wintering, spring migration). 
We defined breeding points for the year of deployment and 
the following year as all points within 100 km of the capture 
location (Ng  et  al. 2018), with the exception of one indi-
vidual who returned to a territory 125 km northeast of its 
capture location. We defined wintering season points as all 
points within 100 km of the point furthest from the capture 
location and defined wintering grounds as at least two win-
tering season GPS points within 100 km of another. Manual 
review suggested that seven individuals relocated to a second 
area during the wintering season; we defined those second 
wintering areas as at least two consecutive GPS points within 
100 km of each other but more than 100 km from the first 
wintering area and spanning a period of at least three weeks 
(to differentiate from stopovers; maximum two weeks). We 
then assigned all remaining points to the appropriate migra-
tion season.

We used linear mixed effects models to test the classified 
data for evidence of differential migration that could affect 
subsequent migratory connectivity analyses (methods and 
results in the Supporting information). On average, females 

Figure 2. Location and quantity of GPS tags deployed on adult common nighthawks that successfully transmitted locations (excluding 
those that only transmitted from the breeding grounds or stopped moving/transmitting during migration).
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wintered farther west than males at the beginning of the sea-
son; however, this was driven by one female that wintered 
farthest west (Supporting information). There was no differ-
ence in wintering longitude between males and females after 
seven males relocated wintering territories partway through 
the season (null model ΔAICc = 0.00). Females migrated 
farther west and later than males during spring migration; 
but this was likely an artifact of our small sample size for 
females during spring migration (n = 6), which were primar-
ily from the western populations that have later spring migra-
tion arrival timing (Fink et al. 2020). We therefore did not 
separate our analyses by sex. We found no effect of deploy-
ment year on migration timing (all models > Δ2 AICc from 
selected model).

Data screening and processing was conducted in R ver. 
3.5.2 (<www.r-project.org>) with the geosphere (Hijmans 
2017) and lme4 (Bates et al. 2015) packages. Distances were 
calculated as Haversine great circle distance.

Continuous-time predictions of individual location

Our dataset had temporal gaps and unbalanced sampling due 
to limited battery capacity and imperfect tag performance, 
which is common to movement datasets collected from small 
and medium-sized migratory birds. These gaps impede com-
prehensive evaluation of spatial and temporal connectivity 
during migration because individual locations are unknown 
for some periods along the migration route. We filled in 
the gaps in our dataset by using continuous-time correlated 
random walk (CRAWL) models (Johnson  et  al. 2008) to 
interpolate the migration path for each individual. We chose 
CRAWL for four reasons. First, CRAWL incorporates inertia 
via a correlated random walk, which is particularly important 
during directional movement such as migration. Second, the 
continuous-time nature of the model accommodates irregu-
larly spaced gaps in data collection. Third, the model pro-
vides spatially and temporally explicit predictions, allowing 
us to estimate both spatial and temporal connectivity (next 
section). Fourth, CRAWL provides an estimate of prediction 
uncertainty that can be incorporated in migratory connectiv-
ity estimations.

We only constructed movement models for individuals 
with sufficient sampling across the migration period because 
predicted movement path can be affected by GPS sampling 
intensity (Rowcliffe et al. 2012). We first attempted to define 
sufficient sampling using a threshold; however, there was a 
linear relationship between inter-point duration and distance 
travelled, suggesting no effect of sampling intensity on dis-
tance between points. We therefore included all individuals 
that had 1) a known wintering site, 2) at least one point in 
each of North, Central and South America and 3) at least 
one point on either side of the Mississippi region where birds 
congregate during fall migration before turning south (to 
ensure movement path accuracy in this potentially important 
stopover area).

We used the CRAWL package (Johnson  et  al. 2008, 
Johnson and London 2018) in R to construct four sets of 

movement models, the results of which comprised a mean 
predicted migration path and standard error for each indi-
vidual (Supporting information). For each migratory sea-
son (fall, spring), we constructed one set of models with an 
emphasis on the spatial predictions of the model (to evaluate 
spatial connectivity), and one set of models with an emphasis 
on the temporal predictions of the model (to evaluate tempo-
ral connectivity). We included the capture location and the 
wintering location as known points in the spatially-focused 
models; however, we excluded them from the temporally-
focused models because they did not have dates associated 
with them and thus would introduce inaccuracy into esti-
mates of temporal connectivity. The temporal resolution of 
our data did not allow us to define behavioural classes dur-
ing migration such as stopover and migration flight, so we 
assumed constant migratory movement in the model. We 
extracted the locations of each individual’s mean predicted 
migration pathway from their fitted movement model at 
every latitude for the spatially-focused models and every day 
for the temporally-focused models.

