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Abstract  12 

The comprehensive evaluation of strategies for decarbonizing large-scale energy systems requires 13 
insights from many different perspectives. In energy systems analysis, optimization models are 14 
widely used for this purpose. However, they are limited in incorporating all crucial aspects of such a 15 
complex system to be sustainably transformed. Hence, they differ in terms of their spatial, temporal, 16 
technological and economic perspective and either have a narrow focus with high resolution or a 17 
broad scope with little detail. Against this background, we introduce the so-called granularity gaps 18 
and discuss two possibilities to address them: increasing the resolutions of the established 19 
optimization models, and the different kinds of model coupling. After laying out open challenges, we 20 
propose a novel framework to design power systems. Our exemplary concept exploits the capabilities 21 
of energy system optimization, transmission network simulation, distribution grid planning and 22 
agent-based simulation. This integrated framework can serve to study the energy transition with 23 
greater comprehensibility and may be a blueprint for similar multi-model analyses.  24 
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1 Analyzing future energy systems  25 

In order to evaluate strategies for decarbonizing energy systems, optimization models are widely 26 
used. Since their first application in the 1960’s (Hoffman and Wood 1976), these computer tools 27 
have permanently been compromising between providing a wide system's perspective and a sufficient 28 
level of detail or granularity. For effective decision making, a wide perspective is relevant to 29 
comprehensively account for the side-effects or synergies in a system, while the level of detail is 30 
associated to the capability of assessing concrete, individual measures. 31 

Due to computational or also institutional limitations (Krey 2014), improvements towards higher 32 
detail or broader scope are always accompanied by simplifications on the complementary side. This 33 
trade-off leads to deficiencies, which we refer to as granularity gaps in the following. 34 

Established approaches for energy systems planning are highly diverse in terms of their spatial, 35 
temporal, technological and economic perspective. Current models span from assessments on the 36 
household-level and small districts, e.g. (Kneiske, Braun, and Hidalgo-Rodriguez 2018) up to the 37 
modeling of individual or multiple countries (Gils et al. 2017) and even global systems (Teske et al. 38 
2019). The temporal scale plays a crucial role when it comes to planning of infrastructures with 39 
lifetimes of several decades on the one hand. On the other hand, verifying the operational feasibility 40 
and reliability of such infrastructures as well as fully exploiting power balancing potentials of 41 
batteries require short term system analyses (Hedegaard and Meibom 2012). In terms of technology 42 
representations, models range from detailed process simulations up to the coupling of energy sectors 43 
and interactions with other systems (e.g. energy-economy-climate) (Howells et al. 2013). The 44 
spectrum of economic perspectives comprehends simulations from individual decision-makers up to 45 
entire economies.  46 

The ranges of the four dimensions introduced (space, time, technology, and economic perspective) 47 
are illustrated in Figure 1. There, we outline, from our perspective, a categorization of one popular 48 
model type which allows studies on large-scale energy systems: Energy System Optimization Models 49 
(ESOMs). 50 
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 51 

Figure 1: Illustration of different spatial, temporal and technological scales, and economic perspectives of energy 52 
system models with a categorization of ESOMs. 53 

1.1 Characteristics of large-scale energy system optimization models 54 

ESOMs are often applied to study the possible development of entire energy systems. For example, 55 
Haller et al. do this for Europe including Middle East and North Africa (Haller, Ludig, and Bauer 56 
2012). Their large geographic scope allows for investigating the benefits from international 57 
cooperation, but their low spatial resolution limits the findings of, for example, concrete measures of 58 
grid expansion needed for the integration of renewable energy sources (RES). Compared to Haller et 59 
al., more recent studies such as (Sgobbi et al. 2016), (Child et al. 2019), (Bernath, Deac, and Sensfuß 60 
2019) are more comprehensive in terms of the technologies considered. This development is fostered 61 
by the trend of analyzing multi-technology interactions, especially in energy systems with high 62 
shares of RES (Markard 2018). Resulting extensions of the energy models include other energy 63 
sectors (e.g. the electrification of the heating sector as presented by Bernath et al.) or the introduction 64 
of new technologies (e.g. hydrogen as fuel and long-term storage option as presented by Sgobbi et 65 
al.). However, the spatial resolution usually remains rather coarse and the results are limited to the 66 
perspective of a central system planner.  67 

