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Abstract

Urban areas contain a complex mixture of surface materials resulting in mixed pixels that are challenging to handle
with conventional mapping approaches. In particular, for spaceborne hyperspectral images (HSIs) with sufficient
spectral resolution to differentiate urban surface materials, the spatial resolution of 30 m (e.g., EnMAP HSIs) makes it
difficult to find the spectrally pure pixels required for detailed mapping of urban surface materials. Gradient analysis,
which is commonly used in ecology to map natural vegetation consisting of a complex mixture of species, is therefore
a promising and practical tool for pattern recognition of urban surface material mixtures. However, the gradients are
determined in a data-driven manner, so analysis of their spatial transferability is urgently required. We selected two
areas—the Ostbahnhof (Ost) area and the Nymphenburg (Nym) area in Munich, Germany—with simulated EnMAP
HSIs and material maps, treating the Ost area as the target area and the Nym area as the well-known area. Three
gradient analysis approaches were subsequently proposed for pattern recognition in the Ost area for the cases of (i)
sufficient samples collected in the Ost area; (ii) some samples in the Ost area; and (iii) no samples in the Ost area.
The Ost samples were used to generate an ordination space in case (i), while the Nym samples were used to create the
ordination space to support the pattern recognition of the Ost area in cases (ii) and (iii). The Mantel statistical results
show that the sample distributions in the two ordination spaces are similar, with high confidence (the Mantel statistics
are 0.995 and 0.990, with a significance of 0.001 in 999 free permutations of the Ost and Nym samples). The results
of the partial least square regression models and 10-fold cross-validation show a strong relationship (the calculation-
validation R2 values on the first gradient among the three approaches are 0.898, 0.892; 0.760, 0.743; and 0.860, 0.836,
and those on the second gradient are 0.433, 0.351; 0.698, 0.648; and 0.736, 0.646) between the ordination scores of
the samples and their reflectance values. The mapping results of the Ost area from three approaches also show similar
patterns (e.g., the distribution of vegetation, artificial materials, water, ceremony area) and characteristics of urban
structures (the intensity of buildings). Therefore, our findings can help assess the transferability of urban material
gradients between similar urban areas.
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1. Introduction1

The majority of the world population lives in urban2

areas, and the number of urban residents is increasing as3

more regions are rapidly becoming urbanized (DESA,4

2018). Accurate and up-to-date maps are important for5

modelers to study meteorology (Auer Jr, 1978), clima-6

tology (Seto and Shepherd, 2009), and ecology (Lakes7
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and Kim, 2012) and for local authorities to understand8

the growth dynamics and rapid spatial development of9

their cities (Cao et al., 2020). However, detailed map-10

ping of urban surfaces is challenging because urban sur-11

face materials feature complex spatial patterns, i.e., spa-12

tially and spectrally heterogeneous natural and artificial13

land covers (Chen et al., 2018).14

Hyperspectral remote sensing has become an impor-15

tant tool in Earth observation. It extends the number16

of spectral bands from several or dozens to hundreds,17

providing a continuous spectrum to identify the materi-18
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als based on their specific reflectance features (Herold19

