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Abstract.

High quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-

making is usually based on numerical dispersion modeling with only one model realization. Given the inherent uncertainty of

such approach, a multi-model multi-source term ensemble has been designed and evaluated for the Eyjafjallajökull eruption in

May 2010. Its use for air traffic management is discussed. Two multi-model ensembles were built: the first is based on the output5

of four dispersion models and their own implementation of ash ejection. All a priori model source terms were constrained by

observational evidence of the volcanic ash cloud top as a function of time. The second ensemble is based on the same four

dispersion models, which were run with three additional source terms: (i) a source term obtained with background modeling

constrained with satellite data (a posteriori source term), (ii) its lower bound estimate, and (iii) its upper bound estimate. The a

priori ensemble gives valuable information about the probability of ash dispersion during the early phase of the eruption, when10

observational evidence is limited. However, its evaluation with observational data reveals lower quality compared to the second

ensemble. While the second ensemble ash column load and ash horizontal location compare well to satellite observations, 3D

ash concentrations are negatively biased. This might be caused by the vertical distribution of ash, which is too much diluted in

all model runs, probably due to defaults in the a posteriori source term and vertical transport and/or diffusion processes in all

models. Relevant products for the air traffic management are horizontal maps of ash concentration quantiles (median, 75 %,15

99 %) at a fine-resolved flight level grid. These maps can be used for route optimization in the areas where ash does not pose

a direct and urgent threat to aviation. Cost-optimized consideration of such hazards will result in much less impact on flight

cancellations, reroutings, and traffic flow congestions.
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1 Introduction

Volcanic eruptions that spread out ash over large areas can have tremendous economic consequences, although they are rela-20

tively rare compared to other high-impact natural hazards (such as tropical cyclones, storms, etc). For instance, the eruption

of Eyjafjallajökull in 2010 forced to cancel about 100 000 flights and generated a 1.4 billion Euro loss to the airline operators

(IATA, 2010). At that time, predefined procedures during such events were missing as well as the determination of hazardous

ash concentration levels used to guide decisions to restrict the airspace (e.g., Bolić and Sivčev, 2011; Alexander, 2013).

To mitigate the consequences of such type of volcanic eruptions on aviation, improved forecasting of ash dispersion has been25

shown to be necessary (Bolić and Sivčev, 2011). At a world-wide level, this has been the duty of Volcanic Ash Advisory Centres

(VAACs). In Europe, the London and Toulouse VAACs issue warnings and, since the Eyjafjallajökull eruption, also provide

concentration charts at three vertical levels for three contamination levels: ≤2 mg m−3 (low contamination), >2 mg m−3 and

<4 mg m−3 (medium contamination), and ≥4 mg m−3 (high contamination) (ICAO, 2016). These volcanic ash contamination

charts (up to 18 hours ahead) indicate hazardous zones and hazard levels, which can be used by authorities for flight safety.30

This is important because high ash concentrations can lead to a failure of aircraft turbines during operation (Prata and Tupper,

2009; Guffanti et al., 2010). In parallel, other studies of the impact of ash on aircraft engines (Clarkson et al., 2016) have

considered ash dosage (i.e., the accumulated mass of ash encountered by the aircraft along its track) as an important parameter.

While medium ash concentration over long time can also be a safety issue, low ash dose can lead to longer term damage, which

becomes an issue for engine maintenance as shorter intervals are needed in order to prevent performance loss (Clarkson et al.,35

2016).

Contaminated regions can be avoided by flight rerouting but this increases costs due to delays and additional fuel. Further-

more, it leads to increased soot and gas emissions and thus to an enhanced climate impact. As a consequence, a cost/loss

rationale can be considered in regions where ash concentrations remain below the safety margins. If we learn from the expe-

rience of meteorological probabilistic weather forecasts (Richardson, 2000; Osinski and Bouttier, 2018; Fundel et al., 2019),40

probabilistic ash dispersion forecasts based on ensembles can have a large benefit compared to deterministic forecasts. For that

reason, ensembles of dispersion models are also gaining increasing interest from flight planning providers and proof-of-concept

studies are in progress (Steinheimer et al., 2016). In particular, Prata et al. (2019) showed how probabilistic ash forecasts could

be used to make optimal decisions for air traffic management (ATM). Such applications require good estimates of ash concen-

trations in 4 dimensions (3D space and time) as well as their uncertainty. Cost-optimized consideration of such hazards can45

result in a significantly reduced impact on flight cancellations, rerouting, and traffic flow congestion during volcanic ash events

(Rokitansky et al., 2019). Besides, there is a raising interest among the operational community (such as VAACs) to develop

probabilistic forecast products in the future.

Volcanic ash charts are based on the outputs from numerical prediction models. As a consequence they are usually prone

to large errors and uncertainties (Kristiansen et al., 2012; Dacre et al., 2016), which arise from the uncertainties in the ash50

source term, in the modelling of transport including meteorology, and the parameterisation of physical processes. Although

these components have been improving thanks to active research (Beckett et al., 2020), it is highly probable that perfect models
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cannot be reached in a near future. The ash source term, i.e., the temporal evolution of volcanic ash mass emitted by the volcano

at every vertical level and distributed over aerosol size groups, cannot be fully observed, and even after inversion of satellite

observations some error and uncertainty remain (Kristiansen et al., 2012). Aerosol processes (sedimentation, wash and rain out,55

aggregation in the presence of liquid or solid water) and aerosol transport depend on the aerosols’ representation in the model,

and also on the meteorological conditions. The meteorological forecasts, for which error grows inevitably with time (Dacre

et al., 2016) and which are essential input information for ash dispersion forecasts, also contribute significantly to uncertainties

in ash forecasts.

Some studies emphasized the added value of ensembles to represent such uncertainty (Kristiansen et al., 2012) and recom-60

mended them to be used in the decision process (Prata et al., 2019). To address such needs, a multi-model approach has been

developed during the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-

AV) project and assessed on several test cases. The outputs from several models were collected to build a mini-ensemble and

probabilistic charts of ash concentrations. This ensemble has a 0.1◦ horizontal resolution on a large Euro-Atlantic domain, and

provides information on 13 vertical flight levels (FLs). The integration of these data into a flight-planning software and their65

relevance for ATM were shown during an exercise simulating a fictitious crisis situation (Hirtl et al., 2020).