1.2 The granularity gaps 68 

Successful energy policies rely on the implementation of concrete strategies. Finding such strategies 69 
with the corresponding level of detail, for example on a local municipality level, often remains 70 
elusive, especially in those studies that rely on broad scope models. At first glance, a direct straight-71 
forward approach would be deriving local strategies by breaking down the actions identified from the 72 
global and national level. Although such top-down approaches exist (Müller et al. 2019), they ignore 73 
two crucial aspects. 74 
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First, in markets (such as within the European Union), decisions cannot simply be instructed top-75 
down. They are rather made by the interaction of various stakeholders with heterogeneous interests. 76 
This self-interested stakeholder behavior leads to investment decisions and operation strategies that 77 
may strongly deviate from the desired optimal system states. This aggregation bias (also caused by 78 
market imperfections) is well-known in economic modeling theory (Fagiolo and Roventini 2017), 79 
and sometimes called “behavioral complexity of actors” (Li 2017) in the context of energy system 80 
modeling. Hereafter, we refer to it as “economic granularity gap”, in line with the wording of the 81 
other granularity gaps treated. 82 

Second, ensuring an efficient power supply with renewable resources requires adequately 83 
dimensioned power transmission infrastructure and – given the increasing penetration of decentral 84 
power generators and consumers (Cossent, Gómez, and Frías 2009) – distribution infrastructure. 85 
However, even on the coarsest level, the transmission grid, the accordingly required network 86 
simulation studies exceed the spatial resolution of ESOMs. Therefore, transferring their findings to 87 
concrete implementation strategies for the real grid (including integration measures in the distribution 88 
grid) turns out to be much costlier than anticipated or even technically infeasible. Cost 89 
underestimations have been observed, for example, for the integration of decentral technologies such 90 
as prosumers (Schill, Zerrahn, and Kunz 2019). In order to overcome infeasible system states, 91 
bottom-up approaches (such as cellular approaches in (Lehmann, Huber, and Kießling 2019)) are 92 
helpful, but they do not guarantee yielding the intended system designs, especially with regard to 93 
affordability, reliability or sustainability. These are issues arising from the “spatial granularity gap”. 94 

Closely linked to the spatial granularity gap is the trade-off between long-term investment planning 95 
and operation of the energy system’s components. Validating or optimizing the latter is only possible 96 
if both the spatial and the temporal scale are sufficiently detailed. Although especially ESOMs 97 
provide extensive temporal scales to sufficiently capture the fluctuating availability of RES while 98 
also enabling investment planning (Poncelet et al. 2016), “temporal granularity gaps” still exist. For 99 
example, this is triggered by the idea of introducing real-time pricing tariffs (Allcott 2011) in the 100 
power market or if effects of local short-term fluctuations of RES on the operational feasibility and 101 
affordability of decentral power generators are to be investigated (Schreck et al. 2020). 102 

Now, the crucial question is how to address these granularity gaps without compromising the desired 103 
broad scope. As mentioned above and detailed below (section 2.1), increasing the granularity of a 104 
particular scale automatically results in the need for more accuracy on another. 105 

2 How to bridge the granularity gaps?  106 

Strategies for bridging granularity gaps, based on the aforementioned unidirectional top-down or 107 
bottom-up approaches, exhibit strong limitations. In response, iterative approaches are becoming 108 
more promising. These can be realized endogenously by increasing model resolutions or exogenously 109 
by model coupling. 110 

