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Abstract
In recent years, generation of large-scale data from genome, transcriptome, proteome,

metabolome, epigenome, and others, has become routine in several plant species.

Most of these datasets in different crop species, however, were studied independently

and as a result, full insight could not be gained on the molecular basis of complex

traits and biological networks. A systems biology approach involving integration of

multiple omics data, modeling, and prediction of the cellular functions is required to

understand the flow of biological information that underlies complex traits. In this

context, systems biology with multiomics data integration is crucial and allows a

holistic understanding of the dynamic system with the different levels of biological

organization interacting with external environment for a phenotypic expression. Here,

we present recent progress made in the area of various omics studies—integrative

and systems biology approaches with a special focus on application to crop improve-

ment. We have also discussed the challenges and opportunities in multiomics data

integration, modeling, and understanding of the biology of complex traits underpin-

ning yield and stress tolerance in major cereals and legumes.

Abbreviations: BPH, brown planthopper; GEA, gene expression atlas; GWAS, genome-wide association study; NGS, next-generation sequencing; QTL,

quantitative trait loci; SNP, single nucleotide polymorphism; SV, structural variation.
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1 INTRODUCTION

Crops such as cereals and legumes play an important role in

human diet by providing necessary calories, proteins, essen-

tial amino acids, and minerals. Over the last 100 yr of

extensive breeding, crop varieties have been developed for

higher yields. However, because of increasing global pop-

ulation, there is an urgent need to double the yield by the

year 2050. This increase in production and productivity is

challenging considering the current environmental constraints

and rapidly depleting natural resources. Model plants, such

as Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and rice

(Oryza sativa L.), have been extensively studied for compre-

hensive understanding of plant genetics, genomics, and defin-

ing the function of specific genes. This is essential for leverag-

ing genomics for breeding a new generation of climate-ready

crops to produce surplus food that is high in nutrients. Toward

this, a genomics-assisted breeding (Varshney et al., 2005)

approach can greatly accelerate the existing crop improve-

ment programs. Translation or transfer of genetic information

gained from one species to another was quite limited before

the genomics era, mainly because of a lack of suitable knowl-

edge in genomic information and systems biology.

The advent of next-generation sequencing (NGS) technolo-

gies has revolutionized and increased the pace of genera-

tion of genomics and transcriptomics data that has led to

new era of the ‘big data.’ Several NGS platforms, such as

Illumina’s MiSeq/HiSeq; Roche’s 454/FLX; ABI/Life Tech-

nologies’ SOLiD; Invitrogen’s Ion Proton, have led to the

sequencing of genomes and transcriptomes for a number of

plant species (Barutcu et al., 2015; van Dijk et al., 2018).

Third-generation sequencing technologies such as single-

molecule sequencing by Helicos Biosciences (HeliScope),

single molecule real-time sequencing by Pacific Biosciences

(PacBio), and Nanopore sequencing by Oxford Nanopore

Technologies accelerated generation of large-scale sequenc-

ing data (Giani et al., 2020). This has dramatically changed

the sequencing scenarios and led to the development of high-

quality genome assemblies in several crop plants including

complex and large-sized genomes. The big data from omics

experiments are analyzed with advanced software programs

and analytical methods to understand the complexity of bio-

logical systems. This new area of research has come to be

known as either integrative biology or systems biology. Inte-

grative biology focuses on combining omics layers to build

insight based on the Aristotelian principle that the whole is

greater than the sum of the parts. Systems biology focuses

on combining omics layers to build models that explain sys-

tem behavior and that have predictive power to propose the

outcome of mutation or modification of specific biological

steps. Furthermore, systems biology has applications in dis-

secting complex agronomic traits and in the model-based

prediction of phenotypes in different conditions (Lavarenne
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et al., 2018). The development of user-friendly pipelines

and bioinformatic tools to analyze the big data generated by

omics approaches can further facilitate breeding programs

both through enhanced selection tools and through more

sophisticated design of crossing programs or stacking of gene

modifications.

An overview of current omics resources, multiomics data

integration, and systems biology approaches each with a focus

on their applications in plant research and breeding has been

discussed in the present review (Figure 1). We highlight exist-

ing and emerging approaches that contribute to our under-

standing of the biology of complex traits and holistic improve-

ment of yield together with tolerance and resistance to abiotic

and biotic stresses. Furthermore, the prospects and challenges

facing multiomics data integration, modeling, and systems-

level analyses, particularly with the fast-emerging omics tech-

nologies, have been discussed. The thoughts presented in this

review provide insights on applications of integrated multiple

omics research and systems biology for crop improvement.

2 RAPIDLY EVOLVING OMICS
APPROACHES

High-throughput technologies have revolutionized plant

research through the study of a whole set of biological enti-

ties, including DNA, RNA, proteins, metabolites, and oth-

ers, of a given species and have been noteworthy. This high-

throughput measurement has led to an array of approaches

carrying the omics suffix such as genomics, pangenomics,

transcriptomics, proteomics, metabolomics, epigenomics,

and, more recently, single-cell omics, phenomics, and QTL-

omics. These approaches are now integrated across multiple

omics layers, providing an opportunity to understand the flow

of information that underlies trait biology. In the following

sections, we will be discussing these rapidly evolving omics

approaches for crop improvement.
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F I G U R E 1 An overview of the integrated omics in genetics and breeding for crop improvement. ‘Omics revolution’ is an integrated

comprehensive omics approach combining genomics, transcriptomics, proteomics, metabolomics, epigenomics, and other breeding tools for

advancement of systemic sciences and to accelerate genomics-enabled, next-generation breeding

2.1 Genomics and pangenomics

2.1.1 Genome sequencing and resequencing

Understanding the structure, organization, and dynamics of

genomes in plant species can provide insights into how genes

have been adapted or altered by natural and artificial selec-

tion in response to environmental constraints. Studies have

demonstrated the potential use of the adapted and manipu-

lated genes for crop improvement not only within a species

but also the use of such genes across species (Kawashima

et al., 2016). Toward accomplishing these goals, many plant

genomes have been sequenced (Kersey, 2019). Earlier, only

a few plant species with relatively compact genomes, and

known as ‘models,’ were sequenced to understand genome

architecture because of the high cost of sequencing and lim-

ited expertise. As a result, genome sequence information for

Arabidopsis thaliana (L.) Heynh., rice (Oryza sativa L.),

black cottonwood (Populus trichophora Torr. & A. Gray),

grapevine (Vitis vinifera L.), and maize (Zea mays L.) were

the first plant genomes generated. Later, legumes such as soy-

bean [Glycine max (L.) Merr.], pigeonpea [Cajanus cajan
(L.) Huth], and chickpea (Cicer arietinum L.) genomes were

sequenced (see Varshney et al., 2015).

Evolution in NGS and third-generation sequencing tech-

nologies has resulted in ever-increasing throughput and

reduced sequencing costs. As a result, more than 600 com-

plete plant genome assemblies are available in public repos-

itories (Kersey, 2019) and many more are being sequenced

(http://www.onekp.com/). The genome sequence information

generated through high-throughput sequencing of germplasm

collection is also enabling the simultaneous discovery and

sequencing of thousands of genetic markers across whole

genomes (Varshney et al., 2019a). These new sequenc-

ing tools are also valuable for the validation and assess-

ment of genetic markers in populations. Further, it has been

possible now to identify all the genes in a plant, which

would in turn help understand the genetic properties as

http://www.onekp.com/
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well as networks that contribute to develop superior crop

varieties.

