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Abstract

This Thesis is concerned with one of the major problems in subsurface characterizations
emerging from ever-increasing loads of data in the last decades: What kind of tech-
nologies suit well for extracting novel, valid and useful knowledge from persistent data
repositories for the characterization of subsurface regions and how can such technologies
be implemented in an integrated, community-open software platform?

In order to address those questions, an interactive, open-source software platform for
geoscientific knowledge discovery has been developed, which enables domain experts
to generate, optimize and validate prognostic models of the subsurface domain. Such a
free tool has been missing in the geoscientific community so far. The extensible software
platform GeoReVi (Geological Reservoir Virtualization) implements selected aspects
of geovisual analytics with special attention being paid to an implementation of the
knowledge discovery in databases process. With GeoReVi the human expert can model
and visualize static and dynamic systems in the subsurface in a feedback cycle. The
created models can be analyzed and parameterized by means of modern approaches from
geostatistics and data mining. Hence, knowledge that is useful to both the assessment of
subsurface potentials and to support decision-making during the utilization process of
the subsurface regions can be extracted and exchanged in a formalized manner.

The modular software application is composed of both integrated and centralized databases,
a graphical user interface and a business logic. In order to fulfill the needs of low com-
puting time in accordance with high computational complexity of spatial problems, the

software system makes intense use of parallelism and asynchronous programming.

The competitiveness of industry branches, which are aimed at utilizing the subsurface
in unknown regions, such as the geothermal energy production or carbon capture and
storage, are especially dependent on the quality of spatial forecasts for relevant rock and
fluid properties. Thus, the focus of this work has been laid upon the implementation of
algorithms, which enhance the predictability of properties in space under consideration of




uncertainty. The software system was therefore evaluated in ample real-world scenarios
by solving problems from scientific, educational and industrial projects.

The implemented software system shows an excellent suitability to generically address
spatial problems such as interpolation or stochastic simulation under consideration of
numerical uncertainty. In this context, GeoReVi served as a tool for discovering new
knowledge with special regard to investigating the heterogeneity of rock media on multiple
scales of investigation.

Among others, it could be demonstrated that the three-dimensional scalar fields of different
petrophysical and geochemical properties in sandstone media may diverge significantly at
small-scales. In fact, if the small-scale variability is not considered in field-scale projects,
in which the sampling density is usually low, statistical correlations and thus empirical
relationships might be feigned.

Furthermore, it could be demonstrated that the simple kriging variance, which is used to
simulate the natural variability in sequential simulations, systematically underestimates
the intrinsic variability of the investigated sandstone media. If the small-scale variability
can be determined by high-resolution sampling, it can be used to enhance conditional
simulations at the scale of depositional environments.




Zusammenfassung

Die vorliegende Thesis behandelt eines der zentralen Probleme prognostischer Untergrund-
modellierungen in Zeiten stetig wachsender Datenmengen: Wie kann neues, valides und
nutzbares Wissen zur Bewertung von Untergrundpotenzialen aus gro3en Datenbanken
mit geowissenschaftlichem Kontext optimal extrahiert und verwertet werden?

Hierzu wurde ein interaktives, quelloffenes visuelles Wissensfindungssystem mit Daten-
bankanbindung entwickelt, mit dem geowissenschaftliche Datensatze verwaltet und
semi-automatisiert prognostische Untergrundmodelle entwickelt, validiert und optimiert
werden konnen. Solch ein quelloffenes System fehlte bislang innerhalb der geowis-
senschaftlichen Forschungsgemeinschaft. Das System basiert auf dem Prinzip der Wis-
sensfindung in Datenbanken und implementiert ausgewahlte Aspekte aus der Disziplin der
visuellen Analytik. In einem interaktiven Benutzer-Maschine-Kreislauf konnen Domé&nen-
experten statische und dynamische Untergrundsysteme modellieren, um neues Wissen
zur Beurteilung von Geopotenzialen aus vorhandenen Datensétzen zu extrahieren. Das
System stellt hierfiir moderne Algorithmen der Geostatistik oder des Data Mining zur
Verfiigung. Das mehrschichtige, modulare Softwaresystem besteht aus lokalen und zen-
tralisierten Datenbanken, einer graphischen Benutzeroberflache und einer Geschéftslogik.

Datensétze aus wissenschaftlichen und industriellen Projekten, die vorwiegend aus der
Domaéne der geologischen Reservoircharakterisierung stammen, wurden in das System
importiert und genutzt, um wissenschafltiche Fragestellungen unter Zuhilfenahme des
Softwaresystems zu beantworten. Die Wirtschaftlichkeit der Reservoirnutzung ist maf3ge-
blich von der Qualitat raumlicher Prognosen relevanter Untergrundparameter abhéngig,
weswegen der Schwerpunkt dieser Arbeit auf die Implementierung von Algorithmen
zur Verbesserung der Vorhersagbarkeit dieser Untergrundparameter gelegt wurde. Das
Softwaresystem wurde diesbeziiglich in realen Testszenarien evaluiert.

Die Ergebnisse der Fallstudien zeigen, dass sich visuelle Wissensfindungssysteme hervor-
ragend dafiir eignen, geowissenschaftliche Fragestellungen unter der Beriicksichtigung
von Unsicherheiten zu losen. In den Fallstudien konnte gezeigt werden, dass sich die




rdumliche Auspriagung von dreidimensionalen Skalarfeldern physikalisch-chemischer
Eigenschaften in Sandsteinmedien auf der sub-Meterskala signifikant unterscheiden kann.
Ohne Beriicksichtigung der kleinskaligen geologischen Variabilitdt konnten Riickschliisse
tiber statistische Zusammenhinge auf der Anwendungsskala, auf der die Beprobungs-
dichte generell gering ist, fialschlicherweise impliziert werden.

In dieser Fallstudie konnte des Weiteren gezeigt werden, dass die Simple Kriging Var-
ianz, die zur stochastischen Nachbildung der natiirlichen Variabilitit in sequentiellen
Simulationen Verwendung findet, die natiirliche Variabilitat innerhalb der untersuchten
porosen Sandsteinmedien systematisch unterschitzt. Falls die natiirliche Variabilitat
in hochauflésenden Studien ermittelt werden kann, kann diese genutzt werden, um
die Simulation der lokalen Variabilitat innerhalb sedimentédrer Ablagerungsraume zu
verbessern.

VI
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1. Introduction

In the introduction, the problems addressed in the Thesis at hand will be outlined.
Therefore, investigations will be introduced and rationalized with which this Thesis aims
to contribute to solving these problems. Moreover, the structure of the Thesis will be
presented and the basic notations applied in this work will be provided.

1.1. Problem Statement

Industrial applications which are making use of the subsurface, such as petroleum engi-
neering, geothermal heat production, groundwater extraction, mining operations, carbon-
capture and storage, tunneling, or nuclear waste disposal, require a deep understanding
and highly accurate spatial predictions of relevant physical or geochemical properties
in order to assess the economic feasibility of a target region (Magnus Bergman 1986;
Landa & Strebelle 2002; Heap et al. 2017; Kushnir et al. 2018; Rodrigo-Ilarri et al. 2017).
The degree of subsurface exploitation has remained more or less constant over the past
decades as indicated by Baker Hughes’ international rig count’ (Baker Hughes 2020)
which is shown in Figure (1.1). Prior to drilling, the target region in the subsurface needs
to be characterized and well understood in order to plan the borehole correctly and to
scale and optimize the development strategy which should lead to a maximization of the
economic revenue.

The data, which are required for making a comprehensive subsurface characterization, are
usually compiled from numerous geoscientific domains such as petrophysics, stratigraphy;,
geophysics, petrography or hydrochemistry. Thus the compilation of data — data, which is
in most cases incomplete — has always been a strenuous task for geologists, petrophysicists
or reservoir engineers. The problem is reinforced by the fact that data must be acquired
from multiple sources with alternating semantics (Ge & Chen 2010). The scarcity and

Thttps://rigcount.bakerhughes.com/intl-rig-count/, last access 22nd November, 2020
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Figure 1.1.: Time distribution of Baker Hughes’ international rig count.

complexity of subsurface-related data sets may lead to even higher efforts while inte-
grating the corresponding data sets into existing software systems. Consequently, data
incorporation may make up the biggest share of the domain expert’s total working hours
(Fayyad et al. 1996a).

Although numerous commercial software systems are available providing the capability to
organize, model and analyze subsurface data, the geoscientific community is still lacking
an open-source system that is capable of supporting the entire knowledge discovery process
chain of a domain expert efficiently. By now, open-source, freely available software
applications for geoscientific knowledge discovery are either still in their infancy or
architecturally outdated.

Generally, knowledge about the geological architecture and the physicochemical properties
from subsurface regions is scarce due to cost-intensive exploration methods. Hence,
sparsely sampled subsurface information is available for analyses and for the prediction
of the subsurface’s behavior during production. The competitiveness of those industry
branches which are aimed at utilizing the subsurface in unknown regions, such as the
geothermal energy production or carbon capture and storage, are especially dependent
on the quality of spatial forecasts for relevant rock and fluid properties. These properties
are, however, prone to uncertainty induced by measurement errors, interpolation errors
and local geological variability. Up until now, geostatistical simulation algorithms were
aimed at accounting for measurement and interpolation errors but not for the local
geological variability, which is generally not well understood as studies at that scale are
time-consuming and usually avoided.




1.2. Contributions of the Thesis

This Thesis aims at addressing the two major major problems, outlined in the previous
section, which involve geostatistical simulation algorithms not accounting for local geo-
logical variability in subsurface predictions and a missing community-open geological
knowledge discovery system. Consequently, the main research objectives of this Thesis
result in:

I) Implementing an open-source geological knowledge discovery system to assist
domain experts in characterizing, modeling and understanding subsurface systems
and their industrial potentials.

II) Validation of the software system by unit testing and performing case studies
which aim at modeling the local geological variability of a series of physical and

geochemical rock properties in space.

III) Enhancing existing geostatistical simulation algorithms in order to account for local
geological variability.

IV) Discovering new, valid and usable knowledge in case studies involving real subsur-
face systems by means of the developed software system.

Firstly, a new open-source software system is developed that supports geoscientists within
typical knowledge discovery process chains. Secondly, data sets from scientific and
industrial projects are imported into the system and utilized to investigate real-world
problems related to subsurface characterization. Those studies are used to evaluate the

software system in ample real-world application scenarios.

The case studies constitute both classical characterization processes of subsurface domains
at various scales as well as new methodological approaches that improve the predictability

of uncertainty in unknown space.

1.2.1. Journal publications

This cumulative dissertation comprises three journal publications and one book section,
which all underwent a single blind peer-review and which are listed below. The full

papers are listed in the section of chapter 3.

* Publication I:
Linsel, A., Bir, K., Haas, J., Hornung, J., Greb, M.D. and Hinderer, M. (2020):
GeoReVi: A knowledge discovery tool for subsurface characterization. SoftwareX.
doi:10.1016/j.s0ftx.2020.100597




* Publication II:
Hornung, J., Linsel, A., Schréder, D., Gumbert, J., Olmez, J., Scheid, M., Péppel-
reiter, M. C. (2020): Understanding small-scale petrophysical heterogeneities in
sedimentary rocks: The key to understanding pore geometry variations and to
predicting lithofacies-dependent reservoir properties. In: Grotsch J. & Poppelreiter,
M. C.: Digital Geology — Multi-scale analysis of depositional systems and their
subsurface modelling workflows. EAGE Special Publication ISBN 9789462823372.

* Publication III:
Linsel, A., Wiesler, S., Hornung, J. and Hinderer, M. (2020): High-Resolution
Analysis of the Physicochemical Characteristics of 3-D Sandstone Media at the
Lithofacies Scale. Solid Earth. doi:10.5194/se-2020-13

* Publication IV:
Linsel, A., Wiesler, S., Haas, J., Bar, K. and Hinderer, M. (2020): Accounting for
Local Geological Variability in Sequential Simulations—Concept and Application.
ISPRS International Journal of Geo-Information. doi:10.3390/ijgi9060409

The scope and the author’s contribution are described in those chapters, which are
associated with the specific publication.

1.2.2. Conference publications

Furthermore, the research was presented on conferences and exhibitions in oral presenta-
tions and poster sessions:

Linsel, A. , Bar, K. and Hinderer, M. (2017): Linking Siliciclastic Sedimentology to
Geothermal Reservoir Characterization with a Relational Database Application. 5th
European Geothermal Workshop - Characterization of Deep Geothermal Systems. (poster
presentation)

Linsel, A., Bér, K., Hornung, J. and Hinderer, M. (2018): Bridging Information Gaps in
Reservoir Studies — Archiving and Retrieving Data With Relational Database Management
Systems. AAPG Annual Convention and Exhibition, Salt Lake City, 5/20 - 5/23/2018.
(poster presentation)

Stutenbecker, L., Linsel, A., Caracciolo, L., Vermeesch, P. and Hinderer, M. (2018): A
database for compositional data. Working Group on Sediment Generation, Dublin, 06/27-
06/29/2018. (poster presentation)




Linsel, A., Bér, K., Hornung, J. and Hinderer, M. (2019): Visual analytics and information
management for comprehensive geothermal reservoir characterization. NovCare 2019,
Waterloo, ON, 05/28 - 05/31/2019. (oral presentation)

Linsel, A., Weinert, S., Bir, K. and Hinderer, M. (2019): Thermo-Hydraulic Heterogeneity
Assessment Across First-Order Hiatal Surfaces — A Case Study from the Post-Variscan
Nonconformity. GeoMiinster 2019, Miinster, 09/22 - 09/25/2019. (oral presentation)

Greb, M. and Linsel, A. (2020): Meaningful geoscientific data collection, curation and in-
tegration in petroleum exploration and development endeavors. AAPG Annual Convention
and Exhibition, Houston, TX. (oral presentation)

1.3. Structure of the Thesis

This Thesis is structured into five parts (Fig. 1.2) and further sub-parts.
In Part I the topic, structure and basic notations of this Thesis will be introduced.

Part II will outline the theoretical fundamentals this Thesis is built upon. These comprise a
detailed background of subsurface characterization in general together with aspects from
the technical disciplines knowledge discovery in databases (KDD) and geovisual analytics
(GVA). At first, we will provide the basics of subsurface characterization by formalizing
the concepts of geological compartmentalization, the theory of the regionalized variables
and static as well as dynamic data-driven subsurface modeling.

Following up on the discipline of subsurface characterization, fundamentals from the
domain of GVA will be discussed. Here, we will focus on the interaction between human
and machine and will rationale which methods suit best to fit into the topic of the
geological subsurface characterization process chain.

When we come to explaining aspects from KDD, argumentation will split up into funda-
mentals from exploratory data mining and descriptive data mining. Herein, we will link
the computational methods to geoscientific examples, most of which have been produced
in the frame of the case studies as a part of this Thesis.

In Part III the publications related to this cumulative Thesis will be presented. Publication
I contains the development of a software system for visual knowledge discovery in the
context of subsurface characterization. The architecture, the logical data model and the
graphical user interface will be presented. Furthermore, typical process chains as they
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Figure 1.2.: Structure of the dissertation.

are conducted during subsurface characterization will be presented. The software system
is the key component of this dissertation.

Moreover, a set of case studies will provide a verification for the implemented software
functionality. In each case study, the potential of the framework will be presented
to discover new knowledge in different geological and investigative settings around

geological subsurface characterization.

The last two parts, namely Part IV and Part V, will wrap up the findings made in this
Thesis and close it with perspectives over further developments in the topic for visual




knowledge discovery for decision making in the context of subsurface utilization.

At this point, I want to mention, that the synopsis presented here contains literal text
passages from my first-author publications without giving any reference. I want to clarify,
that these self-quotations are present and that they do not denote any intent to deceive.

1.4. Basic Notations

In this Thesis, a set of notation rules regarding mathematical and physical symbols and

logical expressions comes into practice:

Scalars are given in lowercase letters. Bold lowercase letters, such as x, stand for vectors
while bold capitals, such as M or Z, stand for a matrix, a tensor, or a (random) variable.
In the subject of relational models bold capitals stand for a set of relations. Italic capitals
(e.g, R) express a relation, respectively.

For physical and chemical properties internationally standardized symbols are used such
as \ representing the thermal conductivity or k representing the hydraulic permeability,
respectively. All symbols that are used in the frame of this Thesis are provided in the list
of symbols.

Proper names start with capitals and quotes are displayed in italic font style which is
framed by quotation marks.







2. Fundamentals

2.1. Introduction

In the following sections, we will describe the theoretical background of subsurface
characterization and its integration into the topic of geovisual analytics as it found usage
in the publications connected to this Thesis. Thereby, focus will be laid upon both the
geological and technical understanding of that domain. A specific example of one form of
subsurface usage is given in section 2.5.3 in which aspects from the domain of geothermal

reservoir characterization in general are discussed.

2.2. The Subsurface Domain

Lying beneath the atmosphere and the oceans is the subsurface of the Earth, called
geosphere. By definition, the geosphere comprises that material which is located between
the ground surface of the Earth and its center and which is composed of solids, such as
minerals or rocks, fluids, including, for instance, water or methane, as well as organic
matter. Up until now, utilization of the subsurface takes place in the outermost layer
of the geosphere, named the Earth’s crust. The Earth’s crust measures roughly seven
kilometers in vertical direction in the oceanic compartments and averages between 35

and 40 kilometers in the continental compartments (Tarbuck & Lutgens 2008).

2.2.1. Geological Compartmentalization

The crust of the Earth G is built up by a set of disjoint geological bodies G, G, ..., G,
and fluids stored in the bodies’ pore space below the ground surface, where 1 < i < n.
Let G = G; UGy U ... UG, where G; # (). Strongly simplified, a geological body consists
of three constitutes: rock matrix, liquids and gaseous phases. The degree of internal




compartmentalization in a subsurface domain is dependent on the scale and type of
specific problems. In geodynamic problems, for example, major rock units are considered
to be continuous geological media (Gerya 2009) under the assumption that there are no
macroscopically observable mass-free spaces present. This concept is valid for most parts
of the Earth’s crusts but is simplified when for instance karst, extensive fracture networks
or divergent fault zones must be accounted for in a discretized subsurface model.

G; can be defined as a specific type of lithology separated by one another through
bounding surfaces. Bounding surfaces are 2.5-D features represented by faults, joints,
material-, grain size- or structural contrasts (Fig. 2.1). The rock matrix is composed of
solid mineral phases such as quartz or feldspar, ductile phases, nonmineral inorganics, or
organics. Geological compartmentalization takes place at multiple scales ranging from the
nanometer scale, where for instance crystal defects occur, to the kilometer scale, where
plate tectonic processes control the crusts architecture. Usually, compartmentalization of
the subsurface is hierarchically structured where one geological body G; is built up by
other geological bodies G1,, G1y, .., G, SO that we can say

Vo, = Ve (2.1)
k=1

where 1, is the volume of a geological body in the Earth’s crust under the assumption
that G;;, C G; and m is the number of geological bodies building up G;.

Figure 2.1.: Geological compartmentaliza-
tion produced by erosive
bounding surfaces and diage-
netic alteration in a siliciclas-
tic environment. The picture
was taken in the Valley of Fire
State Park in Nevada, USA.
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2.2.1.1. The Lithofacies Concept

It is common to categorize rocks observed in the field or drill core into rock types. As a
classification scheme, which arouse within the domain of sedimentology, the lithofacies
concept has been established over the past decades (Nichols 2009). Summarizing reviews
on the definitions, concepts and applications of the lithofacies concept in sedimentary
environments can be found in Miall (2000) and Nichols (2009). A comprehensive review
is provided by Reading (1996) while the first approaches can be found in Collinson
(1969). The lithofacies concept aims to categorize lithological bodies in a hierarchical
scheme which can be mathematically expressed as

microfacies C lithofacies C architectural element C depositional environment. (2.2)

Depositional environment scale

« 10-10,000m —m——

Lithofacies scale

7 BN

O

A

==

Architectural element scale

Figure 2.2.: Visual representation of the lithofacies concept (Miall 1985; Miall 1996; Miall 2000).
St = sand trough cross-bedded; Sr = sand ripple cross-bedded; PB = point bar; Ch
= channel; DA = downstream accretion ; LA = lateral accretion; BRS = braided
river system; AFS = alluvial fan system.

Accordingly, each geological body is built up by one or more bodies observed at a smaller
scale (see Fig. 2.2). Each component in this scheme is assigned a code representing
either a specific lithological category and its macroscopic characteristics (e.g., St = sand
trough cross-bedded) or being an acronym for the type of lithological body (e.g., Ch =

1



channel). For siliciclastic rocks, such a lithofacies code consists of up to three letters; the
first of which describing the grain size of the component, the second one the primary
sedimentary structure and the third one the type of framework in case of gravel-sized
sedimentary rocks (see Fig. 2.2).

Lithofacies types are defined by building distinct classes of rock types based on their
macroscopic characteristics (see, e.g., Hornung & Aigner 2002 or Hornung & Hinderer
2011). The lithofacies type can be derived from characteristics from various scales cov-
ering the micrometer up to the kilometer scale. Descriptive characteristics comprise,
among others: grain/mineral size distribution, color, grade of weathering, internal struc-
ture/stratification, width, thickness, texture, mineral composition, porosity, strength and
fracture behavior. Rock units, classified into identical classes, should be as similar as
possible regarding physical and chemical properties. Hence, the term facies refers to the
sum of characteristics of a lithological body.

channel center

channel margin

channel base

Figure 2.3.: Hierarchical structure of architectural elements in the depositional environment of
a siliciclastic braided river system after Einsele (2000). The displayed rock slabs
served as objects of investigation for Publication II (Hornung et al. 2020, © EAGE).
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In sedimentary environments, the next higher-level scale is represented by architectural
elements. Architectural elements are composed of lithofacies types and build distinct,
bounded bodies too. Architectural elements, in turn, are the constructive units of de-
positional environments (Miall 2000) or depositional elements, respectively, as they
are termed in the studies of Colombera et al. (2012), Colombera et al. (2016)a, and
Colombera et al. (2016)b. Figure 2.3 shows the schematic distribution of architectural
elements in a braided river system with real-world examples of architectural elements
and lithofacies types.

2.2.2. The Theory of Regionalized Variables

Geological processes can create, interfere with or remove parts of the Earth’s crust. Thus,
the physical and chemical characteristics of a specific location x in the subsurface’s domain
at point t in time is a product of natural processes such as deposition, diagenesis and
erosion that had taken place in the time < t at point x. It is important to mention that
the relative position of x is dynamically drifting during geological history rather than
being a fixed point relative to the Earth’s center.

N Pr{z(x) | z(x) € N(u,09)}

z(x), [mD]

S RN

\/

0 | |
10 20

o

X [m]

Figure 2.4.: Conceptual schematic of the regionalized variable. The example shows the spatial
distribution of a rock property called intrinsic permeability (k) along the x-axis within
a subsurface domain accompanied by simplified smaller-scale fluctuations in the
form of normal distributions indicating the local variability.

Usually, each location x can be represented by a set of Cartesian coordinates in a three-
dimensional space. In order to reduce the probability of economic failure in mining
industries the 1960’s the concept of the regionalized variable had been developed by
Matheron (1963). The regionalized variable is a function that takes a definite value
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at each point of space. In geological media the regionalized variable often proved to
be too complex to be expressed by mathematical functions. Thus, Matheron (1963)
also shaped a term called the geometrical field that is inimitably linked to the spatial
nature of geological processes. The geometric field was defined as the 'mineralized space
(volume of the deposit or of the strata) ... of the regionalization’ (Matheron 1963) making
the regionalized variable localized. The geometrical field accordingly corresponds to a
geological body G as it had been outlined in section 2.2.1. A regionalized variable is
assumed to show a more or less steady continuity in space accompanied by fluctuations
or noise (Fig. 2.4).

These local fluctuations result from heterogeneities observed at smaller scales than the
considered observation field. We will discuss the term heterogeneity in section 2.2.2.1.
The continuity of a regionalized variable is thus dependent on the continuity of the
geological media (see Fig 2.5) and may or may not provide continuity in a mathematical
sense. Lastly, a regionalized variable may or may not show different kinds of anisotropy
the theory of which will be discussed in section 2.2.2.2.

a b RMSE 0.4 C RMSE 2.55

z [m]

0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05

x [m]

Figure 2.5.: The geometric field of a regionalized variable is expressed by a more or less steady
mean in space accompanied by smaller-scale fluctuations. (b) and (c) show the
spatial distribution of the effective porosity ¢ in % and the apparent permeability
k in mD in a rock slab measuring 50 x 50 x 6 cm (a) which was taken from a
Buntsandstein quarry in Central Germany. The interpolation has been performed
with a simple kriging interpolation which was constrained by 108 measurements
conducted on rock cylinders which were extracted from the rock slab (Hornung et al.
2020, ©EAGE).

In this work, we will use the term property for a regionalized variable, the term field for
the geometric field or the spatial distribution of a property, and the term spatial domain
for an area of interest.
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2.2.2.1. Heterogeneity

Heterogeneity is subject of numerous geoscientific studies (Anyiam et al. 2017; Michie &
Haines 2016; Mukerji et al. 1997; De Ros & Scherer 2013). In general, the term is defined
as 'Difference or diversity in kind from other things’, a ’Composition from diverse elements or
parts’ or being of 'multifarious composition’ (Oxford Dictionary 2014). In most works, the
term heterogeneity is used to describe that an object consists of multiple subsets being
different from one another in one or more attributes. Li & Reynolds (1995) restrict the
term to be the variability of a system property in three-dimensional space showing that
the heterogeneity is linked to the variability of a property.

In the case of uncorrelated properties, the spatial distributions of rock or fluid properties
in the subsurface provide different types of patterns (Linsel et al. 2020a). Hence, in
order to estimate the heterogeneity of a system, each rock and fluid property must be
considered individually or it must be checked for correlation among the properties of
interest (Gu et al. 2017).

Jiang (2014) differentiates two ways of thinking regarding geospatial heterogeneity,
namely, the Gaussian and Paretian way. The Gaussian way assumes that all things are
more or less similar in size and can be characterized by a well-defined mean and standard
deviation. The Paretian way, however, assumes things to be highly non-linear and non-
stationary. Within this Thesis, we will discuss aspects related to both assumptions.

Fitch et al. (2015) provide a set of methods to quantify heterogeneity within a set of
petrophysical observations. The resulting measures are the coefficient of variation (c,, Eq.
2.3) and the Dykstra-Parsons coefficient (c4y, Eq. 2.4). ¢, can be calculated by

Vo?

T

5 (2.3)

Cy =

where o is the standard deviation and 7 is the arithmetic mean whereas ¢, is defined by

Cap = M’ (2.4)

where z,, is the nth percentile of a set of numeric values.

Another method for heterogeneity quantification is the Lorenz-Curve (Heumann et al.
2016) where an univariate data set x = x4, x>, ...x,, is sorted ascending and the cumulative
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value at the observation « is displayed in ratio to the total cumulative value of the data
set yielding u; (Eq. 2.5), like

m

U; = z"/i Ty with a = 1, e, m and Ug = 0. (25)

a=l g3

2.2.2.2. Anisotropy

Experimentally derived readings may show a directional dependence. The orientation
and magnitude of directional dependency of a property is called anisotropy. Anisotropy
can be caused by any geological feature (grain, fracture, bounding surface, etc.) which
has a dominant alignment. If the magnitude of a property of an infinitesimal domain
being a subset of a continuous medium is identical in every Cartesian direction, it is
quasi-isotropic.

Anisotropy is often simplified or completely neglected in geological 3-D models and
physical simulations. On the one hand, this is due to scarce data sets created in time-critical
field- or laboratory campaigns. On the other hand, properties would have to be considered
as tensors in numerical forward simulations, which would increase the computational
effort significantly. For instance the hydraulic permeability (k), regardless of considering a
continuous rock medium or a fractured formation, commonly exhibits distinct directional
dependencies (Ringrose & Bentley 2015). The mathematical expression of this variable
would change from a scalar to a tensor (Eq. 2.6), which would require solving a system
of linear equations at each node of the target mesh. In general, tensors may be symmetric
as it is in Equation 2.6, or antisymmetric. Visualization of complex tensor fields is still
subject to research (Kratz 2013).

" (2.6)

We will differentiate two types of anisotropy, namely, the zonal anisotropy and the polar
anisotropy. When the spatial distribution of a property provides a trend such as bedding,
we speak of a zonal anisotropy. A zonal anisotropy can be detected with the help of a
directional semivariogram. The grade of anisotropy can, for instance, be expressed by
the ratio of the ranges between two directional semivariograms, which both consider
different spatial directions (Ringrose & Bentley 2015). The directions are not limited to
the standard axes of a 3-D Cartesian coordinate system, namely X, Y and Z axis, rather
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than representing a generic spatial vector which can be composed of any combination of
X, Y and Z respectively. This makes the zonal anisotropy being an infinitesimal problem.

A polar anisotropy is what we understand as the classical direction dependence of a
property. Although the polar anisotropy is an infinitesimal problem too, in most cases
this problem is reduced to the standard axes of the Cartesian coordinate system. The
determination of the full tensor or anisotropy principal axes of properties is particularly
important for, e.g., simulating the 3-D mass and heat transport in geological media during
geothermal production (Popov et al. 2016; Popov & Mandel 1998; Popov et al. 1999) as
well as for forecasting the production rate in hydrocarbon sites (Backeberg et al. 2017;
Clavaud et al. 2008).

Following, we will describe the polar anisotropy of elasticity and we will provide measures
for the quantification of anisotropy under the simplifying assumption of transverse isotropy.
Transverse isotropy assumes that one Cartesian axis is the major symmetry axis in the
system that provides a diverging magnitude with regard to the other two Cartesian axes.
The elastic modulus tensor can be expressed as a fourth-rank tensor

011 (CH — 2066) 013 0 0 0
_ C’13 013 033 0 0 0
C= 0 0 0 Cy 0 O (2.7)
0 0 0 0 Cy O
0 0 0 0 0 Cg

where C;; represents an elasticity modulus and the indices are related to the directional
P- and S-wave velocity, under the assumption that z is the symmetry axis, by

- 2.8)
P

pi o | C1 (2.9)
P

where v, is the P-wave velocity and v, is the S-wave velocity parallel to the symmetry axis
and p is the bulk density. The anisotropy, here expressed for the P-wave polar anisotropy,
can be quantified with the Thomsen parameters (Thomsen 1986), which include, among
others, ¢ that is calculated by Equation 2.10.
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If ¢ < 1 the material can be classified as weakly anisotropic.

2.2.3. The Representative Elementary Volume

Investigations of subsurface regions are commonly performed at multiple scales. Numerous
studies showed that physical variability in geological media must be integrated as a
function of measurement volume, also known as the representative elementary volume
(REV, Nordahl & Ringrose 2008). The REV denotes a volume where a representative
amount of heterogeneity is captured by a measurement device (Nordahl et al. 2014)
minimizing the smaller-scale fluctuations.

lamina architectural element
A r 1
microfacies genetical unit
: . .
lithofacies

value of the property

>
| | | | | | | | | | | | | | | | |
10® 10" 10™ 10° 10° 107 10° 10° 10* 10° 10* 10" 10° 10' 10° 10° 10°
measurement volume [m?’]
Figure 2.6.: Schematic of the representative elementary volume (REV) concept after Nordahl &

Ringrose (2008) with integrated scales of the lithofacies concept according to Miall
(1985).

Many approaches exist that try to organize the entire scale shown on the ordinate in
Figure 2.6 based on geological processes. Therefore, hierarchical concepts such as the
lithofacies concept have provided promising results in the past decades in order to capture
the scale-dependence of physical properties with respect to the geological architecture.
The concept of the REV emphasizes the fractal nature of geological media which must be
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accounted for when taking rock samples from the field, interpolating rock properties in
space or making statistical analyses using subsets of the total considered rock volume.
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2.3. Subsurface Characterization

Ways of utilizing the subsurface comprise, for instance, groundwater extraction and
storage, hydrocarbon production, carbon capture and storage, mineral resource mining,
or geothermal heat storage and exploitation (Landa & Strebelle 2002; Heap et al. 2017;
Kushnir et al. 2018; Rodrigo-Ilarri et al. 2017; Ito et al. 2017).

An area of interest in this regard is a region within the Earth’s crust in which technically
exploitable resources such as oil, gas, heat, minerals, or water are stored. Characterization
of the subsurface is a crucial procedure before targeting a region of interest by boreholes
or mining operations.

In terms of reservoirs, Fanchi (2002) defines reservoir characterization as ’the process of
preparing a quantitative representation of a reservoir using data from a variety of sources
and disciplines.” Accordingly, as numerous physical and chemical properties contribute to a
reservoir’s potential, this problem is of a high dimensionality and complexity with multiple
domains contributing towards it. Hence, regardless of whether considering hydrocarbon,
geothermal or groundwater systems, carbon capture and storage or final disposal of
radioactive material, a comprehensive knowledge on the subsurface architecture and the
physical and chemical fields is substantial for making profitable and sustainable decisions
in subsurface applications (Ailin 2012).

2.3.1. The Subsurface Characterization Process Chain
2.3.1.1. Data Acquisition and Data Management

Understanding the spatiotemporal distribution of rock and fluid properties in the subsur-
face is critical for the economic and sustainable usage of the subsurface (Tiab & Donaldson
2012; Gudmundsdottir & Horne 2018). Hence, we need quantitative information about
physical and geological characteristics which is often provided as a huge number of
heterogeneous, high-dimensional, cross-disciplinary data sets compiled into disparate
data integration platforms. These data are produced in well log measurements, during
reservoir production, in drill core analyses, outcrop analogue studies or in geophysical
surveys and can be both static or dynamic. Information about the lithological architecture
and a property’s variability can be derived from both, the subsurface itself as well as
outcrop analogues (Fischer et al. 2007; Howell et al. 2014; Aretz et al. 2015) that can be
easily accessed.
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Due to modern sensor systems and low-cost data storage, the number of data produced
during exploration and exploitation is rapidly increasing in the last years. Hence, data sets
produced in subsurface studies regularly extend the degree of complexity to be efficiently
analyzed by domain experts with simple spreadsheet-based tools. Consequently, modern
automatized technologies to explore and model subsurface-related data are required to
increase the predictability of properties in the subsurface and eventually optimize the
efficiency of usage (Das et al. 2015). Some authors such as Cannon (2018) even declare
that the process of data management might be the most important entity within the
subsurface characterization process chain.

As subsurface-related data is mostly compiled from numerous domains with highly di-
verging ontologies (Ge & Chen 2010), the terminology among each domain might be
inhomogeneously defined. This requires that the terminology being used is homogenized
prior to collecting relevant data (Greb & Linsel 2020). Moreover, as data for subsurface
characterization is produced in multiple both parallel and sequentially performed process
steps, it is crucial that the involved domain experts are allowed to integrate data continu-
ously throughout the entire process. This requires that the group of domain experts must
be enabled to perform intermediate analyses in order to optimize the sampling strategy,
for planning the exploitation strategy, or for making other business-critical decisions. Fig-
ure 2.7 illustrates a summary of the process chain of data acquisition during a subsurface
study.

2.3.1.2. Constructing the Rock Model

Rock models are computational representations of subsurface regions which spatially
resemble the distribution of distinct rock bodies. Rock models can be useful to more
accurately control spatial modeling or simulation of rock and fluid properties which
contribute towards the region’s economic potential. Furthermore, e.g, rock models can
be considered for a better understanding of a reservoir’s behavior during production.

A geological rock model consists of building blocks such as lithofacies types, genetic
units, architectural elements, depositional environments, or diagenetic units (Fig. 2.8).
Which type of building blocks should be used depends on the scale, purpose and eco-
nomic restrictions of the projects. Rock models are constructed by either object-based
approaches which aim to resemble geological objects based on their characteristic geome-
try (channel-shaped, elliptic, longitudinal, etc.; see Holden et al. (1998)). Alternatively,
pixel-based methods including indicator kriging (IK), nearest neighbor (NN) classification,
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Figure 2.7.: Illustration of the end-to-end process of subsurface characterization.

or sequential indicator simulation (SIS) can be used to model geological bodies on a
cell-to-cell basis (Journel & Alabert 1990).

The scale of investigation plays a major role in the investigation of reservoir rocks. Geo-
logical heterogeneities — even at small scales — play a key role here as they may constitute
undesirable features in the subsurface such as flow-barriers in reservoirs (Landa & Stre-
belle 2002; Ringrose et al. 1993; Medici et al. 2016; Medici et al. 2019), pathways in
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Figure 2.8.: Illustration of the rock modeling process for geological media. The example shows a
rock slab of the Buntsandstein which was investigated in Publication II. (a) Photo-
graph of the rock medium. (b) Computational mapping of the bounding surfaces.
(c) Nearest neighbor modeling result at the scale of lithofacies types. (d) Sampling
locations at which rock cylinders with & = 2 cm were taken. The locations are
colored based on the porosity value that has been measured at the extracted rock
sample. (e) Empirical histogram of the porosity measured on the rock cylinders from
(d) (Hornung et al. 2020, ©EAGE).

radionuclide repository sites (Kiryukhin et al. 2008) and in contaminated sites (Tellam
& Barker 2006) or geochemical anomalies in mining areas (Wang & Zuo 2018). Hence,
the controlling factors of sub-meter variability should be understood and at least roughly
quantified before starting the development in the subsurface region.

2.3.1.3. Constructing the Property Model

One of the most important steps in subsurface characterization involves the construction
of property models (Ringrose & Bentley 2015, Fig. 2.9) for a target region. In hydro-
carbon extraction, for instance, the main purpose of property models is to improve the
understanding of fluid distribution in the reservoir itself and to capture the heterogeneity
in such a way that the dynamics of fluid flow can be modeled more realistically (Canon
2018).
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Figure 2.9.: Illustration of the procedure of constructing a subsurface property model. Here, a
rock cube being composed of sandstone was extracted from a quarry and measured in
order to determine the spatial distribution of the apparent permeability. Publication
III contains the study this work flow has been performed along.

The cut-offs in petrophysical properties have been identified as a major cause of poor
estimation of reserves in place in a reservoir (Landa & Strebelle 2002; Ringrose et al.
1993). The scarceness of adequate petrophysical data (such as porosity and permeability)
is widely observed (see, e.g., Landa & Strebelle (2002) and Baér et al. (2020)) but — if
available — should be integrated into a study in order to enrich information about the
target region. Optimally, the region of interest can be computationally represented by
both a rock model and a property model as accurately as possible.

Property models can be used to bridge the gap of missing data in the target-specific
subsurface, which cannot be fully surveyed by well logs due to economic and time
limitations.

Apart from hydrocarbon or geothermal energy extraction and carbon capture and storage,
subsurface property modeling plays a critical role in mining industries (Wang & Zuo
2018) and in the assessment of potential final radionuclide repositories. These models
can be used for planning the mining strategy, the pumping rates of production wells and
the placement of injection wells in order to maximize reservoir recovery.

Rock property models can be constructed by different techniques. The most widespread
group of techniques for determining properties in unknown space are the interpolation and
simulation algorithms. Apart from those techniques, properties of geological media can
be determined by geophysical measurements, regression, or machine learning techniques
such as support vector regression (Abbaszadeh Shahri et al. 2020). The most important
algorithms will be described in detail in section 2.4.4.9.
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2.4. Geovisual Analytics for Subsurface Characterization

2.4.1. Introduction

The rapid increase of the storage capacity and computing power of personal computers
in the last decades placed modern techniques to analyze large data sets into the forefront
of current research. Those techniques comprise knowledge discovery, machine learning,
data visualization and data mining in multidimensional data sets finding their way not
merely into the domain of computer sciences but also far beyond.

Systems for visual knowledge discovery enable a domain expert to deploy data analysis
and visualization algorithms onto data sets in order to yield hidden models or patterns.
The visual knowledge discovery system GeoReVi, which has been developed in the frame
of this Thesis, incorporates elements of three disciplines, namely, visual analytics (VA),
geovisual analytics (GVA) and knowledge discovery in databases (KDD), which will be
described in detail in the following sections.

2.4.2. Visual Analytics

The term visual analytics (VA) came up in 2005 being defined by Thomas & Cook (2005)
within the frame of The Research and Development Agenda for Visual Analytics. Here, VA

is defined as ’the science of analytical reasoning facilitated by interactive visual interfaces.’

As the name implies, VA ’combines automated analysis techniques with interactive visual-
izations for an effective understanding, reasoning and decision making on the basis of very
large and complex datasets’ (Ellis & Mansmann 2010). With the ’human in the loop’, a
system for VA aims to enhance the integration of an expert’s domain knowledge into the
analyses of big data sets. The scope of VA comprises a series of interdisciplinary analysis
techniques (Fig. 2.10).

