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Resumen 

Las variedades de papa diploide (Solanum phureja Juz. et Buk.) se cultivan en diferentes 

regiones de América del Sur, principalmente en Colombia, Ecuador, Perú y Bolivia. Estas 

variedades se destacan por sus características organolépticas y nutricionales. Sin 

embargo, no se han realizado suficientes estudios para mejorar la comprensión de la 

dinámica de crecimiento y desarrollo de este cultivo y mejorar las condiciones agronómicas 

del mismo. Con el objetivo de mejorar el conocimiento sobre estas variedades y su uso en 

estudios de modelación de cultivos, en esta investigación se evaluó el modelo SUBSTOR-

Potato, y aunque el modelo predice bien el crecimiento de los tubérculos, no logra simular 

variables relacionadas con la parte vegetativa. Este estudio explica que las dificultades de 

SUBSTOR-Potato para simular la parte vegetativa se deben a fallas en la estimación del 

índice de área foliar y del uso eficiente de la radiación (RUE) en cultivos de papa. Por lo 

tanto, esta investigación también se llevó a cabo con el objetivo de estimar la fracción de 

radiación solar interceptada a partir del porcentaje de cobertura de follaje mediante el uso 

de fotografías. También muestra cómo estimar el índice de área foliar a partir de la 

cobertura del follaje aplicando la ley de Beer-Lambert. La expectativa, es que este 

conocimiento pueda usarse para desarrollar un modelo de cultivo de papa diploide. 

Finalmente, de acuerdo con las características del crecimiento en diferentes momentos 

fenológicos y de la importancia del RUE para comprender la productividad del cultivo, este 

estudio también tuvo como objetivo estimar el RUE del cultivo de papa diploide 

involucrando no solo la biomasa total acumulada respecto a la cantidad de PAR 

interceptada, sino que también tomó en cuenta las pérdidas de carbohidratos por 

respiración. 

 

Palabras clave: Modelación de cultivos; evaluación de modelos; calibración de modelos; 

RUE; interceptación de la radiación; LAI; cobertura de follaje. 
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Abstract 

The diploid potato cultivars (Solanum phureja Juz. et Buk.) are grown in different South 

American regions, mainly in Colombia, Ecuador, Peru, and Bolivia. These cultivars stand 

out for their organoleptic and nutritional characteristics. However, not enough studies have 

been carried out to improve the understanding of this crop growth and development 

dynamics and improve its agronomic conditions. With the aim of increase knowledge about 

these cultivars and their use in crop modeling studies, in this research, the SUBSTOR-

Potato model was evaluated. Although the model predicts well the tuber growth, it has 

some issues simulating variables related to the vegetative part. This study explains that the 

difficulties of SUBSTOR-Potato to simulate the vegetative part are due to failures in the 

estimation of the leaf area index and the radiation use efficiency (RUE) in potato crops. 

Therefore, this research was also carried out with the objective of estimating the fraction of 

intercepted solar radiation from the foliage cover by using photographs. It also shows how 

to estimate the leaf area index from the foliage cover applying the Beer-Lambert law. The 

expectation is that this knowledge can be used to develop a diploid potato crop model. 

Finally, according to the growth characteristics at different phenological moments and the 

importance of the RUE to understand the productivity of the crop, this study also aimed to 

estimate the RUE of the diploid potato crop involving not only the total biomass 

accumulated concerning the amount of PAR intercepted, but also took into account the 

carbohydrate losses per respiration. 

 

Keywords: Crop modeling; model evaluation; model calibration; RUE; radiation 

interception; LAI, foliage cover. 
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1. Introduction 

The potato crop is original from the Andes (South America), and during the sixteen century, 

it was brought to Europe, and in a short time, the crop has been distributed worldwide 

(Sukhotu & Hosaka, 2006). Many civilizations adopted the crop, making it the primary 

source of daily energy and nutrients (Birch et al., 2012). After grain crops, potatoes are the 

most important food in the world (Lutaladio & Castaldi, 2009). The global impact of the 

potato crop on food security was first noticed with the Irish famine in 1845 when a disease, 

“late blight,” wiped out all potato fields causing the death of more than one million people 

and the migration of other five million (Birch et al., 2012). 

 

The potato cultivars of the species Solanum tuberosum L. and Solanum tuberosum subsp. 

andigena are the most important for the area planted and productivity; however, diploid 

potato cultivars (Solanum phureja Juz. et Buk.) are especially important for their good taste, 

high culinary and nutritional quality (high content of dry matter, proteins, vitamin C, 

carotenoids, and total phenols), also for its suitability for industrial processes, its low 

production cost compared to tetraploid cultivars of S. tuberosum (Burgos et al., 2009; 

Dobson et al., 2004; Ligarreto & Suárez, 2003). Besides, S. phureja cultivars are a source 

of resistance genes for late blight and other limiting diseases, which have been used for 

the genetic breeding of potato crops (Cadena et al., 2005; Escallón et al., 2005; Guzmán & 

Rodríguez, 2010; Moslemkhani et al., 2012).  

 

The problem we are facing now is that despite the potential that diploid potato cultivars 

have, research on this species is still insufficient. Also, many environmental, social, and 

economic factors affect crop production for food security like this. In this sense, agriculture 

and research in crop sciences have the challenge of generating strategies to overcome 

limitations and take advantage of research opportunities in food security crops. 
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The knowledge about potato crops, particularly their physiology, has been widely 

developed based on tetraploid species that can be easily applied to the two main 

subspecies, S. tuberosum subsp. tuberosum and S. tuberosum subsp. andigena, but this 

valuable knowledge is not adaptable to a different species like S. phureja. The tuberosum 

and andigena subspecies came from a common species (S. tuberosum L.), and in this 

sense, they share many characteristics of their genome as they came from the same group 

of germplasm (Ovchinnikova et al., 2011; Spooner et al., 2014). 