In addition to information made available from the genome

sequence of cultivars, characterization of genetic diversity

present in wild crop relatives and landraces conserved in

gene banks are a valuable source of novel genes that could

enhance yield and resistance to abiotic and biotic stresses. In

this context, resequencing efforts of large-scale germplasm

collections have become important. One such example is the

3,010 diverse Asian cultivated rice genomes from the 3,000

Rice Genomes Project (Wang et al., 2018). The study identi-

fied 29 million single nucleotide polymorphisms (SNPs), 2.4

million small indels, and over 90,000 structural variations

(SVs) that contribute to within- and between-population

variation. This study highlighted the genetic diversity that

exists in rice germplasm repositories with agriculturally

relevant phenotypes. Further the study demonstrated the use

of identified SNPs in trait mapping analysis for the highly

heritable traits, grain length, grain width, and bacterial blight

resistance in rice (Wang et al., 2018). Another example of

maize reported sequencing of 278 maize inbred lines and

demonstrated extensive variation in SNPs (27 million), indels

(287,504), and copy number variations that can potentially

be used as a selection index in future maize breeding pro-

grams (Jiao et al., 2012). The study showed that modern

breeding has introduced dynamic genetic changes into the

maize genome, and further artificial selection has affected

thousands of targets including genes and nongenetic regions

leading to a reduction in nucleotide diversity and an increase

in the proportion of rare alleles (Jiao et al., 2012). In the case

of dryland cereals, for example, resequencing of 44 sorghum

[Sorghum bicolor (L.) Moench] lines representing the

primary gene pool and spanning dimensions of geographic

origin, end use, and taxonomic group resulted in identifi-

cation of 8 million SNPs, 1.9 million indels, and specific

gene loss and gain events for use in sorghum improvement

(Mace et al., 2013). This study on sorghum presented that a

large untapped pool of diversity exists not only in races of

sorghum but also in the allopatric Asian species S. propin-
quum (Kunth) Hitchc. A strong racial structure and complex

domestication events were observed with in the accessions

studied. Similarly, in pearl millet [Cenchrus americanus (L.)

Morrone], resequencing of 994 lines resulted in identification

of more than 29 million SNPs and 3 million indels for better

understanding of trait variation and accelerating genetic

improvement (Varshney et al., 2017b). This study highlighted

the application of resequencing data to understand the

population structure, genetic diversity, and domestication of

pearl millet. Further genomic prediction was employed to

predict pearl millet hybrid performance and genome-wide

association study (GWAS) predicted yield-associated traits

in both irrigated and drought conditions.

In legumes, soybean for instance, resequencing of 302 wild

and cultivated soybean accessions identified 9 million SNPs

and 876,799 indels, providing genes related to domestication

and resources for genomics-enabled crop improvement (Zhou

et al., 2015). In a different study, 17 wild and 14 cultivated

soybean genomes have been resequenced (Lam et al., 2010),

thus revealing patterns of genetic variation between wild and

cultivated soybeans. This study identified greater allelic diver-

sity in wild soybean and a set of 205,614 SNPs for use in

quantitative trait loci (QTL) mapping and association stud-

ies. Very recently, Valliyodan et al. (2021) analyzed genetic

diversity and structure from the resequencing of 481 diverse

soybean accessions, comprising 52 wild selections and 429

cultivated varieties (landraces and elites). This study identi-

fied evidence of distinct, mostly independent selection of lin-

eages by particular geographic location. Recently, we have

also undertaken the sequencing and phenotyping of thousands

of global composite collection of chickpea genomes as part

of the 3,000 Chickpea Genome Sequencing Initiative. Under

this initiative, resequencing of 429 chickpeas sampled from 45

countries identified a map of 4.97 million SNPs and GWAS

identified 262 markers and several candidate genes for 13 dif-

ferent traits associated with drought and heat tolerance mech-

anisms (Varshney et al., 2019b). Similar efforts were carried

out in pigeonpea, where resequencing of 292 pigeonpea acces-

sions resulted in identification of 15.1 million SNPs and 2.1

million indels. This study revealed genomic regions associ-

ated with domestication and markers linked with key traits

such as flowering time control, seed development, and pod

dehiscence (Varshney et al., 2017a). In brief, the sequenc-

ing and resequencing studies in several crop species demon-

strated the use of genomes and SNPs for trait mapping anal-

yses. Such studies are expected to guide and accelerate crop

breeding by identifying genetic variation that will be useful

in breeding efforts in different crops and future sustainable

agriculture.

2.1.2 Pangenomics

High-throughput resequencing technologies have been

employed in several crops with an aim to explore genomic

diversity and to uncover molecular basis of important agro-

nomic traits. However, in all these resequencing studies,

characterization of the genetic variants depends on high

levels of sequence similarity to map the short reads onto

the reference genome, which may miss highly polymorphic

regions and regions that are not present in the reference

genome (Zhou et al., 2015). Therefore, with an objective

to capture all possible variations in a given germplasm

collection of a particular species, pangenomics studies have

been conducted in several species (see Khan et al., 2020).
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In rice, a pangenome of cultivated rice–wild rice (O. sativa-
O. rufipogon Griff.) species complex through deep sequenc-

ing and de novo assembly of 66 divergent accessions was

constructed (Zhao et al., 2018). In this study, intergenomic

comparisons identified 23 million sequence variants in the

rice genome. In maize, pangenome was characterized using

503 inbred lines and loci associated with plant developmen-

tal transitions, fitness, and adaptation traits were identified

(Hirsch et al., 2014). Pangenome in wheat (Triticum aestivum
L.) was built using 18 cultivars, which resulted in identifica-

tion of 128,656 genes of which 64.3% were core genes while

the remainder are variable and display presence–absence vari-

ation (Montenegro et al., 2017). In legumes, pangenome was

established in soybean using seven phylogenetically and geo-

graphically representative accessions of wild soybean (G.
soja Siebold & Zucc.), the wild relative of cultivated soy-

bean. Analysis of the soybean pangenome identified 80%

core genes. Furthermore, intergenomic comparisons identi-

fied genes associated with biotic resistance, seed composi-

tion, flowering and maturity time, and others (Li et al., 2014).

Recently, another study reported pangenome of 26 representa-

tive wild and cultivated soybean selected from 2,898 globally

collected soybean germplasm in terms of phylogenetic rela-

tionships and geographic distributions (Y. Liu et al., 2020).

The pangenome identified large SVs and gene fusion events in

soybean. The SVs identified in the study were linked to gene

expression and important agronomic traits such as seed luster,

seed coat pigmentation, and iron deficiency chlorosis. In the

case of pigeonpea, the first pangenome based on 89 acces-

sions was reported (Zhao et al., 2020). The study identified

genes associated with important agronomic traits such as seed

weight, self-fertilization, and response to disease in pigeon-

pea. Pangenome using eight high-quality rapeseed (Brassica
napus L.) genomes revealed architecture and ecotype differ-

entiation (Song et al., 2020).

Pangenome provides in-depth dissection of dispensable as

well as species-specific genes identified mostly from culti-

vated gene pool. In order to achieve complete genetic reper-

toire of a given crop, diverse gene stock coming from wild

species is imperative. Here comes in the concept of a super-

pangenome, which represents a complete genomic variation

repertoire by combining different pangenomes from all the

species within a given genus (Khan et al., 2020). Deploy-

ment of the super-pangenome concept by integrating the wild

side of a species with diverse genetic stock will help in tap-

ping genetic diversity from wild species for accelerating crop

improvement.

