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 Machine learning has widely spread in the areas of pattern recognition, pre-
diction or forecasting, cognitive game theory and in bioinformatics. In recent 
days, machine learning is being introduced into manufacturing and material 
industries for the development of new materials and simulating the manufac-
turing of the required products. In the recent paper, machine learning algo-
rithm is developed by using Python programming for the determination of 
grain size distribution in the microstructure of stir zone seam of Friction Stir 
Welded magnesium AZ31B alloy plate The grain size parameters such as an 
equivalent diameter, perimeter, area, orientation etc. were determined. The 
results showed that the developed algorithm is able to determine various 
grain size parameters accurately.   

1. Introduction 

The development of various Artificial Intelligence applications is made possible by the usage of Machine 

Learning algorithms. In the available set of a massive amount of data, the Machine learning model uses a 

statistical technique to derive the required pattern. The Machine Learning model generally feeds on digi-

tally available data which is composed of numbers, images, videos, or texts. Machine Learning algo-

rithms generally operate on low-level tasks in which raw data is processed and is further acquired by an 

Artificial Intelligence-based system. The Machine Learning model generally feeds on digitally available 

data which is composed of numbers, images, videos, or texts. Machine Learning algorithms generally op-

erate on low-level tasks in which raw data is processed and is further acquired by an Artificial Intelli-

gence-based system. The Machine Learning algorithm's working principle is based on three points. First-

ly, a hypothesis of a certain phenomenon is formulated. Secondly, to test the hypothesis i.e. for the 

validation of the chosen model, a dataset is collected. Thirdly, the given hypothesis is refined by iterating 

it. 
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Traditional manufacturing processes are being spiced up by the introduction of various Machine 

Learning algorithms in their applications. For example, GE research is combining artificial intelligence 

and machine learning models with "physics" to inspection, processing, and advanced manufacturing de-

sign to obtain the real-world product [1]. Li et al used a data-driven machine learning model approach for 

predicting the surface roughness of an additively manufactured part. It was observed that the developed 

machine learning model was able to predict the surface roughness with good accuracy [2]. Moreno et al. 

proposed an image processing and machine learning model based on the Random Forest algorithm for au-

tomatic classification of pores present in Al-alloys by laser melt deposition. The proposed model resulted 

in an accuracy of 94.41 % [3]. Kopper et al. predicted the mechanical property i.e. Ultimate Tensile 

Strength (UTS) of high-pressure die-cast Al-alloy component by using various regression machine learn-

ing models like Support Vector Machines (SVM), XG Boost, and Random Forest algorithm [4].  

 

Machine Learning algorithms are also finding applications in solid-state welding processes like Fric-

tion Stir Welding (FSW). Unlike other conventional welding processes, Friction Stir Welding does not 

use any filler material for joining purposes. Friction Stir Welding tool which is harder than the base mate-

rial to be joined is used. The schematic representation of the Friction Stir Welding process is shown in 

Figure 1 [5]. Verma et al. [6] used three machine learning models i.e. Artificial Neural Network, Random 

Forest, and M5P tree regression for analyzing and predicting the tensile behavior of aviation-grade alumi-

num alloy friction stir welded joint. It was observed from results that the Random Forest algorithm model 

outperforms the other two models in terms of predicting the tensile behavior accurately. Hartl et al. [7] 

used three Artificial Neural Network models i.e. Convolutional Neural Networks, Feedforward fully con-

nected Neural Networks, and Recurrent Neural Networks for predicting the surface quality of friction stir 

welded EN AW-6082 T6 sheets. Out of these three used Artificial Neural Networks, Convolutional Neu-

ral Networks achieved the highest classification accuracy. Srinivasan et al. [8] improved the degraded mi-

crostructure of the friction stir welded joint by using a hybrid sparsity machine learning model. 
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                                  Figure 1. Working Mechanism of Friction Stir Welding process [5]. 

 

In the recent study, a machine learning algorithm has been developed for the study of grain size distri-

bution in the microstructure of stir zone seam of Friction Stir Welded magnesium AZ31B obtained by 

Subramani et al [9]. 

2. Material and Methods 

In the experiment, AZ31 B Magnesium alloy plates (commercial) of 6 mm thickness were joined by 

Friction Stir Welding process [9]. The weld plates were in the dimensions of 100 mm length and 75 mm 

width. SiC nanoparticles were incorporated and compacted in the grooves of width 0.3, 0.6, 0.9, 1.2, and 

1.5 mm, of the corresponding volume percentages were indicated as V4, V8, V12, V16, and V20, respec-

tively. The schematic diagram of volume fraction sample is shown in the Figure 2. 
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                                                      Figure 2 : Volume fraction sample [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

The process parameter of the experimentation is shown in the Table 1. 
 

 

 Table 1. Friction stir welding (FSW) process parameters used in this study. 