 

Although S. tuberosum and S. phureja originated about 8000 and 5000 BC near Lake 

Titicaca, which is located at 3,800 m above sea level on the border between Bolivia and 

Peru (Reddy et al., 2018), the tetraploid subspecies tuberosum was distributed in temperate 

zones around the world and adapted to long days (Gutaker et al., 2019). The species S. 

phureja does not tuberize in latitudes where the day length is higher than 12 h (Bukasov, 

1933; Hawkes, 1990). Thus, its distribution was located in the tropics and is adapted to 

altitudes in frost-free Andean mountains of Venezuela, Colombia, Ecuador, and northern 

Peru (Correll, 1962; Hawkes, 1956; Lutaladio & Castaldi, 2009). Most of the available 

studies in potato crop physiology have been carried on S. tuberesum subsp. Tuberosum 

under temperate conditions. These can be applied to the cultivars of S. tuberosum subsp. 

andigena adapted to the Andes and because, as has been said, they have the same genetic 

base. However, these studies cannot be applied to the physiology of S. phureja because 

they are different species, with different genotypes and consequently with different 

phenotypic expressions and different metabolisms and physiological processes. In addition 

to the differences in their ploidy, some differences in physiological aspects between the 

subspecies of S. tuberosum and S. phureja that stand out the most are: 

 

• S. phureja possesses no dormancy period (Dodds & Paxman, 1962). Tubers 

intended as seeds for the next cycle should be sown within a few days so that they 

do not lose viability. When a tuber of S. phureja is delayed in sowing, the plant from 

that aged seed accelerates its metabolic processes with consequences in the 

growth and development, in such a way that as soon as it is sown, the plant emerges 

and flowers very quickly, altering the reproductive demands and the accumulation 

of carbohydrates. S tuberosum tubers can be stored for months without losing 

viability or altering the crop phenological phases (Alamar et al., 2017). 
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• S. phureja has decumbent growth pattern, and this could represent its ancestral 

condition (Hariharan et al., 2016). Meanwhile, S. tuberosum has erectus growth 

pattern. 

 

• There are no clear studies that make a punctual marking of the beginning and end 

of the phenological stages in S. phureja. And without this information, it is 

complicated to predict these stages, and consequently, it is not so easy to propose 

improvements to the production system if the dynamics of growth are not yet known 

integrally. S. tuberosum has clearly determined growth. The onset and duration of 

the phenological stages are known with outstanding precision, the growth of plants 

in the crops is very homogeneous. 

 

• S. phureja does not have uniform tuberization, unlike S. tuberosum. Tetraploid 

cultivars have uniform tuberization, and tubers are harvested at the same 

maturation stage for marketing and consumption or storage for later planting 

(Hawkes, 1990). Diploid cultivars of S. phureja tuberize with non-established order; 

while the crop reaches the maximum tuber fill, those which matured faster start their 

metabolic processes of germination. This indicates that the crop is not necessarily 

fully domesticated (Hariharan et al., 2016). 

 

• S. phureja grows faster than S. tuberosum (Hawkes, 1990; Spooner et al., 2014). 

Morphologically, S. phureja corresponds to smaller plants of accelerated and 

unrestrained growth. Leaves of diploid potato cultivars grow indeterminately, turning 

the row of plants into a vine, making it impossible to establish spaces for each plant. 

 

Given the need to provide studies that contribute to the improved understanding of S. 

phureja, we set a long-term goal of developing an initial crop model of diploid potato 

cultivars as a Research Group. To reach that goal, we needed to start with studies that 

would allow us to explore and more clearly address the existing knowledge on S. phureja 

and address gaps that we found in that exploration towards a simulation model. 

 

Crop modeling is one of the disciplines in crop physiology that has advanced the most in 

recent years to offer alternatives to creating different crop production scenarios (Jones et 

al., 2003; Wallach et al., 2019). The properly evaluated and calibrated crop models allow 



4 Introduction 

 

the creation of experiments where the effects of factors such as environmental, nutritional, 

and water stresses can be evaluated during the cycle and based on the evaluation of the 

possible responses of the crop; the models allow exploring and developing management 

strategies to achieve better performance under different conditions (Haverkort & Top, 

2011). However, the vast majority of crop modeling studies focus on grain crops (White et 

al., 2011), while tubers and roots crops have received less attention in model testing, model 

improvement, and applications (Raymundo et al., 2014). 

 

SUBSTOR-Potato (Griffin et al., 1993; Ritchie et al., 1995), available in DSSAT-CSM 

(Hoogenboom et al., 2019), is one of the most used or applied models in potato crops. 

However, the model has been developed using information from tetraploid potato cultivars 

and under temperate conditions. SUBSTOR-Potato has not been tested to simulate the 

growth and yield of diploid potato cultivars in the tropics. In this sense, it is crucial to carry 

out this kind of research to include this type of cultivars in the improvements of SUBSTOR-

Potato routines and other models such as APSIM-Potato (Brown et al., 2011), INFOCROP-

Potato (Singh et al., 2005), LINTUL Potato DSS (Haverkort et al., 2015), NPOTATO (Wolf, 

2002), GLAM-Potato Crop Model (Jennings et al., 2020), among others.  

 

One of the most critical aspects of developing crop models is the accurate determination of 

the crop physiological level assumptions. And the interception of radiation is an essential 

input to the model mechanisms. Basically, the photosynthesis, respiration, and adequate 

translocation and allocation of the carbohydrates produced will depend on solar energy 

entry into the system. Based on this fact, during the research carried out in the second 

chapter of this dissertation, we exposed that the SUBSTOR-Potato model has difficulty 

simulating the plants aboveground part (LAI and vegetative dry weight). If the model does 

not represent these variables well, the interception of photosynthetically active radiation 

would also have failures, and consequently, the carbohydrate production processes, their 

translocation, and final yield are also affected. 