VA is a widespread yet young uprising science which has been more and more integrated
into other fields of research in the last decade. Enabling experts to interactively visualizing
and understanding complex multidimensional systems (Munzner et al. 2006), computer-
aided VA can be used for enhancing the decision-making for very complex problems
(Kohlhammer et al. 2011), such as the diagnosis and classification of brain tumors
(Glaler et al. 2013). In recent years, technologies and tools from VA were subject to
research in the geosciences too, especially in E&P industries where VA is implemented in
various software packages (e.g. RAVA [Brazil et al. 2018]). In geosciences and related

25



industries, the research of VA and the development of associated VA tools, especially
those with an open source structure, are yet still underrepresented.

Information Analysis Geospatial Analytics

Scientific Analysis

Scope of

Cognitive and Visual Analytics Statistical Analysis
Perceptual Science

Presentation,
Production
and dissemination

Knowledge Discovery

Data Management
& Knowledge
Representation

Figure 2.10.: Visual representation of the scope of visual analytics according to Keim et al. (2008).

2.4.2.1. Information Visualization

Visualization is the means through which humans and computers can communicate,
cooperate and interact (Andrienko et al. 2010). According to Munzner et al. (2006),
visualization is fundamental to understanding models of complex phenomena’ and, by

definition, this discipline plays a major role in the context of VA.

Human beings are capable of detecting structures, features, patterns, trends, anomalies,
and relationships in visual structures. Those visual structures may be agglomerates of
simple geometries, numbers, or objects known from real life. Building up onto this
capability, visualization aims to support a human being to discovering patterns in complex
data sets. Thereby, based on the definition of Fayyad et al. (2002), a perfect visualization
system harnesses the perceptual capabilities of the human visual system.

From a computational perspective, a visualization is a visual representation of data.
According to Mazza (2009), the process of generating a visual representation of data
is composed of three steps, namely, data preprocessing and data transformation, visual
mapping as well as view creation (Fig. 2.11). On the way from raw data to the visual
end-product the human expert can control how data are preprocessed and transformed
before being mapped onto a visual structure.
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Figure 2.11.: Conceptualization of the process of generating a visual representation of data after
Mazza (2009).

Mazza (2009) differentiates three types of visual structures, namely, the spatial substrate,
the graphical elements, and the graphical properties, which may be used to map data
onto graphical representations.

The spatial substrate defines the dimension of the physical space inside which the visual
representation is located. This usually involves zero to four dimensions in geospatial
analyses, which are represented by the Cartesian coordinates x, y and z together with
the time dimension.

The graphical elements involve those discrete elements, an object can be represented by,
including points, lines, surfaces and volumes (Fig. 2.12).

The graphical properties comprise those properties a human being can recognize and
interpret by means of the human visual system. These include the size, orientation, color,
texture and shape of a visual structures.

Figure 2.12.: Graphical elements for generating visual structures of objects including a point, a
line, a triangle and a tetrahedron (from left to right).

The visual end-product, named view, is a compilation of one or more visual structures.
The human expert can perform manipulations on the visual structures of the view or use
it to gain or communicate knowledge.

In this Thesis, the knowledge generation model for visual analytics (KGMVA) after Sacha et
al. (2014) is applied (Fig. 2.13). This model represents a process, in which a human being
extracts knowledge from a big data set through continuous interaction with a computer-
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aided cycle of data selection, modeling and visualization. An important characteristic
of such a VA system is the continuous interplay of automatic background processes and
interactive visualization.
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Figure 2.13.: Knowledge generation model for visual analytics (KGMVA) after Sacha et al. (2014).

2.4.3. Geovisual Analytics

Information visualization is fundamental for geoscientists to discovering new knowledge
in complex data sets. In the earth sciences, visualization is often referred to as geovisu-
alization (DiBiase 1990). Geovisualization is defined as ’a loosely bounded domain that
addresses the visual exploration, analysis, synthesis, and presentation of geospatial data
by integrating approaches from cartography with those from other information representa-
tion and analysis disciplines, including scientific visualization, image analysis, information
visualization, exploratory data analysis, and GIScience’ (Dykes et al. 2005).

Ultimately, the domain of geovisual analytics (GVA) has evolved from geovisualization
and VA (Kraak 2008). According to Andrienko et al. (2007), GVA is a sub-domain of VA
which distinguishes from its mother-domain by (1) dealing with the complex nature of
spatiotemporal data, (2) having multiple actors with (3) tacit criteria and knowledge.

Thus GVA aims at supporting space-time related decision making by enhancing the hu-
man’s capability to analyze, envision, reason and deliberate through computer-techniques
(Andrienko et al. 2007). Moreover, an important aspect of GVA is to start data exploration
without any hypotheses (Schiewe 2013).

Although the terms of VA and GVA firstly came up in 2005 and 2008, respectively —
see section 2.4.2 — the techniques involved in those disciplines, such as, among other,
statistical data analyses or data visualization, were discovered and described much earlier.
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GVA-based software tools should comply with the following requirements (Andrienko
et al. 2010):

1. Seamless integration of visualizations with computational techniques such as spatial
statistics, time-series analysis, simulation models, spatiotemporal data mining and
SO on;

2. Support for documenting the analysis process; keeping provenance of findings,
reporting and story-telling;

3. Support for collaboration.

Recently, many new open-source software tools found their way into the geoscientific
communities which support researchers in the modeling and analysis of complex subsur-
face regions (see, e.g., Wellmann et al. (2019)). Yet there is still a technology gap for
a software tool which assists researchers along the entire process chain of subsurface
characterization. The domain of GVA though provides the means to implement a tool for
representing this process chain. Hence, when planning and implementing the software
system in the frame of this Thesis, special attention had been paid to comply with the
requirements for a GVA-based system.

In the following sections, the spatiotemporal data structures as they are required to
computationally depicting subsurface data in the context of GVA will be described.

2.4.3.1. Computational Representation of Subsurface Data

As outlined in section 2.2.1, subsurface regions are hierarchically structured, the elements
of which are represented by geological bodies (3-D elements) and bounding surfaces (2-
D). Moreover, samples or measurements taken from drill cores or outcrops are commonly
represented by 1-D structures. If subsurface properties such as the hydraulic head or
subsidence are analyzed, we need to take the time-dimension (t) into account too.

Spatiotemporal Data

Spatiotemporal data are data which are provided with information about space and time.
Most entities connected to subsurface analysis require a geographic or local reference
as well as an orientation in order to be usable. In geoscientific subsurface analyses
spatiotemporal objects are measurements, rock or fluid samples, or geological bounding
surfaces.

Those objects are typically provided with a time information together with coordinates
from the World Geodetic System 1984 (WGS84) datum in degree-order format (Decker
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Figure 2.14.: Samples produced with GeoReVi. (a) Geocellular 3-D model; (b) Result of a
principal component analysis projected into 3-D space; (¢) Mapping a bounding
surface from a seismic section; (d) Visualizing effective porosity measurements from
rock samples taken from a quarry wall in 3-D space. The data for these analyses
come from Publication I and Publication II and the seismic transect is a public
data set provided by the Bundesanstalt fiir Geowissenschaften und Rohstoffe?.

1986). The WGS84 datum was developed by The Defense Mapping Agency in 1986
as a global basic reference frame for a multitude of mapping tasks. The coordinates
of the WGS84 datum consist of a latitude, longitude and elevation. One limitation of
the geographic WGS84 is that it is only an approximation to the Earth’s geoid and thus
provides significant accuracy drawbacks especially at high latitudes.

Geographic coordinates from the WGS84 datum often must be converted into a metric
coordinate system in order to apply spatial analyses. As an example, the Mercator
projections can be considered which are discussed in detail in Osborne (2013).

x = (2,9, 2,t) (2.11)

A metric spatiotemporal datum in general is represented by three Cartesian coordinates
(%, v, and z) which represent the location at a particular point in time (t) (Eq. 2.11) with
respect to an origin which is located at at x=y=z=0.

2https://www.bgr.bund.de/EN/Themen/GG_Geophysik/Marine Geophysik/Seismik/Bilder/seism_
verfahren 2 reflexionsseism_sektion p en.html, last access 23rd November, 2020.
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Orientation of Geological Bounding Surfaces

Geological bounding surfaces are responsible for the compartmentalization of a geological
region into multiple sub-regions, called compartments. In the case of a planar surface,
such bounding surfaces can be characterized by two parameters: dip direction and
dip angle. Usually, however, bounding surfaces in the subsurface are not planar which
requires to statistically characterize them by a reasonable number of measurements. In
sedimentary environments, layers can be characterized by internal stratification surfaces
and by external bedding surfaces (Fig. 2.15). The bedding surfaces are those, which can
be mapped in order to discretize a domain in the subsurface numerically (see section
2.4.3.2).
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Figure 2.15.: Schematic representation of structures needed to capture the orientation of geo-
logical media and their internal bounding surfaces in a siliciclastic depositional
environment.

Collection of Geoscientific Data

Geoscientific data can be collected in the field or in the laboratory. In the field, the
geoscientist may derive data from objects of investigation such as outcrops, drill cores,
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wells or even geophysical transects. During field campaigns samples such as rock cylinders,
cuboids, handpieces, thin sections or water samples can be extracted from previously
mentioned objects of investigation. Such samples serve as targets for measurements in
the laboratory, if measurements are not conducted within the object of investigation itself.
The generated field and laboratory readings can be recorded and directly referred to the
object of investigation.

Each object of investigation, sample, sub-sample and field/laboratory reading can be
spatially localized using either geographic coordinates — e.g, in the WGS84 datum
using the decimal degree format — or by a local reference system using metric x, y
and z coordinates which represent easting, northing and altitude respectively. Field
measurements are directly taken on or within an object of investigation. The spatial
reference is documented as a position relative to an origin, which is likewise located
within an object of investigation (Fig. 2.16). Laboratory measurements in turn are always
connected to a sample. Hence, when retrieving data, the local coordinate vector of
the laboratory measurement should be added to the local coordinate of the extracted
sample, which in turn should be added to the projected global coordinate of the object of
investigation to precisely locate each measurement in space. Equation 2.12 represents
the localization vector with o standing for the object of investigation, s for a sample, m
for a reading, g/ for global/local, respectively, and p for a projected point.

Xm,g = Xo,g,p T AXs,l + AXm,l (2.12)

2.4.3.2. Spatial Discretization

Most types of geoscientific problems — and subsurface characterization in special — are
limited to a finite spatial domain {2 which can be represented by a finite 1-D, 2-D or 3-D
geometry, or also called mesh. For solving a partial differential equation numerically, for
instance, €2 must be discretized into finite elements €2,. Those finite element meshes
build the base for problems which can be solved by the finite element method (FEM, see
section 2.5.3). Furthermore, the construction of finite element meshes may be a requisite
step for performing interpolations, extrapolations or geostatistical simulations within (2.

Especially in those subsurface regions, in which multiple irregular boundaries are intensely
compartmentalizing the domain, adequate discretization can be a challenging task.
Therefore, different discretization methods exist to partition €2 into compartments. Here,
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Figure 2.16.: Localization of objects of investigation and from samples and readings which were
taken from those (not to scale).

two types of discretization methods are commonly applied: the regular and irregular
mesh generation (Liseikin 2010).

The Elements of a Mesh

Geological subsurface domains are usually modeled in the form of meshes. Those meshes
consist of simple shapes which aim to represent subsets €2, of ). Considering a 3-D
domain, one of these shapes is, for instance, the hexahedron (Fig. 2.17) which consists
of eight nodes and six faces. This 3-D geometry can be constructed by six quadrilaterals,
which are 2-D shapes in turn and consist of four nodes. We already introduced some
of these shapes in section 2.4.2.1. The relation of elements, faces and nodes within a
hexahedral mesh can be determined by

6-ne =2 -n; +ny, (2.13)

where n. is the number of elements, n; is the number of internal faces and n, is the
number of boundary faces.
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Figure 2.17.: Hexahedral element in physical space (a) and local space (b).

Regular Grids

Regular grids are meshes in which each node is allocated to an index. In 2-D space the
index is composed of two elements, namely, i and j, each of which is representing one
direction. Those directions, however, do not necessarily correspond to the Cartesian axes
(Fig. 2.18). In 3-D space, the index is composed of the three elements i, j, and k. In local
space, i, j, and k correspond to the local coordinates (, £, and 7. There are different types
of regular grids existing: the coordinate grid and the boundary-conforming grid (Liseikin
2010).

The coordinate grid is a regular grid, the nodes of which are all providing the same
distance to one another along one direction — e.g. step width of one kilometer along
the X-direction. The boundary-conforming grid, however, is — as the name implies —
bound to explicit boundaries and does not necessarily have the same step width along
one direction.

Having two surfaces — one representing the base and one the top of a rock formation —
a 3-D boundary-conforming grid, which is representing the rock formation in the finite
domain, can be created. Therefore, the 2-D meshes of the surfaces are projected from a
physical to a local coordinate system (Fig. 2.18).

Subsequently, the nodes from the two source data sets serve as boundary nodes for the
new mesh. After projection — under the assumption that

i'r'ou; - (Z - 1)(7177 + ].) +1 (214)
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Figure 2.18.: Conceptual illustration of a mesh generation procedure using two constraint meshes
(white and black) of dimensionality D = 1 with D = 2 as the target dimension.

and

Leolumn = mOd((Z - 1), (ng + 1)) + 1, (215)

with 4,,, as the number of the row, i ,/um, as the number of the column and n,/n, as the
number of elements in the specific direction — the points in between the two boundary
meshes are created according to

(2.16)

y = Ne(n,§)yr

where 1 and ¢ are the transformed coordinates of a node and N, as the nth element in
the specific direction. Figure 2.19 shows a final 3-D boundary-conforming grid being
constructed by interpolating the coordinates of those points, which are located between
two bounding surfaces.

Mesh Statistics

A mesh provides characteristic properties like dimensionality, count of nodes, faces and
cells or — dependent on the dimensionality — its bulk volume, area, or length, respectively.
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Figure 2.19.: 3-D representation of a curvilinear, regular grid. The model represents the volume
between the top and the base boundary of the volcano-sedimentary Rotliegend
unit in the Sprendlinger Horst area which is located in Hesse, Germany. The model
has a span of approximately 3,000 x 70 m and is 10-fold exaggerated in vertical
direction.

In case of a 3-D mesh, the volume is defined as

Vin = ivm (2.17)

where n is the number of elements and V; is the volume of the :th element. The volume
of a tetrahedral element consisting of the nodes a, b, ¢ and d is

L RCELIRICEL )] 218

In order to calculate the volume of a hexahedral element, it will be partitioned into six
tetrahedral elements whose cumulative volume represents the volume of the hexahedral
element like

6
W, = Z Vi, (2.19)
i1

Spatial Visualization of Subsurface Properties

Subsurface properties can be visualized in terms of their spatial location. Most commonly,
such visualizations involve 1-D, 2-D and 3-D charts (Keim 2005). Meshes in general can
be visualized by constructing each subset of {2 and adding to a chart object. In order
to visualize a hexahedron, for instance, each face is constructed as a quadrilateral and
added to the mesh geometry.

The color of the quadrilateral can represent either the property to be visualized or does
not need to contain information at all. A property is most often visualized by introducing
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a color bar that represents a specific value range. Each face of the mesh is then assigned
a color from that color bar based on the values held by the constructing nodes. Usually a
sort of mean value of the involved nodes’ values is used to determine the color of the face.

If the time dimension is included, the color of the element is determined based on its
value at a specific time t. This technique is especially useful when visualizing time series
or intermediate results of FEM simulations.

Subdivision of Graphical Elements

The subdivision of graphical elements can be regarded as a smoothing process. All
polygonal meshes can be partitioned using the Catmull-Clark scheme (Catmull 1974) in
order to smooth the visualization. With this scheme, a new point in a quadrilateral is
calculated by

-1
1 n
k41 _ k
i=0
with xf“ as the new point at subdivision step & + 1 in the center of the element j with n

nodes at the subdivision step £ (Fig. 2.20).
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Figure 2.20.: Conceptualization of the Catmull-Clark scheme. The visual shows the spatial
distribution of the FeoO3 mass fraction measured on the XY-base face of rock cube
OSB1_c (Publication III).
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2.4.4. Knowledge Discovery in Databases

In the following section, the formalized process of knowledge discovery in databases
(KDD) and its sub-disciplines will be described in detail. KDD builds the fundamental
process the developed software system within the frame of this Thesis is built upon. KDD
is considered a part of VA (Fig. 2.10).

Nowadays, big amounts of geoscientific data are being produced by automated data
collection technologies and persisted in mature database management systems (DMS)
(Das et al. 2015). Colloquially called Big Data (Shyr et al. 2018), these data sets cannot be
easily analyzed by means of conventional methods due to their size and representational
complexity. Consequently, in the late 1990s the concept of KDD found its way into the
forefront of research which is aimed at systematically transforming big amounts of data
into useful knowledge.

The interdisciplinary field of KDD comprises a set of semi-automatic, non-trivial methods
to extract novel, understandable, valid and useful knowledge from one or more sets of
domain-specific data sets stored in databases (Fayyad et al. 1996b, Maimon & Rokach
2010). The domain can be any discipline in which data are produced, managed and
analyzed.

2.4.4.1. The KDD Process

Figure 2.21 illustrates the iterative, 8-stage KDD process which was firstly conceptualized
by Brachman & Anand (1994) and redesigned and improved by Maimon & Rokach (2010).
The process starts with the knowledge of a particular domain owned by the domain expert
that is aimed to be maximized within the KDD process.

Core of the KDD process is a set of data mining (DM) algorithms, which are deployed
on a processed data set in order to find characteristic patterns or models. Prior to
DM, data are selected, projected, cleaned, reduced and transformed by the domain
expert. Preprocessing is supported by computer-aided process automation and intelligent
preselections.

DM algorithms in general comprise classification, summarization, correlation, regression,
prediction and rule-discovery algorithms, whereby each DM algorithm is best suited for
a specific problem. Within an iteration the expert can return to a previous task if, for
instance, more data is needed to address a certain problem. Before a detailed explanation
of the DM algorithms is provided, we will get familiar with a few definitions on data,
information and knowledge.
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Figure 2.21.: Knowledge discovery in databases (KDD) process according to Fayyad et al. (1996).

2.4.4.2. The Knowledge Hierarchy

In the knowledge hierarchy, which is commonly represented by the data-information-
knowledge-wisdom (DIKW) pyramid (Fig. 2.22, Rowley 2007), data is located on the
lowermost hierarchy of algorithmic complexity whereas knowledge is located two layers
above. The term data is defined very differently in multiple works. Most commonly, data
is defined to be a set of "facts" whereas knowledge is a representation of an ordered
subset of those facts in one or more symbolisms (Tab. 2.1). The definitions of data and
knowledge are, however, still subject to scientific debate.

Information represents the transitioning layer between data and knowledge and is mostly
defined as a representation of data in a structured, categorized or classified manner.
Rowley (2007) provides definitions for the term wisdom too, which will not be discussed
further on in our study.

Data itself can be subdivided into two major groups: structured data and unstructured
data. Structured data are all kinds of data that exist in a structured format. A widespread
example is a relational table where data is structured in rows and columns or, respectively,
into tuples and attributes. Nevertheless, structured data can also be stored in non-
relational structures such as images, or streams as long as they are organized in a
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well-defined manner. The main difference between structured and unstructured data
is that unstructured data are not organized in a well-defined data model (see section
2.4.4.2) which mainly involves, e.g., complex, text-heavy documents, or websites.

Since most parts of this study, are based on structured data, we will have a detailed
introduction to those in this section. Structured data consist of instances of real or
abstract objects with a set of attributes A. An attribute can be assigned a value from a
domain dom — not to be confused with a spatial domain — represented by a permissible
subset of the universe U as dom(A) = {ay, as, ..., a, }, where n is the number of elements
in the domain of A. Each element a € A provides the data type of A which can be numeric,

nominal or ordinal.

To demonstrate a simple example, the nominal attribute color of the instance mineral can
take any symbol of colors like green, yellow or red. While nominal data types comprise all
permissible symbols, numeric data types represent a number which may be an element
of R, N, Q, etc. Data can be constrained by rules which reduces the domain to a subset of
dom(A).

Nowadays, most data is stored and managed by database management systems (DMS).
Those DMSs can be either integrated into distributed systems where a set of users
is provided with custom access to data or they can be deployed locally as local data
containers such as text or binary files. From those databases, data can be queried and
analyzed. As most of the DMSs are still grounded on the relational model after Codd
(1970), a brief explanation of this model will be given in section 2.4.4.3.

Non-algorithmic Non-programmable

Wisdom

Knowledge

Information

Data

Algorithmic Programmable

Figure 2.22.: Data-Information-Knowledge-Wisdom (DIKW) pyramid (Rowley 2007).

40



Authors

Definition

Data

Information

Knowledge

Zeleny (1987)

Ackoff (1999)

Thierauf (1999)

Awad & Ghaziri (2007)

Laudon & Laudon (2012)

Jifa & Lingling (2014)

knowing nothing

symbols that represent the
properties of objects

unstructured facts

unorganized,
static facts

unprocessed,

elementary and recorded de-
scription of things, events, ac-
tivities and transactions

most basic facts

knowing what

answers to questions that be-
gin with such words as who,
what, when, where, and how
many

structured data useful for anal-
ysis

aggregation of data that
makes decision-making easier

data that have been shaped
into a form that is meaningful

and useful to human beings

adds context to facts

knowing how

answers to how-to questions

obtained from experts based on
experience

human understanding of a spe-
cialized field of interest

information combined with un-
derstanding and capability; it

lives in the minds of people

how to use facts

Table 2.1.: Listing containing definitions from different authors for data, information and knowl-
edge. The list has been adapted from Rowley (2007).

Data can be transformed into information by procedures like sorting, aggregation or
contextualization. We refer to knowledge in a geoscientific sense to being patterns/models
that are useful to recognizing and substantiating relationships among rock or fluid
properties in space and time in order to assist the decision-making before, during and
after subsurface utilization or research.

Logical Data Modeling

In order to store and query data that is generated in a subsurface study, databases must be
modeled and implemented. Logical data modeling (LDM) represents a set of techniques
to model real or abstract objects and their interrelations. In an iterative modeling process
(Tillmann 1993) an abstract representation of objects, attributes and relationships is
hereby created.

A data model accordingly consists of entities, attributes, relationships and cardinalities.
Entities are conceptual representations of a real or abstract object providing a finite
set of attributes. Those objects are logically connected through relationships being of
a particular type (cardinality). Entities can be subdivided into strong entities, which
are independent from other entities, and weak entities which are a composite of a set
of attributes from strong entities. For instance, a user and a project are strong entities
whereas the relationship user in projects would be a weak entity because it cannot exist
without both strong entities (Fig. 2.23).

41



LDM constitutes a data modeling technique which is feasible to represent most types of
databases (Tillmann 2017). Hence, LDM can be applied to conventional data structures
like relational or object-oriented but also to modern NoSQL or graph representations.
Within this Thesis, we complied with the relational model according to Maier (1983)
building up on the pioneering work of Codd (1970) for the data modeling process.
Moreover, we applied the entity-relationship technique after Chen (1976) in the usage-
driven database design (U3D) pattern after Tillmann (2017).

Result of the entity-relationship modeling process is an entity-relationship-diagram (ERD)
or entity-relationship-model (ERM). An example of an ERD is provided in Figure 2.23 by
using the example from the two paragraphs before.

Cardinality
-maximum
-minimum
Project UserInProject \ User «——— Entity
prjldPk H userInPrjldPk tiuserldPk «{— Attribute
prjName userIdFk © userName
/ prjldFk
Relationship

Figure 2.23.: Example of a physical entity-relationship-diagram (ERD) after Chen (1976) using
the strong entities User and Project, which are connected in a weak entity named
UserInProject via two one-to-many relationships. The cryptic attribute names comply
to ERD conventions in which Pk stands for primary key and Fk for foreign key.

2.4.4.3. Data Management with the Relational Model

This section aims to outline the theory of the relational model (RM, Codd 1970) which
builds up the underlying data structure used throughout this Thesis. The RM, besides
network or hierarchical models, provides a formal approach to manage data from a

domain according to predicate logic.

The RM consists of relations R and relation schemes R in which R is a finite set of
attributes {A;, A,,...A,,} and R € R. D, represents a finite respectively countably infinite,
non-empty, arbitrary set which is corresponding to an attribute A; where 1 <i <n. D; is
also called the domain of A; [dom(A;)] (Maier 1983).

A relation R on the relation scheme R is a finite set of mappings (tuples) {t1, s, ..., t,}
from R to D where D = D; U D, U ... U D,,. Every tuple ¢t € R has to be contained in D;.
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A key of a relation R on a relation scheme R is a subset K = {By, By, ....B,,} of R. For
every two distinct tuples ¢; and ¢, there is a B € K such that ¢;(B) # t5(B) and J'tR(t).
Accordingly, a key helps to identify a designated tuple in R (superkey [SK]) or R (primary
key [PK]). A key consists of at least one attribute A. Keys consisting of more than one
attribute are called composite keys. In contrast to SK and PK a foreign key (FK) identifies
a relationship between relations.

Relations can be transformed by a set of operations. The add operation adds a tuple ¢ to
a relation R(¢) the command of which can be expressed by

ADD(R, Al = tl, AQ = tg, An = tn) (221)

Vice-versa, the delete operation removes a tuple from a relation R(?):

DEL(R, Al = tl, AQ = tg, An == tn) (222)

If a tuple is modified, one or more attributes will change their values. This can be
expressed by the update operator UPD which is defined as

UPD(R, Al == t17A2 == t27 An = tn7
01 = €1, Cg = €9, On = en),

(2.23)

where C; is the changed attribute of R with the value e;.

Once R contains one attribute and one tuple at the least, the relational operators select
(SEL), project (PRJ) and join (JN) together with boolean operators can be applied to one
or more R from R.

The boolean operators check what tuples of two or more relations belong to the same
entity. Thus, the boolean operators are yielding relations @(R) as a result of a boolean
operation on two (or more) relations R and S, which both belong to R. The boolean
operations comprise RN S, RUSand R — S.

R N S yields all tuples which are contained in both R and S. R U S contains all tuples
which are either in R or in S and R — S contains all tuples in R which are not in S.

The SEL operator is widely applied to select a subset R’ of all tuples of R with specific
values on one or more specific attributes. A specific example would be the expression
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Select all t equal to a in R, with a as an element of the domain of R, which can be expressed
as

R ={teR|tA)=al. (2.24)

The PRJ operator, on the other hand, is applied to select a subset R’ of specified attributes
of R with unique tuples. Let X be a subset of R in which all undesired attributes are
removed. Subsequently, R’ can be defined as

R ={tX)|te R} (2.25)

The join operator () is a binary operator which combines two or more relations based
on all of their common attributes (Maier 1983). If the relations do not share a non-empty
intersection, the join operator yields the Cartesian Product of the set of relations. Thus
when we have two relations R and S with the attributes A, B, and C

R(AB) S(BC)
a; by by ¢ (2.26)

az by ba ¢

the join operation will lead to the following relation )

RxS= Q(ABC)
ay by 1 (2.27)

a9 bQ Ct.

In terms of database management, the join operator is used to select data from two or
more tables based on identical cell entries. For geoscientific data sets this might be useful
when the user wants to join different types of measurements derived from a sample and
enrich the selected data set by meta data from the object of investigation, petrographic
group, or the lithostratigraphic unit. The join operation is then performed on the foreign
keys for the respective joining target.
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2.4.4.4. Data Preprocessing

The Sparsity of Data Sets

It is not uncommon that data sets, which were produced in subsurface studies, provide
a sparse structure. This means, that a set of values from one or more features provides
no data. The sparsity can be calculated as s = > x;/ > x; with s € [0, 1] where z; is the
count of the sparse data cells and x; is the count of all cells in the data set.

Sparse values can heavily influence statistical analyses since either the sparse cell needs to
be substituted by a dummy value or the affected row needs to be removed from the input
data prior to the analysis. Especially geoscientific data sets often provide a sparse structure
due to missing measurement values, repetitive measurements, alternating measurement
conditions, etc. However, tools exist to find fitting values for these sparse data sets.

In order to predict missing data the value could be estimated by a specific mean or median
of the feature space or it could be determined through data mining techniques such as
linear or curvilinear regression.

Data Transformation

The process of converting data from one space into another one is known as data trans-
formation. Dependent on the type of empirical distribution, data need to be transformed
before, for example, data mining algorithms can be deployed onto them. Many properties
in the earth sciences show a skewed, asymmetric distribution caused by, for instance, few
very high/low values. For strongly skewed or log-normally distributed data sets (section
2.4.4.7), it might be useful to transform the data set into normal space or by a logarithmic
transformation.

In Table A.3 the most relevant transformation methods are listed. There are, however,
also more complex transformation methods existing. For instance, prior to sequential
Gaussian simulations (SGS, see section 2.4.4.9) it might be necessary to transform a
source data set into standard normal space since SGS is computed under the assumption
that data follow a multi-Gaussian distribution. We will discuss the normal score transform
and its back-transformation here.

The normal score transform (NST) or quantile-quantile transform, respectively, converts an
empirical cumulative density function (CDF) into normal score space. The transformation
simulates the CDF of the standard normal distribution with z = 0 and ¢? = 1 and each
point of the empirical CDF is transformed into the counterpart of the simulated standard
normal distribution (Goovaerts 1997).
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F(z) and G(y) are stationary CDFs of the original random function Z(u) and the standard
normal random function Y (u) (Fig. 2.24). In order to transform any point in the CDF
(F(z)) of any random variable Z(u) to a random function Y (u) and vice versa the following
function must be applied

Y(u) = ¢(Z(n)) = G [F(Z(w))], (2.28)

where G is the inverse Gaussian CDF of Y (u), which is also called quantile function
(Goovaerts 1997). Thus, z; € Z and y; € Y correspond to the same probabilities. This
relationship can be expressed by two dictionaries where z and y are listed together with
their probability F(z;) and G(y;).

In order to transform y; back into the original variable’s space, following equation can be
applied

F(z) 1 G 15 -

0.5 A

A 4

0.0

1 T 1

7 y=®(z,) y

Figure 2.24.: Conceptualization of a normal score transformation and back transformation ac-
cording to Goovaerts (1997).

Zy

The implementation of this equation is based on an interpolation which is aided by a
conversion table z;, y; with i = 1, ..., n in which each value of y is mapped onto a value
of the original variable’s space. The corresponding interpolation is performed piece-wise
for each interval s; with j € 1,...,m of the original variable’s complementary CDF, which
corresponds to the tail function.

First, all values of y are ranked and assigned to the corresponding interval of the comple-
mentary CDF of F(z) with the upper limit F(z); ,pper and F(z); jouwer What yields Y (F(z)).
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Subsequently, the value z;, is derived as

F(Z)j, upper —_ F(Z)j, lower
Y (F(2))

Rk = F(Z)], lower + Vyk S Y(F(Z)) (230)

Outlier Detection

For subsurface characterization, rock and fluid properties are measured in the laboratory
or under in-situ conditions in the field. Every method provides individual error ranges
and might be prone to failed measurements due to operational errors or other influence
factors. Nevertheless, it is not straight-forward to detect those erroneous measurements
because in many cases, nature might behave strongly irregularly and in an unexpected

manner.

Nonetheless, outliers should be detected and removed prior to data analysis and knowl-
edge extraction. Most outlier detection methods are dependent on the data structure.
For univariate data sets a commonly used technique is to declare a set of observations
as outliers which are differing from a target distribution F — with F being assumed to
be normally distributed N (1, 0?). Those observations are located in the so-called outlier
region.

For normally-distributed and log-normally-distributed random variables, the method of
interquartile-range (IQR) as it is described in Tukey (1977) or Heumann et al. (2016)
can be used. Here, the difference between the 1st and 3rd quartile is calculated. It
is assumed that every point exceeding 1.5-times the interquartile range starting from
the arithmetic mean is classified as an outlier. The procedure is recursive which means,
that the IQR must be calculated again after outlier exclusion. This method is robust
considering normally-distributed data sets.

2.4.4.5. Data Mining

Data mining (DM) in general is a 'mechanized process of identifying or discovering useful
structure in data’ (Fayyad et al. 2002) and aims to extract knowledge from data. Therefore,
the process of DM allocates algorithms from dispersion analysis, correlation, regression,
prediction and classification that can be used within the knowledge discovery process
(Fig. 2.25).

In the following passages, techniques and algorithms from visual data mining (VDM),
exploratory data mining (EDM) and from predictive data mining (PDM), with special
regard to spatial data mining (SDM), are described. Each of these sub-disciplines belongs
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Data Mining

Verification Discovery

Cross-validation

Accuracy Predictive Exploratory
Statistical tests Neural networks Correlation
Goodness-of-fit Support vector Dispersion

machines analysis
Decision trees Visualization
Regression Dimensionality
_ reduction
Bayesian al Ivsi
networks uster analysis

Figure 2.25.: The data mining taxonomy as being used in this work. The scheme is adapted from
Maimon & Rokach (2010).

to the discipline of relational data mining (RDM) which is the discipline of finding patterns
in data structured in relational format.

2.4.4.6. Visual Data Mining

Visual data mining can be considered being an intersection of KDD and VA. Simoff et al.
(2008) define visual data mining (VDM) as being a process of 'interaction and analytical
reasoning with one or more visual representations of an abstract data that leads to the visual
discovery of robust patterns in these data that form the information and knowledge utilized
in informed decision making.” VDM is human-centered, which means that a domain-expert
is continuously interacting with the software system throughout the process. Figure 2.26
illustrates the process of VDM.

It is evident that VDM and KDD provide a series of intersecting sub-processes such as
the data preparation, data mining, model visualization, and knowledge/information
extraction. Thus, VDM can be seen as a subset of the KDD process with the main
difference in being focused on the visualization of models and the interaction with those
visualizations (Simoff et al. 2008).
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Figure 2.26.: Visual data mining (VDM) process adapted from Simoff et al. (2008).

2.4.4.7. Exploratory Data Mining

Exploratory data mining (EDM) aims to provide means to explore data sets for specific
patterns in the form of analyzing the dispersion of a single property and identifying
correlation, trends, or clusters in high-dimensional space.

Correlation Analysis

A correlation analysis determines the quantity of correlation of a set of parameters.
Correlation analyses can be separated into linear and non-linear correlation analysis.
Most commonly, a linear correlation is determined by the covariance matrix or the
Pearson correlation coefficient. Non-linear correlation is usually determined by rank-

based methods such as Spearman’s rank correlation.

For a relational data set R C RP a covariance matrix C describes the covariance of the
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attributes i, j within R. The calculation of every element ¢;; € C can be expressed as

1 N

Cij = 7 2:(:U§C —T)(z, —7) with 4i,j=1,..,p. (2.31)
k=1

Higher values of ¢;; indicate a positive correlation of the attributes whereas low negative

values indicate a strong negative correlation. O indicates a non-correlation between the

attributes i and j.

From the covariance matrix, the Pearson correlation coefficient (Rp) can be calculated by
dividing ¢;; by the standard deviation o of i and j (Eq. 2.32).

> (@}~ 7)ok — 7)
- - b=l — € [-1,1] 2.32)
\/ (2 @) =n @) (2 @) =0 @) -

with i,5=1,...,p.

Non-linear correlations can be quantified with Spearman’s rank correlation (R,,) coeffi-
cient that is calculated with the ranks r%(z;) and rk(y;) of the independent variables x
and y. The rank is defined as the index i of the value x; when x was sorted ascendingly.
Accordingly, if all ranks are distinct integers R, can be calculated as

G- d7
i=1

Ryy=1— ————
b n(n?—1)

(2.33)
with d; as rk(z;) — rk(y;).

Dispersion Analysis

Dispersion analysis provides helpful insights into the variability of an univariate data
set in the format x = (z1,x9,...z,,) (Trauth 2015). The patterns of distributions are
dependent on the mathematical nature of the considered variable. Distribution analysis
deals on the one hand side with descriptive empirical distribution analysis and predictive
theoretical distribution analysis.
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Empirical distribution analysis comprises measures of dispersion such as the range, mode,
standard deviation, variance, skewness and kurtosis. Detailed derivations and calculations
of these simple measures can be found in Trauth (2015) and in numerous other works as
well (e.g., Wackernagel (2003) or Heumann et al. (2016)).

Another important measure of distributions is the average. For symmetric distributions
the arithmetic mean or weighted arithmetic mean describes the average most robustly.
For asymmetric and asymmetric non-linear distributions like exponential growth rates,
the harmonic or geometric mean provides the most robust average value. Additionally, a
distribution can be characterized by the calculation of quartiles, minimum and maximum
value and median. Empirical distributions can be approximated by theoretical models.
These models comprise the uniform, binomial, poisson gaussian/normal, log-normal,
Student’s t, Fishers F and 2 distributions.

All corresponding equations from the measures being mentioned in the last two paragraphs
are listed in the Tables A.1 and A.2, which are appended to this Thesis.

Dimensionality Reduction

Some scientific problems require a data set X of dimensionality p to be transformed
into a lower dimensional data set Y of dimensionality ¢. The problem in general can be
expressed as

f: XCRF =Y CRY (2.34)

Dimensionality reduction can be used to compress an observed data matrix, to detect
multivariate outliers, to detect intrinsic correlation (Wackernagel 2003) or to proof the
quality of a classification scheme which has been applied on a data set.

As dimensionality reduction algorithms the principal component analysis (PCA) and
Self-organizing maps (SOM) will be considered in the following sections.

Principal Component Analysis

Main purpose of the PCA is to reduce the dimensionality of the observation space
(Mackiewicz & Ratajczak 1993) in order to derive trends in high-dimensional data
sets (Brandsegg et al. 2010). The PCA is a tool commonly applied in the geosciences in
the frame of, for instance, reservoir characterization (Hornung et al. 2020, Fig. 2.27),
paleoenvironment reconstruction (Lenz et al. 2016), or sedimentary provenance analysis
(Schneider et al. 2016; Lewin et al. 2018).

51



The PCA is a statistical method which finds a linear projection of a data set X in relational
format which is representing the data structure insofar as that the variance is maximized

in the lower-dimensional projection.

PC2 [16.6%]

Bulk density

9 O % %¢
-0.08 -0. Q. - . : .().98 0 0.1 0.12
\] .

. * PCl[66.26%]

Grain Density
Resistivity
Porosity

Apparent Permeability

-0.15

Figure 2.27.: Principal component analysis of the data set produced in Publication IT (Hornung
et al. 2020, ©EAGE) in which >10,000 measurements of nine properties measured
on 887 samples — taken from seven rock slabs — were projected into 2-D space.

Result from a PCA is a linear transformation, represented by a translation and rotation
component. This transformation is also called principal axis transformation:

yp =2 —T-E (2.35)

with E being a rotation matrix which is dependent on X. To determine E, the variance
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(aj) in the target data set Y must be maximized (Eq. 2.36):

n

=ni12<<xk—f>~E)T~(m—f)'E)

e SR 239
(n—lz w7 ’“_f))'E

—ET.C.E

where C is the covariance matrix (Eq. 2.31) of X with the elements ¢;;. Since the
transformation matrix E should be restricted to rotation, the following applies

ET - E=1 (2.37)

In order to maximize the variance like outlined in Equation 2.36 under the condition of
Equation 2.37 we apply the Lagrange function

L=E"-C-E-)-(E"-E-1). (2.38)
The necessary condition is
OL
e 2.3
IE 0 (2.39)
& C-E+E"-C-2\E=0 (2.40)
< C-E = )E, (2.41)

where we describe an eigenvalue problem. By transforming Equation 2.41 into a homo-

geneous system of equations we can derive

(C—=A)-E=0. (2.42)
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The columns of E can be derived from the eigenvectors v; of C and the variances corre-
spond to the eigenvalues \; of v; because

A=E"-C-E=0, < C-E=)E. (2.43)

Thus, the PCA also delivers the variances of Y which qualifies it to use the dimensionality
reduction under the condition of a maximum grade of variance. In order to reduce the
dimensionality to ¢, the first ¢ eigenvectors of E must be considered. For instance, if the
projection should cover > 50% of the total variance, ¢ must be selected so that

p
Xq:Ai/ZAj > 0.5. (2.44)
i=1 j=1

Self-Organizing Maps

Self-organizing maps (SOM) aim to non-linearly project a data set X into an n-dimensional
representation Y by minimizing the pairwise distances of X and Y so that df; =~ d};.

An example of iterative Sammon mapping (SM), which is a form of SOM, is provided in
Figure 2.28 in which an eight-dimensional data set resulting from the petrophysical data
set from Publication I is reduced to two dimensions using 5,000 iterations. The blue and
red areas each represent samples from two different lithological units in the investigated

quarry.

