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Abstract

Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic 
environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are 
detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant 
development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with 
such a diverse range of processes, plants have developed several strategies including the precise balance of key 
plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species 
(ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates 
specific checkpoints to control the switch between development and stress, mainly by post-translational protein 
modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this re-
view, we have sought to compile those known NO molecular targets able to balance the crossroads between plant 
development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones 
abscisic acid and salicylic acid during abiotic and biotic stress responses.

Keywords:   Abiotic, biotic, developmental cues, nitration, nitric oxide, post-translational modifications, reactive nitrogen species, 
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Introduction

Nitric oxide (NO) is a simple molecule whose production is 
regulated by complex mechanisms, given the large number of 
synthesis and scavenging pathways that influence NO homeo-
stasis. Apart from being the most abundant reactive nitrogen 
species (RNS) in plants, NO is considered a gasotransmitter 
with a pivotal role in a plethora of physiological processes 
throughout the plant life cycle, from the regulation of growth 
and development to biotic and abiotic stress tolerance.

The distribution, concentration, and regulation of NO levels 
at the specific sites of action are important to exert different 

physiological functions. These features make NO a versa-
tile and broad-spectrum signaling molecule, able to regulate 
numerous processes in a very precise way (Sanz et al., 2015). 
Considering the impact of NO levels in plants, either defi-
ciency or overaccumulation greatly impair growth and devel-
opment. Thus, reported mutants with altered NO levels show 
stunted growth immediately after germination which become 
visible in adult plants (Fig. 1), although the pleiotropic de-
fects in these mutants may have wider impacts than just NO 
generation.
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The mode of action of NO as a signaling effector includes 
the modification of molecules of biological relevance (e.g. pro-
teins, fatty acids, cGMP, DNA, and RNA). Essentially, RNS 
derived from NO interact with biomolecules to modify both 
their structure and function. With special emphasis on protein 
structure, these modifications lead to conformational changes 
whose result may be an increased or decreased stability, acti-
vation or inhibition of activity, disruption of the interactome, 
translocation, and, in the case of transcription factors, an influ-
ence on DNA binding to alter gene expression. To perform 
these effects in such a diverse range of processes, NO modifies 
certain proteins through two post-translational mechanisms, 
the nitration of Tyr residues and the S-nitrosation of Cys res-
idues and metals.

NO post-translational modifications of key regulators 
by Tyr nitration

The nitration of Tyr residues is carried out mainly by 
peroxynitrite (ONOO–) and by the nitrogen dioxide radical 
(·NO2). ONOO– results from the reaction of NO with the 
superoxide radical (O2· 

−), which modifies position 3 of the 
phenolic ring, adding a nitro group (-NO2). ·NO2 comes from 
the reactions of NO in the presence of oxidants, such as H2O2 
and O2· 

−, and transition metals (Radi et  al., 2004). Within a 
protein, not all Tyr residues are susceptible to nitration and de-
pend on the conformational state in order to be more exposed 
to the redox environment (Abello et  al., 2009; Corpas et  al., 
2013a) and the properties of surrounding amino acids (Souza 
et  al., 1999; Ischiropoulos, 2003; Chaki et  al., 2009; Lozano-
Juste et al., 2011 ).

Similar to other RNS, ONOO– has been considered one 
of the most potent molecules to produce oxidative damage 

to nucleic acids and lipid peroxidation. However, emerging 
evidence also highlights the great relevance of this molecule 
for signaling (Arasimowicz-Jelonek and Floryszak-Wieczorek, 
2011; Vandelle and Delledonne, 2011). Considering global pro-
tein regulation, nitration is an important point of interaction 
with other signals, since Tyr residues are also susceptible to 
phosphorylation (Galetskiy et al., 2011). Likewise, NO is able 
to regulate the amount of ONOO– through the inhibition 
of PrxIIE by S-nitrosation, which detoxifies this compound, 
promoting its accumulation (Romero-Puertas et  al., 2007). 
Numerous nitrated proteins, the so-called nitroproteome, have 
been identified under both normal growth (Lozano-Juste et al., 
2011; Chaki et al., 2009, 2012; Begara-Morales et al., 2013) and 
stress conditions (Cecconi et  al., 2009; Begara-Morales et  al., 
2013). Some studies have focused on the analysis of the effect 
of ONOO– on specific proteins, with a predominantly inhibi-
tory action (Table 1). Although nitration was classified initially 
as an irreversible protein modification, the existence of en-
zymes with denitrase activity in animals has been reported (Irie 
et al., 2003; Smallwood et al., 2007; Deeb et al., 2013).

S-Nitrosation of Cys and metals in key molecular 
players

Protein S-nitrosation is a post-translational modification that 
consists of the covalent attachment of an NO molecule to a 
thiol group of a Cys, forming an S-nitrosothiol (SNO). This 
modification appears to be the main mechanism by which NO, 
in its protonated form (NO+) or in a greater state of oxida-
tion (N2O3) (Hill et al., 2010), exerts its effect. S-Nitrosation 
is highly specific, since it depends not only on the proximity 
between NO and the target protein, but also on the con-
formation and amino acid sequence (Lindermayr and Durner, 

Fig. 1.  Phenotype of nitric oxide (NO) homeostasis mutants. Growth and developmental defects of 7-week-old NO-deficient mutants (nia1nia2, atnoa1, and 
atnoa1nia1nia2) and NO-overproducer mutants (cue1-5, nox1-1, and gsnor1-3), compared with the wild-type Col-0, in terms of endogenous NO levels.
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2009; Lamotte et al., 2014). It remains elusive to what extent 
this modification is mediated by non-enzymatic mechanisms 
(through the action of free NO/N2O3), or by transfer reactions 
(through the interaction between two components) known as 
transnitrosation [i.e. from S-nitrosoglutathione (GSNO) to 
other molecules], since mutants that accumulate either NO 
(cue1/nox1) or GSNO (gsnor1) do not behave in a similar way 
(Fig. 1) (Kneeshaw et al., 2014). A landmark in NO biology is 
the ability to maintain an optimal concentration at the specific 
site of action. Thus, the control of nitrosated proteins represents 
an important point of regulation. Reports on certain enzyme 
systems able to denitrosate proteins comprise the gluta-
thione/GSNO reductase (GR/GSNOR) and thioredoxin/
thioredoxin reductase (Trx/TrxR) systems (Tada et  al., 2008; 
Malik et  al., 2011; París et  al., 2013). Remarkably, NPR1 
denitrosation has been described by the system composed 
of thioredoxin TRXH5 and thioredoxin reductase NTRA 
(Kneeshaw et al., 2014). Given the high specificity shown by 
S-nitrosation, the regulation of denitrosation may also display 
such a specific pattern, as described for glyceraldehyde phos-
phate dehydrogenase (GAPDH; Zaffagnini et al., 2013). Non-
enzymatic mechanisms able to eliminate the SNO moiety have 
also been reported, including exposure to reducing agents, nu-
cleophilic compounds, or transition metals, together with heat 
or light (Kovacs and Lindermayr, 2013). Extensive literature 
refers to the multitude of processes in which this modification 
is involved (Mengel et  al., 2013; París et  al., 2013; Romero-
Puertas et al., 2013) and to the numerous proteins susceptible 
to S-nitrosation described so far (Lindermayr et al., 2005) by 
using the biotin switch technique (Jaffrey and Snyder, 2001) 
(Table 2).