The purpose of the present article is to provide more precise understanding of the performance and benefit of the multi-

model multi-source-term ensemble approach developed during the EUNADICS-AV project, using measurements as reference

for comparison. The performance of individual model runs performed with four models using four different source terms each,

is also evaluated to better understand ensemble characteristics. The uncertainty of the meteorological conditions was not taken70

into account, i.e., meteorological analyses were concatenated with short term forecasts.

The study focuses on a particular period of the Eyjafjallajökull eruption from 13 to 20 May 2010, when ash spread across

the North Sea and the Atlantic Ocean, and then over continental Europe. During this period, the amount of measurements was

particularly high compared to other phases of the eruption. Dacre et al. (2016) pointed out a low predictability of the dispersion

of ash during this period and they studied how the error grew with time. Their study emphasized the need for ensemble75

approaches in order to deal with uncertainty. For the same phase of the eruption, Kristiansen et al. (2012) compared two

different models with different source terms. They showed overall a good agreement between models, and that the ensemble

obtained as the mean ash concentration of the different models (a mean-ensemble) usually, but not generally, outperforms any

of the models.

The outline of the present article is as follows: Section 2 gives a description of the models, the source terms, and the reference80

data. Section 3 compares the model outputs and evaluates them against reference observations. Section 4 presents how mini-

ensembles are built and compares them to reference observations as well. Section 5 discusses how such an ensemble can be

used in ATM for future eruptions. Conclusions are drawn in Section 6.
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2 Models and observations

2.1 Ash dispersion models85

The four models used in the present study are shortly described below. These models are different by design (i.e., some are

chemistry-transport or on-line coupled models, some are Lagrangian or Eulerian) and they have different aerosol schemes,

which brings in a pragmatic compensation for some of the uncertainties, regardless the limited number of models. The source

terms are described in a later Section (Sect. 2.2).

2.1.1 FLEXPART (ZAMG)90

The FLEXPART Lagrangian particle dispersion model is a widely used multi-scale atmospheric transport modeling and anal-

ysis tool, operated both in the research and in operational domains since its start back in the 1990s. In particular, at ZAMG

(Zentralanstalt für Meteorologie und Geodynamik, the Austrian Weather Service), FLEXPART (Stohl et al., 1998, 2005) is

not only used to operationally assist the Austrian government in its nuclear emergency response activities but also to predict

dispersion of volcanic ash and SO2 worldwide. It considers transport, mixing, gravitational settling, dry and wet deposition,95

radioactive decay, and simple linearized chemical reactions of gases. To model ash dispersion over Europe in this study,

FLEXPART version 9 was used, and the convection parameterisation (Forster et al., 2007) was activated. Sub-grid scale ter-

rain parameterisation was enabled which increases the mixing heights due to sub-grid scale orographic deviations deduced

from the European Centre for Medium-Range Weather Forecasts (ECMWF) input field standard deviation of orography. The

FLEXPART simulation was performed from 10 May to 20 May 2010, including a spin-up of 3 days.100

Meteorological input data on an Atlantic-European domain from ECMWF-IFS (https://www.ecmwf.int, last access: June,

27th, 2020), merged from analyses and forecasts, had a 3-hourly temporal and 0.2◦ horizontal resolution and were available at

91 vertical levels from the surface up to 0.01 hPa. ECMWF’s vertical resolution varies with altitude, ranging from 15 m near

the surface to 6700 m at 0.01 hPa.

For each source term (see Sect. 2.2), total volcanic ash mass was distributed over particles of 4, 6, 8, 10, 12, 14, 16, 18,105

and 25 µm diameter. The difference between real and the model topography was accounted for by setting the lower vertical

boundary of any emission profile to the actual volcanic vent height of 1666 m above sea level.

Mean ash concentration between selected flight levels was calculated from hourly-resolved model output, which was avail-

able on a 0.1◦× 0.1◦ latitude-longitude grid and at a regular 500 m vertical spacing.

2.1.2 MATCH (SMHI)110

MATCH is a comprehensive Eulerian chemical-transport model for operation and research activities in a wide range of appli-

cations (Robertson et al., 1999; Andersson et al., 2007). This includes nuclear emergency, volcanic eruptions, and tropospheric

chemistry modelling. The MATCH model has been applied for resolutions down to 500 m and up to the global scale. The

model describes all transport phases like advection, diffusion, sedimentation, wet and dry deposition, and includes wet and dry

4

https://doi.org/10.5194/nhess-2021-96
Preprint. Discussion started: 9 April 2021
c© Author(s) 2021. CC BY 4.0 License.



chemistry and advanced codes for aerosol modelling of mineral dust and of secondary inorganic aerosols (sulphate, nitrate, and115

ammonia), and secondary organic aerosols (formed from organic gases) (Andersson et al., 2015). In this application aerosols

are described with a single bin, given deposition and optical properties of secondary inorganic aerosols with a prescribed size

distribution.

The meteorological forcing is taken from the ECMWF-IFS operational model in 3-hourly intervals on a 0.2◦ grid for the

European area from 10 May to 20 May 2010, implying a spin-up period of 3 days. The 91 available model levels up to about120

80 km are lumped pair-wise to half the number of layers in order to reduce computational load. Output for the European domain

is post-processed on the 0.1◦ grid.

2.1.3 MOCAGE (METEO-FRANCE)

MOCAGE is a chemistry-transport model that is used for operational and research applications at Météo-France for air quality

purposes. A light version of MOCAGE has also been developed and used for emergency dispersion modelling, including the125

ash forecasts operated by the Toulouse VAAC. The MOCAGE configuration used in the present study complies with the one

described by Guth et al. (2016): It enables full tropospheric and stratospheric chemistry, primary aerosols (desert dust, sea salt,

volcanic ash, black carbon, and organic carbon), and secondary aerosols (sulfate, nitrate, ammonium). The aerosol scheme

represents various processes, as described by Guth et al. (2016): transport (advection and sub-grid transport), sedimentation,

deposition (dry and wet), and interaction with gas-phase chemistry.130

Volcanic ash mass is distributed into 6 bins, defined by the Krumbein φ-scale. An aerosol diameter is defined as d(φ) =

10−3 2−φ m (Folch et al., 2016), and bins in MOCAGE are bounded by φ= 10 and φ= 9 for bin 1, φ= 9 and φ= 8 for bin

2, ..., φ= 5, and φ= 4 for bin 6. The nested MOCAGE simulations run on a global domain at 1° resolution, and on a large

European domain at 0.2° resolution. The lateral boundary conditions for the smaller domain are provided by the global domain,

but only the output data from the high-resolution European domain are used in this study. The MOCAGE simulations start on135

10 May 2010 at 00 UTC, including 3-days spin-up. Outputs are provided at an hourly step.

Input meteorological forcings have a 3-hourly resolution, they come from ARPEGE 6-hourly analyses, interspersed with

3-hours forecasts. MOCAGE has 47 vertical hybrid sigma-pressure levels from the surface up to 5 hPa. The vertical resolution

varies with altitude, with a resolution of 40 m in the planetary boundary layer, about 400 m in the free troposphere, and about

700–800 m in the upper troposphere and lower stratosphere.140

The MOCAGE ash concentrations in the European domain were post-processed on the 0.1° grid, and interpolated to 13

vertical flight levels.

