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instability-induced flow maldistribution 
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Abstract 

Two-phase flow boiling is susceptible to the Ledinegg instability, which can result in non-uniform 

flow distribution between parallel channels and thereby adversely impact the heat transfer 

performance. This study experimentally assesses the effect of thermal coupling between the 

parallel channels on flow maldistribution caused by the Ledinegg instability and compares the 

results to our prior theoretical predictions. A system with two parallel microchannels is 

investigated using water as the working fluid. The channels are hydrodynamically connected via 

common inlet/outlet plenums and supplied with a constant total flow rate. The channels are 

uniformly subjected to the same input power (which is increased in steps). Two separate 

configurations are evaluated to assess drastically different levels of thermal coupling between the 

channels, namely thermally isolated and thermally coupled channels. Synchronized measurements 

of the flow rate in each individual channel, wall temperature, and pressure drop are performed 

along with flow visualization to compare the thermal-hydraulic characteristics of these two 

configurations. Thermal coupling is shown to reduce the wall temperature difference between the 

channels and dampen flow maldistribution. Specifically, the range of input power over which flow 
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maldistribution occurs is noticeably smaller and the maximum severity of flow maldistribution is 

reduced in thermally coupled channels. The data provide a quantitative account of the effect of 

lateral thermal coupling in moderating flow maldistribution, which is corroborated by comparison 

to predictions from our two-phase flow distribution model. This combined experimental and 

theoretical evidence demonstrates that, under extreme conditions when one channel is significantly 

starved of flow rate and risks dryout, channel-to-channel thermal coupling can redistribute the heat 

load from the flow-starved channel to the channel with excess flow. Due to such a possibility of 

heat redistribution, the coupled channels are significantly less prone to flow maldistribution 

compared to thermally isolated channels.  

Keywords:  Flow boiling; Ledinegg instability; maldistribution; parallel microchannels; thermal 

coupling 

Nomenclature 

𝐴𝑤𝑎𝑙𝑙 total area of the walls of a single channel (2𝐻𝑐𝐿ℎ + 𝑊𝑐) 

𝐴𝑏 cross-sectional area of the channel block (𝐻𝑏𝑊𝑏 − 𝐻𝑐𝑊𝑐) 

𝐶𝑙𝑎𝑡 lateral thermal conductance 

𝐻 height 

𝐼 electric current 

𝑘 thermal conductivity 

𝐿 length  

𝑃 power applied to each channel block 

𝑃𝑖𝑛 heating power going into the channel 

𝑃𝑙𝑜𝑠𝑠 power loss to ambient 

𝑃𝑇 total power applied to the test section (2𝑃) 

𝑃𝑇,𝑖𝑛 total power going into the channels (2𝑃𝑖𝑛) 

𝑝𝑜𝑢𝑡 outlet pressure  
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∆𝑝𝑢ℎ pressure drop across the unheated channel length 

∆𝑝ℎ pressure drop across the heated channel length 

∆𝑝𝑜 overall pressure drop across the channels 

𝑄 volumetric flow rate 

𝑞𝑖𝑛
"  heat flux into the channel (𝑞𝑖𝑛

" = 𝑃𝑖𝑛 𝐴𝑤𝑎𝑙𝑙⁄ ) 

𝑆 pitch 

𝑇 temperature 

𝑇𝑓𝑙,𝑖𝑛 inlet fluid temperature 

𝑇𝑓𝑙,𝑜𝑢𝑡 outlet fluid temperature 

𝑇𝑠𝑎𝑡 saturation fluid temperature 

𝑇𝑤𝑎𝑙𝑙,𝑖 wall temperature of the 𝑖𝑡ℎ channel  

𝑉 voltage 

𝑊 width 

𝑦 vertical coordinate 

𝑧 streamwise coordinate 

 

Subscripts 

𝑎𝑖𝑟 air gap 

𝑏 channel block 

𝑐 channel 

𝑒𝑥𝑝 experiment 

ℎ heated 

𝑖 channel index (𝑖 = 1 or 2) 

𝑚𝑜𝑑 model 

wall channel wall 

 

Greek Letters 

𝜀𝑖 fraction of the total flow rate going into channel i (𝑄𝑖 𝑄𝑇⁄ ) 
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1. Introduction 

Over the last three decades, microscale two-phase heat sinks and cold plates have been 

explored for low-pumping-power cooling of power-dense electronics in applications such as data 

centers [1-2], traction inverters of hybrid and electric vehicles [3-4], and radars [5]. The coolant 

flow is typically routed through multiple parallel channels to maximize the heat transfer area. Such 

two-phase flow cooling strategies are attractive because they improve the heat transfer 

performance and reduce the working temperatures and temperature gradients by utilizing the latent 

heat of vaporization, while requiring a lower coolant flow rate (compared to single-phase cooling). 

However, boiling flows are inherently prone to instabilities which may adversely impact the heat 

sink performance, and in some cases, even lead to a premature dry-out at heat fluxes lower than 

the predicted critical heat flux (CHF) [6, 7]. Flow boiling instabilities are commonly categorized 

as either dynamic or static instabilities [8-12]. Static instabilities, the focus of the current work, 

occur when a small disturbance causes the system to suddenly transition to a new stable operating 

point that is significantly different from the initial condition.  

One static instability of significant interest is the Ledinegg instability [13] because it 

induces flow maldistribution even under steady and uniform heating conditions. The Ledinegg 

instability is a consequence of the non-monotonic channel demand curve (channel pressure drop 

versus flow rate) and the supply pump curve in flow boiling systems. For a single channel, the 

Ledinegg instability occurs when the slope of the supply pump curve is greater than that of the 

channel demand curve and is characterized by a drastic reduction in the flow through the channel. 

In a system with multiple parallel channels, the Ledinegg instability results in non-uniform flow 

distribution between the channels. This is detrimental to heat sink performance because the 

channels that are starved of flow relative to a uniform flow distribution may undergo dry-out. This 
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may trigger an apparent premature critical heat flux and limit the heat sink performance 

predictability. Several methods have been proposed to dampen the flow maldistribution caused by 

the Ledinegg instability, including inlet orifices and throttle valves [7, 14-15], active control of the 

flow at the channel inlet through pumps and valves [16-18], and increasing the system pressure 

[19]. However, these measures have an associated penalty of significantly increasing either the 

system complexity or pressure drop (i.e., pumping power), thereby reducing the attractiveness of 

two-phase heat sinks.  