The third and less known NO-driven post-translational 
modification is the nitrosation of transition metals present 
in metalloproteins (namely iron, zinc, and copper) causing 

conformational changes that affect protein activity (Astier and 
Lindermayr, 2012) (Table 3). A clear example is the binding 
to the heme group of phytoglobins, affecting the transport/
scavenging of NO (Gupta et  al., 2011). Interestingly, a self-
nitrosation mechanism has been described in animals by intra-
molecular transfer from the heme group to a Cys in the globin 
domain (Jia et al., 1996; Gow and Stamler, 1998).

Having outlined the NO-dependent post-translational 
modifications for NO action and provided a compilation of 
those NO protein targets described so far, here we empha-
sized the balanced role of NO in different developmental cues 
through its interaction with phytohormones during abiotic 
and biotic stresses.

NO impact on plant development and 
abiotic stress trade-off

Changing environmental conditions compromise successful 
plant growth, thus being a critical step that reflects the need 
for a development and stress trade-off for plant establishment. 
In this context, abiotic stresses such as drought, hypoxia, sal-
inity, or extreme temperatures are detrimental for plant sur-
vival. The phytohormone abscisic acid (ABA) plays a major 
role in abiotic stress responses such as stomatal closure (Desikan 
et al., 2002; García-Mata and Lamattina, 2002; Neill et al., 2002; 
Eisenach et al., 2017), water deficit (Christmann et al., 2007), 
or high light conditions (Galvez-Valdivieso et  al., 2009), but 
also controlling pathogen responses (Adie et al., 2007). From 
a developmental point of view, ABA is involved in dormancy 
maintenance, biosynthesis of embryo storage compounds, 
seed size and seed germination inhibition (Lopez-Molina 
et  al., 2002; Kanno et  al., 2010; Cheng et  al., 2014; Albertos 
et al., 2015), and sophisticated regulation of root development 
(Dietrich et al., 2017; Belda-Palazon et al., 2018), among others. 

Table 1.  Targets and effects of protein nitration described in plants

Protein Process Reference

Catalase Inhibition of activity against pathogens Clark et al. (2000)
S-Adenosyl homocysteine hydrolase (SAHH) Inhibition of activity Chaki et al. (2009)
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Inhibition of activity Lozano-Juste et al. (2011)
Complexes of PSI and PSII Inactivation and disassembly of complexes  

dependent on light conditions
Galetskiy et al. (2011)

Ferredoxin-NADP oxidoreductase Inhibition of activity, causing changes in  
photosynthetic activity

Chaki et al. (2011)

O-Acetylserine (thiol) lyase 1 Inhibition of activity under stress conditions to  
regulate cysteine and glutathione metabolism

Alvarez et al. (2011)

Glutamine synthetase (GS1a) Inhibition of activity to regulate N metabolism in nodules Melo et al. (2011)
NADP-isocitrate dehydrogenase (ICDH) Inhibition of activity for the reprogramming  

of metabolism and redox homeostasis during  
senescence

Begara-Morales et al. (2013)

NADH-hydroxypyruvate reductase (HPR1) Inhibition of activity, changes in peroxisomal metabolism Corpas et al. (2013b)
Ascorbate peroxidase (APX) Inhibition of activity Clark et al. (2000); 

Begara-Morales et al. (2014)
Monodehydro-ascorbate reductase Inhibition of activity Begara-Morales et al. (2015)
Superoxide dismutases (MSD1, FSD3, CSD3) Inhibition of activity Holzmeister et al. (2015)
Pyrabactin resistance1/ PYR1-like/regulatory  
component of ABA receptor (PYR/PYL/ RCAR)

Inhibition of activity Castillo et al. (2015)

Leghemoglobin (Lb) Putative protective role, scavenging ONOO– Sainz et al. (2015)
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The crosstalk between ABA and NO governs the main mo-
lecular mechanisms able to integrate external signals to repro-
gram internal networks leading to plant adaptation (reviewed 
in Arc et al., 2013; León et al., 2014; Albertos et al., 2015; Wang 
et al., 2015a, b; Lombardo and Lamattina, 2018). NO is able to 
interact with a wide range of ABA metabolism, perception, and 
signaling targets, modulating protein function and impacting 
gene expression.

NO effect on ABA synthesis and catabolism

ABA levels are determined by the ratio between synthesis 
and catabolism. Key steps during ABA synthesis are con-
trolled by zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid 
dioxygenase (NCED), short-chain alcohol dehydrogenase 
(ABA2), and a final step catalyzed by an abscisic aldehyde 

oxidase (AOO3) which is activated by the molybdenum co-
factor (MoCo) sulfurase ABA3 (reviewed in Nambara and 
Marion-Poll, 2005; Finkelstein, 2013). ABA catabolism takes 
place mainly through the ABA 8'-hydroxylation pathway cata-
lyzed by the cytochrome P450 enzyme ABA 8'-hydroxylase. 
In Arabidopsis, these enzymes are encoded by the CYP707A 
family. Among them, CYP707A1 and CYP707A3 are the most 
important enzymes required in mid-seed development, and 
CYP707A2 during the end of seed development and germin-
ation (Kushiro et al., 2004; Okamoto et al., 2006).

A decrease in ABA is mandatory for seed dormancy break-
down and germination in Arabidopsis. An NO-induced ABA 
sensitivity reduction correlates with the transcription in-
duction of CYP707A2 and protein accumulation (Liu et  al., 
2009) (Fig. 2). This NO effect was also evidenced by using 
genetic approaches with NO-deficient mutants, nia1nia2 and 

Table 2.  Targets and effects of protein S-nitrosation described in plants

Protein Process Reference

Phytoglobin1 (Phytogb1) Modulation of NO/O2 levels Perazzolli et al. (2004)
Glyceraldehyde-3-phosphate dehydrogenase  
(GAPDH)

Inhibition of activity Lindermayr et al. (2005); Zaffagnini et al. 
(2013); Zhang et al. (2017)

Methionine adenosyltransferase (MAT1) Inhibition of activity Lindermayr et al. (2006)
Peroxiredoxin II E (PrxIIE) Inhibition of activity resulting in an increase of ONOO–, 

which triggers Tyr residues nitration
Romero-Puertas et al. (2007)

Metacaspase MC9 (unprocessed form) Inhibition of autoprocessing and proteolytic activity Belenghi et al. (2007)
MYB domain protein 
(MYB2)

Inhibition of DNA binding Serpa et al. (2007)

Nonexpresser of PR genes 1 (NPR1) Conformational changes (oligomerization) in cytoplasm Tada et al. (2008)
Salicylic acid-binding protein 3 (SABP3) Prevents salicylic acid (SA) binding and inhibits  

the activity
Wang et al. (2009)

Glycine decarboxylase complex (GDC) Inhibition of activity Palmieri et al. (2010)
TGACG sequence-specific binding protein 1 (TGA1) Promotes DNA binding in the presence of NPR1 Lindermayr et al. (2010)
Aldolase Conformational change resulting in the inhibition of  

activity
van der Linde et al. (2011)

NADPH oxidase 
(RBOHD)

Inhibition of activity, minimizing the synthesis of ROIs 
(ROS intermediaries)

Yun et al. (2011)