et al., 2004; Heiden et al., 2007). Hyperspectral images20

(HSIs) that contain a considerable amount of detailed21

information on land cover and the state of the environ-22

ment can be used for various applications such as urban23

modelling (van der Linden et al., 2019), ecological sur-24

veys (Degerickx et al., 2018; Skowronek et al., 2018),25

and geological analyses (Kruse et al., 2003). Space-26

borne HSIs can provide global coverage with high tem-27

poral resolution to support operational product gener-28

ation and commercial exploitation of the data, for ex-29

ample, to support economic growth as planned for the30

Copernicus CHIME mission (Nieke and Rast, 2019) and31

to support climate-related research, which is one of the32

goals of NASA’s SBG mission (Lee et al., 2015) and33

the upcoming German EnMAP mission (Guanter et al.,34

2015). The currently operating missions, such as the35

Italian PRISMA mission (Loizzo et al., 2019) and the36

German/US mission DESIS (Alonso et al., 2019), are37

already delivering data on an operational basis for the38

development of techniques and scientific data products.39

However, the acquisition of spaceborne HSIs with40

sufficient spectral and spatial resolution, good signal-41

to-noise ratios (SNRs) and high revisit times is still42

challenging. Due to sensor design considerations, the43

rich spectral information in hyperspectral data is often44

not complemented by extremely fine spatial resolution45

(Li et al., 2012). For HSIs with 30 m × 30 m spatial46

resolution (e.g., recorded by EnMAP), a large number47

of surface materials on the measurement scale can be48

mixed. The resulting mixed pixels reflect the compos-49

ite spectral response of the contained materials, so the50

application of per-pixel classifiers to images dominated51

by mixed pixels may result in inaccurate classification52

(Plaza et al., 2009).53

Gradient analysis appears to be a promising approach54

for addressing the problem of mixed pixels. Gradient55

analysis is commonly used in ecology to describe and56

map natural vegetation by treating all pixels as mixed57

and to describe and quantify the gradual transitions in58

the cover fractions of the different species (Schmidtlein59

and Sassin, 2004; Feilhauer et al., 2011, 2014, 2020;60

Neumann et al., 2016; Neumann, 2017). Urban envi-61

ronments contain districts with similar structural and62

compositional characteristics and thus display the co-63

occurrences of certain urban surface materials. For ex-64

ample, industrial areas often consist of large low- to65

medium-rise buildings and predominantly impervious66

open surfaces, whereas residential areas such as de-67

tached housing settlements are likely composed of small68

low-rise buildings and pervious surfaces such as lawns,69

meadows and trees (Heldens, 2010). When applying the70

gradient concept to an urban area, urban material gradi-71

ents were proposed, and it was then confirmed that such72

gradients exist in urban space and can be linked to spec-73

tral mixtures (Jilge et al., 2019).74

However, gradients are generally determined in a75

data-driven manner. Hence, gradients may be only lo-76

cally suitable so that additional field data collection will77

be required, if the gradients are transferred to other un-78

known areas. Such data collection can be a expensive79

and time-consuming task. Consequently, an analysis80

and assessment of the transferability of gradients is cru-81

cial for their broader application. As a first step in this82

direction, Ji et al. (2020) analysed the sampling robust-83

ness of gradient analysis with slight movement of the84

sampling location and different sampling schemes. The85

influence of such slight movements was marginal, and86

therefore, the next step will be to study the transferabil-87

ity of urban material gradients to unknown areas.88

Therefore, the objective of this study is to analyse89

the area transferability of urban material gradients over90

two subsets of Munich, Germany. We aim to address91

the following two questions: (i) Are the urban material92

gradients transferable between the two study sites? (ii)93

What affects the transferability of urban material gra-94

dients? Our results will provide insights regarding the95

general feasibility of gradient transfer to urban areas,96

where there is either limited or no information regard-97

ing the surface material compositions. As a first step98

to addressing this problem, we have chosen two areas99

in Munich, Germany, that are composed of similar ur-100

ban neighborhoods with expected similar surface ma-101

terial compositions. Based on the findings, we discuss102

the potential applications of the transferable urban gra-103

dients.104

2. Study area and data105

2.1. Study site106

The present study was conducted on two subsets of107

Munich, Germany (Fig. 1). The first is located in108

the south-east of Munich city (48.106°N to 48.133°N,109

11.565°E to 11.632°E) and is referred to as the Ost-110

bahnhof (Ost) area in this study because it covers the111

Munich east train station. The Ost area is considered112

a perfect urban study area because it consists of com-113

plex and typical German urban structures (Heiden et al.,114

2012), i.e. it represents an inner-city, densely built-115

up area with residential and commercial buildings from116

different epochs. The second study area covers the117

Nymphenburg Palace and is hence called the Nymphen-118

burg (Nym) area; by contrast, this area is characterized119
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by larger vegetation-covered areas (e.g., Nymphenburg120

