Clinical management of severe infections caused by carbapenem-resistant Gramnegative bacteria: a worldwide cross-sectional survey addressing the use of antibiotic combinations

Elena CARRARA, MD, Alessia SAVOLDI, MD, Laura JV. PIDDOCK, Professor, Francois FRANCESCHI, MD, Sally ELLIS, MSc, Mike SHARLAND, Professor, Adrian John BRINK, Professor, Patrick NA. HARRIS, MD, Gabriel LEVY-HARA, MD, Anusha ROHIT, MD, PhD, Constantinos TSIOUTIS, Professor, Hiba ZAYYAD, MD, Christian GISKE, Professor, Margherita CHIAMENTI, MD, Damiano BRAGANTINI, MD, Elda RIGHI, Professor, Anna GORSKA, PhD

PII: S1198-743X(21)00222-6

DOI: https://doi.org/10.1016/j.cmi.2021.05.002

Reference: CMI 2514

To appear in: Clinical Microbiology and Infection

Received Date: 18 March 2021
Revised Date: 23 April 2021
Accepted Date: 1 May 2021

Please cite this article as: CARRARA E, SAVOLDI A, PIDDOCK LJ, FRANCESCHI F, ELLIS S, SHARLAND M, John BRINK A, HARRIS PN, LEVY-HARA G, ROHIT A, TSIOUTIS C, ZAYYAD H, GISKE C, CHIAMENTI M, BRAGANTINI D, RIGHI E, GORSKA A, Clinical management of severe infections caused by carbapenem-resistant Gram-negative bacteria: a worldwide cross-sectional survey addressing the use of antibiotic combinations, *Clinical Microbiology and Infection*, https://doi.org/10.1016/j.cmi.2021.05.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious
Diseases.

1 Clinical management of severe infections caused by carbapenem-resistant Gram-negative bacteria: a 2 worldwide cross-sectional survey addressing the use of antibiotic combinations 3 4 Elena CARRARA*, Alessia SAVOLDI*, Laura JV PIDDOCK, Francois FRANCESCHI, Sally ELLIS, Mike SHARLAND, Adrian John BRINK, Patrick NA HARRIS, Gabriel LEVY-HARA, Anusha ROHIT, Constantinos 5 6 TSIOUTIS, Hiba ZAYYAD, Christian GISKE, Margherita CHIAMENTI, Damiano BRAGANTINI, Elda RIGHI, 7 Anna GORSKA, Evelina TACCONELLI 8 *equal contribution 9 10 Corresponding author: Elena CARRARA 11 Mail address: elena.carrara@univr.it; phone number +39 045 8127396 12 13 Elena CARRARA, MD: Division of Infectious Diseases, Department of Diagnostic and Public Health, University of 14 Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy. 15 16 Alessia SAVOLDI, MD: Division of Infectious Diseases, Department of Diagnostic and Public Health, University 17 of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy. 18 19 Laura JV PIDDOCK, Professor: Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin 20 Louis-Dunant, Geneva, Switzerland. 21 22 Francois FRANCESCHI, MD: Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin 23 Louis-Dunant, Geneva, Switzerland. 24 25 Sally ELLIS, MSc: Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, 26 Geneva, Switzerland. 27 28 Mike SHARLAND, Professor: Institute of Infection and Immunity, St George's University London, London, UK. 29

30	Adrian John BRINK, Professor: Division of Medical Microbiology, Faculty of Health Sciences, University of Cape
31	Town, Cape Town, South Africa.
32	
33	Patrick NA HARRIS, MD: University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, QLD,
34	Australia; Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, QLD, Australia.
35	
36	Gabriel LEVY-HARA, MD: Infectious Diseases Unit, Hospital Carlos G Durand, Buenos Aires, Argentina.
37	
38	Anusha ROHIT, MD, PhD: Department of Microbiology and Infection Control, The Madras Medical Mission,
39	Adjunct Professor, NITTE University, Chennai, India.
40	
41	Constantinos TSIOUTIS, Professor: School of Medicine, European University Cyprus, 6 Diogenes str., Nicosia
42	2404, Cyprus.
43	
44	Hiba ZAYYAD, MD: Infectious Diseases Unit, The Baruch Padeh Medical Center, Poriya Hospital, M.P. The lower
45	Galilee, Tiberias, Israel.
46	
47	Christian GISKE, Professor: Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska
48	Institutet, Stockholm, Sweden.
49	
50	Margherita CHIAMENTI, MD: Division of Infectious Diseases, Department of Diagnostic and Public Health,
51	University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
52	
53	Damiano BRAGANTINI, MD: Division of Infectious Diseases, Department of Diagnostic and Public Health,
54	University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
55	
56	Elda RIGHI, Professor: Division of Infectious Diseases, Department of Diagnostic and Public Health, University of
57	Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
58	

59	Anna GORSKA, PhD: Division of Infectious Diseases, Department of Diagnostic and Public Health, University of
60	Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
61	
62	Evelina TACCONELLI, Professor: Division of Infectious Diseases, Department of Diagnostic and Public Health,
63	University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy; Division of Infectious Diseases, Department of
64	Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12,
65	72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for healthcare
66	associated infections, Tübingen, Germany