Several studies have characterized the flow maldistribution caused by the Ledinegg 

instability. For instance, Akagawa et al. [20] investigated the flow maldistribution in multiple large 

evaporator tubes (4 mm inner diameter; 40 m long). They obtained the demand curves for  each 

tube undergoing flow boiling and measured the flow rate distribution in a system with up to three 

parallel tubes. It was demonstrated that the flow rate distribution in a multiple-tube system could 

be estimated from the individual tube load curves. A modeling approach was developed to generate 

a stability criterion by performing a Laplace transformation on the linearized momentum and 

continuity equations for a system of parallel tubes, which yielded predictions consistent with their 

experimental observations. Minzer et al. [21-22] investigated the flow distribution behavior in a 

system with two heated parallel tubes (5 mm inner diameter; 6 m long). In these studies, the flow 

rate measurements in individual tubes were obtained either through a pressure drop element (such 

as an inlet restrictor, throttle valve, or flow meter) at the inlet of each channel or by collecting and 

measuring the fluid volume exiting each channel. Notably, these studies also focused on large 

separate tubes that are thermally isolated from each other, differing drastically from parallel 

microchannel heat sinks used in electronics cooling applications, where channels are thermally 

connected via a common substrate. Kingston et al. [23] experimentally investigated the 
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temperature non-uniformity caused by the Ledinegg instability in two thermally isolated, parallel 

channels. Two cylindrical microchannels were uniformly subjected to the same power which was 

increased in steps. With increasing power, when boiling occurred in one of the channels, the 

Ledinegg instability triggered a temperature difference between the channels, which grew with 

increasing power. The wall temperature and heat flux measurements were used to attribute the 

observed behavior to the increasing severity of flow maldistribution between the channels. In our 

recent study [24], we extended the approach presented in Ref. [23] by enabling a direct 

measurement of the flow rate in each channel synchronized with the wall temperature and overall 

pressure drop measurements to characterize the thermal and hydrodynamic effects of the Ledinegg 

instability on thermally isolated channels. It was demonstrated that once flow maldistribution is 

triggered by the Ledinegg instability, its severity grows with increasing power. This causes the 

temperature of the flow-starved channel to increase continuously and the wall temperature 

difference to grow with increasing power.   

The severity of the flow maldistribution encountered in the studies reviewed above, which 

considered a special case of thermally isolated parallel channels, is exaggerated compared to 

experimental experience [25-28]. In actual microchannel heat sinks, however, the high thermal 

conductivity of the fins and substrate results in strong lateral thermal coupling between 

neighboring channels and allows for heat redistribution. This contrasts with most past studies on 

the Ledinegg instability which used parallel pipes that are physically isolated from one another 

[20-22]. 

A few studies have considered the effect of lateral thermal coupling on dampening the flow 

maldistribution between parallel channels. Flynn et al. [25, 29] studied the thermal implications of 

flow maldistribution between two parallel microchannels (etched in a silicon substrate) that were 
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either thermally coupled or thermally isolated. The heat input to each of the channels could be 

varied independently and they were tested under both uniform and non-uniform heating conditions. 

In the thermally isolated configuration, the channel subjected to a higher heat load underwent 

boiling, while the other channel remained a single-phase liquid, leading to a noticeable channel-

to-channel temperature difference. Based on the observed temperature difference it was inferred 

that flow maldistribution existed between the channels (as no direct measurement could be made 

of the flow rate to each channel). In contrast, in the thermally coupled configuration, the flow in 

both channels either remained a single-phase liquid or they both underwent boiling, even under 

severe non-uniform heating. No significant wall temperature difference existed between the 

channels, from which it was inferred that the flow distribution was uniform. Van Oevelen et al. 

[30] were the first to theroretically investigate the effect of channel-to-channel thermal coupling 

on flow distribution by accounting for axial and lateral wall conduction. They predicted that 

increasing the strength of thermal coupling between the channels reduced the severity of flow 

maldistribution via redistribution of heat from the flow-starved channel to the adjacent channels 

with excess flow. Additionally, they identified a threshold heat flux below which the flow 

maldistribution can be completely suppressed by this mechanism. This threshold heat flux 

increases with an increase in thermal coupling and eventually asymptotes to a constant value in 

the limit of very strong thermal coupling. These past efforts have identified the critical implications 

of channel-to-channel thermal coupling on determining the Ledinegg-instability-induced flow 

maldistribution in boiling parallel microchannels. However, experimental characterization of the 

Ledinegg instability in thermally coupled channels has been lacking. In particular, the 

measurement of flow rates in individual channels is needed to corroborate past theoretical 

predictions. Consideration of the role of lateral thermal coupling in moderating flow 
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maldistribution will allow other mitigation techniques such as inlet throttling to be more sparingly 

employed. 

In this study, the experiments are designed to incorporate and study the effect of thermal 

wall conductance on the flow distribution between two parallel microchannels undergoing boiling. 

Experiments are performed under thermally isolated and thermally coupled conditions that 

represent two extreme levels of thermal connectivity between the channels. Comparison between 

the thermally isolated case and the thermally coupled case allows any change in the flow 

distribution behavior, as well as the measured wall temperature difference and overall pressure 

drop, to be attributed solely to the mechanism of heat transfer between the channels. Synchronized 

measurements of the wall temperature, the flow rate in each channel, and the overall pressure drop 

are presented to illustrate the differences between the isolated and coupled cases. The experiments 

demonstrate that channel-to-channel thermal coupling (via heat conduction through the wall) plays 

a critical role in moderating flow maldistribution between the channels by allowing redistribution 

of the heat flux. In the last section, these experimental results are directly compared with 

predictions from our two-phase flow distribution model [30, 31] and are shown to have an excellent 

match, thereby confirming the mitigating influence of thermal coupling on flow maldistribution.    

2. Experimental methods 

2.1. Test facility 

A photograph of the custom-built experimental facility for investigating the effect of 

thermal coupling between boiling parallel microchannels on the flow maldistribution caused by 

the Ledinegg instability is shown in Fig. 1. The flow loop components, aside from the test section, 

are identical to the facility presented in Ref. [24] and are summarized here. A magnetically-
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coupled gear pump (GA V21, Micropump) circulates the degassed DI water through a closed loop. 

The water flow rate is measured using a liquid flow meter (LC-10CCM, Alicat; accuracy of ±1% 

full scale), and tuned to a constant set-point value by controlling a metering valve placed in the 

recirculation line. The fluid temperature at the test section inlet is controlled using an inline heater 

(120 V AC, 468 W). The inlet and outlet fluid temperatures are measured using calibrated T-

type thermocouples (TMTSS-020E-6, Omega Engineering; ±0.3°C) located immediately 

upstream and downstream of the test section, respectively.  