When applying the SM algorithm, a representation Y is initiated randomly and the initial
Sammon’s stress (F) is calculated which is expressed as

1‘

1 n
E= g Z Z (2.45)

Jj=i+1 Z]zl] i+1

where d is the Manhatten distance (Eq. 2.46) between the point pairs of X and Y (Sammon
1969).

dXY) =Y |z — yil (2.46)
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The SM algorithm minimizes the Sammon’s stress gradient in a user-defined number of
iterations. In order to minimize the projection error, Sammon (1969) applied a steepest-
descent iteration. Here, the mapping error is stated as

E(m) = - Z )?/dy;, (2.47)
z<]
with
c=Y (di) (2.48)
1<J
and

d
k:l

The projected data set at iteration step m + 1 can be derived as

Ypg(m + 1) = ypg(m) — a - Ayy(m) (2.50)

where « is the so called magic factor that can be chosen to be between 0.3 and 0.4 and

E(m)
Apg(m) = (2.51)
pg( ) aypq /H aypg
The derivatives can be derived as
OE(m) -2 - (d*~ — dpj>
= — ) Upg — Yig) (2.52)
Ypq ¢ = dyp;dy; P a
and
0 (m)2 - _“ - . {(d;j dpj) _ M (1 + W—W>} _ (2.53)
Mpg (m) c = dpjdm' dpj dpj
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Since those formulations provide significant performance draw-backs, we used an imple-
mentation of (Kohonen 2001) where the corrections of the target vector y,,(m + 1) can
be derived as

dij — |ri — 1]

Aypg = A+ (ri —1;) (2.54)
ri — 14
where
Ar; = —=Ar;. (2.55)
a n=>5 b n = 50
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Figure 2.28.: Iterative Sammon’s Mapping using two feature classes. Displayed are the petrophys-
ical data sets from the global rock samples which were investigated in Publication
I. The figures visualize the result of the Sammon’s mappings after 5 (a), 50 (b),
500 (¢) and 5000 (d) iterations.
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Classification Problems

Classification problems address problems where a categorical affiliation, also called class
or cluster, must be determined. Classification is useful when the class affiliation of a
new sample is not defined. In this work, we will restrict the classification problems to
the unsupervised techniques including the nearest neighbor classification and cluster
analysis.

Nearest Neighbors Algorithm

One of the easiest and earliest automatic classification methods is the nearest neighbor
(NN) algorithm (Shakhnarovich et al. 2006). An unknown point is hereby classified
based on the nearest classified point within the feature space. The distance to the nearest
neighbor is calculated by a specific measure such as the Euclidean distance or the shortest
path distance. An unknown point will be classified as class y;, if

|x — x| :j:rrllinn|x—xj|, (2.56)

-----

where x is the point with the unknown class, x;, is the point with the class y;, and x; is
the jth point in the collection of training samples.

k-Means Clustering

k-means clustering using Lloyd’s algorithm (Lloyd 1982) is an automated, multivariate
classification method. This clustering method requires a predefined number of clusters c,
the data set should be subdivided into, and categorizes the data values by minimizing
the sum of squared differences of the data values x within the clusters’ centers . Thus,
the main objective is to find

k
argminZZHxi — 1l (2.57)
j

i=1 x€c;

Initially, the means of the predefined clusters are set either randomly or by means of k
randomly selected observations. After initially assigning the observations to the nearest
cluster center by applying Equation 2.58 Lloyd’s algorithms uses an iterative refinement
technique.

c:= mjin |zs — p] 2 (2.58)
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Hereby, the clusters’ centers are updated based on

1
,LLZ(-t+1) = E Z Zj. (2.59)

) t
TjEC

Subsequently, each observation is assigned to one of the clusters again based on the
nearest cluster mean (Eq. 2.58).

2.4.4.8. Predictive Data Mining

Predictive data mining (PDM) aims to predict values in unknown space. In the following
sections, some of the involved techniques will be presented and special regard will be
laid upon the aspect of spatial data mining (SDM).

Regression Analysis

Regression aims to find a fitting function between samples of two or more random
variables. Two types of regression are predominantly applied in the geosciences, namely,
the linear and curvilinear regression which are performed in order to find empirical

relationships among geological properties (Fig. 2.29).

A linear regression tries to fit a linear function of the form

y=by+ bix, (2.60)

where y and x are the random variables, b is the y-axis interception and b, is the gradient.
In order to find a function where the squared sum of the Ay deviations is minimized like

Z(Ayk)Q = Z (g — (bo + brzx))? (2.61)

k=1 k=1

we need to calculate the gradient as

b, = =t . (2.62)
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Accordingly, b, can be calculated as

bo = T — biT. (2.63)

For curvilinear regression, a function of a degree > 1 will be approximated for a discrete
set of values. A second-degree polynomial function for instance would provide the form

y = by + by + box® (2.64)

Thus, we would need to find n + 1 regression coefficients, where n is the degree of the
polynomial function. In general, the regression model yields

)

The estimation of the regression coefficients is aimed through solving a system of linear
equations as

U1 1af- a2 bo
Y 1l ap b

S N I (2.66)
Yn Lzl -oam b

where x and y are the samples. Results of a regression analysis can be assessed through
jack-knifing, cross-validation or bootstrapping (see section 2.4.4.10).

2.4.4.9. Spatial Data Mining

Introduction

Spatial data mining (SDM), in contrast to PDM, provides a set of methods to extract
knowledge specifically from spatial data (Li et al. 2015). Although the methods used
for SDM equal the methods involved in PDM, both disciplines are separated from one
another as the terminology is slightly different.

Fischer & Getis (2010) provide a comprehensive overview about the methods, applications
and software packages related to SDM and spatial data analysis in general. An important
member among the methods of SDM in earth sciences is the domain of geostatistics. Past
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Figure 2.29.: Regression analysis between the two properties Fe;O3 and the intrinsic permeabil-
ity k performed with the data set from Publication III in which the small-scale
distribution of chemical and physical properties were investigated in terms of statis-
tical relationships and spatial patterns. In the legend, the curvilinear cure-fitting
polynomial function together with the coefficients of determination for the original
data points (Rg) and the interpolated data points (R?) are given.

studies showed that the symbiotic usage of conventional DM algorithms and geostatistical
approaches can significantly enhance numerical prognoses of geological properties in
space (Kanevski et al. 2004).

Originally intended to optimize ore body mining (Mazzella & Mazzella 2013), nowadays
geostatistics plays a major role in various domains which involve spatial data — not only
limited to geoscientific applications.

In the following sections we will provide an overview about the statistical and deterministic
methods that can be used to analyze and predict rock and fluid properties in space and
time.

Spatial Neighborhood

Most geostatistical algorithms require subset-sampling in order to perform reasonably.
Commonly, a 3-D search ellipsoid is used to find the neighbors of a point in a mesh.
That search ellipsoid can be defined by six properties, namely, azimuth «, dip 3, plunge
~, longest r;, middle r,, and shortest radius r, of the ellipsoid. «, § and ~ define the
ellipsoid’s rotation along the Z, X and Y axis. Accordingly, the rotation matrix T can be
defined as:
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cosa 0 —sina 1 0 0 cosy sinvy 0
T = 0 1 0 0 cosf sinpf —sin~y cosvy 0 (2.67)
sina 0 cosa 0 —sinf cos 8 0 0 1

First, the neighbors are rotated along the Z axis, secondly along the X axis and last along
the Y axis (Fig. 2.30). After rotating the neighboring points, Eq. 2.68 can be used to
determine whether a point x with the transformed coordinates z/,, x; and 7, is located
inside (< 1) the search ellipsoid or not (> 1).

x'?2 yr g

— +— +—= <1 (2.68)
Ty, Ty ),
a b c g
YA YA
Z?\dlp
X’
- >, 7
X 5K
K /dip Y
Y

Figure 2.30.: Schematic illustration of the first two steps of a coordinate system rotation when
applying an ellipsoid search. (a) Starting point; (b) Rotation along the Z axis; (c)
Rotation along the X axis.

Semivariogram

Originally defined by Matheron (1963), the semivariogram describes the spatial depen-
dence of a random field variable. The variability of a regionalized property Z is computed
at different scales by calculating the dissimilarity between pairs of data values z, and z3
at the locations x, and x3 in Q (Fig. 2.31).

As a metric for dissimilarity v,z is calculated (Eq. 2.69) as follows

IR
p = o= 28) 5 ) (2.69)
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Since x, and xz can be expressed as points separated by a lag vector h dissimilarity can
also be formulated as

(z(xa +h) — z(xa))2
2

Y *aﬁ (h) = (270)
Length of the lag vector h in n-D Euclidean space with p respectively q representing
the vectors containing Cartesian coordinates of the points x, and x4 is expressed as the
Euclidean norm (Eq. 2.71).

poal = V(g — )2+ (@@ —p2) + oo+ (Gn — Pn)?
(2.71)

Variogram calculation results in a set of points representing the cumulative dissimilarity
~ of point-pairs with the distance of |h| in (2. The experimental semivariogram, however,
represents the cumulative dissimilarity of a discrete set of point-pairs x with 7. represent-
ing the count of point-pairs within distance classes h; of identical distance increments
(Eq. 2.72).

! nz (2(x4 + h) = 2(x4))” (2.72)

a=

v(h)

- 2n,

The continuous counterpart, represented by the theoretical semivariogram, is an approx-
imation to the experimental semivariogram assuming Z(x) to be a stationary random
field (Wackernagel 2003). A theoretical variogram ~;,., is represented by a covariance
function ¢ and with the following relationship

Yiheo(h) = ¢(0) — c(h) (2.73)

Figure 2.31.: Two points in two-dimensional
space linked by a lag vector (h)
(Wackernagel 2003).
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c is a positive definite, even function with the origin at (0) = 0. If a nugget effect is
observable, the theoretical semivariogram is translated by the magnitude of the nugget
(n), so that the origin is translated by n on the ordinate.

b for|h|=0
Crug(h) = (2.74)
0 for|h| >0,

where \llallm v(h) = b. Five covariance models are mostly used to fit the experimental
—0

semivariogram which are listed in the appendix A.1.3 in Table A.4. Following variables
are needed to calculate the covariance functions: nugget (n), range (a) and sill (b) like

shown in Figure 2.32.

A . , Figure 2.32.: Conceptual visualization of
° —F ° 2 a theoretical semivariogram
° 0 with a spherical model fit-
o ) ting an experimental semi-
v(h) sill (b) variogram.
range (a)
) T nugget (n)

lag distance

Semivariograms can be used to quantify the spatial or time correlation of a random
property (Ringrose & Bentley 2015; Gu et al. 2017; Riihaak et al. 2015c). Further on,
the differences in range and sill in dissimilar directional semivariograms can quantify the
internal anisotropy of a property (Ringrose & Bentley 2015). The resulting covariance
function is an input variable for kriging.

Spatial and Spatiotemporal Interpolation

Spatial and spatiotemporal interpolation is the approximation of the spatial and/or
temporal distribution of a property by a function (Mitas & Mitasova 2005). In the
following sections, different interpolation methods such as the inverse distance weighting
and some varieties of kriging will be outlined.

Inverse Distance Weighting

The inverse distance weighting (IDW), p-value IDW and Shepard’s IDW (Shepard 1968)
approaches are widely applied methods to deterministically interpolate values in space or
time. The IDW interpolation in general calculates an unknown value z(x,) at point x, by
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weighting the distance of that point to each known point (x;) in space. The underlying
formula for IDW is

Z(Xo) _ ZZ:l (1/d2) ) Z(Xk)7 (2.75)

2k 1/

where d is the Euclidean distance between the point with the known value x;, and the
point with the unknown value x, and p is an exponent factor to bias the weights non-
linearly. IDW is a reliable and widely applied method to interpolate static properties in
1-D, 2-D and 3-D space (Riihaak 2006.)

Kriging

Kriging is a commonly used stochastic method to interpolate geological properties in
space and time (Malvi¢ et al. 2019; Rithaak 2015). The kriging estimator is an optimal
estimator as it minimizes the error variance. It incorporates the covariance structure of
the global sampled values into the weights for predicting the value z(x) at an unsampled
location x,. Therefore, z(xy) is calculated by weighting the neighboring sampled values
and building a linear combination of those what yields

2(x0) = Y wy - 2(xy), (2.76)
k=1

where wy, is the weight of the known point x;, with the value z(x;). The idea behind
kriging is to find an estimator such that

) E(x¢) = E(x) which is satisfied if ) | w; = 0 and if the mean  is stationary.
II) The prediction variance o2 is minimized.

If both conditions are fulfilled the kriging method is the best linear unbiased predictor.
In the following paragraphs we will consider the simple kriging (SK), ordinary kriging
(OK), regression kriging (RK) and universal kriging (UK) techniques which are the most
commonly used varieties.

The types of kriging primarily differ in the derivation of the weight vector, however, RK
and UK require data transformation prior to modeling the variogram from the residuals
of the regression.

For all systems a set of linear equations must be solved like it is outlined in the follow-
ing paragraphs. The quality of kriging interpolation is dependent on the theoretical
semivariogram and the goodness of fit to the experimental values.
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Simple and Ordinary Kriging

In this section, we will consider the simple kriging (SK) technique (Deutsch & Journel
1998) and expand it by the integration of a locally varying mean (Goovaerts 1997).
Therefore, we modify Equation 2.76 into

Z(Xo)SK = Zwk . Z(Xk) —+ (1 — Zwk> - U (2.77)
k=1

k=1

in which the known stationary mean p has been added (Deutsch & Journel 1998). While
SK assumes that y is globally constant and known, SK with locally varying mean assumes
to be constant only in the neighborhood of x(. In order to obtain the SK weights, a system
of n linear equations must be solved in which n stands for the number of considered
neighbors. This system of equations is defined as

Aw = b, (2.78)
which corresponds to
c(x1 = x1) - o(x1 — Xp) wy™ c(x1 — Xo)
o x1) el x)) ) \elxo =) @79
X T T v

with ¢ as covariance function and x,, as point with known value (Wackernagel 2003).
In SK each interpolated point provides a simple kriging variance %, (Webster & Oliver
2007), which we can calculate by means of the formula

oz = c(0) — Z Wy, ¢(Xk, Xo)- (2.80)
k=1

In order to obtain the ordinary kriging weights, a set of n+1 equations have to be solved.
In matrix notation, this set of equations can be written as

Y(xg —x1) - y(x—x,) 1) [P v(x1 — %)
= 5 (2.81)
V(Xn - Xl) T V(Xn - Xn) 1 ng V(Xn - XO)
1 tee 1 0 HOK 1
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with ~ as theoretical semivariogram, x,, as point with known value and ; as Lagrange
parameter (Wackernagel 2003).

Regression Kriging and Universal Kriging

Universal kriging splits the random function into a linear combination of a deterministic
and a stochastic component such that

2(xg) = Z 3 - qe(s0) + Zwi -e(x;) = m(s) + é(so), (2.82)

where 7h(s) is the deterministic and é(s,) is the stochastic component. £, is the determin-
istic coefficient, g (so) is the deterministic variable, w; is the weight of the known residual

é at point x;.

RK and UK are based on identical mathematical assumptions, however, in UK the residuals
are explicitly calculated as a function of the geographic space. Thus, the deterministic
function in UK is expressed as an nth-degree polynomial function of the Cartesian coor-
dinates x, y and z, whereas RK also allows for other drift variables. The mathematical
similarity of both methods lead to confusion in the literature.

In order to obtain the weights for RK and UK, a set of n+m equations must be solved. In
matrix notation, this set of equations can be written as

Y(x1 —x1) y(xn = %) 1 fi(xa) - fr(xa) wi® v(x1 — Xo)
V(Xn ._ Xl) e V(Xn _ Xn) ]- fl(Xn) : : fk(xn> wrl;JK V(Xn ._ XO)
1 cee 1 0 0 tee 0 . MUK = 1 (283)
fl(Xl) fl(Xn) 0 0 0 ®o fl(Xo)
fk(;(1) fk(;in) 0 0 0 ¢kz fk(;io)

with ~ as theoretical semivariogram, x, as point with known value, i as Lagrange
parameter, and f;(x) as ith polynomial (Hudson & Wackernagel 1994).
Consideration of Measurement Error Variance

We already saw that kriging induces a local interpolation error by itself, namely, 0% .
There are, however, also other components which bias the interpolation result. Besides
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0%, the local and unknown variability of z(x) in €, as well as the measurement error

variance o2, might play an important role (Figure 2.33).

a b
P
Hsk=Osk Hsk* Osk
L >
Mo z(x,)
Cc
d
Mb-Op Mbt0p
Mo z(x,)

Figure 2.33.: (a) Schematic of the uncertainty components integrated in a predictive model of
rock or fluid properties; (b) Estimated kriging error variance at xg; (c) Observed
measurement error at point x3; (d) Observed block variability in a subset €2, of (.

Integrating o2, into an interpolation can be achieved by estimating the measurement
error precision o, with a variance of o2, and incorporating it into the kriging system of

linear equations giving

C(X1 — XU)
= : : (2.84)

w c(x, — Xo)

c(xy —x1)+o? - clx)—xp)

3N
[’)--
=

o(x, —x1)  c(x,—%x,)+ 0

In contrast to the conventional formula, o2, with regard to the considered known value
at x;, is added in the diagonal of the matrix (Wackernagel 2003). This accounts for
the heteroscedastic nature of geological parameters as they commonly show a higher
variability for high values and a lower variability for low values (Deutsch & Journel 1998).

Spatial Bayesian Networks

Another group of algorithms aiming to produce spatial predictions is represented by
stochastic simulations which belong to the class of Bayesian networks.

Most interpolation techniques do not represent the original parameter distribution ade-
quately and induce a smoothing effect in the spatial distribution. Furthermore, the original
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histogram, semivariogram and variability are not reproduced. Conditional simulations,
in contrast, aim to preserve the natural variability of natural phenomena (Remy 2004).
Geostatistical simulations in general aim at reproducing both the global histogram and
the considered variogram model (Leuangthong et al. 2004).

Some simulation algorithms, such as the sequential Gaussian simulation, are based on
the multi-Gaussian approach that assumes data to be normally distributed. Therefore,
data needs to be transformed into normal space using a normal score transform before
applying the algorithms (Deutsch & Journel 1998).

Sequential Gaussian Simulation

In order to account for the spatial heterogeneity of a property the sequential Gaussian
simulation (SGS) algorithm can be utilized. SGS is a popular technique for simulating
conditional Gaussian random fields, being based upon the SK interpolation technique.

SGS is based on the multi-Gaussian approach (Goovaerts 1997), which assumes that the
kriging error is standard normally distributed with 4 = 0 and 0%, = 1. This requires
that each one-point cumulative density function (CDF) of any linear combination of the
random vector (RV) is normally distributed, that all subsets of the random field (RF) are
multivariate normal, that the two-point distribution is normal and that all conditional
distributions of subsets of the RF are normal (Goovaerts 1997).

If the RF fulfills the requirements, then the simple kriging estimate and variance charac-
terize the posterior cumulative CDF under consideration of the normal score variogram
model. Thus, we need to transform the original distribution’s CDF into standard normal
space for SGS (see Eq. 2.28). The algorithm for one SGS realization is provided in
Algorithm 1.

Once the global CDF is transformed into standard normal space and the covariance
function being defined, each location in the target domain is visited on a random base.
At each visited location, the conditional SK estimate and variance is determined, which
are conditioned by both the global constraints and the previously simulated values.

For each interpolated point x; now a random value of the normal distribution N (2(x;), 0% )
is drawn as z(x;) using the Box-Muller transform that can be expressed as

2(x0) = /=2 - log(uy) - cos(2m - ug) - 0 + (2.85)

with u; and u, as random numbers € [0, 1], o as the standard deviation and p as arithmetic
mean of the original distribution. One problem is obvious here. The more points being
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ALGORITHM 1
Sequential Gaussian simulation algorithm

Given: ; x; N > Target domain; Sampled locations; Neighborhood information;
Initialize: ugjm; X’ > Simulated locations; Spatial neighbors;
Y (x) «+ Eq. 2.28 > Transform to standard normal space
v(h) < Eq. 2.72 > Estimate the experimental variogram
v(h)sn < Eq. A.14 > Derive the variogram model and the covariance function

for all v, in 2 do

x' + Eq. 2.67 & Eq. 2.68 > Determine the neighborhood with V, x & ugim,
psk < Eq. 2.77 using y(h)spn > From x’
0% + Eq. 2.80 using v(h) > From x’
z(w;)  Eq. 2.85 from N (psr, 02 ) > Draw a value with o2
Add z(u;) to ugim

end for

F(Z(u)) < Eq. 2.29, 1 Back-transform the simulated values into the original space

simulated the lower is the simple kriging variance, which is primarily dependent upon
the Euclidean distance to the locally neighboring points (see Equation 2.80). This is a
problem, which is addressed in Publication IV within this Thesis.

Direct Sequential Simulation

The reproduction of the covariance model does not require the multi-Gaussian approach
as long as the mean and variance are derived from the SK estimation (Robertson et al.
2006; Soares 2001). Thus, the conditional distribution type chosen in order to simulate
the variability at each point does not necessarily need to be Gaussian. With this in mind,
it is evident that a normal score transform is not needed before applying the sequential
simulation.

When the sequential simulation is performed ’directly’ we speak of a direct sequential
simulation (DSS). The algorithm for DSS is slightly different to the algorithm for SGS as
the transformation into standard normal space is not required.

In the case of a high SK variance, DSS tends to drift towards extremely high or extremely
low values. Hence, either a back-transformation into the original variable’s space might
be necessary or a mapping procedure during simulation must be performed in which the
simulated value is projected onto the CDF of the original variable (Soares 2001; Robertson
et al. 2006).
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2.4.4.10. Validation

Cross-validation

In order to assess the quality of a realization, models, which are constructed by means of
interpolation or simulation techniques, should be validated. Commonly, interpolations are
validated by cross-validation. This technique is usually performed by using point removal
procedures called leave-p-out cross-validation (LpO CV). For the LpO CV, p randomly
selected samples are removed from the input data set of size n with 0 < p < n and
the interpolation or simulation is performed without these samples (Celisse 2014). As
measures of goodness of fit, the mean-square error (MSE, Eq. 2.86), the root-mean-square
error (RMSE, Eq. 2.87) and the mean-absolute error (MAE, Eq. 2.88) of the realization
can be calculated as

1

MSE = — S (axe) — 2(x1))”, (2.86)

k=1
RMSE — % (2(x0) — 2(x0)’ 2.87)

k=1
and

1 n

MAE = — > ) — (), (2.88)
k=1

where Z(x;,) are the estimated points. While Willmott et al. (2009) question the status of
the triangle inequality for the RMSE, which is required for a distance function metric,
Chai & Draxler (2014) show that the RMSE in fact fulfills this condition. Thus, if the
model errors follow a normal distribution, the RMSE is to favor over the MAE (Chai &
Draxler 2014).

Geostatistical algorithms usually reduce the number of neighbors that are used to constrain
an estimation or simulation. In section 2.4.4.9 it is described, how a subset of the
available input data set can be selected by means of a 3-D ellipsoid. By reducing the
neighborhood, the covariance model among the selected points slightly deviates from the
global covariance model. Accordingly, the estimation of an unknown point is affected by
using the subset of the globally available input points which is why the cross-validation
errors can be used for optimizing the modeling approach. Figure 2.34 shows that the
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dependence of an interpolation is strongly dependent on the selected neighborhood
(Linsel et al. 2020b).
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Figure 2.34.: Results of a linear integer programming optimization targeting the minimization
of the interpolation error er)/sr for a spatial interpolation. (a)RMSE response
surface with regard to the incorporated measurement error variance o2, and the
maximum number of neighbors n,, using a leave-one-out cross-validation. (b) Cross
sections through the response surface of (a) (Linsel et al. 2020b).

Curve Fitting

Function approximations like produced in regression analyses are commonly validated

using the coefficient of determination (R?) which is calculated like

where

R2=1-"2r ¢ 0,1], (2.89)
Stot
Sres — Z(yk - fk)2 (290)
k=1

is the explained sum of squares whereas

is the total sum of squares.

3

Stot = Y (yi —7)? (2.91)
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2.5. Geothermal Reservoir Characterization by Means of

Geovisual Analytics

2.5.1. Introduction

The definition of geothermal energy has not been globally standardized yet. In this Thesis,

the definition formulated in a directive of The European Parliament and the Council

of The European Union (2009) on the promotion of the use of energy from renewable

sources will be used further on where ’geothermal energy means energy stored in the form of

heat beneath the surface of solid Earth’. In this directive, geothermal energy is categorized

under energies from renewable sources.

Figure 2.35 shows a conceptual illustration of the exploitation strategy for hydrothermal

electricity production. Hereby, heat is transferred from the geothermal fluid to a secondary

working fluid in a heat exchanger. The pressurized working fluid is vaporized and

subsequently expanded through a turbine which drives the electrical generator (see, e.g,
Mines 2016).
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Figure 2.35.: Schematic concept of a binary cycle power plant used to produce electricity with

heat extracted by a hydrothermal doublet. Reservoir information can be derived
either directly from reservoir depth or in outcrop analogue studies providing insights
into the lithological architecture and property distribution within the reservoir unit
from surface or near-surface outcrops. Blue (cold) and red (hot) arrows indicate
potential fluid trajectories relevant for deep hydraulic circulation.
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2.5.2. Controls on a Reservoir's Production Behavior

The performance of a geothermal reservoir is dependent on the internal and adjacent ge-
ological architecture, the corresponding rock and fluid properties, together with ambient
properties such as the temperature and stress field (Rithaak et al. 2015a; Welsch et al.
2016). Recent studies demonstrated that for each geological scenario, a separate simula-
tion of a geothermal reservoir’s performance must be performed in order to reduce the
investment risks for geothermal power plants (Schulte et al. 2020). Thus in geothermal
reservoir characterization the spatial distribution of all of those characteristics must be
taken into account. Figure 2.36 illustrates the spatial characteristics of a temperature
field in a rock formation which was modeled by a boundary-conforming grid.

The geological architecture describes the variability and spatial distribution of rock types
in association with their compartmentalizing elements in the form of faults, bounding
surfaces and fractures in the reservoir. Those characteristics are dependent on geological
processes which are taking place during genesis, tectonic activity, burial and exhumation
of a geological medium. The processes involved comprise weathering, erosion, transport,
deposition, diagenesis and metamorphism. Usually, these characteristics are addressed by
subdividing the region of interest into lithological units and a representation of structural
elements, based on the purpose that must be served.

The rock and fluid properties are controlled by the lithological, chemical and physical
characteristics such as grain size distribution, grain shape, mineralogical composition,
grain contacts, and heat content, which may provide (multivariate) functional relation-
ships among one another. Some rock properties differ in their mathematical nature.
Permeability, stress, thermal conductivity/diffusivity for instance are direction-dependent
parameters and should be considered as tensors (Popov et al. 1999; Clavaud et al. 2008;
Diirrast 2004) whereas porosity or density are parameters of scalar type.

The diversity in mathematical formats increases the effort to normalize reservoir-related
data models and hampers data analytics and modeling of the properties which is often
leading to inaccurate simplifications of heat or mass transfer simulations as depicted in
section 2.5.3.
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Figure 2.36.: (@) The model represents the top and base of the volcano-sedimentary Rotliegend
unit in the Sprendlinger Horst area which is located in Hesse, Germany. (b) Ex-
emplary near surface temperature distribution in a 3-D model constructed from
both surfaces given in (a). The model has a span of 3,000 x 3,000 x 70 m and is
10-fold exaggerated in vertical direction.

2.5.2.1. Relevant Properties

Recent approaches aiming at the subdivision of properties into property groups came
up with a scheme that partitions the properties of reservoir rocks into petrophysical,
hydraulic, mechanical and thermophysical properties (Bér et al. 2020). This subdivision
applies well if only rock properties are considered as it is implemented in the P? database
of Bar et al. (2020).

A more generic view would imply that also fluid properties must be considered which
brings us to the subdivision of relevant material and ambient properties in geothermal
systems as depicted in Table 2.2. Displayed are the general forms of the properties which
means that properties such as density can be further subdivided into rock density and
fluid density and, when considering rock density, into grain density and bulk density,

respectively.
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Property Symbol Unit Isotropic
Thermophysical properties
thermal conductivity A Wm ! K! no
volumetric heat capacity c Jm™3 K! yes
thermal diffusivity o m? s} no
radiogenic heat production A Wm3 yes
temperature T K yes
enthalpy H J yes
heat q J yes
Petrophysical properties
density p kg m—3 yes
mass m kg yes
Hydraulic properties
porosity ) [-] yes
permeability k m? no
hydraulic conductivity k m s ! no
Mechanical properties
P-wave velocity Uy ms! no
S-wave velocity Vs ms~! no
stress o kg m~! s72 no
pressure p kg m~! s72 yes

Table 2.2.: Thermophysical, petrophysical, hydraulic and mechanical material properties which
contribute towards the potential of geothermal systems. Adapted from the data model
of the geothermal P? database of Bir et al. (2020) and extended by properties which
are relevant for heat and fluid flow processes in the subsurface (see section 2.5.3).
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The collection of material properties could be extended by ones which are of secondary
interest in the process of reservoir characterization. Properties such as the gravitational
field strength [N kg~!] or the magnetic susceptibility [-] which aid in understanding
the subsurface system do not directly contribute towards the economic potential of a
geothermal system.

The ambient properties such as the recent stress field and the temperature distribution
mostly depend on regional to global scale processes such as the natural heat flow, the
spatial characteristics of fluid convection systems and plate tectonic movements. Just like
the material properties of the geological media, the ambient properties are either directly
contributing towards a geothermal reservoir’s potential or they might proof useful in

another way within the reservoir’s potential assessment process.

2.5.3. Conductive Heat Transport in the Subsurface
2.5.3.1. Introduction

Many approaches which aim to simulate heat or mass transfer processes in the subsurface
are based on simplifications, such as spatial homogeneity or isotropy of rock properties.
By the means provided in section 2.3, such simplifications can be overcome by modeling
the relevant properties in space which requires that the grade of sample coverage in the
region of interest is reasonably high.

In this section, the process of conductive heat transport in the subsurface will be outlined.
This process provides the base for subsurface heat storage systems whose quality is highly
dependent on the rock properties and their spatial distribution in the subsurface (see,
e.g, Welsch (2019) or Riihaak et al. (2015)).

2.5.3.2. Physical Fundamentals
Heat ¢ is a part of the inner energy U that thermodynamic systems can consume or emit.

Together with the physical quantity work 17 it controls the difference of the inner energy
in a system (Eq. 2.92).

AU =q+ W (2.92)

76



The temperature field in the subsurface is controlled by processes that either transfer or
consume heat. The temperature 7" and heat are related as

g=m-c-AT, (2.93)

where m is the mass of a medium and c is the specific heat capacity.

The total heat in place in a subsurface region can be calculated as

q=4qs+q
=Voc(Tr—T,) (2.94)

_ / (1= 6) .y (T = Trep) + 6 pu (Hu(T) = Hyy (Treg))) dV

where ¢, is the heat in the solid phase, ¢; the heat in the liquid phase, ¢ is the effective
porosity of the solid subsurface medium and p;, is its bulk density. H,,(T) is the enthalpy
of the fluid filling the medium’s pore space at a specific temperature 7" and p,, is the
fluid’s density. V' is the volume of the considered subsurface region (Garg & Combs 2015;
Muffler & Cataldi 1978). It is particularly important to select 7, appropriately since
it determines the fraction of recoverable heat in the medium. Commonly, the ambient
temperature (=~ 15 °C) or the condenser temperature (= 40 °C) are used (Williams
2014).

2.5.3.3. Governing Equations for Heat Transport

Heat can be transported between physical systems by four mechanisms, namely, con-
duction, convection, radiation and phase changes. For geothermal processes, mainly
convection and conduction apply thus we will reduce the further explanation to those.
The formal interaction of both processes can be expressed as

T A
or +1I'VT = VT (aVT) + =, (2.95)
ot pc

where r is the fluid flow vector that can be notated as

r=(ry,ry,Ts), (2.96)
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o 0 0

V- (% z, &) | (2.97)
or or or

T=(2"> = = 2.

and « is the thermal diffusivity tensor that is defined as

a=|0a 0 (2.99)

under assumption of a transverse isotropy. When considering conductive heat transport
only, Eq. 2.95 simplifies to

T gravr+ 2. (2.100)
ot pc

In order to solve the heat transfer problem by means of the finite element method (FEM)
an initial temperature field has to be defined (Fig. 2.37). Additionally, p, ¢, A and K
have to be defined in 2. Moreover, the uniqueness of a PDE is only guaranteed when
the boundaries are imposed with specific conditions called boundary conditions. The
following four types of boundary conditions can be encountered:

I) Dirichlet boundary conditions are defined, where the solution of an interval of the
domain is fixed (Eq. 2.101).

flx)=a (2.101)

II) Neumann boundary conditions define the values in which the derivative of the
function should be defined on a boundary (Eq. 2.102).

f'(z)=a (2.102)

III) Robin boundary conditions, which define the boundary condition as a linear combi-
nation of the solution and its derivative.

uf(z)+vf(z)=a (2.103)
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IV) Periodic boundary conditions, which assume the solution at one end of the domain

is equal to the solution at another end.

a

Tt x,y) =1
(initial condition)

T(t, xb, yb) = 1
(boundary condition)

Figure 2.37.: Schematic concept of the finite element method.

If we assume that a domain in the subsurface has been discretized by a set of hexahedral

elements, the temperature T at the nodes x; in one element can be determined as

8
T:ZNZ»-TZ-
=1

(2.104)

with N; as trilinear shape function at the node x;. The shape functions for an eight-node

hexahedron in terms of local coordinates are listed in Appendix A.1.4. In order to convert

the derivatives of the shape function from the local coordinate system to the physical

coordinate system, the chain rule can be used as follows

o oz
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ac ac
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¢

where J is the Jacobian matrix which is defined as
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By substituting 7" in Eq. 2.100 by Eq. 2.104, following discrete element-level system of
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equations can be derived:

///NTNdxdydza%—l—///(VN)TKVNd:cdydzT:///HNTd:cdydz.

(2.107)
In matrix form, the equation can be expressed as
0
[MM] o T + [KMT = F, (2.108)

which builds the elemental equation for solving the problem by using the FEM. [MM]
thereby represents the element mass matrix while [KM] constitutes the element stiffness
matrix.

The only step left here is the time discretization which is commonly implemented as an
implicit finite difference approximation yielding Equation 2.109.

MM MM
KM |TVl = —— 4+ F 2.10
(At + ) NS (2.109)
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3. Publications

3.1. Publication | — Development of an Open-Source
Knowledge Discovery System for Subsurface
Characterization

3.1.1. Introduction

Publication I constitutes the key publication of this dissertation. In this chapter, an
open-source software system called GeoReVi is presented. The acronym GeoReVi stands
for Geological Reservoir Virtualization. The source code of GeoReVi is available at GitHub?®.

GeoReVi is aimed at addressing a series of tasks associated with subsurface charac-
terization generically. Nowadays, it is still common-practice to make use of multiple
software packages — most of which are commercially distributed such as SKUA-GOCAD ™

or ANSYS® (ANSYS, Inc. 2020) - in order to perform typical workflows for subsurface
modeling in both industries and sciences (Enge et al. 2007; Zehner et al. 2015).

In order to use all of the aforementioned software packages, a substantial amount of
money must be spent for licensing. Moreover, each software usually requires a specific
file format for the intermediate products which must be transformed from others under
a high effort. These obstacles hamper scientific investigations frequently. Although the
overall trend — also in the geoscientific community — tends towards the development of
open-source software, there is still a lack of open-source geological data management,
3-D modeling and data analysis systems as the development of such software is hard
to plan and requires expert knowledge about the computer science, mathematics and
geosciences itself.

3https://github.com/ApirsAL/GeoReVi, last access 23rd November, 2020
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Figure 3.1.: The scope of GeoReVi comprises multiple disciplines that are involved in typical
knowledge discovery and decision-making processes during subsurface utilization.

Consequently, there was a potential gap to be filled by providing a generic open-source
software platform enabling geoscientists to performing widely applied workflows in one
and the same product, which they can adapt to their specific needs. The scope of GeoReVi
comprises those entities being illustrated in Figure 3.1.

GeoReVi has been developed with the intention to accompany a domain expert during the
entire process of subsurface characterization. Consequently, widely applied workflows
commonly performed in subsurface studies in which data can be documented all along

the process chain have been implemented in GeoReVi.

Specific focus is hereby laid upon the implementation of a database being connected
to a GUI which provides functionality for stratigraphic mesh generation combined with
geostatistical and data mining algorithms. These aid the geoscientist to explore the
statistical relationships of subsurface properties in space and time which are persistently
residing in the database.

Once data are stored in the database, they can be loaded into the buffer memory, where
they can be analyzed by means of geovisual analytics as presented in the sections 2.4.2
and 2.4.4. Furthermore, the interactive visualization functionality for modeling results
together with validation and uncertainty assessment routines allow for the immediate
inspection and evaluation of intermediate products in the process of subsurface charac-
terization. Exemplary outputs of GeoReVi are provided in Figure 2.14.

3.1.2. Author Contributions

* My contribution as the first author of this paper comprises the planning and im-
plementation of the software tool including the development of the databases, the
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creation of the graphical user interface and the implementation of the numerical al-
gorithms, the conceptualization and conduct of the case study, the model generation,
the preparation of the figures and the statistical data analyses.

K. Bér, J. Hornung, and M. D. Greb contributed to the creation of the logical data
model and to planning the case study:.

J. Haas conducted with me the field work and the laboratory experiments.

M. Hinderer was the overall supervisor of the research.

All co-authors contributed to the preparation and revision of the manuscript.

3.1.3. Publication

Published as:

Linsel, A., Bér, K., Haas, J., Hornung, J., Greb, M.D. and Hinderer, M. (2020): GeoReVi:
A knowledge discovery tool for subsurface characterization SoftwareX.
doi:10.1016/j.s0ftx.2020.100597
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Introduction

Subsurface characterization is a crucial step when planning its
utilization. A prominent example is the development of natural
resources hosted in a subsurface region. Here, with regards to
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geothermal, groundwater or hydrocarbon reservoirs, a region in
the subsurface needs to be characterized in order to assess its
petrophysical properties and to predict the performance of the
resource exploitation process. Reservoir characterization is de-
fined as 'the process of preparing a quantitative representation of
a reservoir using data from a variety of sources and disciplines’ [1].

2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Knowledge discovery in databases process after [2] and [3].

Accordingly, as numerous physicochemical rock and fluid prop-
erties contribute to a reservoir’s potential, this problem can be
considered being multidimensional with numerous contributing
domains. However, any type of subsurface utilization requires
a comprehensive knowledge of the subsurface architecture and
the spatial distribution of relevant properties such as permeabil-
ity and porosity for making profitable, business-critical yet sus-
tainable decisions [4]. Consequently, modern automatized tech-
nologies for integrated exploration and modeling of subsurface-
related data are required to increase subsurface predictability and
to eventually optimize the subsurface utilization process.

Subsurface-related data are aggregated from multiple scales
and numerous domains with contrasting ontologies [5]. These
data are produced in well log measurements, in outcrop analog
studies, drill core investigations, geophysical surveys or during
development and can be both static (e.g. depth of lithological bod-
ies) or dynamic (e.g. production rates). Numerous fundamental
rock properties differ in their physical and mathematical nature.
Rock properties such as permeability, stress, thermal conduc-
tivity/diffusivity are direction-dependent tensors [6-8] whereas
porosity or grain density are scalar quantities. This diversity in
mathematical and physical formats increases the effort to nor-
malize reservoir-related data models and hampers data analysis
and modeling of the properties. Often, these issues lead to inaccu-
rate simplifications during flow and mass transport simulations
such as assuming rock and fluid properties to be isotropic and
homogeneously distributed in space and/or time.

With this study, we intend to bridge the gap between data
collection, data management and integrated data analysis and
visualization in the process of subsurface characterization. There-
fore, we developed a software system called GeoReVi (Geological
Reservoir Virtualization) with an internal implementation of the
knowledge discovery in databases (KDD) process covering mul-
tiple aspects of visual analytics according to [9]. This software
system enables domain experts to interactively manage and an-
alyze any kind of spatial and multidimensional data sets through
data processing, transformation, selection, import and mining
algorithms.