Palace Park, Hirschgarten, and Olympia Park). The121

Nym area was chosen for the transferability analysis of122

urban gradients because, on the one hand, it has mate-123

rial classes similar to those of the Ost area, while, on124

the other hand, it contains a unique set of materials in125

the palace area.126

2.2. Simulated EnMAP HSIs127

The simulated EnMAP HSIs are modelled from the128

HyMap data acquired by the German Aerospace Center129

in June 2007 during the HyEurope mission. The HyMap130

data cover the Ost and Nym areas with two north-south-131

oriented flight lines. The HyMap imagery includes 128132

spectral bands in the range from 450 nm to 2500 nm with133

a ground sampling distance (GSD) of 4 m. The data134

were pre-processed and are reported with an average135

root mean square error (RMSE) of 0.8 pixels (Heldens,136

2010; Heiden et al., 2012). The simulated EnMAP im-137

ages are characterized by a GSD of 30 m and 242 bands138

ranging from 423 nm to 2439 nm (Segl et al., 2012;139

Guanter et al., 2015). The SWIR data of the EnMAP140

imagery were taken into account in the overlapping of141

the VNIR and SWIR sensors. Additional spectral bands142

ranging from 1358 nm to 1418 nm and 1814 nm to 1951143

nm were eliminated due to atmospheric water absorp-144

tion. Therefore, 210 bands of simulated EnMAP HSIs145

were used in this study.146

2.3. Material map147

The material maps of these two subsets were obtained148

from a previous study of HyMap HSIs by Heldens149

(2010). The Ost material map was pre-processed by150

Jilge et al. (2019) omitting the invalid materials (e.g.151

shadow, unclassified pixels) that play minor and or no152

roles in the study area, and thus, 27 material classes153

were considered. Correspondingly, three additional ma-154

terial classes (lake, pool, coniferous tree) included in155

the Nym area were omitted because the transferability156

approach requires the same material classes among dif-157

ferent study areas.158

3. Methods159

To test the transferability of the urban gradients, we160

systematically defined three different conditions, devel-161

oped the corresponding approaches, and compared the162

findings for the derived model outcomes and prediction163

maps. The three conditions were as follows: (i) suffi-164

cient Ost samples to produce urban material gradients;165

(ii) some Ost samples but not enough to perform a gra-166

dient analysis; (iii) no Ost samples and therefore no pos-167

sibility of extraction of the local gradients. We sought168

to interpret the Ost area under these three conditions,169

with the assumption that the Nym area provides suffi-170

cient samples to generate the urban material gradients.171

Based on these assumptions, three gradient analysis ap-172

proaches were constructed as shown in Fig. 2. The first173

approach was used as the control approach (approach-174

OstOst), and the other approaches are experimental ap-175

proaches (approach-OstNym and approach-NymNym).176

All analyses were carried out using R Statistical Soft-177

ware 4.4.0 (R Core Team, 2013) and QGIS 3 (QGIS De-178

velopment Team, 2020). We mainly used the r-packages179

raster (Hijmans et al., 2013), vegan (Oksanen et al.,180

2013), autopls (Schmidtlein et al., 2015), and rgdal (Bi-181

vand et al., 2015).182

3.1. Sampling183

A total of 153 sampling circles were selected and184

evenly distributed over each study area, with a diameter185

of 100 m and a step size of 300 m (Fig. 1). The diameter186

of 100 m was designed to ensure that the sample is large187

enough to cover material mixtures and to be covered by188

several spaceborne HSI pixels. The step size of 300 m189

was used to reduce the effects of spatial autocorrelation190

in the data (Griffith, 2005; Wang et al., 2012; Jilge et al.,191

2019). Consequently, the samples fully cover the di-192

verse urban structures dominating the study site. In ad-193

dition, each sample was numbered to enable better anal-194

ysis and discussion later. Table 1 presents the material195

statistics of the samples in the two study areas.196

3.2. Approach-OstOst197

Approach-OstOst applies a gradient analysis follow-198

ing Jilge et al. (2019) to analyse the Ost area (Fig. 2),199

i.e., the samples collected in the Ost area generated the200

local urban material gradients using ordination meth-201

ods and then form the Ost ordination space. Principal202

component analysis (PCA) was chosen as the ordination203

method in this study because it achieves the reduction204

by linear transformation of the data into principal com-205

ponents (PCs, treated as gradients given their physical206

meaning) and thus allows better comparability of differ-207

ent urban gradients. The first two PCs were selected ac-208

cording to the broken-stick model (Frontier, 1976; Jack-209

son, 1993) in this study. A detailed discussion on the210

selection of the PCs in the transferability analysis of211

gradient and the determination of the number of PCs is212

found in Ji et al. (2020). Partial least square regression213

(PLSR) was used to regress the ordination scores of the214
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Figure 1: Two study areas: the Ostbahnhof (Ost) area and the Nymphenburg (Nym) area. The simulated HSIs are shown in true colour. The
material maps include 27 valid material classes shown in their respective colours and unclassified/shadow/ignored material classes shown in black.
The circles show the location and size of the collected samples.

samples against their reflectance values retrieved from215

Ost HSI to train the OstOst PLSR model. Finally, the216

PLSR model was applied on the Ost HSI to generate the217

OstOst prediction maps.218

Approach-OstOst is a control approach and is ex-219

pected to produce the most accurate prediction map. In220

this approach, both samples and ordination space were221

obtained from the Ost study area, leading to optimized222

model calibration. This approach serves as a reference223

in this study and therefore is used to evaluate the other224

approaches.225

3.3. Approach-OstNym226

Approach-OstNym deals with the situation in which227

the Ost area provides some samples but the number of228

these samples is insufficient to perform an urban mate-229

rial gradient analysis, while the samples collected in the230

Nym area allow a gradient analysis to be performed. In231

this case, the Ost samples were projected to the Nym or-232

dination space and thus acquired their ordination scores233

in this ordination space (Fig. 2). The OstNym PLSR234

model was trained by PLS regressing the new ordina-235

tion scores of the Ost samples against the reflectance236

values of samples. The prediction maps were obtained237

by applying the OstNym PLSR model on Ost HSI and238

are referred to as OstNym prediction maps.239
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Table 1: Statistics of the material map and sampling coverage in the Ost and Nym areas. The abbreviation of materials, total number of pixels for
each material class and its proportion in the material map, and sampling coverage pixels for each material class and its proportion in total pixels
per class.

Surface Material Ost area Nym area
Abbre- Total class pixels/ Sampling pixels in samples/ Total class pixels/ Sampling pixels in samples/
viation Pixels total valid pixels Coverage total valid pixels Pixels total valid pixels Coverage total valid pixels

(%) per class(%) (%) per class(%)
roofing tiles rtil 66886 8.494 6138 9.177 74176 10.371 6929 9.341
roofing concrete rcon 27440 3.485 2021 7.365 32908 4.601 2802 8.515
aluminum ralu 10466 1.329 890 8.504 19538 2.732 2002 10.247
copper rcop 13366 1.697 1149 8.596 6942 0.971 790 11.380
zinc rzin 7607 0.966 611 8.032 10589 1.481 881 8.320
PVC rpvc 13434 1.706 1107 8.240 12148 1.699 844 6.948
polyethylene rpol 8625 1.095 793 9.194 5882 0.822 263 4.471
roofing bitumen rbit 14883 1.890 1229 8.258 17931 2.507 1186 6.614
roofing tar rtar 29249 3.715 2585 8.838 7236 1.012 569 7.863
vegetation roof rveg 18879 2.398 1516 8.030 91709 12.823 7715 8.412
roofing gravel rgra 8206 1.042 910 11.089 5176 0.724 398 7.689
concrete fcon 42104 5.347 4275 10.153 37165 5.197 3065 8.247
asphalt fasp 84854 10.776 6915 8.149 67080 9.379 6082 9.067
synthetic turf fkun 3209 0.408 291 9.068 675 0.094 32 4.741
cobblestone pcob 47358 6.014 4046 8.543 37754 5.279 3111 8.240
loose chippings prlc 20546 2.609 2199 10.703 6733 0.941 588 8.733
concrete slabs pcon 11015 1.399 954 8.661 1578 0.221 120 7.605
railway tracks prail 10811 1.373 780 7.215 55175 7.715 4179 7.574
vegetated railway tracks prailveg 11546 1.466 937 8.115 2280 0.319 123 5.395
siliceous sand bsan 11765 1.494 1050 8.925 14558 2.036 1550 10.647
humous soil bsoi 2978 0.378 180 6.044 1528 0.214 95 6.217
river wriv 4518 0.574 484 10.713 2518 0.352 224 8.896
pond wpon 4691 0.596 401 8.548 430 0.060 5 1.163
deciduous trees vdec 172784 21.943 14053 8.133 115810 16.193 9682 8.360
lawn vlaw 16983 2.157 1471 8.662 37133 5.192 3632 9.781
meadow vmea 87525 11.115 7774 8.882 43176 6.037 3578 8.287
dry vegetation vdry 35690 4.533 3165 8.868 7364 1.030 687 9.329
Total Valid Pixels 787418 100 715192 100
Deleted Pixels 75994 148220
Total Pixels 863412 863412