 

Nevertheless, the SUBSTOR-Potato model simulates well the tuber dry weight and 

variables closely related to this organ (total dry weight and the harvest index), suggesting 

that the manual calibration of the genetic coefficients leads to equifinality; that is, the model 

reaches a desirable final state (outputs) even if the path does not necessarily have 

reasonable assumptions and physiological principles. This issue can be explained by one 
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of the difficulties in the potato crop simulation (not only of SUBSTOR-Potato model); the 

method usually employed to estimate the leaf area index (LAI) and the ability to capture the 

incoming radiation and convert it into biomass (RUE). 

 

There is a clear need to establish non-destructive methods for estimating LAI that also allow 

being more accurate in potato crops, which is an oversight to apply the relationship between 

the total leaf area and the area occupied by the soil due to the potato plant architecture and 

the distribution of the leaf area through the canopy (Jonckheere et al., 2004). Also, through 

destructive methods, there is difficulty obtaining large amounts of input data; this is one of 

the main limitations of exhaustive sampling, which is undoubtedly laborious and time-

intensive (Luo et al., 2020). Thus, the second chapter of this dissertation offers an 

alternative to destructive methods for estimating LAI in potato crops from the foliage cover. 

The proposed method would be the closest to the potato crop conditions. The foliage cover 

depends on the architecture, and the crop simulation model would approximate the plant 

architecture and biomass production and yield with suitable assumptions. Furthermore, with 

an adequate estimation of LAI as an essential parameter in PAR interception and 

absorption, it is possible to estimate an adequate conversion rate into biomass (RUE).  

 

Most crop models use RUE to determine crop productivity, and many studies on this topic 

have been published. The studies have followed an estimation method that states that the 

RUE corresponds to a single value that comes from the slope of the linear regression 

between the total biomass and the PAR accumulated during the crop season (Murchie et 

al., 2019; Sinclair & Muchow, 1999; Stöckle & Kemanian, 2009). This method assumes the 

plants have a single and constant RUE without considering ontological variations and 

respiratory processes that make the ability to convert light energy into biomass variable 

over time. A significant loss of carbon is considered as mitochondrial respiration, a vital 

process divided into growth and maintenance respiration under the associated 

physiological process. Respiration as a whole can vary from 30% to 60% of total carbon 

exchange, and consequently, it has a significant impact on RUE (Murchie et al., 2019). 

However, many approaches do not consider respiratory processes in RUE calculations 

because it is difficult to measure and define respiration in field conditions and practice 

(Amthor, 2000). This was the aim of the third chapter of this dissertation; the estimation of 

a changing RUE over time, considering respiratory processes during the crop development. 

 



6 Introduction 

 

The SUBSTOR-Potato performance and finding the model difficulties simulating the LAI 

and the vegetative part showed us that there are still failures in the conceptualization of the 

principles that explain the dynamics of potato crop growth, the estimation of LAI, and the 

adequate estimation of the RUE during the crop cycle. These parameters become the keys 

to improving the existing crop models or the key to generating new routines that incorporate 

these proposals and improvements. Thus, according to characteristics of the potato crop, 

particularly diploid potato cultivars with unique characteristics such as their accelerated 

growth rate, their non-existent dormancy period, and their smaller size compared to 

tetraploid cultivars, they call for attention to studies of the physiology of the growth of this 

crop. 

 

Finally, the calibration and evaluation of the SUBSTOR-Potato model also showed us that 

there are still misunderstandings in using statistical parameters to evaluate the quality of 

the simulations when representing the observed data. For this reason, a brief review of the 

most used statistics in the evaluation of models was made. This revision clarifies that the 

statistics that work best in crop modeling evaluation studies are the RMSE, the rRMSE, and 

the new index of agreement (d1). These indices should be used together, and by 

themselves, they are insufficient to establish the quality of a simulation model. This revision 

is presented as Appendix A. 

1.1 Goals and objectives 

Given the deficiency of knowledge on crucial aspects of S. phureja physiology, this research 

aimed to carry out preliminary studies that begin to supply the demand for knowledge on 

S. phureja with a view to the development of a simulation model. 

 

In order to begin to fill the gap in knowledge about S. phureja, especially in the area of crop 

modeling, this work developed three main secondary objectives: 

 

• Assess the SUBSTOR-Potato model's performance (calibration and evaluation) for 

simulating the growth of five new diploid potato cultivars. 

  

• Estimate the fractional radiation interception from fractional foliage cover by using 

photographs. This study also shows how to obtain the LAI from fractional foliage 
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cover as a secondary objective by applying the Beer-Lambert law. Thereby, the 

expectation is that this knowledge can be used to develop a diploid potato crop 

model. 

 

• Estimate the RUE of the diploid potato crop involving not only the total biomass 

accumulated concerning the amount of PAR intercepted but also took into account 

the losses by respiration. 

 





 

2. Radiation interception and leaf area index 
from foliage cover in diploid potato* 

 

ABSTRACT 

The leaf area index (LAI) is defined as the proportion of leaf area per unit of land area. It is 

also considered as an essential factor in the crop’s ability to capture solar energy. 

Destructive methods of LAI estimation involve significant areas of cultivation and 

individually measuring the total leaf area, which is not an accurate method to assess the 

LAI in diploid potato (Solanum phureja Juz. et Buk.) cultivars. The objective of this study 

was to evaluate a practical method for determining the fractional radiation interception and 

the LAI based on the fractional foliage cover in diploid potato cultivars found using digital 

photographs and applying open-source software. Then, we compared the results of this 

method with the results obtained using a canopy analyzer. The results obtained allow us to 

estimate foliage and obtain the fractional radiation interception properly, and with these two 

variables, it is possible to make reasonable estimates of the LAI. It is common to model the 

LAI, and from this value estimate, the fractional radiation interception. We propose to model 

the architecture of the plant to know how the diploid potato plant covers the soil in a given 

space and how much radiation it intercepts, then estimate LAI. This method of estimation 

would be the closest to the cultivation conditions. Foliage cover depends on the 

architecture, and the crop simulation model would approximate the plant architecture and 

not just biomass production and yield. 