	·
67	Abstract
68	Objectives: optimal treatment of carbapenem-resistant Gram-negative (CR-GNB) infections is uncertain due to the
69	lack of good-quality evidence and the limited effectiveness of available antibiotics. The aim of this survey was to
70	investigate clinicians' prescribing strategies for treating CR-GNB infections worldwide.
71	Methods: a 36-items-questionnaire was developed addressing the following aspects of antibiotic prescribing:
72	respondent's background, diagnostic and therapeutic availability, preferred antibiotic strategies and rationale for
73	selecting combination therapy. Prescribers were recruited following the snowball-sampling approach, and a post-
74	stratification correction with inverse proportional weights was used to adjust the sample's representativeness.
75	Results: 1012 respondents from 95 countries participated in the survey. Overall, 298 (30%) of respondents had local
76	guidelines for treating CR-GNB at their facility and 702 (71%) had access to Infectious Diseases consultation, with
77	significant discrepancies according to country economic status: 85% (390/502) in High-Income-Countries vs 59%
78	(194/283) in Upper-Medium-Income-Countries and 30% (118/196) in Lower-Middle-Income-Countries/Lower-
79	Income-Countries). Targeted regimens varied widely, ranging from 40 regimens for CR-Acinetobacter spp. to more
80	than 100 regimens for CR-Enterobacteriaceae. Although the majority of respondents acknowledged the lack of
81	evidence behind this choice, dual combination was the preferred treatment scheme and carbapenem-polymyxin was
82	the most prescribed regimen, irrespective of pathogen and infection source. Respondents noticeably disagreed
83	around the meaning of 'combination therapy' with 20% (150/783) indicating the simple addition of multiple
84	compounds, 42% (321/783) requiring the presence of <i>in vitro</i> activity and 38% (290/783) of <i>in vitro</i> -synergism.
85	Conclusions: management of CR-GNB infections is far from being standardized. Strategic public health focussed
86	randomised controlled trials are urgently required to inform evidence-based treatment guidelines.
87	
88	
89	Introduction
90	In 2017, the World Health Organization (WHO) prioritized carbapenem-resistant Gram-negative bacteria (CR-
91	GNB) Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae as species of critical importance
92	for research and development of new and effective antibiotics. (1) Only a few new antibiotics with the potential to
93	treat those bacteria have come to the market, and fewer still are in the later stages of their clinical development.(2)
94	However, none of these new compounds have been tested in large randomized clinical trials enrolling patients with

CR-GNB infections before their approval. Robust evidence of their effectiveness and superiority to conventional

and available antibiotics still needs to be established.(2) Existing studies on the treatment of CR-GNB infections are

95

mostly observational and limited by small sample sizes and the lack of adjustment for major confounders.(3-5) The few available guidance documents, although recognizing the low quality of the evidence, suggest that combination therapy might be superior to monotherapy when dealing severe infections. (6, 7) However, due to the very limited evidence, it is difficult to provide precise recommendations as to the specific antibiotic combinations that should be adopted for treating the possible clinical scenarios. In an era where the rational use of the few available antibiotics is of utmost importance, clinicians treating severe infections caused by CR-GNB have to make decisions on which antibiotics to use on a daily basis without the support of evidence-based recommendations and heterogeneous access to diagnostic and therapeutic resources.(8)

The main goal of this study was to conduct a cross-sectional survey to assess antibiotic prescribing patterns among clinicians worldwide with a particular focus on the use of combination therapy.

Methods

Target population and sampling

The target population of the survey was clinicians managing patients with severe infections caused by CR-GNB in their current practice (a minimum of 5 cases of any CR-GNB infection per year was set as a limit to participate in the survey). Participants were sampled from the target population in accordance with the 'snowball sampling' approach, which relies essentially on two key phases: *i*) the recruitment of a core sample of individuals having similar characteristics to the population target (a core-expert group of 99 prescribers selected from surveillance networks and scientific societies) and *ii*) the referral process, in which this group nominates, through various transmission routes, other individuals who meet the eligibility criteria.(9-11) The objective was to involve at least one representative from all the countries where diagnostic capabilities for detecting carbapenem-resistance are in place (the full process is detailed in Table S1a-S2).

Survey development, validation and distribution

The survey content was developed and validated in accordance with current guidelines on surveys in medical research.(12-16) The final questionnaire consisted of 36 open-ended, single and multiple-choice items addressing four major aspects of antibiotic prescribing: respondent's background, diagnostic and therapeutic availability, preferred antibiotic strategies and rationale for selecting combination therapy. The questionnaire was validated by experts from different geographic areas and disseminated via a *Survey Monkey* link (https://it.surveymonkey.com) during a 10 week period (the final questionnaire and details of the development and validation process are detailed in Fig S1 and Table S1b).