 

Control Parameters Values 
 

Tool rotational speed, N (rpm) 1250 rpm 

Tool travel rate, F (mm/min) 25 mm/min 

Volume percentage V (%) 4 (V4), 8 (V8), 12 (V12), 16 (V16), 20 (V20) 
Groove width (W) 0.3, 0.6, 

0.9, 1.2, 1.5 D/d ratio and Pin height in mm  3 and 
5.7 mm 

Tool Pin profile Cylindrical threaded tool pin 
profile Tool material  H13 tool steel 
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The optical microstructure of the matrix alloy (Figure3a) and base metal welded joint without nano-

SiC (Figure3b) is shown in Figure 3. 

 

 

 

 
Figure 3. Optical microstructure: (a) as-received matrix alloy (b) FSW AZ31B joint (without rein-

forcement) [9].  

 

 

 

 

 

 

Grain size distribution analysis is done by loading the above microstructures which have a whole 

bunch of grains and extracting some statistical features out of it. The given RGB image is converted to a 

grayscale image. It is important to define a particular scale in this case in order to track the size of the 

pixel while working on a microscopic image. The first step is to read an image and define pixel size 

state(if needed to convert results into microns, no pixels). The second step involves the denoising process 

if required and threshold image to separate grain from boundaries. Thirdly, image clean up is performed if 

needed and create a mask for observed grains in the microstructure. The fourth step involves the labeling 

of grains in the masked image. At the fifth stage, the measurement of the properties of each grain in the 

microstructure is performed. At the sixth and last stage, output results are obtained in the form of a CSV 

(Comma Seperated Values) file. 
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3. Results and Discussions 

The important Python programming libraries which were important for coding purpose are cv2, 

numpy, pyplot from matplotlib, ndimage, io, color to show images in the color library so we can assign a 

different color to grains, measure library to measure the grain size distribution. The image is read by indi-

cating the file path, then the scale is defined which is 1 pixel=0.5μm which is further multiplied to every 

measurements as shown in the Figure 4 and Figure 5. If the image has a scale bar in the microscope then 

the image needed to be cropped by slicing the dataset of an image array. 

              

                                   Figure 4. Loaded image of optical microstructure of received matrix alloy 
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                Figure 5. Loaded image of optical microstructure of FSW AZ31B joint (without reinforcement). 

 

 

Step 1 of the thresholding is to look at the histogram itself as shown in Figure 6 and Figure 7. The loaded 

images are in form of a 2D array, so in order to obtain a histogram we need 1D array. So we need to flat-

ten the image which takes a 2D image and flatten it to a 1D array of bins=100 and range = (0,255). From 

Figure 6 it is observed that a bunch of pixels lies between 130–200 and From Figure 7 it is observed that 

a bunch of pixels lies between 60–200. 
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             Figure 6. Histrogram distribution of optical microstructure of received matrix alloy 

 

         

Figure 7. Histogram distribution of the optical microstructure of FSW AZ31B joint (without reinforce-

ment). 
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The two types of thresholding operation can be done i.e. either manual thresholding or auto thresholding. 

The threshold value obtained for the optical microstructure of received matrix alloy is 130 while 

thresholded value obtained for the optical microstrucutre of FSW AZ31B joint (without reinforcement) is 

128. The obtained thresholded image for the optical microstrucutre of received matrix alloy and FSW 

AZ31B joint (without reinforcement) is shown in the Figure 8 and Figure 9. 

 

 

 

          

                  Figure 8. Thresholded image of the optical microstructure of received matrix alloy 
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            Figure 9. Thresholded image of the optical microstructure of FSW AZ31B joint (without rein-

forcement). 

 

 

It is observed that all pixels corresponding to the grain will have a value of 255 and all pixels correspond-

ing to the grain boundary have a value 0. So this is only a threshold image, not a binary image. So, we 

need to convert this thresholded image to a binary image. The thresholded image shows some missing 

pixels, we can close these areas of the grain by eroding and dilating process. When we use the eroding 

process then the grain will shrink by 1 pixel and when we use dilating process they go up by 1 pixel. In 

order to execute eroding and dilating operation, we created kernel size of (3,3) of type int 8. Eroding and 

dilating operation is carried out on thresholded image. The thresholded image is nothing but 8-bit integer 

with all values of 255 and 0's. It is a binary image but the system doesn't know its a binary image. So it is 

converted to a binary image with the help of masking as shown in the Figure 10 and Figure 11. 
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            Figure 10. Masked image of the optical microstructure of received matrix alloy. 

 

            Figure 11. Masked image of optical microstructure of FSW AZ31B joint (without reinforcement). 
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Each grain is labeled in the masked image as shown in Figure 12 and Figure 13. Structure factor of 

[[1,1,1], [1,1,1],[1,1,1]] is used to define the nature of pixel connection i.e. whether connected or discon-

nected. In the ndimage library, there is a function called label which labels the unconnected grains. Label 

assignment is done through the masked image and assigns a value to the all unconnected objects. 

 

 

         

                  Figure 12. Labeled image of the optical microstructure of received matrix alloy 
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Figure 13. Labeled image of the optical microstructure of FSW AZ31B joint (without reinforcement). 