These studies provide useful insights into the genetic vari-

ability, population structure, and diversity of important crop

species that could be used for crop improvement programs

(Tao et al., 2019). As sequencing and resequencing costs are

continuously decreasing, sequence-based allele discovery has

become more prevalent. Systematic application of genome-

wide sequence information in support of crop improvement

as translational genomics for agriculture will accelerate the

precision of crop breeding cycle (Bohra et al., 2020; Varshney

et al., 2015). The genomic resources developed in crop species

will facilitate the dissection of complex traits and identifica-

tion and exploitation of SNPs and SVs associated with traits

of interest (Thudi et al., 2021). Furthermore, knowledge of

resequencing and pangenomes and super-pangenomes would

provide information on an untapped pool of diversity for easy

access in breeding resulting in genetic improvement of crop

species to meet future food demands.

2.1.3 Genome sequence variations, gene
prediction, and functional inferences

The major challenge for crop improvement is increasing the

productivity while reducing yield losses that result from var-

ious biotic and abiotic stresses under climate change sce-

narios (Palit et al., 2020b). Therefore, the major aim of

genomic studies in crop plants has been the identification

of key regulatory genes and the active pathways associated

with plant architecture and crop yields. Intensive sequence-

level characterization of a chromosomal region and cloning

reveals the presence of novel genes of unknown function

(Jaganathan et al., 2020). Unique alleles, the makeup of

alleles, variation in gene expression, signature sequences,

among other, are important contributors to phenotypic diver-

sity within and between species. Therefore, a 5G breeding

approach for bringing in the much-needed disruptive changes

to crop improvement has been proposed by Varshney et al.

(2020). Unlimited genomics resources, such as SNPs and

genome-wide SVs, are made available through sequencing

and resequencing of diverse germplasm in different crops

(Thudi et al., 2021). These resources would facilitate geno-

typing the landraces and breeding material for identifica-

tion of candidate genes and diagnostic markers for the traits

of interest in crop species. For example, genome sequenc-

ing of rice subspecies SN265 (O. sativa L. subsp. japon-
ica Kato), R99 (O. sativa L. subsp. indica Kato), and rese-

quencing of a total of 151 recombinant inbred lines gener-

ated from the cross between these parents revealed 1.7 mil-

lion SNPs. Analysis of the data revealed yield and quality-

associated loci and the involvement of a candidate gene,

DEP1, in determining panicle length (X. Li et al., 2018). Simi-

larly, the genome assembly of a maize small-kernel inbred line

derived from tropical landrace provides insights into 80,614

polymorphic SVs across 521 diverse lines (N. Yang et al.,

2019). Further dissection through map-based cloning of a

major effect quantitative trait locus controlling kernel weight

revealed the underlying candidate gene, ZmBARELY ANY
MERISTEM1d, that provides a target for increasing maize

yields.
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In the case of legumes, for example, the genome of cul-

tivated peanut (Arachis hypogaea L.) provided insight into

legume karyotypes, polyploid evolution, and crop domesti-

cation. The QTL for seed size and testa color have been

mapped to the peanut reference genome (Zhuang et al., 2019).

Comprehensive analysis of resequencing data has enhanced

our understanding of complex traits and provided candidate

genes for several agronomic and disease-resistance traits for

use in crop breeding (Varshney et al., 2019a). For instance,

resequencing of 302 wild and cultivated soybean accessions

revealed 230 selective sweeps and 162 selected copy num-

ber variants and correlated 96 of the 230 selected regions

with oil QTL and fatty acid biosynthesis genes (Zhou et al.,

2015). Similarly, in common bean (Phaseolus vulgaris L.),

GWAS on a panel of 192 genotypes revealed candidate genes

for flowering time variation (Raggi et al., 2019). In chick-

pea, using whole-genome resequencing data from 132 chick-

pea lines, GWAS identified four genetic regions containing

38 SNPs significantly associated with yield and yield-related

traits (Y. Li et al., 2018). Furthermore, increase in prediction

accuracy has been demonstrated in this study by incorporat-

ing results from GWAS in genomic selection. In the case of

pigeonpea, markers for seed protein content were developed

from whole-genome resequencing data from four pigeonpea

lines demonstrating the potential of genomics (Obala et al.,

2019).

With copious amount of genomics information in model

and crop species, comparative functional analysis of genomics

data facilitates gaining new insights toward exploring new

genes and traits for potential application in crop improve-

ment. For example, X. Yang et al. (2019) demonstrated the

use of comparative genomics in evolutionary mechanisms and

gene function in crassulacean acid metabolism plants. Simi-

larly, based on genome information of pigeonpea, Kawashima

et al. (2016) reported cloning of a Phakopsora pachyrhizi
resistance gene CcRpp1 (Cajanus cajan resistance against

Phakopsora pachyrhizi 1) from pigeonpea and showed that

CcRpp1 confers resistance to P. pachyrhizi (causing soybean

rust) in soybean. In summary, genomics resources have an

enormous scope in modernizing crop breeding programs to

deliver next generation varieties.

2.2 Transcriptomics

Transcriptomics explains the conceptual changes encompass-

ing not only in the genome itself but also the process by

which the information contained in the genome is used by

the cell and to discover the flow of biological information

from the genome to the cell. To begin with, efforts have

been focused on the development of complementary DNA

libraries, generation of expressed sequence tags, gene expres-

sion analysis, and the in silico mining of functional infor-

mation from expressed sequence tags data sets even before

genome sequences were available (Varshney et al., 2009). Ini-

tial gene expression studies relied on low-throughput meth-

ods. However, a RNA sequencing approach provides higher

coverage and greater resolution of transcriptome dynamics

when compared with Sanger sequencing and microarray-

based methods (Garg et al., 2019).

Transcriptome sequencing is being widely used in studying

plant responses to various stresses as well as its growth and

development. In addition, transcriptome sequencing has been

applied for various functional genomics purposes such as gene

expression profiling, genome annotation, and the discovery of

noncoding RNA (Morozova & Marra, 2008). Broad availabil-

ity of NGS technologies led to a paradigm shift in molecular

breeding of crop species and are expected to directly detect

epigenetic modifications on native DNA and to allow whole-

transcript sequencing without the need for genome assembly

(van Dijk et al., 2018). Several transcriptome assemblies have

been generated for major crops such as rice (Tian et al., 2015),

wheat (Jia et al., 2018), and maize (Zhang et al., 2019a) to

aid in elucidating molecular regulation of candidate genes

for different traits at different stages of growth and devel-

opment of the plant under stress and control conditions. In

legumes, for example, hybrid comprehensive assemblies were

generated in the case of pigeonpea (Kudapa et al., 2012) and

chickpea (Kudapa et al., 2014) by analyzing sequencing data

from three different platforms (Sanger, FLX/454, and Illu-

mina). In a different study, transcriptome analysis under ele-

vated CO2 concentrations identified stress responsive candi-

date genes and pathways mainly involved in sugar and starch

metabolism, chlorophyll, and secondary metabolites biosyn-

thesis (Palit et al., 2020a). Gene expression profiling data

from developed transcriptome assemblies enabled identifica-

tion of candidate genes associated with different traits of inter-

est and stress response.

In addition to identifying candidate genes for the traits of

interest and stress response, understanding how underlying

genome information translates into specific phenotypes at

key developmental stages is crucial. For this, information on

gene expression patterns across different plant developmental

stages and organs covering entire plant life cycle is required.