127	Statistical analysis
128	Anonymous data were automatically entered by the survey software into an electronic database. Both complete and
129	incomplete questionnaires were included for analysis. Results were expressed as frequency of responses for each
130	question or as median with interquartile range (IQR), when appropriate. The number of total responses for each
131	question item was used as denominator. Responses were computed overall or stratified by four subgroups of interest:
132	WHO region; income category (in accordance with the 2019 World Bank Classification); patients' age (neonates: 0-
133	1 month, children: >1 month- 14 years, adults: > 14 years); respondents' antibiotic prescribing frequency (low rate
134	prescribers: from 1 to 4 cases per year; medium rate prescribers: from 5 to 20 cases per year, high rate prescribers:
135	more than 20 cases per year). Between groups comparisons were computed using Chi-square and a two-sided p
136	value <0.05 was regarded as significant. Data were analysed using STATA 15 (Statacorp LP, College Station, US).
137	Figures were created using Python 3.7.3 and Matplotlib package v. 3.2.1.
138	To address the imbalance due to the non-probabilistic sampling method, a post-stratification correction was applied
139	for pre-selected question items according to the respondent's country and hospital. In the post-stratification analysis,
140	the weights were adjusted so that the totals in each group are equal to the known population totals.(17, 18)
141	
142	Official submission to the Ethics Committee was deemed unnecessary because the participation into the survey was
143	voluntary and anonymous.
144	
145	Results
146	Respondents' characteristics
147	The survey was disseminated during a 10 week- period, from April 15 th until June 28 th 2019. In total 1012
148	respondents from 95 countries and 687 hospitals returned the questionnaire with an average completion rate of 86%.
149	The distribution of respondents according to the four main categories is shown in Table 1. The majority of
150	respondents were specialized in Infectious Diseases (548; 54%), were employed in tertiary level hospitals (810;
151	81%) and in teaching or university affiliated hospitals (859; 85%). The distribution of respondents by country and
152	specialty is displayed in Table S3 and Figure S2.
153	Local prevalence of carbapenem resistance in GNB was reported with high variability among countries and among
154	hospitals within the same country and, in some cases even within the same region. (Table S4). Overall, 20%
155	(193/974) of respondents did not have data on local phenotypic drug resistance rates; the genotypic mechanism of
156	resistance was not known by 32% (299/974) of respondents. Relative to CR-Klebsiella pneumoniae, the production

157	of serine-carbapenemases was the most frequent resistance mechanism in the American Region (93/203; 46%),				
158	while the production of metallo-beta-lactamases was the most common resistance mechanism in South East Asia				
159	(39/90; 43%) and Western Pacific Regions (34/77; 44%) (Table S5).				
160	Availability of diagnostics, therapeutics, and treatment guidelines				
161	Availability of antibiotics was heterogeneous across countries and, often, also within the same country. Gentamicin,				
162	trimethoprim-sulfamethoxazole (TMP-SMX), rifampin, amikacin, and carbapenems were available in more than				
163	95% of the surveyed countries, regardless of the income. Carbapenems were placed under restrictive policies in 78%				
164	(32/41) of High-Income-Countries; in 89% (25/28) of Upper-Middle-Income-Countries and in 61% (16/26) of				
165	Lower-Middle-Income-Countries/Lower-Income-Countries. Colistin was available in 83% (79/94) of the surveyed				
166	countries, with restrictive policies in place in 90% (37/41) of HIC, 91% (25/28) of Upper-Middle-Income-Countries				
167	and 77% (20/26) of Lower-Middle-Income-Countries/Lower-Income-Countries. Among the drugs that most recently				
168	entered the market, ceftazidime/avibactam was available in 33% (32/94) of countries (26/41, 63% High-Income-				
169	Countries; 4/28, 14% Upper-Middle-Income-Countries and 2/26, 8% Lower-Middle-Income-Countries/Lower-				
170	Income-Countries). Less than 10 respondents had access to the most recently approved antibiotic compounds				
171	(meropenem/vaborbactam, eravacycline and plazomicin). Availability of antibiotics by country and income is				
172	detailed in Figures S3a-c.				
173	Only 30% (298/981) of respondents reported that local guidelines for treating CR-GNB were available, with no				
174	significant difference according to income category (Table S6). Active Infectious Diseases consultation services				
175	were significantly more common among respondents from High-Income-Countries (390/582, 85%) compared to				
176	respondents from Upper-Middle-Income-Countries (194/283, 59%) and Lower-Middle-Income-Countries/Lower-				
177	Income-Countries (118/196, 30%) (p <0·01).				
178	As for diagnostic resources, 77% (767/908) of respondents had access to standard susceptibility testing at a local				
179	level with no differences according to the income status. More complex diagnostics (MALDI-TOF and NAAT) were				
180	significantly more accessible in High-Income-Countries compared to Upper-Middle-Income-Countries and Lower-				
181	Middle-Income-Countries/Lower-Income-Countries (Table 2). As a direct consequence of this variability, the timing				
182	of diagnosis was considerably longer in low-resourced settings, with 23% (110/473) of respondents from those				
183	countries receiving blood cultures more than 72 hours after sampling, compared to only 7% (37/500) in High-				
184	Income-Countries (Table 3).				
185	Prescribing strategies				