Transport inhibitor response 1 (TIR1) Facilitates interaction with Aux/IAA, promoting its  
degradation and triggering auxin response

Terrile et al. (2012)

Cell division cycle 48 (CDC48) Inhibition of ATPase activity Astier et al. (2012)
Histidine phosphotransfer protein 1 (AHP1) Inhibition of phosphorylase activity, negatively  

regulating the cytokinin (CK) signaling pathway
Feng et al. (2013)

Ascorbate peroxidase (APX) Promotes the activity Begara-Morales et al. (2014); Yang et al. 
(2015)

GSNO reductase (GSNOR) Inhibition of activity Frungillo et al. (2014)
MYB domain protein (MYB30) Inhibition of DNA binding Tavares et al. (2014)
Open stomata 1/Sucrose nonfermenting 1-related  
protein kinase 2.6 (OST1/SnRK2.6)

Inhibition of activity, negative regulation of ABA  
responses

Wang et al. (2015)

ABA Insensitive 5 (ABI5) Protein destabilization, promoting proteasome  
degradation

Albertos et al. (2015)

Peroxiredoxin II F (PrxIIF) Inhibition of peroxidase activity and acquisition  
of transnitrosylase activity, preventing the  
aggregation of citrate synthase

Camejo et al. (2015)

Other glycolysis enzymes [fructose 1,6-biphosphate 
aldolase, triosephosphate isomerase, 
2-phosphoglycerate hydrolase (enolase) and 
phosphoglycerate kinase]

Inhibition of activity Zhang et al. (2017)

ATP synthase CF1 α-chain and β-chain Inhibition of activity Zhang et al. (2017

Vascular-Related NAC-Domain7 (VND7) Inhibition of transactivation activity Kawabe et al. (2018
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nia1nia2noa1-2, which show increased dormancy and ABA-
mediated germination inhibition (Lozano-Juste and León, 
2010), and by using NO donors (Bethke et al., 2004, 2006, 2007; 
Sarath et al., 2007). Additionally, the MoCo sulfurase ABA3 has 
been identified as a target of protein nitration (Lozano-Juste 
et al., 2011), which could alter its activity (Fig. 2).

NO alterations of ABA perception and signaling

ABA perception and signal transduction depend on the 
core PYRABACTIN RESISTANCE (PYR)/PYR1-
LIKE (PYL)/REGULATORY COMPONENT OF ABA 
RECEPTOR (RCAR) (Ma et  al., 2009; Park et  al., 2009), 
PROTEIN PHOSPHATASE 2C (PP2C) (Umezawa et  al., 
2009; Vlad et  al., 2009), and SNF1-RELATED PROTEIN 
KINASE2 (SnRK2) kinases (Mustilli et  al., 2002; Yoshida 
et al., 2006; Nakashima et al., 2009; Umezawa et al., 2009). In 
the presence of ABA, the formation of PYR/PYL/RCAR–
PP2C complexes inhibits the activity of the PP2Cs, thereby 
activating SnRK2s, which in turns control AREB/ABF-
type basic/region leucine zipper (bZIP) transcription factors 
(Fujii et al., 2009). These bZIP transcription factors bind to 
cis-regulatory elements known as ABA-responsive elements 
(ABREs) and regulate downstream gene expression (Choi 
et  al., 2000; Uno et  al., 2000; Kang et  al., 2002; Finkelstein 
et al., 2005; Reeves et al., 2011; Gao et al., 2016; reviewed in 
Banerjee and Roychoudhury, 2017).

The control by NO of ABA perception and signaling path-
ways occurs at different levels (Fig. 2). First, PYR/PYL/
RCAR receptors are inhibited by Tyr nitration (Castillo et al., 
2015), enabling activation of PP2C which in turn inactivates 
SnRKs. An additional control point falls in the inhibition of 
the activity of SnRKs 2.2, 2.3, and 2.6 by S-nitrosation and 
SnRK2.6 down-regulation by NO treatment impairing seed 
germination and stomatal closure (Wang et al., 2015a, b; Zhao 
et al., 2016). Interestingly, the nia1nia2 NO-deficient mutant is 
affected in genes involved in the ABA perception core, where 
RCAR1, RCAR11, RCAR12, and RCAR14 are up-regulated, 

and also presents a higher PP2C activity (Zhao et al., 2016), in 
accordance with up-regulation of PP2C transcription by ex-
ogenous NO treatment (Castillo et al., 2018). Finally, NO regu-
lates the ABI5 bZIP transcription factor through S-nitrosation 
of Cys153. This modification targets ABI5 to the proteasome 
by promoting the interaction with CULLIN4-based and 
KEEP ON GOING E3 ligases (Albertos et al., 2015). In add-
ition, ABI5 is sumoylated by the SUMO E3 ligase SIZ1 (Miura 
et al., 2009), which is considered to be a Tyr nitration target 
(Lozano-Juste et al., 2011).

ABI5 is a key player in ABA-triggered processes (Finkelstein 
and Lynch, 2000; Lopez-Molina et al., 2001) and also emerges 
as a molecular hub in the NO-mediated balance between early 
development and stress (Albertos et  al., 2015). ABI5 expres-
sion and protein levels increase during the last steps of seed 
maturation (Brocard et  al., 2002; Bensmihen et  al., 2005) 
and overexpression of ABI5 confers hypersensitivity to ABA, 
which promotes its transcription and stabilization (Brocard 
et  al., 2002). ABI5 functions in the ABA signaling pathway 
by blocking seed germination (Lopez-Molina et  al., 2001; 
Albertos et  al., 2015; reviewed in Skubacz et  al., 2016) and 
seedling establishment upon exposure to stress conditions such 
as drought or salinity (Lopez-Molina et al., 2001; Tezuka et al., 
2013). ABI5 also promotes CATALASE1 transcription during 
seed germination (Bi et al., 2017), whose protein activity is in-
hibited by Tyr nitration and metal nitrosation in tobacco (Clark 
et al., 2000).

Similarly to ABI5, other group A bZIP transcription factors 
are involved in different developmental cues, including embryo 
development and seed maturation (Jakoby et  al., 2002), and 
stress responses. Thus, bZIP67 regulates fatty acid composition 
(Mendes et al., 2013), bZIP14 is necessary for flowering and 
meristem identity (Gorham et al., 2018), bZIP12/EEL coun-
teracts ABI5’s action on the transcription of Late Embryogenesis 
Abundant (LEA) genes (Finkelstein and Lynch, 2000; Lopez-
Molina et al., 2002; Bensmihen et al., 2002), and the subfamily 
of ABFs (ABRE-binding factors) constitute key signaling tran-
scription factors mediating ABA responses during seed ger-
mination, drought, and osmotic stresses (Choi et  al., 2000; 
Finkelstein et al., 2005; Fujita et al., 2005; Yoshida et al., 2010, 
2015; Fernando et al., 2018). Since ABI5 is an NO target, other 
members from group A of bZIPs are found to be susceptible to 
modification by S-nitrosation when analyzed using GPS-SNO 
software (Fig. 3).