Pressure drop across the test-section (∆𝑝𝑜) is measured with a differential pressure 

transducer (PX154-005DI Wet-Wet, Omega; 0 - 1250 Pa; ±2% full scale). The pressure sensing 

ports for the overall pressure drop measurement are in the test-section inlet and outlet plenums. 

Fluid exiting the test section returns to the reservoir and then enters a liquid-to-air heat exchanger 

where it is cooled before entering the pump inlet. The reservoir contains excess fluid and has an 

adjustable volume which allows the system pressure to be set to a desired value of 104.4 kPa, 

which is measured at the test-section outlet using an absolute pressure transducer (PX309-

030G5V, Omega Engineering; ±1%). The entire experimental facility is mounted on a vibration-

isolated optical table (VIS3672-PG2-325A, Newport Corp.) to ensure that external vibrations are 

not transmitted to the components. 

 

https://www.sciencedirect.com/topics/engineering/gear-pump
https://www.sciencedirect.com/topics/engineering/flowmeter
https://www.sciencedirect.com/topics/engineering/inlet-temperature
https://www.sciencedirect.com/topics/engineering/thermocouples
https://www.sciencedirect.com/topics/engineering/heat-exchanger
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Fig. 1. A photograph of the experimental test facility with key components labeled. [1.5 

columns] 

 

2.2. Test section 

The test section used in this study is modified from Ref. [24] to allow operation in both 

thermally isolated and thermally coupled configurations. A quarter cut-away isometric view of the 

test-section assembly is shown in Fig. 2. It consists of three main components: a bottom PEEK 

plate, a middle portion with parallel microchannels, and a polycarbonate cover plate to enable flow 

visualization from above. These three components are stacked vertically and then bolted together. 

The middle portion comprises three sections in the flow direction: an upstream unheated section, 

the heated channel section (which differs between the isolated and coupled cases), and a 

downstream unheated section. The flow enters the inlet plenum in the upstream section and divides 

into two parallel microchannels, each with a cross-section of 1 mm × 1 mm. After traversing the 

entire channel length, the flow exits the test section via the outlet plenum in the downstream 

unheated section. 
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Fig. 2. A quarter cut-away isometric view of the test-section assembly drawing, with important 

components and the flow inlet and outlet pathways indicated. An air gap is maintained between 

the channel blocks in the thermally isolated configuration, whereas it is replaced by solid 

copper in the thermally coupled configuration. [1.5 columns] 

The total channel length is divided into two equal parts in the flow direction. The first 

unheated half of the channel length (𝐿𝑢ℎ = 55 mm) lies in the upstream unheated section and is 

used as a flow rate sensor. Throughout this channel length, the fluid is always single-phase liquid. 

The flow rate is measured individually in the unheated section of each channel using differential 

pressure transducers (0-249 Pa PX154-001DI Wet-Wet type, Omega Engineering; ±2% full scale), 

as shown in Fig. 2. Due to the low operating pressures (0 - 249 Pa) of the transducer, the output 

response is sensitive to transient events such as bubble nucleation. Therefore, pressure snubbers 
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(PS-8E, Omega) are installed at the pressure-sensing ports of the transducers to suppress 

fluctuations in the output signal and enable the flow rate in each channel to be measured accurately. 

Transparent tubing is used to connect the pressure taps on the test-section with the transducer ports 

(pressure sensing lines) to visually detect trapped air bubbles or vapor pockets, which can be 

removed by bleeding the line prior to testing. The heated second half of the channel length (𝐿ℎ = 

55 mm) lies in the heated section in which the wall temperature measurements and flow 

visualization are performed.  

The copper blocks that form the heated section consist of two parallel microchannels 

situated in close proximity, as shown in Fig. 3. The geometric parameters of the heated section are 

presented Table 1. Both thermally isolated (Fig. 3a) and thermally coupled (Fig. 3b) configurations 

are considered. In the thermally isolated configuration (Fig. 3a), the channels are milled into 

individual copper blocks that are separated from each other by a 1 mm thick air gap, significantly 

increasing the lateral channel-to-channel thermal resistance. This air gap between the channels 

runs through the entire height of the test-section assembly (Fig. 2). In the thermally coupled 

configuration (Fig. 3b), the channels are milled into a single copper block that allows channel-to-

channel heat redistribution via conduction through the solid copper. The overall width of the heated 

section (31 mm) and the channel-to-channel pitch (16 mm) are identical for both the isolated and 

coupled cases. A quantitative measure of the lateral thermal coupling between the channels for the 

isolated versus coupled configurations, which are found to differ by two orders of magnitude, is 

provided later in Section 3.2. It is important to note that, aside from the air gap, the thermally 

isolated and coupled flow configurations are identical, allowing any effect on the flow 

maldistribution between the parallel channels to be attributed solely to the differing levels of lateral 

thermal coupling. 
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In both isolated and coupled configurations, two adjustable power supplies (XG 50A-60V, 

Sorensen) are used to supply power to the heated channel section via two separate aluminum 

nitride heaters (582 W CER-1-01-00003, Watlow) that are mounted in rectangular recesses in the 

bottom of the channel blocks. Six thermocouples (TMTSS-020E-6, Omega Engineering) are used 

to measure the temperature along the block length and height. The locations of these thermocouple 

ports are marked by red arrows in Fig. 3(b). However, due to their high thermal conductivity 

(copper) and thick cross-section, the channel blocks attain a near-uniform temperature at steady 

state in all experiments. Therefore, all thermocouple readings are equal within the sensor accuracy 

and a single channel wall temperature is reported.  