Gene expression atlases (GEAs) allow a thorough survey of

the entire transcriptional landscape, revealing genome-wide

gene activity in different tissues of several model and crop

plants. In rice, GEA was developed from 39 tissues collected

throughout the life cycle of the rice plant from two cultivars,

Zhenshan 97 and Minghui 63 (L. Wang et al., 2010). This

study provided a versatile resource for associating tran-

scriptomics to the developmental process and understanding

the regulatory process by tracing the expression profiles

of individual genes. Similarly, in maize, 18 representative

maize tissues capturing important aspects of maize develop-

ment were targeted for GEA resulting in identification and
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characterization of genes and pathways underlying plant

growth and development (Sekhon et al., 2013). In legumes,

for example, the RNA Seq-Atlas in soybean provided a record

of high-resolution gene expression in a set of 14 diverse

tissues and identification of candidate genes involved in seed

development, nodule formation, and seed filling (Severin

et al., 2010). Similarly, in chickpea, 27 tissues from five major

developmental stages were used to construct a comprehensive

Cicer arietinum Gene Expression Atlas (Kudapa et al., 2018),

which identified significant differences in gene expression

patterns contributing to the process of flowering, nodulation,

seed and root development. In pigeonpea, 30 tissues repre-

senting developmental stages from germination to senescence

were used to generate a Cajanus cajan Gene Expression

Atlas (Pazhamala et al., 2017), which provided candidate

genes involved in specific developmental processes and to

understand the well-orchestrated growth and developmental

process in pigeonpea. Similarly, Arachis hypogaea (ground-

nut) Gene Expression Atlas has been very useful to investigate

complex regulatory networks, namely gravitropism and pho-

tomorphogenesis, seed development, allergens, and oil

biosynthesis in groundnut (Sinha et al., 2020). These tran-

scriptomic resources should be able to provide insights into

the molecular mechanisms of growth and development, high

yields, stress responses among many other traits, ultimately

assisting in development of improved crop varieties.

2.3 Proteomics

Transcriptomes ultimately come to fruition through transla-

tion to build proteins that, in combination, form the com-

plex proteomes of different tissue types and different stages

of plant development. The correlation of abundance of tran-

scripts and proteins have been analyzed in many plant sys-

tems and notably during germination, seed development, and

responses to stress. This necessitates the direct study of pro-

teins to fully understand gene expression. The use of mass

spectrometry for protein identification and protein relative

or absolute quantitation, referred to as proteomics, enables

the study of large sets of cellular proteins that constitutes

these proteomes. Proteomics approaches have transitioned

from being descriptive to become highly useful for data val-

idation and integration with other omics approaches, provid-

ing information on biological processes and stress tolerance

mechanisms that can be applied in crop breeding programs

(J. Hu et al., 2015). Data-dependent ‘shotgun’ proteome sam-

pling strategies enable large datasets of relatively quantified

differences between crop varieties to be assessed but are typ-

ically limited to a small number of comparisons. Meanwhile,

selected reaction-monitoring strategies allows targeted quan-

titation of known proteins of interest over much larger sample

sets allowing whole recombinant inbred line, near-isogenic

line, and double-haploid populations to be screened for pro-

teins of interest and their abundances (Jacoby et al., 2013)

The plant proteome undergoes significant changes because

of the activation of stress-responsive pathways when sub-

jected to biotic and abiotic stress. The proteins that are known

to have significant involvement in abiotic stress response

include heat-shock proteins, late embryogenesis abundant

proteins, kinases and phosphatases, redox enzymes, sec-

ondary metabolism enzymes, osmolyte biosynthetic enzymes,

photosynthesis, and carbon metabolism-related and enzy-

matic reactive oxygen species scavengers (see Hossain &

Komatsu, 2012). Posttranslational modifications of proteins

are also essential features of plant response to environment

and are critical for plant phenotypes associated with stress

tolerances (Millar et al., 2019). Protein abundance itself is

only a proxy for function, rate of protein synthesis and degra-

dation, age of proteins, and age-associated features of pro-

tein function is also critical to defining proteomes (Nelson

& Millar, 2015). Several proteome maps have been devel-

oped in the model plants and crops, for instance, Arabidopsis

(Baerenfeller et al., 2008), rice (Helmy et al., 2011), wheat

(Duncan et al., 2017), barrel clover (Medicago truncatula
Gaertn.), Lotus japonicus (Regel) K. Larsen, and soybean

(see Ramalingam et al., 2015). Recently, proteomic analy-

sis in three rice cultivars identified over 4,900 proteins and

1,309 differentially expressed proteins (Zhang et al., 2019b).

This study identified eight genes encoding various metabolic

proteins involved in brown planthopper (BPH) resistance

in rice. Further, the study reported activation of the two-

component response regulator protein (ORR22) that is crucial

in early signal transduction in the resistance response against

BPH through sustained promotion of salicylic acid. Also,

key enzymes-lipoxygenases, dirigent proteins, and Ent-cassa-

12,15-diene synthase (OsDTC1) in inheritable resistance

against BPH were identified for use in breeding BPH-resistant

rice cultivars (Zhang et al., 2019b). In maize, proteomic anal-

ysis under CO2–enriched conditions resulted in identification

of changes in protein abundance that were correlated to yield

and related traits (Maurya et al., 2020). Reduced malondi-

aldehyde content and antioxidant and antioxidative enzymes

levels were observed in response to high CO2. Further, more

abundance of proteins related to Calvin cycle, protein synthe-

sis assembly and degradation, defense, and redox homeosta-

sis contributed to better growth and yield in elevated CO2 was

reported (Maurya et al., 2020). In legumes, for example, soy-

bean, proteomics together with physiological and biochem-

ical analysis led to identification of cross-tolerance mecha-

nisms in response to heat and water stresses (Katam et al.,

2020). The study reported elevated activities in antioxidant

enzymes, such as increased ascorbate peroxidase enzyme,

which restored oxidation levels and sustained soybean plants

during stress. In addition, proteins such as MED37C, a prob-

able mediator of RNA polymerase transcription II, were
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elevated in response to combined heat stress and water stress

levels (Katam et al., 2020).

2.4 Metabolomics

After the establishment of transcriptomic and proteomic pro-

files, the next functional genomics challenge is the function

of enzymes that build the complex milieu of primary and sec-

ondary photosynthetic catabolites as well as the sophisticated

array of biosynthetic products that make up the metabolome.

Metabolomics is the study of these small molecules in plants

and the dynamic changes in their abundance on diurnal, devel-

opment, and stress-responsive timescales (Fiehn et al., 2000;

Weckwerth, 2003). Metabolomics encompasses a rapidly

changing suite of technologies including mass spectrometry,

multiple types of spectroscopy, and nuclear magnetic reso-

nance spectroscopy. Metabolite pool sizes of major metabo-

lites are of value in assessing the metabolome (Nunes-Nesi

et al., 2019) but it is increasingly recognized that it is the

flux through these major metabolite pools that contribute

significantly to plant growth and development and stress

biology (Moreira et al., 2019). Identifying rarer compounds

including byproducts of signal transduction molecules, stress

metabolism, and molecules that are part of plant acclimation

process (Larrainzar et al., 2009) will be critical in breeding

for adaptive metabolic traits. Metabolic compounds identi-

fied can also be further studied by correlation with transcrip-

tome and proteome expression patterns. The cascading effects

of gene expression on different levels of biological organi-

zation lead to the phenotype. Metabolites can directly influ-

ence the cellular physiology, thus closest to the phenotype

(Guijas et al., 2018) but not directly related to the genome

(Redestig & Costa, 2011). The profiling of metabolites cor-

responding to those of the transcripts under a specified con-

dition or in a particular genotype allows an understanding of

developmental processes and plant response to external stim-

uli or metabolism. This approach has been demonstrated in

crops such as rice (C. Hu et al., 2014), soybean (Komatsu

et al., 2011), and common bean (Hernández et al., 2007),

in which up to 100 known metabolites have been shown to

change in abundance based on geographic origin of the seeds

and in response to flooding or nutrient limitation. Metabolic

fingerprinting is used to identify metabolic signatures asso-

ciated with stress responses without quantifying or identi-

fying metabolites, for example, nuclear-magnetic-resonance-

based approach for metabolic fingerprinting of 21 grass and

legume cultivars (Bertram et al., 2010). Further, consider-

ing plant metabolome as the readout of their physiological

status, metabolite-based GWAS has been utilized to dissect

the genetic and biochemical bases of metabolism in crop

plants (Luo, 2015). Metabolite-based GWAS has established

a strong genotype–metabolite associations in maize and rice

(Chen et al., 2014; Dong et al., 2014; Matsuda et al., 2012;

Wen et al., 2014). Metabolomics study would provide impor-

tant insights that can serve as a basis for future crop improve-

ment via metabolic engineering (see Kusano & Saito, 2012).