 

Measuring the grain property is done by the extraction of property from each labeled image. The obtained 

measurement of grain size distribution of the optical microstructure of the received matrix alloy and FSW 

AZ31B joint (without reinforcement) is shown in the Table 2 and Table 3. Table 2 obtained as a CSV file 

has 1296 grain distribution properties of the optical microstructure of received matrix alloy out of which 

only 10 is shown in the Table 2 (rest can be further found in supplementary file) while Table 3 has 696 

grain distribution properties out which only 10 is shown in the Table 3 (rest in supplementary file). 
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                      Table 2: Grain Size distribution Property of received metal matrix alloy 

 

 

Grain 

Num-

ber 

Equiva-

lent Di-

ameter 

Orienta-

tion 

Major 

Axis 

Minor 

Axis 

Perim-

eter 

Area Min 

Inten-

sity 

Mean 

Inten-

sity 

Max 

Inten-

sity 

1 4.5834978

44 
76.241
38617 

7.91
1677 

3.34
9746 

17.4
1421 

16.
5 184 

217.
3333 234 

2 

2.6462
83714 

-
42.66053

638 
3.28

4856 
2.28

4291 
8.12
132 5.5 138 

159.
4091 178 

3 3.2410
22407 

17.795
39566 

3.86
4296 

2.74
9772 

9.82
8427 

8.2
5 180 

208.
1212 225 

4 

22.546
41631 

-
87.87354

752 
59.2

9705 
18.5

4393 
259.

4858 
39

9.25 138 
214.

2918 251 
5 88.073

22872 
83.002
13477 

190.
3864 

102.
7502 

364
2.112 

60
92.25 131 

216.
7196 253 

6 

2.7057
5819 

-
84.64231

874 
4.73

0204 
1.53

8244 
8.70

7107 
5.7

5 192 
218.

7391 240 
7 0.7978

84561 0 1 0 0 0.5 165 169 173 
8 18.220

79063 
77.788
18815 

60.8
2087 

6.83
4718 

140.
9264 

26
0.75 157 

229.
8102 249 

9 3.3377
90589 

85.655
51415 

7.37
0103 

1.59
0775 

13.7
0711 

8.7
5 175 

210.
3143 227 

10 4.8533
4231 

83.956
76619 

11.4
5849 

3.07
6257 

23.4
3198 

18.
5 172 

218.
3919 244 
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              Table 3: Grain Size distribution Property of  FSW AZ31B joint (without reinforcement). 

 

Grain 

Num-

ber 

Equiva-

lent Di-

ameter 

Orienta-

tion 

Major 

Axis 

Minor 

Axis 

Perime-

ter 

Area Min 

Inten-

sity 

Mean 

Intensi-

ty 

Max 

Inten-

sity 

1 3.191
538 

25.19
141 

3.54
9503 

2.99
1304 

9.70
7107 8 146 

202.
5313 239 

2 0.977
205 0 

1.63
2993 0 0.5 

0.
75 233 242 247 

3 1.381
977 

90.00
003 

3.41
565 0 2 

1.
5 177 

198.
1667 230 

4 0.977
205 

90.00
003 

1.63
2993 0 0.5 

0.
75 232 

235.
3333 239 

5 4.259
538 

-
23.7163 

5.26
181 

4.03
5167 

15.9
3198 

1
4.25 199 

233.
1228 252 

6 2.585
441 

66.20
713 

3.47
4742 

2.47
0433 

7.81
066 

5.
25 152 

220.
619 248 

7 3.038
254 

-
86.7755 

7.64
8602 

1.26
0656 

12.3
1066 

7.
25 176 

225.
8621 244 

8 1.692
569 

84.01
196 

4.14
3543 

0.71
4185 4 

2.
25 149 

200.
5556 243 

9 3.141
275 

-
40.6765 

7.20
3717 

4.94
8255 

13.1
0355 

7.
75 184 

232.
2581 247 

10 1.871
205 

80.00
848 

2.44
9648 

1.45
995 

5.12
132 

2.
75 195 

224.
0909 249 

 

4. Conclusion 

The research work focuses on the development of machine learning algorithm for estimating the grain 

size distribution property of received matrix alloy and FSW AZ31B joint (without reinforcement) by us-

ing Python Programming. The various grain size parameters such as equivalent diameter, orientation, ma-

jor axis, minor axis, perimeter, area, minimum intensity, maximum intensity and mean intensity were 

successfully determined.  It is further observed from the Table 2 and Table 3 that the area, perimeter and 

equivalent diameter of the grain decreases after carrying out Friction Stir Welding process due to the re-

finement. So, it can be concluded that the machine learning approach can be easily incorporated in mate-
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rial science and manufacturing domain in order to reduce the cost and time of the experiment. It is also 

observed that there is loss of information by the observation of two and three dimensional metrics distri-

bution such as aspect ratio, number density, total curvature, interface line and area density when conven-

tional method is used for microstructure characterization but the application of machine learning over-

comes these problems. The future work will deal with implementing this algorithm to the microstructure 

obtained by other characterization techniques also some work will be carried out on the development of a 

unique microstructure identifier known as microstructural fingerprint in order to classify micrographs. 

Machine learning can be further combined with the advanced microstructural metrics for improving the 

classification accuracy.  
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