As described in Ref. [24], differential pressures, the overall pressure drop, channel wall 

temperatures, and power to each channel are recorded using a data acquisition (DAQ) unit 

(34970A, Agilent) at a rate of one sample every 15 s. The total power applied to each channel 

(including the power loss to the ambient) is quantified by measuring the voltage drop and current 

flow through shunt resistors (HA 5 100, Empro). Flow is visualized from the top using a high-

speed camera (VEO710L, Phantom) coupled with a macro lens (Makro-Planar T*2/100, Zeiss), 

with the lens focused on the top surface of the channel blocks in the field of view. The field of 

view (1000 × 620 pixels) covers approximately 90% of the heated channel length. It is uniformly 

top-lit using a fiber-optic light source (Titan 300, Sunoptic Technologies) to aid visualization. The 

images are acquired at 200 fps (exposure time of 5000 µs) at an optical resolution of 50 µm/pixel.  
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Fig. 3. Photograph of the channel blocks with key features and dimensions labelled: (a) for the 

thermally isolated case, individual copper blocks have an air gap maintained between them and 

(b) for the thermally coupled case, a single solid copper block is used. Thermocouple ports used 

for temperature measurements are indicated by red arrows. [2 columns] 

 

2.3. Sensor calibration and data reduction 

2.3.1. Heat loss calibration 

A portion of the total power supplied to the test section is not absorbed by the fluid but is 

instead lost to the ambient. This power loss Ploss is determined by draining water from the test 

section and then applying the power to each heater independently. Different power combinations 

are applied to span all possible combinations of the block temperatures that are experienced during 

the experiments. At each combination of applied power, the system is allowed to achieve a steady-

state condition, where the temperature at any location on the block changes by less than 0.1°C over 
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0.5 h. In this condition, all of the power supplied to the test section is lost to the ambient and the 

average block temperatures are recorded. Note that the thermally isolated configuration has two 

separate blocks, and therefore, each block will have different average temperature values, 𝑇1 and 

𝑇2, when they have different powers applied to them. In contrast, the thermally coupled 

configuration has a single block and it attains a single, near-uniform temperature (𝑇1 = 𝑇2 = 𝑇) 

due to lateral wall conduction. A best-fit surface (𝑅2 = 0.99) to the temperature data gives the 

equation for determining the power loss. For thermally isolated case it is given by 𝑃𝑙𝑜𝑠𝑠,1 (W) =

0.092𝑇1(°𝐶) − 0.049𝑇2(°𝐶) − 1.16. Note that the power loss for channel 2 can be calculated 

simply by swapping 𝑇1and 𝑇2 as the channel blocks are identical.For the thermally coupled case it 

is given by 𝑃𝑙𝑜𝑠𝑠 (𝑊) = 0.088𝑇 (°𝐶) − 2.018. The equation for the isolated case confirms a high 

degree of thermal isolation between channels as power loss from a individual channel has strong 

dependence on its own temperature and a weak dependence on the temperature of the other 

channel.  However, in the equation for the coupled case, the power loss is observed to be a function 

of a single, uniform temperature value (𝑇 = 𝑇1 = 𝑇2) that is attained by walls of both the channels 

and the single copper block, thus indicating a strong thermal coupling. 

The actual heating power being absorbed by the fluid flowing inside each channel is calculated by 

subtracting the power loss from the total electric power supplied using 𝑃𝑖𝑛 = 𝑃 − 𝑃𝑙𝑜𝑠𝑠. At a given 

test condition, the same power 𝑃 is supplied to each channel block such that total power supplied 

to the test section is 𝑃𝑇 = 2𝑃. However, depending on the temperatures of the channels, 𝑃𝑙𝑜𝑠𝑠 may 

be different for each channel, resulting in a different 𝑃𝑖𝑛. The heat flux into the fluid is calculated 

using  𝑞𝑖𝑛
" = 𝑃𝑖𝑛 𝐴𝑤𝑎𝑙𝑙⁄ , where 𝐴𝑤𝑎𝑙𝑙 = 2𝐻𝑐𝐿ℎ + 𝑊𝑐 is the wetted area of the channel walls. 
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2.3.2. Differential pressure transducer calibration  

The approach for calibrating the differential pressure transducers and measuring the flow 

rate in each channel is adopted from our previous study [24]. The key details of this approach are 

summarized here. For flow rate measurement in each channel, the current output from the 

differential pressure transducers is converted to a flow rate via a calibration against the liquid flow 

meter that measures the total flow rate  𝑄𝑇 (= 𝑄1 + 𝑄2). Fluid entering the test section as single-

phase liquid is preheated to a fixed value of 88.5°C (the same as in the experiments) and the flow 

rate is increased in steps from 1 to 25 ml/min. For the single-phase liquid, the total flow is divided 

equally between the channels by the inlet plenum. The characteristic flow rate versus current 

output curves are obtained for both the transducers, which are found to be identical. Therefore a 

single, combined linear fit is used to convert the measured signal to the channel flow rate for both 

the differential pressure transducers. This linear fit is given by 𝑄𝑖 = 2.108𝐼𝑖 − 8.433, where 𝑄𝑖 is 

the flow rate in ml/min and 𝐼𝑖 is the measured transducer output current in milliamperes (mA) for 

a given channel. The coefficient of determination for this linear fit is 𝑅2 ≈1. For all tests, the flow 

distribution is represented as the fraction of the total flow rate going into each individual channel 

𝜀𝑖 = 𝑄𝑖 𝑄𝑇⁄  such that the sum of the flow rate fractions is unity, i.e., 𝜀1 + 𝜀2 = 1. The flow is 

uniformly distributed when 𝜀𝑖 = 0.5 and maldistributed otherwise. In the maldistributed state one 

channel receives excess flow (e.g., channel 1 with 𝜀1 > 0.5) while the other channel is starved of 

the flow (channel 2 with 𝜀2 < 0.5).  

To determine the flow distribution in the experiments, the flow rate is measured for the 

channel that is in the single-phase liquid regime (say channel 1 with a higher flow rate 𝑄1). The 

flow rate in the boiling channel (channel 2 with lower flow rate 𝑄2 in this case) is then calculated 

by subtracting the channel 1 flow rate from the total flow rate (𝑄2 = 𝑄𝑇 − 𝑄1, where the total flow 
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rate 𝑄𝑇 is obtained from the liquid flow meter located upstream of the test section). The overall 

pressure drop across the channels is determined using the manufacturer-supplied calibration of the 

differential pressure transducer.  

3. Results and discussion 

This section presents a comparison of the flow distribution behavior of a two-channel 

system in thermally isolated versus thermally coupled configurations. The effect of thermal 

coupling on the flow distribution is analyzed as a function of increasing input power through 

synchronized measurements of flow rate in each channel, wall temperature difference, and heat 

dissipated into each channel. These results allow the key differences between the thermally 

isolated and coupled configurations to be observed and interpreted, specifically, in terms of the 

range of input powers with maldistributed flow, the severity of flow maldistribution, and the heat 

flux distribution between channels. This is followed by a comparison of the experimental results 

with the predictions from our two-phase flow distribution model. 