Connectivity estimation

Breeding to nonbreeding connectivity
We quantified connectivity using the Mantel test (rM; 
Ambrosini et al. 2009, Cohen et al. 2017b), which estimates 
the correlation between two distance matrices. The Mantel 
correlation coefficient ranges from −1 to 1, with 1 indicating 
that individuals from each population stay together between 
seasons, 0 indicating complete mixing of populations between 
seasons, and 1 indicating that individuals close to each other 
in one season are further apart during the other season.

We estimated connectivity relative to the breeding grounds 
because our goal was to inform potential causes of differen-
tial population trends observed on the breeding grounds. We 
only used data from individuals for which there were at least 
two wintering season GPS points within 100 km of another 
(n = 43). We defined the breeding location for each individ-
ual as the capture location. We then incorporated uncertainty 
in the wintering location by estimating the Mantel coefficient 
using a bootstrapping approach. First, we calculated the stan-
dard deviation of the wintering points for each individual, 
then we randomly sampled from a normal distribution with 
that standard deviation, added that sampled location error to 
the mean wintering location for that individual, and calcu-
lated rM of the resultant coordinates. We repeated the process 
1000 times to estimate connectivity between the breeding 
and wintering grounds. We repeated this process twice; once 
using the first wintering area for all individuals, and once 
using the second wintering area for those individuals that 
relocated during the winter (n = 7).

Migration – spatial connectivity
We estimated spatial connectivity separately for fall and 
spring migration. To continuously evaluate spatial connectiv-
ity across the migratory period, we used the spatially-focused 
predicted migration paths to estimate rM at each degree 
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latitude of migration. We estimated rM at all latitudes for 
which CRAWL predicted locations for at least three individ-
uals from two populations (fall: 58°N to 16°S; spring: 58°N 
to 14°S) using the same methods described above (breed-
ing to nonbreeding connectivity), except that we incorpo-
rated uncertainty from the movement models by including 
the mean standard error of the location predictions as the 
location error instead of the standard deviation of wintering 
points.

Migration – temporal connectivity
We repeated the spatial connectivity methods, but instead 
used the temporally-focused movement paths to estimate rM 
for every day of migration. We used all dates for which there 
were location predictions available for at least three individu-
als from two populations (fall: 20 August to 21 November; 
spring: 22 February to 11 June).

Migration connectivity profiles

We used generalized additive models (GAMs, Wood 2017) 
from the mgcv package (Wood 2011) in R to smooth the 
rM estimates for fall and spring migration into continuous 
spatial and temporal migratory connectivity (hereafter ‘con-
nectivity profiles’). We chose GAMs because we expected 
multiple peaks in the connectivity profiles and GAMs can 
model complex, nonlinear patterns by averaging multiple 
regressions with varying coefficients. For each profile, we fit a 
Gaussian GAM with a cubic spline smoother with shrinkage 
to the bootstrapped rM estimates with latitude (spatial pro-
files) or day (temporal profiles) as the predictor variable. We 
determined the number of knots in the GAM as the mini-
mum number between 5 and 15 that best fit within the 99% 
CI of the rM estimates (fall spatial: 14 knots, spring spatial: 
15 knots, fall temporal: 15 knots, spring temporal: 15 knots).

Peak identification

We interpreted local maxima (hereafter ‘peaks’) in the con-
nectivity profiles to represent places and times that could 
drive differential population trends because of elevated spa-
tial–temporal connectivity. For each of the four connectiv-
ity profiles, we automatically identified all peaks in the mean 
prediction of the GAM for each profile using the pracma 
package (Borchers 2019). For peaks that were within five 
degrees latitude or ten migration days of each other, we 
assumed these were associated with the same general place or 
time and used only the highest peak.