2.1.4 WRF-Chem (ZAMG)

The online-coupled chemical transport model WRF-Chem (Grell et al., 2005) is operationally used at ZAMG for air quality

prediction over Europe with a special focus on Austria. This model simulates the emission, transport, mixing, and chemical145

reactions of trace gases and aerosols as well as meteorological conditions. WRF-Chem version 3.9 was run at a horizontal

resolution of 12 km and at 47 vertical levels. Model domain extended from Greenland to Western Russia and from northern
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Africa towards about 75◦N. The following physical model options were used: the two-moment cloud microphysics scheme

(Morrison et al., 2009), Rapid Radiative Transfer Method for Global (RRTMG) long-wave and short-wave radiation (Iacono

et al., 2008), Grell 3D cumulus parameterisation (Grell and Freitas, 2014), NOAH land surface model (Chen and Dudhia,150

2001), and the Mellor–Yamada–Nakanishi–Niino (MYNN) level 2.5 planetary boundary-layer (PBL) scheme (Nakanishi and

Niino, 2004). WRF-Chem simulations were performed from 4 May to 20 May 2010.

In WRF-Chem, external meteorological data are only used as input and boundary conditions. Therefore, they need to extend

over a slightly larger area than the modeling domain itself. For this study, these data were obtained from ECMWF every three

hours with 0.25◦ horizontal resolution and at 91 vertical levels.155

For each volcanic source term, volcanic ash mass was distributed between 10 aerosol bins with diameter sizes ranging from

about 3.9 µm to 2 mm following the S2 classification scheme of Stuefer et al. (2013). Fine volcanic ash with particles smaller

than 31.25 µm accounted for 27.5 % of total emitted ash.

Mean concentration of fine volcanic ash between selected flight levels was calculated after interpolating the hourly-resolved

model output to the regular 0.1◦× 0.1◦ EUNADICS-AV grid.160

2.2 Source terms

Every model uses two types of source terms: an a priori souce term and an a posteriori source term. A priori source terms are

computed from simple schemes, e.g., using data such as plume height estimates as input information. The a posteriori source

term was obtained after inversion of satellite total column estimates (Stohl et al., 2011).

For all models, the a priori source terms are, in a nutshell, derived from a plume model using plume height estimates from165

radar data (Arason et al., 2011). The plume models are respectively, PLUMERIA (Mastin, 2007) for FLEXPART, F-PLUME

(Folch et al., 2016) for MOCAGE, and the Mastin et al. (2009) relationship, which relates plume height with emitted mass per

time step, for MATCH and WRF-Chem. MATCH and WRF-Chem assume an umbrella-shaped plume with slightly different

structures: while MATCH assigns 10 % of the mass to below 25 % of the plume height, 15 % of the mass up to 50 % of the

plume height, and the remaining 75 % of the mass to above 50 % of the plume height, WRF-Chem assigns 25 % of the mass170

from the vent height to the umbrella base (75 % of the plume top height) and 75 % of the mass to the umbrella (Stuefer et al.,

2013; Hirtl et al., 2019). Furthermore, radar plume heights used in both models were slightly different. The records of radar

plume heights used in MATCH are those reported at the time of the Eyjafjallajökull eruption. Reports were provided for various

durations from 3 to 21 hours (in steps of 3 hours). Some longer durations may just be a concatenate of repeated height levels

in consecutive reports. For WRF-Chem, the 75 % quantile of plume-top altitude statistics calculated for 3 hour time intervals175

and provided by Arason et al. (2011) is used.

The time-height evolution of the source term intensity differs significantly from one model to the other (Fig. 1). While all

source terms emit most ash at high altitudes, FPLUME/MOCAGE emits very little ash at medium levels and only little ash

near the ground. The transition from high to low emissions is smoother for the other models. Furthermore, topography of

the volcanic vent, which is actually located at 1666 m above sea level (asl), is fully considered in FPLUME/MOCAGE and180

FLEXPART but neglected in MATCH and WRF-Chem.
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Contrary to the a priori source terms, the a posteriori source term is the same for all models. Described by Stohl et al. (2011),

it is based on a Bayesian inverse modelling approach using FLEXPART in forward mode to establish the sensitivities between

the emissions and the measurements. In this study, altitude and time resolved volcanic ash emissions were derived for the

Eyjafjallajökull eruption in April and May 2010 using satellite observations. The data used was total column ash measurements185

of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG)

satellite and the Infrared Atmospheric Sounding Interferometer (IASI) aboard the polar orbiting Metop satellite, utilizing

their high temporal coverage (SEVIRI) and enhanced sensitivity to ash (IASI). Furthermore, a priori estimated ash emissions

based on observed plume heights and the eruption column model PLUMERIA (Mastin, 2007) were used. Validations with

independent observations revealed improved model results when using the inversion-derived a posteriori ash emission source190

term rather than an a priori one (Stohl et al., 2011).

Based on an optimal estimation algorithm, the Stohl et al. (2011) source term provides an optimal value of the emission.

There is, however, also uncertainty associated with the source term that is quantified as error variance after the inversion. In

order to use this uncertainty, two additional source terms are built: a "lower bound" estimate of the ash emission and an "upper

bound" estimate (Fig. 2). At each time and vertical level (t,z) above the vent, Stohl et al. (2011) provide an optimal mass195

estimate and its error variance (m,σ2). Lower and upper bounds are derived from the assumption that these bounds equal the

15 % and 85 % quantiles, respectively, of a log-normal distribution with maximum likelihood m and variance σ2. The choice

of a log-normal distribution is preferred to a normal one because it does not allow for negative values, despite the fact that the

Stohl et al. (2011) inversion assumed a normal distribution of emission flux errors.