The experimental procedure for characterizing the flow maldistribution is identical to that 

reported in our previous study [24]. Experiments are conducted at a single mass flow rate of ~10 

ml/min. DI water is circulated through the flow loop at this constant flow rate and preheated to 

~88.5 °C, which corresponds to an inlet subcooling of ~11.6 °C based on the test section outlet 

pressure (104.4 kPa). The flow rate and the inlet sub-cooling are maintained constant throughout 

the tests. The channels in both the thermally isolated and coupled configurations are heated 

uniformly and subjected to the same power. To study the effect of increasing total power on the 

flow maldistribution, the power input is increased in steps from 2.6 W to 17 W, and the flow 

distribution is measured at each power level. This input power is the power absorbed by the fluid 
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flowing in the channel and is obtained after accounting for heat loss to the ambient i.e., by 

subtracting the power loss to the ambient from the power applied to the heaters.  

3.1. Flow distribution behavior of thermally isolated versus thermally coupled channels 

Fig. 4. shows the (a) relative flow rate distribution, (b) wall temperature, and (c) heat flux 

for each of the two parallel channels as a function of the total input power. The thermally isolated 

case is shown on the left and the thermally coupled case on the right. Three regions are observed 

with increasing power in both configurations: in region (I), the flow in both channels is single-

phase liquid and they receive equal flow rates; in region (II), boiling is observed in one channel 

while the other channel remains in a single-phase liquid flow regime and they receive unequal 

flow rates, i.e., flow maldistribution exists; in region (III) both the channels undergo boiling and 

they again receive equal flow rates. The following paragraphs will further discuss the behavior in 

each region, with emphasis on comparing and contrasting the thermally isolated versus coupled 

cases. Note that we have arbitrarily designated channel 1 as having the higher flow rate and channel 

2 as having the lower flow rate in Fig. 4. However, from test to test, boiling can first occur in either 

channel, which would then receive the lower flow rate. 

In region (I), from  𝑃𝑇,𝑖𝑛 = 0 – 5 W, it is clear that the behavior is not impacted by thermal 

coupling. Single-phase liquid flow is observed in both the channels and the total flow is evenly 

distributed between the channels by the inlet plenum, i.e., 𝜀𝑖 = 0.5 (Fig. 4a1 and Fig. 4a2). Under 

single-phase and uniform flow conditions, the wall temperatures (Fig. 4b) of the two channels are 

equal (within measurement uncertainty) and increase linearly with increasing power input as 

expected. The channels receive the same heat flux (Fig. 4c1 and Fig. 4c2) and thus share the total 

heat load equally.  
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Fig. 4. Comparison of the thermal and hydrodynamic characteristics of thermally isolated (left) 

and thermally coupled (right) cases: (a) fraction of the total flow rate going into each channel, (b) 

channel wall temperature, and (c) heat flux into the fluid, all as a function of total input power. 

The black horizontal line in (a) represents an even flow distribution between the channels. The 

black diagonal line in (c) represents an equal heat flux going into both channels. The flow regime 

in each channel is denoted by marker type: open circles (○) for single-phase liquid flow and filled 
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circles (●) for two-phase flow. Three labeled regions indicate the operating conditions where: (I) 

flow through both the channels is single-phase, (II) there is single-phase flow in channel 1 and 

boiling in channel 2, and (III) boiling occurs in both the channels. Note that the data reported in 

Fig. c2 is obtained from the model because the thermally coupled channels attain the same 

temperature as that of the channel block, and therefore it is not possible to determine the heat loss 

separately for each channel from the experimental data. [1.5 columns] 

At a total input power of 𝑃𝑇,𝑖𝑛 = 7.4 W, the start of region II, boiling is observed in channel 

2 while channel 1 remains in the single-phase liquid regime (in both configurations). Once boiling 

incipience occurs in channel 2, the Ledinegg instability is triggered and causes non-uniform flow 

distribution between the two channels (i.e., more flow through channel 1 than channel 2) and the 

severity of flow maldistribution increases with increasing power. A detailed discussion of this 

transient excursion event at the onset of boiling is provided in our previous work for the thermally 

isolated case [24]. The range of total input power over which flow maldistribution exists between 

the channels defines region II (shaded yellow in Fig. 4) for both configurations. There are clear 

differences between the thermally isolated and thermally coupled configurations within this region 

of maldistributed flow.  

In thermally isolated channels, flow maldistribution occurs over the total input power 

range, 𝑃𝑇,𝑖𝑛, of 7.4 W to 11.8 W. This range is noticeably narrower for the thermally coupled 

channels, which goes from 7.4 W to 8.5 W. Further, the maximum severity of flow maldistribution 

is lesser in the thermally coupled case. Specifically, the flow rate fraction in the thermally isolated 

case can be as low as 𝜀𝑖  ≅ 3.5% (at 𝑃𝑇,𝑖𝑛 = 11.8 W) in the starved channel, compared to a minimum 

of 𝜀𝑖  ≅ 10% (at 𝑃𝑇,𝑖𝑛 = 8.5 W) in the thermally coupled case. The deleterious effect of the 
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maldistribution on the wall temperature is also much more severe in the isolated case. 

Maldistribution causes the flow-starved channel to have a large increase in temperature (from 𝑇2 = 

102.3°C at 𝑃𝑇,𝑖𝑛 = 7.4 W to 𝑇2 = 109.5°C at 𝑃𝑇,𝑖𝑛 = 11.8 W) and increasing maldistribution with 

power induces an increase in the wall temperature difference between the channels (as seen in Fig. 

4b1). The wall temperature of channel 1 remains at a lower temperature, with an increase from 𝑇1= 

97.6°C at 𝑃𝑇,𝑖𝑛 = 7.4 W to 𝑇1= 101.2°C at 𝑃𝑇,𝑖𝑛 = 11.8 W; this behavior is commensurate with a 

large increase in the flow rate of ~20% initially, followed by single-phase operation at higher input 

powers. 

In stark contrast with the large wall temperature difference observed for the thermally 

isolated channel, the thermally coupled case sees the wall temperatures of both channels remain 

nearly equal throughout region II despite the flow maldistribution. Further, this wall temperature 

value of ~102.5°C is much lower than the maximum wall temperature of ~109.5°C observed in 

the thermally isolated case. This clearly demonstrates that thermal coupling reduces the severity 

of flow maldistribution, wall temperature difference between the channels, and maximum wall 

temperature of the flow-starved channel.    

The different behavior exhibited by the thermally isolated and coupled channels can be 

attributed to the mechanism of heat redistribution between the two channels. In the isolated case, 

once flow maldistribution occurs at 𝑃𝑇,𝑖𝑛 = 7.4 W, the heat flux into both the channels increases 

linearly with increasing power (Fig. 4c1) and, at any given power level, the two channels receive 

approximately the same heat flux. Slight differences between the heat flux values and the black 

diagonal line (denoting an equal heat flux into each channel) are due to the differences in power 

loss caused by the large difference in wall temperatures. Nevertheless, even when the flow rate 

between the two channels is severely maldistributed, each channel must independently dissipate 
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its share of the total heat load to the coolant, as no channel-to-channel heat exchange is possible. 