We used a two-step process to validate each peak. The first 
was a leave-one-out analysis, much like jackknife resampling 
(Efron and Stein 1981), that checked for bias in the global 
connectivity profile. For the spatial connectivity profiles, we 
removed one population, re-estimated rM at each latitude, 
and fit a GAM to the resultant data. We repeated the process 
for each population and used mean shift classification with 
a bandwidth of two in the meanShiftR package (Lisic 2018) 

to cluster the peaks from all iterations into groups based on 
latitude and rM. This leave-one-out process allowed us to dif-
ferentiate between two types of peaks in the spatial connec-
tivity profiles: 1) peaks due to an increase in connectivity 
during migration (i.e. a place of interest) were present in all 
leave-one-out-iterations; and 2) peaks due to the addition or 
removal of individuals from the rM estimations as the con-
nectivity profile moved across the latitudinal gradient of the 
breeding grounds (i.e. a sampling artifact) were absent in at 
least one leave-one-out-iteration. Thus, we retained clusters 
that contained a peak from every leave-one-out iteration and 
removed clusters that classified as sampling artifacts. We used 
the same approach for the temporal connectivity profiles, 
except that instead of removing populations, we removed 
groups of individuals that ‘started’ or ‘ended’ migration on 
dates when the number of individuals in the analysis changed 
(i.e. scheduled GPS point days that followed the start or end 
of migration for the individuals included in the analysis).

For the second step, we assessed the remaining peaks using 
the confidence intervals of the rM bootstraps. Peaks for which 
the 83.4% confidence interval (Krzywinski and Altman 
2013) overlapped with the confidence intervals of both of the 
nearest local minima were not considered statistically signifi-
cantly different from those minima.

Sample size simulation

Finally, we used a simulation to investigate the generalizabil-
ity of our approach. We were specifically interested in the 
effects of sampling intensity (i.e. how many locations and 
individuals were included in analyses) on the probability of 
detecting true and false peaks in the connectivity profiles, 
and on the magnitude of rM. We simulated the southward 
migration of three populations from the breeding grounds 
in Canada, migrating through a shared stopover with low 
spatial and temporal connectivity, through a second stop-
over with high spatial and temporal connectivity, and then 
arriving on the wintering grounds in Central America with 
low spatial and temporal connectivity (Fig. 3). We randomly 
varied the number of individuals sampled per population 
(2–20) and number of locations per individual (5–50) for 
1000 iterations.

We populated the simulation by randomly selecting loca-
tions and dates for each individual in the simulation for each 
stage (breeding, two stopovers, wintering). The locations 
were randomly selected from a uniform distribution within 
a predefined area for each stage (Fig. 3). We simulated high 
spatial connectivity by first randomly selecting three popu-
lation centroids within the breeding and second stopover 
stage areas, and then randomly selecting individual locations 
within 50 km of those centroids. The breeding centroids were 
required to be at least 500 km apart and the second stopover 
centroids were required to be at least 300 km apart. The dates 
were also randomly selected for each individual from uniform 
distributions for migration start date (1–20 days) and the 
time it took to travel between each stage (20–30 days). We 
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simulated high temporal connectivity by selecting the dates 
for breeding ground departure and the second stopover at the 
population level instead of at the individual level.

We then fit a CRAWL movement model to the four points 
for each individual and used the posterior from the model 
to simulate a migration pathway for that individual. We 
randomly sampled between 5 and 50 locations from those 
simulated migration pathways to simulate GPS sampling for 
each individual. We applied our spatial and temporal connec-
tivity profile methods (sections Continuous-time predictions 
of individual location, Connectivity estimation, Migration 

connectivity profiles, and Peak identification) to the simu-
lated locations, with the exception that we generated 100 rM 
estimates for each latitude or day, instead of 1000.

We classified the peaks identified in each simulation itera-
tion as true positive or false positive by comparing it to where 
or when the peak was simulated at the second stopover (spa-
tial connectivity: within 5° of the mean latitude across popu-
lations; temporal connectivity: within 10 days of the mean 
day across populations). We also classified the iterations for 
which no peaks were identified as false negatives. We then 
used logistic regression to model the probability of a false 

Figure 3. Example workflow of simulation to investigate the potential for false or missed peaks in connectivity profiles. Example shows the 
southward migration of three populations represented by different colors, with three individuals sampled per population and ten GPS 
points sampled per individual. Black lines in step 2 represent the standard error of the correlated random walk movement model for each 
individual.
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positive relative to the number of individuals and number of 
GPS points per individual. We similarly modelled the proba-
bility of a false negative. We also used linear regression to test 
whether the value of rM and the 95% CI of rM were influenced 
by the number of individuals and the number of locations.