 
 

*
 This chapter is a slightly modified version of Saldaña-Villota TM, Cotes-Torres JM. Radiation interception and leaf area 

index from foliage cover in diploid potato, published in Agronomy Journal. 2020;112:2805–2811 
https://doi.org/10.1002/agj2.20241 and has been reproduced here with the permission of the copyright holder. 
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2.1. Introduction 

One of the main functions of the foliar area is to intercept the incident solar radiation, an 

essential factor in crop growth and development. Light interception is the required energy 

input in vital processes such as photosynthesis and its subsequent production, allocation, 

and partition of biomass (Gifford et al., 1984). Thus, the productivity of crops can be 

understood as the product of light energy intercepted during a crop cycle and the efficiency 

to convert that energy to biomass (Monteith, 1977). 

 

Therefore, estimating the fraction of intercepted solar radiation (i) is an important source of 

information that can be used to estimate the radiation use efficiency (RUE), to analyze the 

differences between varieties in terms of their capability to capture energy, and to determine 

the influences of environmental factors in productivity (Hatfield, 2014; Sinclair & Muchow, 

1999). 

 

The foliage cover (f) that absorbs the fraction of the incident photosynthetically active 

radiation (PAR) depends on the canopy structure. However, the weather conditions can be 

important; for example, in cloudy weather, radiation is received from all angles, and as a 

result, it penetrates further into the canopy (Russell et al., 1989). Foliage cover and leaf 

area index (LAI) are related and depend on each other to intercept the incident radiation 

(De la Casa et al., 2007, 2008). 

 

It is possible to estimate LAI from foliage cover with a known value of radiation-extinction 

coefficient (k), which is specific for crops and cultivars (Vose et al., 2008). Leaf area index 

was defined for the first time by Watson (1947) as the ratio of leaf area per ground area 

unit. This index determines and controls canopy radiation interception and extinction, water, 

and gas exchange. Any change in LAI (defoliation, drought, pest, and diseases) means 

changes in crop productivity (Bréda, 2003). Leaf area index is also used in many growth 

analysis and crop modeling studies (El-Sharkawy, 2011; Hoogenboom et al., 2019; Jones 

et al., 2003; Zhao et al., 2019). 

 

Usually, LAI is obtained through destructive methods with which direct measurements of 

the total leaf area (TLA) with planimeters or leaf area meters are taken. Total leaf area is 

divided by the area that, theoretically, is occupied by the plant according to crop planting 
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density. In diploid potato crops (Solanum phureja Juz. et Buk.), the destructive method does 

not work accurately due to the plant architecture, because unlike tetraploid potato crop 

(Solanum tuberosum L.), the leaves extend outside the assigned area for its growth and 

development, occupying different spaces (Figure 2-1). This field condition is why quantifying 

the TLA and dividing by the area of land occupied by the plant is not a real approximation 

of LAI on this crop. The definition of LAI, according to Watson (1947), is suitable for trees 

or plants that have one main stem and flat individual leaves. However, if the leaves and 

their leaflets are not flat, and there is no stem as a principal axis from which the leaves are 

attached, the relation between TLA and the land area to estimate the LAI is not clearly 

defined (Jonckheere et al., 2004). Besides, direct LAI measurement methods require time 

and large field areas are required to have enough material to sample over time during the 

crop cycle. 

 

Figure 2-1. Overlapping leaf area between diploid potato plants on field conditions from different points of view: 
(a) from two hills, note that the leaf area of the left plant uses the area assigned to the right plant and vice versa; 
(b) between plants over one hill, note the overlap between leave of plants is higher than among plants over 
different hills; and (c) a bird’s-eye view of crop, note that the leaf area always uses a higher area than the 
assigned by the crop planting density. 

  
(a) (b) 

 
(c) 
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Beer–Lambert law allows relating the total leaf area and the solar radiation intercepted by 

the crop. Therefore, the intercepted radiation or LAI can be measured in the field, and 

through k, it is possible to estimate i or LAI, respectively. 

 

Due to the architecture of diploid potato plants, intercepted solar radiation would be a better 

option to measure than LAI. There are more precise methods to measure the intercepted 

solar radiation, but they are more expensive and have more requirements and limitations 

(such as a canopy analyzer), and more straightforward methods exist such as the use of 

digital cameras (Figure 2-2). 

 

Figure 2-2. Estimating the leaf area index (LAI) and fraction of intercepted solar radiation (a) by using a canopy 
analyzer; (b) from digital photographs, and (c) destructive method for estimating LAI, where the total leaf area 
is measured and divided by the area of soil that is theoretically assigned by the crop planting density. Parts (a) 
and (b) use the Beer Lambert law to obtain the leaf area index, and require an appropriate ellipsoidal leaf angle 
distribution parameter to generate the correct values of LAI 

 
 
 
 
 

(a) 

 

 
 
 
 
 
 

(b) 

 
 

(c) 

 

Nondestructive methods to estimate LAI are welcome to obtain values closer to the true 

value for crop. With nondestructive methods, LAI is computed based on the transmitted 

light through the canopies. The principle to indirectly estimate foliage cover, and 

consequently LAI, is that the transmittance of radiation intercepted by a canopy layer could 

be represented by analogy with Beer–Lambert law (Equation [[2-1]), that states the 

attenuation of radiation in a homogeneous medium depends on the incident irradiation, the 

canopy architecture, and the optical properties (Monsi & Saeki, 1953). 
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𝐼 = 𝐼0 𝑒
(−k𝑖∗𝐿𝐴𝐼) [2-1] 

where I is transmitted light, I0 is the incident light, and k is the radiation-extinction coefficient. 