2.5 Epigenomics

Epigenomics is the study of all epigenetic modifications in a

cell. Epigenetic changes are heritable changes in gene expres-

sion and cellular functions as a result of DNA methylation,

histone modifications, and biogenesis of noncoding RNAs

without altering the underlying DNA sequence. Several stud-

ies in recent years helped to better understand the role of

the epigenome in plant biotic and abiotic stress responses

(see Agarwal et al., 2020). Further, comprehensive epige-

nomic studies of plant populations to correlate genotype–

epigenotype–phenotype, and also the study of methyl QTL

or epiGWAS will widen the understanding of mechanisms as

well as functions of regulatory pathways in plant genomes

(Yadav et al., 2018). Following the identification of key

epigenetic regulators, epigenomics toward systems biology

is needed to understand the dynamic and complex func-

tional relationships at the plant systems level. Engineer-

ing epigenomes and epigenome-based predictive models will

further accelerate molecular breeding programs for crop

improvement.

2.6 Single-cell omics

Most of the studies undertaken to understand plant biology

were at the level of tissue, organ, or complete plant, which

unraveled the biological activities and the genes involved.

However, these studies could obscure the specific biological

function of the individual cells or low-abundant biomolecules

owing to the so-called ‘dilution effect’ (Libault et al., 2017).

The unique functions of single cells could not be distinguished

while making a bulk measurement of tissue. Studying cell

phenotypes and behavior becomes imperative to understand

developmental dynamics and response to environment in

plants (Shulse et al., 2019). Over the last few years, there has

been a tremendous technological advancement in terms of

new imaging, miniaturization, automation, and microfluidics,

thus enabling high-throughput sequencing of encapsulated

single cells (Prakadan et al., 2017). Single-cell omics thus

aim at identifying, quantifying, and characterizing different

components of cells including transcriptome (Shulse et al.,

2019), proteome (Dai & Chen, 2012; Levy & Slavov, 2018),

and metabolome (de Souza et al., 2020) with spatiotem-

poral resolution. These high-resolution datasets provide

insights on reconstruction of gene-regulatory and signaling

networks driving cellular identity and function (Efremova
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& Teichmann, 2020; Libault et al., 2017). Furthermore, the

data generated from a single cell are incredibly useful for

biological modeling and predictions (Stegle et al., 2015).

However, in plants, owing to the challenges such as cell

heterogeneity, existence of multiple cell states and cell walls,

single-cell studies are limited unlike in animal and microbial

cells (Libault et al., 2017). Nevertheless, single cell omics

research is slowly gaining momentum with the emerging

technological and computational advancement.

2.7 Phenomics and high-throughput
phenotyping

Phenomics is the key to exploit the gains of genomics

resources. In recent years, crop phenomics has greatly evolved

to generate multidimensional phenotypic data at multiple lev-

els from cell level, organ level, plant level to population level

(Dhondt et al., 2013; Houle et al., 2010; Lobos et al., 2017). It

involves high-throughput, accurate, and automated measure-

ments of phenotypic information such as plant growth, archi-

tecture, and composition at different scales. With the recent

technological advances, large-scale phenotyping data acquisi-

tion and processing became possible, which remained a major

bottleneck for functional genomics studies and crop breed-

ing (Yang et al., 2020). Phenotypes, such as high-throughput

shoot phenotyping, root phenotyping, canopy, leaf traits,

among others, could be measured using high-throughput phe-

notyping platforms (Jin et al., 2020). Further sensor technolo-

gies now enable detailed recording of the environmental his-

tory of plants and, in turn, the dynamic response of crops

to the environment. For example, drones or unmanned aerial

vehicles, and pocketPlant3D equipped with multiple sensors,

such as hyperspectral imaging as well as computed tomogra-

phy imaging to targeted metabolic sensors, are used to mea-

sure traits such as leaf area index estimation, detect weeds

and pathogens, and predict yield (Jin et al., 2020; Yang et al.,

2020).

Major progress has been made in high-throughput pheno-

typing under controlled environments (Pratap et al., 2019).

Application of such technology to field conditions are rapidly

developing, including vision-guided robotics (Pieruschka &

Schurr, 2019). High-throughput shoot and root phenotypic

data were collected in several model plants and crop species

under controlled conditions (Yang et al., 2020). The per-

formance of a plant or crop is affected by multiple genes

that interact with multiple environments throughout their

growth and development. Advanced sensor, machine vision,

and automation technology could now be used to record the

crop dynamic response that could further be integrated with

the sequence information (Jin et al., 2020). Since phenomics

uses several types of sensors simultaneously, data acquisition

in a systematic manner is also crucial beginning from exper-

imental set up to data generation and interpretation (Pratap

et al., 2019). As the genomes of several model and nonmodel

crop species have been sequenced, it is highly required to

describe the whole-crop phenotype. This is important to link

gene and QTL to crop phenotypes for dissecting key adaptive

traits (Yang et al., 2020).

2.8 QTL-omics

The greatest challenge to the agricultural research commu-

nity is to be able to correlate and translate gene function to

crop improvement in the field under the relevant set of envi-

ronmental conditions. Predicting complex phenotypic traits

from gene networks is complicated by genetic control and

environmental effects among different growth and develop-

mental processes of plants (Hammer et al., 2016). To resolve

this, multidimensional analysis could provide useful infor-

mation in understanding genotype–phenotype association,

unlike single-data-type study designs. Integration of omics

approaches leads to QTL mapping and identification of under-

lying genes. The QTL-omics will be an integral part, dealing

with generation and analysis of large-scale multiomics data

and is broadly defined as characterization of QTL using omics

data (Kumawat et al., 2016). However, the biggest challenge

is to integrate data from genome sequencing, transcriptomics,

proteomics, metabolomics, and phenomics and to make sense

of it. Otherwise, QTL-omics is one of the best approaches to

capture the genetic variation present among the whole gene

pool for specific quantitative traits in target environment. For

example, modeling of QTL has led to the prediction of multi-

genic traits such as leaf growth and nitrogen accumulation in

maize using the systems biology approach (Reymond et al.,

2003). Similar efforts were also made in tomato (Solanum
lycopersicum L.) by integrating expression QTL with metabo-

lite QTL (Schauer et al., 2006). In soybean, QTL-omics has

been applied to characterize mapped QTL. In addition, this

approach has also been used in novel QTL mapping and char-

acterization (Kumawat et al., 2016).

All these omics approaches discussed above provide high-

dimensional datasets on different modalities that are only dis-

crete components for a comprehensive view of the plant sys-

tem. In this regard, systems biology aims to integrate our

understanding of how different biological components func-

tion to provide insight into the plant system and to develop

predictive models on their response when perturbed.