2.1 Increasing resolutions in energy systems analysis 111 

Increasing model resolutions can be realized by yielding, for example, sufficient spatial resolutions to 112 
simulate effects in real transmission grid infrastructures. Cranking-up the resolution only makes 113 
sense if, at the same time, the underlying phenomena or technologies are modeled appropriately, for 114 
instance extending power flow modeling by voltage constraints (Salam 2020). And still, breaking-115 
down high-level decisions to the local level remains challenging. This would always call for even 116 
better resolutions to capture distribution grids. In this case, differentiation between individual system 117 
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components becomes more important (as opposed to coarse technology-aggregations) and thus, 118 
decisions of heterogeneous actors gain in relevance and should be incorporated, too.  119 

In other words, increasing the spatial granularity automatically leads to the need of higher 120 
technological resolutions which then also calls for a more detailed economic perspective.  121 

Achieving such resolutions is extremely challenging, not only from a modeling perspective (e.g. 122 
required inputs, inter-disciplinarily) but also from a computational perspective (e.g. runtimes and 123 
data handling). The authors of several recent publications focus on this issue and strive for a more 124 
efficient treatment of the temporal scale, often using clustering algorithms, e.g. (Buchholz, Gamst, 125 
and Pisinger 2019). Although there are further attempts to tackle computational limitations, including 126 
the application of high performance computing (Breuer et al. 2018), fully integrated tools are not 127 
available yet (Mehigan et al. 2018). 128 

2.2 Model coupling in energy systems analysis 129 

An alternative to increasing resolutions of a particular ESOM is model coupling. It allows 130 
incorporating detailed findings from diverse domain-specific tools. Top-level system planning can be 131 
succeeded by more detailed models allowing for effectively addressing granularity gaps.  132 

In the following, we introduce three modeling approaches to extend the capabilities of techno-133 
economic (top-level) energy system planning: transmission network simulation, distribution grid 134 
planning, and agent-based simulation of microeconomic actor decisions. 135 

2.2.1 Transmission network simulation 136 

The main objective for coupling network simulation studies (as performed, e.g., in (ENTSO-E 2019)) 137 
to ESOMs is to incorporate information on feasibility constraints for transmission system operation 138 
and planning. This is usually done in an iterative manner: Network simulation studies provide power 139 
flow constraints for top-level unit commitment and/or extension planning. Based on top-level results, 140 
the constraints then are updated by further network simulation studies.  141 

In simple terms, power flow problems for existing or candidate grid infrastructures are solved (Salam 142 
2020) in order to obtain constraints related to transmission adequacy and power system security. The 143 
ESOM then trades-off grid expansion measures against other, competing flexibility-providing 144 
technologies. 145 

Established modeling tools developed for simulation and planning of power networks are available 146 
(FGH GmbH 2020, DIgSILENT GmbH 2020). However, appropriate solving routines can also be 147 
conducted with more general software packages such as MATLAB (Zimmerman, Murillo-Sanchez, 148 
and Thomas 2011) or Python frameworks (Brown, Hörsch, and Schlachtberger 2018). 149 

While the above mainly refers to electricity grids, similar comments apply to modeling of gas 150 
networks (ENTSO-G 2019), which are of increasing importance (Clegg and Mancarella 2016). 151 

2.2.2 Distribution grid planning 152 

Many high-level energy decisions, for example shares of rooftop PV, heat pumps, or mobility occur 153 
on the distribution grid level to which ESOMs are blind. Here, the objective of a model coupling is to 154 
capture the impact of ESOM decisions on the distribution level and thus its rebound effect caused by 155 
the corresponding adaptation costs. 156 



 
6 

For the analysis of distribution grids, detached from the ESOM, domain-specific tools become 157 
essential. This is different to the transmission level, where by justifiable simplifications concerning 158 
modeling of power flows (e.g., by using DC-power flow (Stott, Jardim, and Alsac 2009)) an 159 
integration to an ESOM is still possible, as computational constraints are not exceeded and the model 160 
complexity remains manageable. Relevant tools automatically analyze, optimize and find solutions 161 
for imbalanced distribution grids. Examples are EDisGo (Müller et al. 2019), SNOP (Cibis et al. 162 
2019) or pandapower Pro (Scheidler, Thurner, and Braun 2018). The latter, for instance, identifies 163 
voltage, transformer and line problems and solves them by the use of heuristic approaches. This 164 
includes not only conventional solutions such as line and transformer replacements, but also 165 
innovative measures such as regulated distribution transformers or autonomous network re-166 
configuration. 167 