Taking into account that f is defined by the vertical projection of the canopy on the ground 

surface: 

𝑓 = 1 − 𝐼𝑣 [2-2] 

where Iv is the direct transmittance of light reflected from the soil surface along a vertical 

path through the canopy. The fraction of intercepted radiation (i) by the canopy is: 

𝑖 = 1 − 𝐼𝑖  [2-3] 

where Ii is the mean transmittance of radiation into the plant canopy along all the possible 

ways, weighted according to the geometric distribution of direct and diffuse radiation. In this 

sense, f and i are determined by the same process, mainly controlled by leaf angle 

distribution (Steven et al., 1986). 

 

The theoretical relationship between cover and LAI could be computed from Equation [[2-1]. 

Thus, f is given by: 

𝑓 = 1 − 𝑒(−k𝑓∗𝐿𝐴𝐼) [2-4] 

And the theoretical relationship between fractional radiation interception and LAI could be 

computed as follows: 

𝑖 = 1 − 𝑒(−k𝑖∗𝐿𝐴𝐼) [2-5] 

By combining Equations [2-4] and [2-5], we obtain the relationship between f and i: 

𝑖 = 1 − (1 − 𝑓)kratio  [2-6] 

where kratio is calculated by 
k𝑖

k𝑓
⁄ . 

 

This research was carried out with the aim to estimate the fractional radiation interception 

from fractional foliage cover by using photographs. As a secondary objective, this study 

also shows how to obtain the LAI from fractional foliage cover by applying the Beer–
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Lambert law. Thereby, the expectation is that this knowledge can be used for the 

development of a diploid potato crop model. 

2.2. Materials and Methods 

2.2.1. Location and plant material 

An established crop in an area of 500 m2 with five cultivars of diploid potato (Paola, 

Colombia, Paysandú, Primavera, and Violeta) in Medellín, Colombia (6°12’36’’ N, 

−75°30’25’’ W) was used. The distance between the plants was 0.25 m, and the distance 

between rows was 0.90 m. Thus, the plant density was 44,444 plants ha-1. The field was at 

2,539 m above the sea level, with an average temperature of 13.2°C. In this field crop, 

original incoming radiation and the shaded light intensity under the leaf area were 

measured. Photographs of the top of the canopy were also taken to estimate the fractional 

foliage cover. 

2.2.2. Fractional foliage cover (f) 

A 1 by 1 m, square PVC tubing frame was set up between two hills along with the field crop. 

Thirty-three sites were randomly selected throughout the field crop; four sites corresponded 

to ‘Colombia’, six sites to ‘Paysandú’, seven to ‘Paola’, eight to ‘Primavera’, and the last 

eight sites corresponded to ‘Violeta’. A total of 105 photographs were taken throughout the 

field crop as follows: seven photos of Colombia, 32 of Paola, 14 of Paysandú, 27 of 

Primavera and, 25 of Violeta. The photographs were taken using a commercial camera 

(NIKON® 5300, Nikon, Tokio, Japan) from a distance of 2 m above the frame. 

 

The photographs were taken around noon, coinciding with the measurement of incoming 

radiation and the shaded light intensity. Capture NX-D Software (NIKON®, 2019) was used 

to correct lens distortion, to adjust distortion due to the point of view, and to cut the area 

that was outside the frame. These measurements were taken at 70 d after planting. One 

value of f was obtained for each photograph, and the values for each site were averaged. 

 

We used two methods to obtain the fractional foliage cover. The first one was the RGBmax 

approach (Campillo et al., 2010), and the second one was the method proposed by 
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Patrignani and Ochsner (2015) in their mobile application CANOPEO, a tool used for 

measuring the percentage of green canopy cover. 

 

The JPEG library (Urbanek, 2014) of R environment (R Core Team, 2020) was used to 

decompose the photograph into R, G, and B channels. RGBmax counts pixels when R < 

G, B < G, G is ≤0.9, and when G ≥0.1. The CANOPEO method counts the pixels when R < 

0.9G, B < 0.9G, and when 2G > (20/255)(B + R). 

2.2.3. Fractional radiation interception (i) 

Intercepted radiation and LAI measurements were taken directly on the field using the 

SunScan Canopy Analysis System (Delta-T Devices, Cambridge, UK) (Webb et al., 2008). 

The data were recorded around solar noon, perpendicular to the crop hill in the same area 

(1 m2) where the photographs were taken. Eight records of incident radiation (I0) and 

transmitted radiation (I) were taken per square frame, and the fraction of radiation 

intercepted (i) by the canopy was calculated as Equation [2-3] where 𝐼𝑖 = 𝐼
𝐼0

⁄ . Finally, the 

average of these eight points was obtained to estimate the i value for 1 m2. 

2.2.4. kratio estimation 

With thirty-three data values obtained, a regression without intercept between log(1 – i) and 

log(1 – f) was computed, and kratio corresponds to the β obtained in the regression, and kratio 

was estimated by both methods, RGBmax and CANOPEO. 

2.2.5. Ellipsoidal leaf angle distribution parameter and LAI 
estimation 

Because in our research it is necessary to obtain a nondestructive LAI value, the most 

accurate method currently is the one used internally by the canopy analyzer (SunScan), in 

which ellipsoidal leaf angle distribution parameter (ELADP) is a way to characterize the 

horizontal or vertical trend of the leaves in the canopy (Campbell, 1986). 

 

It is assumed that the leaves in the canopy are distributed in the same direction and 

proportion as the surface area of an ellipsoid, that is, symmetrical about the vertical axis. 