Results

Migration route

Common nighthawks from across the breeding range used 
a shared route for much of both migrations (Fig. 4). In fall, 
individuals migrated towards the Central/Mississippi flyway 
and flew south across the Gulf of Mexico. There was no indi-
cation of over-land migration through Mexico. All individu-
als then funneled along a narrow route in the Colombian 
Andes and continued across the Amazon basin towards 
their wintering grounds, mostly to the east in the Amazon 
and Cerrado biomes of Brazil (Fig. 5). In spring, individu-
als headed north and departed for the Gulf of Mexico from 
northern Colombia. After reaching the Gulf coast, each 
individual migrated back to its breeding grounds in North 
America.

Nonbreeding connectivity

rM of breeding populations on the wintering grounds was 
0.292 (0.291–0.293 95% CI; Fig. 5) at the beginning of the 
wintering season and decreased to 0.197 (0.195–0.198 95% 
CI) after some birds relocated to secondary wintering areas (7 
of 43 individuals).

Fall migration connectivity

Mean spatial rM of all bootstraps was 0.208 (0.022–0.395 95% 
CI) during fall migration. Spatial rM started at 0.842 (0.764–
0.967 95% CI) in the north at 58°N, quickly decreased to 
0.405 (0.036–0.781 95% CI) at 54°N and stayed between 
0.3 and 0.4 until 24°N as birds crossed the Gulf of Mexico 
(Fig 4). Mean spatial rM then decreased to between 0.1 and 
−0.1 until 8°S when there were few individuals left in the 
analysis, and eventually reached −0.165 (−0.996 to 0.996 
95% CI) at 16°S. There were no peaks in spatial connectivity 
during fall migration. The GAM fit to the bootstrapped rM 
estimates explained 66.2% of the variation in the data.

Mean temporal rM of all bootstraps was 0.138 (0.055–
0.212 95% CI) during fall migration. Similar to spatial 
rM, we found temporal rM started relatively high at 0.630 
(0.630–0.630 95% CI) on 20 August at the beginning of fall 
migration, but consistently decreased to approximately zero 
on 20 September (Fig. 4). Temporal rM then stayed between 
0 and 0.1 until one peak of 0.167 (0.131–0.181 95% CI) on 
24 October after birds crossed the Gulf of Mexico (Fig. 6). 
Temporal rM decreased to approximately zero when migra-
tion ended for most birds in mid-November. The three other 
peaks in fall temporal rM on 10 September, 2 October and 16 
November were identified as false peaks because they were 

not present in all leave-one-out iterations. The GAM fit to 
the bootstrapped rM estimates explained 74.9% of the varia-
tion in the data.

Spring migration connectivity

Mean spatial rM of all bootstraps was 0.100 (−0.042 to 0.293 
95% CI) during spring migration. Spatial rM started negative 
at −0.878 (−1.00 to −0.602 95% CI) in the south at 14°S 
and quickly increased to near zero before rising to a peak 
of 0.233 (0.040–0.421 95% CI) at 6°N in northern South 
America (Fig. 4). Spatial rM dropped to zero until approxi-
mately 26°N during crossing the Gulf of Mexico. Spatial rM 
then steadily increased as birds took direct routes back to 
their breeding grounds in North America, with another peak 
of 0.579 (0.348–0.744 95% CI) at 44°N in the northern 
United States where multiple populations veered off towards 
their breeding grounds. One false peak at –9°S was detected. 
The GAM fit to the bootstrapped rM estimates explained 
71.3% of the variation in the data.

Mean temporal rM of all bootstraps was 0.064 (−0.243 to 
0.351 95% CI) during spring migration. Temporal rM began 
at 0.467 (−0.926 to 1.000 95% CI) on 22 February at the 
beginning of spring migration, before decreasing to near 0 
as more birds initiated migration (Fig. 4). Temporal rM then 
increased gradually to a peak at 0.256 (0.217–0.280 95% 
CI) on 7 May as birds crossed the Gulf of Mexico (Fig. 6). 
There was a steep increase in rM until 25th May followed by 
a sharp decline before temporal rM ended at −0.676 (−0.676 
to −0.676 95% CI) on 11 June; however, this peak on 25 
May was identified as false because it was not present in all 
leave-one-out iterations. Two other peaks on 2 and 25 March 
were not retained because the confidence intervals overlapped 
with adjacent minima. The GAM fit to the bootstrapped rM 
estimates explained 55.9% of the variation in the data.