3.4. Approach-NymNym240

Approach-NymNym deals with the situation in which241

no Ost samples could be collected, and thus, informa-242

tion from the Nym area was used to interpret the Ost243

area. In this approach, the ordination scores of the Nym244

samples in Nym ordination space were PLS-regressed245

against their reflectance values to generate a NymNym246

PLSR model (Fig. 2). Applying this PLSR model on247

Ost HSI, the Ost area was interpreted without in situ in-248

formation.249

3.5. Comparison of approaches250

The three approaches were compared based on the251

intermediate results obtained from each step. First, the252

sample distributions in the two ordination spaces were253

compared visually and statistically using the Mantel test254

(Peres-Neto and Jackson, 2001) to acquire an overall es-255

timate of whether the sample distributions in the two or-256

dination spaces match. The Mantel test was based on a257

Pearson correlation in this study between two dissim-258

ilarity matrices of the samples’ material tables. The259

Mantel test adopts a permutation test with randomly260

permuting rows and columns of the dissimilarity ma-261

trix of samples’ scores on two PCs 999 times (Legendre262

and Legendre, 2012) and then recalculates the correla-263

tion after each permutation to assess the significance of264

the observed correlation which is the proportion of per-265

mutations that lead to a higher correlation coefficient.266

In addition to overcoming the problems arising from the267

statistical dependence of the elements within each of the268

two matrices, the use of the permutation test means that269

there is no reliance on assumptions about the statistical270

distributions of the elements in the matrices.271

PLSR models were subsequently generated from272

the ordination scores of the samples and the sample-273

averaged reflectance values. It should be noted that the274

OstNym and NymNym PLSR models were based on the275
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Ordination Space-Ost Ordination Space-Nym 

Prediction Map 

OstOst 

PLSR model-OstOst 

Prediction Map 

OstNym 

Prediction Map 

NymNym 

Ost samples’ HSI Nym samples’ HSI 

Ost HSI 

Ost samples’ 

material table 

Nym samples’ 

material table 

PLSR model-OstNym PLSR model-NymNym 

Approach-OstOst Approach-OstNym Approach-NymNym 

sufficient Ost samples insufficient Ost samples no Ost samples 

Figure 2: Study workflow: overview of three approaches. Three ap-
proaches are proposed to deal with different situations: sufficient, in-
sufficient, and no Ost samples. Ost samples are used in approach-
OstOst and approach-OstNym to produce the PLSR models, while
Nym samples are used in approach-NymNym. Ost ordination space
is used in approach-OstOst, while Nym ordination space is used in
approach-OstNym and approach-NymNym.

same ordination space—Nym ordination space—with a276

corresponding set of samples (Ost samples and Nym277

samples).278

Third, the resulting prediction maps obtained from279

three approaches were visually assessed. When ap-280

plying the PLSR models to the Ost HSI, three groups281

of prediction maps were obtained from the three ap-282

proaches.283

In the last step, four groups of samples were selected284

to demonstrate that a closer location in the ordination285

space corresponds to more similar material composi-286

tions. In addition, the reflectance values were also com-287

pared to prove the difference between reflectance values288

of the Ost area and the Nym area and to prove that the289

NymNym PLSR model can be applied on the Ost area.290

4. Results291

4.1. Ordination spaces292

The Ost ordination space and Nym ordination space293

are shown in Fig. 3. Fig. 3a presents the ordina-294

tion space generated from Ost samples that is used for295

approach-OstOst. Fig. 3b shows the ordination space296

generated from Nym samples that is used in approach-297

OstNym and approach-NymNym with the assumption298

that insufficient or no Ost samples generate the ordina-299

tion space. All of the samples are projected into both or-300

dination spaces, with material vectors representing the301

directions of increase in the respective material cover302

fractions.303
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(a) ordination space acquired by Ost samples 

(b) ordination space acquired by Nym samples 

Figure 3: Ordination spaces generated from the samples of the Ost
and Nym areas. (a) is used in approach-OstOst, and (b) is used in
approach-OstNym and approach-NymNym. Ost and Nym samples
are presented, and the potential material vector and their length are
also given. The full names of the materials are given in Table 1. In ad-
dition, the green circles highlight four groups of samples with closely
spaced positions.