This parameter can be described by the ratio of the horizontal to vertical axes of the 
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ellipsoid. An ELADP of 1.0 gives a spherical leaf angle distribution where all leaf angles are 

equally represented. A high ELADP (e.g., 1,000) represents a broad flat ellipsoid, that is, 

the leaf elements are all horizontal, and a low ELADP (0.0) represents a tall thin ellipsoid, 

that is, all the leaf elements are vertical. 

 

Both LAI and k depend on the estimation of ELADP. This parameter has a crucial role in 

plant development because it regulates energy balances, microclimate, and light 

competition (Campbell, 1990). The direction of the angles of inclination and the azimuthal 

angles of the leaves are the factors that determine leaf angle distribution (Sinoquet & 

Andrieu, 1993). Information about leaf angle distribution in diploid potato varieties does not 

exist in the literature. Even in tetraploid potato varieties, the information available is limited. 

Therefore, seven plants from each cultivar in the field crop were randomly selected to 

measure their height and the horizontal distance to achieve an approximation to an ELADP 

value according to the method proposed by (Campbell, 1990). 

 

To estimate the radiation penetration through the canopy, the model developed by 

Campbell (1986) was followed. The model uses the model of light penetration developed 

by Mann, Curry, DeMichele, and Baker (1980) and stated that k depends on the ELADP as 

follows: 

 

k(ELADP, θ) =  
√ELADP2+

1

(tan θ)2

ELADP+
1

2×ELADP× 𝑒1
log

1+𝑒1
1−𝑒1

,                    ELADP ≥ 1 [2-7] 

 

k(ELADP, θ) =
√ELADP2+

1

(tan θ)2

ELADP+
arcsin 𝑒2

𝑒2

,                                    ELADP ≤ 1 [2-8] 

where 

𝑒1 = √1 −
1

ELADP2
 [2-9] 

and 
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𝑒2 = √1 − ELADP2 [2-10] 

When ELADP = 1, Equations [2-7] and [2-8] reduce to: 

k =
1

sin θ
 [2-11] 

 

For the estimation of LAI, an iterative procedure was used as follows: 

1. Set a higher initial value for LAI (e.g., 20). 

2. Set a lower initial value for LAI (e.g., 0). 

3. Calculate the mean between the upper and lower values and obtain LAI. 

4. Calculate the numerical integral: 

𝜏 𝑑𝑖𝑓𝑓(ELADP, 𝐿𝐴𝐼) =
1

𝜋
∫ 2𝜋 sin(θ)

𝜋
2

0

cos(θ) 𝑒(−k(ELADP,θ)𝐿𝐴𝐼)𝑑θ [2-12] 

5. Obtain the estimate (I / I0) value. 

6. Calculate the difference between the estimated value and the value observed by 

SunScan. 

7. If the absolute value of the difference is less than 0.00001, then LAI obtained in Step 

3 is the estimated LAI. Otherwise, follow Step 8. 

8. If the difference is greater than 0, the upper initial LAI is updated by estimate LAI in 

Step 3, and Step 1 is restarted. If the difference is less or equal to 0, the lower initial LAI is 

updated by the LAI estimate at Step 3, and Step 2 starts again. 

 

In the previous algorithm, the output is obtained in Step 7. This procedure was used to 

estimate LAI with the original data obtained with the SunScan and with the data estimate 

by the foliar cover model. 

2.3. Results and Discussion 

2.3.1. Ellipsoidal leaf angle distribution parameter 

The average ELADP value obtained for diploid potato cultivars was 0.75, with a minimum 

of 0.60 and a maximum of 0.85. This value is lower than the values proposed by (Campbell 
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and van Evert (1995) for tetraploid potato crops, which are between 1.70 and 2.47, and 

consequently, the value is less than the values recommended by Webb et al (2008) for the 

use of SunScan. When devices like SunScan or any canopy analyzer use a higher ELADP, 

the LAI obtained is underestimated. That is, if high ELADP values are used, the estimated 

LAI values would be lower, whereas with low ELADP values, higher LAI values are 

obtained. By using the ELADP values suggested by SunScan, the researcher will obtain 

underestimated LAI values, which will consequently generate errors in the following 

analyzes where LAI is required. 

2.3.2. kratio estimation 

The estimated kratio values were 0.74 and 0.93 for RBGmax and CANOPEO, respectively. 

The values obtained are statistically different because the confidence intervals do not 

overlap each other (Figure 2-3). The adjusted r2 of the models were higher than 0.90. 

 

Figure 2-3. Logarithmic transformations of the relationship between interception and cover in diploid potato 
cultivars. The slopes of the regressions are kratio. The green line represents the CANOPEO method, and the 
red line represents the RGBmax method. The limits of confidence at 95% are shown next to the kratio values. 

 
 

Determining foliage cover through photographs allows us to estimate the transmittance (I/I0) 

appropriately, and with this information, it is possible to obtain a more accurate 

approximation of LAI. This method is practical; the photographs are taken in a short time 

and the required elements are accessible. On the other hand, SunScan also estimates LAI 
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through measuring (I/I0) and applying Beer–Lambert law internally, but the equipment is too 

expensive and has several limitations: measurements can only be taken within 3 h around 

the solar noon, and full sun in the blue sky is required to obtain satisfactory measurements 

results. Besides, the SunScan used in this research has the limitation that the 

measurements are not suitable if the incident radiation is less than 200 µmol m-2 s-1 (Webb 

et al., 2008). Finally, obtaining LAI through destructive methods does not offer a good 

approximation in diploid potato, because as explained before, the leaves take up more 

space than the corresponding one based on crop planting density (Figure 2-1). 

 

In diploid potato, we can observe that when foliar coverage is 0.9, the fractional radiation 

intercepted is 0.78, and the LAI predicted is 2.5, while when f = 0.4, i = 0.3 and LAI = 0.8. 

Higher LAI is expected when foliage cover has higher values. (Figure 2-4). 