3 SYSTEMS BIOLOGY

One of the major goals of crop biology research is to max-

imize yield and reduce losses resulting from various stress

factors. As the problem to be tackled is multifaceted, so is the
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F I G U R E 2 A schematical representation of the systems biology approach for crop improvement. Systems biology provides great potential for

sustainable agriculture by understanding complexity of multiple traits bridging the genotype–phenotype gap. It is a strategic approach where it

precisely studies the response of each level of biological organization and aims at understanding the complexity of the system as a whole through

data integration coupled with mathematical modeling to gain predictive abilities over key agricultural traits

solution multidisciplinary. Understanding the cellular

response at each level of the organization has been possible

because of the advances in technology that have led to the

generation of a huge amount of data from genome, transcrip-

tome, proteome, metabolome, and high-throughput phenome

that is routine now. However, most of the times, these data

have been studied independently until recently. Integration of

transcriptomics, proteomics, and metabolomics would greatly

facilitate identification and dissection of complex plant regu-

latory networks (Urano et al., 2010). In this regard, systems

biology emerged as a promising multidisciplinary research

field that integrates large omics datasets coupled with well-

designed mathematical models to confirm hypothesis and

predict biological systems (Figure 2; Hong et al., 2019; Sauer

et al., 2007). This provides a more holistic understanding

of system-wide response during growth, development, and

stress adaptation, critical for next-generation breeding of

climate-ready crops. However, the first step to a systems

biology approach is to devise hypotheses based on prior

knowledge. This becomes the basis for a systems biology

experimental design and is the most critical step (Pinu et al.,

2019). An overview of the various steps involved in a systems

biology approach and its application in crop research have

been provided in the following sections.

3.1 Data integration

The major challenge in integrating omics data remains with

the processing, scaling, and analyzing the multidimensional

dataset to extract meaningful biological inferences. Integra-

tion and analysis of the datasets generated from multiple

platforms involve data acquisition, preprocessing, appropri-

ate normalization, and integration into a single matrix. This

integrated dataset is generally subjected to multivariate anal-

ysis and looked for strong correlations among the biological

entities. Genes, proteins, and metabolites with similar pat-

terns were then classified into clusters (Redestig & Costa,

2011; Smilde et al., 2009). Most of the statistical method-

ologies include dimensionality reduction and studying the

coexpressed clusters among the different data measured on

the same samples. This is based on the assumption that bio-

logical entities showing similar expression patterns across

the same samples have hypothetical functional relationships

(González et al., 2012). Several platforms to integrate multi-

dimensional omics datasets are available such as mixOmics,

OnPLS modeling, Integromics, sparse Multi-Block Partial

Least Squares, and COVAIN (see Misra et al., 2019; Sun &

Weckwerth, 2012). In this regard, PANOMICS platform pro-

vides integration of complex omics datasets generated from

genomics, epigenomics, transcriptomics, proteomics, post-

translational modifications proteomics, metabolomics, and

phenomics (Weckwerth et al., 2020). Recently, a systematic

multiomics data integration approach, different methodolo-

gies, software tools, web applications, and databases for plant

systems biology have been proposed (Jamil et al., 2020; Pinu

et al., 2019).

These integrative multiomics studies have been used to

identify disease mechanisms for improved prognostic and pre-

dictive marker identification that reflect molecular pathways
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T A B L E 1 Some examples of crop research studies using an integrated omics approach

Study no. Plant species Study Omics approaches Reference
1 Rice Plant response to ozone Transcriptomics,

proteomics,

metabolomics

Cho et al., 2008

2 Physiological and

nutritional quality

Galland et al., 2017

3 Maize Bt and glyphosate resistant Barros et al., 2010

4 Carotenoid biosynthesis Decoutcelle et al., 2015

5 Nitrogen use efficiency Amiour et al., 2012

6 Soybean Primary metabolism

regulation in response to

Rhizoctonia foliar blight

disease

Transcriptomics,

metabolomics

Copley et al., 2017

7 Common bean Characterizing variability Transcriptomics,

proteomics,

metabolomics

Mensack et al., 2010

8 Tomato Primary and secondary

metabolism

Balcke et al., 2017

9 Sesame Drought stress Transcriptomics,

metabolomics

You et al., 2019

10 Berry Drought stress Transcriptomics,

proteomics,

metabolomics

Ghan et al., 2015

11 Pepper Fruit development Transcriptomics,

proteomics

Liu et al., 2019

in humans (Eddy et al., 2020; Hasin et al., 2017). Similarly,

in crop plants, these approaches enable the study of plant

metabolism and understand the molecular mechanisms under-

lying plant phenotypes with potential agronomic importance.

Light-specific metabolic and regulatory signatures were iden-

tified using transcriptomics, metabolomics, and genome-scale

in silico modeling in rice (Lakshmanan et al., 2015). Recently,

transcriptomics, proteomics, and metabolomics data were

analyzed to complement information that provided insights

into the fertility transition mechanisms in a pigeonpea ther-

mosensitive male sterile line for its potential use in two-line

hybrid breeding (Pazhamala et al., 2020). In another study,

how flavonoid and isoflavonoid metabolism alters in response

to ethylene and abscisic acid treatment was studied in soybean

leaves by integrating proteomics and metabolomics (Gupta

et al., 2018). Table 1 provides a few of the recent studies con-

ducted in crop plants by integrating multiomics data.

Furthermore, multiomics data provides a link between phe-

notype and genome variation to offer new data layers for

genomics-based predictions (Azodi et al., 2020; Weckwerth

et al., 2020). In crops such as maize, multiple omics data were

integrated into prediction models for improved prediction

accuracy (Azodi et al., 2020; Guo et al., 2016; Schrag et al.,

2018; Xu et al., 2017). Multiomics data are being increasingly

used for phenotypic prediction as it is not restricted to the

genome but a result of biological regulation in response to

the environment (Acharjee et al., 2016; Li et al., 2019).

3.2 Network biology

Cells respond to various genetic and environmental changes

through biological processes that are regulated at multiple

levels, both transcriptional and translational. Expression of

genes are regulated through gene-to-gene interaction, epi-

genetic modification, mutations, transcription factors, and

other mechanisms. Most of the plant response and adapta-

tion to stress are specifically controlled by regulatory net-

works (Gehan et al., 2015; Urano et al., 2010). Reconstruc-

tion of pathways and networks using transcriptome, pro-

teome, and metabolome data can help understand these reg-

ulatory networks and their functional interaction among the

biological entities (Moreno-Risueno et al., 2010). Interaction

among biological entities to carry out cellular functions can

be represented as networks and graphs, elucidating biological

relationships among genes, proteins, and metabolites (Weck-

werth, 2011; Weckwerth et al., 2004). Briefly, omics data

are appropriately normalized to obtain a similarity matrix

and, subsequently, an adjacency matrix generated is trans-

formed into an undirected graph or a network abstraction.
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(Langfelder & Horvath, 2008; Langfelder et al., 2013; Redes-

tig & Costa, 2011). Principles, methods, and tools of network

inference for exploring biological details, evolutionary origin,

and understanding the network structure for predicting biolog-

ical functions can be found in recent reports (Hao et al., 2016;

Lee et al., 2015; Saint-Antoine & Singh, 2020). Network-

based approaches are limited by current knowledge as well

as predicted relationships between biological variables, for

instance, Bayesian networks. Several platforms to integrate

multidimensional omics datasets are available (Misra et al.,

2019). Further, different methodologies, software tools, web

applications, and databases for integrating multidimensional

omics datasets have been reported (Pinu et al., 2019).