The distributions of the samples between Ost ordina-304

tion space and Nym ordination space are similar. Gen-305

erally, both sample cloud distributions have a triangu-306

lar shape. A detailed examination shows that most rep-307

resentative material classes are similar. For example,308

most vegetation types, such as deciduous trees(vdec),309

meadow(vmea), and lawn(vlaw) are on one side and310

other materials (mostly artificial materials) on the other.311

The vector length of vegetation types are longer because312

they cover more pixels. Furthermore, the distances be-313

tween the samples are relatively constant. For example,314

the distances are consistent within the group of Nym-315

sample-86, Nym-sample-103 and Nym-sample-108, as316
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well as for the group of Ost-sample-37, Nym-sample-317

37, and Nym-sample-54.318

Mantel statistics also show the consistent configura-319

tion of the distribution of the samples in two ordination320

spaces. The Mantel statistical result of the Ost samples321

is 0.995 with a significance of 0.001 in 999 free permu-322

tations, while that of the Nym samples is 0.990, with a323

significance of 0.001 in 999 free permutations.324

4.2. PLSR models325

We generated six PLSR models by regressing the or-326

dination scores in each gradient and the samples’ av-327

eraged reflectance values. The best PLSR model for328

PC1 resulted in R2= 0.898 for calibration and R2=329

0.892 in 10-fold cross-validation (Fig. 4a). Accord-330

ingly, the PLSR models of PC1 from approach-OstNym331

and approach-NymNym also acquire relatively high R2
332

(0.760, 0.743; 0.860; 0.836) (Fig. 4b, 4c). For the PC2,333

the PLSR models resulted in R2= 0.433 for calibration334

and R2= 0.351 (Fig. 4d) in 10-fold cross-validation335

for approach-OstOst, and for approach-OstNym and336

approach-NymNym are 0.698, 0.648, 0.736, and 0.646337

(Fig. 4e, 4f).338

The distribution of samples in Fig. 4 corresponds to339

the distribution of samples in Fig. 3. The approach-340

OstOst evaluates the ordination scores in the Ost ordina-341

tion space, and therefore, the distribution of the samples342

in PC1 is dense and ranges from -200 to 200 in PC2.343

The approach-OstNym and approach-NymNym apply344

the ordination scores of the Nym ordination space, and345

therefore, the distribution in PC1 is loose and ranges346

from -200 to 100 in PC2.347

For approach-OstOst, PC1 (Fig. 4a) contains the348

largest variance, and PC2 (Fig. 4d) represents less in-349

formation and consequently shows a relation to the re-350

flectance values modelled with relatively low R2. The351

approach-OstNym and approach-NymNym acquired352

reasonable PLSR models and performed well with 10-353

fold cross validation, indicating that the reflectance val-354

ues of the Ost samples and their ordination scores in355

the Nym ordination space can reasonably build a PLSR356

model. In particular, the higher values of calibration and357

validation of PC2 in approach-OstNym (Fig. 4e) indi-358

cate that the PC2 in approach-OstNym provides more359

accurate information than the PC2 in approach-OstOst.360

Similarly, the relatively high value of calculation R2
361

and validation R2 of the PLSR models of two PCs in362

approach-NymNym prove that the ordination scores of363

the Nym samples in Nym ordination space and their re-364

flectance values established an accurate PLSR model.365

4.3. Prediction maps366

Prediction maps were acquired by applying the corre-367

sponding PLSR models to the Ost HSI. The prediction368

map obtained from the PC1 PLSR model of approach-369

OstOst (Fig. 5a) presents the pattern of vegetation in370

blue and artificial materials in red, and the PC2 pre-371

diction map (Fig. 5d) presents the different vegetation372

species with rather low accuracy. The prediction maps373

generated from approach-OstNym provide similar in-374

formation: the resulting PC1 prediction map (Fig. 5b)375

vividly displays vegetation coverage, and the structures376

of artificial materials are similarly indicated; the PC2377

prediction map (Fig. 5e) also shows the vegetation in-378

formation. While the prediction maps produced from379

approach-NymNym appear to lose some detailed infor-380

mation, the major features are provided: the PC1 pre-381

diction map (Fig. 5c) presents the information of veg-382

etation and artificial materials, while the PC2 predic-383

tion map (Fig. 5f) shows the vegetation coverage of the384

study area.385

Two interesting phenomena are observed in the pre-386

diction maps. The trapezoidal area (A) in Fig. 5a,387

called the Ostfriedhof area, shows variable intensity of388

the blue colour. The left side is light blue, and the389

right side is dark blue. In the historical image review390

by Google at the time closest to the acquisition time391

of the HyMap data, the area was divided into two sub-392

areas, with the left side including more graves, i.e.,393

more impervious surfaces, while the right side contain-394

ing less graves. The trapezoidal area (B) (Fig. 5b)395

shows two types of patterns with red on the left and blue396

on the right. Google Earth historical imagery check re-397

veals that the left block contained row houses and the398

right block contained semi-detached houses. The semi-399

detached houses had much more vegetation than the row400

houses and are therefore coloured blue, while the the401

row houses block is coloured red in the prediction map.402

4.4. Comparison of material compositions and re-403

flectance values of sample groups404

Four groups of samples were selected in the ordi-405

nation spaces within green circles (Fig. 3) for which406

the reflectance values and material compositions are407

provided in Fig. 6. The first group includes Ost-408

sample-74 and Nym-sample-18 that have similar ma-409

terial compositions. Since lawn (vlaw) and meadow410

(vmea) have similar reflectance values, the difference411

between these two samples is that Ost-sample-74 cov-412

ers a small amount of asphalt (fasp). Given that the413

vegetation species have stronger spectral features, their414

reflectance should not vary much. However, their re-415

flectance values do vary considerably (Fig. 6a). The416
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(a) OstOst – PC1 (b) OstNym – PC1 (c) NymNym – PC1 