1.1. Knowledge discovery in databases

The interdisciplinary field of KDD comprises a set of semi-
automatic, non-trivial methods to extract novel, understandable,

valid and useful patterns from domain-specific data sets stored
in mature databases [3,10]. Those patterns are evaluated by the
domain expert in order to extract '’knowledge’ [3]. The relationship
between data and knowledge is commonly illustrated with the
Data-Information-Knowledge-Wisdom (DIKW) hierarchy, which
has been reviewed by [11]. The first conceptualization of the
hierarchical representation of data, information and knowledge
is defined in [12] and [13]. [13] defines data as 'symbols’, infor-
mation as 'data that are processed to be useful’, knowledge as the
‘application of data and information’ and wisdom as the ’appreci-
ation of why'. We will adhere to [13] and refer to knowledge as
being 'know-how’ enabling information to be transferred into in-
structions. An example of this is planning a borehole for which we
need information about the spatial distribution of stratigraphic
units, structural elements and of physicochemical rock and fluid
properties. Fig. 1 illustrates the iterative, 8-stage KDD process,
which was conceptualized by [2] and redesigned and improved
by [10]. The process starts with the domain expert’s knowledge
that is aimed to be maximized within the KDD process. The do-
main can be any discipline in which data are produced, managed
and analyzed. Core of the KDD process is a set of data mining
(DM) algorithms, which are deployed on a processed data set in
order to find characteristic patterns or models. Prior to DM, data
are selected, projected, cleaned, reduced and transformed by the
domain expert. Pre-processing is supported by computer-aided
process automation and intelligent pre-selections. DM algorithms
in general comprise classification, summarization, correlation, re-
gression, prediction and rule-discovery algorithms, whereby each
DM algorithm is best suited to a specific problem.

2. Software description
2.1. Software architecture

GeoReVi is structured according to a client-server architec-
ture. An illustration of the overall architecture is provided in
Fig. 2a. GeoReVi is intended to be used in private, multi-user
networks by using an application role authentication together
with user credentials, which can be used to store and retrieve
user-specific data. The server-side data storage is implemented
as a relational database management system. However, GeoReVi
can also be used in a local mode, where all data are stored in
an integrated NoSQL database. GeoReVi targets the exploration
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loop of the knowledge generation model for visual analytics
(KGMVA) after [14] (Fig. 2b). Within this model, a human expert
extracts knowledge from huge data sets through interaction with
a computer-aided feedback-loop of data selection, modeling and
visualization. An important characteristic of a visual analytics
system is the continuous interplay of automatic background pro-
cesses and interactive visualization. With the provided architec-
ture, a domain expert can manage and retrieve subsurface-related
data while simultaneously analyzing and modeling a subsurface
domain of interest.

2.2. System implementation

GeoReVi’s client system has been developed with the Windows
Presentation Foundation (WPF), which is included in the Microsoft
.NET framework. We implemented the Model-View-ViewModel
(MVVM) pattern that strictly separates the business logic from the
graphical user interface and from the data model by dissociating
these components into separated layers. For efficient MVVM-
development the Caliburn.Micro framework was used. GeoReVi

provides a modular structure using the Managed Extensible Frame-
work (MEF), which makes the plug-in-based extension of the
system easier for other developers.

In the Data Access Layer (DAL) the implemented data model
is represented by a set of Plain Old CLR Objects (POCO) defined
in the C# language. For database connectivity, we use the well-
established Entity Framework 6, an object-relational mapper for
the .NET framework, with the Code First approach. In order to
provide compatibility to both relational and NoSQL databases, the
POCO models were supplemented by data annotations from the
System.ComponentModel assemblies. The database used for the lo-
cal version is LiteDB, which is open-source and completely written
in .NET C# managed code for offline data management. Business
logic (BL) was developed with the object-oriented programming
language C#. The business logic consists of view models and
helper classes. The presentation layer or graphical user interface
(GUI) displayed in Fig. 3 has been developed using the XML accent
XAML (Extensible Application Markup Language).
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2.3. Software functionality

For a comprehensive overview of the functionality of GeoReVi,
we refer to the user manual. However, in the following sections
it will be briefly outlined how GeoReVi can be used to store,
analyze, model and visualize geoscientific data.

2.3.1. Data storage

GeoReVi’s logical data model (LDM, see Fig. 4) comprises the
most common entities needed to assess the potential of subsur-
face geological media to store and extract heat or fluids sus-
tainably. GeoReVi is specialized on geothermal rock and fluid
properties, although the most important properties for oil and
gas reservoir characterization are included as well. The basis for
GeoReVi's LDM is built by the data collection of [15] that was
remodeled into a relational data model according to the relational
theory after [16]. Additionally, selected parts of the LDM for rock
mechanics from [17] and the global geochemical database of [18]
were used to extend GeoReVi's LDM. However, most data models
are developed within a specific environment, wherefore each
LDM had to be adapted to provide compatibility with the core
scheme of GeoReVi.

For convenient data storage, custom drop-down menus, list
boxes, data grids, color and date picker controls were developed
that provide predefined domains. For manual data input, custom
text boxes are provided. In order to reduce the number of controls
in a view, sub-navigation is implemented via expandable menus
or tab controls. To load bulk data sets into the database, a generic
import procedure was developed that can semi-automatically
assign data from .CSV, XLS or .XLSX files to the entities in the
database.

2.4. Statistical data analysis and subsurface modeling

For statistical data analysis and data visualization the user can
load a set of univariate or multivariate measurement values of
one or more samples or objects of investigation into the buffer
memory, which are displayed in tabular format. Each data set
loaded into the buffer memory is by default a mesh. A mesh
consists of nodes, faces (quadrilateral or triangular) and cells
(hexahedral or tetrahedral). GeoReVi covers individual function-
ality for 1-D, 2-D and 3-D mesh generation and for 3-D mapping.
The user can select the meshes and create the visualizations and

analyses with few commands. The meshes can be parameter-
ized using both stochastic and deterministic algorithms such as
inverse distance weighting (IDW), multiple varieties of kriging
or conditional simulations. The quality of the models can be
assessed with different types of cross-validation. Multivariate
analyses in GeoReVi comprise k-Means cluster analysis, principal
component analysis, self-organizing maps (Sammon mapping),
bivariate regression and correlation analysis. The theory of the
most important property modeling and statistical methods is
explained in detail in the user manual, which also contains a
detailed tutorial.

2.5. Data visualization

Custom controls were developed to visualize the data sets.
Therefore, the dependency injection pattern has been imple-
mented, which ensures that the properties of a control are loosely
coupled with the properties of the instantiating class. This pattern
simplifies the data binding of a view to its view model as well
as the navigation between views. Chart controls comprise scatter
charts, matrix charts, bubble charts, bar charts, line charts, box-
whisker charts, ternary charts and combined line-bar charts. For
3-D visualization, the base functionality from the well-established
HelixToolkit. WPF was used. In 3-D space, meshes can be visualized
as point clouds, volume or surface meshes or as vector fields.
Figures and charts can be exported in raster format (.PNG, .JPEG
or .BMP) as well as in vector format (.EMF, .XAML or .PDF). 3-
D objects can be exported as .OBJ, .X3D or .XAML files or in
a custom, XML-based serialization with the extension .GMSH.
GeoReVi enables to import and transform 3-D objects in .OBJ
format and images in .PNG and .JPG format. Those may serve
as target objects for mapping structures that can be used for
surface interpolation. Moreover, this function includes ground-
penetrating radar (GPR) and seismic datasets if they are provided
in one of the aforementioned file formats.

3. Illustrative example

3.1. Spatial heterogeneity of a compartmentalized sandstone forma-
tion

In order to demonstrate the capability of GeoReVi to assist
the knowledge discovery process connected to geoscientific prob-
lems, the intrinsic 3-D heterogeneity of fundamental petrophysi-
cal properties within a potential geothermal target formation was
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Fig. 5. (a) Photogrammetric model of the investigated sandstone quarry with marked sample locations and structural elements. The faults have a displacement of
several meters. (b) Empirical distribution of the effective porosity in the Disibodenberg Formation. (¢) Experimental semivariogram and variogram model of the
effective porosity used for kriging and sequential Gaussian simulation (MAE = mean-absolute-error) (d) Principal component analysis in the form of a biplot and
scree plot combined with a k-Means cluster analysis of the rock properties grain density (pg), bulk density (p,), effective porosity (¢), intrinsic permeability («),

thermal conductivity (A) and thermal diffusivity (o).

Table 1

Arithmetic mean (x), minimum (min), maximum (max), variance (o), coefficient
of variation (c,) and Dykstra-Parson coefficient (cgq,) of the measured rock
properties: grain density (o), bulk density (o), effective porosity (¢.), intrinsic
permeability («), thermal conductivity (A) and thermal diffusivity (o).

Pg Pb Pe K A o
Unit g/cm? g/cm? % mD W/(m - K) 10-5m?/s
X 2.66 2.17 18.5 2.64 231 1.53
min 2.64 2.12 16.98 0.7 1.99 1.28
max 2.67 2.31 20.23 4.6 2.57 1.75
o? 2.1e-5 le—4 0.6 0.6 0.01 0.01
Cy 0.003 0.015 0.04 0.31 0.07 0.11
Cdp 0.002 0.01 0.06 0.31 0.30 0.07

investigated in a quarry that is influenced by tectonic compart-
mentalization. The case study comprises numerous tasks that are
involved in typical subsurface characterization workflows, includ-
ing data integration, non-orthogonal mesh generation, statistical
data analysis, spatial estimation and data visualization.

The investigated outcrop is located in Obersulzbach in south-
western Germany and contains sedimentary rocks from the Disi-
bodenberg Formation (Glan Subgroup) belonging to the Permian
Rotliegend Group in the Saar-Nahe-Basin. The Disibodenberg For-
mation in the quarry is an outcrop analog for the deeply buried
formation in the northern Upper Rhine Graben [19]. Here, the
deltaic sandstone bodies of the Disibodenberg Formation can be
considered as potential hydrothermal reservoirs for power and
heat production due to suitable permeability and porosity and
sufficient thicknesses [20]. A low-offset strike-slip fault zone,
which ranges from x = 14 m to x = 20 m, separates the outcrop
into two major parts (Fig. 5a).

Measuring 50 x 15 x 10 meters, the extent of the outcrop is
comparable to typical cell sizes of reservoir models built for in-
dustrial and scientific applications [21,22]. 36 cylindrical, oriented

rock samples were taken from the outcrop wall and investigated
in the laboratory determining the intrinsic permeability, grain
and bulk density, effective porosity, thermal conductivity as well
as thermal diffusivity (Table 1) of the rock matrix. Those prop-
erties can be considered key properties controlling heatflow in
porous aquifers with regard to hydrothermal systems [23,24]. All
samples and readings are documented in the local database of
GeoReVi. The sampling strategy aims to simulate pseudo-wells in
3-D space in order to demonstrate the capability of GeoReVi to
operate in 3-D environments.

The laboratory results were analyzed by descriptive and mul-
tivariate statistics for initial exploratory data analysis. Subse-
quently, the data sets were interpolated and simulated in 3-D
space using inverse distance weighting (IDW), simple kriging
(SK), ordinary kriging (OK) and sequential Gaussian simulation
(SGS). For the parameter prediction, a 3-D hexahedral mesh with
80,000 cells was generated using an IDW interpolation of a pho-
togrammetric model of the outcrop wall (Fig. 6a). The results
were validated through leave-p-out cross-validation (LPO) pro-
viding the root-mean-square error (RMSE) and mean-absolute
error (MAE). Each of those steps was performed with GeoReVi
using the incorporated data mining and geostatistical algorithms
and the interactive visualization capabilities.

3.1.1. Results

According to the classification provided by [21], the coefficient
of variation ¢, and the Dykstra-Parson coefficient ¢4, indicate
a very low heterogeneity of the sandstone formation (Table 1).
However, the grade of heterogeneity varies among the considered
rock properties. Intrinsic permeability owns a 100-times higher
heterogeneity than grain density, which represents the most ho-
mogeneous rock property in turn. This is due to a homogeneous
mineralogy of the sandstone. At the same time, secondary poros-
ity, produced by feldspar dissolution [25], and non-pervasive
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Fig. 6. (a) Hexahedral mesh generated by mapping the photogrammetric outcrop model. The model consists of 80,000 cells and has a volume of 8999 m>. The mesh
is used as a target for the interpolation and simulation processes. Comparison of IDW (b), SK (c) and OK (d) interpolations and SGS (e) simulation on the porosity
data set of the quarry Obersulzbach. (f) Vertical cross section through the SGS realization (e) from point X; to X;. (g) Empirical and theoretical distributions of the

realizations in comparison to the original theoretical distribution.

cementation lead to a heterogeneous network of both closed and
enlarged pore throats, strongly increasing the spatial variability
of the permeability.

The cluster analysis (Fig. 5d) highlights the differences in the
rock properties across the footwall and the hanging wall. Cluster
one represents the samples east of the fault zone and cluster two
the samples west of it. Five samples were categorized incorrectly
with regard to their positions relative to the fault zone. Those
samples, however, are located close to it and hence could be
affected by tectonic overprint. Moreover, results from cluster
analysis correspond well with the principal component analysis

(PCA) where the categories derived from the cluster analysis are
projected onto different regions in the biplot.

It can be seen that effective porosity shows a bimodal dis-
tribution between 17 and 20% (Fig. 5b). The effective porosity
in the eastern part of the quarry is slightly higher than in the
western part (Fig. 5a). The SK, OK and SGS realizations provide
a low RMSE of 0.64, 0.65 and 0.64% respectively. The RMSE of
the IDW realization (0.84%) is higher. Compared to the original
histogram (Fig. 5b), IDW, SK and OK underestimate the original
range whereas SGS reproduces the range appropriately (Fig. 6g).
Contrary to the cross-validation results, IDW reflects the bimodal
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porosity distribution and hence the two-fold compartmentaliza-
tion of the rock volume, which is exposed in the outcrop, more
accurately than the other algorithms (Fig. 6b-e). SGS reproduces
the observed variability best, which is also indicated by the sharp
physical contrasts observable in the 2-D cross section which is
taken from the SGS realization (Fig. 6f).

4. Impact

To the best of our knowledge, GeoReVi is the first open-
source software system that incorporates the entire KDD process
for subsurface characterization into one extensible application.
The software system can be applied to address a wide variety
of geoscientific research questions related to subsurface char-
acterization — however, also general geoscientific problems can
be addressed. This distinguishes GeoReVi from existing software
solutions which are often tailored to meet the needs of specific
disciplines such as hydrocarbon extraction or heat production.
The modular architecture makes GeoReVi easily extendable for
other researchers and the broad range of data mining algorithms
and conventional geostatistics opens up new paths to go.

The system was tested in a series of outcrop analog stud-
ies [26] from both petroleum and geothermal research projects.
GeoReVi allows researchers to produce optimized spatial prop-
erty models through rigorous cross-validation and visual inspec-
tion of the results. Academic researchers can use GeoReVi as an
integrated data repository, analytical platform and visualization
system in the context of subsurface characterization. Thanks to
the ability to handle local spreadsheet files, GeoReVi is not only
limited to the data model provided by its database. Various types
of spatial problems can be addressed by the generic yet simple
spatial representation of geoscientific data sets.

5. Conclusions

GeoReVi constitutes an integrated software system that facili-
tates reservoir engineers, geoscientists, petrophysicists and other
researchers to largely automate the subsurface-related data man-
agement and knowledge discovery process. The generic knowl-
edge discovery potential of GeoReVi comprises statistical and spa-
tial relationships among any kind of rock properties, optimized
spatial predictions at any scale of subsurface investigations, un-
certainty estimations and the discovery of multidimensional pat-
terns in relational data sets. The normalized data scheme of
GeoReVi makes the software robust to changes in the domain
knowledge of subsurface characterization. Semi-automated pre-
processing increases robustness of the data mining algorithms
regarding sparse, erroneous or multidimensional data sets.

GeoReVi is able to overcome problems from existing open-
source software packages related to geostatistics or geological
modeling [27] such as the limited applicability of algorithms
to 2-D features or regular lattices, restricted expert interaction,
single-user environments and data storage limitations. Moreover,
expensive commercial software packages - suitable to address
those issues - are usually employed as black-box tools. With our
work, we aim to contribute to the ongoing development of open-
source, intelligent, automated data analysis systems by providing
an intuitive and extensible geoscientific data management and
analysis tool. Ongoing research will focus on the development of
plug ins for finite element simulation of subsurface heat transfer
and fluid flow.
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Appendix A. Sample availability

Samples are available at the Institute of Applied Geosciences in
Darmstadt, Germany. Moreover, they are registered in the System
for Earth Sample Registration (SESAR, www.geosamples.org) with
the code names provided in Table A.1.

Table A.1
Rock samples taken from the outcrop in Obersulzbach with the associated
International Geo Sample Number (IGSN).

Sample IGSN | Sample IGSN
OSB1_1 IEDALO046 0OSB25 IEDALOOOP
0SB1_2 IEDAL0045 0SB26 IEDALO00O
0SB6 IEDAL0004 0SB28 IEDALOOOM
OSB7 IEDALO003 0SB29 IEDALOOOL
OSB8 IEDALO002 0OSB30 IEDALOOOK
0SB9 IEDALO001 0SB31 IEDALO0O]
0SB10 IEDALOOTW 0SB32 IEDALOOOI
OSB11 IEDALOO1V OSB33 IEDALOOOH
0OSB12 IEDALOO1U 0OSB34 IEDALOOOG
0SB13 IEDALOO1T 0SB35 IEDALOOOF
0SB14 IEDALOO1S 0SB36 IEDALOOOE
OSB15 IEDALOO1R OSB37 IEDALOOOD
0SB16 IEDALO01Q 0SB38 IEDALO0OC
0SB17 IEDALOO1P 0SB39 IEDALOOOB
0SB19 IEDALO010 0SB40 IEDALO008
0SB21 IEDALOOOS 0SB41 IEDALO0O7
0SB22 IEDALOOOR 0SB42 IEDALO006
0SB23 IEDALO00Q 0SB43 IEDALO005

Appendix B. Data availability

Data is available in the online repository and provided as
a training data set for the GeoReVi tutorial. Also, the data is
partly integrated into the local database that is shipped with the
executable file.
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Figure 3.2.: Multi-scale reservoir characterization concept as applied in the Shell Digital Geology
project (from Kloosterman et al. (2017)).

Publication II presents one sub-project of the Shell Digital Geology project which aims
at demonstrating how the ongoing digitization can be used to support experts in the
process chain of subsurface characterization. Our task within that project involved a
comprehensive petrophysical laboratory campaign conducted on seven rock slabs from
seven different depositional environments.

The software application GeoReVi (Publication I) was used to manage the data sets with
>10,000 readings of eight representative rock properties derived from 881 rock plugs.
Furthermore, GeoReVi was used to perform the statistical analyses and the geostatistical
interpolations.

The results of the study were used by Shell for building up their Digital Geology training
center. Our study represents the Grain Scale (Fig. 3.2) which constitutes one of the
smallest scales of investigation in a multi-scale reservoir characterization process chain.
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Heterogeneities in Sedimentary Rocks:
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and to Predicting Lithofacies-Dependent
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ABSTRACT

Quantitative lithofacies characterization and prediction
of reservoir properties is challenging on the scale of
individual grid blocks (voxels) of geocellular models. To
better understand variability of petrophysical properties
on this scale, this study links geological features and
petrophysical properties based on high-resolution char-
acterization and innovative analysis methods on grain
and bed scale.

Samples from two commonly occurring clastic deposi-

tional systems were investigated: i) a siliciclastic fluvial

channel and ii) a carbonate ramp. Of these 2 deposition-

al systems, a total of 7 subenvironments were sampled.

i) The fluvial channel system is stratigraphically part of
the Triassic Lower Bunter Formation in SW-Germany.
The formation consists of sandstone interbedded with
shale. Three rock slabs, each representing a subenvi-
ronment, were investigated: 1. channel base, 2. mid-
channel bar and 3. marginal sand bar.

i) The carbonate ramp samples belong stratigraphically
to the Triassic Upper Muschelkalk Formation, also in
SW-Germany. The formation consists of limestone,
dolomite, and marl. Carbonate samples represent

the following subenvironments: 4. lagoon, 5. tidal flat,
6. shoal and 7. foreshoal.

Investigated were rock slabs measuring 50x50 cm
(sandstone) and 100x30 cm (carbonates). Up to

145 core plugs measuring 2,45x4 cm were drilled out
of each slab. Geological properties measured in detail
include grain size and sorting as well as sedimentolog-
ical attributes of individual lithofacies as indicator for
hydrodynamic flow conditions during time of deposition.

Pore systems of sediment samples were investigated
using thin sections and scanning electron microscope
(SEM). Petrophysical properties analysed include effective
He-porosity, apparent permeability measured in 3D, intrin-
sic permeability, ultrasonic p-wave and s-wave velocity,
as well as resistivity.

The resulting database contains almost 1,000 samples and
over 10,000 measurements. The data were used to construct
uni- as well as multivariate geostatistics. These include
distribution analyses, experimental variogram and princi-

pal component analyses. Data were visualized as scatter-,
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bar-, bi- and box-whisker plots to investigate relationships
between geological and petrophysical properties. Moreover,
petrophysical core plug measurements were superimposed
as “bubble plots” on to each slab with its interpreted lithofa-
cies to avoid statistical data bias. At least simple kriging is
introduced to spatially interpolate the readings.

Results show that petrophysical properties show large vari-
ability between slabs (= dm to m scale) that represent dis-
tinct subenvironments. However, a large variability is also
observed on the scale of individual plug measurements (=
cm scale) within each slab composed of distinct lithofacies.

Spatial heterogeneities do not exclusively coincide

with depositional surfaces (bedding planes, erosive
surfaces) but with the textural framework. Both reflect
changes in energy conditions during time of deposition.
Hence, the definition of a depositional subenvironment
of a rock slab (grid block) or a lithofacies type for similar
beds may only partially capture the heterogeneities ob-
served. In general, it is crucial to map major bounding
surfaces as well as trends within them to serve as proxy
for hydrodynamic energy during deposition. With that
information, it is possible to partition rocks into areas of
similar petrophysical properties and better understand
variability as an input to enhance interpolation at grid
block scale.

INTRODUCTION

Heterogeneities and rock properties at millimetre to deci-
metre scale (grain scale) play a significant role for fluid
flow dynamics on a grid block scale (Weber, 1986). Cen-
timetre-scale permeability barriers for example reduce
the overall permeability of a reservoir, if fluids pass them
towards a well bore for example. The lowest permeability
of a reservoir rock represents the overall permeability
(Jennings and Lucia, 2003). This effect is less significant
when reservoir fluids flow parallel to permeability barri-
ers. Hence, it is crucial to treat permeability variations
and their anisotropy as a vector property in geological
models (Jennings and Lucia, 2003). In this study, we ad-
dress grain scale heterogeneities in terms of permeabil-
ity and porosity and relate those rock properties to spe-
cific pore systems. Other petrophysical properties such
as resistivity and sonic wave velocity were measured

at these rock samples, data are shown in this paper as
well, but they are not discussed further.

Investigations show that the distribution of petrophysical
properties largely mimics heterogeneities due to deposi-
tional processes. Thus, petrophysical properties can best
be represented in digital models by modelling them co-lo-
cated with depositional geometries.

GRAIN

This study was part of Shell’s Digital Geology Project (see
this book) where it represents “grain scale” heterogene-
ities. This paper presents the most significant data and
results of the project. Geological attributes of the rock
slabs investigated and the corresponding petrophysical
measurements are shown at the Digital Geology training
centre mounted in the Shell Headquarter in The Hague,
the Netherlands.

DATABASE

Rock slabs of up to 1 m height are used to capture pet-
rophysical heterogeneities at grain and bed scale and
obtain results that are representative for specific facies
types with statistical significance. Rock slabs of common
depositional environments were investigated in terms of
lateral and vertical changes of petrophysical properties
and their dependency to pore system and sedimentary
features. In total, seven rock slabs were selected to cov-
er two commonly occurring depositional environments
that frequently contain hydrocarbons:

i) Fluvial stream depositional system
i) Carbonate ramp depositional system

i) The clastic fluvial deposits investigated belong to the

Lower Bunter Sandstone Formation. The rock slabs are

derived from quarries in SW-Germany. The slabs repre-

sent typical depositional subenvironments as illustrated

in the facies model by Einsele (2000). The three slabs

represent different parts of a fluvial channel belt (Fig-

ure 1) and thus reflect different levels of depositional

energy:

e Slab 1: sandstone with mud clasts representing channel
base deposits

e Slab 2: sandstone, cross-bedded representing trans-
verse sand bar deposits

e Slab 3: sandstone, ripple bedded to massive, repre-
senting channel margin deposits

The depositional system sampled extends for tens of
kilometres, much beyond the size of quarries that are
hundreds of metres wide. Hence, rock slabs were cut
out in different quarries that are all located in the same
stratigraphic unit to obtain rock slabs of genetically relat-
ed depositional elements. The slabs are 50 cm in height
(vertical direction or z-axis) and sample the full range of
sedimentary structures commonly observed in this dep-
ositional system. The width (lateral direction or y-axis)

of all rock slabs is 50 cm as well. The y-axis of the rock
slabs is oriented in dip direction of the depositional sys-
tem, that is, the flow direction of the channel system. This
assures the slabs sample the area of expected maximum
heterogeneity as foresets cross it. As plugs are drilled



Channel center

©,

Channel base

along the x-axis, most of them do show parallel foresets
in this direction. Hence, in x- and z-direction, foresets
cross the plug. This is related to stream direction as the
x-direction represents the strike of the channel system
and corresponds to the thickness of the slabs (6 cm). So
one can assume a lower degree of heterogeneity in that
direction, but this direction cannot be investigated ac-
cordingly due to its small extend.

ii) The carbonate samples were selected based on the
paleogeographic orientation suggested by the carbonate
ramp model proposed by Aigner (1985). The slabs are
derived from common and representative ramp suben-
vironments (Figure 2) representing the facies model of
Einsele (2000).

Samples of four typical and commonly occurring subenvi-

ronments were selected:

e Slab 4: dolo-mudstone, representing lagoon

e Slab 5: lime-mud- to wackestone, cross-bedded, repre-
senting tidal flat

e Slab 6: lime-grainstone, cross-bedded, oolitic repre-
senting shoal

e Slab 7: lime-packstone, graded, bioclastic representing
foreshoal

The depositional subenvironments extend for several tens
of kilometres. Hence, samples were extracted from sever-

al quarries requiring also change of the stratigraphic level.

FIGURE 1

. The Triassic Bunter Sandstone
Channel margin
of SW-Germany was chosen

as a siliciclastic example for a
braided fluvial channel system.
Three slabs were recovered
from different quarries. (1)

The basal part of a channel,
(2) midchannel bar sands and
(3) sandy bedforms of upper
bar or marginal positions of
the channel system. Note the
different appearance of the
S slabs is caused by different
lithofacies types. Facies model

after Einsele (2000).

Rock slabs measure 100 cm by 30 cm. The long side (100
cm) represents the vertical direction (z-axis). It samples
many different geological layers. The small (30 cm) side
(y-axis) was selected along the direction where most het-
erogeneities can be observed. The thickness (6 cm) of the
slab represents the x-axis. All seven rock slabs are cut out
in active quarries, from un-weathered surfaces in SW-Ger-
many. The sample locations/formation/quarry owners of all
slabs are listed below.

i) Fluvial channel system

All slabs belong to the Lower Bunter Sandstone Forma-
tion of Lower Triassic age. Stratigraphically, they belong
to the uppermost part of the Calvérde Member and the
lowermost Bernburg Member of the Lower Bunter For-
mation. Locally, the unit is referred to by its trade name
as Miltenberger Sandstein Formation. The international
stratigraphic code is ‘SuM’. In detail, samples come from
the following:
e Slab 1: quarry of the company Wassum at 63897 Milten-
berg, Germany
49.7135071°N, 9.2549472°E
e Slab 2: quarry of the company Wassum, 63897 Milten-
berg, Germany
49.7135071°N, 9.2549472°E
e Slab 3: quarry of the company Zeller, 63930 Umpfen-
bach, Germany
49.689447°N, 9.368433°E
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Tidal flat

Foreshoal

INNER RAMP

Shallow ramp
buildups, calitic
and peloid sands

OUTER RAMP

Coral and algal
patch reefs

Fair-weather wave base

Isolated bioherm on slope.

Hardground (lacally)
Shelly bioclastic and oolitic sands
Muddy skeletal limestone, bioturbated

I ite sh tempesti
iisad e Calcarenite sheets, tempestites

intensely bioturbated

ii) Carbonate ramp system

e Slab 4: Upper Jurassic, Middle Kimmeridge
(Malm-Delta), stratigraphic code “ki 2, d, ri+b”, trade
name Pfraundorfer Dolomit, quarry near Pfraundorf,
49.0034532°N, 11.4284639°E, operating company
Zeidler & Wimmel, 97268 Kirchheim/Franken, Germany.

e Slab 5: Upper Muschelkalk-Formation, Trochiten-
kalk-Formation, stratigraphic code “moT”, trade
name Mooser quarry near Geroldshausen-Moos,
49.673615°N, 9.872273°E, operating company Borst,
97268 Kirchheim/Franken, Germany.

e Slab 6: Upper Muschelkalk-Formation, Trochiten-
kalk-Formation, stratigraphic code “moT”, trade
name Crailsheimer Muschelkalk, quarry near Neiden-
fels-Kernmuhle, 49.1759234°N, 10.0458996°E, oper-
ating company Schoén & Hippelein, 74589 Crailsheim,
Germany.

e Slab 7: Upper Muschelkalk-Formation, Trochiten-
kalk-Formation, stratigraphic code “moT”; trade name
Kirchheimer Muschelkalk, quarry near Kirchheim/Unter-
franken, 49.656497°N, 9.857227°E, operating company
Hofmann-Naturstein, 97956 Werbach, Germany.
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As a carbonate clastic system,
the Upper Muschelkalk of SW-
Germany was selected. Slabs

Lagoon

are typical representatives for
the facies model: (4) mudstone,
lagoonal deposits showing
dolomitization and other early
diagenetic processes; (5)
wake- and packstone, tidal

flat; (6) grainstone, shoal; and
(7) rudstone and grainstone,
foreshoal. Facies represent the
model after Einsele (2000).

. Pellet sand
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METHODOLOGY

Nondestructive measurements were performed on both
sides of each slab. These measurements included perme-
ability using mini-permeameter technique with air, ultra-
sonic p- and s-wave velocity, and resistivity. These data
are not discussed in this paper. However, they are used
for quality control of core plug measurements. Core plugs
are drilled out of one side of a slab, while the other side
remained untouched as ‘display face’ for training purpos-
es at the Shell exhibition.

A grid of sample points was laid out covering each slab
to indicate where core plugs (diameter 25 mm) were to be
retrieved. The grid has a spacing of roughly 50 mm and

is aligned to sedimentary structures and other heteroge-
neities to get different distances for statistical analyses
and to avoid having completely different lithofacies types
in a plug. Each slab contains up to 145 sampling points.
An additional 32 plugs with only 10 mm plug diameter
were extracted from small regions of two slabs to check
upscaling issues. Core plugs were then drilled out with a



diamond-bearing crown penetrating 40 mm deep into the
slab. Penetration time of the drilling crown into the rock
was measured under standard conditions mimicking the
rate of penetration (ROP) of a drill bit. We do not introduce
these data here.

This paper provides a summary of some basic information
on the used plug-measurement techniques. Extended de-
scriptions of the project can be found in Schroder (2015),
Gumbert (2015), Olmez (2018) and Scheid (2016). A
detailed assessment of data quality, accuracy and repro-
ducibility of gas permeameter readings are provided by
Olmez (2018), Scheid (2016) and Filomena et al. (2014).

Permeability

In principle, two different types of permeabilities exist: the
‘intrinsic’ permeability and the ‘apparent’ permeability. The
‘intrinsic’ permeability is considered a materials property,
which is independent of the used fluid and conditions of
measurement (Klinkenberg, 1941). It is commonly deter-
mined in a cylinder-cased probe (e.g., Hassler cell) using
multiple measurements with different pressure steps. The
‘apparent’ permeability is a single reading where conditions
of measurement and fluid properties cannot be cancelled
out. Therefore, it is a relative measure that can be com-
pared only to measurements under the same conditions
(Filomena et al., 2014). Usually, it is performed by surface
injections with an air probe. The method is commonly re-
ferred to as “mini-permeability” or “relative permeability”.

In this study, an air-driven permeameter (Hornung and
Aigner, 2004, Filomena et al., 2014) was used to establish
permeability. This permeameter determines the intrinsic
permeability as well as apparent permeability. The tool
has a measurement range of intrinsic permeability from
0.5 uD to 70 D, if the size of the core is varying. Plugs
used in this study had a diameter of 25 mm and are 20
mm to 40 mm in length. Permeability measured at these
plugs ranged from 13 uD to 2.5 D. To realize also an ex-
ceptional low range of apparent permeability, an injection
tip is used, which is adapted to the shape of the plug sur-
face. It is sealed with soft neoprene foam owning a closed
cell structure. In tests with an impermeable plug (metal,
plastic), leakage was beyond the range of the instrument.

Measurements in 3D are possible using the surface injec-
tion probe (apparent permeability) on different sides of a
plug sample. Surface injection probe measurements have
an injection diameter of 4 mm, integrating a rock volume
of just a few cm3. Considering the strong heterogeneity

at grain scale, apparent permeability is determined as an
arithmetic average of six measurements for each direction
(x, y, and z, respectively). This procedure is implemented
to minimize variability effects on spatial statistical data

when comparing apparent (surface probe) permeability
to intrinsic (cylinder probe) permeability, which integrates
over the whole plug volume (Jennings, 2000).

Two other known problems of surface-probe measurements
(apparent permeability) had to be addressed:

(1) The different flow directions measured with the surface
probe permeameter (apparent permeability) are not fully
comparable when using plugs. Measurements in x-direc-
tion use the cut-sections of the plug (front and back), which
have a flat surface. Measurements with flow directions in

y- and z-direction use the curved circumferential surface.
Hence, geometry effects of the gas flow may apply such as
smaller travel distances and penetrated volume when using
the circumferential surface of the plug. This is mainly due to
the preferential direction of the sediment structures. Please
see details in the anisotropy section later in this paper. To
make these analyses, fully comparable drillings in each
direction or better cubes should be used in future studies.

Porosity

Porosity was calculated as percentage of pore volume to
plug volume. Therefore, the volume of the grains and the
envelope volume of the plug are required to establish the
difference, which is the pore volume. The grain volume
was determined using a helium pycnometer (AccuPyc
1330™) from the company Micromeritics. The envelope
volume was calculated based on plug dimensions and by
using a powder pycnometer (GeoPyc 1360 ™), also manu-
factured by Micromeritics. Caution is required when mea-
suring carbonate samples that contain macroscopically
visible-pores. Macroscopic pores (vugs) are not detected
by the powder pycnometer. The powder invaded the
pores causing erroneous values. As plugs were carefully
cut resulting in a regular outer surface, calculating the
envelope volume provided better results as compared to
the powder-pycnometer method for vuggy carbonates.

Sonic velocity

Ultrasonic velocity (p- and s-wave) was determined along
the long axis of the plug. This corresponds to the x-axis
(thickness) of the slab. Travel times were picked manually
from a time-amplitude diagram. Velocity was calculated
using the length of the plug as distance. The device used
(USG-40™) was manufactured by the company Geotron.

Resistivity
Resistivity measurements strongly depend on the degree

of saturation. Hence, samples for lab measurements
require being water saturated as prescribed by the

DIGITAL GEOLOGY | GRAIN

165



166 DIGITAL GEOLOGY

GRAIN

Archie equation (Archie, 1952). Therefore, plugs were
100% saturated with ion- and gas-free water (lab quality,
conductivity <4 uS) under high vacuum. Complete water
saturation of plug was established at least for 30 min
before measurement took place. Tests reveal that read-
ings showed a high degree of repeatability after this time
interval (Boansi, 2015).

With this set-up, neither a qualitative nor a quantitative
comparison of measurements with in-situ subsurface
samples (e.g., logs) is possible. First, pore fluid properties
differ significantly at reservoir conditions. Secondly, satu-
ration is never 100% in reservoirs. In the subsurface, satu-
ration shows relationships between pore size distributions
based on the gravity-capillary equilibrium. In turn, in-situ
resistivity can be used to estimate porosity and permeabil-
ity together with an indicator of the rock fabric (Jennings
& Lucia, 2003). From the outset, this is excluded with our
data. Our results are a proxy for pore networks and petro-
logical composition (rock types) only. In a qualitative way,
relative differences among rock types however can be
investigated with this experimental set-up.

Statistical analyses

Statistical analyses of data and data visualization were
performed with the software tool GeoReVi (Geothermal
Reservoir Virtualization) developed at the Technical Uni-
versity of Darmstadt (Linsel et al., 2018). The user-friendly
software can generate adaptable stacked histograms,
variograms and bubble plots as well as principal compo-
nent analysis (PCA) and interpolation semi-automatically.
It is based on the Knowledge-Discovery in Databases
(KDD) process using an in-house database of the Techni-
cal University of Darmstadt, Germany. Bulk data sets can
be uploaded automatically from the measuring devices or
from datasheets in csv format.

RESULTS

Fluvial channel system

Lithofacies description

The three slabs of the fluvial channel system comprise
four principal lithofacies types (Figure 3). Petrographical-
ly, all are quartz arenites (Pettijohn, 1987) containing ap-
proximately 85-95% of quartz, 1-5% clay minerals, 1-3%
of mica and 3-7% of feldspar. All lithofacies types show
early diagenetic hematite cements coating grains. These
confer the reddish colours to the sandstone, a typical
name-giving feature of the Bunter Formation. Lithofacies
codes were used to differentiate samples based on Miall
(2012), Wentworth (1922) and Hornung & Hinderer (2011).

GRAIN

Sandstone, trough cross-bedded (code St)

This lithofacies type is characterized by trough-shaped
(tangential) foresets of 5-30 mm thickness and dipping
5-30° in a downstream direction. Sorting is poor to mod-
erate. Each individual foreset shows a fining-up trend
towards its top, which makes stratification recognizable.
Grain sizes are in the range of 350-500 um at the base of
the foresets and 64-125 ym at their uppermost limit. A lat-
eral fining upward trend exists from the lower to the upper
positions of a foreset. A set of stacked individual foresets
result in an overall fining upward trend of that lithofacies
type (350-500 ym to 177-250 pym).

The base of these bedforms is curved, indicating trough-
shaped foresets. Their height must have been upward of
30 cm. Thus, they classify as small dunes (Reineck and
Singh, 1980). Using the relationship of the mean grain
size, the height and the shape of the dune, it is possible
to determine stream velocities during deposition. The
deposits were formed in the upper flow regime, with flow
velocities between 90 and 110 cm/s (Reineck and Singh,
1980; Harms and Fahnestock, 1965) assuming >100 cm
channel depth and normal meteoric water.

Sandstone, planar cross-bedded (code Sp)

This lithofacies type shows the same dimensions and
appearance as St with three exceptions: Grain size is from
177 to 350 um, sorting ranges from well to very well, and
the shape of the foresets is planar. This implies that the
crest of the ripple is linear and continuous. According to
the flume tank experiments (Reineck and Singh, 1980),
these megaripples formed under stream velocities around
40-60 cm/s, which is significantly lower than the stream
power of facies St.

Sandstone, ripple cross-hedded (code Sr)

The ripples in this facies show the same features as facies
Sp and St, but they are much smaller (<10 cm set thick-
ness). Foresets show convex, planar and trough-shaped,
nonerosive boundaries. Sorting is poor to moderate and
grain sizes range from 177 to 500 uym. These attributes
suggest that they were formed in the lower flow regime
ranging from 15 to 40 cm/s (Reineck and Singh, 1980).

Sandstone massive (code Sm)

The term ‘massive’ is used for sediments without visible
sedimentary structures. The grain size of such samples

is lower than in the other lithofacies types and ranges
from 125 to 177 pm. In some cases, samples show weak
fining or coarsening upward trends, considering that the
grain-size sediment likely formed in the lower flow regime,
starting immediately with the transport at 15 cm/s stream
power. As there are no sedimentary structures, this means
that there was no time to form them. In conclusion, sed-
iment was likely mobilized and deposited suddenly, for
example, moving as a grain carpet with a flash flush.



Hence, hydrodynamic conditions can be considered as
highly unsteady with variable stream power.

A comparison of the three slabs shows that St and Sp domi-
nate at the channel base (slab 1) or channel centre. Sp dom-
inates the sand bar deposits within a channel (slab 2). Sm
and Sr dominate the higher sand bars/channel margins (slab
3). Hence, in terms of stream power, the samples represent
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a clear trend of decreasing depositional energy and towards
intermittent flow. These mimic a typical fluvial cycle in a
braided fluvial channel representing an upward shift from
channel base to overbanks or margin (Figures 1 and 3).