The ABA signaling pathway is linked to chromatin 
remodeling (Saez et al., 2008; Han et al., 2012, 2015), histone 
deacetylation (Luo et al., 2012; Ryu et al., 2014), and histone 
demethylation (Zhao et al., 2015), and epigenetic changes ap-
pear as mechanisms involved in the response to stress conditions 
(reviewed in Nonogaki, 2014). In this context, accumulation 
of histone acetylation marks in Arabidopsis is promoted by 
the NO donor GSNO while it is decreased by the NO scav-
enger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide (cPTIO). This fact correlates with inhibition of 
the activity of histone deacetylases (HDACs) (Mengel et  al., 
2017) probably associated with of S-nitrosation, as previously 
described in mammals for HDAC2 and HDAC6 (Nott et al., 
2008; Okuda et al., 2015). This post-translational modification 

Table 3.  Targets and effects of metal nitrosation described in 
plants

Protein Process Reference

Lipoxygenase-1 Redox regulation Nelson (1987)
Catalase Inhibition of activity to modulate 

pathogen response
Clark et al. (2000)

Ascorbate  
peroxidase

Inhibition of activity to modulate 
pathogen response

Clark et al. (2000)

Nitric oxide- 
dependent  
guanylate cyclase 
(NOGC1)

GTP hydrolysis, NO-dependent  
generation of cGMP

Mulaudzi et al. 
(2011)

Phytoglobin1 
(Phytogb1)

Modulation of NO/O2 levels Perazzolli et al. 
(2004)

Aconitase Inhibition of activity for metabolism 
modification, favoring amino acid 
biosynthesis and activation of  
alternative oxidase

Gupta et al. (2012)



4446  |  Sánchez-Vicente et al.

linked to the chromatin state can also be responsible of the 
reprogramming of expression triggered by NO (Huang et al., 
2002; Polverari et al., 2003; Palmieri et al., 2008; Hussain et al., 

2016; Imran et  al., 2018). SWI/SNF chromatin-remodeling 
ATPase BRAHMA (BRM), whose switch activity is modu-
lated by phosphorylation/dephosphorylation mediated by 

Fig. 2.  Network of NO and ABA interactions in a stress- and developmental stage-based context. Impact of NO on specific molecular targets related to 
ABA synthesis (MoCo3, molybdenum cofactor sulfurase ABA3), catabolism (CYP707A2, cytochrome P450 ABA 8'-hydroxylase), perception (PYR/PYL/
RCAR, pyrabactin resistance/PYR-like/regulatory component of ABA receptor), and signaling (SnRKs, SNF1-related protein kinases; ERFVII, ethylene 
response factor group VII; ABI5, abscisic acid insensitive5 bZIP). The putative role of Cys S-nitrosation (Cys-NO) and Tyr nitration (Tyr-NO2) is included. 
Arrows and bars indicate positive and inhibitory effects, respectively. Dotted arrows and bars indicate putative regulations.
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SnRK2/PP2CA (Peirats-Llobet et al., 2016), is also susceptible 
to S-nitrosation, as revealed by GPS-SNO analysis. In add-
ition, BRAHMA represses ABI5 transcription in the absence 
of ABA (Han et al., 2012).

Hormonal networks regulate developmental and stress pro-
cesses in response to internal and external cues. Thus, ABA and 
gibberellins (GAs) play antagonistic roles in many physiological 
events (reviewed in Liu and Hou, 2018) where NO represents a 
key modulator between both pathways. The NO donor sodium 
nitroprusside (SNP) promotes DELLA protein accumulation 
by repressing E3 ubiquitin ligase SLEEPY1 (SLY1), inhibiting 
GA signaling (Lozano-Juste and León, 2011). This result was 
also demonstrated by genetic evidence using nia1,2noa1-2 

NO-deficient mutant seedlings (Lozano-Juste and León, 
2011). In addition, GA20ox3, involved in GA biosynthesis, is 
up-regulated in nia1,2noa1-2 and down-regulated upon NO 
treatment (Lozano-Juste and León, 2011). Nevertheless, NO 
plays a synergistic role with GAs during seed dormancy break 
(Bethke et  al., 2007), in accordance with the NO burst de-
tected during early seed germination (Simontacchi et al., 2004, 
Albertos et al., 2015). In wheat roots, an increase in GA content 
after the addition of SNP under aluminum stress has also been 
described (He et al., 2012). In this framework, NO controls the 
specific hormonal balance, leading to a continuous reprogram-
ming of the signaling pathways that govern stress and develop-
mental networks.

Fig. 3.  S-Nitrosation analysis in group A of the bZIP transcription factor family. All the Cys (C) residues are indicated in the protein sequence. In silico 
prediction of S-nitrosation Cys targets by using the GPS-SNO 1.0 software (Xue et al., 2010). The analysis shows target Cys in red, orange, and yellow 
depending on the S-nitrosation score (high, medium, and low, respectively). The Cys residue highlighted in blue corresponds to in vivo and/or in vitro 
S-nitrosation.
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NO and ABA network during drought, salinity, and 
extreme temperatures

ABA acts to save water and energy during stress conditions. 
This phytohormone prevents turgor loss under low water 
availability mainly through stomatal closure (Eisenach et  al., 
2017) and contribution to the synthesis of osmoprotectants 
(Verslues and Bray, 2006), thus improving plant cell adaptation 
to drought. NO is also a key player inside the network required 
for stomatal closure since nitrate reductase (NR) and NOS-
like activities linked to NO production are mandatory for the 
ABA signal transduction cascade in guard cells (García-Mata 
and Lamattina, 2001, 2002; Desikan et  al., 2002; Neill et  al., 
2002). In Arabidopsis guard cells, ABA correlates with H2O2 
and NO in the regulation of stomatal closure. ABA increases 
the generation of endogenous H2O2, which promotes NO pro-
duction in order to regulate stomatal movement (Bright et al., 
2006). In addition, pea and Arabidopsis guard cells are able to 
generate NO in response to ABA, while removal of NO with 
scavengers inhibits ABA-induced stomatal closure (García-
Mata and Lamattina, 2002). However, genetic evidence showed 
that stomata from the nia1nia2noa1-2 NO-deficient mutant 
were hypersensitive to ABA during stomatal closure (Lozano-
Juste and León, 2010). The involvement of NO in ABA per-
ception and signaling has been described above. Specifically, 
SnRK2.6, which is preferentially expressed in guard cells, is 
inhibited through S-nitrosation (Fujii and Zhu, 2009; Wang 
et al., 2015b). SnRK2.6 phosphorylates the slow (S-type) anion 
channel associated1 (SLAC1) and inward potassium channel 
in Arabidopsis thaliana 1 (KAT1) promoting stomatal closure 
(Vahisalu et  al., 2008; Geiger et  al., 2009; Sato et  al., 2009). 
Nevertheless, pharmacological assays showed that NO appli-
cation triggered stomatal closure, whereas this was inhibited 
by the NO scavenger cPTIO (Neill et  al., 2002), suggesting 
a positive role for NO in stomatal closure. Other studies re-
ported that NO may affect KAT1 (García-Mata et  al., 2003; 
Sokolovski and Blatt, 2004), SLAC1 (Vahisalu et al., 2008), and 
nitrated cGMP generation (Joudoi et al., 2013). Consequently, 
NO-dependent modulation of ion channels at the plasma 
membrane of guard cells facilitates osmotic solute loss, redu-
cing guard cell turgor and promoting stomatal closure. Fu et al, 
(2016) showed promotion of stomatal development by NO 
up-regulation of the basic helix–loop–helix (bHLH) genes 
SPEECHLESS (SPCH), MUTE, and SCRM2, and down-
regulation of MITOGEN-ACTIVATED PROTEIN KINASE 
6 (MPK6) expression. Further research will be necessary to 
decipher these NO dual effects, where the level of channel 
modulation promotes stomatal development and stomatal 
closure while SnRK2.6 S-nitrosation inhibits this closure.