In comparison, strong thermal coupling between the channels by lateral heat conduction, indicated 

by the isothermal block temperature, allows for redistribution of the total input heat load and large 

differences in the heat flux going into each channel. For example, in the coupled case (Fig. 4c2), 

once flow maldistribution is triggered at 𝑃𝑇,𝑖𝑛 = 7.4 W, the heat flux in channel 1 increases with 

increasing power, while the heat flux decreases in channel 2. In other words, channel 1 tends to 

dissipate an increasingly larger share of the heat load as the flow maldistribution worsens with 

increasing power. Under the most severe flow maldistribution (at 𝑃𝑇,𝑖𝑛 = 8.5 W), channel 1 

receives ~90% of total flow rate and dissipates ~66% of 𝑃𝑇,𝑖𝑛, while channel 2 dissipates the 

remaining 34%.  

At some maximum total power input in region (II), the wall temperature of channel 1 

becomes large enough to trigger boiling incipience, marking the transition to region (III), as shown 

in Fig. 4 where both channels experience boiling. For the tested power levels, this occurred at 𝑃𝑇,𝑖𝑛 

= 15 W in the thermally isolated case and at 𝑃𝑇,𝑖𝑛 = 10.3 W in the coupled case. For the isolated 

case, the onset of boiling in channel 1 caused an associated reduction in the wall temperature of 

channel 2 from 𝑇2 = 109.5°C at 𝑃𝑇,𝑖𝑛 = 11.8 W to 𝑇2 = 104°C at 𝑃𝑇,𝑖𝑛 = 15 W (Fig. 4b1), a result 

of the dramatic increase in flow rate relative to a uniform flow distribution (Fig. 4a1). For the 

thermally coupled case, the reduction in the wall temperature of channel 2 at the transition to region 

(III) is less dramatic because, for reasons discussed above, its temperature was not elevated due to 

maldistribution in region (II). Following the transition to region (III), the thermally isolated and 

coupled cases follow a similar trend. The flow resistances of the two channels become 

approximately equal again once they are boiling and the flow maldistribution caused by the 
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Ledinegg instability is suppressed. The heat fluxes to each channel are again equal at each power 

level (Fig. 4c1 and Fig. 4c2) and they attain the same temperature (Fig. 4b1 and Fig. 4b2).  

The flow in both microchannels was visualized at each power level to corroborate the flow 

regimes inferred for each channel in the discussion above. Fig. 5 shows selected flow visualization 

and an accompanying schematic for the case of thermally coupled parallel microchannels. The 

flow direction is from left to right and the entire heated length of the channels is shown in the 

images. The flow rate to each channel in each of the three regimes is qualitatively represented by 

the length of the arrows near the channel inlets. The flow visualizations captured at each power 

level enable the two-phase morphology to be identified and support the trends shown in Fig. 4. 

That is, different regions of operation exist, where (I) both channels are in the single-phase flow 

regime, (II) boiling is observed in channel 1 and single-phase flow is observed in channel 2, or 

(III) both channels undergo boiling. It clear from Fig. 5 that the flow is evenly distributed between 

the channels when they both are in the single-phase liquid regime (I) or they both undergo boiling 

(III), while the flow is maldistributed when only one of the channels undergoes boiling (regime 

II). In regime II, the flow maldistribution increases with increasing input power.   

 

https://www.sciencedirect.com/topics/engineering/microchannels
https://www.sciencedirect.com/topics/engineering/schematic-representation
https://www.sciencedirect.com/topics/engineering/parallel-channel
https://www.sciencedirect.com/topics/engineering/flow-visualization
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Fig. 5. Flow visualization images and accompanying schematic representations of the flow regimes 

observed in each channel: (I) single-phase liquid flow in both channels, (II) boiling in channel 2 

and single-phase flow in channel 1, and (III) boiling in both the channels. Note that these 

characteristic regimes were the same for both thermally isolated and coupled cases; the 
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representative images above are extracted from the thermally coupled case visualizations. The flow 

direction is from left to right. [1.5 columns] 

3.2. Pressure drop characteristics of thermally isolated versus thermally coupled channels 

Even though the two parallel microchannels can be thermally isolated or coupled, recall 

that they are hydrodynamically coupled via the same inlet and outlet plenums, and therefore, have 

a common pressure drop. Even as boiling occurs in one or both of the channels, and the overall 

pressure drop across them increases (due to an increase in flow resistance), the pressure drop 

remains the same across both the channels. This is the mechanism by which the flow rate in each 

individual channel readjusts to satisfy the constant total flow rate boundary condition that is set by 

the pump. The stable, maldistributed flows described above are possible due to the non-monotonic 

nature of the channel demand curve, which allows flow rates through the channels to be drastically 

different at the same pressure drop [20, 30-32]. We emphasize here that the system boundary 

conditions in the current experiments (uniform pressure drop across the channels at a constant total 

flow rate) are the same as would be encountered by individual channels in a heat sink having an 

array of multiple parallel channels.  

With this understanding, the flow resistance characteristics of the two parallel channels, in 

the thermally isolated and the coupled configurations, are compared in Fig. 6, which shows the 

pressure drop across the channels as a function of 𝑃𝑇,𝑖𝑛. Both the isolated and coupled 

configurations exhibit the same general trend of increasing pressure drop with increasing power, 

as would be expected. In region (I), when flow through both channels is single-phase liquid and 

uniformly distributed, the pressure drop remains fairly constant at ~81 Pa for both configurations.  
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Fig. 6. Pressure drop across the two parallel channels as a function of the total input power for 

both thermally isolated and coupled configuration. Open markers (○, ◇) denote single-phase flow 

in both channels; half-filled markers (◑, ) denote single-phase flow in channel 1 and two-phase 

flow in channel 2; and solid markers (●, ◆) denote two-phase flow in both the channels. [1 

column] 

Once boiling occurs in channel 2 at 𝑃𝑇,𝑖𝑛 = 7.4 W, the flow resistance increases due to the 

vapor generation and increases the overall pressure drop within region (II) to ~132 Pa in the 

isolated case and ~95 Pa in the coupled case. With further increases in power within region (II) 

there is a moderate increase in pressure drop, from ~132 Pa (𝑃𝑇,𝑖𝑛 = 7.4 W) to ~170 Pa (𝑃𝑇,𝑖𝑛 = 