186 Colistin and tigecycline were preferably prescribed in combination by 73% (492/671) and 71% (330/647) of 187 respondents, followed by combination fosfomycin (53%; 244/463), ceftazidime/avibactam (45%; 145/333), 188 polymyxin B (35%; 104/297) and gentamicin (34%; 264/770) (Table 4). 189 As for prescribing strategies, carbapenem loading dose and extended infusion were adopted more frequently by high 190 rate prescribers compared to clinicians that dealt with CR-GNB infections less frequently. Similarly, higher dose 191 tigecycline and loading dose of polymyxins and tigecycline, were significantly more frequent in the high rate 192 prescribers group compared with the others (p <0.01 for all comparisons; Supplementary Table S7). 193 The decision to start an empiric coverage for CR-GNB was significantly more common in prescribers from High-194 Income-Countries and directly associated with patients' clinical severity. Local epidemiological data and/or 195 individual risk factors played less of a role in driving the decision to start empiric coverage (Figure 1). 196 As for targeted therapy, the preferred strategy was the combination of two antibiotics (between 35% and 45% of 197 respondents depending on sepsis sources or bacterial species). The use of single-antibiotic therapy was second in 198 preference, especially for CR Acinetobacter spp. And CR Pseudomonas spp. (23-37% and 26-35% of respondents, 199 respectively, depending on the sepsis source). A combination of three antibiotics was regarded as the preferred 200 strategy by a lower number of respondents (15-20% depending on sepsis sources or pathogen type). Full results on 201 preferred therapeutic choices are displayed in Tables S8-S10. 202 When considering the components in the targeted combination regimens, respondents selected an extremely wide 203 spectrum of distinct combinations. The number of regimens ranged from 40 regimens in CR Acinetobacter spp. To 204 more than 100 regimens in CR Enterobacteriaceae. Overall, the combination "carbapenem plus a polymyxin" was 205 the most prescribed option for treating sepsis, irrespective of bacterial species or sepsis source (full results on 206 targeted treatment are presented in Figures S4a-c and Tables S11-S13). 207 Only 80 responses were available regarding treatment options in children and neonates; similar to the adult 208 population, the most commonly prescribed treatment among children was "carbapenem plus polymyxin". Full data 209 on pediatric population are available in the supplementary material (Table S14-S16). 210 The concept of 'combination therapy' 211 The main reasons leading to the prescription of combination treatment were to improve clinical efficacy (570/707; 212 81% of respondents) and to reduce resistance development (364/707; 51%) (Figure S5). According to 80% of 213 respondents (611/783), 'combination therapy' must include antibiotics which retain some degree of in vitro activity

(321/783; 42% of respondents) or be synergic (290/783; 38% of respondents). Twenty percent of respondents

215	(150/783) conceived 'combination therapy' as the simple association of two or more antibiotic compounds,
216	regardless their potential in vitro activity (Table S17).
217	Type of evidence supporting the use of combination therapy included: experts' recommendations (62%; 486/777),
218	evidence from randomized controlled trials (37%; 285/777), evidence from in vitro studies (36%; 277/777),
219	controlled observational studies (34%; 264/777) and personal experience (29%; 224/777) (Figure S6).
220	
221	Discussion
222	Our results showed that the treatment of CR-GNB infections is far from being standardized and clinicians over the
223	world use a wide range of antibiotic strategies and combinations depending on clinical severity, local availability
224	and clinical experience. Of interest, empiric coverage for CR-GNB was driven mostly by the severity of the clinical
225	scenario and more commonly prescribed in High-Income-Countries compared to lower resourced settings. As for
226	targeted treatment, the majority of respondents opted for a double-antibiotic combination (most commonly
227	polymyxin plus carbapenem) despite the lack of evidence supporting this indication.
228	Access to rapid diagnostics and recently approved antibiotics was inversely correlated with country economic status.
229	Gentamicin, amikacin and TMP-SMX were the most accessible compounds worldwide, while new BL/BLIs and
230	also older antibiotics such as colistin and polymyxin B were available in less than 50% of the surveyed countries.
231	Our results confirmed that not only high-priced newer drugs are very rarely accessible, but also off-patent drugs can
232	encounter supply shortages since manufacturing costs are not compensated by the low sale-price.(19) A survey
233	conducted by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) revealed that there
234	was a reduction in access to 'old antibiotics' in the United States, Europe and Australia from 2011 to 2015.(20)
235	Similar data collected in Lower-Middle-Income-Countries found that access to 'old antibiotics' was very limited
236	even in countries with high rates of antibiotic resistance.(21)
237	Up to 80% of respondents from High-Income-Countries favoured empirical coverage for CR-GNB in presence of
238	severe clinical condition and epidemiological risk factors. Conversely, confronted with the same clinical scenario,
239	only half of respondents from Lower-Middle-Income-Countries/Lower-Income-Countries opted for empirical
240	coverage of CR-GNB. The main reason of this significant discrepancy probably resides in the lack of viable
241	therapeutic options in those countries, in line with the most recent findings revealing that early coverage with
242	colistin does not provide any benefit on survival in presence of severe CR-GNB infections.(22)
243	As for targeted treatment, despite the overall preference for dual antibiotic therapy, a notable portion of prescribers
244	still opt for monotherapy when dealing with microbiologically documented CR-GNB infections. The choice of