Multiparametric statistical analysis
Statistical methods lack a spatial connotation. This is a
disadvantage when sedimentary rocks, products of di-

Channel margin

Channel center

FIGURE 3

Position of the slabs with their
lithofacies in a typical braided
river succession of the Bunter
Sandstone (after Backhaus

and Béhr, 1987). Slabs
(=subenvironments) show a
decrease in depositional energy

in higher positions in the fluvial
cycle. Sl =Sand low angle
cross-hedded, Sp = Sand planar
cross-bedded, St = Sand trough
cross-bedded, Sr = Sand ripple
cross-bedded, Ss = Sand over
scoured base (lag deposits),
Fm = Fines massive, and

Channel base

Sm = Sand massive.
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rectional depositional processes and their petrophysical
response, are concerned. This issue is addressed using
bubble plots, which relate readings to their original posi-
tion on the sample (Figure 4a-c). It was realized by using
different colours representing the readings. Plots clearly
indicated that measurements show a relationship to sub-
environments and lithofacies types. In particular, poros-
ity, permeability and resistivity differences correspond
well with lithofacies boundaries, boundaries of individual
layers or foresets in vertical and horizontal direction.
These trends correspond with changes in sediment
composition, grain size and sorting. Accordingly, they
are related to systematic changes in rock texture due to
varying hydrodynamic conditions. In contrast, acoustic

Grain density

Grain density
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velocity (Vp/vs) shows a weak or no dependency to litho-
facies. They show a weak dependence to depositional
subenvironment.

Principal component analysis (PCA) was used on original
readings comprising all measured properties for a com-
parison of petrophysical and geological relationships of
each slab (Figure 5a-c). The two most important variables
(components on x- and y-axes) are compared to establish
their contribution to variability in an n-dimensional data set.
If the lines (biplot) of properties point into one of these 2
axes, this property suggests a strong primary or secondary
dependency. Property lines showing the same direction
are positively correlated. Property lines pointing in oppo-

FIGURE 4A

Bubble plots are used to display
petrophysical data accurately at
their spatial position, in order to
relate them to the corresponding
lithofacies. Slab 1 (channel
base), lithofacies show
differences in petrophysical

= properties and their distribution

03 04 05
Ay [m]

Sonic p-wave velocity (except p-wave). Note that
specific trends occur within a
lithofacies, individual bed and
even along a foreset. Systematic
trends are beyond the resolution
of any statistical method and
can be recognized only with
these kinds of plots. p-wave
velocity readings seem to be
independent from lithofacies.
For interpretation, see text.

FIGURE 4B

Petrophysical readings of slab 2
(channel centre/midchannel bar
sands) reveal systematic trends
as described in Figure 4a.




Grain density

Bulk density
05y

0.4}

site directions are reversely (negatively)
correlated. If they show a 90° angle, they
are independent from each other. Property
lines explain the spreading of the data set

in their specific directions.

All three slabs show that grain size and
sorting are negatively correlated. Larger
grain sizes are poorly sorted than finer
grain sizes. Porosity and permeability
show a strong positive correlation. In

-0
Component 1

contrast, some properties show variability
throughout subenvironments:

Ultrasonic speed (Vp/Vs) is negatively cor-
related with porosity and permeability in
slab 1 (Figure 5a, channel base) and slab
3 (Figure 5¢, channel margin). However,

it is uncorrelated to all other properties

in slab 2 (Figure 5b, channel centre). All
other properties measured at slab 2 are
exceptionally well correlated to each other.

FIGURE 4C

Petrophysical readings of

slab 3 (channel margin/upper
bar sands) show the same
systematic trends as described
in the capture of Figure 4a.
Here, p-wave velocity shows
trends as well, but they mainly
go along with cementation.
Other petrophysical parameters
are also affected hy this
pattern.

FIGURE 5A

PCA of slab 1 (channel base).
Axes display eigenvalues.
Sorting and grain-size/grain-
density bars point roughly into
opposite directions, which
mean that they are negatively
correlated. Their angles are
almost perpendicular to the
other properties, so they are
largely independent from them.
Porosity and permeability

are fairly aligned. They are
positively correlated. Ultrasonic
wave speed (Vs/Vp) shows

a negative correlation with
resistivity. Colours of convex
hulls correspond to colours

of sample locations at slab.
Positions of outliers outside

of hulls are indicated with red
circles on the slab. Note that
data clusters correspond to
certain areas at the slab (follow
the colour code). This means
that distinct areas show distinct
controls on petrophysics, which
are not necessarily distinct
lithofacies.
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FIGURE 5B

PCA of slab 2 (channel centre).
Axes display eigenvalues.
Note that point clusters plot
into distinct areas of the slab,
which do not correspond to
lithofacies. Dependencies and

relationships of the properties

Component 2

are significantly different
compared to the other channel
subenvironments. Outliers are
displayed in red. For details
and interpretation, see caption
of Figure 5a and text.

FIGURE 5C

PCA of slab 3 (channel margin).
Axes display eigenvalues. Note
that clusters of data points
dominantly plot into distinct
areas of the slab, mostly not
corresponding to lithofacies.
This is a common feature in all
subenvironments. Dependences
and relationships of properties
are only slightly different

compared to channel base
subenvironment. Outliers are
displayed in red. For details
and interpretation, see caption
of Figure 5a and text.

Resistivity changes coincide with porosity and permeabili-
ty variations in slabs 1 and 2. However, resistivity changes
correspond to changes in ultrasonic speed in slab 3.

Data points of all diagrams (Figure 5a-c) show strong clus-
tering despite such inconsistency. Data points are traced
back to their positions revealed a correspondence to the
lithofacies type of each slab. In slabs 1 and 3, coherent
point clusters correspond to successional areas, following
stratification and trends within lithofacies types. Each set of

GRAIN
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the same lithofacies type however shows slightly different
relationships of its properties. In slab 2, property relation-
ships differ significantly between neighbouring areas and
do hardly follow lithofacies boundaries. Hence, the tool of
lithofacies analysis is not significant enough to characterize
different kinds of petrophysical relationships.

Compilation of data from all slabs (Figure 6) reveals more
comprehensive relationships between properties and
displays significant differences between subenviron-



ments. Here, the log of permeability data was used before

performing PCA to better detect linear relationships. Out-

liers were removed when they were out of the interquartile
range.

e Siliciclastic sediments show a relationship of porosity
and permeability, which is negatively correlated with
sorting.

e Ultrasonic speed is weakly and positively correlated

with sorting and negatively correlated with porosity and

permeability. This relationship illustrates that fast wave
propagation is related to well ‘welded’ grain contacts.

Resistivity and grain density are very well negatively

correlated, but both are relatively independent from any

other property. Surprisingly, this relationship is mainly
responsible for the clustering of data points across the
different environments. Note that resistivity is on the
precondition of 100% saturation. See also discussion in
the Methodology section above. This relationship may
reflect differences in mineralogical composition rather
than in pore size distribution.

Another striking feature in analysing all data points is quite
prominent clustering of different slabs. It suggests that
properties within a subenvironment are closer correlated
than properties across subenvironments.

In conclusion, the variability of petrophysical properties in
plug-scale measurements within a slab and between the
slabs is significant. Hydrodynamics as interpreted from
bedforms and grain size are the most relevant geological
properties, governing the distribution of petrophysical
properties. This is because hydrodynamical conditions,

0p PC2[18.42%]

Resistivity

in a given type of sediment, strongly change with envi-
ronment AND each set of a sedimentary structure within a
lithofacies type AND even within a sedimentary structure.

Box-whisker plots (Figure 7a) provide absolute values for
interpolation and upscaling. Data allow identification and
hydrodynamical interpretation of overall trends:

According to these plots, the largest variance (including
outliers) in apparent permeability, porosity and sonic wave
velocity is observed at the channel top (slab 3). The sec-
ond largest in slab 1 (channel base). The smallest occurs
in slab 2 (channel centre). Resistivity shows roughly the
opposite trend.

Three characteristic processes for each environment
might be responsible for it:

At the base of a channel (slab 1), a heterogeneous grain
size spectrum reflects variable depositional processes
such as erosion from turbulent flow with scouring and
downcutting. This is also indicated by the frequent oc-
currence of clay clasts. At the same time, turbulence is
indicative for fast-changing stream power at small scale.
This is an additional factor creating variance within fore-
sets and across different sets of the same lithofacies type.
However, there is always water; extreme conditions, which
can create outliers, are rare.

Samples from the channel centre (slab 2) show the small-
est variance. Bedforms as expression of stream power
are most constant. There is less friction to be expected

FIGURE 6
Compilation of all three

P ;
Sorting OFasity siliciclastic fluvial channel
subenvironments in a PCA
v plot. Axes display eigenvalues.
v, : Apparent Permeability
v \ L] Samples from channel base
-0.2 0167 A0, ) 29. 0.15 0.2

Bulk density

-0.2

-0.25

PC1 [50.38%] are shown in red, from
channel centre (midchannel
bars) in orange, and from the
channel margin (upper bar
sandy bedforms) in green.
The different subenvironments
plot in distinct regions. This
suggests that hydrodynamic
controls of deposition differ
significantly from each other.
For details and interpretation,

see text.
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at pre-existent boundaries in this environment. The mid-
channel bars are entirely created by the river itself, so that
flow can be considered as mostly laminar with only minor
turbulences. This results in steady state conditions pro-
ducing a homogenous type of sediment in rather constant
stream power. Hence, less significant variances occur.
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FIGURE 7A

Box-whisker plots are useful to compare values of all siliciclastic
subenvironments. Readings of different subenvironments (=slabs) show
differences in the arithmetic average as well as in the 25% and 75%
confidence interval (box). Circles are considered as outliers (out of
innerquartile range). Variance bars and size of the hox tell how steady
hydrodynamic conditions are during deposition. Channel base shows
high stream energy and a lot of turbulence generating higher values with
significant variance. Channel centre was most stable, and channel margin
experiences variations in depositional energy, probably due to changing
water level. Sonic wave propagation and resistivity follow other, but also
systematic, rules.

Data variance from samples from the upper bar (slab 3)
is the largest, when outliers were considered also. A
large number of outliers (circlesdetected by the inter-
quartile range method) indicate a large number of ex-
treme conditions. Raising and falling water levels mostly
affect this depositional subenvironment as well as spill-
over processes at bar surfaces, which are responsible
for outliers probably due to unsteady flow conditions
and rapid deposition. At the same time, the confidence
interval (25% to 75% box) of porosity and permeability
is smaller compared to the other slabs. Hence, most of
the time, deposition under rather stable flow conditions
seems to be responsible for these distinct petrophysical
values. At least, diagenesis acts different in an environ-
ment characterized by stable, but sometimes extreme
conditions. Probably also early diagenetic effects may
play a role at bar surfaces. Thin-section analyses and
SEM revealed a higher degree of cements in slab 3. As
sonic wave velocity is strongly dependent on mechanical
properties of grain-grain contacts, a higher variance is
likely.

Histograms and Gaussian distributions of porosity and
permeability readings (Figure 7b) show that lithofacies do
not provide a more detailed tool to relate values to flow
conditions. The spread in readings of different lithofacies
types are significant. They do not allow for a precise char-
acterization. If readings are sorted after depositional sub-
environment (slabs), distributions get more ordered.

Anisotropy of apparent permeability

All measurements discussed earlier are results of individual
plug measurements, that is, 1D analyses. They were mea-
sured along the direction a plug was drilled. In Figure 8,
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this corresponds to the x-direction, which is at the same
time the direction of flow of intrinsic permeability measure-
ments (cylinder probe). This is why readings of apparent
permeability (surface probe) in x-direction are more similar
to intrinsic permeability than they are to y- or z-direction.

To investigate spatial anisotropy of apparent permeability,
3D measurements were performed at slab 1 (channel base,
Figure 8) using the surface injection probe permeameter at
the sides of the plug (see Methods section). A strong anisot-
ropy is observed in both: the vertical (z) and the horizontal
(x and y) direction. A few plugs however show no directional
change of flow or only changes in one direction. This mim-
ics that permeability particularly in cross-bedded rocks is
quite complex. It often changes at a centimetre scale.

Figure 9 presents the readings as a ternary diagram to
better display and calculate anisotropy. The corners of
this diagram represent readings of the 3 dimensions nor-
malized to 100%. An isotropic sample would plot in the
middle of the triangle. A sample with maximum anisotropy,
that is, tight in one direction, would plot at a boundary. In-
trinsic (cylinder probe) permeability is represented by the
size of a sample point. The diagram reveals that samples
with higher intrinsic permeability (larger circles) tend to be
more isotropic. Highly anisotropic samples reveal tight-
ness in x-direction only and show an overall small intrinsic
permeability (small circles/dots).

Apparent permeability (x-direction)

0.2

Apparent permeability (z-direction)

FIGURE 8
The anisotropy of permeability
of slab 1 as bubble plots. x-,

[mD] log
>=100

y-, and z-directions represent

3D measurements with an

injection probe permeameter

10 (mini-permeameter). The

intrinsic permeability was

determined in x-direction.

It is directly comparahle

<=1 with the “x-direction” of

0.4 05 apparent permeability. Some

0.3
Ay [m] plugs show almost isotropic
behaviour. Others show strong
anisotropy. Note that certain

areas occur with similar

[mD] log
>=100

readings. In general, higher
values are recognized in

y- and z-directions. This is an
10 artefact of the injection probe
methodology in combination
with direction-dependent flow
effects in stratified samples.
Please see text for further

<=1 .
explanation.

02 03 : 05
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The behaviour of anisotropy follows primary depositional
features combined with flow geometry effects. Fine-
grained foreset boundaries act as permeability barriers.
In x-direction, these are mostly oriented parallel to the
plug axis, because this is the strike of the river flow di-
rection. Therefore, injected gas of permeability testing is
directed through a longer distance along the plug axis.
In y- or z-direction, the flow escapes sideward after a
short travel distance, because it hits always a foreset
boundary hindering further penetration. The shorter flow
path in y- and z-directions results in higher apparent
permeability. This quite different flow geometry along
and crosswise foreset boundaries with injection probe
measurements cannot be compensated mathematically,
because the exact flow pathways are always unknown.
This effect is strongest with small intrinsic permeabilities
as flow is forced through the whole plug. This can be
recognized in Figure 9 as described above. Hence, in-
terpretation of these results has to be done with respect
to this methodological artefact.

Relation to the pore system

The 3D investigation revealed the importance of perme-
ability barriers. Permeability, as a proxy for pore throat
distribution, highlights the significance of the pore system
and warrants a visual calibration of the pore system with
an SEM and photomicrographs of thin sections. The inves-
tigated plugs shown in Figure 10a-d display exclusively
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FIGURE 9

Ternary anisotropy plot of the
apparent permeability in slab
1. Corner points correspond

to the directions x, y and z,
respectively. Readings have
been normalized, such that an
isotropic sample would plot

in the middle of the diagram
(33.3% of all directions). The
diameter of the sample dot is
related to intrinsic permeability
(bigger diameter = higher
reading). Distribution shows
that isotropy is related to higher
intrinsic permeability. Further
explanation is given in the text.

nermalized Z-direction

normalized

intergranular porosity (Choquette and Pray, 1970; Jen-
nings and Lucia, 2003; Pitman, 1987). A boundary be-
tween foresets is shown in the SEM micrograph of Figure
10a and in the thin sections of Figure 10b and c. Bound-
ing laminae are composed of poorly sorted finer grained
sediment with grain diameters varying from 32 to 250 ym.
The foreset layer itself shows very well sorted grains,
with diameters varying between 250 and 350 um with a
large open framework pore geometry. These well-sorted
and coarser grains are associated with much bigger and
better interconnected pore space. This results in perme-
ability, which is orders of magnitudes higher than that of

the bounding laminae. Additionally, small and narrow pore

geometries are more prone to cementation as observed
in the boundary laminae. Authigenic illite, kaolinite, chlo-
rite as well as hematite cements reduce the remaining
pore space even more compared to the much larger pore
space of the foreset layer.

In conclusion, boundary layers between individual fore-
sets represent permeability baffles. They deflect or hinder
fluid flow, which creates the observed strong anisotropy.

Spatial statistics of permeability and porosity
Variograms are helpful to visualize heterogeneity of pet-
rophysical data as input for interpolation and reservoir
models. On the vertical axis of variograms, the calculated
curve of the approximation model reaches a ‘sill level’.
The sill level represents randomly distributed properties
where no similarity is observed between values. The
distance between data points (bins) is plotted on the
horizontal axis. The distance to reach the sill level is the
‘range’. To determine the range, a spherical model was
used (Wackernagel, 2003). Readings within the range
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show stronger similarity to each other the closer they are
to the origin of the graph. Some variograms also show
‘nugget’ effects. A nugget exists when even at zero dis-
tance from a reference data point values of a property are
not identical. The nugget reflects an even smaller scale
of heterogeneity than was measured in a plug sample.

FIGURE 10A

SEM photomicrograph of plug 1-76 (slab 1), lithofacies type St. Lower
right part of the image shows open framework pore geometry. The upper
left part of the image shows poorly sorted sand with clay cements, both

reducing pore space. This photo depicts a foreset boundary of a through
cross-bed. Petrophysical data of the plug: porosity 22.0%, apparent
permeability 98.7 mD, p-wave speed 2196 m/s, s-wave speed 1362 m/s
and resistivity 215 Om.




FIGURE 10B

In the thin section of plug 2-38 (slab 2), foreset boundaries of lithofacies
type Sp appear as brown bands of opaque minerals (open pore space in
blue). These houndaries represent permeability barriers and force fluid
flow in a distinct direction, which results in anisotropy patterns. Further
explanation is given in the text. Petrophysical data of the plug: porosity
11.8%, apparent permeability 2.4 mD, p-wave speed 2816 m/s, s-wave
speed 1568 m/s and resistivity 112 Qm.

Intrinsic microscale heterogeneity even at the scale of an
individual core plug exists.

Variograms of porosity and permeability for slabs 1-3 are
shown in Figure 11. For both, porosity and permeability,

the range distance of variograms decreases slightly from
the rock slab representing channel base (slab 1) to the
slab representing channel centre deposits (slab 2) to the
rock slab derived from channel margin beds (slab 3). This
means that variability of petrophysical values increases
from channel base to channel margin in the example inves-
tigated. A nugget effect is visible in data from channel base
sandstone (slab 1) and channel centre sandstone (slab 3).

Results of the variogram analysis correspond well to the his-
togram analysis (Figure 7b). Both show patterns for porosity
and permeability that are reflective of the rock texture, that
is, hydrodynamic regime during time of deposition. Stream
power at channel base is strong and turbulences are com-
mon. This creates rocks with larger pore throats, higher per-
meability and porosity and a variance. Variances decrease
as stream power reduces and more stable (laminar) flow
conditions establish at higher positions of the channel.

Interpolation

Based on the variogram analysis, simple kriging was used
to interpolate readings over the entire slab (Figure 12).
Quality assessment is provided by calculating the root mean
square error (RMSE) and the mean absolute error (MAE),
which are displayed for each interpolation, respectively.

FIGURE 10C

Photomicrograph of a lithofacies without sedimentary structure. Sm of
slab 3 in plug 3-98 does show isotropic patterns. Petrophysical data of
the plug: porosity 17.1%, apparent permeability 17.7 mD, p-wave speed
2582 m/s, s-wave speed 1486 m/s and resistivity 266 Qm.

Two general observations can be made:

i) Variance of readings is significant within lithofacies but
often systematically, for example, a trend from higher
values at the base towards lower ones at the top.

ii) Lithofacies boundaries follow often strong contrasts of
readings.

By comparing the different subenvironments, strongest
and most sudden changes occur at the channel base
(slab 1). In the cannel centre (slab 2), contrasts are more
calm and do not follow lithofacies boundaries as well as at
the channel base. At least at the channel margin (slab 3),
large areas are characterized by similar readings ignoring
often lithofacies boundaries. However, outliers and sud-
den strong changes of readings occur within lithofacies.

Summary

At the channel base, turbulences and eddies create strong
boundaries and variable hydrodynamic conditions within a
lithofacies, for example, creation of cross-bedding. Transport-
ed sediment is most different (clasts, grain sizes, etc.). At the
channel centre, more calm and continuous flow conditions
occur reflected by more homogenous patterns of petrophysi-
cal readings. At the channel margin, flow conditions are most
calm and quiet, resulting in homogenous patterns. However,
this subenvironment is frequently affected by short-term
water-level changes, which result in a significant number of
outliers. These patterns can be observed in bubble plots,
histograms, box plot and variogram analyses and in the in-
terpolation. PCA reveals that grain density plays an important
role in explaining variance between the different depositional
subenvironments. This reflects depositional energy, which
decreases from channel base over centre to margin.
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FIGURE 11 Slab 1 - channel base - CH(B)
Variograms of porosity (left) a0
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maodel spherical

and permeability data (right).
The charts show that the range
distance decreases from
channel base over channel
centre to channel margin (use
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of spherical model). Note that
nugget effects occur also in a
systematic manner. For details,
see paragraph Spatial statistics
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Hence, analysis of petrophysical data from 3 subenviron-
ments of a fluvial channel system suggests that petro-
physical properties are strongly governed by sedimentary
structures reflecting hydrodynamic conditions in samples
during time of deposition. Hydrodynamical condition re-
flects stream power, flow regime (turbulent or laminar), its
direction and changes. Frequency and speed of changes
in stream power seem to be a fundamental control on po-
rosity and permeability. Postdepositional diagenetic alter-
ation is of limited importance in the samples analysed.

These processes arrange the sand grains available in
the study region and control sedimentary properties like
sorting and grain size trends during deposition. Stream
power controls grain size, grain density and sedimentary
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structure. Currently used lithofacies reflect average hy-
drodynamic conditions mainly based on stability fields as
proposed by Reineck and Singh (1980). These hydrody-
namic stability fields of sedimentary structures in relation
to average stream power and grain size are much too
coarse to properly explain or even predict porosity-perme-
ability attributes in the data set investigated.

In addition, lithofacies also reflect variance of depositional
energy. As lithofacies requires a subdivision in a range of
hydrodynamic conditions, a large scatter and trends are
observed within lithofacies types. Much different readings
can occur for different sets of the same lithofacies type.
This results in permeability baffles, heterogeneity and
anisotropy on the scale of individual lithofacies.



However, heterogeneity is scale dependent. On a grid
block (voxel) or subenvironment scale, depositional pro-
cesses exert a first-order control on petrophysical archi-
tecture. Hence, subdividing lithofacies based on primary
depositional flow characteristics provides a meaningful
classification of petrophysical properties on various
scales. Depositional flow characteristics are predictable
by facies models (Figures 1 and 3) and consequently
petrophysical behaviour to some extent.

Carbonate ramp system

Lithofacies description

The Mesozoic carbonate ramp system is represented with

4 rock slabs from 4 distinct depositional subenvironments
(Figure 2). The outer ramp is affected by wave-induced trac-
tion flow, and the inner ramp is affected by tidal currents.

The study is carried out on samples that suffered limited di-
agenetic changes only, that is, some dissolution and some
cement precipitation altered the pore space as shown in

thin sections. Only samples of slab 4 (lagoon) show diage-
netic changes altering or obliterating depositional features.

The ramp system sampled is composed of skeletal grains
and lime mud in variable proportions (Figure 13). Litho-
facies classification used resembles the well-established
scheme for siliciclastic deposits (Miall, 2012; Hornung and

Hinderer, 2011), which was used in the previous chapter.
Grain size and texture (proportion of mud versus compo-
nents) are described using the classification of Dunham
(1960). The facies short code denominates a capital letter
for texture and a lower-case letter for sedimentary struc-
tures. Stream power is determined based on the chart
published by Reineck and Singh (1980) and Harms and
Fahnestock (1965). Some 13 lithofacies types are distin-
guished. A characterization is given below:

Mudstone, dolomitized (code Md)

This lithofacies type is restricted to slab 4 (lagoon). This

sample is intensely dolomitized and appears massive or

cloudy. Primary sedimentary structures are destroyed. The
rock slab is differentiated based on dolomite crystal size,

framework and colour. Areas are denoted from 1to 7:

1) Whitish with clearly bounded, sharp-edged fragments.
Borders are formed by white rims of calcite. Apparent-
ly, this is a breccia.

2) Dark grey rock fragments disintegrated by fractures,
cemented with calcite, which let it appear like an in-situ
breccia.

3) Brown-yellowish with minor dark-brown cloudy struc-
tures showing gradual colour changes.

4) Brown-yellowish to light-grey colours, which are
smeared in a wavy horizontal manner forming distinct
shaded areas.

5) Dark grey, dense and homogenous mudstone in which
a lot of thin calcite veins occur.

FIGURE 12

Interpolation of porosity
(middle) and apparent
permeability data (right)

using simple kriging. At left,
depositional structures and
mapped lithofacies boundaries
are shown. In general,
interpolation algorithms based

on the variogram analysis could
nicely reproduce and simplify
the measured data. Please
note significant but systematic

changes within a lithofacies
type. However, some lithofacies
houndaries correspond well to
general changes of interpolated

readings and some do not.
Compare also to Figure 4 a-c.
For details, see ‘Interpolation’
and ‘Summary’ (fluvial channel

system).
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6) Horizontal bedding, light to yellowish-brown colours
occur. Boundaries vary between gradual and sharp.
White irregularly shaped spots occur. These represent
fenestral pores filled with calcite.

7) Small-scale (1-5 mm) dark mudstone particles support-
ed by a grey matrix.

Mudstone massive (code Mm)

This type is dark-grey in colour and shows no depositional
structures except irregular shaped areas with brown ferric
oxyhydroxide-siderite grains.

After the hydrodynamic chart of sedimentary structures
after Reineck and Singh (1980), this means stream veloc-
ities were lower than 10 cm/s. This could be deposits of a
shallow lagoonal or marsh area.

Packstone, rippled (code Pr)

On light-grey ripple foresets, thick dark-grey mud drapes
are deposited so the rock gets a flaser-like appearance. Dip
directions change forming herringbone structures. As bed-
ding planes are planar shaped, ripples must have a straight
crest. The average grain size is 500-700 pm, which indi-
cates bidirectional current velocities of 20-30 cm/s. These
depositional features are diagnostic for a tidal flat (slab 5).

Packstone, planar cross-bedded (code Pp)

Whitish and light-grey 1-2 cm thick foresets dip with

an angle of up to 20°. Set thickness is up to 15 cm. As
bedding planes are planar shaped, bedforms must have
a straight crest. They always dip in the same direction.
Together with the average grain size of 700-1000 pym, this
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FIGURE 13

Core slab photographs showing
all investigated carbonate
slabs with their lithofacies
make-up. (4) Lagoon with
strong diagenetic overprint
(dolomitization, dissolution),
(5) tidal flat with herringbone
cross-beds, (6) shoal composed
of crinoidal grainstones,

(7) foreshoal composed

of rudstones and some
grainstones. Same lithofacies
got a number shown at the end
of the code in order to trace
back petrophysical readings to
individual beds. For details,
see Lithofacies description
(carbonate ramp system).

indicates current velocities of about 60 cm/s. Herringbone
stratification indicates bidirectional flow in a tidal channel.

Packstone, horizontally bedded (code Ph)

Intercalating whitish and grey horizontal beds with a thick-
ness of mm to cm form sets from 1 to 10 cm thickness.
The average grain size is 700-1000 um. After Reineck and
Singh (1980), this depositional energy belongs to the field
of lower plain bed, which is 30-40 cm/s. This bedform is
probably found in the tidal flat.

Wackestone horizontally bedded (code Wh)

Same lithology as Ph, but with higher proportions of lime
mud at the expense of fragments, which gives the rock a
dark grey appearance with smaller whitish or light-grey
beds. Depositional energy should be around 20-30 cm/s.
This bedform is probably found in the tidal flat.

Wackestone rippled (code Wr)

It is dominated by cm thick mudstone foresets with inter-
bedded millimetre thin packstone foresets; therefore, it
shows a lenticular appearance. On average, it is a wacke-
stone. Dip directions do change in co-sets, but not within
sets (3-10 cm thick). Dip angles are with 5-10° lower
than in lithofacies type Pr, and also grain size is just 350—
500 pym. Hence, stream power is also lower, 15-25 cm/s.
This bedform is probably found in the tidal flat.

Grainstone, horizontally bedded (code Nh)
The code of grainstone lithofacies types is not consis-
tent to the general scheme, because “G” is already



used for “Gravel” in the siliciclastic lithofacies code
scheme. Therefore, the last letter of “grain” has been
chosen as the first capital letter for the carbonate clastic
system code. In general, all grainstones are of spotty
appearance as the bigger grains, calcite precipitations
between the grains are whitish, and the smaller grains
are light grey. They are most common in slab 6 (shoal
subenvironment). Grain size of Nh is 500-700 pm and
combined with horizontal beds (1-2 cm thick), and this
means a stream power of 20-40 cm/s. This lithofacies
type may indicate shoal areas affected by wave-induced
traction flows.

Grainstone, planar cross-bedded (code Np)

Foresets are 1-3 cm thick and dip with around 20°. Ma-
terial change at bedding planes is weak, so layering is
hardly visible. Sets are up to 10 cm thick. Grain size is
500-700 pym, and between the grains, diagenetically
precipitated calcite occurs frequently. In terms of stream
power, this lithofacies represents probably a flow velocity
of 45-55 cm/s and commonly indicates shoal areas affect-
ed by wave-induced traction flows.

Grainstone, massive (code Nm)

The facies do not show sedimentary structures. Sets are
up to 15 cm thick. Grain size is 700-1400 pm and prob-
ably there was no time to sort grains and form bedding
planes. This lithofacies type indicates rapid sedimen-
tation in shoal areas affected by wave-induced traction
flows.

Grainstone, trough cross-bedded (code Nt)

Foresets with components showing grain diameter of
700-2000 um are interbedded with foresets with grain
diameter of 250-1000 uym. Each is 3-5 cm thick and

dip with angles up to 20°. Sets are up to 25 cm thick,
which is why this is classified as underwater dunes.
Mudstone-lithoclasts of up to 15 mm in diameter occur.
Hence, this lithofacies type indicates stream power of
90-120 cm/s. This lithofacies type indicates shoal areas
strongly affected by wave-induced traction flows.

Grainstone, ripple cross-bedded (code Nr)

Here, only trough-shaped ripples occur. Foresets are
1-3 cm thick and dip with 5-10°. The core of the foresets
represent well-sorted crinoidal particles with a grain size
of 1000-2000 um, but pores in-between are often filled
with mud, so that the central part of the foreset appear
as a packstone or rudstone layer. Bedding planes and
the bigger proportion of the foresets show decreased
grain sizes (250-1000 pm) with no mud in the pore
space, but calcite precipitates. Sets are up to 5 cm thick,
co-sets up to 50 cm. In terms of stream power, this litho-
facies type points to 40-60 cm/s. This lithofacies type
commonly indicates shoal areas affected by wave-in-
duced traction flows.

Rudstone, massive (code Rm)

Rudstone is restricted to slab 7 where it is dominant
over grainstone. It exclusively occurs as massive depos-
its lacking any depositional structure and with chaotic
texture. However, some fining-upward trends are ob-
servable in individual layers. This trend is even complet-
ed when the grainstones on top of the rudstone layers
are also considered part of the trend. Beside some mud-
stone clasts, the majority of components of the rudstone
are flat-shaped shell fragments of 2-20 mm in size.
Hence, behaviour in currents differs significantly from
normal spherical grains. Therefore, no reliable statement
can be provided for stream velocities during deposi-
tion, also because sedimentary structures are missing.
Rudstone layers sometimes show an erosive base but

a gradual transition to overlying grainstones. Assuming
horizontal bedding as it roughly occurs between grain
and rudstone layers in slab 7, stream power can be
estimated to be at least more than 100 cm/s, which
means that these deposits represent the highest energy
of all investigated subenvironments. In conclusion, this
lithofacies type can be a tempestite, because of the
high depositional energy (decreasing at the end

of the deposition), its erosive base and its chaotic tex-
ture (Aigner, 1985). Typically, it occurs in foreshoal
areas.

Multiparametric statistical analysis

Rock slabs were investigated petrophysically using core
plug measurements and probe permeameter measure-
ments as described for the siliciclastic slabs above.
Measurements were initially displayed as bubble plots
on photographs (Figure 14a-d) of all 4 slabs. These pic-
tures show spatial relationships of measurements and
characteristics of the rock slabs such as lithofacies. A
first-pass comparison revealed qualitatively a clustering
of data, distinct trends within these lithofacies and along
individual beds. The visual comparison was an import-
ant first pass to detect special dependencies. Statistical
methods that are space independent do not reveal such
relationships. This visual comparison also revealed larg-
er heterogeneity compared to clastic samples. Readings
do not relate to lithofacies alone, and changes in grain
shape and mineralogy are superimposed.

A PCA was carried out (Figure 15) to better analyse all

readings acquired of a particular rock slab. In all PCA

plots of this study, the log of permeability data was used

and obvious outliers were removed to be able to better

detect linear relationships. Each slab represents a spe-

cific depositional subenvironment (slab 4, lagoon; slab

5, tidal flat; slab 6, shoal; slab 7, foreshoal).

e All slabs show a strong negative correlation between
porosity and bulk density, as one could expect.

e In general, acoustic wave velocity seems to be inde-
pendent from all other properties.
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Other petrophysical parameters show some spatial correla- ¢ Resistivity is negatively correlated with grain density

tion but are similarly wide spread among subenvironments: and porosity in slab 4. In all other slabs, there is almost
e Slabs 4 and 6 show little, if any, relationship of porosity no correlation with other parameters.
and permeability. Slabs 5 and 7 display a fair correla- e Grain density is negatively correlated with bulk density
tion. in slabs 4 and 6 and slightly in slabs 5 and 7.

App. permeability Resistivity Sonic p-wave velocity
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FIGURE 14A

Photograph of rock slab 4 (lagoon) with petrophysical data shown as dots. Colours represent values at their original position. These bubble plots show a
heterogeneous, almost chaotic, pattern with a lot of scattering, but still there are trends going along with colour (=type of dolo-mudstone, see text): In terms
of bulk density, higher readings occur with dolo-mudstones of darker colours. Grain density seems to have an overall vertical trend to higher values. Porosity
follows that roughly, but additionally Md5 seems to have reduced values. Permeability changes often across lithofacies boundaries, but no lithofacies shows a
typical distribution. Resistivity and p-wave velocity do not show any patterns, which can be related to the visual appearance of the rock.
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FIGURE 14B

Photograph of rock slab 5 (tidal flat) with petrophysical data shown as dots. Colours represent values at their original position. Readings show a certain
dependence on lithofacies (wackestones have lower readings than packstones) and colour variations (as darker as lower the reading). Here, dark colours and
wackestones represent higher amounts of lime-mud. In terms of resistivity and p-wave velocity, these trends are not established.
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FIGURE 14C
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Photograph of rock slab 6 (shoal) with petrophysical data shown as dots. Colours represent values at their original position. Readings show an overall trend

from bottom to top, but only a weak dependence on lithofacies. However, the succession of lithofacies types suggests an increase of depositional energy

towards the top.
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FIGURE 14D

Photograph of rock slab 7 (foreshoal) with petrophysical data shown as dots. Colours represent values at their original position. Bulk density, porosity and

permeability show higher readings for rudstones (R) and lower ones for grainstones (N) despite a significant scatter is recognized. Readings of resistivity and

sonic seem to be independent from lithofacies and show also a prominent scatter. In contrast, grain density is rather free of any big changes.

Different carbonate subenvironments showed individual
correlations of geological and petrophysical parameters.
This is as observed in fluvial channel subenvironments.
Specific to the carbonate system is the poor correlation of
porosity and permeability in some cases.

To highlight interdependencies, results of a PCA are
shown in Figure 16a for all carbonate slabs. The different
slabs cluster in different areas of the PCA plot. This sup-

ports that there are specific petrophysical relationships for

each subenvironment, respectively, as already suggested

by the individual plots:

* According to their position and spreading along the
direction, porosity and permeability are the largest con-
tributors to the variance in the data set of slabs 7 (fore-
shoal) and 5 (tidal flat). Pores in slab 7 showed a large
variability. Pores are not equally distributed. This is a
consequence of depositional processes and some post-

DIGITAL GEOLOGY | GRAIN

181



182 DIGITAL GEOLOGY

GRAIN

PC2R00W

Slab 4 (lagoon) ** -

FIGURE 15

Individual PCA of petrophysical
data of slab 4-7. Note

that properties, which are
responsible to explain the

. variance in the data set, show

we

ag

Slab 6 (shoal)

depositional diagenetic alterations. Slab 7 is a rock type,
which is poorly sorted but largely free of mud due to
currents washing out fine material. However, components
are bioclastic fragments. These form randomly shaped
pores. Slab 5 shows mouldic porosity and strong cemen-
tation at the same time, which has the same effects.

e Acoustic wave velocity, sorting, resistivity and grain
density are the largest contributors to the variance in
the data set in slab 4 (lagoon) and slab 6 (shoal). Slab 4
is composed of pores that are rather small and similar in
shape. However, cement randomly infilled pore space.
Slab 4 is a lithofacies made up of mudstone, which
was subsequently dolomitized and has no visible rela-
tionship to depositional processes. Slab 6 displays the
smallest scatter and seems to be dominated by density
contrasts. It is composed of variable amounts of crinoid
fragments and ooids, which are responsible for this.

A composite PCA of all 7 slabs (Figure 16b) revealed a

completely different relationship of petrophysical mea-

surements in siliciclastic and carbonate rocks.

e Siliciclastic data group in the one sector of negative
component 1 and positive component 2.

e Bioclastic data group along positive axes of component
1 and negative component 2 (three sectors). They show
a significantly larger scatter.

GRAIN

different relationships in each
slab (=subenvironment). For
details and interpretation, see
Multiparametric statistical
analysis.

280 peapn

e Grain density, acoustic wave velocity and resistivity are
the properties that determine clearly the regions where
siliciclastics and carbonates plot. This is as expected
and differences in these properties are well known from
petrophysical log interpretations.

Porosity, permeability and bulk density affect all rock
types but show significantly more spreading among
different types of carbonates (subenvironments).

Absolute values and distribution of readings for porosity,
permeability, resistivity and p-wave velocity are shown in
box plots (Figure 17a) and in histograms (Figure 17b) for
all bioclastic slabs (subenvironments). Data show a large
scatter. Readings of individual slabs cluster in an orga-
nized fashion reflecting average depositional energy. The
median, 25th and 75th percentile, and the variance of all
readings reflect this trend towards higher readings from

slabs 4 to 7:

e Slab 4 (lagoon) represents the lowest and stable dep-
ositional energy but it suffered a strong diagenetic
overprint.

e Slab 5 (tidal flat) represents tidal flat deposits with low
wave energy but moderate tidal currents.

e Slab 6 (shoal) represents shoal with high wave energy.

e Slab 7 (foreshoal) likely embodies the subenvironment
with the highest depositional energy. Storm surges



caused traction with the sea floor in the wave breaker
zone. Times without storm action were characterized
by moderately high wave energy.

and pore geometry relative to plug size. It was apparent
that small pore systems revealing low permeability are
more isotropic on a plug scale. Large pores produced

stronger anisotropy often with preferential orientation on

Anisotropy of apparent permeability

To quantify anisotropy of the apparent permeability in car-
bonates with grain-dominated textures, two subenviron-
ments (slabs 6 and 7) were investigated using 3D mea-
surements of individual core plugs (Figures 18 and 19).
The results showed strong anisotropy in many plugs. Any-
way, no relationship to lithofacies was found.

Permeability was apparently controlled solely by pore size

Relation to the pore system
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P i
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Apparent Permeability
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this scale. This was a major difference to siliciclastic sam-
ples, where sedimentary structures were part of each plug
producing continuous permeability barriers at plug scale
displaying just the opposite trend.

Analysis of thin sections (Figure 20a-d) revealed increasing
amounts of porosity with increasing grain versus mud con-

FIGURE 16A

Composite PCA of all carbonate
slabs. Colours represent
different slabs. The clustering
demonstrates that different
subenvironments show different
controls on deposition and
subsequently on petrophysical
properties.

FIGURE 16B

Composite PCA of all
investigated carbonate and
sandstone slabs. Colours
refer to the slab numbers
(=subenvironment). The
clustering is obvious and
demonstrates that in each
subenvironment controls on
petrophysical properties and
deposition are individual. The
most significant differences
occur between siliciclastic and
carbonate clastic systems.
More detailed statements are
provided in the paragraph
‘Multiparametric statistical
analysis’.
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FIGURE 17A

Box-whisker plot analysis . s S o] S = 7o s, o
of petrophysical readings of n=213 A — n=107 o —

investigated carbonate plugs.
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Frequency [-]

tent (texture) reflecting higher depositional energy. For ex-
ample, slab 4 (lagoon) showed the lowest, slab 7 (foreshoal)
the highest amount of visible porosity. Pores in rudstone
(slab 7, Figure 20d) demonstrated the significant influence of
the particle shape on pore geometry and direction resulting
in a strong anisotropy and variability of permeability. Sam-
ples investigated (Figure 20a-c) showed furthermore a poor
interconnectedness of the pore space. Pore systems were
dominated by mouldic, fenestral, isolated vug, shelter, and
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intraparticle porosity (Choquette and Pray, 1970; Jennings
and Lucia, 2003; Pittman, 1979). This implied narrow and
complex pore throats resulting in low permeability, which
explains poor correlation of porosity and permeability and

their large variance in the PCA analysis.