11.8 W) in the isolated case and from  ~95 Pa at (𝑃𝑇,𝑖𝑛 = 7.4 W) to ~125 Pa (𝑃𝑇,𝑖𝑛 = 8.5 W) in the 

coupled case. This pressure drop is lower in the coupled case compared to the isolated case due to 

the lower vapor quality in channel 2. This lower vapor quality is a combined result of less severe 

flow maldistribution and lower heat flux into the boiling channel (channel 2) due to the 

redistribution of heat flux. For a representative case of 𝑃𝑇,𝑖𝑛 = 7.4 W, the vapor quality in channel 

2 in the isolated case is 𝑥𝑜𝑢𝑡~ 0.02, which is an order of magnitude higher compared to that of the 
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coupled case (𝑥𝑜𝑢𝑡~ 0.004). Therefore, thermal coupling, by mitigating the flow distribution, also 

can significantly reduce the pressure drop in this region. The vapor quality is calculated as 𝑥𝑜𝑢𝑡 =

𝑃𝑖𝑛−𝑚̇𝑐𝑝(𝑇𝑓𝑙,𝑜𝑢𝑡−𝑇𝑓𝑙,𝑖𝑛)

𝑚̇ℎ𝑓𝑔
, where, 𝑥𝑜𝑢𝑡 is the vapor fraction at the exit, 𝑃𝑖𝑛 is the power absorbed by the 

channel, 𝑇𝑓𝑙,𝑖𝑛is the fluid inlet temperature, 𝑇𝑓𝑙,𝑜𝑢𝑡 is the fluid outlet temperature, and 𝑚̇ is the mass 

flow rate in the channel. In both the cases, the additional flow resistance caused by boiling in 

channel 2 increases the overall pressure drop from region (I) to region (II). However, throughout 

region (II) an increase in input power does not increase the overall pressure drop drastically 

because with more vapor generation in the starved channel the fluid is rerouted to channel 1, which 

is still in the single-phase regime. 

When boiling starts occurring in both channels at 𝑃𝑇,𝑖𝑛 = 15 W in the isolated case and at 

𝑃𝑇,𝑖𝑛 = 10.3 W in the coupled case, the pressure drop increases significantly to ~212 Pa and ~315 

Pa, respectively. This corresponds to the beginning of region (III) as shown in Fig. 6. Note that 

this higher pressure drop in the isolated case compared to the coupled case is merely due to boiling 

in both the channels occurring at a higher input power in the latter case. Otherwise, throughout 

region (III), the pressure drop increases with increasing total power input for both cases (due to 

the increased flow resistance associated with vapor generation within both the channels) and is 

approximately the same at a given power. In summary, the overall pressure drop characteristics of 

thermally isolated and coupled channels are identical when flow is evenly distributed between the 

channels and they are either in a single-phase liquid regime (region I) or boiling (region III). 

However, under maldistributed flow conditions (region II), thermal coupling is more effective in 

reducing pressure drop compared to the isolated case.  
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3.3. Comparison of experimental results with model predictions 

In this section, the experimental data are compared with predictions made using a two-

phase flow distribution model that accounts for channel-to-channel thermal coupling. Our 

modeling approach is described in detail in Ref. [30] and is implemented in an identical manner 

here. To summarize, the approach predicts the stable flow rate distributions in a system of multiple 

parallel heated microchannels for a subcooled inlet liquid flow. The methodology couples a 

thermal-hydraulic model for individual channels (load curve) with the pump curve in a system of 

flow network equations. The heat transfer accounts for the internal convection in the channels, 

heat loss to the ambient, and axial and lateral thermal conduction in the solid walls. Because lateral 

thermal conduction plays a critical role in the flow distribution behavior between parallel channels, 

it is incorporated in the model through a thermal conductance, 𝐶𝑙𝑎𝑡, that quantifies the degree of 

thermal coupling between the channels. The thermal conductance is defined based on one-

dimensional heat conduction between the vertical mid-planes of the channels as 𝐶𝑙𝑎𝑡 ≅ 𝑘𝐻𝑏𝐿𝑐 𝑆𝑐⁄ . 

A value of 𝐶𝑙𝑎𝑡 = 0 W/K indicates perfect thermal isolation between the channels and an increasing 

conductance signifies increasing thermal coupling.  

To compare the model-predicted flow distributions with the experimental data, the 

experimental parameters and operating conditions listed in Table 1 are used as inputs to the model. 

For the thermally coupled configuration, the lateral thermal conductance is calculated as 𝐶𝑙𝑎𝑡 ≅

𝑘𝐻𝑏𝐿𝑐 𝑆𝑐⁄  = 18.5 W/K using the properties of the solid copper block because it offers the least-

resistance path for heat flow between the channels. This is representative of the typical extent of 

thermal coupling that would be present in microchannel heat sinks with many parallel channels. 

For the thermally isolated configuration, 𝐶𝑙𝑎𝑡 cannot be simply determined based on heat 

conduction through the air gap because heat primarily conducts through the polycarbonate cover 
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and ceramic base of the test section. Instead, the model predictions are first validated against the 

experiments for the thermally coupled configuration, and then 𝐶𝑙𝑎𝑡 is calibrated to the experimental 

data for the thermally isolated configuration. By varying the input thermal conductance to the 

model, a single value of 𝐶𝑙𝑎𝑡 ≅ 0.36 W/K is found to best match the measured flow maldistribution 

(within experimental bounds) across all tested power levels for the thermally isolated 

configuration. For 𝐶𝑙𝑎𝑡 ≅ 0.36 W/K the mean absolute percentage error (MAPE) between the 

experimentally measured and the model predicted flow rate in channel 1 (channel with excess 

flow) is within 3.5% for any tested power level. This small value of 𝐶𝑙𝑎𝑡 confirms that the air gap 

in the experimental setup maintains a high degree of thermal isolation between the channels. The 

axial cross-section area of each channel block 𝐴𝑏 = (𝐻𝑏 × 𝑊𝑏) −  (𝐻𝑐 × 𝑊𝑐) is used to model 

axial wall conduction. Heat loss to the ambient is neglected, and therefore, 
𝑃𝑇,𝑖𝑛

2
 is considered as 

the power going into each channel in the model.  

Table 1. Parameters from the experiments used as inputs to the flow distribution model [30]. 