Soil salinity becomes one of the main threats for crop pro-
duction. A  reduction in the protein S-nitrosation pattern 
under salt treatment was previously reported (Camejo et  al., 
2013). NO promotes salt tolerance by different mechanisms, 
including the increase in transcription of H+-ATPase and the 
Na+/H+ antiporter in Avicennia marina in order to maintain 
ion homeostasis (Chen et  al., 2010), synthesis of protective 
metabolites, and induction of the oxidative defense system 
(Fan and Du, 2012; Manai et  al., 2014; Ahmad et  al., 2016). 

Additionally, NO ameliorates salinity stress through stomatal 
closure by reducing water loss as mentioned above. Oxidative 
stress constitutes a common effect linked to drought, salinity, 
or osmotic stress. In rice, exogenous treatment with the NO 
donor SNP increases enzyme activity related to redox con-
trol, such as guaiacol peroxidase (POX), superoxide dismutase 
(SOD), and ascorbate peroxidase (APX) (Uchida et al., 2002). 
APX is modulated by NO at the post-translational level by 
S-nitrosation of Cys residues, which in turn promotes its ac-
tivity (Begara-Morales et  al., 2014), and by metal nitrosation 
and Tyr nitration, which both inhibit its activity (Clark et al., 
2000; Begara-Morales et  al., 2014). Furthermore, other NO 
targets are SOD, since Tyr nitration decreases its activity 
(Holzmeister et al., 2015), and pea Prx IIF, where S-nitrosation 
inhibits its activity (Camejo et al., 2013). Phosphoenolpyruvate 
carboxylase-kinase (PEPCK) regulates photosynthetic C4 
phosphoenolpyruvate carboxylase in sorghum, is enhanced 
by salinity, and presents a high activity under short NO treat-
ments (Monreal et al., 2013), highlighting a novel role for NO 
in linking carbon fixation with salt stress mitigation. ABA ex-
ogenous application, drought, and salt stress induce ABI5 at 
early post-germinative stages (Lopez-Molina et al., 2001). ABI5 
together with ABI3 modulate the expression of Em1 and Em6 
(class  I  LEA proteins) genes which are involved in desicca-
tion tolerance (Lopez-Molina et al., 2002; Carles et al., 2002). 
The ABI5 mutant allele abi5-9 shows ABA and salinity insensi-
tivity (Tezuka et al., 2013), highlighting another point of ABA–
NO crosstalk during abiotic stresses. Other ABFs are involved 
in salt, osmotic, and drought stresses. ABF3 transcription is 
up-regulated during salt treatment while ABF1 and ABF4 are 
repressed (Fujita et al., 2005; Fernando et al., 2018). In addition, 
ABF3 and ABF4 display putative Cys residues susceptible to be 
modulated by NO through S-nitrosation (Fig. 3). All together, 
these findings demonstrate a key role for NO during salinity 
stress alleviation.

Low and high temperatures promote changes in the 
S-nitrosoproteome and nitration level as described in Brassica 
juncea and pea plants (Corpas et  al., 2008; Abat and Deswal, 
2009), showing that NO is involved in plant tolerance to 
chilling and freezing (reviewed in Puyaubert and Baudouin, 
2014). Recently, NO has been proposed to scavenge ROS and 
regulate the levels of polyamines, osmoprotective metabolites, 
and hormonal balance, since NO-deficient mutants are more 
tolerant to cold stress (Zhao et al., 2009; Fan et al., 2015; Costa-
Broseta et al., 2018). Other NO mechanisms involve the nega-
tive regulation of the synthesis of phosphorylated sphingolipids 
during cold transduction (Cantrel et al., 2011). GSNOR con-
trols the S-nitrosothiol concentration, which is modulated by 
cold conditions at the level of gene expression and activity 
but, depending on the species analyzed, can be promoted or 
repressed (Ziogas et al., 2013; Kubienová et al., 2014; Lv et al., 
2017). NO is also involved in heat responses since previous 
exogenous treatment led to a better thermotolerance acquisi-
tion while this effect is blocked by the NO scavenger cPTIO 
(Song et  al., 2013). This molecule is able to modulate heat 
stress alleviation at different levels, including the induction of 
genes belonging to subunits of the PSII core reaction center 
(Psb) complex (psbA, psbB, and psbC) (Chen et al., 2013), the 
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increase in DNA binding of heat shock transcription factors, 
and heat shock protein18.2 (HSP18.2) accumulation through 
calmodulin 3 (CaM3) (Xuan et al., 2010) and the promotion 
of HSP26 transcription (Uchida et al., 2002).

NO and hypoxic stress crosstalk

As aerobic organisms, plants have evolved to maintain specific 
requirements for oxygen (O2) that lead to a correct respiratory 
ener gy supply. A close relationship between both O2 and NO 
sensing is mediated by the N-degron pathway, which oper-
ates through N-terminal recognition that targets proteins for 
degradation, and by phytoglobins, which are able to modulate 
the level of diatomic gases such as carbon monoxide, NO, and 
O2. Hypoxic conditions lead to an increase in NO levels, sug-
gesting a key role for the NO/O2 balance during this stress 
(Dordas et al., 2003; Borisjuk et al., 2007; Ma et al., 2016).

Phytoglobins are ubiquitous proteins found in all organisms 
that bind diatomic gases such as NO and O2 through the pres-
ence of a heme group (reviewed in Hoy and Hargrove, 2008; 
Gupta et  al., 2011), controlling its transport, scavenging, and 
detoxification (Arredondo-Peter et al., 1998). There are three 
types of phytoglobins, symbiotic (SymPhytogb), non-symbiotic 
(Phytogb1 and 2), and truncated (Phytogb3). Phytogb1 and 2 
have a significant function in regulating NO and O2 levels 
mainly during cellular hypoxic conditions (Dordas et al., 2003, 
2004). Phytogb1 overexpression regulates NO levels and im-
proves growth and development under hypoxic stress (Hunt 
et al., 2002; Perazzolli et al., 2004; Thiel et al., 2011). A complex 
self-regulatory mechanisms closes this cycle since Phytogb1 is 
S-nitrosated both in the Cys and in the metal (Perazzolli et al., 
2004), and leghemoglobin is modulated by Tyr nitration (Sainz 
et al., 2015), leading to a specific and fine-controlled NO/O2 
balance, closely related to inhibition or promotion of plant 
development.