Sample size simulation

The rate of false negative (i.e. missed) peaks was 11.7% in 
the simulated spatial connectivity profiles and 18.7% in the 
simulated temporal connectivity profiles. The probability of 
detecting a true positive spatial peak was positively affected 
by the number of individuals sampled per population (p < 
0.001) and the number of locations sampled per individual 
(p = 0.013; Fig. 7). The probability of detecting a true posi-
tive temporal peak was positively affected by the number of 
locations sampled per individual (p = 0.006), but not by the 
number of individuals sampled per population (p = 0.067). 
The rate of false positive (i.e. false) peaks was 10.8% in the 
simulated spatial connectivity profiles and 36.5% in the sim-
ulated temporal connectivity profiles. Visual inspection of 
these false positives showed that they were additional times of 
high connectivity, either near the beginning of migration (lat-
itude 40–55°N, day 10–25) when connectivity was simulated 
as high or introduced by the stochasticity of the migration 
path simulation process. The probability of detecting a false 
positive spatial peak was negatively affected by the number 
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Figure 4. Migratory connectivity of adult common nighthawks during fall (left) and spring (right) migration. Top: colored lines are the 
mean predicted migration paths from correlated random walk movement models for each individual included in the analysis. Spatial con-
nectivity profile on the left of each map is latitudinally aligned with the map (below for description of connectivity profile). Center (spatial 
connectivity profile) and bottom (temporal connectivity profile): The grey ribbon is the 83.4% CI of 1000 bootstraps of migratory con-
nectivity (rM) estimates at each latitude or day of year. The black line is the mean prediction from a generalized additive model (GAM) of 
those rM estimates. Colored lines on the connectivity profiles are the mean prediction from a GAM of rM estimates with one population or 
start/end date left out of the rM estimation (i.e. jackknifed). Dashed lines represent local maxima that are considered true elevations in 
migratory connectivity. Local maxima that were not present in all jackknifes are attributed to changes in the population composition and 
thus are not biologically meaningful. Note that the spatial and temporal connectivity profiles do not correspond spatially in the figure.
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of individuals sampled per population (p = 0.008) and the 
probability of detecting a false positive temporal peak was 
positively affected by the number of locations sampled per 
individual (p = 0.026). All other effects were non-significant 
(p > 0.05). The value of rM ranged from −0.163 to 0.973 
(mean = 0.500, SD = 0.237) for true positive spatial peaks 
and from −0.062 to 0.987 (mean = 0.581, SD = 0.213) for 
true positive temporal peaks. There was no effect of num-
ber of individuals per population or number of locations per 
individual on rM of spatial or temporal peaks (p = 0.05), but 
there were highly significant effects of both predictors on the 
95% CI of rM (p < 0.001).

Discussion

Migratory connectivity provides insight into multiple aspects 
of a species’ biology including where and when in the annual 
cycle breeding populations may be limited (Norris and Marra 
2007, Cresswell 2014, Rushing et al. 2016). We comprehen-
sively examined spatial and temporal connectivity across 
the annual cycle of the common nighthawk using a novel 

approach. We found low spatial connectivity outside of the 
breeding grounds due to the use of a single route for much 
of this species’ spring and fall migration and mixing of popu-
lations on the wintering grounds, primarily in the Amazon 
and Cerrado biomes of Brazil. There were, however, places 
and times during migration when connectivity was elevated, 
indicating increased separation of populations in space and/
or time. We discuss the generalizability of our approach and 
how it can guide future conservation efforts.