Fluid properties are taken for DI water at 88.5 °C. [1 column] 

Parameter (symbol) Value 

Channel height (𝐻𝑐)  
 

1 mm 

Channel width (𝑊𝑐)  1 mm 

Channel length (𝐿𝑐) 55 mm 

Channel pitch (𝑆𝑐) 16 mm 

Inlet mass flux (𝐺) 150 kg/m2-s 

Fluid inlet temperature (𝑇𝑓𝑙,𝑖𝑛) 88.5 °C 

Outlet pressure (𝑝𝑜𝑢𝑡) 104.4 kPa 

 

Total input power (𝑃𝑇, 𝑖𝑛) 2.6 - 17 W 
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Thermal conductivity of channel 

wall (𝑘) 

360 W/m-K 

 

  

Lateral thermal conductance 

(𝐶𝑙𝑎𝑡) 

 

Thermally isolated 0.36 W/K† 

Thermally coupled 18.5 W/K* 

Channel block height (𝐻𝑏) 15 mm 

Channel block width (𝑊𝑏) 15 mm 

Channel block length (𝐿𝑏) 55 mm 

†Calibrated using the model as described in the text 

*Calculated as  𝐶𝑙𝑎𝑡 =
𝑘𝐻𝑏𝐿𝑐

𝑆𝑐
 

 

The comparison of the experimental and modeling results is presented in Fig. 7, which 

shows the flow rate fraction in each channel versus the total input power for the thermally isolated 

and coupled cases. In both cases, the model is able to accurately capture all of the critical features 

of  the experiments. The total flow rate is evenly distributed between the channels when they both 

are in the single-phase liquid flow regime (I). At power levels where boiling occurs in only one of 

the channels, the flow resistance in that channel increases and triggers severe flow maldistribution 

via the Ledinegg instability. Excellent quantitative agreement is again observed between the 

experimental measurements and model predictions. For the thermally coupled case for which all 

model inputs are known a priori, the mean absolute percentage error (MAPE) in the channel 1 

flow rate is 7.2% over the range of power levels where flow maldistribution occurs. Some 

discrepancy is expected due to the accuracy bounds of the two-phase pressure drop and the heat 

transfer coefficient correlations used in the model.  

https://www.sciencedirect.com/topics/engineering/experimental-trend
https://www.sciencedirect.com/topics/engineering/maldistribution
https://www.sciencedirect.com/topics/chemical-engineering/heat-transfer-coefficient
https://www.sciencedirect.com/topics/chemical-engineering/heat-transfer-coefficient
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Fig. 7. Comparison of flow rate distribution between the current experiments and model 

predictions (input parameters given in Table 1) in the (top) thermally isolated configuration and 

(bottom) thermally coupled configuration. The flow regime in each channel is denoted by marker 

type. For experimental results: open circular markers (○) for single-phase liquid flow and solid 

circles (●) for two-phase flow. For modeling results: circular dots (◉) for single-phase liquid flow 

and half-filled circles (◒) for two-phase flow. Three labeled regions indicate the operating 
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conditions where: (I) flow through both the channels is single-phase, (II) there is single-phase flow 

in channel 1 and boiling in channel 2, and (III) boiling occurs in both the channels. [1 column] 

This agreement between the model predictions and experiments firmly establishes the 

primary conclusions of this work regarding the influence of lateral wall conduction on the flow 

distribution behavior. The flow maldistribution between the two channels is mitigated in the 

thermally coupled case, both in terms of the maximum severity of flow maldistribution and the 

range of total input power that lead to maldistribution, as shown quantitatively in Table 2. A strong 

match between the behavioral trends observed in experiments (Fig. 4a1 and Fig. 4a2) and obtained 

via model predictions (Fig. 7) confirms the effect of thermal coupling, primarily, that a strong 

thermal coupling leads to a more uniform flow distribution. 

 

Table 2. A comparison of isolated versus coupled case based on the flow distribution parameters. 

 Thermally isolated Thermally coupled 

Parameters Experiments Model Experiments Model 

Maximum severity of flow maldistribution  

(% of total flow rate in flow starved channel) 

 3.5 1.5 10 7.5 

Range of input power with maldistributed 

flow (W) 

 7.4 - 11.8 - 7.4 – 8.5 - 

 

4. Conclusions 

Existing two-phase microchannel heat sink design efforts have been typically restricted to 

models that assume uniform flow. In the few approaches that have considered the flow distribution, 
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models still do not incorporate the effects of thermal coupling between the parallel channels. 

Despite recent theoretical investigations that have pointed toward the importance of thermal 

coupling, no experimental data on the flow distribution in boiling parallel microchannels has been 

reported to verify and validate this behavior. 

This study experimentally investigates, and theoretically verifies, the effect of channel-to-

channel thermal coupling on the flow maldistribution caused by the Ledinegg instability in a 

system with two parallel microchannels. Deionized water is delivered at a constant total flow rate 

to the channels that share common inlet and outlet plenums, and therefore have the same pressure 

drop. The channels are uniformly heated and subjected to the same power level, which is increased 

in steps. Two configurations are investigated, namely, thermally isolated and thermally coupled, 

that have two orders of magnitude difference in the lateral thermal conductance between the 

channels, with otherwise identical channel parameters. The flow rate in each channel is directly 

measured simultaneously with the wall temperature and overall pressure drop across the channels, 

which allows for differentiation between the thermal and hydrodynamic behaviors of these two 

configurations.  

Thermal coupling is observed to play a significant role in mitigating flow maldistribution 

in terms of reducing the maximum severity of flow maldistribution between channels and 

narrowing the range of input power over which the flow maldistribution occurs. In the most 

severely maldistributed state, the starved channel receives just 3.5% of the total flow in the 

thermally isolated configuration versus 10% in the thermally coupled configuration. This is 

because the channel-to-channel thermal coupling allows redistribution of the heat input from the 

flow-starved channel to the neighboring channel. This heat load redistribution also allows the 

thermally coupled channels to attain a near-equal wall temperature irrespective of the severity of 
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flow maldistribution, with a much lower maximum wall temperature at the most severe flow 

maldistribution condition. In contrast, in the thermal isolated channels, the flow-starved channel 

must continue to independently dissipate its share of the heat load, which causes a large wall 

temperature difference between the channels to grow with increasing power, due to the worsening 

flow maldistribution. A direct comparison drawn between the experimental data and predictions 

from a two-phase flow distribution model is found to have strong agreement, thereby confirming 

the mitigating influence of lateral thermal coupling on flow maldistribution (resulting from the 

Ledinegg instability). Lateral thermal conduction between the channels leads to a more uniform 

flow distribution and wall temperature between the channels, which benefits the performance of 

microchannel heat sinks where the neighboring channels are thermally coupled via a shared 

substrate. 
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