The N-degron pathway is involved not only in hypoxic 
stress (Gibbs et al., 2011; Licausi et al., 2011) but also in seed 
storage mobilization (Zhang et  al., 2018a, b), germination 
(Holman et  al., 2009; Gibbs et  al., 2014), photomorphogen-
esis (Abbas et al., 2015), shoot and leaf development (Graciet 
et  al., 2009), stomatal closure (Gibbs et  al., 2014), flowering 
(Vicente et  al., 2017), vernalization (Gibbs et  al., 2018), leaf 
senescence (Yoshida et  al., 2002), and pathogen attack (de 
Marchi et al., 2016; Vicente et al., 2019). This pathway senses 
O2 and NO through the regulation of ethylene response factor 
(ERF) Group VII transcription factors, which are degraded via 
PROTEOLYSIS6 (PRT6) in the presence of both gases due 
to a characteristic conserved motif at the N-terminus initiating 
with Met–Cys. In Arabidopsis and rice, ERFVIIs are associ-
ated with hypoxia responses, and their protein stabilization 
improves growth under this abiotic stress (Gibbs et al., 2011; 
Licausi et al., 2011). ABA also participates in the response to 
hypoxic conditions, such as root flooding (Hsu et  al., 2011) 
or seed environment before germination (Benech-Arnold 
et al., 2006), and its exogenous application promotes hypoxia 
tolerance in roots (Ellis et al., 1999). In fact, ABA perception 
and signaling constitute a key hormonal network affected by 
the N-degron pathway (Holman et  al., 2009; Vicente et  al., 

2017). Gibbs et  al. (2014) identified a mechanism for NO/
O2 sensing during ABA signaling through degradation of 
ERFVIIs, which are ABI5 transcriptional activators. ERFVIIs 
are degraded in the presence of both NO and O2, affecting 
seed germination, although NO-mediated ABI5 degradation 
is independent of this pathway (Albertos et al., 2015). In add-
ition, the ABI5 transcriptional repressor BRAHMA could be 
modulated by ERFVII (Vicente et al., 2017). This mechanism 
integrates NR-dependent NO production with the regulation 
of the chromatin-remodeling ATPase BRAHMA mediated 
by ERFVII, ending in a genetic reprogramming that con-
trols development and stress responses to enhance plant sur-
vival. A deregulation in PYL2 ABA receptor transcription in 
the prt6 knockout mutant is dependent on ERFVII, RAP2.12, 
RAP2.2, and RAP2.3 (Zhang et al., 2018b). Additionally, the 
interaction between RAP2.3 and DELLAs contributes to regu-
late hormonal networks able to control the balance between 
growth and stress responses (Marín-de la Rosa et  al., 2014). 
Recently, the NO modulation by S-nitrosation of GSNOR 
has been described, which promotes a conformational change 
that drives its autophagy-dependent degradation, linking hyp-
oxia and NO to selective autophagy (Zhan et al., 2018). At the 
physiological level, GSNOR degradation regulates NO cel-
lular homeostasis, which is involved in low-O2 tolerance and 
promotion of seed germination by modulating ABI5 expres-
sion. These results confirm the key function of the N-degron 
pathway in the regulation of genetic and molecular networks 
through NO/O2 balance sensing.

NO signaling at the crossroads between 
plant development and biotic stress

Upon pathogen attack, the plant must resume growth. In this 
context, whether the plant uses the same arsenal of molecules 
for both development and defense, or if a genetic reprogram-
ming occurs between these two key processes, constitutes a 
major question concerning the complex cellular environment. 
Pieterse et  al. (2009) asserted that the contribution of plant 
growth regulators (i.e. hormone signaling pathways) to plant 
immunity is indicative of an extensive crosstalk between devel-
opment and defense. Consequently, it is hypothesized that both 
are regulated by a network of interconnecting signaling path-
ways in a cost-efficient manner. Several phytohormones have 
been related to plant defense, among them salicylic acid (SA), 
jasmonate (JA), ethylene (ET), and ABA within the context of 
disease suppression. Of particular importance is the NO–SA 
interaction during biotic stress responses, based on the well-
known molecular effectors and the extensive literature that 
places NO at the center of both SA synthesis and signaling 
pathways.

Interconnections between NO and SA during plant 
immunity and developmental cues

SA has been linked to plant response to abiotic stresses such 
as drought (Munné-Bosch and Peñuelas, 2003; Chini et  al., 
2004; Horváth et al., 2007), chilling (Janda et al., 1999; Ding 
et al., 2008), heavy metal tolerance (Pál, 2002; Metwally et al., 
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2003), heat (Dat et al., 1998; Shi et al., 2006), and osmotic stress 
(Borsani et  al., 2001). Furthermore, SA participates in plant 
growth and developmental processes such as seed germination, 
vegetative growth, flower formation, respiration, photosyn-
thesis, stomatal closure, and gene expression associated with 
senescence, among others (reviewed in Rivas-San Vicente et al., 
2011). Nevertheless, the most prominent SA function falls into 
the local and systemic response against microbial pathogens 
(Durner and Klessig, 1995; Innes, 2018).

In plant immunity, NO was first described as a molecule 
with a role in plant disease resistance, being a signal that is ac-
tivated upon pathogen attack (Delledonne et al., 1998; Durner 
et al., 1998; Bellin et al., 2013). Knowledge of the involvement 
of NO in plants has increased greatly and it has been shown 
to be involved in many cellular processes, not only immune 
response related, but also growth and development associated 
(reviewed in Sanz et  al., 2015). In this framework, it is diffi-
cult to separate NO, and other RNS, from ROS molecules, as 
both are considered as signaling effectors undergoing recip-
rocal regulation, which is pivotal in early stages of biotic inter-
actions (Scheler et al., 2013; Del Río, 2015). Nowadays some 
controversy still surrounds the NO homeostasis in plant im-
munity, at the level of both production and turnover (reviewed 
in Vandelle et al., 2016).

Accordingly, GSNO, which is not only a bioactive NO spe-
cies but also a stable NO reservoir and NO transport form 
(Kovacs et al., 2015), is becoming increasingly relevant (Feechan 
et al., 2005; Frungillo et al., 2014). In turn, GSNO is irrevers-
ibly degraded by GSNOR (Liu et al., 2001). GSNOR is pre-
sent in almost all plant tissues and participates in numerous 
plant processes throughout the plant life cycle. The Arabidopsis 
GSNOR null mutant gsnor1-3, also known as SENSITIVE TO 
HOT TEMPERATURE5 (HOT5) from a thermotolerance 
genetic screening (Lee et al., 2008), presents enhanced levels of 
SNO and proteome-wide increased S-nitrosation (Hu et  al., 
2015). This translates into pleiotropic deficiencies in multiple 
plant growth and development pathways and physiological 
processes (Kwon et al., 2012), and altered responses to biotic 
and abiotic stresses (Feechan et al., 2005; Lee et al., 2008; Chen 
et al., 2009; Kwon et al., 2012). It is noteworthy that gsnor mu-
tants have altered chlorophyll content and photosynthetic 
properties (Hu et al., 2015) and, additionally, they show early 
flowering, a loss of apical dominance due to a higher number 
of axillary shoots, reduced hypocotyl elongation and primary 
root growth, impaired germination, and decreased seed pro-
duction, among other aspects.