(d) OstOst – PC2 (e) OstNym – PC2 (f) NymNym – PC2 

Figure 4: The performance of PLSR models in three approaches. R2 cal: R2 in calibration, R2 val: R2 in 10-fold validation. Each approach has two
PLSR models of PC1-reflectance and PC2-reflectance. Circles or points represent samples. The x-axis represents the input ordination scores of the
samples used to build the PLSR model, and the y-axis represents the output ordination scores, while the calculated scores of the PLSR model are
represented by red circles and the predicted scores of the 10-fold cross-validation of the PLSR model are represented by blue points. Their fit lines
and R2 are provided and displayed in corresponding colours. y = x represented the best possible fit with either calculated or validated ordination
scores of the samples matching the input ordination scores and therefore the best possible calculation or validation R2 is 1.

Ost-sample-76 and Nym-sample-14 in the second group417

are distantly close in the ordination space, and have sim-418

ilar material and same reflectance values, which fits very419

well with the application of transferable urban material420

gradients. The other two groups comprise three sam-421

ples, and show the difference between the reflectance422

values of Ost and Nym HSIs. Fig. 6c displays the423

material portions and reflectance of Ost-sample-148,424

Nym-sample-81, and Nym-sample-91. Nym-sample-81425

and Nym-sample-91 are closer in the ordination space426

(Fig. 3), and have similar materials (meadow, decid-427

uous trees, roofing vegetation, and cobblestone) with428

similar proportions, and this is reflected in their spectra.429

The last group includes Ost-sample-37, Nym-sample-430

37, and Nym-sample-54 (Fig. 6d). The Ost-sample-37431

is located in the middle of two Nym samples, but the432

reflectance values of Ost-sample-37 are the lowest, and433

the other spectra of the Nym samples are characterized434

to be more similar. While Fig. 6b and 6c demonstrate435

the similarity of the reflectance values of the Ost and436

Nym areas, Fig. 6a and 6d show the differences between437

the reflectance values of these two areas.438

5. Discussion439

5.1. Are the urban material gradients transferable be-440

tween two study sites?441

Theoretically, the transferability of urban material442

gradients means that the gradients acquired from one443

area are suitable for the interpretation of another area,444

i.e., the approach-OstNym, using Nym gradients to in-445

terpret Ost area, performs as well as approach-OstOst.446

The difference between these two approaches is the gra-447

dients, i.e. approach-OstOst uses the Ost gradients and448

approach-OstNym uses the Nym gradients. Other fac-449

tors, such as the material composition of the samples450

and their reflectance values, are fully controlled because451

the samples used are always Ost samples. As shown452

in section 4, for the sample distribution in the ordina-453

tion spaces, the performance of PLSR models, and the454
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(a) OstOst-PC1

(f) NymNym-PC2(e) OstNym-PC2(d) OstOst-PC2

(c) NymNym-PC1(b) OstNym-PC1

B
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B
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B
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B
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A

Figure 5: Prediction maps for each PC. Subfigures (a) - (f) show the prediction maps for each PC obtained directly from the PLSR models. For
better visual interpretation, PC1 is inverted so that the vegetation pattern is shown in blue and artificial materials in red. On the one hand, three pairs
of prediction maps show similar patterns including vegetation coverage and urban structures. On the other hand, detailed information is gradually
lost from the prediction maps of approach-OstOst, approach-OstNym, and approach-NymNym.