 

Figure 2-4. Fractional radiation interception i (left ordinate axis) and leaf area index (right ordinate axis) 
predicted from fractional foliage cover in diploid potato cultivars. The green line represents the CANOPY method 
to estimate kratio, and the red line represents the RGBmax method. The limits of confidence at 95% are shown 
next to the kratio values 

 
 

It is common to model the LAI, and from this value estimate, the fractional radiation 

interception. We propose to model the architecture of the plant to determine how the plant 

covers the ground in a given space and how much radiation intercepts and then estimate 

LAI, because as explained before, this method would be the closest to the growing 

conditions of the crop. Foliage cover depends on the architecture, and the crop simulation 
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model would approximate to the plant architecture and not just biomass production and 

yield. 

2.4. Conclusion 

Currently, the fastest way to estimate LAI in diploid potato crops is using the canopy 

analyzer. The resulting outputs (LAI) also correspond to an internal calculation from 

variables such as incident radiation, transmittance, ELADP, and k. Following the same 

algorithm described in the SunScan user manual (Webb et al., 2008) and also described in 

the materials and methods section, LAI was estimated on a computer making a more 

significant number of iterations. We used an epsilon of 1 × 10−5, and the number of steps 

of the numerical integral was 1 × 105, while the SunScan has an epsilon of 0.1 and only 

does 1,000 iterations. Thus, the SunScan estimate is less accurate than that obtained 

through the same algorithm on a computer, and the requirements correspond to good 

quality photographs of the canopy and the incident radiation. 

 

 



 

3. General discussion, conclusions and 
recommendations 

It is crucial to increase the knowledge of diploid potato crop growth dynamics, basically 

because there are very few studies on this species and what has been done wrongly is to 

apply the knowledge of other species such as Solanum tuberosum L., leading us to make 

wrong inferences. In this sense, we started to work on existing tools to study potato crop 

growth and development, so we calibrated and evaluated one of the most used models 

worldwide: the SUBSTOR-Potato model, one of the submodels available on DSSAT-CSM 

(Griffin et al., 1993; Hoogenboom et al., 2018).  

 

We know that many models simulate the growth of the potato crop, such as APSIM-Potato 

(Brown et al., 2011), AquaCrop (Steduto et al., 2009), CropSystVB-CSPotato (Alva et al., 

2010), DAISY (Hansen et al., 2012), DANUBIA (Lenz-Wiedemann et al., 2010), Expert-N-

SPASS (Gayler et al., 2002), INFOCROP-Potato (Singh et al., 2005), LINTUL-Potato DSS 

(Haverkort et al., 2015), NPOTATO (Wolf, 2002), POMOD (Kadaja & Tooming, 2004), 

GLAM-Potato Crop Model (Jennings et al., 2020), Potato Calculator (Jamieson et al., 2006), 

SIMPOTATO (Hodges et al., 1992), WOFOST (Boogaard & Kroes, 1998), among others. 

The SUBSTOR-Potato model was chosen because of its wide application and acceptance 

by the scientific community and because it considers in its routines management aspects 

such as water and nitrogen balances and also allows hypothetical evaluations to be made 

in the face of climate change scenarios such as increases in environmental temperature 

and variations in CO2 concentration (Saqib & Anjum, 2021).  

 

Tuber growth of the five diploid potato varieties was generally well simulated by the 

SUBSTOR-Potato model. (Error! Reference source not found. and Error! Reference 

source not found.) with rRMSE ranged between 1.741% and 56.417%; although the range 

of the rRMSE is wide, it is considered adequate for growth variables with high biomass 
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accumulation, such as tubers (Li et al., 2015; Willmott et al., 1985; Yang et al., 2000). 

Adequate predictions were also observed for total plant dry weight (rRMSE 6.006% and 

43.904%) (Error! Reference source not found. and Error! Reference source not 

found.) and the harvest index (6.226% and 41.570%) (Error! Reference source not 

found. and Error! Reference source not found.). Considering that total dry weight and 

harvest index are directly affected by tuber weight, the good performance of SUBSTOR-

Potato is understood and accepted. 

 

But what happened to the variables related to the vegetative part of the plant? Despite the 

exhaustive calibration and modification of the LALWR and extinction coefficient in the model 

routines, the model did not adequately predict the vegetative dry weight and LAI where in 

some cases, rRMSE values were higher than 90% (Error! Reference source not found. 

and Error! Reference source not found.), (Error! Reference source not found. and 

Error! Reference source not found.). When the model apparently achieves a good 

simulation in these variables, it is because the measured data corresponds to low stem and 

leaf productivities. 

 

We consider that achieving a good simulation of tubers, but a poor simulation of the 

vegetative part was a result obtained by equifinality, i.e., the calibration and combination of 

genetic and ecotype parameters allowed a result of interest for the type of crop by 

simulating well the growth of tubers, but leaves doubts regarding the functionality of the 

model for its performance in predicting the growth of the leaves and stems.  

 

If one of the inputs to the model is solar radiation and the interception and absorption of 

that energy are regulated by the LAI and also converted into biomass through the RUE, it 

is expected that the first variables to be well simulated are LAI and the vegetative dry 

weight. The SUBSTOR-Potato model assumes a very rigid leaf area growth. In the 

PT_GROSUB.for routine between lines 392 and 398, where the relative leaf growth rate 

(RLGR) is defined, the value of 0.5 (value taken from Ingram and McCloud (1984)) should 

be a user-modifiable ecotype or species coefficient, as well as 0.75 of leaf growth (GROLF) 

for the stem growth conversion (GROSTM). Ingram and McCloud (1984) evaluated 

Solanum tuberosum cv Sebago at locations in Florida, US, where temperatures above 30ºC 

during the crop cycle were reported. Besides, the cultivar Sebago yields more than 30 t ha-

1 (Pregno & Armour, 1992); Thus, the SUBSTOR-Potato model uses the leaf and stem 
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conversion rate of a single variety evaluated under subtropical conditions with very different 

growing conditions than S. phureja cultivars and even S. tuberosum cultivars cultivated in 

the tropics. 