245 monotherapy could either reflect the actual lack of evidence supporting specific combinations or the absence of 246 other viable options due to concomitant resistance, drug toxicity or local unavailability. 247 Despite the relatively low percentage of paediatricians and neonatologists contributing to the survey (8.5%), a 248 significant heterogeneity of prescribing patterns was identified also in this patients' population. A similar lack of 249 standardization has been already observed in two global point prevalence surveys, where almost 200 different 250 antibiotic regimens were used for treating sepsis in children and neonates. (23) (24) Overall, 80% of prescribers agreed that the main aim of combination therapy is to improve therapeutic efficacy, 251 252 while 50% supported the use of combination for reducing resistance development or promoting microbiological 253 eradication when compared to monotherapy. The majority of prescribers seemed to recognize that the use of 254 combination therapy for treating CR-GNB infections comes from "expert" recommendations and that the supporting 255 evidence is very poor and of low quality, being composed almost exclusively of observational and in vitro studies. 256 Interestingly, approximately one third of respondents believed that the use of combination therapy is supported by 257 RCTs, although valid examples in the literature are scarce. (25) A even much higher rate of prescribers sharing this 258 same misconception have been also observed in a similar survey on management of CR-GNB infections in Europe 259 and US in 2017. In this study, up to 55% of respondents declared that combination therapy is supported by a strong 260 level of evidence.(26) 261 262 Finally, it is notable that the concept of 'combination therapy' had a different meaning among respondents, with 263 42% indicating 'combination of in vitro active drugs', 38% indicating 'combination of in vitro synergistic drugs' 264 and 20% indicating 'combination of two or more drugs, regardless the *in vitro* activity'. Disagreement among 265 respondents clearly reflects the lack of a standardized definition for 'combination therapy' also in clinical studies, 266 with the result that there can be a misinterpretation and poor generalizability of study results.(27) 267 Although the referral process allowed the rapid recruitment of respondents from areas of the world that are usually 268 difficult to access, the use of a non-probabilistic sampling method remains a main limitation of this study. Our 269 sampling process started from surveillance networks in order to track and filter hospitals and countries having the 270 minimum standard needed for diagnosing CR-GNB infections. Therefore, we may have missed countries and 271 hospitals in which microbiological diagnosis is made with an acceptable degree of standardization, but without 272 active surveillance systems, particularly in LMIC/LIC and non-English speaking countries. Additionally, it should 273 be considered that individuals embedded in a network have greater probabilities of being identified and accessed

274	than others, with risk of over-representing certain prescribers. For this reason, a post-stratification correction with
275	inverse proportional weighting was applied to mitigate the risk of oversampled countries and hospitals.
276	In conclusion, we recorded a huge variability in the management of severe CR-GNB infections among over one-
277	thousand clinicians worldwide. Unequal access to diagnostic and therapeutic resources and the unavailability of
278	evidence-based recommendations were two strong determinants contributing to this heterogeneity. Additionally, the
279	lack of a universally accepted definition of 'combination therapy' might have further impaired the confidence in
280	results from available clinical studies. These results demonstrate the urgent need for public health focussed strategic
281	randomised controlled trials with the involvement of Low and Low-Middle-Income-Countries. International
282	guidelines will be able to inform decision-making only when results from adequately conducted RCTs will be
283	available.
284	
285	Role of the funding source
286	GARDP supported the entire project, GARDP secondee (LJVP) and employees contributed to study design, data
287	interpretation, and writing of the manuscript. All authors had full access to data and had final responsibility for the
288	decision to submit for publication.
289	
290	Contributors
291	ET and LJVP conceived the idea for this project. EC, AS, SE, FF, LJVP and ET designed the study. AS, EC, AC
292	contributed to the data analysis and synthesis. AS and EC wrote the paper. All authors contributed to the survey
293	development, pilot phase, revision of the paper and approval of the final version for submission. All authors had full
294	access to all the data in the study and had final responsibility for the decision to submit for publication.
295	
296	Declaration of interests
297	AS, EC, AG, GLH, ER, CT, AR, HZ, CG, AJB and ET have no competing interests to be declared. SE, FF and
298	LJVP are employed by GARDP. PNAH declares research grants outside the submitted work from Sandoz
299	Shionogi and MSD and speakers' fees from Pfizer.
300	
301	Acknowledgments

302

We thank Ruth Joanna Davis for the editorial support.

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

We also thank each member of the COHERENCE core-expert group: Mohammad Abdallah, Aaron Oladipo Aboderin, Akim Adegnika Ayola, Tara Anderson, Anucha Apisarnthanarak, Tobias Manuel Appel, Amin A. Aqel, Alexandra Barac, Nur Benzonana, Gabriel Birgand, Michael Borg, Eric Brown, Biljana Carević, Miquel Ekkelkamp, Karl Emerole, Maha Fathy, Fidelma Fitzpatrick, Nikkiah Forbes, Corey A. Forde, Alexander W. Friedrich, Ana Cristina Gales, Brent Gilpin, Christian Giske, Debra Goff, Eduardo Gotuzzo, Nelesh Govender, Manuel Guzman Blanco, Rahm Hamers, Patrick Harris, Po-Ren Hsueh, Alain C. Juayan, Gunnar Kahlmeter, Souha Kanj, Basudha Khanal, Yang Soo Kim, Bela Kocsis, Roman Kozlov, Fiorella Krapp Lopez, Jaime Labarca, Todd Campbell Lee, Amel Omezzine Letaief, Gabriel Levy Hara, Yi-Tsung Lin, Veranja Liyanapathirana, David Lupande, Surbhi Malhotra-Kumar, Kalisvar Marimuthu, Marc Mendelson, Gordana Mijovic, Rima A. Moghnieh, Andreea Moldovan, Jaime C. Montoya, Nico Mutters, Lawrence Mwananyanda, Aissatou Lakhe Ndeye, Jason Newland, Alison Nicholson, Ahmad Norazah Binti, Carlos Palos, Lea Papst, Aurelia Jennifer Perera, Pakpoom Phoompoung, Chimanjita Phukan, Elisabeth Presterl, Dianelys Quinones Perez, Lul Raka, Ossama Rasslan, Elda Righi, Jesus Rodriguez Bano, Emmanuel Roilides, Bhattacharya Sanjay, Al-Abri Seif Salem, Sharmila Sengupta, Sadia Shakoor, Mike Sharland, Nalini Singh, Le Huu Song, Igor Stoma, Silva Tafaj, Pierre Tattevin, Jens Thomsen, Athanasios Tsakris, David Tsibadze, Paul Turner, David Van Duin, Silvio Vega, Thirumalaisamy P Velavan, Aija Vilde, Maria Virginia Villegas, Peter Waiswa, Timothy Walsh, Minggui Wang, Evelyn Wesangula, Andreas F. Widmer, Yonghong Xiao, Wei Yu, Hiba Zayyad, Benedetta Allegranzi, Anna Zorzet.