Spatial statistics of permeability and porosity

Each subenvironment investigated showed distinct porosity
and permeability variograms (Figure 21). Slab 4 is highly
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diagenetically overprinted resulting in com-
plete destruction of primary sedimentary
structures. Leaching and dolomitic cementa-
tion occurred. These processes seem to act
on a dm scale as indicated by the range of
porosity and permeability. At the same time,
this process shows a small-scale patchy
mode (see previous chapter), which results
in a nugget effect on sub cm scale.

In contrast, slab 5 (tidal flat) showed strong
stratification due to bidirectional current
reworking and sorting sediments combined
with selective leaching of bioclastic frag-
ments (see previous chapter). This gener-
ated significant heterogeneity reflected by
a range distance of less than 5 cm (sub-
plug scale) and a much higher nugget.
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Porosity in slab 6 (shoal) showed an ex-
ceptionally large range of approximately
0,6m. This is quite outstanding compared
to the range of permeability, which is ap-
proximately 10 cm. Spatial patterns of the
distribution of permeability and porosity do
not correspond to each other. This reflects
the decoupling of porosity and permeability
due to pervasive patchy dissolution (see
previous chapter). However, these hetero-
geneous pore type distributions seem to
be common and are equally throughout
the slab.

In slab 7 (foreshoal), permeability shows
a higher range as porosity, which means
commonly a good interconnectedness

of pores, but highly variable in size. This

Apparent permeability
(z-direction)

Apparent permeability
(y-direction)

<1

FIGURE 18

Photographs of rock slab 6
(shoal) with permeability
readings shown as dots.
Colours represent values at
their original position. Left:
intrinsic permeability in
x-direction. Other bubble plots
show apparent permeability
in x-, y- and z-direction.
Anisotropy patterns can be
recognized by comparing
readings plug by plug through
all directions. Recognize that
plugs showing anisotropy and
plugs showing isotropy are
equally distributed in the data
set. This pattern seems to be
independent from lithofacies.
Only grainstones (Nr) show
slightly more isotropy. An
overall trend to higher readings
is observable (compare to
Figure 14c).

FIGURE 19

Photographs of rock slab 7
(foreshoal) with permeability
readings shown as dots.
Colours represent values at
their original position. Left:
intrinsic permeability in
x-direction. Other bubble plots
show apparent permeability
in x-, y- and z-direction.
Anisotropy patterns can be
recognized by comparing
readings plug by plug through
all directions. Isotropic and
anisotropic behaviour is equally
distributed in the data set.

It seems to be independent
from lithofacies as well as
from intrinsic permeability.
For details, see ‘Anisotropy of
apparent permeability’.
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FIGURE 20A

Thin-section photomicrograph of plug 4-77 (slab 4, lagoon). Pores occur
mainly at the transition from one lithofacies to another (lower left to upper
right). They are poorly connected, which explains the low permeability
readings. Petrophysical data of the plug are porosity 6.3%, apparent
permeability 0.01 mD, p-wave speed 4973 m/s, s-wave speed 2975 m/s

and resistivity 2458 Om.

FIGURE 20C

Thin-section photomicrograph of plug 6-27 (slab 6, shoal). Sample is
composed dominantly of ooids and shell fragments. Small-scale mouldic,
fenestral and vuggy porosity occur frequently. Lime-mud reduces
connectivity. Petrophysical data of the plug are porosity 9.9%, intrinsic
permeability 3.7 mD, apparent permeability 3.28 mD, p-wave speed
3430 m/s, s-wave speed 2368 m/s and resistivity 292 Qm.

FIGURE 20B

Thin-section photomicrograph of plug 5-61 (slab 5, tidal flat). The sample
consists dominantly of shell fragments and ooids. Mouldic porosity is
common. Cements hinder connectivity. Permeability is intermediate.
Petrophysical data of the plug are porosity 9.6%, apparent permeability
9.5 mD, p-wave speed 4745 m/s, s-wave speed 1352 m/s and resistivity
1227 Qm.

is due to the large bioclastic fragments and resulting
shelter porosity. In addition, this is responsible for the
nugget effect observed in permeability data. This means
that readings vary significantly already on a centimetre
scale. This might be mainly the result of a combination
of variable particle shape and depositional processes
but also patchily occurring diagenetic leaching. Most of
the slab is texturally a rudstone with a chaotic orienta-
tion of shell fragments on a centimetre scale (see previ-
ous chapter).

GRAIN

FIGURE 20D
Thin-section photomicrograph of plug 7-3 (slab 7). Sample consists of shell

fragments. Shelter and intergranular porosity is common. Intraparticle,
mouldic, fenestral and vuggy porosity occur. This lithofacies type (rudstone)
has the highest permeability of all investigated slabs. Porosity 29%,
intrinsic permeability 261 mD, apparent permeability 392 mD, p-wave

speed 3531 m/s, s-wave speed 2124 m/s and resistivity 2200 Qm.

Interpolation

Simple kriging (Figure 22) based on the variogram analysis
made the distribution of permeability and porosity data
better recognizable compared to bubble plots. Slabs 4 and
5 revealed patchy distribution of readings within lithofacies
types. Areas with similar patterns cross frequently lithofa-
cies boundaries. However, some lithofacies boundaries
are respected. Thin-section analysis comes up with patchy
mouldic and vuggy pores suggesting a dominance of
diagenetic processes over primary depositional features.



In contrast, primary features are more preserved in slabs
6 and 7, which makes petrophysical features more corre-

spondent to lithofacies boundaries. However, in these two

slabs, high amounts of randomly distributed readings occur
due to selective leaching and shelter porosity. In conclu-
sion, predictive lithofacies analysis in terms of poroperm
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FIGURE 21
Semi-variograms of porosity
(left) and permeability
(right) for samples from all
carhonate subenvironments.

They show strong differences.

Corresponding lithofacies
association appears very
different to each other as
well. Especially in slab

6 (shoal), porosity and
permeability properties are
decoupled (largely differing
range distance). For details,
see ‘Spatial statistics of
permeability and porosity’.
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readings is almost impossible. However, petrophysical pre-
diction may work well on depositional environment scale.

187



GRAIN

Slab 4

z-direction [m]

Slab 6
1

z-direction [m]

o
0 0f 02 03
yediroction (m]

°
0 01 02 03
yedirection (m]

FIGURE 22

Interpolation of porosity (middle)
and apparent permeability data
(right) using simple kriging for
all four slabs, respectively. At
left, depositional structures and
mapped lithofacies boundaries
are shown. In general,
interpolation algorithms based
on the variogram analysis
could simulate the measured
data quite well. Interpolated
readings show patchy changes
within a lithofacies type and
across lithofacies boundaries.
However, some lithofacies
boundaries correspond well to
general changes of interpolated
readings. Compare also to

3 Figure 14 a-d. For details, see
0 01 02 03

ate ramp system compared to the siliciclastic system:
pore types are much more variable. Their distribution is
further complicated by particle shape and size distribu-
tion. In addition, diagenetic processes like cementation,
dissolution of (aragonitic) skeletal components or do-
lomitization weaken the dependence of petrophysical
parameters to primary depositional structures especially
to permeability on a grid block size. Subenvironments
however show distinct signatures in petrophysical read-
ings, controlled by hydrodynamics, grain composition
and diagenetic alterations.

CONCLUSIONS

Some 1,000 data points and some 10,000 individual
measurements from 7 rock slabs of 2 common depo-
sitional environments were analysed geologically and
petrophysically. Analysis of the measurements revealed
fundamental rules and relationships between geological
and petrophysical properties:

1) Analysis revealed a hierarchical set of petrophysical
heterogeneities spanning from foreset scale to litho-
facies scale to subenvironment and to environment
scale.

2) Primary depositional textures and the particle size/
shape govern petrophysical properties in clastic
depositional systems analysed rather than lithofa-
cies.

3) A lithofacies type mimics the average of small-scale
interaction of currents and sediment. It does not reflect
small-scale processes like rapid variations in current
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ml ‘Interpolation’.

velocity and direction, turbulent versus laminar flow,
and speed of deposition. Lithofacies scale does not
allow for a precise characterization of petrophysical
properties.

4) Subenvironment scale shows distinct petrophysical
dependences and relationships of properties.

5) Petrophysical properties can best be represented as
function of petrophysical rock types reflecting a combi-
nation of small-scale depositional processes (hydrody-
namics), grain types and postdepositional diagenetic
changes.

6) Petrophysical properties can be allocated in digital
models using a multiscale geological framework to
distribute properties three dimensionally.
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3.3. Publication Il — High-Resolution Analysis of the
Physicochemical Characteristics of Sandstone Media
at the Lithofacies Scale

3.3.1. Introduction

Publication III provides an innovative methodological approach to characterize the
multidimensional physicochemical characteristics of geological media at the lithofacies
scale with the help of the software system GeoReVi (Publication I). Therefore, the
quasi-continuous scalar field for numerous physicochemical rock properties of two rock
cubes consisting of sandstone and measuring 0.25 m and 0.2 m were modeled through
geostatistical interpolations. The interpolations were constrained by over 1,000 laboratory
measurements performed on the cubes’ surfaces and on 108 cylinder samples taken from
the cubes.

We were able to show that the physicochemical fields show multifarious patterns. Proper-
ties such as intrinsic permeability and the Fe-oxide fraction are positively correlated and
reflect the primary depositional characteristics expressed through bedding structures.

The spatial characteristics of the K-oxide and Al-oxide fractions, that are positively corre-
lated, are related to meso- to telogenetical processes that have been probably produced
by diffusive mass transfer.

Moreover, we were able to show that visible structures may not be indicative for a higher
degree of anisotropy in sandstone media. This contribution gives rise to the question
whether the lithofacies concept may be too inaccurate for using the lithofacies classes as
co-variable for petrophysical property prediction.

3.3.2. Author Contributions

As first author, I developed the methodological concept, prepared the figures and
wrote the manuscript.

Together with S. Wiesler, I performed the sampling, conducted the field and labora-
tory measurements and the data analysis.

* J. Hornung contributed to the methodological concept.

M. Hinderer supervised my research.
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Abstract. The prediction of physicochemical rock properties
in subsurface models regularly suffers from uncertainty ob-
served at the submeter scale. Although at this scale — which is
commonly termed the lithofacies scale — the physicochemi-
cal variability plays a critical role for various types of subsur-
face utilization, its dependence on syndepositional and post-
depositional processes is still subject to investigation.

The impact of syndepositional and postdepositional ge-
ological processes, including depositional dynamics, diage-
netic compaction and chemical mass transfer, onto the spa-
tial distribution of physicochemical properties in siliciclastic
media at the lithofacies scale is investigated in this study.
We propose a new workflow using two cubic rock sam-
ples where eight representative geochemical, thermophys-
ical, elastic and hydraulic properties are measured on the
cubes’ faces and on samples taken from the inside. The scalar
fields of the properties are then constructed by means of spa-
tial interpolation. The rock cubes represent the structurally
most homogeneous and most heterogeneous lithofacies types
observed in a Permian lacustrine-deltaic formation that de-
posited in an intermontane basin. The spatiotemporal con-
trolling factors are identified by exploratory data analysis and
geostatistical modeling in combination with thin section and
environmental scanning electron microscopy analyses.

Sedimentary structures are well preserved in the spatial
patterns of the negatively correlated permeability and mass
fraction of FeyO3. The Fe-rich mud fraction, which builds
large amounts of the intergranular rock matrix and of the
pseudomatrix, has a degrading effect on the hydraulic proper-
ties. This relationship is underlined by a zonal anisotropy that
is connected to the observed stratification. Feldspar alteration
produced secondary pore space that is filled with authigenic
products, including illite, kaolinite and opaque phases. The

local enrichment of clay minerals implies a nonpervasive al-
teration process that is expressed by the network-like spatial
patterns of the positively correlated mass fractions of Al,O3
and K,O. Those patterns are spatially decoupled from pri-
mary sedimentary structures. The elastic properties, namely
P-wave and S-wave velocity, indicate a weak anisotropy that
is not strictly perpendicularly oriented to the sedimentary
structures.

The multifarious patterns observed in this study empha-
size the importance of high-resolution sampling in order to
properly model the variability present in a lithofacies-scale
system. Following this, the physicochemical variability ob-
served at the lithofacies scale might nearly cover the global
variability in a formation. Hence, if the local variability is not
considered in full-field projects — where the sampling density
is usually low — statistical correlations and, thus, conclusions
about causal relationships among physicochemical proper-
ties might be feigned inadvertently.

1 Introduction

The utilization of the subsurface in disciplines such as
petroleum reservoir engineering, geothermal heat extraction,
mining, carbon capture and storage or nuclear waste disposal
requires highly accurate spatial predictions of relevant phys-
ical or geochemical properties in order to assess the eco-
nomic feasibility of a target region (Landa and Strebelle,
2002; Heap et al., 2017; Kushnir et al., 2018; Rodrigo-Ilarri
etal., 2017). Although most of these types of utilizations take
place at full-field scales, geological variability present at the
submeter scale may play an important role during the devel-
opment process. The scale we are speaking of is commonly
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termed the lithofacies scale (Miall, 1985). Geological hetero-
geneities at the lithofacies scale might constitute undesirable
features in the subsurface such as flow barriers in reservoirs
(Landa and Strebelle, 2002; Ringrose et al., 1993; Medici
et al., 2016, 2019), pathways in radionuclide repository sites
(Kiryukhin et al., 2008) and in contaminated sites (Tellam
and Barker, 2006) or geochemical anomalies in mining areas
(Wang and Zuo, 2018). Hence, the controlling factors of sub-
meter variability should be understood and at least roughly
quantified before starting the development in the subsurface
region.

In sedimentary bodies, the spatial distribution of the prop-
erties is mainly controlled by depositional and diagenetic
processes (McKinley et al., 2011, 2013). The spatial charac-
teristics of physicochemical properties in sedimentary rock
media are complex due to strongly intersecting and interact-
ing processes during sediment transport, deposition and di-
agenesis (McKinley et al., 2011). Multiple studies aimed to
quantify the variability at the lithofacies scale, most of which
concentrated on reservoir properties such as permeability
and porosity in 2D spaces (McKinley et al., 2011; Hornung
et al., 2020). A 2D analysis is well suited to identifying non-
visible patterns related to microbedding structures at multi-
ple scales even in very homogeneous sandstones (McKinley
et al., 2004). That perspective, however, involves simplifica-
tions of the physicochemical variability in 3D spaces since
specific rock properties such as permeability are dependent
on the Cartesian direction. Also, consideration of geostatisti-
cal parameters such as variographic direction, range, sill and
nugget revealed differences in 3D compared to 2D spaces
(Landa and Strebelle, 2002; Hurst and Rosvoll, 1991).

With proper knowledge of the statistical and causal rela-
tionships among physicochemical rock properties at differ-
ent scales, prognostic property models can be significantly
enhanced by the integration of small-scale uncertainty into
upscaling or conditional simulation algorithms (Lake and
Srinivasan, 2004; Verly, 1993). Especially since multivariate
geostatistics can account for interrelationships between rock
properties, those relationships can be used as trends or drifts
in geostatistical predictions in order to optimize their accu-
racy in space and time (Hudson and Wackernagel, 1994).

In order to quantify the spatial variability and the mul-
tidimensional relationships among physicochemical proper-
ties at the 3D lithofacies scale, the quasi-continuous scalar
fields of two rock cubes are modeled by means of spatial
interpolation, which is constrained by laboratory measure-
ments. The rock cubes have volumes of 0.0156 and 0.008 m?
and have been sampled from a Permian lacustrine-deltaic
sandstone formation that deposited in the intermontane Saar—
Nahe basin during the Cisuralian series.

The lithological characteristics of the sandstones are ana-
lyzed, and both isotropic and anisotropic properties, includ-
ing bulk rock geochemistry, thermophysical, hydraulic and
elastic rock properties, are measured on the cubes’ faces. In
addition, the intrinsic gas permeability under an infinite pres-
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sure gradient, the effective porosity, the elemental composi-
tion, the thermal conductivity, and the thermal diffusivity to-
gether with the P-wave and S-wave velocity are measured on
108 rock cylinders taken from the inside of the cubes repre-
sentative for each Cartesian direction in order to account for
anisotropic patterns.

The measurements are used to interpolate the full 3D field
of each property. Prior to interpolation, the discrete measure-
ments are statistically analyzed for correlation and formal
relationships. Interpolations are conducted using determin-
istic and geostatistical methods, including the inverse dis-
tance weighting (IDW) and simple kriging (SK) interpola-
tion. The models are evaluated through cross validation, and
the observed spatial patterns are categorized. The interpola-
tion results providing the lowest cross validation error are
statistically analyzed again and compared with the afore-
mentioned statistical patterns. Eventually, the geological pro-
cesses, which produced the observed patterns, are interpreted
and discussed with the help of qualitative thin section and en-
vironmental scanning electron microscope (ESEM) analyses.

The research outputs of this study lie between the scale of
a core plug measurement and a wireline log and/or pump-
ing test (Medici et al., 2018). Hence, we aim to contribute to
estimating the uncertainty that must be accounted for when
performing up- or downscaling between those two scales of
investigation (Zheng et al., 2000; Jackson et al., 2003; Cor-
bett et al., 2012; Hamdi et al., 2014).

2 Methodology

2.1 Sedimentological characterization and rock
sampling

In order to cover multiple varieties of sedimentary lithofa-
cies types, a quarry in Obersulzbach (Rhineland-Palatinate,
Germany) in the Saar—Nahe basin was selected for the in-
vestigations (Fig. 1). The quarry belongs to the lacustrine-
deltaic Disibodenberg Formation that is assigned to the in-
ner Variscan Rotliegend group and comprises four lithofacies
types. This formation is deeply buried (1995 to 2380 m below
ground surface) in the northern Upper Rhine Graben in
southwestern Germany (Becker et al., 2012) and constitutes
a potential target unit for hydrothermal exploitation (Aretz
et al., 2015). The maximum past overburden of the field site
can be estimated to be between 1950 and 2400 m, as indi-
cated by shale-compaction analyses which were performed
by Henk (1992). The outcrop has been chosen in order to esti-
mate the variability of physicochemical properties that could
be expected in this formation as an uncertainty factor if it is
targeted in a deep geothermal project.

Two rock cubes of 0.2 x 0.2 x 0.2 m (OSB2_c) and 0.25 x
0.25 x 0.25m (OSB1_c) were extracted from the outcrop
wall using a rock chainsaw. According to the outcrop’s co-
ordinate system, one edge of the cuboid runs east-west (x),

https://doi.org/10.5194/se-11-1511-2020



A. Linsel et al.: Analysis of the physicochemical characteristics of sandstone media 1513

Strike-slip

& Plant fragment
— Current ripple

~ Intraclast

E 67

oy

£

k=

[

T 47 0sB2_¢
L ¥
= ===\ 0SB1_c

=

T
P e vfs fs ms. cs.ves. g.

Grain size

Figure 1. (a) The investigated sandstone quarry in Obersulzbach, Germany. The outcrop is compartmentalized in the central part by two
strike-slip faults which belong to the Lauter fault zone (Stollhofen, 1998). The strike-slip faults provide offsets of a few meters. (b) Massive
sandstone. (c) Pelitic rip-up clasts embedded in a massive rock matrix. (d) Ripple-cross bedded sandstone. (e) Cumulative sedimentary log
of the outcrop architecture. The sampling positions of OSB1_c and OSB2_c are marked in the sedimentary log (v.f.s. — very fine sand; f.s. —
fine sand; m.s. — medium sand; c.s. — coarse sand; v.c.s. — very coarse sand; and g. — granule).

one north—south (y) and one in an altitudinal (z) direction.
The irregular cuboids were reworked to regular cubes with
a stationary rock saw. We selected two types of lithofacies
(Fig. 1e) — both sandstones — with one representing a hetero-
geneous, compartmentalized variety (OSB1_c) and the other
one being a homogeneous variety (OSB2_c). The cubes were
both extracted from a distributary mouth bar that is building
a foreset in a fluviatile-dominated lacustrine delta. OSB1 _c¢
(Fig. 2) was taken from the high energetic basal part, whereas
OSB2_c was taken from the lower energetic top. The sed-
imentological characteristics, including grain size, sorting,
angularity, sedimentary structures and mineral content, were
determined by visual inspection, thin section and ESEM
analyses. Two different types of zonal anisotropy and spatial
patterns were expected to be found with the aforementioned
sampling strategy. In other studies, such as McKinley et al.
(2011), measurements were directly conducted in the field.
This approach, however, often provides a drawback with the
accuracy and precision, especially in permeability measure-
ments. In order to address this issue, we performed analy-
ses on the faces of the cubes under laboratory conditions. In
the next step, the cubes were cut into rock slabs from which
cylinder samples were extracted. In total, 108 rock cylinders
— 79 from OSB1_c and 29 from OSB2_c — were extracted
from the rock cubes. It was ensured that at least five samples
were produced that were representative for each Cartesian di-
rection. By applying the formula for calculating a cylinder’s
volume V, with the following:

chhxnxrz, (D

where & is the height of the cylinder and r the radius, the
relative volume covered by the rock cylinders in the rock
cubes was calculated to be 25.4 % for OSB1_c and 18.2 % for
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Figure 2. Lateral faces of OSB1_c displayed in the form of an open
cube (from left to right: XZ front, YZ front, XZ back and Y Z
back). The internal bounding surfaces are indicated by the dotted
lines.

OSB2_c, respectively. Eventually, target meshes are needed
to interpolate the full 3D scalar fields. Therefore, both cubes
were modeled in 3D using a regular grid consisting of 27 000
hexahedral orthogonal cells. The elementary cell of OSB1_c
has a volume of 5.7 x 107 m3, whereas OSB2_c’s elemen-
tary cells have a volume of 3 x 10~ m3.

2.2 Laboratory experiments

First, a local metric coordinate system was defined, where
each edge of the cube represents an axis in the Cartesian co-
ordinate system in order to reference each measurement to
a point in space. The sampling points were set in a raster of
9 x 9 points on each face for OSB1_c and 5 x 5 for each face
of OSB2_c. All measurements were conducted in the labo-
ratory of the Institute of Applied Geosciences in Darmstadt,
Germany. After drying the rock cubes at 60 °C, noninvasive
measurements were conducted on each face of the cube. On
the cubes’ faces, the P-wave and S-wave velocity and ele-
mental mass fractions were determined (Fig. 3).

Solid Earth, 11, 1511-1526, 2020
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Figure 3. (a) Sampling locations for the noninvasive measurements,
including P-wave and S-wave velocity and X-ray fluorescence, dis-
played for the face X Z back of OSB1_c. (b) Schematic of the ex-
traction strategy for sampling the rock cylinders.

After the extraction, the rock cylinders were ovendried at
105 °C and measured in order to determine the intrinsic gas
permeability, effective porosity, P-wave and S-wave veloc-
ity, elemental mass fractions, thermal conductivity, and the
thermal diffusivity in unsaturated conditions. Those proper-
ties can be considered key properties of the rock matrix in
porous aquifers with regard to hydrothermal systems (Age-
mar et al., 2014) since they constitute input variables for the
governing equations for heat transfer and fluid flow in the
subsurface (Carslaw and Jaeger, 1959).

The permeability was measured with the Hassler cell per-
meameter, which is described in Filomena et al. (2014). The
Hassler cell is a gas-driven permeameter which measures the
permeability of a cylinder-shaped rock sample under steady-
state gas flow. This technique allows for the estimation of
the intrinsic gas permeability, which is the permeability at
an infinite pressure gradient. The permeameter was set to ac-
cept a measurement if 15 consecutive readings did not de-
viate by more than 5 %. The measurement error, however,
can exceed that value, especially in low permeable litholo-
gies. Effective porosity measurements were conducted us-
ing an envelope density analyzer (GeoPyc 1360). The ac-
curacy is given by the manufacturer to be within £0.55 %
(Micromeritics, 1998). Thermal properties under unsaturated
conditions, namely the thermal conductivity and thermal dif-
fusivity, were determined with a thermal conductivity scan-
ner (TCS) according to the work of Popov et al. (1999).
The measurement error is quantified to be <3 % for ther-
mal conductivity and < 8 % for thermal diffusivity (Popov
et al., 1999). The elastic properties of P-wave and S-wave
velocity in the rock media were measured with the sonic
wave generator UKS-D (Geotron Elektronik) by sending a
sonic wave pulse from a pulse-providing test head (UPG-S)
to a receiver (UPG-E). The wave velocity is a function of the
travel length and time, together with the density of the mate-
rial. The initial occurrence of the P wave or S wave must be
picked manually after visual inspection by the operator. Thus
no measurement error can be provided since user bias can-
not be assessed quantitatively. Bulk elemental analysis using
the Bruker S1 TITAN handheld portable X-ray fluorescent
(pXRF) analyzer was used to find correlations between the
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elemental composition and the petrophysical properties. The
measurement device works on the basis of energy-dispersive
X-ray fluorescence (EDXRF) and estimates the elemental
mass fractions of a sample. This device produces an ioniz-
ing X-ray beam with a diameter of 1.2 cm and quantifies the
elemental composition based on the energy emitted by the
ionized elements in the targeted area. The portable device
can measure the fraction of elements with an ordinal number
> 12 and < 235 if the threshold value, defined by the mea-
surement error for the specific element in the sample, is ex-
ceeded. For this study, the device was operated in GeoChem,
Dual Mining mode, allowing for the detection of the major
oxides of SiO;, Al,O3, Fe>,03 and KO and a wide range of
other elements. The device was calibrated with international
standards. We used the previously mentioned major oxides
for analyses since those can provide insight into the iron ox-
ide and clay mineral distribution, which can significantly im-
pact the petrophysical properties. More details on the mea-
surement devices can be found in the works of Hornung and
Aigner (2002), Sass and Gotz (2012), Filomena et al. (2014),
and Aretz et al. (2015).

2.3 Data analysis and spatial modeling
2.3.1 Variography

The experimental semivariogram represents the cumulative
dissimilarity of a discrete set of point pairs x, with n¢ as the
count of point pairs within the distance classes & of identical
distance increments (Eq. 2).

ne

> (e + 1) — 2(xa))

a=1

y(h) = g

s 2

The continuous counterpart, represented by the variogram
model, is an approximation of the experimental semivari-
ogram that assumes z(x) to be a stationary random field
(Wackernagel, 2003). A variogram model yihe, 1 represented
by a covariance function ¢, with the relationship yiheo (B) =
c(0) — c(h), where c is a positive definite even function. Six
covariance models are mostly used to fit the experimental
semivariogram, namely the spherical, gaussian, exponential,
power, cardinal sine and the linear model (Armstrong, 1998;
Ringrose and Bentley, 2015). In this study, we only observe
spherical relationships with a nugget effect. This model is
calculated as follows:

n+b-(l—M+%) for 0<|h| <a

= 2a
Csph(h) n for |h| > a. 3
with the variables nugget (n), range (a) and sill (b). Semivar-
iograms can be used to quantify the spatial or time correla-
tion of a random property (Ringrose and Bentley, 2015; Gu
et al., 2017; Riihaak et al., 2015). Further on, the differences
in range and sill in dissimilar directional semivariograms can
quantify the zonal and geometric anisotropy of a property
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(Ringrose and Bentley, 2015). The resulting covariance func-
tion is an input variable for geostatistical interpolation algo-
rithms.

2.3.2 Rock property interpolation

Spatial inter- and extrapolation can be generated with deter-
ministic and geostatistical techniques. All interpolations are
based on the assumption that a point x; with a known value
z(xx) has a weight on a discrete point xq in space with an un-
known value z(xp). The global known points, however, can
be reduced to a local neighborhood of x.

For deterministic interpolation, the p value inverse dis-
tance weighting (IDW; Shepard, 1968) interpolation is used.
The IDW interpolation generally calculates an unknown
value z(xg) at point xo by weighting the distance of that point
to each known value point (x¢) in space. The underlying for-
mula for IDW is as follows:

Yoz /df
Sk 1/df

where d is the Euclidean distance between the point with the
known value x; and the point with the unknown value x¢, and
p is an exponent factor to bias the weights nonlinearly. The p
value is mostly used for smoothing the results by controlling
the distance decay effect (Lu and Wong, 2008). IDW is a
reliable and widely applied method to interpolate static rock
properties in a 1D to 3D space (Riihaak, 2006).

For geostatistical interpolation, simple kriging (SK) is
used. Kriging in general is a popular technique for interpolat-
ing geological properties in space (Goovaerts, 1997; Riihaak,
2015; Malvi¢ et al., 2019). Through kriging, the value z(x¢)
at an unknown point x is calculated by weighting the neigh-
boring known values and building a linear combination of
those via the following formula:

, “

z(x0) =

2(x0) = Y wi - z(xw), 5)
k=1

where wy is the weight of the known point x; with the
value z(xx). SK requires knowledge of the stationary mean
 (Deutsch and Journel, 1998), which modifies Eq. (5) into
the following:

Z(xo)sk = Zwk z(x) + (1 — Zwk> . (6)
k=1 k=1

To obtain the simple kriging weights, a set of n equations has
to be solved. This set of equations can be written as follows:
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c(xy —x1) c(x1—xz)\ [wi
c(xp ._xl) c(x, _xn) Wy
c(x1 —x0)
= : , @)
c(xp — x0)

with ¢ as the covariance function and x, as the point with
a known value (Wackernagel, 2003). The quality of kriging
interpolation is dependent on the variogram model, defined
neighborhood, sampling density and goodness of fit to the
experimental values.

2.4 Cross validation

Cross validation can be used to assess the quality of a model.
During cross validation, p randomly selected samples are
removed from the input data set of size n with 0 < p < n,
and the interpolation is performed without those samples
(Celisse, 2014). The measures of goodness of fit being used
in this study include the root mean square error (RMSE) as
follows:

n

1
RMSE= | =% ((x) —2(w) . 8)

k=1

and the mean absolute error (MAE) as follows:
1 n

MAE = — % " |2(x) — 2(x0)], ©)
n k=1

with Z(xx) as estimated value at point x;. Those parameters
allow for the quantitative assessment of an interpolation’s
quality. They might be prone to bias if the sampling density
in the target domain is extremely scarce.

2.4.1 Anisotropy

Anisotropy describes the dependence of a physical property
on a direction. Rock properties such as stiffness, permeabil-
ity or thermal conductivity are anisotropic in most cases.
Hence, measurements of those properties might show differ-
ing magnitudes in different directions if the medium is polar
anisotropic. The intrinsic permeability, for example, provides
typical ranges for the ratio between the vertical (ky) and hor-
izontal permeability (k) of 107> to 1 (Ringrose and Bentley,
2015). Anisotropy in geological media is generated by the
preferred orientation of mineral grains or cracks and by the
intrinsic anisotropy of single crystals (Thomsen, 1986).

In the following, we will provide an exemplary description
of the anisotropy of elasticity, and we will provide measures
for anisotropy quantification under the simplifying assump-
tion of transverse isotropy. The elastic modulus tensor can be
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expressed as a fourth rank tensor as follows:

Ci1 Ci1—2Ces Ci13 O 0 0

C11 —2Ces Cn Ciz O 0 0

C= Ci3 Ci3 Cys O 0 0
= 0 0 0 Cu 0 0|

0 0 0 0 Cyg 0

0 0 0 0 0 Ce

(10)

where C;; represents an elasticity modulus and the indices
are related to the directional P-wave and S-wave velocity, un-
der the assumption that z is the symmetry axis. The velocities
can be calculated by the following:

C

UIZJZ =3 (11)
0
C

vi= |2 (12)
Jo

where v, is the P-wave velocity and vy is the S-wave ve-
locity parallel to the symmetry axis and p is the bulk den-
sity (Yang et al., 2020). The anisotropy, here exemplarily ex-
pressed for the P-wave polar anisotropy, can be quantified
with the Thomsen parameters (Thomsen, 1986). For exam-
ple, € can be expressed as follows:

_ Ci1—Cs3

13
2C33 (13)

If € « 1, the material can be classified as weakly anisotropic.
2.4.2 Correlation and regression analysis

In order to quantify the linear statistical relationship be-
tween two independent variables x and y, the Pearson linear
product-moment correlation coefficient (R) can be used. R
is expressed as follows:

n

Y k=X (k=)
R= k=1 , (14)

n n
(£t -n-)(£22-n-7)

with n representing the number of compared point pairs and
x and y standing for the arithmetic mean of x and y.

Regression aims at finding a fitting function between sam-
ples of two or more random variables. For curvilinear regres-
sion, a function of a degree > 1 will be approximated for a
discrete set of values. A second-degree polynomial function
f(x), for instance, would be described as follows:

f(x) =bo +bix +byx?. s)

Thus, we would need to find n + 1 regression coefficients,
where n is the degree of f(x). In general, the regression
model yields the following:

F ()i =bo+bixi +box? 4 -+ byx?, (16)
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with i =1,2,...,n. The regression coefficients b,, are ob-
tained through solving a system of linear equations as fol-
lows:

Y1 1 xll TR bg
2 1 xb ... xm by

=|. 7 1] (17)
Yn 1ox) o x™) \bn

where x and y are the samples. The function approximations,
as produced in regression analyses, are commonly evaluated
by the coefficient of determination (Rz), which is calculated
through the following:

RP=1-%cpo1], (18)
Stot
where
n
Sres = )k — [(0)R)? (19)
k=1

is the explained sum of squares, and
n
stor =Y (k=) (20)
k=1

is the total sum of squares.
2.4.3 Spatial modeling and statistical analyses

The spatial dependence of the discrete values is evaluated
through experimental semivariograms. The semivariograms
are generated for the single rock faces, where measurements
are available, and for the plug measurements. The empirical
semivariogram is fitted to a variogram model, which is then
used for the geostatistical interpolation. Interpolation analy-
ses are performed as IDW and SK realizations (Fig. 4) that
are assessed through cross validation. The power parameter
for IDW is chosen to be three since this constant provides the
lowest RMSE among the realizations. The search radii for
each prediction is chosen to be 0.2m, in x and y direction,
and 0.15m, in z direction, in OSB1_c to account for the sed-
imentary structures. For OSB2_c, the search radii are chosen
to be isotropic with a length of 0.2 m. To make the methods
comparable, we selected the maximum number of neighbor-
ing points to be 25 to represent between 5 % and 95 % of the
measurements.

We decided to waive sequential simulation as large
amounts of the cubes’ volumes are covered by rock samples.
Thus, we do not expect a relevant kriging variance. With this
in mind, the simulations are assumed to capture most of the
total variance from the measurements themselves. The inter-
polation results that provide the lowest cross validation error
are used for statistical analyses in order to derive correlations

https://doi.org/10.5194/se-11-1511-2020



A. Linsel et al.: Analysis of the physicochemical characteristics of sandstone media

(a) Fe,O,
2.5 [%]
g
&
3 2.25
%) 2
&
S -
2o, 1.75
©csy ‘.z >
X o, .5
/4
15
(b) pw
. /4 ~ .l/
~ ~

Figure 4. (a) Fe,O3 measurement locations on the cube faces of
OSBI1_c and on the rock samples extracted from the cube. The di-
ameter of one point is 1.2 cm, which corresponds to the beam di-
ameter of the pXRF measurement device. (b) Visual representation
of the inverse distance weighting (IDW) and simple kriging (SK)
realization of the 3D scalar field of Fe, O3, using the discrete points
displayed in (a) as known data points.

and regression functions between the scalar fields. Eventu-
ally, significant correlations are compared with the noninter-
polated data sets. Both the spatial modeling and the statis-
tical analyses are performed with the open source software
called Geological Reservoir Virtualization (GeoReVi; Linsel,
2020a). This software tool provides functionality for mul-
tidimensional subsurface characterization using the concept
of knowledge discovery in databases, which is helpful when
handling huge data sets such as those produced in this study.

3 Results
3.1 Sedimentological characteristics

The sandstones belong to a clinothem strata deposited in
a fluvial-dominated lacustrine delta. More specifically, the
architectural element represents a distributary mouth bar
formed by rapid sandstone deposition in sheet-like bodies,
as described in Fongngern et al. (2018). The base of those
bodies is typically erosive, which is why muddy rip-up clasts
commonly occur above the base. Also, the beds, which de-
posited after the intraclast-rich basal beds, typically show
trough or ripple-cross stratification with set heights of 5—
15 cm. The vertical orientation of rip-up clasts can be ob-
served in matrix-rich debrites or turbidites deposited under
high-energy turbulent hyperpycnal to homopycnal flow con-
ditions (Li et al., 2017). Those are unconformably overlying
lacustrine, laminated mud strata from the prodelta environ-
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Figure 5. Petrographic classification after Herron (1988), based on
the ratio of SiOp and Al,O3 and Fe,O3 and K;O. The polygons
show the convex hull for the measurements derived from the cubes’
faces.

ment. Accordingly, Bouma A-E layers (Bouma, 1962; Mid-
dleton, 1993) with a prograding trend can be identified in the
outcrop. With ongoing sedimentation, the depositional en-
ergy in a Bouma sequence typically decreases, which leads to
massive sandstones. OSB1_c was taken from a basal bed of
the Bouma A interval characterized by a high number of rip-
up intraclasts, normal grading and subhorizontal pseudolay-
ering, which may occur in a Bouma A interval if the rip-up
clasts experienced buoyancy during transport. OSB2_c was
taken from the topmost bed, which corresponds to a Bouma
E interval that is characterized by a massive structure.

The average grain size in both cubes ranges from fine to
very coarse sand (200-1400 um). While the grain size distri-
bution in OSB2_c does not show a significant variability —
mainly characterized by medium to coarse sand — a normal
grading is observable in OSB1_c. Here, the grain size grad-
ually decreases from very coarse sand at the base to medium
sand at the top. Likewise, sorting increases from poor to
moderate. In OSB2_c the sorting is moderate throughout
the entire sample volume. The components provide a low to
medium sphericity, while the grain shapes vary between sub-
angular and subrounded. Locally, pelitic rip-up clasts occur
with diameters of up to 4 cm. The rip-up clasts show a very
low textural maturity and are subvertically oriented with re-
spect to bedding.

The original rigid detrital components consist of 50 %—
60 % quartz, 20 %—-30 % strongly altered feldspar and 10 %—
25 % lithic fragments. Mica grains are often bent between
more rigid grains. The rock matrix accounts for approxi-
mately 10 %—20 % and is built up by detrital grains, coated
by iron oxides, ductile, autochthonous pelite grains and fine-
grained quartz. According to the geochemical analyses, the
rocks can be classified as lithic arenites to arkoses or wackes
(Fig. 5), respectively, if the matrix content exceeds 15 %
based on the classification of Herron (1988).

Solid Earth, 11, 1511-1526, 2020
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Figure 6. (a) Representative thin section taken from rock cube
OSB2_c. The sandstone consists mainly of quartz (Qtz), altered
feldspars with residual mineral aggregations (sericite — Ser), altered
biotite (Bt) and ductile grains (DG). Feldspar dissolution lead to
a high grade of secondary porosity (Molenaar et al., 2015), while
the vast majority of the intergranular pore space is filled with pri-
mary and pseudomatrix (PM) which is rich in iron oxides. (b) Envi-
ronmental scanning electron microscope (ESEM) image of the au-
thigenic clay minerals, mainly kaolinite (Kln) and illite (Ilt), built
in the pore space. Mineral abbreviations were taken from Whitney
(2010).

Thin section analysis (Fig. 6a) reveals that most of the pore
space is secondary due to grain dissolution. The secondary
pores are undeformed, indicating that grain dissolution took
place during structural inversion — probably during telogen-
esis, according to the concept of Worden and Burley (2003).
Most of the primary intergranular volume was destroyed dur-
ing mechanical compaction. ESEM analysis (Fig. 6b) con-
firms the presence of quartz accompanied by coprecipitated
calcite, opaque phases — mainly iron oxides — and authi-
genic clay minerals including kaolinite and illite in the ce-
ment fraction. Thus, chemical compaction had taken place
due to iron oxide, quartz and clay mineral precipitation dur-
ing diagenesis. Here, the earliest cement phase is represented
by the opaque phases comprising a high number of iron ox-
ides. Thereafter, kaolinite is formed, mainly in the secondary
pore space, and overgrown by illite. Often, the early cement
is overgrown syntaxially by quartz. The source of SiO, might
be internal and related to feldspar dissolution.

3.2 Exploratory data analysis
In order to provide full comparability, the following section
will provide an overview of the measurements derived from

the rock cylinder analyses. For each property, 79 rock sam-
ples from OSB1_c and 29 from OSB2_c were investigated.
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Figure 7. Box and whisker charts showing the empirical distribu-
tion of the rock properties measured in the rock cylinders taken
from the rock cubes. Outliers were detected according to Tukey’s
method (Tukey, 1977), where a value is tested to be in the 1.5 times
interquartile range of the arithmetic mean. (a) Intrinsic permeability
— k. (b) Effective porosity — ¢. (¢) P-wave velocity — vp. (d) S-wave
velocity — vg. (e) Thermal conductivity — A. (f) Thermal diffusivity
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Fe,03. (i) Aluminum oxide — Al»O3. (j) Potassium oxide — K5O.