A system can thus be mathematically represented as a

set of nodes linked by edges, where nodes are the biologi-

cal entity and edges indicate their interaction or relationship,

and the highly connected nodes are referred to as hub nodes

(Langfelder & Horvath, 2008). Hub nodes provide stronger

interactions than the nodes in the periphery of the network

module. Biologically, these nodes serve as regulators and

could have downstream effects on the pathways (McCormack

et al., 2016). Identifying hub nodes have significant impli-

cations in detecting key components controlling or affecting

simple or complex traits. Thus, networks can provide new bio-

logical insights and predict key components and their regu-

latory influence (Albert, 2007). For this purpose, an exper-

imentally tested genome-scale rice gene network, RiceNet,

was constructed that could accurately be used to predict gene

functions in monocotyledonous species (Lee et al., 2011). Fur-

ther, a barley (Hordeum vulgare L.) coexpressed gene net-

work generated using transcriptome data identified gene clus-

ters associated with response to drought stress and biogenesis

of cellulose (Mochida et al., 2011). In soybean, a flowering

gene network could identify the regulatory roles of GmCOL1a
and GmCOL1b in flowering (Wu et al., 2019). Weighted-gene

coexpression network analysis (Zhang & Horvath, 2005) was

used to generate gene coexpression network to identify reg-

ulatory networks and key genes controlling seed set and size

(Du et al., 2017) and nodulation and nitrogen fixation (Wu

et al., 2019) in soybean, whereas pollen fertility and seed set in

pigeonpea (Pazhamala et al., 2017) and acquisition of desicca-

tion tolerance in Boea hygrometrica (Lin et al., 2019), among

many others. On the other hand, the protein–protein interac-

tion network was found useful in investigating complex bio-

logical activities and understanding the ways in which exter-

nal signals are perceived and transduced to trigger specific

plant responses (Hao et al., 2016; Struk et al., 2019). In case

of Arabidopsis, an Arabidopsis thaliana Protein Interactome

Database (Cui et al., 2007; Ding & Kihara, 2019) and a dense

protein–protein interaction network of plant tricarboxylic acid

cycle was generated (Zhang et al., 2017). A protein interac-

tion network associated with salt tolerance in rice was also

reported (J. Wang et al., 2013). Furthermore, metabolite–

metabolite association networks constructed based on corre-

lation algorithms can comprehensively describe the response

of the biological system to environmental perturbation (Jaha-

girdar & Saccenti, 2020; Jahagirdar et al., 2019; Kose et al.,

2001; Rosato et al., 2018; Weckwerth et al., 2004). A study

clearly demonstrated the effect of different levels of plant

growth regulators and agroecosystem environment on the

tomato metabolome using a metabolic network (Fatima et al.,

2016). The above-mentioned network inference studies were

within a single omics type; however, several valuable insights

were provided through integration across different omics

types. Complex network interactions in nitrogen metabolism

and signaling in crop plants has been reported using integrated

omics approaches (Fukushima & Kusano, 2014). RiceNet was

quantitatively integrated with proteomics dataset to predict

proteins involved in abiotic stress resistance namely, XA21-

mediated immunity (Lee et al., 2011). In tobacco (Nicotiana
tabacum L), coexpression gene modules and metabolite mod-

ules were integrated to identify gene–metabolite relationship.

The study identified key and novel genes and potential regu-

lators of important regulatory networks including carotenoid

metabolism pathway (P. Liu et al., 2020). Similarly, Mounet

et al. (2009) integrated transcriptome and metabolome data

to identify subsets of genes involved in fruit development and

metabolism in tomato.

In brief, global gene coexpression networks has been found

to be a promising approach for studying and high-throughput

prediction of specialized metabolite pathways. Thus, network

biology can transform our understanding of the genetic basis

of how plants respond and cope with the changing environ-

ment (Wisecaver et al., 2017). To be able to do so, it is impor-

tant to have an appropriate temporal design for the acquisition

of omics data that needs to be analyzed with a network biol-

ogy approach. Network biology is potentially a powerful tool

for modeling the cellular response to adverse environmental

perturbations (McCormack et al., 2016).

3.3 Systems modeling

The next step in network biology is the dynamic modeling

that allows a comprehensive view of the gene expression

shaping protein behaviors in a way to elicit metabolites in

response to external triggers in plants (McCormack et al.,

2016). Systems modeling primarily tests biological hypothe-

ses and further extended to predict a system-wide response.

To make a biological sense of the data, computational model-

ing, including dynamic simulation models and machine learn-

ing approaches, is used. In simple words, the biological sys-

tem is simulated based on the hypothesis devised by the biol-

ogist, which is tested over the course of time. The simu-

lated results are then compared with the experimental data

to evaluate the hypothesis and further refined to match the
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experiments. This is critical to achieving a perfect prediction

of the system’s behavior under dynamic conditions and time

(Macklin, 2019; Muthuramalingam et al., 2019).

Four major approaches have been suggested for cel-

lular modeling: constraint-based modeling (Price et al.,

2004), metabolic modeling (Steuer et al., 2006), analysis of

metabolic control (Reder, 1988), and cybernetic modeling

(Kompala et al., 1984). Constraint-based modeling requires

information regarding metabolic reaction and flux capac-

ity and can also perform with low experimental data. This

method has clear advantage over all other methods and has

been used to reconstruct metabolic networks at the whole-cell

or genome scale, which is an emerging application together

with omics data to increase the predictive power (Sroka et al.,

2011). This approach has been found to provide deep insights

into the cellular metabolism in response to abiotic stress

in rice (Muthuramalingam et al., 2019; Raman & Chandra,

2009). Contrastingly, metabolic modeling corresponds to a

specific component of metabolism using equations that spec-

ulate the dynamic changes in the concentration of metabo-

lites. In plants, metabolic modeling remains limited, as it

requires kinetic variables to model networks at large scale,

which is not available for most of the biochemical reactions

(Muthuramalingam et al., 2019). Analysis of metabolic con-

trol, on the other hand, is one of the most widely used tools for

the study of control in plants, which quantifies the response

of system variables (e.g. fluxes) to small changes in sys-

tem parameters (e.g. the amount or activity of the individ-

ual enzymes). The cybernetic modeling framework was orig-

inally used for macroscopic input–output models describing

substrate uptake, growth, and product formation. Later, this

approach has been extended for application to more com-

plex, intracellular metabolism. The software applications and

mark-up languages available to facilitate systems modeling

include Cell Illustrator (Nagasaki et al., 2010), COBRATool-

box (Schellenberger et al., 2011), Acorn (Sroka et al., 2011),

CellNetanalyzer (Klamt et al., 2007), among many others (see

Muthuramalingam et al., 2019; Pinu et al., 2019).

Machine learning uses applied statistical and computa-

tional techniques to teach machines to extract patterns in

the data including features and labels for predictive model-

ing (Camacho et al., 2018). Generally, there are two types

of machine-learning methods: supervised and unsupervised

learning (McMurray & Hollich, 2009). Supervised learning

includes regression algorithm and classification algorithms

techniques (random forest, multivariate regression), which are

used to predict the outcome with labeled data. Unsupervised

learning, on the other hand, includes clustering algorithms

and association rule learning, employed for clustering data,

detecting outliers, and dimensionality reduction (Mishra et al.,

2019). The analytics consist of data preprocessing, modeling,

and active learning to deal with the complexity and intrica-

cies of omics data. Machine learning has emerged as a pow-

erful toolbox for integration of high-dimensional biological

data, extracting systems-level insights and predicting a range

of outcome (Gazestani & Lewis, 2019; van Dijk et al., 2020).