2.3 VACOS reference ash observations200

The Volcanic Ash Cloud properties Obtained from SEVIRI algorithm (VACOS, Piontek et al., 2021b) derives volcanic ash

coverage, ash optical thickness at 10.8µm, mass column loads, volcanic ash plume height, and volcanic ash effective particle

radius from data of the passive SEVIRI imager aboard the geostationary MSG satellite (Schmetz et al., 2002). SEVIRI is a

twelve-channel instrument with a spatial resolution of 3 km at the sub-satellite point that diminishes towards the edges of the

Earth disk. Its temporal resolution is 15 min in the operational mode over the Equator at 0° E for the entire disk. Thus, this205

instrument is well-suited for the continuous monitoring of volcanic ash clouds in the atmosphere.

The VACOS retrieval of volcanic ash used here is the follow-on version of the algorithm Volcanic Ash Detection Using

Geostationary Satellites (VADUGS) developed after the Eyjafjallajökull eruption in 2010 (Kox et al., 2013; Graf et al., 2015;

WMO, 2015, 2017; de Laat et al., 2020; Bugliaro et al., 2021). Like other spaceborne retrievals of volcanic ash (e.g. Prata,

1989a; Prata and Grant, 2001; Francis et al., 2012; Prata and Prata, 2012; Pavolonis et al., 2013; Pugnaghi et al., 2013; Piscini210

et al., 2014) it exploits the spectral signatures of volcanic ash in the atmosphere, in particular the reverse absorption effect be-

tween two window channels centred at 10.8 and 12.0 µm (Prata, 1989a, b) and the information coming from all thermal SEVIRI

channels. Thus, it is applicable during day and night. Moreover, VACOS uses auxiliary information like satellite viewing angle,

surface temperature obtained from a numerical weather prediction (NWP) model, or clear sky brightness temperatures derived

from the SEVIRI observations. VACOS consists of four artificial neural networks (ANNs) with three hidden layers and 100215
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neurons each. While the development of the VADUGS and VACOS algorithms follows the ideas implemented in the related ice

cloud retrievals COCS ("Cirrus Optical properties derived from CALIOP and SEVIRI algorithm during day and night", Kox

et al., 2014) and CiPS ("Cirrus Properties from SEVIRI", Strandgren et al., 2017), the most important difference consists in the

fact that the volcanic ash retrievals are trained using simulated SEVIRI thermal observations instead of collocated observations

of ice clouds of the spaceborne lidar CALIPSO/CALIOP (Winker et al., 2009) as for COCS and CiPS. The VACOS input data220

set consists of brightness temperatures for the SEVIRI thermal channels corresponding to observations of volcanic ash under a

multitude of meteorological conditions with a multitude of microphysical and macrophysical properties like plume bottom and

top height as well as volcanic ash concentrations. Ash optical properties have been computed according to a set of representa-

tive refractive indices to encompass a large variety of possible volcanic eruptions (Piontek et al., 2021c). Furthermore, VACOS

is trained to detect volcanic ash in cloud-free environments and also above liquid water clouds. Ice clouds are excluded a priori225

through the application of the dedicated ice cloud algorithm COCS mentioned above. VACOS has a fairly good volcanic ash

detection probability for ash layers with column loads between 0.2 and 1 g m−2 (between 1 and 10 g m−2) of approximately

93 % (99 %) and also allows for the quantification of the ash load of the plume with a mean absolute percentage error of ca.

40 % (26 %). These values have been derived for a simulated test data set, using the retrieved ash optical depth at 10.8 µm, a

typical mass extinction coefficient of 0.2 m2 g−1 and a threshold value of 0.2 g m−2 (Piontek et al., 2021a).230

2.4 Airborne measurements

During the period of the study, airborne measurements were reported in the literature. A lidar onboard the Facility for Airborne

Atmospheric Measurements (FAAM) BAe-146 research aircraft (Marenco et al., 2011) scanned ash layers to estimate ash

load, ash layer height, and ash 3D concentrations above the United Kingdom and the North Sea. During the period of interest,

measurements were performed on 14, 16, 17, and 18 May. Furthermore, DLR flights reported in-situ estimates of 3D ash235

concentrations above the North Sea, Germany, and the Netherlands (Schumann et al., 2011) on 13, 16, 17, and 18 May. In the

present study, these data sets are used to assess the performance of individual models and both ensembles.

2.5 Grids and post-processing

All model results were provided with hourly resolution on a common 0.1◦× 0.1◦ horizontal grid from 30◦W to 40◦E in

longitude and from 30◦N to 75◦N in latitude. The vertical discretization is defined by 13 flight levels from FL50 up to FL650240

with 50 hecto feet steps. This common grid has been designed to facilitate the computation of scores on a uniform domain.

The horizontal and vertical resolutions are significantly higher compared to past studies (Kristiansen et al., 2012; Dacre et al.,

2016).
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3 Differences between model outputs

3.1 Method and metrics245

Most of the model diagnostics presented in the article are based on the model data at 0.1◦ resolution, except for the ash location

scores compared to the VACOS observations, which are calculated in a smaller domain shown in Fig. 3 at 0.2◦ resolution. Mean

values are computed to pass the model 0.1◦-resolution data to the 0.2◦-resolution grid. For the 3 km-resolved VACOS data, a

0.2◦ grid cell is considered contaminated at instant H, if a 50 % fraction of VACOS pixels inside the 0.2° grid box at H-15 min,

H, and H+15 min are above 0.2 g m−2. This choice has been done after some tests of different thresholds and rules. It allows250

the detection of ash plumes (Fig. 3) while limiting noise and false alarms. Ash retrieval, however, is limited in the presence of

clouds.

Figure 3 shows ash column load derived with the VACOS algorithm on several days. Ash load varies between 0.2 g m−2 and

2 g m−2, with highest values close to the volcano. Significant amounts of ash are found close to the British north-west coast

and above Scotland on 14 and 16 May, which is in good agreement with Prata and Prata (2012), who also used SEVIRI data255

to derive Eyjafjallajökull volcanic ash concentrations. The distribution of ash load obtained by Prata and Prata (2012) peaks at

3 g m−2, while the VACOS ash load peaks between 1 and 2 g m−2. Comparisons between VACOS data and ash column mass

loadings derived by Francis et al. (2012) on 17 May also reveal a rather good agreement, with around 1 g m−2 east of England.

