Apophis T–9 Years: Knowledge Opportunities for the Science of Planetary Defense – Session 3

Apophis and the Waves The need for Frequency Coordination and Radio Amateur and University Community Support Before, During, After Close Approach

Jan Thimo Grundmann^{1#}, Sebastian Fexer^{1*}, Martin Laabs^{2*}, Dirk Plettemeier²

¹DLR German Aerospace Center, Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen, Germany, #jan.grundmann@dlr.de ²Dresden University of Technology, Chair for RF Engineering, Helmholtzstr. 10, 01069 Dresden, Germany *licensed radio amateurs

Knowledge for Tomorrow

Objective

- This is the beginning of a start of the discussion
- Create awareness of potential problems
- Find potential of synergy that is normally lost

This is a 1-in-1000 years <u>chance</u>!

Background

- the DLR Institute of Space <u>Systems</u> cooperated with the radio amateur community on several satellite projects
 - support, Q&A, consulting, reviewer on university cubesats
 - concurrent engineering (CE) studies for AMSAT-DL
 - design & operation of the AISat-1 nanosatellite
 - in-house EMC chamber
- in-house Electronics Laboratory (E-Lab)
 - managed by active radio amateurs
 - operate ground station on the roof
 - antenna design & testing
- space situational awareness work
 since AsteroidFinder
 - MASCOT2 mission study
 <u>system</u> engineering

AISat-1

DLR

- monitoring of Automatic Identification <u>System</u> (AIS) emissions from space
- antenna and signal processing enable to pick out individual ships in very crowded regions

MASCOT2 @ AIM and the System Perspective

- Low-Frequency Radar (LFR) payload for "Didymoon" (now: Dimorphos)
- planned for AIM mission, descoped on HERA
- LFR is sounding the interior in bistatic mode with a 2nd unit aboard the AIM main spacecraft
 - ➔ see Alain Hérique's talk
- "side effect": strong ~40 W peak (power input) transmitter on board
 - typical communication: 0.1...1 W RF power
- coincided with research on long-range MASCOT communication options (>>100 km ... ?? limit ??) and ideas of a multi-spacecraft multi-band amateur radio payload AO for GOSSAMER-1 also cancelled

a special situation ...

- Apophis comes in range of many more radars than the 2-3 that normally do asteroid work
- space debris monitoring radars definitely reach to GEO for m²-sized objects
- radio amateurs "routinely" work Earth-Moon-Earth connections

anyone who could get an echo will try

a special situation ...

- Apophis comes in range of many more radars than the 2-3 that normally do asteroid work
- space debris monitoring radars definitely reach to GEO for m²-sized objects
- radio amateurs "routinely" work Earth-Moon-Earth connections

and why not?

"there are people with a 10 m radio dish in the backyard"

 amateurs can compete with professionals in astronomy & radio facilities

"there are people with a 10 m radio dish in the backyard"

Ideas involving the Ham Radio community

DLR mobile ground station *L.A.R.S.*

Image sources: Apophis Model, Astronomical Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Cooby Creek Yagi Array, Hullwarren, Wiki Commons

- Make use of the agile crowdsourcing of the Ham Radio community
- Popular examples: WSJT/WSPR network
- Idea: Multi-/bistatic radar / multilateration
 - One designated transmitter
 - Multiple receivers from the ham community at different locations
 - Enhancement of spatial and trajectorial resolution, more information gathered
 - But need for exact time distribution and complex signal processing
 - Another onset to avoid inaccuracies due to different and not well characterized receive stations: Supply unified receiver kits to the community

The risks & problems: there are 9 years of electronics & space progress ahead

22 55 21 24/05/19 0933 5 0953 5

 StarLink - >10000 satellite constellation, all transmitting

The risks & problems:

there are 9 years of electronics & space progress ahead

"

...and now imagine someone hacking a million Bluetooth modules and building a Square Kilometer Array pocket book edition in their backyard to get a <u>ping</u> on Apophis...

Approach: use what's there!

- national radio amateur associations
- national space agencies
- international asteroid/space framework
 - IAU
 - IAWN
 - SMPAG
- International Amateur Radio Union (IARU)
- International Telecommunication Union, ITU

Approach: use what's there!

- national radio amateur associations
- national space agencies
- international asteroid/space framework
 - IAU
 - IAWN
 - SMPAG
- International Amateur Radio Union (IARU)
- International Telecommunication Union, ITU

- lateral linking for <u>systematic work</u>: between small agile teams
- vertical linking: national multi-national international <u>exists</u>
- lateral coordination worldwide: will be interesting to get working

...and talk & tell the people!

Thank you! – Questions, please ③