References

- 322 1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and
- development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect
- 324 Dis. 2018;18(3):318-27.
- 325 2. Theuretzbacher U, Bush K, Harbarth S, Paul M, Rex JH, Tacconelli E, et al. Critical analysis of
- antibacterial agents in clinical development. Nat Rev Microbiol. 2020;18(5):286-98.
- 32. Parchem NL, Bauer KA, Cook CH, Mangino JE, Jones CD, Porter K, et al. Colistin combination therapy
- 328 improves microbiologic cure in critically ill patients with multi-drug resistant gram-negative pneumonia. Eur J Clin
- 329 Microbiol Infect Dis. 2016;35(9):1433-9.
- 330 4. Simsek F, Gedik H, Yildirmak MT, Iris NE, Turkmen A, Ersoy A, et al. Colistin against colistin-only-
- 331 susceptible Acinetobacter baumannii-related infections: Monotherapy or combination therapy? Indian J Med
- 332 Microbiol. 2012;30(4):448-52.
- 333 5. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment outcome of
- bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens.
- 335 Antimicrob Agents Chemother. 2012;56(4):2108-13.
- Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of
- 337 infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial
- 338 Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob
- 339 Chemother. 2018;73(suppl_3):iii2-iii78.
- 7. Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of Infections Caused by
- 341 Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol
- 342 Rev. 2018;31(2).
- 343 8. Isler B, Doi Y, Bonomo RA, Paterson DL. New Treatment Options against Carbapenem-Resistant
- Acinetobacter baumannii Infections. Antimicrob Agents Chemother. 2019;63(1).
- 345 9. Sadler GR, Lee HC, Lim RS, Fullerton J. Recruitment of hard-to-reach population subgroups via
- adaptations of the snowball sampling strategy. Nurs Health Sci. 2010;12(3):369-74.
- 347 10. Naderifar M. GH, Ghaljaie F. Snowball Sampling: A Purposeful Method of Sampling in Qualitative
- Research. Strides Dev Med Educ 2017;14.
- 349 11. Atkinson R. FJ. Accessing Hidden and Hard-to-Reach Populations: Snowball Research Strategies. 2001.
- 350 12. Colbert CY, Diaz-Guzman E, Myers JD, Arroliga AC. How to interpret surveys in medical research: a
- 351 practical approach. Cleve Clin J Med. 2013;80(7):423-35.
- 352 13. Kelley K, Clark B, Brown V, Sitzia J. Good practice in the conduct and reporting of survey research. Int J
- 353 Qual Health Care. 2003;15(3):261-6.
- 354 14. Bennett C, Khangura S, Brehaut JC, Graham ID, Moher D, Potter BK, et al. Reporting guidelines for
- survey research: an analysis of published guidance and reporting practices. PLoS Med. 2010;8(8):e1001069.