Over all dates considered, VACOS ash load is within the range of values found in the literature.

The Fraction Skill Score (FSS) is a meaningful metric to assess the performance of volcanic ash dispersion simulations by260

determining the scale over which a simulation has skill for the location of ash plumes along the horizontal dimensions (Harvey

and Dacre, 2016). It is calculated as:

FSS(r) = 1−
∑N
j=1 [Oj(r)−Mj(r)]

2

∑N
j=1

[
O2
j (r) +M2

j (r)
] (1)

with N being the total number of grid points in the verification area, and Mj(r) and Oj(r) being the fractions of contaminated

grid points within the circle of radius r around point j, for the model and the observations, respectively. Before the computation265

of FSS(r), a normalization step was applied, where the G most contaminated grid points were determined for VACOS and

model data. For VACOS, all grid points (within the verification area) with ash load higher than 0.2 g m−2 are assumed to be

contaminated; G is defined as number of these grid points. For each model output, the G grid points with the highest ash

concentration in the domain are kept for further analysis and used to calculate the FSS. This normalization step helps to keep

only the most intense ash features in both models and observations and avoids the problem due to different magnitudes of ash270

load in the observation and the model. A model has skill at a given scale if the FSS is above 0.5; the higher the FFS, the better

the model performance.
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3.2 Ash location

Generally speaking and not surprisingly, the FSS (Fig. 4) increases with the radius of detection (50 km, 200 km, 500 km). While

the models FSSs-50km do not always exceed the 0.5 threshold, the FSSs-500km are clearly higher than 0.5, except after 19275

May, when the eruption stopped and scores are less relevant. The FSSs based on the a posteriori source term (right panels) are

generally higher than the ones based on the a priori source terms, particularly for the 50 km and 200 km radii. There is a large

variability of scores between the models, although this variability is lower for the models with the same a posteriori source

term. Snapshot ash load maps can help to analyse the FSS scores and the performances of the models and/or of the observation

shortcomings, e.g., clouds hindering satellite observations.280

On 16 May at 14 UTC, the highest values of ash in VACOS (Fig. 3) follow a plume that starts from Iceland and ends with

a large patch of ash above Scotland. The simulated ash plumes have quite different shapes and magnitudes of ash load when

using different a priori source terms (first row of Fig. 5). While all models capture the plume that crosses the Atlantic from

Iceland to Scotland, the ash patch is not obvious or not well located in all models simulations. This explains the rather large

differences in FSSs for 50 km and 200 km radii (left panels of Fig. 4; FSSs 50km/200km of a priori runs on 16 May at 14 UTC:285

MATCH=0.41/0.65, MOCAGE=0.46/0.69, FLEXPART=0.57/0.85, WRH-CHEM=0.40/0.60).

FSSs of the a posteriori source term runs at the same instant (right panels of Fig. 4) reveal that highest ash loads are better cap-

tured by the models (FSS 50km/200km of a posteriori runs on 16 May at 14 UTC: MATCH=0.43/0.71, MOCAGE=0.60/0.82,

FLEXPART=0.54/0.76, WRH-CHEM=0.64/0.86). This is due to a better representation of the ash cloud above Scotland as

seen in Fig. 5, third row.290

Ash column load of the lower- and upper-bound simulations (second and fourth row of Fig. 5) show significant differences.

At first sight, the differences between the different a posteriori source term bounds for the same model are in a similar range as

the differences between two models with the same best estimate a posteriori source term. Comparison with ash load using the

a priori source term (first row of Fig. 5) shows that the simulations with the a posteriori source terms do not reach the extreme

values that can be reached with the simulation with the a priori source terms. The analysis and evaluation of model ash load on295

14 May at 15 UTC and on 17 May at 16 UTC (suppl. material) support these findings.

As a conclusion, the comparison of FSSs and of ash column load maps helps to understand the relative performance of

models and the origin of their differences. When using different (a priori) source terms, large differences in ash load magnitude

can be observed. Using the same a posteriori source term generates simulations with similar magnitudes of ash load and similar

location of ash in the models, but some differences in ash load and details in plume shapes are obvious. If models were forced300

by meteorological forecasts (instead of analyses), larger differences in plume location and ash load can be expected.

3.3 Ash vertical distributions

Cross-sections of ash concentrations on 16 May at 14 UTC (Fig. 6) reveal that ash tends to appear at all vertical levels from

the ground up to the top of the plume. The simulations using different a priori source terms show quite different cross sections
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in shape and concentration load. The simulations with the same a posteriori source term show a rather similar shape, with the305

highest values following an eastward upward line. However, they differ significantly in intensity.

While all simulations show ash reaching the ground, the Marenco et al. (2011) airborne measurements, at the same time and

in the same area, identified an ash layer only between 4 and 6 km. This behaviour is also supported by cross sections shown in

the supplementary material.

The presence of ash at all levels can be due to the source term or due to the representation of vertical processes in the models,310

and it is possible to provide arguments to help disentangling the two. For most of the source terms, except the MOCAGE a

priori one, ash is injected at all layers. Before 16 May at 14 UTC (Fig. 1), the WRF-Chem a priori source term also concentrates

ash in the upper levels. Since MOCAGE and WRF-Chem ash tends to extend largely along the vertical (Fig. 6), vertical pa-

rameterizations and processes including grid-scale vertical velocity, diffusion, aerosol sedimentation and/or vertical resolution

should probably be improved. However, from this study alone, it is not possible to conclude whether the a posteriori source315

term is too much diluted along the vertical or not.