Quantifying migratory connectivity is a powerful tool 
for directing conservation research because it can be used 
to identify potential causes of differential population trends 
associated with times and places of the annual cycle with dis-
proportionately high connectivity (Norris and Marra 2007, 
Cresswell 2014, Rushing  et  al. 2016). As with many spe-
cies, the list of potential causes of decline for the common 
nighthawk is lengthy (Environment Canada 2016). During 
spring migration, we found a peak in spatial migratory con-
nectivity in the northern Amazon region, which could create 
population-specific pressures through threats like habitat loss 
(Bayly et al. 2018) and pesticide use (Spiller and Dettmers 
2019). We found increased population-specific timing of 

Figure 5. Great circle connections between adult common nighthawks on the breeding grounds in North America and wintering grounds 
in South America, as determined with Pinpoint GPS-Argos tags. Inset shows relocations of individuals that used two wintering areas during 
the wintering season.
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spring crossing of the Gulf of Mexico beginning 7 May, 
which could make individual populations vulnerable to tem-
porally variable pressures like favorable winds (Bauer  et  al. 
2016, Ries  et  al. 2018). We also found increased popula-
tion-specific timing while birds were entering the Amazon 
basin on fall migration, but the magnitude of this peak 
was low (rM = 0.167). In North America, we found moder-
ate (rM = 0.3–0.4) spatial connectivity north of the Gulf of 

Mexico during both migrations, which could affect breeding 
populations through threats like vehicle collisions in areas of 
high road density (Camacho 2013). We similarly found mod-
erate fall and spring temporal connectivity in North America, 
suggesting population-specific breeding ground departure 
and arrival timing that could lead to differential population 
trends via threats like differential changes in aerial insect 
phenology (English et al. 2018). Finally, we found a strong 
peak in spatial connectivity at 44°N during spring migration. 
However, it is unclear whether this peak is a sampling artifact 
that was not detected by our leave-one-out analysis because it 
is attributed to multiple populations, or whether it represents 
a true spring migratory divide between eastern and western 
common nighthawk populations; further sampling is needed.

Connectivity profiles do not rule out potential threats on 
the breeding grounds like habitat change, drought or reduced 
insect abundance (English  et  al. 2017, Sánchez-Bayo and 
Wyckhuys 2019) if they are estimated relative to the breeding 
grounds. We also emphasize that the link between migratory 
connectivity and population trend applies only to differential 
population trends; other approaches are required to under-
stand drivers of population decline occurring at the species 
level (Cresswell 2014). For example, recent land use change 
in the Magdalena River Valley of Colombia (Rodríguez 
Eraso et al. 2013) is unlikely to be responsible for differential 
population trends because all populations migrate together 
through this small area. Instead, this area represents a migra-
tory bottleneck where mortality events or physiological 
stressors could negatively affect nighthawk population trends 
at the species level. Overall, low spatial and temporal migra-
tory connectivity in South America suggests that the driv-
ers of differential common nighthawk population trends are 
most likely in North America, but a sharp peak in spring spa-
tial connectivity suggests drivers could also occur in north-
ern South America before birds cross the Gulf of Mexico 
(Bayly et al. 2018).

Connectivity profiles can contribute to conservation 
of many migratory species because they are generalizable. 
Constructing connectivity profiles can be applied to a wide 
range of tracking data types (e.g. geolocator, Argos) because 
it accommodates uncertainty in location estimates. Further, 
connectivity profiles can be effectively derived from sparse 
datasets; the probability of detecting a true peak was almost 
85% for spatial connectivity and 75% for temporal connec-
tivity with as little as two individuals sampled per population 
and five locations sampled per individual. We did, however, 
find that the confidence interval of the connectivity pro-
files was highly affected by number of individuals and loca-
tions, which could affect the probability of detecting a peak 
in situations with moderate connectivity as opposed to our 
simulation of high connectivity. Although the application of 
temporal connectivity profiles to sparse and/or sporadic data-
sets such as ours results in large confidence intervals that may 
obscure conclusions, understanding temporal connectivity is 
a critical component of evaluating the causes of differential 
population trends. Connectivity profiles are a good first step 
towards conservation planning for the common nighthawk 

Figure 6. Locations of adult common nighthawk individuals during 
local maxima in temporal migratory connectivity during migration. 
Error bars on each location point represent the standard error at 
that location from correlated random walk movement models.
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and potentially other species. As tracking technology con-
tinues to improve, higher resolution datasets can be used to 
understand temporal connectivity with greater precision.