- 356 15. Burns KE, Duffett M, Kho ME, Meade MO, Adhikari NK, Sinuff T, et al. A guide for the design and
- 357 conduct of self-administered surveys of clinicians. Cmaj. 2008;179(3):245-52.
- 358 16. Draugalis JR, Coons SJ, Plaza CM. Best practices for survey research reports: a synopsis for authors and
- 359 reviewers. Am J Pharm Educ. 2008;72(1):11.
- 360 17. Little RJA. Post-Stratification: A Modeler's Perspective. Journal of American Statistical Association.
- **361** 1993;88(423):1001-12.
- 362 18. Williams IBaR. Post-stratification and Response Bias in Survey Data with Applications in Political Science.
- 363 2005.
- 364 19. Monnier AA, Schouten J, Tebano G, Zanichelli V, Huttner BD, Pulcini C, et al. Ensuring Antibiotic
- 365 Development, Equitable Availability, and Responsible Use of Effective Antibiotics: Recommendations for
- 366 Multisectoral Action. Clin Infect Dis. 2019;68(11):1952-9.
- 20. Pulcini C, Mohrs S, Beovic B, Gyssens I, Theuretzbacher U, Cars O. Forgotten antibiotics: a follow-up
- inventory study in Europe, the USA, Canada and Australia. Int J Antimicrob Agents. 2017;49(1):98-101.
- 369 21. Tebano G, Li G, Beovic B, Bielicki J, Brink A, Enani MA, et al. Essential and forgotten antibiotics: An
- inventory in low- and middle-income countries. Int J Antimicrob Agents. 2019;54(3):273-82.
- 371 22. Zak-Doron Y, Dishon Benattar Y, Pfeffer I, Daikos GL, Skiada A, Antoniadou A, et al. The Association
- 372 Between Empirical Antibiotic Treatment and Mortality in Severe Infections Caused by Carbapenem-resistant Gram-
- negative Bacteria: A Prospective Study. Clin Infect Dis. 2018;67(12):1815-23.
- 374 23. Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R. Carbapenem-Resistant
- Enterobacteriaceae in Children, United States, 1999-2012. Emerg Infect Dis. 2015;21(11):2014-21.
- 376 24. Jackson C, Hsia Y, Basmaci R, Bielicki J, Heath PT, Versporten A, et al. Global Divergence From World
- 377 Health Organization Treatment Guidelines for Neonatal and Pediatric Sepsis. The Pediatric Infectious Disease
- 378 Journal. 2019;38(11).
- 379 25. Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y, Benattar YD, et al. Colistin alone versus
- 380 colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria:
- an open-label, randomised controlled trial. Lancet Infect Dis. 2018;18(4):391-400.
- 382 26. Papst L, Beovic B, Pulcini C, Durante-Mangoni E, Rodriguez-Bano J, Kaye KS, et al. Antibiotic treatment
- 383 of infections caused by carbapenem-resistant Gram-negative bacilli: an international ESCMID cross-sectional
- survey among infectious diseases specialists practicing in large hospitals. Clin Microbiol Infect. 2018;24(10):1070-
- 385 6.
- Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination
- therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69(9):2305-9.

Table 1: Number of respondents stratified by the four subgroups of interest 1

WHO region	Respondents, n (%)
Africa	64 (6.0)
Americas	205 (20-5)
Eastern Mediterranean	116 (11.5)
Europe	444 (44·0)
South East Asia	95 (9.3)
Western Pacific	88 (8.7)
Total	1012 (100)
Patients' age	Respondents, n (%)
Adults	867 (85.6)
Pediatric population	145 (14·3)
- Children	- 110 (10.9)
- Neonates	- 35 (3.5)
Total	1012 (100)
Income category	Respondents, n (%)
High income countries	512 (50·6)
Upper-Middle income countries	296 (29·2)
Lower -Middle income/Low	204 (20·1)
income countries	204 (20.1)
Total	1012 (100)
Total	
Prescribing frequency*	Respondents, n (%)
	Respondents, n (%) 257 (25·4)
Prescribing frequency*	
Prescribing frequency* Low rate prescribers	257 (25.4)
Prescribing frequency* Low rate prescribers Medium rate prescribers	257 (25·4) 416 (41·1)
Prescribing frequency* Low rate prescribers Medium rate prescribers High rate prescribers	257 (25·4) 416 (41·1) 283 (28·0)

3 Table 2: Availability of diagnostic tools for detecting CR-GNB in blood cultures

Diagnostic tool	HIC	UMIC	LMIC/LIC	Overall	D l
% (N)	45·8 (N 469)	26·3 (N 268)	27.9 (N 171)	N 908	P value
Standard AST	75.2 (373)	82.6 (238)	76·3 (156)	77.5 (767)	NS
MALDI-TOF	58.8 (277)	17.7 (61)	2.8 (15)	32.4 (353)	<0.001
Rapid phenotypic test from blood isolates	32·3 (142)	21-1 (61)	1.5 (15)	20.8 (218)	<0.001
NAAT	47.2 (217)	15.4 (45)	9.6 (21)	28.4 (283)	<0.001
- in all CR-GNB strains	26.6 (157)	6.4 (16)	5.8 (11)	15.5 (184)	<0.001
- only in selected cases	20.6 (60)	9.1 (29)	3.7 (10)	12.9 (99)	0.008
Internal testing facilities NOT available	5.3 (34)	14.0 (38)	21.7 (25)	10. 6 (97)	<0.001

Frequencies of positive responses are presented as percentages of the total of responses from each income category after adopting post-stratification correction by hospital and country; n: number of respondents.

AST: Antimicrobial susceptibility test; NAAT: nucleic acid amplification testing; NS: non-significant; HIC: High income countries, UMI: Upper-Middle income countries; Lower -Middle income/Low income countries

Table 3: Time needed by laboratories to inform on the positivity of blood cultures

Time to positive		P value		
blood cultures	HIC	UMI	LMI/LIC	
	51·5 (N 500)	27·2 (N 282)	25·3 (N 191)	
Within 36 hours	41.2 (172)	21.6 (70)	20.8 (51)	0.01
Within 48 hours*	73.2 (349)	40.0 (139)	42.5 (93)	<0.001
Within 72 hours*	80·1 (463)	52.0 (224)	59.8 (139)	<0.001
Within 96 hours*	99·1 (494)	91.8 (260)	80.4 (174)	<0.001
More than 96 hours	0.9 (6)	8.2 (22)	19.6 (17)	<0.001

Frequencies of positive responses are presented as cumulative percentages within each time interval using the total of responses from each income category as a denominator and applying post-stratification correction by hospital and country; HIC: High Income countries, UMI: Upper-Middle income countries; Lower -Middle income/Low income countries