4 Building ensembles and evaluating their quality

Ensemble forecasting has a 30-years long history in meteorology (Buizza, 2019), from which some guidelines and pitfalls can

be learned for an extension to volcanic dispersion forecasting. A first lesson learned is that all possible sources of uncertainty

should be taken into account. The possible methods to take into account the uncertainty (perturbations or stochastic represen-320

tation of features) can be diverse and have been an active field of research (Leutbecher et al., 2017). Another lesson learned is

that the evaluation of ensembles is critical and is usually done based on long-period data sets for which homogeneous ensem-

bles are run and compared against measurements. Usually, the evaluation metrics are used to further design the perturbation

methods or bounds. Regarding rare events such a volcanic eruptions, for which observations are rare, evaluation of ensembles

is clearly a more difficult task.325

4.1 Method

Uniform grids facilitate the computation of the ensemble and the ingestion of model products into flight planning software

(Hirtl et al., 2020). From the outputs of the four models on the same grid, mini-ensembles were computed. Ensembles in

general provide probabilities of a model variable of interest, which is the ash mass in our present application. Based on the

meteorological literature (Fundel et al., 2019), there are different ways to present and use ensemble outputs, that depend on330

the user requirements. In the EUNADICS-AV project, it has been argued that ash concentration maps at several flight levels

are important as they can be used in the flight planning software. This allows for the computation of ash dose along flight

tracks including its uncertainty by taking into account different levels of probability. Furthermore, flight rerouting should be

enabled in in highly contaminated regions. So, the choice for this study has been to present the ensemble outputs as maps of

ensemble quantiles, including the median, the 75 %-percentile (Q75), and the 99 %-percentile (Q99) of the concentration of335
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ash at every grid point. These three concentration fields at all vertical levels can be used and treated by flight planning software,

with different levels of risks.

Based on the different model simulations that were compared in the previous sections, two multi-model ensembles were

built:

– a 4-members a priori ensemble, based on the 4 model simulations (FLEXPART, MATCH, MOCAGE, and WRF-Chem)340

with their own a priori source terms,

– a 12-members a posteriori ensemble, based on the 4 models (FLEXPART, MATCH, MOCAGE and WRF-Chem) using

the a posteriori source term, its lower bound, and its upper bound (3 simulations per model).

Figure 7 shows ash column load of the a priori and a posteriori ensembles on 16 May at 14 UTC. For both ensembles, dif-

ferences between the median and Q99 are obvious, which clearly reveals the benefit of the ensemble approach. The differences345

between the a priori and a posteriori ensemble are also quite large.

Evaluation of ensemble performance is done against VACOS ash location to assess the horizontal spread and against aircraft

observations of lidar and in-situ measurements in order to evaluate simulated local ash load and ash concentrations along flight

routes.

4.2 Evaluation of ash location350

Like for the individual model outputs, ash location of ensemble outputs is evaluated using the FSS metric applied on a smaller

domain shown in Fig. 3 at 0.2◦ resolution. While the FSS can differ significantly from one model to another (Fig. 4), the FSS

of ensemble quantiles (Fig. 8) are quite close to each other, except for some specific points in time. In that case, FSSs of the

median are higher than the Q99 FSSs. In general, the a posteriori ensemble median performs better than the a priori ensemble

median. This is also generally true for the higher quantiles, except for the Q99 on 17 and 18 May, when the Q99 quantiles of355

the a posteriori ensemble show lower performance than the a priori one. However, the differences are rather small. A possible

explanation is that the Q99 a posteriori ensemble (suppl. material) does not catch the ash patch in the north of the Netherlands

on 17 May (Fig. 3).

To summarize the capacity of ensemble quantiles to catch the regions of highest ash load, the different ensemble quantiles

have similar performance, and the a posteriori ensemble performs generally better than the a priori ensemble.360

4.3 Evaluation of ash column load

Evaluation of ash column load is done against the most precise airborne lidar measurements from Marenco et al. (2011). Fig. 9

summarizes how the ensemble performs at different points along three flight tracks: on 14 May around 15 UTC, on 16 May

around 14 UTC, and on 17 May around 16 UTC. Not all the flight track is taken into account, but only some locations (referred

to as F in Fig. 7), which correspond to points where the highest values of ash load were measured. For comparison, ensemble365

results are extracted from the few (4 to 9) grid points obtained along the flight track where those highest values were measured.

VACOS data extracted at the same grid points are also superimposed. Although such evaluation does not provide a rigorous
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Table 1. Ash concentrations reported by DLR (Schumann et al., 2011) and FAAM (Marenco et al., 2011) flights, and estimates from the

ensemble outputs. The flight level (in brackets) indicates the mid-level of the ensemble output layers closest to the actual flight track heights

(from FL25 to FL625 by 50). The concentration measurements are expressed as a range of values (mmin to mmax) for DLR flights or for a

mean value and uncertainty (mmean±σ) for FAAM flights.

Flight Time Location Height/FL Measurement ENS-PRIOR (Q50/Q99) ENS-POST (Q50/Q99)

number (µg m−3) (µg m−3) (µg m−3)

DLR08 20100513 14 UTC 53.4◦N 1.5◦E 5.1 km (FL175) 11 to 20 (7/17) (6/24)

FAAM-B528 20100514 15 UTC 55.1◦N 3◦W 6.5 km (FL225) 700 ±200 (92/511) (222/386)

DLR09 20100516 14 UTC 54.8◦N 0.2◦W 6.1 km (FL225) 19 to 40 (6/1158) (3/192)

FAAM-B529 20100516 14 UTC 55.1◦N 3.7◦W 4.3 km (FL175) 500 ±200 (54/170) (31/84)

DLR10 20100517 16 UTC 52.8◦N 2.9◦E 5.2 km (FL175) 105 to 283 (3/117) (3/50)

FAAM-B530 20100517 16 UTC 54.1◦N 1.5◦E 4.9 km (FL175) 300 ±150 (13/169) (18/94)

DLR11 20100518 09 UTC 53.2◦N, 9.1◦E 3.1 km (FL125) 38 to 93 (15/170) (10/40)

DLR12 20100518 10 UTC 48.8◦N 10.0◦E 5.2 km (FL175) 16 to 38 (13/336) (6/93))

probabilistic evaluation of the ensemble, it helps to characterize the ensemble dispersion and shows how the ensemble quantiles

match the observations.

For the three episodes (Fig. 9), the airborne measurements fall in the range of the median, Q75, or Q99 ensemble values,370

which shows that the both ensembles capture the real ash load. The range from the median to Q99 is smaller for the a posteriori

ensemble than for the a priori ensemble: the ensemble dispersion is smaller using the a posteriori source term, though keeping

it large enough. The median of the a posteriori ensemble performs best, except that it is biased low on 17 May at 16 UTC, but

the median of the a priori ensemble is always biased low. Of course, further calibration based on different test cases should be

done to validate these results.375

4.4 Evaluation of 3D concentrations

The evaluation of ash concentration is performed against DLR and FAAM aircraft measurements taken during their flight

routes. In-situ ash measurements are rare, though some exist, particularly for the phase of the eruption studied in the present

article. Table 1 compares in-situ airborne measurements with ensemble values (using the a priori and a posteriori source terms).