Although connectivity profiles are generalizable to many 
datasets, certain situations may increase the probability of false 
positive and negative peaks. First, our approach assumes con-
stant migratory movement, which is a relatively safe assump-
tion for an aerial insectivore like the common nighthawk 
that likely employs an energy-minimizing migration strat-
egy (Imlay et al. 2020); however, time-minimizing migrants 
make extensive stopovers during migration (Alerstam and 
Hedenström 1998). Assuming constant migratory move-
ment for those species would likely increase the probability 
of missing a peak in temporal connectivity because it would 
reduce the temporal clustering of individuals. Assuming con-
stant movement would likely also increase the probability of 
detecting a false temporal peak, as our simulation revealed that 
temporal connectivity profiles are sensitive to stochastic times 
of high connectivity and the temporal resolution of location 
sampling. We therefore recommend higher temporal sam-
pling (e.g. one location sampled per day) for species known 
to make extensive stopovers and differentiating between 
stopover and migration in the movement modelling prior to 

construction of connectivity profiles. Differential migration 
between years could mask or distort the temporal or spatial 
pattern of migration and increase the probability of missing 
a peak in connectivity. Differential migration between sexes 
can also exacerbate the effects of local environmental con-
ditions on population dynamics (Briedis and Bauer 2018). 
We recommend testing for differential migration before 
constructing connectivity profiles and to construct separate 
profiles for each sex or year if differential migration is pres-
ent. A small sample size for females and a potential confound 
between sex and an east–west gradient in spring migration 
(Fink  et  al. 2020) timing prohibited us from constructing 
separate profiles for male and female common nighthawks; 
however, we recommend that future conservation research 
consider potential for sex-specific population pressures dur-
ing spring migration.

Interpretation of the magnitude of connectivity values 
remains an obstacle towards understanding migratory con-
nectivity. Migratory connectivity is often referred to as ‘low’ 
or ‘weak’ and ‘high’ or ‘strong’ (Webster  et  al. 2002),  and 
Finch et al. (2017) defined rM values lower than 0.5 as weak 
connectivity. However, there is no research linking these qual-
itative descriptions to quantitative estimates beyond the use 

Figure 7. Probability of detecting a true or false peak in migratory connectivity using connectivity profiles depending on number of indi-
viduals sampled per population (n = 3 populations) and number of locations sampled per individual. Only significant effects are shown 
(alpha = 0.05).
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of permutation to determine significance (Ambrosini  et  al. 
2009). An additional limitation of rM values in connectivity 
profiles is that the spatial connectivity profiles may not be 
directly relatable to rM during the wintering period or tem-
poral connectivity because each rM estimation is derived from 
locations at a single latitude (i.e. longitudinal variation only). 
We recommend future research focus on linking rM values to 
population implications.

Studying migratory connectivity can direct conservation 
action through formal evaluation of potential causes of differ-
ential population trends (Wilson et al. 2011, Rushing et al. 
2016, Hallworth  et  al. unpubl.). Potential causes associ-
ated with places and times of elevated connectivity can be 
quantitatively tested by deriving meaningful covariates at 
those places and times (e.g. % habitat loss at stopover areas) 
and using those covariates to partition variance in breeding 
ground demographics. Rushing et al. (2016) introduced this 
approach by modelling the effect of breeding and winter-
ing ground conditions on wood thrush Hylocichla mustelina 
breeding abundance at the population level. Connectivity 
profiles could extend this approach by narrowing the poten-
tial covariates included to just those of places and times of 
peak or high connectivity, facilitating the inclusion of covari-
ates for the migratory period, and measuring covariates at the 
individual level. Temporal connectivity profiles enable the 
inclusion of potential threats that vary with time in the full 
annual cycle study of differential population trends. Future 
conservation research for the common nighthawk and other 
species with similar broad-scale, differential population 
trends could use this retrospective approach to assess poten-
tial threats associated with the places and times of high con-
nectivity identified here.

Conservation of migratory species should be conducted 
in the context of the full annual cycle (Marra et al. 2015). 
Authors have used migratory connectivity to investigate dif-
ferential population trends by focusing on specific places or 
times during the annual cycle, with particular focus on the 
wintering grounds (Fraser et al. 2012, Taylor and Stutchbury 
2016, Murray et al. 2017, Kramer et al. 2018). Such hypoth-
esis-driven approaches may fail to identify places and times 
during the annual cycle that limit populations because they 
do not encompass the full migratory path(s) and often lack a 
temporal perspective. Our approach provides a comprehen-
sive alternative that also enables, for the first time, evalua-
tion of temporal connectivity. Connectivity profiles can help 
direct conservation assessment of specific places and times 
of the annual cycle for the common nighthawk and other 
migratory species of conservation concern.
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