2.2.3 Agent-based simulation of microeconomic actor decisions 168 

Energy system planning often assumes that all actors are motivated by minimizing the total system 169 
costs, while in reality they follow their own principles. Incorporating such microeconomic actor 170 
behavior is the objective of model coupling using agent-based models (ABMs). In an ABM, actors 171 
are modeled as autonomous agents with individual attributes, behaviors and relationships to other 172 
agents as well as to their environment (Macal and North 2005). By simulating the behaviors and 173 
interactions of individual agents at the micro-level, the system behavior emerges at macro-level 174 
(Bonabeau 2002, Bale, Varga, and Foxon 2015). This – more realistic – system behavior can then be 175 
transferred to ESOMs in order to, e.g., evaluate discrepancies from a hypothetic cost-minimized 176 
system. 177 

In the context of modeling energy markets, this approach is implemented, e.g., in the EMLab model 178 
(Chappin et al. 2017). EMLab models power companies as agents which sell their power on the 179 
energy markets and perform investment decisions regarding new power plants. The objective of the 180 
model is to analyze the aggregate effects of these investment decisions, e.g. on CO2 mitigation 181 
targets, while evaluating different policy scenarios and designs of the European electricity markets. 182 
Another example is AMIRIS (Deissenroth et al. 2017), an ABM of the German power market 183 
focusing on the market integration of RES. Thereby, special consideration is given to the influence of 184 
political framework conditions on the operation and profitability of energy technologies. 185 

2.3 Model coupling via automated workflows: an exemplary coupling concept 186 

Domain-specific models can be coupled with ESOMs by either soft or hard-coupling. Soft-coupling 187 
means that independent models interact by exchanging input and output data. Hard-coupling denotes 188 
the integration of the domain-specific models, resulting in an extended ESOM. Existing literature on 189 
model coupling approaches (Fichtner et al. 2013) reports several challenges concerning soft-coupling 190 
of established models. These are, for example, inferior performance due to communication overhead 191 
or difficulties in documentation and reproducibility of the integral model execution. However, as 192 
access and domain-specific knowledge for the application of modeling tools usually are distributed 193 
across institutions, soft-coupling is rather established than hard-coupling. Nevertheless, hybrid 194 
models that typically combine bottom-up and top-down energy modeling approaches are 195 
representatives for hard-coupling (Herbst et al. 2012). 196 

In our opinion, a more favorable compromise between soft and hard-coupling is the integration and 197 
interlinkage of existing models in reproducible work-flows that can be distributed across institutional 198 
boarders. Dedicated workflow tools developed for design processes in aerospace and shipyard 199 
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industry enable the automated execution of highly iterative or data-intensive multi-model simulations 200 
and thus allow quasi hard-coupling of the corresponding tools (Seider et al. 2012).  201 

In reaction to the challenges related to i) addressing the granularity gaps by ii) a performant and 202 
reproducible model coupling approach, we propose a multi-model concept to comprehend the 203 
analysis of large-scale energy systems with ESOMs by transmission network simulation, distribution 204 
grid planning and agent-based simulation of the power market. 205 

Figure 2 shows how each of the particular models can be characterized in terms of spatial, economic 206 
and technological focus.  207 

 208 

Figure 2: Characterization of the proposed multi-model approach for analyzing decarbonization strategies of 209 
energy systems 210 

Besides convergence issues, the major challenge, especially of bi-directional model coupling, is data 211 
management and compatibility (i.e. allowing the outputs of a particular model to be inputs for 212 
another). In the following, we further discuss these challenges of providing insights from domain 213 
specific models to the top-level ESOM. 214 