An overview of the rock properties’ ranges is provided in the
box and whisker charts shown in Fig. 7.

The local variability of OSB1_c is significantly higher
than that of OSB2_c. The intrinsic permeability of OSB1_c
provides a coefficient of variation of 0.3 and a Dykstra—
Parsons coefficient of 0.4, while measurements from
OSB2_c show values of 0.2 for the coefficient of varia-
tion and 0.18 for the Dykstra—Parsons coefficient, respec-
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tively. According to the classification provided by Corbett
and Jensen (1992), the intrinsic permeability of both rock
cubes can be classified as being very homogeneous. Also, the
intrinsic permeability does not show a significant anisotropy.

The range of values in OSB1_c for each property is greater
than the range of those in OSB2_c. OSB1_c provides lower
values in P-wave and S-wave velocity, thermal conductivity
and mass fraction of Fe,O3 compared to OSB2_c. Intrinsic
permeability and porosity, in turn, are greater. The mass frac-
tion of silicon oxide and thermal diffusivity provides similar
statistical parameters in both cubes; however, the ranges are
marginally larger in OSB1_c. The measurements of the elas-
tic rock properties revealed a weak anisotropy of the P-wave
attenuation, especially in rock cube OSB2_c. The Thomsen
parameter € is 0.047 for OSB1_c and 0.096 for OSB2_c. It
should be noted that OSB1_c provides visible bedding struc-
tures in contrast to OSB2_c; hence, the observed degree of
anisotropy is not connectable to the bedding features in this
case.

Statistically significant linear correlations (Fig. 8), in the
sense of passing a two-tailed significance test at the 0.05
level, were found between porosity and permeability, perme-
ability and Fe;O3, v, and vs, vp and SiOy, vp and Al,Os3,
vp and K70, Fe;0O3 and SiO;, and KO and Al;O3. The
strongest positive linear correlation can be observed between
vp and v (R = 0.88), K0 and Al,O3 (R = 0.70), and poros-
ity and permeability (R = 0.31). The strongest negative cor-
relation can be observed between permeability and Fe,O3
(R = —0.56). Properties not being mentioned do not provide
significant statistical correlations to others.

3.3 Submeter-scale spatial correlation

The spatial dependence of the discrete measurements is
estimated using experimental semivariograms. Therefore,
the geochemical representatives SiO, (Fig. 9a) and Fe;O3
(Fig. 9b) that were measured on each of the rock faces of
OSB1_c are given an exemplary analysis. The experimental
semivariograms greatly vary from rock face to rock face in
OSB1_c. The nugget effect for each experimental variogram
is very low. The range of each semivariogram varies between
0.05 and 0.3 m. In the experimental semivariograms of SiO;,
two types of patterns can be identified. The XY base, XZ
back and Y Z front of the rock faces show ranges of approx-
imately 0.08 m and a sill between 8 %> and 10 %?2, until the
semivariance exponentially increases when exceeding a lag
distance of 0.2 m. The semivariance on the other rock faces
runs similarly, with ranges of 0.2 m and a sill of 4.7 %2. The
semivariogram for Fe,O3 shows some similarities. Here, the
XY base, YZ front and XZ front of the rock faces show
very low ranges between 0.05 and 0.15 m and a sill between
0.1 %? and 0.15 %? again, with an exponential increase when
exceeding a lag distance from 0.2 to 0.25 m. In contrast, the
semivariance of Y Z back has the highest sill, with 0.21 %2
and a range of 0.15 m; however, semivariance drops after ex-
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Figure 9. Empirical semivariograms of the mass fraction of
SiO; (a) and FepO3 (b) in rock cube OSB1_c grouped by the in-
vestigated rock face.

ceeding a lag distance of 0.2 m. X Z back provides the high-
est degree of similarity with a range of 0.3 m and a sill of
0.09 %?2, using a spherical approximation. Both geochemical
properties show a zonal anisotropy where the sill shows dif-
ferent magnitudes along different directions (Wackernagel,
2003; Allard et al., 2016).
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Table 1. RMSE and MAE for the interpolation results of IDW and
SK for OSB1_c. k — permeability; ® — effective porosity; A — ther-
mal conductivity; a — thermal diffusivity; and vp — P-wave velocity.

RMSEIDW RMSESK MAEIDW MAE SK
k 0.19 0.17 0.15 0.14
o] 0.54 0.59 04 0.42
A 0.23 0.22 0.18 0.16
o 0.14 0.17 0.1 0.1
vp 64.19 60.95 52.21 44.74
SiOy 4.07 3.25 3.05 2.09
Al,O3 0.8 0.83 0.66 0.66
K,O 0.25 0.26 0.19 0.2
Fe, 03 0.93 0.32 0.86 0.21

3.4 Spatial pattern analysis

The spatial distributions of the rock properties are interpo-
lated with Shepard’s inverse distance weighting (IDW) and
simple kriging (SK). Both realizations of a single scalar field
provide comparable patterns, which is due to the high sam-
pling density. The interpolation errors are also located in sim-
ilar ranges; however, IDW seems to be more sensitive to out-
liers, resulting in much higher interpolation errors with re-
gard to properties like P-wave velocity or mass fraction of
SiO, (Table 1). IDW tends to underestimate the maximum
and minimum values in the scalar fields. Thus, petrophysical
and geochemical contrasts are more distinctly reproduced in
the geostatistical approach. Also, the IDW realization shows
the bull’s eye effect, which is a typical artifact of IDW inter-
polations (Shepard, 1968). Accordingly, the simple kriging
realizations are used for further analyses.

The rock properties exhibit a multitude of spatial patterns.
Here, discrete, layered and homogeneous patterns, both con-
nected and disconnected to primary sedimentary structures,
could be observed in the interpolations.

3.4.1 Patterns connected to sedimentary structures

A bedding-connected pattern is exhibited in the intrinsic per-
meability and Fe, O3 interpolation results of OSB1_c. The
mass fraction of Fe,O3 varies between 1.25 % and 5 % in
OSB1_c. In the histogram displayed in Fig. 11, outliers
were removed according to Tukey’s outlier-detection method
(Tukey, 1977). The local histogram of OSB1_c’s intrinsic
permeability shows a bimodal distribution ranging from 0.7
to 3.9mD. The application of Tukey’s method revealed no
statistical outliers in this scalar field.

The bedding structures in OSB1_c are well reflected by
the spatial pattern of the interpolated intrinsic permeability
gradually increasing from low values, between 0.7 and 2 mD,
in the lower beds to higher values, between 2 and 4 mD, in
the upper beds (Fig. 10).

Solid Earth, 11, 1511-1526, 2020
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Figure 10. Spatial distribution of the intrinsic permeability mod-
eled with a simple kriging interpolation. The histogram shows a
bimodality of the distribution split up into the basal beds and upper-
most beds.

The spatial distribution of the mass fraction of Fe;O3 in
OSB1_c provides a reciprocal trend compared to the perme-
ability. Here, the lowermost bed shows a significantly higher
content compared to the upper beds. Both scalar fields show
zonal anisotropy. The Fe, O3 content is an indicator of the de-
trital matrix, pseudomatrix and cement content that, in turn,
would explain the reciprocal relationship with the permeabil-
ity measurements. In siliciclastic systems, iron can be con-
tained in clay minerals (up to 30 wt %; Brigatti et al., 2006),
mafic components or in iron-rich oxides, hydroxides or car-
bonates. Local excesses in the Fe; O3 content exist in the spa-
tial distribution. Those can be explained by clay-rich intra-
clasts observed on the rock faces. When comparing the pat-
tern to Fig. 2 at both X Z-oriented cube faces, rip-up clasts
can be observed where high Fe;O3 mass fractions occur.
Those areas provide the maximum values of the Fe;O3 dis-
tribution.

3.4.2 Patterns decoupled from sedimentary structures

Other scalar fields are decoupled from depositional bound-
ing surfaces. For instance, the geochemical mass fractions
of K>O (Fig. 12) and Al,O3 (Fig. 13) provide a significant
positive correlation unconnected to visible structural bound-
aries. Typically, those geochemical properties are indicative
of the presence of orthoclase feldspar (KAISizOg) and/or
illite (KAI3Si3019(OH),) in siliciclastic environments. The
mass ratio of both components is roughly 1:3 to 1:4, which
is in accordance to the illite fraction that was observed in the
thin section and ESEM analyses. Only minor amounts of or-
thoclase feldspar could be found in the thin sections. Thus,
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Figure 11. Spatial distribution of the mass fraction of Fe,O3 mod-
eled with a simple kriging interpolation. As in the intrinsic perme-
ability interpolation, a bimodality can be observed in the empirical
histogram.
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Figure 12. Spatial distribution of the mass fraction of K, O modeled
with a simple kriging interpolation. The pattern is decoupled from
primary sedimentary structures and shows a network-like structure.

we assume that the correlation of KO and Al,O3 can be
traced back to the illite phases.

Higher fractions of Al,O3 are supposedly due to higher
kaolinite (AlySi»O5(0OH)4) fractions in the clay mineral as-
semblages. The patterns are diffuse, showing autocorrelated
areas of slightly enriched and depleted mass fractions. En-
riched areas seem to be connected, building network-like pat-
terns, while depleted areas are more isolated.
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Figure 13. Spatial distribution of the mass fraction of Al,O3 mod-
eled with a simple kriging interpolation. The pattern is decou-
pled from primary sedimentary structures and shows a network-like
structure.

4 Discussion

The overall aim of this study was to quantify the 3D inter-
dependencies of thermophysical, hydraulic, elastic and geo-
chemical scalar fields in sandstone media at the lithofacies
scale and to identify the controlling factors for the property
distributions. With a high-resolution study at the lithofacies
scale, statistical and spatial interrelationships between char-
acteristic physicochemical fields could be discovered and
traced back to depositional and diagenetic processes.

4.1 Petrophysical and geochemical characteristics

Recent multiscale modeling approaches without the use of
local constraints show that the prediction of permeability and
porosity in siliciclastic systems is still challenging (Nordahl
et al., 2014). Geological sampling almost never includes the
entire domain that is investigated. With sampling densities of
25.4 % and 18.2 %, we reached a very high degree of cover-
age. Studies such as Hurst and Rosvoll (1991) showed that
a very high sampling density is necessary to cover the entire
variance of permeability at the lithofacies scale. The inter-
polations performed in this study reproduce the global his-
togram properly and outliers are also accounted for. This,
in fact, implies that the sampling density was selected ad-
equately in order to capture the total variability present in
the physical and geochemical scalar fields. This condition is
typically only fulfilled in sequential simulations (Robertson
et al., 2006) rather than in conventional interpolations.
Although statistically significant correlations may imply
a natural relationship between physicochemical properties,
this relationship could also be based on random processes
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requiring causality to be verified. Weak correlations were
found between the effective porosity and the intrinsic perme-
ability, which are usually positively correlated (Pape et al.,
1999). This relationship can be traced back to the Kozeny—
Carman equation that connects the permeability with the ef-
fective pore throat radius resz and a formation factor F as
follows:

k=r2/(8-F). Q21

The formation factor is defined as the ratio of tortuosity and
porosity showing that porosity and permeability provide a
positive formal relationship empirically. A high number of
secondary pores, produced by feldspar dissolution, did not
significantly contribute to the permeability in the investi-
gated sandstones since those pores are often hydraulically
isolated. Consequently, secondary porosity did not necessar-
ily lead to increasing radii of the effective pore throats rather
than increasing tortuosity. Also, recrystallized quartz cement
—blocking a large number of the pore throats — must be taken
into account. Both effects, in turn, resulted in a degraded per-
meability. In addition to the geometrical aspects previously
mentioned, the alteration products in the form of clay min-
erals occupy the pore space, which lead to larger adhesive
effects that hinder the ability to transport fluids as well. This
observation is in good agreement with observations made by
Molenaar et al. (2015) in Rotliegend rocks from the Don-
nersberg Formation. In addition, these observations are well
reflected by the very low values of the intrinsic permeability
in both rock cubes. Another reason for the very low intrinsic
permeability is the high amount of primary clay and the low
maturity of deltaic sheet-like distributary mouth bar deposits
(Tye and Hickey, 2001).

The linear correlation analysis revealed a significant nega-
tive relationship between hydraulic and geochemical proper-
ties that fits to a polynomial regression (Fig. 14). It should be
considered that the geochemical measurements cover a very
different measurement area — represented by a spot with a
1.2 cm diameter and around 0.5 cm penetration depth com-
pared to the hydraulic measurements performed on an entire
rock cylinder with a 40 mm height and diameter. Addition-
ally, instead of using highly precise stationary X-ray fluo-
rescence devices for measurements, a portable, faster device
was used to efficiently derive spatial trends in the objects of
investigation. This technique weakens the implications for
absolute values; however, the trends observed in the measure-
ments from the portable device are in good agreement with
trends observed by stationary devices. Also, the observed
geochemical characteristics are in accordance with geochem-
ical properties of quartz-rich sandstone varieties that were in-
vestigated in Bhatia (1983) or Baiyegunhi et al. (2017).

Geochemical analyses, in contrast to petrographic ones,
limit the interpretations of geological processes as mineral
phases can only be assumed and not determined for certain.
A high mass fraction of Fe;O3 may imply that the rock is rich
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Figure 14. Regression analysis of the relationship between intrinsic
permeability and mass fraction of FepO3 in the interpolated scalar
fields of the rock cube OSB2_c. Rg is the coefficient of determina-
tion for the plug measurements, and R12 is the coefficient of deter-
mination for the interpolated values.

in iron-bearing minerals like clay minerals, hematite, mag-
netite, goethite, lepidocrite or ferrihydrite (Costabel et al.,
2018), however, a precise classification of the mineral phase
is not possible. Iron oxides are more common in secondary
precipitates that usually form during eo- and mesodiagenesis
(Pettijohn et al., 1987). The degrading impact of iron-oxide-
rich coatings on permeability and porosity in unconsolidated
sand and gravel has been shown in studies like Costabel
et al. (2018). The number of detrital iron-rich phases, such
as hematite, which are present in the rock matrix, is typically
less (Walker et al., 1981; Turner et al., 1995; Ixer et al., 1979)
when compared to the secondary amount. In our case, how-
ever, thin section and ESEM analyses revealed that a high de-
gree of the intergranular matrix is still preserved, especially
at the base of OSB2_c where high amounts of mud and mud
intraclasts are incorporated from basal erosion. The small
grain size of the matrix offers a great surface area for iron-
oxide-rich precipitates, which might have further enforced
degradation of porosity and permeability. The primary ma-
trix typically plugs the pore throats of porous, matrix-rich
media. This reduces the ability to conduct fluids compared to
matrix-free ones. However, due to progressive compaction,
we cannot quantify for certain how large the size of the pri-
mary matrix is compared to the pseudomatrix produced by
the plastic compaction of ductile, clay-rich grains and by
feldspar dissolution.

A significant correlation between K>O and Al,O3 could
be detected. The spatial distribution resembles a network-
like structure that might be either a product of diffusive mass
transport during meso- or telodiagenesis or it might reflect
the distribution of feldspar grains and its residues in the sand-
stone. During feldspar alteration, SiO, is dissolved and K
remains in the alteration products, which could be an impli-
cation for the mesoscale network-like structure into which
pore fluids could have had migrated. This relationship is un-
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derlined by a negative, yet nonsignificant, correlation of K,O
with SiO».

5 Conclusions

Significant nonintuitive relationships between the physical
and geochemical scalar fields at the lithofacies scale have
been revealed with a deductive approach of spatial field mod-
eling and statistical data analysis. All in all, the following
conclusions can be drawn from this study:

1. As specific properties such as the mass fraction of
Fe,O3 preserve sedimentological textures well in their
spatial distribution, other properties seem to be com-
pletely decoupled from depositional bounding surfaces.
These scalar fields probably reflect processes that might
have taken place during the diagenetic overprint of the
rocks as a result of burial and exhumation. These pro-
cesses produce diffuse patterns, as discussed with re-
gard to the correlation of K>O and Al;O3.

2. This study demonstrates that the observation of bedding
structures does not necessarily indicate a stronger polar
anisotropy compared to macroscopically unstructured
lithologies. Here, the microscopic characteristics, like
the amount of secondary porosity, might play a more
important role in the attenuation of physical waves than
the bounding surfaces.

3. It could be shown that hydraulic properties are depen-
dent on the intergranular matrix and cement amount,
which are in turn controlled by depositional processes
and eogenetic precipitates. Those findings are not new
(see Wilson and Pittman, 1977 or Nordahl et al., 2014);
however, they have not been evaluated in lithofacies-
scale 3D environments yet. We assume that primary
matrix and ductile grain content has the most detri-
mental effect on rock permeability. Ductile grains were
mechanically deformed during compaction, leading to
plugged pore throats. Feldspar dissolution has a highly
productive effect on porosity but not on permeability.

4. We demonstrate that the strength of statistical correla-
tion can be preserved in spatial interpolations as long as
the sampling density is sufficient. If the sampling den-
sity is too low, a statistical correlation might be inadver-
tently feigned.

5. As shown in this study, the local geological variability
should not be underestimated as an uncertainty factor in
spatial predictions and upscaling procedures. In fact, the
local geological variability of physicochemical proper-
ties might nearly cover the variability being present in
an entire formation. Therefore, a high-resolution analy-
sis of physicochemical rock properties can assist in as-
sessing the uncertainty of field-scale property models
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which is induced by the local geological variability at
the lithofacies scale.
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3.4. Publication IV — Accounting for Local Geological
Variability in Sequential Simulations—Concept and
Application

3.4.1. Introduction

Publication IV involves the modification of two popular geostatistical algorithms aiming
at the integration of local geological variability into sequential simulations. The local
geological variability is derived from the permeability measurements of the rock samples,
which were extracted from the cubes, described in Publication III.

Our results indicate that the measure of the local simple kriging variance, which is
commonly used to simulate the natural variability in geological media, is systematically
underestimating the local geological variability. The modification of the sequential Gaus-
sian simulation (SGS) and the direct sequential simulation (DSS) algorithms involves
to simulate the natural variability from a geology-derived and data-driven local vari-
ance model (LVM) instead of the local simple kriging variance. The LVM is a global
representation of the locally observed variability.

The modified algorithms reproduce the covariance model and the histogram in the range
of ergodic fluctuations. Moreover, the spatial distribution of the heterogeneous regions is
in accordance with the observable geological architecture, which is not fulfilled in the
conventional algorithms.

3.4.2. Author Contributions

As the first author, I developed the methodological concept, prepared the figures
and wrote the manuscript.

Together with S. Wiesler and J. Haas, I performed the sampling, conducted the field
and laboratory measurements and the exploratory data analysis.

K. Bar contributed towards the methodological concept.

M. Hinderer supervised my research.

All co-authors had a hand at the manuscript and contributed to the revision.
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3.4.3. Publication

Published as:
Linsel, A., Wiesler, S., Haas, J., Bar, K. and Hinderer, M. (2020): Accounting for Lo-

cal Geological Variability in Sequential Simulations—Concept and Application. ISPRS
International Journal of Geo-Information. doi:10.3390/ijgi9060409

143



International Journal of

- ~ K\
ISPYS Geo-Information MD\Py

Article
Accounting for Local Geological Variability in
Sequential Simulations—Concept and Application

Adrian Linsel *{), Sebastian Wiesler 1, Joshua Haas !, Kristian Bir ("’ and Matthias Hinderer !

1 Department of Applied Sedimentary Geology, Institute of Applied Geosciences,

Technische Universitiat Darmstadt, 64287 Darmstadt, Germany; Sebastian.Wiesler@hotmail.de (5.W.);
joshuahaas@gmx.de (J.H.); hinderer@geo.tu-darmstadt.de (M.H.)

Department of Applied Geothermal Science and Technology, Institute of Applied Geosciences,
Technische Universitat Darmstadt, 64287 Darmstadt, Germany; baer@geo.tu-darmstadt.de
Correspondence: linsel@geo.tu-darmstadt.de

check for
Received: 11 May 2020; Accepted: 23 June 2020; Published: 26 June 2020 updates

Abstract: Heterogeneity-preserving property models of subsurface regions are commonly constructed
by means of sequential simulations. Sequential Gaussian simulation (SGS) and direct sequential
simulation (DSS) draw values from a local probability density function that is described by the
simple kriging estimate and the local simple kriging variance at unsampled locations. The local
simple kriging variance, however, does not necessarily reflect the geological variability being present
at subsets of the target domain. In order to address that issue, we propose a new workflow that
implements two modified versions of the popular SGS and DSS algorithms. Both modifications,
namely, LVM-DSS and LVM-SGS, aim at simulating values by means of introducing a local variance
model (LVM). The LVM is a measurement-constrained and geology-driven global representation of
the locally observable variance of a property. The proposed modified algorithms construct the local
probability density function with the LVM instead of using the simple kriging variance, while still
using the simple kriging estimate as the best linear unbiased estimator. In an outcrop analog
study, we can demonstrate that the local simple kriging variance in sequential simulations tends to
underestimate the locally observed geological variability in the target domain and certainly does
not account for the spatial distribution of the geological heterogeneity. The proposed simulation
algorithms reproduce the global histogram, the global heterogeneity, and the considered variogram
model in the range of ergodic fluctuations. LVM-5GS outperforms the other algorithms regarding
the reproduction of the variogram model. While DSS and SGS generate a randomly distributed
heterogeneity, the modified algorithms reproduce a geologically reasonable spatial distribution
of heterogeneity instead. The new workflow allows for the integration of continuous geological
trends into sequential simulations rather than using class-based approaches such as the indicator
simulation technique.

Keywords: sequential simulation; local variance model; geological heterogeneity; uncertainty
estimation; subset variability

1. Introduction

Drawing conclusions from uncertain data in Earth sciences is rather usual than unusual.
Each measurement in geoscientific studies is affected by measurement errors and represents only
a subset of the natural variability of geological media. The natural variability is a substantial
business-critical controlling factor of different types of subsurface utilization such as mining,
hydrocarbon and geothermal exploitation, carbon capture and storage, or nuclear waste disposal.
The physical variability of rocks is defined as the complexity or heterogeneity of a system within time

ISPRS Int. ]. Geo-Inf. 2020, 9, 409; d0i:10.3390/1jgi9060409 www.mdpi.com/journal/ijgi
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and space [1]. Even marginal discrepancies from the predicted property distributions in the subsurface
can lead to inaccurate simulations of a quarrie’s production potential or a reservoir’s recovery and
life-time [2,3]. Especially the small-scale variability of rock physical properties makes field-sized
predictions still challenging.

Natural heterogeneity and the corresponding property distribution in time and space can be
modeled through interpolation, statistical regression, machine learning or stochastic simulation [4,5]
by using a number of observations or training data. Due to technical, economic or temporal limitations,
geoscientific sampling campaigns practically always end up in scarce data sets within a target
domain (). Accordingly, estimates of properties often do not account for or misfit the observed
geological structures in the field and especially conventional interpolation techniques such as kriging
produce smooth transitions at sharp geological boundaries. Moreover, they may fail to reproduce
the global statistics appropriately. Conventional interpolations tend to underestimate the presence of
values in the upper tail of a distribution and likewise in the lower tail, too [5]. Consequently, major
geological heterogeneities, such as faults, major bounding surfaces, or physicochemical anomalies,
are very likely not to be reproduced appropriately by a continuous random function (RF) [6].

In contrast to conventional interpolation techniques, stochastic simulations aim to reproduce the
variance and the histogram observed in the global data [7,8]. Based on either being constrained or
not, stochastic simulations split up into unconditional and conditional simulations [9]. Unconditional
Monte Carlo-based simulations reproduce the original histogram without spatial constraints.
The realizations produced by those methods, however, are regularly far away from representing
the true spatial distribution and constitute “most likely” cases at the best. Conditional simulations,
in contrast, aim to reproduce the original property distribution by means of discretely sampled points
together with spatial characteristics such as the observed variogram model [10].

One type of conventional simulation algorithms is represented by the sequential Gaussian
simulation (5GS) in which the local variability is simulated by sampling the local probability density
function (PDF) derived from the local simple kriging variance 0Z;. This parameter results from the
previously performed interpolation of the standard normally distributed data set [11]. Early field
studies have proven the potential of this method to predict rock properties at unknown locations and to
assess the uncertainty that can be expected in the area of interest [12-15]. More recent approaches lead
to modifications of the SGS algorithm without the need to transform the original variable into standard
normal space. That technique—Dbetter known as direct sequential simulations (DSS)—may, for example,
sample from the global histogram rather than from the local PDF [9] or perform a quantile-quantile
back-transformation into the original variable’s space after the simulation. Those approaches can
reproduce both the original histogram and experimental semivariogram model as well [10]. The local
PDF derived from 0, however, mainly reflects the degree of uncertainty induced by the interpolation
method itself and does not necessarily reflect the local variability observed on a smaller scale than Q).

In order to enhance the accuracy of sequential simulations, we propose a new workflow, which
incorporates the local variability derived from measurements on a subset of () into SGS and DSS
under the consideration of measurement errors. The modified SGS and DSS algorithms utilize a global
representation of the locally observable variance, named local variance model (LVM), in order to draw
a value at an unsampled location. Accordingly, the algorithms are called LVM-5GS and LVM-DSS.
Before simulation, an integer programming optimization analysis is performed in order to optimize the
robustness of the underlying interpolation function. Instead of sampling from the local PDF, which is
generated by means of 02, or by solving a global optimization problem, our parametric approach
simulates a local PDF based on a measurement-constrained and geology-driven variance extracted
from the LVM. The local PDF hereby is simulated with a Box-Muller transform [16].

The method was tested and validated in a case study, which has been conducted in a potential
geothermal reservoir formation in southwestern Germany. Therefore, we measured the intrinsic
permeability, representing a key parameter in many types of subsurface utilization, on a set of samples
taken from an active quarry. () is represented by a 3-D outcrop model, which is constructed by means
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of photogrammetric outcrop wall reconstruction. The model covers a volume of 9000 m3. Small-scale
variability is derived from rock samples, which are taken from two representative rock cubes. Those are
regarded as ), and cover a volume of 0.0156 m3 and 0.008 m3, respectively. The rock cubes are taken
from the same outcrop, from which the global samples are taken from. Eventually, our approach is
compared to the conventional SGS and DSS algorithms and assessed by its ability to reproduce the
global variogram model and the geological heterogeneity.

2. Theoretical Background

2.1. Spatial Variability

In order to reduce the probability of economic failure in mining industries, the concept of the
regionalized variable had been developed by Matheron [17] in the 1960s. The regionalized variable
is a function that takes a definite value at each point of space. In geological media that regionalized
variable often proved to be too complex to be expressed by mathematical functions. A regionalized
variable is assumed to show a more or less steady continuity in space accompanied by local fluctuations
(Figure 1). In geological media, those fluctuations usually result from the physical variability observed
at smaller scales.

4t
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Figure 1. Conceptualization of a regionalized variable after [5] exemplary illustrated for the
intrinsic permeability.

Lithological and physical variability is subject of numerous geoscientific studies [18-21] and is
commonly termed heterogeneity. In the Oxford Dictionary [22] the word heterogeneity is defined as a
Difference or diversity in kind from other things or a Composition from diverse elements or parts; multifarious
composition. In most works, this term is used to describe that an object consists of multiple subsets
being different to one another in one or more attributes. Li and Reynolds [1] restrict the term to be the
variability of a system property in three-dimensional space. Fitch et al. [23] provide a set of methods to
quantify heterogeneity within a sample of observations including the coefficient of variation (cy),

C'U = = (1)

where 0 is the standard deviation and y is the arithmetic mean and the Dykstra-Parsons coefficient (c;)

X50 — X84
Cap = ——— (2)
x50
where x;, is the nth percentile of a distribution.
The continuity of a regionalized variable is thus dependent on the continuity of the geological
media and may or may not provide continuity in a mathematical sense. In this work, we will use the

term property for a regionalized variable, the term field for the (quasi-)continuous spatial distribution
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of a property, and the term target domain () for an area of interest. When we mention global and local
characteristics, we refer to characteristics of (2 and its subsets (2, respectively.

2.2. Geostatistical Interpolation

Geostatistical interpolation techniques aim to estimate a value at unsampled locations of a
property in () and build the base for sequential simulations. The most popular geostatistical
interpolation technique is kriging. In the following subsections, we will briefly describe the theory
behind kriging and focus on its variety simple kriging (SK). Moreover, we will discuss practical
computational aspects such as neighborhoods.

2.2.1. Spatial Neighborhood

As the system of linear equations for geostatistical estimations might grow very large,
those algorithms require subset-sampling in order to perform reasonably. Therefore, a 3-D search
ellipsoid can be used to find the neighbors of a point in a mesh [24]. This ellipsoid can be defined by
six properties: azimuth «; dip §; plunge 'y together with the radius in X ry, Y r, and Z direction r; of
the ellipsoid. &, B, and 7 define the ellipsoid’s clockwise rotation around the Z, X, and Y axes in this
exact order. Accordingly, the rotation matrix T can be defined as

cosx sina 0 1 0 0 cosy 0 —siny
T=|—-sinacosa 0| [0 cosp sinp 0 1 0 . 3
0 0 1/ \0 —sinp cospB/ \siny 0 cosvy

After translating the mesh such that x, = x;, = x; = 0 and rotating it according to Equation (3),
Equation (4) can be used to determine, whether a point x’ with the transformed coordinates x, x]’/ and
x., is located inside or on the boundary of the search ellipsoid (<1) or not (>1).

2 2 2
(1) ) =
X! Xy Xl

The variographic analysis is a crucial prerequisite for numerous geostatistical interpolation

2.2.2. Variography

techniques. Hereby, the experimental semivariogram represents the cumulative dissimilarity of a
discrete set of point-pairs with 7, representing the count of point-pairs within the distance classes h of
identical distance increments (Equation (5)).

n1c(h)
L 2 2(x + ) — 2(xy)) )

v(h) =~ 2n.(h

The continuous counterpart, represented by the theoretical semivariogram v, is an
approximation of the experimental semivariogram assuming z(x) to be a stationary random field [25].
Ytheo 18 used to fit the experimental variogram. The spherical variogram model 1y, with a nugget effect
is a popular nested model used to fit the experimental semivariogram [26,27], which is calculated by

|h|

3
n+b~(%—ﬁ) if0<|h|<a

6
n if|h\2a, ©

V(h)sph -

with n being the nugget, b the sill and a the range [6]. The variogram model represents a covariance
function ¢ with the relationship 7y (h),,, = ¢(0) — c(h), where ¢ is a positive definite, even function
and ¢(0) = n + b in case of a spherical variogram model with nugget effect. Semivariograms can be
used to quantify the spatial or time correlation of a random variable [27-29]. ¢ and 7, are input
variables for geostatistical interpolation algorithms.



ISPRS Int. ]. Geo-Inf. 2020, 9, 409 50f23

2.2.3. Simple Kriging

Kriging is a commonly used stochastic technique to interpolate geological rock properties in space
and time [30]. The kriging estimator is the best linear unbiased estimator (BLUE) of a property as it
minimizes the error variance. It incorporates the covariance structure of the globally sampled values
into the weights for predicting the value z(xp) at an unsampled location x [31]. Therefore, z(x) is
calculated by weighting the values of the sampled locations and building a linear combination of those
what gives

z(x0) = Y wi - z(xk), )
p

where wy is the weight of the sampled point x; with the value z(x). The kriging types primarily differ
by their derivation of the weight vector. For all kriging systems, a system of linear equations must be
solved as it is outlined in the following paragraphs, in which we will consider the simple kriging (SK)
technique [32] and expand it by the integration of a locally varying mean [33]. Therefore, we modify
Equation (7) into
n n
z(x0)sx = 2 wy - z(xg) + <1 — Z wk> U (8)
k=1 k=1

in which the known stationary mean p has been added [6]. While SK assumes that u is globally
constant and known, SK with locally varying mean assumes y to be constant only in the neighborhood

of xp. In order to obtain the SK weights, a system of 7 linear equations must be solved in which n
stands for the number of considered neighbors. This system of equations is defined as

Aw =D, )
which corresponds to
c(xg—x1) - elxr —xn)\ [wiX c(x1 — x0)
c(xn —x1) - oy —x) ) \wSK c(xn — x0) (10
N e’
A w b

with ¢ as covariance function and x, as point with known value [25]. In SK each interpolated point
provides a simple kriging variance 02 [5], which we can calculate by means of the formula

odx = c(0) — Y wie(xy, x0). (11)
k=1

The quality of a kriging interpolation is dependent on the variogram model and its goodness of
fit to the experimental semivariogram.

2.2.4. Consideration of Measurement Error Variance

We already saw that kriging induces a local interpolation error by itself, namely, 02,. There are,
however, also other components which bias the interpolation result. Besides U_%K, the local and
unknown variability of z(x) in (), as well as the measurement error variance 2, might play an
important role (Figure 2). Integrating 2, into an interpolation can be achieved by estimating the
measurement error precision oy, with a variance of 02 and incorporating it into the kriging system of

linear equations giving
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c(x; —x1) + (712 o e(xg —xp) wa c(x1 — xp)
: = : . (12)

c(xp—x1) - c(xy—xy) +02 w3k c(xn — xo)

In contrast to the conventional formula, 03, with regard to the considered known value at x; is
added in the diagonal of the matrix [25]. This accounts for the heteroscedastic nature of geological
parameters as they commonly show a higher variability for high values and a lower variability for
low values.

z(x)

z(x.)

Figure 2. Schematic of the uncertainty components integrated into a predictive model of rock properties.
(a) Illustration of an interpolation process using neighboring points x; with known values to predict
the unknown value at x(. (b—d) Schematic of the local probability density functions (PDFs) in form of a
Gaussian distribution defined by ¢? and y for the estimated kriging error variance U%K at xg (b), the
observed measurement error 2, at the point x3 (c) and the observed variance U'g in a subset )}, of Q) (d).

2.3. Sequential Simulation

In contrast to geostatistical interpolation techniques, sequential simulations aim to reproduce
the global statistics in form of the considered variogram model and the global histogram. Therefore,
in order to account for the spatial heterogeneity of a rock property, the sequential Gaussian simulation
(SGS) and the direct sequential simulation (DSS) algorithm can be utilized for univariate simulation.
SGS is based on the multi-Gaussian approach [33], which assumes that the kriging error is standard
normally distributed with = 0 and 02, = 1. This requires that each one-point cumulative density
function (CDF) of any linear combination of the RV is normally distributed, that all subsets of the RF
are multivariate normal, that the two-point distribution is normal and that all conditional distributions
of subsets of the RF are normal [33]. If the RF fulfills the requirements, then the simple kriging estimate
and variance characterize the posterior cumulative CDF under consideration of the normal score
variogram model. Thus, we need to transform the original distribution’s CDF into standard normal
space for SGS. In order to transform any point in the CDF (F(Z(u))) of any random variable Z(u) to a
random function Y (u) and vice versa the following equation can be applied,

Y(u) = ¢(Z(w)) = GT[F(Z(w))], (13)

where G™! is the inverse Gaussian CDF of Y (u), which is also named quantile function [34], and ¢ is
the inverse Gaussian CDF of F(Z(u)). Thus, z and y correspond to the same probabilities. For each
previously interpolated point x; now a random value of the normal distribution N (psk, o),
whose PDF defines as

T

flx) = e 257 )2, (14)
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is drawn as z(x() using the Box-Muller transform [35]. We can perform this transform by applying
the equation

z(xp) = \/—2 -log(uy) - cos(2m - up) - o0+ u, (15)

with 7 and u; as random numbers € [0,1], ¢ as the standard deviation, and y as the mean of the
original distribution. The simulation is eventually back-transformed into the original space using a
quantile-quantile back-transformation mapping technique. The reproduction of the covariance model,
however, does not require the multi-Gaussian approach as long as the estimate and variance are
derived from the SK estimation [9,10]. Thus, the conditional distribution type, which is chosen in order
to simulate the variability at each point, does not necessarily need to be Gaussian. With this in mind,
it is evident that a normal score transform is not needed before performing a sequential simulation.
This results in the DSS approach, which commonly samples from the global PDF by determining the
sampling interval from the local PDF [9].

2.4. Model Validation

2.4.1. Cross-Validation

In order to assess the quality of a realization, models, which are constructed by means of
interpolation or simulation techniques, should be validated. Commonly, interpolations are validated
by cross-validation. This technique is usually performed by using point removal procedures called
leave-p-out cross-validation (LpO CV). For the LpO CV, p randomly selected samples are removed
from the input data set of size n with 0 < p < n and the interpolation or simulation is performed
without these samples [36]. As measures of goodness of fit, the mean-square error (MSE, Equation (16)),
the root-mean-square error (RMSE, Equation (17)), and the mean-absolute error (MAE, Equation (18))
of the realization can be calculated as

n

MSE = % Y (2(x) —2(xx)), (16)

k=1

RMSE = \/ikf (2(x) — z(x0))? (17)
=1

and
1 &
MAE = . 2 12(x%) — z(x1)], (18)
k=1

where Z(xy) are the simulated points. While Willmott et al. [37] question the status of the triangle
inequality for the RMSE, which is required for a distance function metric, Chai and Draxler [38] show
that the RMSE in fact fulfills this condition. Thus, if the model errors follow a normal distribution,
the RMSE is to favor over the MAE [38].

2.4.2. Ergodic Fluctuations

The minimum requirement for geostatistical simulations is their ability to reproduce the original
data, the global summary statistics and the global variogram model [8,39]. Erdogic fluctuations refer
to the discrepancy between the model parameters and the realizations’ statistics [6]. In the case of the
variogram model, the discrepancy of a realization to the variogram model is related to the limitation of
the integrated constraints to a limited neighborhood. This, in fact, leads to higher errors at far ranges
within the simulation. In this study, we quantified the ergodic fluctuation of a realization by estimating
the average MSE between the experimental semivariogram and the variogram model. If a realization’s
discrepancy among the experimental variogram and variogram model does not exceed the original
values discrepancy, the variogram reproduction is said to be within the range of ergodic fluctuations.
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3. Sequential Simulation using a Local Variance Model

In this section, we will describe how the SGS and DSS algorithms need to be modified in order to
sample from a local variance model (LVM). The LVM can be described as a global representation of
the locally observable variance 07, in one mesh cell. Thus, the LVM can be referred to as the local
geological heterogeneity. The LVM is constructed using a mapping technique in which the value of
the mapped variances is constrained by a set of measurements. Those are intended to represent the
small-scale variability present at the mapped position. Subsequently, the variance is interpolated onto
Q. The basic concept of interpolating a distribution in space is illustrated in Figure 3c.

a
b c
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Figure 3. (a) Photogrammetric model of the investigated sandstone quarry. The outcrop is
compartmentalized by two scissor faults and consists of two lacustrine-deltaic Bouma sequences [40].
(b) Sedimentological 1-D section of the sedimentary architecture observed in the outcrop. The Bouma
sequence provides an erosive base. One sequence is characterized by a fining-upward trend and consists
of intraclasts-rich massive sandstones at the base and trough cross-bedded and ripple cross-bedded
sandstones towards top [40]. (c) Spatial interpolation of a PDF exemplary illustrated with both
theoretical Gaussian distributions derived from the measurements of OSB1_c and OSB2_c.

The sequential simulations are performed on the nodes of () using a modification of the SGS and
DSS algorithms, namely, the LVM-SGS and LVM-DSS. Our basic idea is that, if and only if the geological
heterogeneity is exceeding 02 at xi, we will sample from the LVM-constructed PDF instead of from
the kriging-derived PDE. Otherwise, if the interpolation error is greater than the expectable geological
heterogeneity, we will sample from the kriging-derived PDF. The generalized algorithm is displayed
in Algorithm 1. All analyses have been conducted with the open-source software GeoReVi [41] in
which the new algorithms have been implemented as extensions in the C# programming language
(Appendix A).
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Algorithm 1 LVM-5GS and LVM-DSS

Given: (); x; N > Target domain; Sampled locations; Neighborhood information;
Initialize: ugjm; X’ > Simulated locations; Spatial neighbors;
if GMV-SGS then

Y (x) « Equation (13) > Transform to standard normal space
end if
v(h) < Equation (5) > Estimate the experimental variogram
’y(h)sph <+ Equation (6) > Derive the variogram model and the covariance function

for all u; in Q) do
x" < Equation (3) & Equation (4) > Determine the neighborhood with N applied to x & ugim

psk < Equation (8) using -y (h)spn > From x’
02y + Equation (11) using v(h)spn > From x’
Allocate va M(x!)
if UéK > anM(xlf) then
z(u;) + Equation (15) from N (usk, 03y) > Draw a value with 02,
else
z(u;) + Equation (15) from N (usk, 02 ) > Draw a value with 0%,
end if
Add z(u;) to ugim
end for
F(Z(u)) < Equation (13), > Back-transform the simulated values into the original space

3.1. Case Study

In order to test and evaluate the new workflow with the modified algorithms, we conducted an
outcrop analogue study in a quarry in Germany. In the following subsections, we will outline the object
of investigation, the sampling strategy and the modeling techniques used to implement the LVM-5GS
and LVM-DSS algorithms. We decided to use the intrinsic permeability k for the implementation as
that property plays a critical role in numerous types of subsurface utilization—especially with regard
to subsurface reservoirs.