In plant research, phenotype prediction and understanding

genotype-to-phenotype relationship remains the fundamen-

tal goal. Predicting plant phenotypes, for example, stress

response and quality traits from the multiomics data is highly

required for crop improvement. In this regard, a study in maize

classified DNA sequence regions into active vs. (inactive)

pseudogenes, using features such as DNA methylation (Sar-

tor et al., 2019). Another study reported identification of key

genes, proteins, and metabolites that are predictive of potato

(Solanum tuberosum L.) tuber quality from transcriptomics,

proteomics, and metabolomics data. This study used ran-

dom forest regression for integrating the omics data (Achar-

jee et al., 2016). In plant research, prediction using ensem-

ble of neural networks is quite popular. The prediction perfor-

mance of phenotype depends on the predictive modeling and

analytics and is an exhaustive subject that has been reviewed

recently (Kim & Tagkopoulos, 2018; Tong et al., 2020).

4 CROP IMPROVEMENT
APPLICATIONS

Systems biology provides great potential for sustainable agri-

culture by understanding the complexity of multiple traits

bridging the genotype–phenotype gap. It can be used to model

and analyze multigenic traits linked with agricultural produc-

tivity such as plant architecture, nitrogen use efficiency, water

use efficiency, and abiotic and biotic stress tolerance. Plant

genetics and molecular biology have been extensively con-

tributing to the plant breeding programs. However, because of

the upsurge in recent high-throughput experimental analyses

and computational power, there is a transformative possibility

to integrate multiple disciplines to explain any given complex

trait. The availability of whole-genome sequence information,

generation of omics datasets with rapidly advancing technolo-

gies, analytical tools, and software (Table 2) have made it pos-

sible to study and address abiotic stress-responsive cellular,

biochemical and molecular mechanisms as well as signaling

processes. For instance, well-designed mathematical models

based on time series datasets allow the identification of key

candidate genes for potential use in the breeding programs

and thus devise a systems biology-based breeding strategy

(Lavarenne et al., 2018). Furthermore, they convincingly pro-

vided a roadmap to use systems biology for future breeding

programs. They inferred that the ultimate practical use of sys-

tems biology is to unravel the complex interactions govern-

ing the multigenic trait for crop improvement. Development

of comprehensive models by integrating multiomics data with

high throughput and precise phenotyping will ensure efficient

breeding programs to improve agronomically important and
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T A B L E 2 A list of key tools and databases for systems biology research

Tools Description Link References
Biochemical, Genetic and

Genomic (BiGG)

knowledge base

Reconstruction of biochemical networks;

Genome-scale metabolic models

(GEMs)

http://bigg.ucsd.edu Feist et al., 2009;

King et al., 2016

Systems biology markup

language (SBML)

A medium for representation and

exchange of biochemical network

models

http://www.sbml.org/ Hucka et al., 2003

JSBML 1.0 Provides a smorgasbord of options to

encode systems biology models

http://sbml.org/Software/JSBML Rodriguez et al.,

2015

VirtualPlant A software platform to support systems

biology research

http://virtualplant.bio.nyu.edu Katari et al., 2010

Babelomics A complete suite of web tools for

functional analysis of genome-scale

experiments

http://www.babelomics.org. Al-Shahrour et al.,

2006

Pathway tools version 13.0 Integrated software for pathway and

genome informatics and systems

biology

http://BioCyc.org/download.shtml Karp et al., 2010

TEPIC 2 A framework for fast, accurate and

versatile prediction, and analysis of TF

binding from epigenetics data

https://github.com/SchulzLab/TEPIC Schmidt et al., 2019

Mergeomics Multidimensional data integration to

identify pathogenic perturbations to

biological systems

Available in Bioconductor Shu et al., 2016

Crops in silico An integrative platform for plant systems

biology research

http://cropsinsilico.org/ Zhu et al., 2016

AtPID (Arabidopsis
thaliana protein

interactome database)

An integrative platform for plant systems

biology

http://atpid.biosino.org/ Cui et al., 2007

MGS Interaction-based simulations for

integrative spatial systems biology

http://mgs.spatial-computing.org/ –

VESPER 1.5 Spatial prediction software for precision

agriculture

– Whelan et al., 2002

MetExplore Visualization of metabolites in the context

of the whole network/reactions

http://metexplore.toulouse.inra.fr/

joomla3/index.php

Cottret et al., 2010

ProMeTra Visualization and combining datasets

from transcriptomics, proteomics, and

metabolomics

https://omictools.com/prometra-tool Neuweger et al.,

2009

KaPPA-View Integrates transcriptomics and

metabolomics data to map pathways

http://kpv.kazusa.or.jp/kappa-view/ Tokimatsu et al.,

2005

complex traits in the future. This would be critical to devel-

oping future-ready crops that can sustain and increase produc-

tivity even in marginal environments faced with biotic and

abiotic stresses (Gehan et al., 2015). We anticipate the use

of systems biology for devising and utilizing novel breeding

approaches for crop improvement in the future.

5 CHALLENGES AND PROSPECTS

The use of multiple omics techniques (i.e., genomics, tran-

scriptomics, proteomics, metabolomics, epigenomics, and

single-cell omics) is becoming increasingly popular in plant

sciences as sequencing cost drops and expertise rises. As a

result, sequencing and resequencing information that is gener-

ated for several crops enabled the identification of novel alle-

les from diverse sources irrespective of the availability of the

genome sequence. Furthermore, rapid advances in omics tech-

nologies provide an opportunity to generate new and infor-

mative datasets in different plant species. Integration of these

genomes and functional omics data with genetic and pheno-

typic information in an efficient manner would lead to the

identification of genes and pathways responsible for impor-

tant agronomic traits. On the other hand, the huge amount of

http://bigg.ucsd.edu
http://www.sbml.org/
http://sbml.org/Software/JSBML
http://virtualplant.bio.nyu.edu
http://www.babelomics.org
http://BioCyc.org/download.shtml
https://github.com/SchulzLab/TEPIC
http://cropsinsilico.org/
http://atpid.biosino.org/
http://mgs.spatial-computing.org/
http://metexplore.toulouse.inra.fr/joomla3/index.php
http://metexplore.toulouse.inra.fr/joomla3/index.php
https://omictools.com/prometra-tool
http://kpv.kazusa.or.jp/kappa-view/
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data generated on the functional components of the cell are

still underutilized even in a model crop like rice (Muthurama-

lingam et al., 2019). Moreover, the growth and productivity

of crops in the field conditions are hindered not by individ-

ual stress but a combinatorial effect of multiple stresses, both

biotic and abiotic. Hence, there is an urgent need to direct

future research toward the discovery of key players, molecular

networks, and models that could unravel the complex cellular

and molecular functions to enhance agronomic traits in crops.

In this regard, systems biology offers huge potential in crop

research to revolutionize our understanding on how plants

respond to growth and environmental constraints (Muthura-

malingam et al., 2019).

Systems biology and integrating omics approach provides

a more inclusive molecular perspective of plant biology

than individual approaches. However, the integrated approach

of multiple omics platforms remains an ongoing challenge

because of their inherent data differences. The collection of

accurate multiomics data on different molecular and func-

tional components is most critical to systems modeling and

prediction, for which there are no standard protocols shared

among the global community (Kim & Tagkopoulos, 2018;

Macklin, 2019). In addition, model-based integration is often

restricted to well-defined model organisms (Pinu et al., 2019).

Constant evolution of databases and data analysis tools would

help meaningful biological interpretation of multiomics data.

Various technical challenges during experimentation, data

generation, integrations, handling, sharing, and interpreta-

tion are comprehensively described in Misra et al. (2019)

and Macklin (2019). Hence, it is high time to form a highly

connected community for plant systems biology research,

instead of isolated efforts, and to develop and share resources,

databases, and software tools. This is even more crucial

because of the urgency to double crop yields by 2050 under

uncertain climate scenarios.
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