The maps of concentration values for different ensemble quantiles and the flight locations are shown in Fig. 10.380

A general conclusion based on Table 1 is that the ash Q99 values based on the a priori source term are much higher than

based on the a posteriori source term. This is consistent with the fact that the a priori member with maximum ash concentration

yields generally higher values than the a posteriori member with maximum ash concentration (Figs. 5 and 9). On 13 May at

14 UTC (map not shown), the ash concentrations are low (around 10 to 20 µg m−3), in the measurements, but also in the

ensemble, which are in a good agreement for both source terms. On the 14th, the aircraft flew through a rather ash-loaded385
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area (between 500 and 900 µg m−3), which is also obviously polluted by ash according to the ensemble, as shown by the

corresponding map (Fig .10), but with much lower concentration values (100 to 500 µg m−3 for both source terms).

However, where high ash concentrations are measured (above 200 µg m−3), the ensemble values generally tend to be lower.

Even for the flight routes where modelled ash column loads are in reasonable agreement with the measurements (FAAM flights,

Fig. 9), ash concentrations at the flight levels are significantly lower. An explanation, consistent with conclusions in previous390

parts of this article, is that ash is too much diluted along the vertical, due to the shape of the source term or to vertical dilution

processes during ash transport. This is also true for the a posteriori source term which is constrained by ash load satellite

estimates, but where the vertical distribution of ash is mainly constrained by the a priori.

5 Discussion: use of ensembles in air traffic management

Given the threat of ash for flight safety, and given the uncertainty of ash dispersion forecasts, the use of probabilistic products395

is important but not straightforward. Prata et al. (2019) introduced a risk-matrix approach that combines ash concentration

and ash dosage (accumulated ash concentration along the flight route) with likelihood obtained from the ensemble uncertainty.

Their ensemble was based on one model with different model parameters, source terms, and meteorology. It was evaluated on

a synthetic hypothetical use case.

In this study on a real case, we found considerable differences in ash location and ash concentrations due to the model400

choice indicating that a multi-model ensemble increases information about uncertainty. Even though the a posteriori ensemble

was, in general, in better agreement with the observations, an a priori ensemble is preferred for ATM as it is available in near-

real-time also during the early phase of an eruption. The a posteriori source term can only be computed if a sufficient number

of measurements is available. Due to the limited number of ground-based measurements, the missing temporal coverage of

measurements on polar-orbiting satellites, and only a few instruments on geostationary satellites, it usually takes a couple of405

days to gather sufficient high-quality ash measurements to compute the a posteriori source term. Thus, a better quality of past

ash dispersion and therefore better initial conditions for upcoming ash forecasts, can only be obtained after several hours or

even a few days. An a priori ensemble includes different realizations of the source term, the most important component of

ash dispersion uncertainty. The wide range of these a priori ash dispersion forecasts, however, might result in too conservative

ATM, which can only be eased when a refined a posteriori source term is available. An intermediate approach could be to update410

the a priori source term continuously by constraining the assumptions of the source term evolution with updated measurements.

The evaluation of both ensembles revealed that ash location and load is in good agreement with the observations. However,

the vertical structure of ash clouds is not correctly represented by the models and ash concentrations at individual flight levels

are biased low. Therefore, care must be taken concerning flight rerouting. Flying between distinct layers of ash would only

be possible knowing the precise vertical structure of ash clouds, which is clearly not the case. However, model performance415

allows flying above clouds and also around highly contaminated regions.

Ash concentrations smaller 2 mg m−3 are considered safe. Ash concentrations higher than 80 mg m−3 are definitely consid-

ered unsafe (Clarkson et al., 2016). Following a conservative approach, we therefore recommend avoiding regions within the
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2 mg m−3 contour line of the Q99 of the apriori ensemble. Looking at Fig. 10, such no-fly areas would include a small band

south-east of Iceland on 16 May and a larger band which spreads from the east of Iceland along 65◦ latitude towards the North420

Sea on 17 May. Indeed, these two days were most severely affected by flight cancellations during the considered time period of

this study. On the 16/17 May, 20 %/31 % of all flights were canceled in Ireland and 19 %/26 % in the U.K (EUROCONTROL,

2010). Knowing that the vertical distribution of ash is not correctly represented in the models, vertical cross sections can nev-

ertheless be used to estimate the upper limit of the ash cloud. The cross sections shown in Fig. 11 reveal high ash concentration

on 17 May close to the meridian up to FL200. Considering the entire 3D field of ash concentration and using an appropriate425

ATM software (Rokitansky et al., 2019; Hirtl et al., 2020) would help to avoid these regions.

Flight cancellations can therefore be avoided by flying through lower contaminated regions as demonstrated during the

EUNADICS-AV exercise (Hirtl et al., 2020). To estimate the long-term damage due to high ash dose, we recommend using

the median of the ensemble as this gives the best estimate of ash distribution. Maintenance intervals of individual aircrafts can

then be obtained with ATM software accumulating ash dose along relevant flight routes. In a later perspective, the quantiles430

can be used to optimize the cost/loss function, in a similar approach as the one developed by other end-users of meteorological

ensemble forecasting (Richardson, 2000).

This approach would lead to a better management during future volcanic eruption crises. Probabilistic ash concentration

forecasts, combined with safe "no-fly" areas could become the future operational ash products, allowing cost-optimized con-

sideration of such hazards. This will result in much less impact on flight cancellations, reroutings, and traffic flow congestions435

during volcanic ash events.

6 Summary and conclusions

This article has presented an inter-comparison of volcanic ash forecasts using different models and different source terms for

the Eyjafjallajökull eruption in May 2010. Furthermore, a methodology to build and use an ensemble for ATM was discussed.

Most important findings include:440

– large differences in ash location and ash load were found when models were run with their individual a priori source

terms, which confirms that ash dispersion forecasts are highly sensitive to the volcanic ash source term;

– perturbed a posteriori source terms can be shared and used as input for any model yielding a multi-model ensemble; this

a posteriori ensemble performs satisfactorily for ash location in two dimensions and for ash column load.