3.1.1. Object of Investigation

An actively quarried sandstone outcrop (long. 7.647546, lat. 49.523821) in Obersulzbach, which is
located in the Saar-Nahe basin in southwestern Germany, has been selected as object of investigation
(Figure 3a). The outcrop exposes the Disibodenberg Formation of the innervariscan Rotliegend Group,
which constitutes a deeply buried [42] potential hydrothermal reservoir unit [43] in the northern Upper
Rhine Graben. The Disibodenberg Formation in the quarry is composed of two Bouma sequences
(Figure 3b) from a lacustrine delta, which deposited during Permian times. There were two selection
criteria being decisive for selecting the quarry. On the one hand side, the sedimentary beds are >2 m
thick and laterally continuous. Moreover, the outcrop is actively mined, which reduces the impact of
recent weathering onto the permeability. Moreover, it was possible to extract both rock samples from
the outcrop wall as well as oriented rock cubes from different representative lithofacies types in order
to conduct multi-scale three-dimensional investigations. The outcrop measures 50 x 15 x 10 m and
thus owns the size of a typical cell in common static and dynamic reservoir models (see, e.g., in [44]).

3.1.2. Sampling Strategy

Numerous studies showed that the physical variability in geological media must be integrated as
a function of measurement volume, also known as the representative elementary volume (REV) [45].
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The REV denotes a volume, at which a representative amount of heterogeneity is captured by one
measurement [46] minimizing the smaller-scale fluctuations. Therefore, a multi-scale approach based
on the concept of the REV has been implemented. Accordingly, 39 cylindrical rock samples with
diameters and lengths of four centimeters were extracted from the outcrop wall. The samples were
taken from six 1-D profiles covering the entire quarry area (Figure 4a). More information regarding the
sample positions and orientations can be found in Linsel [41]. Those samples were used for the global
field simulations.

-
(o]
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Figure 4. (a) Photogrammetric model of the investigated sandstone quarry in Obersulzbach, Germany.
Sample locations are displayed as spheres, whose color indicates the observed permeability value at
the sample locations. (b) Hexahedral non-orthogonal mesh of the investigated outcrop generated by
an IDW interpolation using the nodes of the photogrammetric model as constraints.

The quarry contains sequences from a prodelta mouthbar deposited as turbiditic densites.
The sequences graduate from a high-energetic depositional environment at the base to a low-energetic
environment at the top as the flow velocity is steadily declining. The sequences consist of
heterogeneous, intraclast-rich sandstones at the base and of trough cross-bedded, ripple cross-bedded
and homogeneous sandstones at the top. Consequently, the sequences can be declared as Bouma
sequences containing the Bouma A to Bouma E intervals in a fluvial-dominated lacustrine-deltaic
depositional environment [47]. Based on that, we assumed that the variability within one Bouma
sequence is highest at the base and lowest at the top (Figure 3b).

Accordingly, two rock cubes of 0.2 x 0.2 x 0.2 m (OSB2_c) and 0.25 x 0.25 x 0.25 m (OSB1_c) were
taken—one from the top (Bouma E) and one from the base (Bouma A) of one sequence—in order to
capture both the highest and the lowest variability. The locations of the cubes within the quarry and
the strata are shown Figure 3a,b.

We selected two types of lithofacies: OSB1_c, a discontinuously cross-bedded, intraclast-rich
lithofacies type and OSB2_c, a homogeneous lithofacies type without macroscopically observable
internal bounding surfaces. In total, 79 rock cylinders were extracted from rock cube OSB1_c and
29 from OSB2_c. More information regarding the sampling process can be found in Linsel et al. [40].
Those samples were used for constraining the LVM.

3.1.3. Laboratory Measurements

The cylinder samples were cut, oven-dried at 105 °C and measured in the laboratory for
determining the intrinsic gas permeability k at unsaturated conditions. k can be considered one
of the key parameters of geothermal reservoir rocks with regard to hydrothermal systems in porous
aquifers [48]. k was measured with the Hassler cell Darmstadt permeameter. The device’s functionality
is described in detail in Filomena et al. [49]. The permeability is provided in the industry-standard
unit millidarcy (mD), where 1 mD corresponds to 9.869 x 1071¢ m2. The permeability measurement
provides an error variance between 0 and 0.15 mD? in the range of the observed values [50].
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3.1.4. Mesh Generation

In order to construct (), the outcrop wall is modeled using a photogrammetric representation
that was downsampled into 40 x 20 faces and subsequently interpolated using Shepard’s p-value IDW
interpolation, which we can write as

ry (1)) =)
ISR

z(xo) , (19)

where d is the Euclidean distance between the the point with the known value x; and the point with
the unknown value xg and p is an exponent factor to influence the weights non-linearly. IDW has been
applied with a short search radius of five meters and a power parameter of four. The interpolation
result has an RMSE of 0.024 m, which can be considered low for the surface interpolation. The resulting
outcrop surface is used as a bounding surface for a hexahedral mesh, which represents (), that is
composed of 75,240 cells (Figure 4b, Table 1). The rock cubes, which represent (), are constructed by
an orthogonal, hexahedral mesh containing 25,230 (OSB2_c) and 64,000 cells (OSB1_c), respectively.
The volume of an average cell of the outcrop mesh is roughly eight times the volume of OSB1_c and
15 times the volume of OSB2_c (Table 1).

Table 1. Statistical characteristics of the outcrop mesh and both cube meshes (11, = number of nodes,
1. = number of cells, V = volume of the mesh, V, = average volume of a mesh cell).

Object ny -1 ncl-l Vm® Ve [m]

Outcrop () 82,000 75240 9000 0.12
OSB1_c(Q),) 68921 64,000 00156 6.19x10~7
OSB2_c (Q)) 31,500 25230 0.008 1.25x10~7

The variance ¢? derived from the measurements conducted on the samples from the rock cubes is

assumed to represent the variance Uleb that can be expected in one cell of the outcrop mesh so that

2 2
Tivm =~ 00, (20)

with 02, being the local sample variance, which we can calculate by means of the formula

=Y, @

where 7 is the total number of samples, y is the mean and x; is the sample at the ith location.
4. Results

4.1. Spatial Variability

The variogram analysis reveals a range of 0.3 m and 0.2 m for the rock cube samples OSB1_c
and OSB2_c, respectively, and a range of 18 m for the outcrop samples (Figure 5a,d,g). The sill is
slightly higher in the outcrop region as it is in the rock cubes. Moreover, the outcrop samples show a
weak nugget effect. Generally, a scale effect can be observed in which the variance increases with the
considered volume. This effect is also present in the descriptive statistics (Figure 5c,f,i).

The measurements from the outcrop region show a ¢, of 0.28 and a ¢4, of 0.31. The histogram
indicates a normal distribution of k ranging from 0.7 mD to 4.6 mD (Figure 5b). A two-sided
Kolmogorov-Smirnov test [51], which is based on an implementation of Simard and Ecuyer [52],
confirmed the hypothesis that all samples come from a normal distribution. The application of Tukey’s
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outlier detection method [53] reveals no statistical outliers in the sample. By applying the classification
scheme of Corbett and Jensen [54], the sample can be classified as being very homogeneous.

The local histogram of k from OSB1_c shows a bimodality in the distrubtion ranging from 0.7
to 3.9 mD (Figure 5e). OSB2_c’s histogram shows a unimodal range from 0.8 to 1.5 mD (Figure 5h).
Again, no statistical outliers can be detected. The local variability of OSB1_c is significantly higher
than that of OSB2_c. k of OSB1_c provides a ¢, of 0.3 and a ¢4, of 0.4 while measurements from OSB2_c
show values of 0.2 for ¢, and 0.18 for ¢4y ¢, and ¢4, of OSB1_c tend to cover the variability of the
global data. This result is in good agreement with the REV theory from Nordahl and Ringrose [45].
Both rock cubes can be classified being very homogeneous as well.
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Figure 5. Empirical variogram and variogram model, empirical histogram, and heterogeneity-indexes
derived from the k measurements for the outcrop (a—c), and the rock cubes OSB1_c (d-f) and
OSB2_c (g—i). A scale-effect is observable in the heterogeneity-indicating coefficient of variation,
the Dykstra—Parson coefficient and the sample variance. All variogram models are described by a
spherical model with nugget effect. The variogram model for (a) is described by n = 0.05 mD?, a = 23 m
and b = 0.75 mD? with n as nugget, a as range, and b as sill. The model for (d) is described by
n=0mD?,a=0.3mand b = 0.58 mD? while the model of (g) is described by n = 0.005 mD?,a=0.18m
and b = 0.08 mD?.

Thus, we can observe a significant small-scale variability. The bedding structures in OSB1_c are
well preserved in the permeability field of the k interpolation, which gradually increases from low
values between 0.7 and 2 mD in the lower beds to higher values between 2 and 4 mD in the upper beds
(Figure 6a). In OSB2_c the trend is running diagonally through the rock cube (Figure 6b); however,
no macroscopic bounding surfaces are visible, which could have had a control on the field of k here.
It should be noted, however, that the range of k is significantly smaller here compared to OSB1_c.
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Figure 6. Spatial distribution of the intrinsic permeability in the rock cubes OSB1_c (a) [40] and OSB2_c
(b) interpolated using the SK method.

4.2. Constructing the LVM

The LVM is constructed by means of a 3-D architectural element mapping of both Bouma
sequences in the quarry. The base and the top of the sequences are mapped which are being used to
constrain the LVM by the locally observable variance 07,,,. The exploratory data analysis reveals that
the variance of k in OSB1_c is five times larger than that of OSB2_c. This is in accordance with the
sedimentological mapping, which indicates a higher heterogeneity at the base of the Bouma sequence.

It is assumed that OSB1_c represents the most heterogeneous and OSB2_c the most homogeneous
lithofacies type in the Bouma sequences as it is illustrated in Figure 3b. Accordingly, the positions
of those lithofacies types are mapped throughout the quarry area and parameterized with c%,,,,
which has been determined by the k measurements of OSB1_c and OSB2_c. Thus, we use va M = 043
for mapping the base boundaries of the sequences throughout the outcrop area. Likewise, 07,,,, = 0.07
is used as a local variance for the topmost boundary of the single sequences. The mapping locations of
0?1, are shown in Figure 7a. The points mapped onto the outcrop model are subsequently interpolated
onto () by using a SK-based interpolation procedure for parametric PDFs (Figure 3c). The interpolation
is conducted using 5 neighbors, a range of five meters, a sill of 0.005, a nugget of 0 and a plunge of 10°
as the strata gently dip towards south. Figure 7b shows the constructed LVM which is being used by

the sequential simulation algorithms. It should be noted that we have a decent offset in the LVM in the
area of the central fault zones.

5
I+
S
=
2

0.070.25 043

Figure 7. (a) Mapping of the local variance with regard to the observed geological structure. The highest
variance is indicated by red spheres whereas the lowest variance is indicated by blue ones. The variance
is derived from the rock cube measurements of OSB1_c—representing the most heterogeneous
lithology at the bottom of the Bouma sequences (red)—and OSB2_c—Ilikewise representing the most
homogeneous lithology at the top of the Bouma sequences (blue). (b) The 3-D local variance model
(LVM) representing the locally observable variance, which is constrained by the mappings shown in (a).
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4.3. Optimizing the BLUE for Sequential Simulation

Prior to sequential simulation, the optimal SK conditions with regard to the integrated
measurement error variance ¢7 and the selected neighborhood are determined. Therefore, a simple
integer programming optimization is performed using varying measurement error variances (0.0 mD?
< 02, < 0.15 mD?) and a varying number of neighbors (10 < 1, < 20) as inequality constraints.
We can express the optimization problem as

min esx (02, 1) (22)
2R, n,eN
subject to 0< 03,1 <0.15
10 < n, <20,

in which the SK error €sg in form of the RMSE and MAE must be minimized. The response surface
of the numerical optimization process indicates that the SK error is generally declining when ¢2, is
increasing. The lowest errors are produced with an n, of 10, 11, and 20. This sensitivity of the SK
error on the number of neighboring points is not unusual. The numerical optimization reveals that the
optimal conditions for SK are met at 1, = 20 and ¢2, = 0.15 which yields a RMSE of 0.708 mD (Figure 8).
The interpolation error can be reduced by 16.5% for the RMSE and by 18.5% for the MAE. The final SK
realization and the spatial distribution of 02 for that exact model is illustrated in Figure 9. It should be
noted that the spatial distribution of 0% in a sequential simulation is different as previously simulated
locations are considered as well.

a € ruse [mD] b o 0°=0.0 mD* -e- ¢*=0.1 mD’
o 2_ 2 2_ 2
072 076 08 o 0,=0.05mD" - 0.=0.15mD
0.15 . % : - R F 0.86 |
R " ol o b o
- °
. g 0.82
0.1 ¢ ¢+—+—¢§ ~
a . 2
£ = 0.78
o~ E g
® 005 w
0.74
0.7
15 20
n, [] n, [-]

Figure 8. Results of the linear integer programming optimization using the marked sampling points.
The interpolation error egysg is minimized using the inequality constraints given in Equation (22).
(a) RMSE response surface with regard to the incorporated measurement error variance 2 and the
maximum number of neighbors 1, using a leave-one-out cross-validation. (b) Cross sections through
the response surface of (a).

The final modeling variables for the sequential simulations are given in Table 2. For SGS and
LVM-SGS, the original data are transformed into standard normal space with ¢ = 0 and ¢ = 1.
The transformation leads to an adaption of the considered variogram model as the sill is now 1
and not 0.75 with a nugget of 0 instead of 0.05.
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Figure 9. (a) Simple kriging estimate (b) and the local simple kriging variance for one SK realization.

Table 2. Modeling variables for the sequential simulations.

Variable SGS & LVM-SGS DSS & LVM-DSS
BLUE SK SK
Normal score transform yes no
Quantile-quantile back transform yes yes
Range x 50 m 50 m
Range y 50 m 50 m
Range z 15m 15m
Nugget 0.05 0

Sill 0.75 mD? 1 mD?
Range 23 m 23 m
Max. number of neighbors 20 20
Azimuth 0° 0°
Dip 0° 0°
Plunge 10° 10°
Measurement error variance 0.15 mD? 0.15 mD?

2 2
44, UG Versus Oy

The statistical and spatial characteristics of 0%y and 07, differ tremendously. 02, is unimodally
distributed, whereas 07,,,, provides a bimodal distribution (Figure 10a). It is evident that 02, covers
the total range of the considered covariance model while ¢7,,,,’s range is more limited. The probability
of simulating variances between 0.2 and 0.43 mD? is higher when sampling from the LVM instead
of the local SK variance (Figure 10b). The median between 07, and 02 differs by ~ 0.08 mD?,
which indicates that the variability simulated in a realization of conventional sequential simulation
algorithms is systematically underestimated.

With regard to the variogram model, 07, has a range of 5 m and a sill of 0.36 mD?, and 02
has a range of 0.3 m and a sill of 0.1 mD?. Thus, 02, seems to be spatially uncorrelated and random.
However, the grade of variability in the eastern part of the outcrop is slightly higher than in the western
part. Therefore, in contrast to 07,,,,, 03, obviously does not provide the simulation algorithm with a
spatial trend when simulating the local variability.
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Figure 10. (a) Comparison of the empirical histograms of the 02, model produced in a DSS realization
with the LVM and (b) the empirical distribution of U%K produced in the realization of (a).

4.5. Model Validation

All algorithms reproduce the considered variogram model within the range of ergodic fluctuations
after back-transformation (Figure 11a—d). The quality of variogram reproduction has been evaluated
by calculating the average mean square error €ysg of all realizations between the experimental
variogram and the variogram model. The best reproduction is produced by the LVM-DSS and
LVM-SGS algorithms, while the latter one provides the lowest degree of ergodic fluctuations
with €ysp = 0.066 mD?. All realizations reproduce short-range dissimilarities well but slightly
underestimate the dissimilarity at medium ranges. DSS and SGS tend to gentle underestimation
at far ranges which is a drawback of limited neighborhoods. This effect, however, is less expressed
in the LVM-based algorithms. For both types of sequential simulation, the LVM-based algorithm
outperforms the conventional conditional simulation approaches.
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Figure 11. Experimental variograms (gray) for 15 realizations of DSS (a), SGS (b), LVM-DSS (c) and

LVM-SGS (d) plotted together with the average over all realizations (blue) and the considered variogram
model (red), which is described by a nugget of 0.05 mD?, a range of 23 m and a sill of 0.75 mD?2.

Visual Outputs

It is evident that all simulation algorithms provide visually comparable results (Figure 12).
It should be noted that the quadrilaterals of the 3-D models are subdivided using the Catmull-Clark
scheme [55] for visualization. Within this scheme, a new point in a quadrilateral is calculated by

R =
RS (23)
i=0

with x¥1 as the new point at subdivision step k + 1 in the center of the element j with n vertices at
the subdivision step k. This technique smooths the observable patterns in the models. There is an
obvious trend in all realizations, which indicates that the highest values are located in the eastern
part of the quarry and the lowest values in the western part. Having in mind that the applied
algorithms are conditional, this trend is in well accordance with the constraints as given by the global
measurements, which also provide the highest values in the eastern part of the quarry and the lowest
values in the western part (Figure 4a). The trend is most clearly depicted in the DSS and LVM-DSS
realizations (Figure 12). SGS and DSS tend to construct homogeneous regions more likely than their
LVM equivalents. Thus, those algorithms might indicate a homogeneity, which is likely not present in
the strata. Moreover, the heterogeneity of the LVM equivalents is more realistically oriented along the
bounding surfaces in the quarry than the models produced by the conventional algorithms.
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Figure 12. Exemplary model visualizations for the DSS, SGS, LVM-DSS and LVM-SGS realizations.

5. Discussion

In this study, we present a workflow that accounts for the locally observable geological variability
in modified versions of conventional sequential simulation algorithms. Our approaches produce
similar outputs as the conventional algorithms and reproduce the global variance model together
with the global summary statistics, which are important criteria for the validity of a statistical
simulation [8,10,39]. Our results are confirming the concept of the REV [45], in which the complexity of
a continuous random variable is increasing with reducing the scale of observation. Moreover, we can
confirm that 02, constitutes no measure for the local estimation accuracy [56] as it is only reflecting
the spatial configuration of the constraining data points being simultaneously independent on the
constraints’ values [6]. There are, however, two points which must be raised in order to discuss the
benefits as well as the drawbacks of our approach.

5.1. Construction of the LVM

The main source of errors in the proposed workflow is based on the construction of the LVM.
The LVM has been derived by an integrated approach of measuring the local variability in the most
homogeneous and most heterogeneous lithofacies types in the sedimentary succession. The statistical
analysis revealed that this assumption proved to be true as the heterogeneity measures in OSB1_c
indicate a way higher variability as is present in OSB2_c. This, in fact, is building the basis for this
study. The variance has been assumed to be constant at the base and at the top of a Bouma sequence.
This assumption is limited by the number of samples taken within this case study. By constructing
the LVM with an SK interpolation, we assume that the variance in one sedimentary Bouma sequence
is continuous in a mathematical sense. This assumption might be proved to be too simple in future
studies. In order to validate those results, more local samples would be necessary to constrain the
LVM. This is a drawback in comparison to conventional SGS and DSS algorithms as those are not
dependent on estimating a global variability model.

5.2. Comparison of the Spatial Distribution of the Local Variance

Figure 13a,b illustrates the relationship between the LVM and a DSS realization (a) and an
LVM-DSS realization, respectively (b). Although the overall trend remains identical among both types
of simulation, the spatial distribution of local variability is uncorrelated and inherently different. In the
DSS realization, the heterogeneity within the region is randomly distributed. The most heterogeneous
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areas in the LVM-DSS realization reside in the light areas—in which ¢7,,, is high—whereas the most
homogeneous regions reside in the dark ones—where 07, is low. As the spatial distribution of 0,
is primarily dependent on the distance to the constraining neighbors, the SGS and DSS algorithms,
in contrast to their LVM-based modifications, cannot account for a realistic spatial distribution of the
local geological variability. This observation is conceptually illustrated in Figure 13c, which shows the
spatial relationship between 03 and 07, as implied by the results of our study. It is evident that the
conventional algorithms underestimate the local geological variability in close ranges to conditional
data. It is also evident that 02, systematically underestimates the natural variability present in the
geological medium, which is investigated in this study (Figure 10a). Therefore, SGS and DSS might
not be able reproduce the total geological variability as shown in this study, which is an advantage of
the proposed algorithms instead.

2
o LvM

high

y [m]

low

Pr{k | k € N(Usc, 0°vu)}
high[ ] low

k [mD]

Pr{k | k€ N(Ms 075}
high [l low

5 12.5 30
x [m]

Figure 13. Top-view onto a representative simulation result of DSS (a) and LVM-DSS (b) superimposed
by a gray-scale representation of the LVM with an opacity of 0.6. It is evident that the LVM-based
algorithms’ heterogeneity is highest in that area of the LVM in which it provides the highest local
variance as well. The conventional approach, however, does not reflect the expected variance in space.
(c) Conceptual illustration showing the spatial distribution of the constraining measurements k(x;) and
the spatial relationship between the simple kriging estimate pgg with the measurement error €, and
the two parameters used to simulate k in this study namely ‘7§K and 07,,,. Pr stands for the probability
of k under the condition that k belongs to the Gaussian distribution described by gk together with
either o2y or o2,
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6. Conclusions

In this study, we propose a new workflow, which incorporates the locally observed variability
07y into sequential simulations. We could demonstrate that the local simple kriging variance 03
differs from o7, in local volumes of the target region. Therefore, the DSS and SGS algorithms have
been modified by the replacement of 0’§K through the measurement-derived (T%V » Within one mesh cell.
This replacement has been done if and only if 07, > 02;. The LVM has been constructed by means
of geological mapping and the assumption that the variability is highest in the most heterogeneous
lithology and lowest in the least heterogeneous lithology in a Bouma sequence. The proposed approach
can be used in any type of spatial property simulation but is especially tailored for geological media.

The LVM-DSS and LVM-5GS approaches reproduce the observed variability in the sedimentary
succession adequately yet reproducing the minimum required statistical measures of a valid simulation
including the global histogram, the global heterogeneity, and the variogram model. Moreover,
in contrast to their conventional representatives, the LVM-based algorithms account for the spatial
distribution of the expected local variance adequately. Once the LVM is derived, it may be integrated
into other geostatistical simulation algorithms such as the turning bands method [57-60].

From our results we conclude the following.

1. The distance metrics RMSE and MAE in spatial interpolations can be optimized with regard to
the measurement error variance and the optimal neighborhood.

2. Geological samples always represent a small subset of the local variability, which should be
accounted for by high-resolution sampling at a random basis at the least.

3.  The simple kriging variance does not necessarily account for the magnitude of local variability in
geological media and definitely does not account for its spatial distribution.

4. The fact that the local simple kriging variance does not reflect a geological trend might lead to
unforeseen problems when using sequential simulation-derived models as a basis for subsurface
utilization processes because the full geological heterogeneity might not have been taken into
account properly.

5. By introducing a measurement-constrained, geology-driven local variance model, the spatial
distribution of the variance that is expected in the investigated quarry can be integrated into
sequential simulations. This allows to simulate the geological variability, which might be greater
than the simulated variability in conventional sequential simulation algorithms.

Future research should focus on comparing 02, and 07, under the consideration of other
physicochemical properties, other geological settings, and other scales. This might require adapting
the assumptions on the spatial continuity of the variability which should, however, always be based
on reliable geological analyses.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF
DSS
LVM

Cumulative distribution function
Direct sequential simulation
Local variance model

LpOCV  Leave-p-out cross-validation

MAE Mean-absolute-error

MSE Mean-square error

PDF probability density function

REV Representative elementary volume
RMSE Root-mean-square error

RF Random function

RV Random variable

SGS Sequential Gaussian simulation
SK Simple kriging

Appendix A. Code and Data Availability

GeoReVi is an open-source software for Windows systems available under https://github.com/

ApirsAL/GeoReVi. Data is available under https:/ /www.doi.org/10.6084/m9.figshare.11791407.v2.
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4. Conclusions

In this chapter, the contributions of this dissertation to the ongoing development of
open-source software solutions with regard to addressing geoscientific problems are
recapitulated. Moreover, the most significant findings from the case studies are presented
and discussed.

Development of an Open-Source Knowledge Discovery System for Subsurface
Characterization

This work was motivated by the uprising demand in geosciences and related industries
for open-source software systems, which are aiding the geoscientific knowledge discovery
process. Therefore, a software system named GeoReVi has been implemented, which
had been validated in three comprehensive real-world applications. The case studies
were concerned with scientific investigations of geological media and the evaluation of
potential reservoir rocks on multiple scales for both petroleum and geothermal systems.

The desktop-based client has been published by Linsel et al. (2020) (Publication I).
GeoReVi bridges a significant technology-gap in the geoscientific open-source community
by covering numerous competences involved in the subsurface characterization process
chain. Hereby, the integrated software system combines a series of technical and scientific
disciplines from geovisual analytics including geoscientific data management, geological
modeling, spatiotemporal data mining, and uncertainty analysis. The generic data
structures of spatial and temporal elements, as they are implemented in GeoReVi, facilitate
geoscientists to address a wide range of problems which they might encounter during a
subsurface study.

GeoReVi’s modular software architecture is scalable from both a technical perspective
as well as from an ontological one by providing algorithms which scale flexibly yet
providing an easily-extendable geoscientific data model. By complying with standards
being considered good practice in software engineering, such as the SOLID principles,
object oriented design, unit testing, benchmarking, logical data modeling and clean

167



code/clean architecture (Martin 2008; Martin 2017), it was aimed to both provide a
reasonable quality of the software and to simplify the contribution process for other
developers.

The software platform has been designed by using a state-of-the-art software architecture
including a graphical user interface (GUI), a business logic (BL) and a data access layer
(DAL). Loose coupling among these components make them reusable for other target
platforms such as mobile or web. Moreover, the GUI enables software users who are not
knowledgeable in any coding language to apply complex analysis on geoscientific data
sets. This, in fact, differentiates GeoReVi from other geological modeling tools (e.g., de
la Varga et al. 2019) which are currently developed and which require the user to be
familiar with a specific programming or scripting language.

Table 4.1 provides a comparison among different desktop-based software systems which
are related to subsurface characterization. It is evident that most software packages
are specifically suited for a range of specific problems within the domain of subsurface
characterization. By developing a suitable software architecture, however, a huge fraction
of the entire process chain of subsurface characterization can be performed within one
software environment.

Multi-Scale Investigations of Sedimentary Geological Media

In the present work, the software system has been validated in real-world scenarios
including multi-scale analyses of sedimentary rock media. Hereby, >1,000 rock samples
were extracted from quarries and drill cores and measured in the laboratory resulting in
a database, which consists of >20,000 discrete readings. These data have been stored,
analyzed and visualized by the means of geovisual analytics, as they are provided by
GeoReVi, resulting in three peer-reviewed publications (Hornung et al. 2020; Linsel et al.
2020a; Linsel et al. 2020b).

Within those publications, in which small-scale geosystems have been investigated in
terms of physical and geochemical rock properties (Publications II and III), the following
findings could be made:

1. A hierarchical set of petrophysical heterogeneities exists in sedimentary environ-
ments, spanning from the bed scale to the depositional environment scale.

2. Primary depositional textures and the particle size/shape, rather than the type of
lithofacies, govern petrophysical properties in those clastic depositional systems
which had been investigated.
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Software
Functionality

GeoReVi  SGemS TetGen GemPy JeoStat Past3

Integrated data manage-

v’ X X X X X
ment
Non-othogonal mesh % X o % % X
generation
Lithological modeling Vv’ v’ X v
Fault modeling X v X X
ProPerty modeling/sim- % % X
ulation
Cross validation v’ X X X v’ X
GUI v’ v’ X v’ v’
Multivariate statistics v’ X X X v’
FEM X X X X X
Scripting X v’ v’ v’ X X
Open source v’ v’ v’ X X
Cross platform X v’ v’ v’ v’ v’
Reference Linsel Remy Si de la Mert & Hammer
et al. et al. (2015) Varga Dag et al.
(2020) (2009) et al. (2017) (2001)
(2019)

Table 4.1.: Comparison between different non-commercial software products which implement at
least one entity of the geovisual analytics technology group in the context of subsurface
characterization as per the current state of the art. X= not supported; = partially
supported; = fully supported.
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3. In contrast, the investigated samples from the carbonate ramp exhibit a greater
heterogeneity than those from the siliciclastic depositional environment. Moreover,
spatial distribution of the petrophysical properties of the biochemical sedimentary
rocks is more dominantly controlled by diagenetic processes than by depositional
processes.

4. The strength of statistical correlation can be preserved in spatial interpolations
as long as the sampling density is sufficient. If the sampling density is too low, a
statistical correlation might be inadvertently feigned.

5. The local geological variability should not be underestimated as an uncertainty
factor in spatial predictions and upscaling procedures. In fact, the local geological
variability of physicochemical properties might nearly cover the variability being
present in an entire formation. Therefore, a high-resolution analysis of physicochem-
ical rock properties can assist in assessing the uncertainty of field-scale property
models which is induced by the local geological variability at the lithofacies scale.

There is an increasing interest within the geoscientific community to investigate small-
scale geosystems in order to enhance the understanding of the geological controls onto
petrophysical heterogeneity. In the study of Heidsiek et al. (2020), which had been
published shortly after our study (Linsel et al. 2020a), Upper Rotliegend sandstones were
investigated too, however, with special regard being paid to the diagenetic control factors.

The study revealed that the reservoir properties, namely, porosity and permeability of
the investigated medium are primarily controlled by calcite cements, illite/iron oxide
coatings and infiltrated clay. These findings are in well accordance with ours, implicating
that the small-scale variability of rock medias’ properties is a function of depositional
conditions and the diagenetic history.

Heidsiek et al. (2020), however, did not provide such a wide range of considered properties
as compared to Linsel et al. (2020) nor did they account for the properties’ anisotropy or
multivariate statistical relationships. In fact, GeoReVi could assist researchers performing

such studies to regard these characteristics too.

Accounting for Local Geological Variability in Sequential Simulations

Point five raised in the previously listed enumeration guides to Publication IV, which is
concerned with accounting for the local geological variability in sequential geostatistical
simulation techniques. We demonstrated that the local simple kriging variance does not
necessarily reflect the geological variability being present at subsets of the target domain,
which led us to the development of two modified versions of the sequential Gaussian
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simulation (SGS) and direct sequential simulation (DSS) algorithms to account for the
local geological variability in the target domain.

The LVM-DSS and LVM-SGS approaches, which utilize a local variance model (LVM)
to simulate the local variability, reproduce the observed variability in the sedimentary
succession adequately yet reproducing the minimum required statistical measures of
a valid simulation including the global histogram, the global heterogeneity, and the
variogram model. Moreover, in contrast to their conventional representatives, the LVM-
based algorithms account for the spatial distribution of the expected local variance
adequately.

Although the proposed modifications of the SGS and DSS algorithms have yielded promis-
ing results, the proposed technique should be implemented with other subsurface proper-
ties, in other geological settings and at different scales in order to verify its suitability
to generically address the problem of local geological variability. Apart from classical
subsurface applications such as mining or reservoir exploitation, the proposed method
might prove to be useful for, e.g, remote sensing analyses, GIS analyses, or atmospheric
simulations, too.
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5. Perspectives

The main outcome of this Thesis is the first extensible, open-source, community-open
software system for geological knowledge discovery in the context of geovisual analytics.
Although GeoReVi provides a base for solving numerous varieties of geoscientific problems,
there is space for further improvements.

One of these improvements, for instance, would involve the development of a scripting
tool and a functionality to automatically execute command files as it is implemented
in SGemS (Remy et al. 2009) and by default given in GemPy (de la Varga et al. 2019).
Moreover, the coverage of code fragments by unit tests (see Appendix A.2.2) should be
increased in order to ensure a maximum degree of reliability.

The generic structure of GeoReVi allows for the seamless extension of the system by
algorithms which aim at solving numerical simulation problems. In this regard, the
first functionality for solving heat transport problems was integrated into GeoReVi, the
theoretical background of which is outlined in section 2.5.3. Hereby, GeoReVi yields
comparable results as other numerical solvers such as that from Simpson (2017) (Fig.
5.1a and b). Moreover, GeoReVi shows a well fit to the analytical solution of Carslaw &
Jaeger (1959) (Fig. 5.1c). The next logical step would involve the extension of GeoReVi
to address other physical problems such as consolidation, mass transport and coupled
simulations.

In the current form GeoReVi is restricted to modeling continuous geological media in space
and cannot account for complex geological structures such as fracture systems, reverse
faults, or overturned folds adequately. Geological 3-D modeling can, however, be easily
improved by extending the geostatistical methods by potential field-based algorithms
(Lajaunie et al. 1997).

The separation of domains as it is provided in Table 4.1 predestines GeoReVi to be
implemented in a modern service-oriented architecture. This could be performed in
the way of providing granular microservices for each separable business process (see,
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e.g., Bucchiarone et al. (2020)), what is recently performed by developing a cloud-
hosted version of GeoReVi*. With this architecture, GeoReVi may serve the geoscientific
community in future by providing an important knowledge repository and database for
education, industries and sciences.
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Figure 5.1.: Results of solving a 3-D heat conduction problem. X-Y plane projection of the final
cooling model of a rock cuboid measuring 3,000 x 2,000 x 1,000m in X, y, and
z direction from GeoReVi (a) and the code provided by Simpson (2017) (b). (c)
Comparison of the numerical solution of GeoReVi with the analytical solution of
Carslaw & Jaeger (1959) calculated for the center of the rock cuboid model at x =
1,500 m, y = 1,000 m, and z = 500 m.

“https://georevi.com, last access 12th October, 2020
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A.1. Mathematical Expressions

A.1.1. Measures for Exploratory Data Analysis

model function
n
arithmetic > T
mean T = 172 (A.1)

geometric
mean (A.2)

_ n
harmonic Tp = — (A.3)
mean > w

i=0

sample  vari- o 1 - o A
ance | pa (i =) (A4)
sample stan- o= \o? (A.5)

dard deviation

Table A.1.: Basic statistical measures for exploratory data analysis
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model function

" Zn:(xi —7)°
skewness § = = n 3 (A.6)
(n—1)(n —2) (\/ﬁ ;(% —T)?
- L n(n+1) 2 (v =) L, -1y
urtosis (n—1)(n—2)(n—3) (\/% zn:(xz - f)2>4 (n —2)(n—3)

Table A.2.: Basic statistical measures for exploratory data analysis
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A.1.2. Transformation Functions

model function

logarithmic yi = log(z;) (A.8)

exponential y; = 10% (A.9)

Z-score Yi = - (A.10)

Ti — Tmin

rescaling Yi = (A.11)
Lmaz — Lmin

mean- Y, = Ti— T (A.12)

rescaling Tmaz — Tmin

subtract-mean Yi=2%;, —T (A.13)

Table A.3.: Basic transformation functions during data preprocessing
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A.1.3. Covariance Functions

model function
b-(1— 3B Y for 0 < |h|<a
i n(h) = 20 2 == A.14

spherical cspn(h) {0 for [h] > a. ( )
b- _ P for 0 < |h| <

gaussian Coau(h) = exp( a SLUES (A.15)
0 for |h| > a.

: |h| :
exponential Ceap(h) =b-exp| — — with a,b > 0 (A.16)
power Cpow(h) =b-h* with a,b >0 (A.17)
b for |h| >0
li in(h) = A.18
inear crin(h) {0 for [h] = 0 ( )

Table A.4.: Covariance functions
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A.1.4. Shape Functions and Derivatives of an Eight-Node Hexahedron
The shape functions differ for each type of element. A comprehensive list of shape
functions is give in Simpson (2017).

M o=31-8A-n)1-¢)

Ny = 5(1 =1 =n)(1+()

ool

N3 =3(1+&)1—n)(1+¢)
Ny= 51+ -n)(1-)
(A.19)
N; =31 -1 +n)(1-0)
Ng=3(1 =81 +n)(1+¢)

Nr=3(1+81+n)(1+¢)

Ns =51+ 81 +n)1 =)
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The first derivatives of those shape functions as they are given in Eq. 2.104 are defined as

Go=—11-n-¢ Fo=—21-901-¢0 Fr=-101-901-n)
= —t(1-n+¢) Ze=-11-90+¢) Z2=11-9(1 -7
Fe=30-n+0 FE=—30+90+¢ FE =30+ -n)

Pa—Ll1-n+¢) Lo=-11+901-¢) Lr=-11+91-n)
(A.20)

Po=tl+n)(1+¢ Fr=11+90+¢ Zr=11+91+n

P —l1l+n(1—-¢) Pe=11+(1-¢ LE=-11+(1+n),
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A.2. Code Fragments

A.2.1. Plain Old CLR Object Class

Listing A.1: POCO model for a rock sample entity in GeoReVi.

1 // Namespace
2 namespace GeoReVi

s {

4 // Using directives

5 using LiteDB;

6

7

8 // POCO class for the rock sample entity

9 [Table("tblRockSample")]

10 public partial class tblRockSample

11 {

12 // Sample ID

13 [Key, BsonId]

14 public int sampIdPk { get; set; }

15

16 // Lithofacies Foreign Key

17 public int? sampLithofaciesIdFk { get; set; }
18

19 // Architectural element Foreign Key

20 public int? sampArchitecturalElementIdFk { get; set; }
21

22 // Depositional environment Foreign Key

23 public int? sampDepositionalEnvironmentIdFk { get; set; }
24

25 // Sample label

26 [StringLength(255)]

27 public string sampLabel { get; set; }

28

29 // Sample type

30 [StringLength(255)]

31 public string sampType { get; set; }

32

33 // Sampling method

34 [StringLength(50)]

35 public string sampSamplingMethod { get; set; }
36

37 // Object of investigation Foreign Key

38 [StringLength(255)]

39 public string sampooiNameIdFk { get; set; }
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77

78

79

80

81

82

83

// Lithostratigraphic unit
[StringLength(255)]
public string sampLithostratigraphyName { get; set; }

// Chronostratigraphic unit
[StringLength(255)]
public string sampChronStratName { get; set; }

// Petrographic classification
[StringLength(255) ]
public string sampPetrographicTerm { get; set; }

// Local x coordinate in meters
public double? samplLocalXCoordinates { get; set; }

// Local y coordinate in meters
public double? sampLocalYCoordinates { get; set; }

// Local z coordinate in meters
public double? samplLocalZCoordinates { get; set; }

// Name of the sampler
[StringLength(255)]
public string sampSampler { get; set; }

// Sampling date and time
[Column(TypeName = "datetime2")]
public DateTime? sampDate { get; set; }

// Project Foreign Key
public int? sampprjIdFk { get; set; }

// Latitude in WGS84 decimal degree
public double? sampLatitude { get; set; }

// Longitude in WGS84 decimal degree
public double? samplLongitude { get; set; }

// Elevation in meters above sea level
public double? sampElevation { get; set; }
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A.2.2. Unit Test Class

Listing A.2: Test class for estimating the Euclidean distance in GeoReVi.

1 // Namespace
2 namespace GeoReVi.Tests.Helper.Geography

s {

4 // Using directives

5 using Microsoft.VisualStudio.TestTools.UnitTesting;
6

7

8 /// <summary>

9 /// Summary for GeographyHelperTest

10 /// </summary>

1 [TestClass]

12 public class GeographyHelperTest

13 {

14 public GeographyHelperTest()

15 {

16

17 }

18

19 private TestContext testContextInstance;
20

21 /// <summary>

22 /// Calls the TestContext

23 /// </summary>

24 public TestContext TestContext

25 {

26 get

27 {

28 return testContextInstance;

29 }

30 set

31 {

32 testContextInstance = value;

33 }

34 ¥

35

36 /// <summary>

37 /// Tests the method which estimates the euclidean distance
38 /// between two points

39 /// </summary>

40 [TestMethod]

4 public void EuclideanDistancePoint_Test()
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42 {

43 // Arrange

44 LocationTimeValue loc1 = new LocationTimeValue(®, 0, 0);

45 LocationTimeValue loc2 = new LocationTimeValue(1, 1, 1);

46

47 double expected = 1.732050808;

48

49 // Act

50 double dist = GeographyHelper.EuclideanDistance(loc1, loc2);
51

52

53 // Assert

54 Assert.AreEqual(dist, expected, 0.6002, "Calculation error.");
55 }

56

57

58 }

59}
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