7 Table 4: Antibiotic compounds always prescribed in combination by respondents

Prescribing frequency	I prescribe combination very rarely	Meropenem /vaborbactam	Ceftazidime/ avibactam	Ceftolozane/ tazobactam	Plazomicin	Eravacycline	Aztreonam
	N (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)
High rate prescriber	11/255 (4.3)	0/4 (0)	39/86 (45.3)	26/93 (28.0)	1/3 (33.3)	0/2	28/100 (28.0
Medium rate prescriber	29/321 (9.0)	7/19 (36.8)	72/146 (49.3)	47/151 (31.1)	0/3 (0.0)	0/4	37/139 (26.6)
Low rate prescriber	68/209 (32.5)	4/23 (17.4)	34/101 (33.7)	21/100 (21.0)	2/6 (33.3)	2/6 (33.3)	24/117 (20.5)
Overall	108/785 (13.7)	11/46 (23.9)	145/333 (45.3)	94/344 (27.3)	3/12 (25)	2/12 (16.7)	89/356 (25)
P value	<0.001	NP	0.047	NP	NP	NP	NP
Prescribing frequency	Gentamicin	Tobramycin	Amikacin	Tigecycline	Polymyxin B	Colistin	Fosfomycin (IV)
	C/A (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)	C/A (%)
High rate prescriber	81/250 (32.4)	17/132 (12.9)	119/248 (48.0)	132/228 (57.9)	45/99 (45.5)	191/230 (83.0)	98/162 (60.5)
Medium rate prescriber	109/315 (34.6)	26/176 (14.8)	173/307 (56.4)	61/263 (23.2)	41/121 (33.9)	212/281 (75.4)	105/188 (55.9)
Low rate prescriber	74/205 (36.1)	37/137 (27.0)	102/187 (54.5)	137/156 (87.8)	18/77 (23.4)	89/160 (55.6)	41/113 (36.3)
Overall	264/770 (34.2)	80/445 (17.9)	394/742 (53)	330/647 (70.6)	104/297 (35)	492/671 (73)	244/463 (52.7)
P value	NP	0.004	NP	<0.001	0.009	<0.001	<0.001

Legend: C: always in combination; A: number of respondents with available agent; NP: not performed (less than five respondents contributed to the analysis)

The results are presented as proportions and stratified by prescribing frequency. As denominator, only the number of respondents declaring the availability of the antibiotic compounds were considered. The statistical significance was computed only if more than five respondents contributed to the analysis.

Figure 1: Percentage of respondents who are likely to cover empirically for CR-GNB according to different

clinical, epidemiological/microbiological factors and stratified by country-income

10

11

12

		CLINICAL FACTORS						
(%) OF RESPONDENTS			Clinically stable/ No risk factor for immunodepression	Clinically stable/ Risk factors for immunodepression	Worsening clinical conditions (empirical therapy not covering CR-GNB)	Septic shock		
	Known colonization in ANY site	HIC	8-1	32.7	80.6	70-2		
		UMIC	4.3	26.4	66∙6	63.4		
		LMIC/LIC	2.3	35.5	50.1	43.7		
TORS		p value	NS	NS	0.003	0.02		
	The	HIC	28.0	55.0	83.1	67.9		
	Infection originates	UMIC	14.8	46.9	74.1	62.8		
	from a	LMIC/LIC	26.9	36.0	40.6	42.6		
	known colonized site	p value	NS	NS	< 0.001	0.03		
FAC	Recent	HIC	7.6	64.3	67.2	66.8		
	admission in a highly- endemic hospital (<90 days)	UMIC	6.3	29.8	65.7	62.7		
CROBIOLOGICA		LMIC/LIC	6.0	38.7	49.1	36.4		
		p value	NS	NS	NS	0.005		
	Recent travel	HIC	4.7	26.2	58.7	57.1		
	in a highly-	UMIC	4.6	18.3	62.1	58.7		
M	endemic	LMIC/LIC	9.3	18-2	43.7	31.1		
EPIDEMIOLOGICAL/MICROBIOLOGICAL FACTORS	country (<90 days)	p value	NS	NS	NS	0.01		
	Recent	HIC	5.9	23.0	56.0	55.3		
	exposure to	UMIC	5.4	27.2	66.4	50.1		
	carbapenem	LMIC/LIC	3.9	15.8	44.0	61.3		
	(<90 days)	p value	NS	NS	NS	NS		
	Preliminary identification highly suggestive of CR-GNB	HIC	25.6	60.5	81.0	70.5		
苗		UMIC	24.8	45.9	81.2	70.9		
		LMIC/LIC	13.2	46.7	58.0	41.0		
		p value	NS	NS	0.006	0.003		
	Positive	HIC	54.6	68.3	63.5	62.7		
	rapid	UMIC	30.9	53.6	67.4	65.5		
	susceptibility	LMIC/LIC	0.0	30.4	69.5	54.3		
	tests i.e. NAAT, carba-NP*	p value	NS	NS	NS	NS		

Abbreviations: HIC: high income countries; UMIC: upper-middle income countries; LMIC: lower-middle income countries; LIC: low income countries; NAAT: nucleic acid amplification testing; NS: not statistically significant. *Number of respondents for denominator are 215 (only the respondents declaring that their labs can perform rapid tests for CR-GNB).