 

As highlighted in the discussion of the chapter "Adapting the SUBSTOR-Potato model for 

simulating diploid potato cultivars", different authors claim that failures in the simulation of 

vegetative growth of potato crops are due to possible failures in the measurement of LAI. 

Failures in the estimation of LAI as the ratio of total leaf area to the soil area occupied by 

the plant is an issue of great importance. It is assumed that the destructive method is the 

most accurate in plants with clearly determined growth patterns. In plants such as S. 

phureja with decumbent growth patterns, where stems and leaves continue to grow after 

flowering (Ovchinnikova et al., 2011), and occupy the area of neighboring plants with their 

growth, the usual LAI estimation method is not as suitable (Figure 2-1). This problem justifies 

the second chapter of this dissertation entitled "Radiation interception and leaf area index 

from foliage cover in diploid potato", which proposes a non-destructive alternative for LAI 

estimation from leaf cover exposed to incident solar radiation. This method solves the issue 

with soil area occupied by the plants and does not require costly and time-consuming 

destructive sampling. The method only requires good quality photographs of the canopy 

top and adequate measurements of incident radiation. 

 

Having solved one of the problems in the attempts to model the growth and development 

of S. phureja came the effort to find an estimated RUE with more realistic assumptions. We 

hypothesized that the RUE is not a constant value for the entire crop cycle, and its 

estimation as the slope of the linear relationship between intercepted PAR and total 

accumulated biomass is not a value that truly reflects the capacity to convert light energy 

into biomass. Much of the efficiency of plant growth is affected by the respiratory processes 

of growth and maintenance. These processes are relative to plant growth over time 

(Amthor, 1984, 2000; Thornley, 2011; Yamaguchi, 1978). Thus, the energy conversion 

capacity cannot be a constant value throughout the crop cycle. The RUE varies with the 

plant age and is stimulated by significant events in the life cycle, in potato, with such a 

carbohydrate-demanding event as the tuber initiation and tuber filling (Error! Reference 

source not found.). 
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This work is entitled "Preliminary studies for modeling diploid potato crop", corresponding 

to the need to have a clear basis for the dynamics of growth and development of the diploid 

potato crop. With an adequate LAI estimation method and a RUE calculation with correct 

assumptions, we have the first step of building a simulation model, which is the correct 

energy input to the system. With the appropriate assumptions of solar energy interception 

and absorption through leaf cover and the correct transformation of energy into biomass, it 

is possible to begin to think about organ growth rates and photoassimilates translocation 

rates. 

 

Taking into account that the construction of a model has different levels, the first step would 

consider: 

• PAR interception, absorption, and transformation into biomass through the RUE. 

 

A second level would involve: 

• The effect of environmental factors in addition to solar radiation, such as 

temperature, on physiological processes (photosynthesis, respiration, transpiration, 

photorespiration).  

• The effect of temperature on the rates of growth and translocation of assimilates to 

the plant component organs. 

 

A third level would involve nitrogen and water balances: 

• The effect of nitrogen on plant growth and development. The effect on vegetative 

development and tuber filling.  

• The effect of water deficit on growth and development.  

 

To reach each stage or level in the approximation of a model and insisting on the lack of 

information on the basic physiology of S. phureja, the recommendations we make are to 

propose studies and research in basic physiology such as the following: 

• Studies on water stress in S. phureja.  

• In S. phureja, the exact time of onset of tuberization is uncertain. In S. tuberosum, 

tuberization coincides with flowering. S. phureja flowers before the onset of tuber 

filling. Furthermore, tuberization occurs very early in the cycle. It is possible to 

measure the onset of tuberization, but currently we are not able to predict this event. 
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• Studies on the effect of temperature on development, respiratory rates, leaf 

expansion, and photoassimilates translocation. 

• The effect of soil nutritional conditions and fertilization on the growth and 

development of S. phureja. The fertilization plan of S. tuberosum is clear and 

concrete, and attempts have been made to manage S. phureja based on this 

fertilization management. However, probably much of the fertilizer is wasted due to 

the rapid tuberization of diploid materials.  

• Studies on yield components under the effect of variation in abiotic factors. 

• Studies on the senescence of S. phureja. This species does not have programmed 

senescence as does S. tuberosum; in this topic, the questions that should be 

resolved are: How to understand and then how to predict the growth of stems and 

leaves that would continue to grow indeterminately if not for the effect of P. 

infestans? Is the rate of leaf senescence a function of temperature in S. phureja? 

How does the rate of leaf emission change in a hypothetical scenario where 

phytosanitary management never stops? 

• Studies on tuber filling cohorts of S. phureja. In S. tuberosum, it is known that at 

harvest time, all tubers are mature and in dormancy. In S. phureja, this does not 

occur. A few days after maturity, the tubers start germination processes. How to 

model this "non-dormancy" and the quick germination of the sprouts even when they 

have not even been harvested? 

 

These studies of basic biology and physiology would allow us to know how the system 

works so that when the knowledge is well mastered, improvements to the productive system 

can be made. It would be irresponsible to propose improvements when the knowledge base 

is incomplete.  

 

The use of models and their development allows to improve the understanding of plant 

growth in cultivation; by improving the understanding, predicting the effect of the main 

factors on productivity and yield is possible. This research allows us to solve the technical 

problem of LAI estimation (which does not necessarily solve a scientific problem but rather 

a technical one) and highlights that the knowledge we currently have on S. phureja is too 

limited. We still have a lot to understand and improve, and without the knowledge, a direct 
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application of this work to the production system is not possible. Once the effects of the 

factors (at least the abiotic factors) on diploid potato growth and development are known 

and quantified, field validations should be made, and based on these corroborations, 

improvements to the system could be proposed. 
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