2.3.1 Incorporating aspects of transmission adequacy and security 215 

In order to include power transmission aspects such as transmission adequacy and system security in 216 
energy system planning, the preparation of data for power flow analyses poses a challenging 217 
prerequisite. This applies to the compilation of complete and consistent transmission grid datasets, 218 
including electrical network parameters. A spatial disaggregation of ESOM output data requires geo-219 
coordinates of substations. Coupling in the opposite direction is less cumbersome as it mostly comes 220 
down to spatial aggregation of costs or technical parameters, such as power transfer distribution 221 
factors (Cao et al. 2020). 222 
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Available transmission grid data models can be categorized in open models (Medjroubi et al. 2017) 223 
and proprietary models provided by transmission system operators (TSOs), e.g. (ENTSO-E 2018). 224 
The former are mainly based on OpenStreetMap (OpenStreetMap Contributors 2017), or have been 225 
applied to maps provided by TSOs (Wiegmans 2016) and therefore need to make assumptions on 226 
electrical parameters. Opposed to this, proprietary models contain real electrical parameters and 227 
information about power generators, but they usually lack geo-locations. A complete grid dataset can 228 
be obtained by first matching proprietary and open grid data models with geo-information from open 229 
power plant databases (Gotzens et al. 2019) and then estimating transmission line lengths from 230 
electrical parameters. Missing geo-coordinates then can be estimated by triangulation. 231 

For the spatial disaggregation of ESOM output data on generation, appropriate distribution factors 232 
are needed. Such factors could be derived using actual power plant contributions to the power 233 
balance of a country. However, their validity is limited as they are subject to the actual state of the 234 
(transforming) energy system. Disaggregation may also be performed by means of an optimization 235 
algorithm. To this end, country-specific ESOM instances are required that fully capture the spatial 236 
resolution of the transmission grid. 237 

2.3.2 Incorporating costs for decentral technology planning in the distribution grid 238 

Challenges related to the coupling of the distribution grid planning with the top-level system are 239 
twofold. The first is the generalization and spatial upscaling of grid expansion measures (which are 240 
usually examined for representative, particularly selected distribution grids) to a nationwide cost 241 
indicator, which can then be considered in an ESOM.  242 

The second challenge is the corresponding downscaling. Decentral technologies (renewable energy 243 
sources, heat pumps and charging stations) can be assigned to low, medium and high voltage 244 
distribution grids. Missing nation-wide distribution grid data, the lack of uniform standards and 245 
region-specific geographical conditions imply a high degree of freedom in assumptions regarding the 246 
spatial distribution and dimensioning of devices (e.g. many roof-top photovoltaics vs. one free-field 247 
photovoltaic plant).  248 

An approach to meet the upscaling challenge is to reduce the highly location-dependent solution 249 
space and determining analogies in terms of decentral technology capacities. In (Meinecke et al. 250 
2020), the authors present a methodology to derive representative benchmark grids which take this 251 
aspect into regard. These grid models are used instead of real networks’ datasets to obtain relations 252 
between grid reinforcement costs and the share of new producers and consumers for different urban, 253 
sub-urban or rural areas. To scale-up from benchmark grid specific expansion cost to nationwide 254 
quantities, a mapping is required to match geographical regions, such as municipalities, to the 255 
corresponding benchmark grid. Criteria for appropriate clustering approaches are the ratio between 256 
supplied and total area of a municipality or the population density (Kittl, Sarajlić, and Rehtanz 2018). 257 

In order to solve the downscaling problem, probabilistic approaches in terms of grid planning provide 258 
a way to deal with unknown future penetrations of decentral technologies. The idea is to distribute 259 
those randomly within the previously mentioned representative benchmark grids and examine the 260 
required grid expansion multiple times to obtain average and robust costs (Drauz et al. 2019). 261 