prediction maps, the approach-OstOst and approach-455

OstNym exhibit very similar results. Therefore, the ur-456

ban material gradients are transferable between the Ost457

and Nym areas.458

This means that the material gradients acquired from459

the Nym area can be used to successfully interpret the460

Ost area. This is investigated by approach-NymNym461

and demonstrated the quality of the results through462

the comparison of approach-OstOst and approach-463

NymNym. The intermediate results indicate that their464

ordination spaces are similar and PLSR models per-465

forms quite well. However, although the prediction466

maps of the approach-NymNym retain the main char-467

acteristics of the Ost area, they still loses some detailed468

information.469

The comparison of approach-OstOst and approach-470

NymNym shows that the good performance of the471

PLSR models does not always mean that both ap-472

proaches can achieve good interpretation results on the473

Ost area. The OstOst PLSR model is based on the ordi-474

nation scores of the Ost samples and reflectance values475

of the Ost area, whereas the NymNym PLSR model de-476

scribes the relation between the ordination scores of the477

Nym samples and the Nym reflectance values. In both478

ordination spaces (Fig. 3), the samples in close prox-479

imity to each other have similar material compositions,480

and thus we can assume that either the Ost sample or481

the Nym sample can be treated as equivalent. In another482

words, the samples in close proximity in the ordina-483

tion space should have qualitatively similar reflectance484

values. If this is in fact the case, approach-NymNym485

should display similar information to that obtained by486

approach-OstOst, i.e. the urban material gradients are487

transferable under application from the Nym area to the488

Ost area.489

To determine whether the reflectance values vary be-490

tween Ost and Nym HSIs, four groups of samples were491

selected in the ordination spaces within the green cir-492

cles (Fig. 3) for which the reflectance values and ma-493

terial compositions are provided in Fig. 6. The sec-494

ond and third groups of the samples show the consistent495

reflectance values between the Ost and Nym samples,496

while the first and last groups demonstrate that some497

samples from the Ost and Nym areas do not show con-498

sistent reflectance values. Therefore, the PLSR models499

acquired in approach-NymNym cannot be simply ap-500

plied to interpret the Ost area, as they are calculated501

for Nym HSIs, and there is a difference between the re-502

flectance of Ost and Nym HSIs. This phenomenon is503

discussed further in the next section.504

5.2. What affects the transferability of urban material505

gradients?506

The gradient concept is based on the assumption that507

similar material compositions in the gradient space re-508

sult in similar spectral reflectance mixture characteris-509

tics. Therefore, the consistency of reflectance values510

from HSIs between the areas are relevant as mentioned511

above. The neighboring samples in the ordination space512

(Fig. 3a) have similar material composition, and there-513

fore, the difference between the resulting OstNym and514

NymNym prediction maps shown in Fig. 3a is related515

to the difference of the reflectance values between the516

Ost and Nym areas. A possible reason for this obser-517

vation is the underlying data source for the simulated518
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Figure 6: Comparison of reflectance values. Four sets of samples are selected from the ordination space (refer to Fig. 3 for detailed discussion.
The material compositions of the samples are provided. The material covering less than 15 pixels are neglected in this figure that represents
approximately 3% of the total covering pixels of a sample. The color of the material is consistent with Fig. 1.

EnMAP data as described in Section 2.2. Several air-519

borne HyMap flight lines are combined to generate the520

EnMAP simulated data set. These flight lines show that521

differences in the brightness level that still remain can522

be traced back to the remaining BRDF effects that are523

then also present in the simulated EnMAP data. It can524

be expected that real spaceborne HSI data will not show525

these local brightness differences. However, for this526

study, real spaceborne HSI data that matches the used527

surface material map of Munich were not available. Fu-528

ture studies with real spaceborne HSI information such529

as that from PRISMA or DESIS data are expected to530

obtain prediction maps with higher accuracy.531

Another aspect that affect the transferability of urban532

material gradients is the material composition of the two533

areas. Since the PLSR model is trained with a specific534

set of materials of the first area, new materials in the sec-535

ond area cannot be considered in the PSLR model and536

therefore, will most likely result in lower model perfor-537

mance. In other words, the new material in the unknown538

area will not be recognized due to the lack of appropri-539

ate input in the training of the PLSR model. Therefore,540

the detected materials from the gradients acquired in the541

known area are detectable in the unknown area. In the542

case of the Ost and Nym areas, we can expect almost543

the same material composition. This should be also the544

case for different cities in Germany that consist of sim-545

ilar urban neighborhoods. Future studies shall be ded-546

icated to test the transferability of gradients from one547

city to a similar but different city. To build a more robust548

model for several cities, gradients can also be derived549

from test areas of different cities with varying surface550

material compositions.551

Although the results confirm that urban material gra-552

dients are transferable between two study sites, the553

physical significance of the gradients produced by PCA554
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changed slightly between the Ost to Nym ordination555