– the main shortcoming of all simulations is the vertical representation of ash concentration, which is evenly distributed445

over a wide vertical range without distinct layers of ash; therefore, the vertical distribution of ash needs to be improved

– in relation to the source term, even after inversion, but also as a consequence of vertical aerosol processes in models

(sedimentation, diffusion, aggregation). Even with a vertically-layered source term, there is high vertical diffusion of

concentrations some hours after the emission;
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– quantiles of concentrations are a relevant products for ATM; they can be used for route optimization in the areas where450

ash does not pose a direct and urgent threat to aviation. Probabilistic ash concentration forecasts combined with safe

"no-fly" areas can become a future operational product for ATM;

– the a priori ensemble is available in near-real-time also in the early phase of an eruption but the wide range of ash

dispersion might be too conservative for ATM. This behaviour might be case-dependent, although experience shows

that a priori source terms rather overestimate ash emissions. Therefore, flight rerouting can be based first on an a priori455

ensemble, and only at an later stage, when the a posterori ensemble is available, less conservative approaches can be

taken for flying through low-concentration ash clouds.

In this study, only source term and model process uncertainty have been taken into account. In real conditions, the meteoro-

logical forecast error cannot be neglected and would also increase the spread in plume location and ash column loads.

A rigorous evaluation of any ensemble should be done for a large number of cases, which is difficult for rare events such as460

volcanic eruptions. Besides, only few measurements are available, hindering a comprehensive ensemble evaluation. The use of

observations by assimilation along the vertical (such as lidar data) could also improve the model and ensemble representation

of ash, even though such measurements remain rare and are available only where the ash plume is thin enough to be penetrated

by the lidar.

The proposed methodology cannot only applied for ash dispersion during volcanic eruptions but also for other air pollutants,465

such as SO2, desert dust, or forest fires. Every airspace closure or even re-routing of planes can immediately increase the

costs for airliners which will lead to a certain risk acceptance to fly nevertheless at least through regions which are below the

safety-critical pollutant concentration threshold. For future natural disasters, cost and disruption of air traffic can be eliminated

to a great extent by including the results of dispersion models into flight planning software to apply cost-based trajectory

optimizations.470

Data availability. The ensemble data is available in NetCDF, CF-compliant format, upon request to the corresponding author. The ash

concentration, as described in the article, cover the percentiles Q50, Q75, Q99, on 13 FL, on a 0.1° resolution grid. Instants of validity are

from 13 to 20 May 2010, at an hourly step. Two ensembles are available: one using the a priori source terms, one using the a posteriori source

terms.
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Figure 1. A priori source terms used for FLEXPART, MATCH, MOCAGE, and WRF-Chem (from left to right). The source terms of fine

ash are expressed in kg m−1 s−1 and are shown as a function of time and height.

Figure 2. A posteriori source terms derived from Stohl et al. (2011): lower bound, best estimate, and upper bound (from left to right). The

source terms of fine ash are expressed in kg m−1 s−1 and are shown as a function of time and height.
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Figure 3. Ash column load retrieved from MSG/SEVIRI by the VACOS algorithm, for different dates (from left to right): 14 May at 15 UTC,

16 May at 14 UTC and 17 May at 16 UTC. The green zones refer to areas where the ash detection was not possible due to the presence of high

clouds. The blue lines are the cross sections shown in Fig. 6 and F indicates the region where the FAAM flights made lidar measurements

that are used in the article.
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Figure 4. Comparison of the Fraction Skill Score (FSS) for ash location, for the four models with their a priori source terms (left panels)

and with the a posteriori source term (right panels). The FSS values are shown for radii of 50 km (top panels), 200 km (middle panels), and

500 km (bottom panels).
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Figure 5. Ash column load on 16 May at 14 UTC for the four models (from left to right: FLEXPART, MATCH, MOCAGE, WRF-Chem).

Top panel shows the 4 model outputs with a priori source terms. The 3 other rows show respectively (from top to bottom) the 4 model outputs

with the lower limit of the a posteriori source term, the best estimate a posteriori source term, and the upper limit of the a posteriori source

term. The model outputs can be compared to the observed values in Fig. 3. The blue lines are the same as in Fig. 3.
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Figure 6. Ash mass concentrations on 16 May 2010 at 14 UTC for the four models (from left to right: FLEXPART, MATCH, MOCAGE,

WRF-Chem) with a priori source terms (top) and with a best estimate a posteriori source term (bottom) across the horizontal line shown

Fig. 5.
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Figure 7. Ash column load on 16 May at 14 UTC for the a priori (top) and for the a posteriori (bottom) ensembles. The ensemble median,

75 % and 99 % are respectively displayed from left to right.
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Figure 8. Comparison of the Fraction Skill Score (FSS) of ash column locations, for the ensemble quantiles median, 75 % and 99 % with a

priori source terms (left panel) and with a posteriori source term (right panel). The FSS values are shown for radii of 50 km (top panel), 200

km (middle panel) and 500 km (bottom panel).
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Figure 9. Comparison of ash load (vertical axis, unit g m−2), for the a priori and a posteriori ensemble (abscissa), at the location of lidar

measurements shown in Fig. 3, on 14 May at 15 UTC (left), the 16 May at 14 UTC (middle), and 17 May at 16 UTC (right). The range

of lidar, resp. VACOS, estimates along the flight track are plotted as blue, resp. light blue, horizontal rectangles. Note that, on these cases,

lidar and VACOS values do not overlap. The different quantiles (Q50, Q75, Q99) are plotted as different red tones: the darker the higher the

quantiles. For all data, the values of several gridpoints are plotted, that sample the values along the flight track. Note different y-axis scales.
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Figure 10. Ash concentrations from the a priori (top panels) and a posteriori (bottom panels) ensemble, at dates and levels where in-situ

measurements are available (from left to right: FL225 on 14 May at 15 UTC, FL225 on 16 May at 14 UTC, and FL175 on 17 May at 16

UTC. Blue areas indicate ash concentrations higher than 20 µg m−3, with different tone for Q50 and Q99. Red colors refer to concentrations

above 2 mg m−3, with different tone for Q50 and Q99. Airplane locations are indicated by the symbols F and D, for FAAM and DLR flights,

respectively. The green lines refer to the cross sections shown in Fig. 11.
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Figure 11. Ash concentrations from the a priori (top panel) and a posteriori (bottom panel) ensemble along the cross-sections shown in

Fig. 10. The dates and the color legend are the same as in Fig. 10.
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