2.3.3 Incorporating aspects of microeconomic actor decisions 262 

Concerning coupling ABM to ESOMs, challenges arise from dealing with different system 263 
boundaries while having significant overlaps when modeling similar phenomena or mechanisms (e.g. 264 
power plant dispatch). In particular, this is related to selecting those outputs of an ESOM that only 265 
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affect the agents’ simulation framework (e.g. the power market) and to ensure that deviations 266 
between model outputs describing congruent phenomena are due to the differences in economic 267 
granularity (rather than the different system boundaries). 268 

A way to tackle the challenge of different system boundaries is a model harmonization. This requires 269 
the ABM to be executed in a mode where actor-specific features (e.g. incomplete information) are 270 
disabled. Hence, if equally parameterized (e.g. by using the same techno-economic parameters), both 271 
models should show a congruent system operation and, thus, (sub-)system costs (Schimeczek et al. 272 
2019).  273 

From this starting point, the influence of actors’ behavior can be investigated by agent-based 274 
simulation. Due to the increasing market penetration, trending examples are prosumers trying to 275 
maximize the self-consumption of photovoltaic-battery systems (Klein, Ziade, and De Vries 2019) 276 
and future heat pump owners who react on real time-pricing signals (Schibuola, Scarpa, and Tambani 277 
2015). If the operation of such technologies is accordingly fixed in an ESOM, increasing system 278 
costs (compared to the macroeconomic optimum) are expectable. This cost difference (also 279 
interpretable as measure for the economic granularity gap) is subject to the regulatory framework 280 
conditions of the ABM and thus, allows for investigations on adapting the regulation regime, e.g. to 281 
incentivize system alignment of decentral actors. 282 

3 Discussion 283 

Previous studies show that both the increase of the resolutions in ESOMs and the model coupling 284 
represent options with partly high methodological and resource challenges.  285 

Our concept of multi-model coupling allows combining top-level investment decisions in the energy 286 
system with costs and constraints associated to the spatial granularity such as arising with technology 287 
integration in the transmission and distribution grids. Integrating the behavior of decentral actors also 288 
enables the identification of appropriate regulatory regimes in order to reduce the economic 289 
granularity gap. 290 

Automated workflows based on pre-configured peer-to-peer networks are the core of our concept, 291 
coordinating model-calls and data exchange. In this way, the individual models are still executed on 292 
their established IT-infrastructure but there are integral work flows that can be started from each 293 
point of the peer-to-peer network. This contributes to overcome recurring cross-institutional 294 
communication barriers, as well as to keep interdisciplinary expertise that is needed to maintain 295 
complex models which have been developed over years. Transparency and traceability of such multi-296 
modeling approaches improve, because the overall data-processing is centrally stored and 297 
documented in defined workflows which also allow an easier reproducibility of the scientific 298 
outcome. 299 

Downsides of establishing cross-institutional workflows are additional efforts for the setup of the 300 
peer-to-peer network (e.g. adapting IT infrastructures such as firewall rules). The proposed concept is 301 
therefore best used for extensive model coupling rather than simple unidirectional couplings. 302 
Furthermore, the convergence of multi-model coupling can prove challenging and, still, bridging 303 
granularity gaps is clearly only possible within the scope of the chosen models. 304 

  305 
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4 Conclusion 306 

Modeling approaches for energy system planning are subject to the trade-off between claiming 307 
holistic perspectives and providing sufficient granularity for decision making. Especially for policy 308 
strategies, granularity gaps between what needs to be considered (and, thus, modeled) and the 309 
transferability into real actions or policies become evident. We described these gaps and discussed 310 
recent research approaches to overcome them. We presented a novel concept based on automated and 311 
cross-institutional workflows for bridging these gaps, as a promising perspective for future research. 312 
We illustrated this approach with selected model types that are relevant for merging different 313 
perspectives on energy system transformation. In this way, we addressed two major challenges in 314 
modeling the decarbonization of large-scale energy systems: render granularity gaps comprehensible 315 
and make necessary multi-modeling approaches executable in a traceable and efficient way. 316 
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