It should be noted that the crosstalk between NO and tar-
gets of SA synthesis and signaling affects phenylalanine am-
monia lyase expression in the former (Klessig et al., 2000), and 
the expression of pathogenesis-related genes in particular or 
the systemic acquired response in general in the latter (Song 
and Goodman, 2001; Rustérucci et  al., 2007; Espunya et  al., 
2012; Mur et al., 2013). Another example is the participation of 
both molecules, SA and NO, in mitigating the toxicity caused 
by heavy metals and, thus, enhancing plant development 
(Zhou et al., 2009; Singh et al., 2009, 2017). It has been de-
scribed that GSNO influences the function of proteins related 
to plant defensive responses but, interestingly, these proteins 

also affect developmental processes (Table 2). S-Nitrosation of 
SA-binding protein 3 (SABP3) is prompted by bacterial infec-
tion and inhibits SA binding capacity and carbonic anhydrase 
(CA) activity. Since CA activity is required for the establishment 
of plant disease resistance, this post-translational modification 
could participate in a negative feedback loop in the modula-
tion of the SA-dependent plant defense mechanism (Slaymaker 
et al., 2002; Wang et al., 2009). Loss or overexpression of CA ac-
tivity causes defective tapetal cell differentiation in early anther 
development (Huang et  al., 2017). Similarly, S-nitrosation of 
the NADPH oxidase AtRBOHD abolishes its ability to syn-
thesize ROS, giving a role to NO in limiting the hypersensi-
tive response (Torres and Dangl, 2005; Yun et al., 2011). Once 
more, this enzyme, together with AtRBOHF, negatively regu-
lates lateral root development by changing the accumulation of 
superoxide in Arabidopsis roots (Li et al., 2015). Interestingly, 
there is a reduced NADPH oxidase activity in gsnor mutants, 
probably because of inhibition of AtRBOHD by S-nitrosation 
(Karapetyan and Dong, 2018).

NO also targets several ROS-detoxifying enzymes by 
nitration or S-nitrosation (Tables 1, 2), including APX, 
monodehydroascorbate reductase, CAT, SODs, PrxIIE, 
and PrxIIF, all of which are related to H2O2 detoxification 
(Romero-Puertas et al., 2007; Lin et al., 2012; Ortega-Galisteo 
et al., 2012; de Pinto et al., 2013; Begara-Morales et al., 2013, 
2016; Holzmeister et al., 2015; Yang et al., 2015). Recently, the 
contribution of many of these enzymes to plant tolerance to 
chilling temperatures, having an effect in vegetative tissues, has 
been described in a priming process providing plant memory 
formation (Baier et al., 2019).

Regulation of the nonexpressor of pathogenesis-
related genes (NPR) family mediated by NO

The Arabidopsis genome contains six members of the 
nonexpressor of pathogenesis-related genes (NPR) family 
including NPR1-4, NPR5/BLADE-ON-PETIOLE2 
(BOP2), and NPR6/BLADE-ON-PETIOLE1 (BOP1) (Fig. 
4). The corresponding proteins have in common two BTB/
POZ (Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus 
and Zinc finger) domains for protein–protein interaction, in-
volved in degradation by the ubiquitin–proteasome system, 
and a series of four ankyrin repeats, which allow the inter-
action with the TGA (TGACG motif-binding protein) family 
of transcription factors (Aravind and Koonin, 1999, Sedgwick 
and Smerdon, 1999).

NPR1 is a transcription cofactor (reviewed in Withers and 
Dong, 2016) key in SA perception and signaling since the npr1 
mutant is SA insensitive (Cao et al., 1997; Canet et al., 2010a, b). 
However, not all the genes induced by SA depend on NPR1 
(Blanco et al., 2009), mostly due to the function of other family 
members such as NPR3 and NPR4 (Canet et  al., 2010a, b). 
NPR1 is also involved in the induced systemic resistance 
(ISR) (Pieterse et al., 1998) and in the crosstalk between SA 
and JA (Spoel et al., 2003). NPR1 function is regulated at the 
post-translational level by a monomerization/oligomerization 
mechanism dependent on the cellular redox state and deter-
mines protein subcellular localization (Fig. 5). During pathogen 
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attack, SA concentration increases, promoting the partial re-
duction of the oligomer NPR1 (formed by disulfide bridges 
in the cytoplasm) to a monomer in the nucleus, then targeted 
by a C-terminal nuclear localization sequence (Mou et  al., 
2003; Spoel et al., 2009). In addition to other post-translational 
modifications that regulate NPR1, such as phosphorylation 
(reviewed in Withers and Dong, 2016), it was later discovered 
that S-nitrosation of Cys156 facilitates protein oligomeriza-
tion in vivo, providing a negative regulation of defense-related 
gene expression by NO. Upon pathogen infection or SA ac-
cumulation, changes in cellular redox potential lead to the re-
duction of Cys through the activity of thioredoxins (mainly 
TRX-h5), and NPR1 monomers are released to the nucleus 
(Tada et al., 2008; Kneeshaw et al., 2014). In the cell nucleus, 
the mechanism proposed to modulate NPR1 gene expression 
is through its interaction with the TGA family of bZIP tran-
scription factors, which bind specifically to SA response elem-
ents. However, it has also been observed that NPR1 can be 
present in the nucleus when SA levels are low (Després et al., 
2000). Rivas-San Vicente et al. (2011) suggested an additional 

function of NPR1 in regulating genes related to germination, 
plant growth, and development; in fact, NPR1 has been re-
lated to the promotion of cell division and/or suppression of 
endoreduplication during leaf development (Vanacker et  al., 
2001). Moreover, redox changes related to the circadian clock 
motivated by SA upon pathogen infection act via NPR1 to 
trigger a transcriptional reprogramming, thus minimizing fit-
ness costs on plant growth (Zhou et al., 2015). For this reason, 
NPR1 could be suggested to be a key molecular player in the 
balance between defense and growth.

Except for a minor role in SA perception (Canet et al., 2010b), 
the functions of NPR2, the NPR1 paralog with greater hom-
ology in the primary sequence, are unknown. Interestingly, 
NPR3 and NPR4 have been characterized as SA receptors, 
able to bind the hormone with different affinities and regulate 
the degradation of NPR1 via the ubiquitin–proteasome by a 
mechanism dependent on SA concentration (Fu et al., 2012). 
A role for NPR3 in root growth and storage compound accu-
mulation in seeds has also been proposed, as a result of repres-
sion of the basal pathogen immune system (Shi et al., 2013). In 

TGA

Fig. 4.  S-Nitrosation analysis in group D of bZIP transcription factor and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) families. (A) 
Dendrograms of TGA members of the group D bZIP transcription factor family and NPR-like proteins. The branch length is proportional to the number of 
substitutions per site (http://phylogeny.lirmm.fr/). (B) In silico prediction of S-nitrosation Cys (C) targets by using the GPS-SNO 1.0 software (Xue et al., 
2010). The analysis shows target Cys in red, orange, and yellow depending on the S-nitrosation score (high, medium, and low, respectively). The Cys 
residues highlighted in blue correspond to in vivo and/or in vitro S-nitrosation.

http://phylogeny.lirmm.fr/
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addition, BOP1 and BOP2 are the most divergent proteins of 
the NPR family, both lacking a recognizable nuclear localiza-
tion sequence. Although a role for these proteins as mediators 
of the methyl jasmonate-induced resistance in plant immunity 
has been described (Canet et al., 2012), the most studied func-
tion is as regulators of development; especially in the establish-
ment of axes of asymmetry in the organogenesis of leaf and 
flower (Hepworth et al., 2005).