spaces. In the Ost ordination space, the negative end556

of PC1 represents vegetation classes (including decid-557

uous tree, lawn, and meadow), and the positive end558

of PC1 represents an abundance of artificial materials559

(e.g., cobblestone, asphalt, roofing tar, and concrete).560

Thus, the negative end of PC2 can be used to discrim-561

inate deciduous trees and meadow. In the Nym ordi-562

nation space, PC1 can still differentiate the vegetation563

species and artificial materials but in a less distinctive564

manner; e.g., meadow is not clearly separated by PC1565

any more. In addition, PC2 cannot be used to quan-566

titatively distinguish deciduous trees and lawn. How-567

ever, it should be noted here that PCA is not the op-568

timal method for the interpretation of physical signifi-569

cance of urban gradients (see Ji et al., 2020) but rather570

is designed to test the transferability that was the main571

objective of this paper. Therefore, we suggest that other572

ordination methods should be used to obtain the most573

meaningful urban gradients such as shown in Jilge et al.574

(2019). However, PCA is still considered as one of the575

most appropriate methods for the transferablity analysis576

of urban gradients across different areas because it can577

easily transfer gradients with loadings between different578

study areas. Moreover, the resulting urban material gra-579

dients obtained from different ordination methods usu-580

ally have similar properties. Thus, since we demonstrate581

the transferability of the gradients determined by PCA,582

the gradients determined by other ordination methods583

are transferable in the same situation.584

The prediction maps are comparable to those ac-585

quired by Jilge et al. (2019). Although Jilge et al. (2019)586

applied detrended correspondence analysis (DCA), the587

prediction maps obtained in their study contain similar588

information to that obtained in this work, in particular589

for PC1. Considering these results together with the590

above discussion suggests that ordination methods can591

affect the prediction results, but will not change them592

completely. Skowronek et al. (2018) et al. evaluated593

the transferability of HSI-based distribution models for594

the detection of an invasive alien bryophyte. Skowronek595

et al. (2018) concluded that the success of transfer mod-596

els calibrated in one site to another site depend strongly597

on the respective study sites. Two or more ordination598

methods are suggested to be used in parallel to enhance599

the detection of artefacts in the results, because each or-600

dination methods with the different weightings of the601

elements in the species abundance matrix, and thus may602

explain the observed variation in the analysed ordina-603

tion results. It will be interesting to examine these ap-604

proaches in future studies in order to enhance our under-605

standing of the functionality, robustness and feasibility606

of the methods for deriving urban gradients.607

5.3. Potential applications of transferable urban gradi-608

ents609

Transferable urban material gradients can be used for610

time- and cost-efficient large-scale mapping of urban611

materials. The potential use of remote sensing images612

for urban mapping has studied extensively over the past613

decade (Ridd, 1995; Weng, 2012). Since spaceborne614

HSIs cover large geographical areas in high geomet-615

ric detail and with a short revisiting time, their capa-616

bilities were demonstrated. However, some of the ur-617

gently needed detailed information cannot be obtained618

from HSIs and must be derived from other sources. To619

create classification maps that are useful for urban plan-620

ners, supervised classification methods are commonly621

implemented on HSIs. These rules lead to results with622

an accuracy that is strongly influenced by the amount of623

training data. Obtaining appropriate ground truth data624

for implementation and validation purposes requires in-625

tense efforts in terms of time consumption and eco-626

nomic resources. For most areas, in situ data are ei-627

ther completely absent or are outdated and unreliable.628

Therefore, the limited availability of in situ data is a629

challenge for classification problems, particularly with630

regard to the model transferability. The transferred ur-631

ban gradients provides a possible approach for avoiding632

training data collection in the area that has an known633

area in close proximity and fits the transferable urban634

gradients.635

Transferable urban gradients provide a practical636

method to obtain a fuzzy map of an unknown area with637

limited information and therefore can be used to im-638

prove the results of other urban mapping models. First,639

the transfer of urban gradients can be an useful approach640

for mapping urban materials when limited resources are641

available to carry out fieldwork and remote sensing data642

are available for a larger area. With a limited train-643

ing set, classification accuracy tends to decrease as the644

number of features increases which is known as the645

Hughes effect (Hughes, 1968). As an increasing num-646

ber of mathematical or machine learning methods are647

proposed with the requirement of sufficient prior knowl-648

edge, transferable urban material gradients can provide649

more knowledge-based information for use in these al-650

gorithms. The prior knowledge including spatial rela-651

tionships and patterns of urban structures can be used652

to improve the characterization of not only single pixels653

but also of the whole image (Plaza et al., 2009).654
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6. Conclusion655

Gradient analysis has the potential to be applicable to656

images from the ongoing and future spaceborne imag-657

ing spectroscopy missions. Although the spatial resolu-658

tion of these data is considered to be coarse for urban ap-659

plications and urban object-related information cannot660

be directly detected, it enables the derivation of surface661

material compositions of large areas, which is impor-662

tant information for continental to global urban climate663

related analyses.664

In this paper, we addressed the question of whether665

gradient analysis can be a robust and transferable tech-666

nique despite its data-driven nature. For this purpose,667

we designed three tests for simulating the transferabil-668

ity of urban material gradients to the Ostbahnhof area in669

Munich, Germany.670

In the first step, we evaluated the similarity of the671

sample distributions in two ordination spaces, one built672

by the samples of the Ostbahnhof area and the other673

generated by the samples of the Nymphenburg area.674

Both gradient spaces are highly comparable, providing675

an initial indication of the robustness of the urban gradi-676

ents in the case where the overall surface material com-677

position is similar. It can be assumed that these gra-678

dients are applicable to other cities with similar urban679

structures and thus surface material compositions, so680

that this method will be valid for a wide range of mid-681

European cities. However, if new and region-specific682

materials are dominating the surface material composi-683

tion such as for cities with other urban structures, the684

gradients may differ.685

We expanded the transferability test to regress the686

gradient scores against the surface material reflectances687

using PLSR and applied the resulting models to predict688

the surface material compositions of Ostbahnhof area689

using imaging spectroscopy data. The comparison of690

the prediction results of approach-OstOst and approach-691

OstNym demonstrates that the material gradients ac-692

quired from the Nym area can successfully interpret693

the Ost area, while the comparison of approach-OstOst694

and approach-NymNym show that the PLSR model re-695

trieved from Nym area cannot be simply transferred to696

the Ost area.697

Since this contradicts the results of the gradient space698

analyses, we found that the reflectance data of the two699

investigated areas have significant differences in the700

albedo despite their similar surface material composi-701

tions. This can be related to the different flight lines702

of the source airborne data from HyMap used for the703

simulation of spaceborne EnMAP data. Although we704

cannot fully prove the transferability of the PLSR mod-705

els to different areas, the results indicate the transfer-706

ability potential if well-calibrated spaceborne imaging707

spectroscopy data are used. Moreover, these results re-708

veal the importance of calibrated spaceborne imaging709

spectroscopy data and data cross-calibration, if differ-710

ent spaceborne sensor data are combined.711

Transferable urban material gradients can be used ef-712

fectively in time-consuming and costly large-scale map-713

ping of urban material compositions. Furthermore, they714

can provide a fuzzy map of an unknown area with lim-715

ited information and therefore can be used to enhance716

the results of other urban mapping models. Although717

the gradient concept works well in ecology for mixed718

vegetation, the ability of this approach should be further719

tested in the field of urban material composition. Explo-720

ration of urban material gradients, focusing not only on721

its transferability but also on pattern recognition capa-722

bility, will provide us with a more accurate and definite723

answer to this question.724
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