Group D of bZIP transcription factors are NO targets

Group D of bZIP transcription factors comprises the so-called 
TGA factors, according to their conserved TGACG DNA-
binding motif. All of them are characterized by a short zipper 
domain consisting of three repeats, two conserved Q-rich 
domains in the C-terminus, and a more variable N-terminal 
part (Dröge-Laser et al., 2018). In the Arabidopsis genome, 10 
members of the TGA family are present, falling into five clades 
(Jakoby et  al. 2002) (Fig. 4). Clade I  comprises TGA1 and 
TGA4, and Clade II consists of three closely interconnected 
factors TGA2, TGA5, and TGA6, which contain a shorter 
N-terminus than the other TGA proteins. TGA3 and TGA7 
constitute clade III. PERIANTHIA or TGA8 comprise clade 
IV, and TGA9 and TGA10 form clade V.

The presence of TGACG motifs in the promoters of dif-
ferent plant glutathione S-transferase genes (Ellis et  al. 1993; 
van der Zaal et al., 1996) opened up the hypothesis that TGA 
proteins trigger plant stress responses. In the case of TGA1 and 
TGA4, both are related to control of basal resistance against 
pathogens (reviewed in Gatz, 2013). These proteins present a 
regulation through Cys residues sensitive to the cellular redox 

state. Thus, in the absence of SA, Cys260 and Cys266 of these 
proteins form an intramolecular disulfide bond that prevents 
interaction with NPR1; this link is reduced after the accu-
mulation of SA, allowing this interaction and improving their 
binding to defense-related gene promoter regions (Després 
et al., 2003). The Cys residues 260 and 266 of TGA1 are regu-
lated by both S-nitrosation and S-glutathionylation, affecting 
protein conformation and preventing formation of disulfide 
bonds (Lindermayr et  al., 2010). At the same time, NPR1 
ameliorates not only the DNA binding activity of the reduced 
TGA1 (Després et al., 2003), but also the DNA binding activity 
of TGA1-SNO. Although TGA1 and TGA4 regulate target 
genes involved in systemic acquired resistance (SAR; Sun et al., 
2018), they also modulate nitrate responses in Arabidopsis roots 
(Alvarez et al., 2014).

TGA2, TGA5, and TGA6 play key roles in pathways linked to 
SA (Zhang et al., 2003; Kesarwani et al., 2007), JA/ET (Zander 
et  al., 2010, 2012, 2014), xenobiotics, and reactive oxylipin 
signaling (Fode et al., 2008; Mueller et al., 2008; Findling et al., 
2018). Interestingly, tga2tga5tga6 triple mutant roots are con-
siderably shorter than those of the wild type in control me-
dium (Stotz et al., 2013). The interaction between NPR1 and 
TGA2 protein to stimulate the DNA binding activity to the 
SA-responsive element in the PR-1 gene promoter has also 
been reported (Wu et al., 2012).

The TGA3 transcription factor mediates NPR1 
SA-dependent gene expression in planta (Sarkar et  al., 2018) 
and its role in the hormonal crosstalk between SA and cyto-
kinin has also been reported (Choi et al., 2010). Apart from that, 
TGA3 is also related to metal detoxification (Fang et al., 2017). 
TGA9 and TGA10 play essential roles in anther development 

Fig. 5.  Crosstalk of NO during developmental cues and biotic stress responses. Upon pathogen attack, a redox change in the cellular context promotes 
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) monomerization and interaction with different TGAs in the nucleus to activate the 
expression of stress-related genes. Similarly, a hypothetical model shows the interaction of other NPR-like proteins with TGA members to activate 
developmental gene expression. BLADE-ON-PETIOLE1/2 (BOP1/2) proteins interact with PERIANTHIA (PAN) in the nucleus where PAN binds DNA under 
reducing conditions. The putative role of Cys S-nitrosation (SNO) is included. Arrows indicate positive effects and dotted arrows putative regulations.
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by the action of two CC-type floral glutaredoxins, ROXY1 
and ROXY2 (Murmu et al., 2010), again exemplifying a redox-
regulated TGA factor function in plants.

PERIANTHIA (PAN)/TGA8, which is part of an inde-
pendent clade of the TGA family, has important functions 
in plant development, as a negative regulator of floral organ 
initiation and the number of petals and sepals (Running and 
Meyerowitz, 1996; Chuang et al., 1999). PAN functions in floral 
development are mediated by the positive regulation of the 
AGAMOUS (AG) gene, which antagonizes the meristematic 
activity by repression of WUSCHEL (WUS) (Das et al., 2009). 
pan mutants have flowers with five petals, similar to those of 
the bop1bop2 double mutant, and PAN is co-expressed with 
BOP1/2 during floral development. Hepworth et  al. (2005) 
demonstrated by yeast two-hybrid assays that, similarly to 
NPR1, BOP1 and BOP2 interact with transcription factors of 
the TGA family but with different specificities, showing pref-
erence for PAN. This fact was corroborated by a bimolecular 
fluorescence complementation (BiFC) assay in Arabidopsis 
mesophyll protoplasts which verified their location in the cell 
nucleus (Xu et  al., 2010). Indeed, BOP1/2–PAN interaction 
was described in the binding to regulatory sequences of the 
AP1 promoter, as a mechanism to promote the identity of the 
floral meristem. Although initially PAN was described as a 
regulator of the development of aerial parts of the plant, PAN 
also has a fundamental role in the stem cell niche of the root 
apical meristem (de Luis Balaguer et al., 2017).

At the biochemical level, PAN ability to bind DNA (and, 
specifically, AG-regulating elements) is altered according to 
the cell redox conditions. PAN contains an N-terminal end 
with five Cys residues able to form intramolecular disulfide 
bridges, which is in agreement to the regulatory mechanism 
of other TGAs (Gutsche and Zachgo, 2016). In addition, a 
sixth Cys residue at the C-terminal end, Cys340, is essential 
for PAN function because it undergoes S-glutathionylation in 
a specific manner (Li et al., 2009; Gutsche and Zachgo, 2016). 
Remarkably, the ROXY1 CC-type glutaredoxin negatively 
regulates PAN protein (Li et al., 2009).

In summary, NPR-like proteins interact with TGA factors, 
which in turn are regulated by glutaredoxins. A clear parallelism 
seems to have evolved between the mechanism regulating the 
defense responses and that regulating floral development (Gatz, 
2013) (Fig. 5).

Concluding remarks

Our understanding of the molecular basis for plant devel-
opment and stress trade-off is still very limited, although 
the balanced function of plant growth and stress regulators 
is known to contribute to plant survival and fitness. The se-
vere growth and developmental defects of NO-deficient and 
NO-overaccumulator mutants (even though they have com-
plex pleiotropic phenotypes), together with impaired responses 
to biotic and abiotic stresses, may be indicative of a prominent 
role for this gasotransmitter in these trade-offs.

Thus, to gain full appreciation of how NO post-translational 
protein modification controls transcriptional reprogramming 

of plant development upon stress, the future challenge is to 
uncover the reversible post-translational regulation and those 
molecular targets across different interconnected signaling 
pathways.

As we move away from Arabidopsis to other model species 
(i.e. the low redundancy species Marchantia polymorpha) and 
crops, it is important to have a clear vision not only of NO 
function and target specificity, but also of gene abundance and 
the evolutionary signaling pathways for translational biology.

Future research should reveal if precise amino acid substi-
tutions in key targets will lead to the design of more accurate 
molecular tools for biotic and abiotic stress tolerance and im-
provement in growth and development in crops.
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