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Abstract 

The improvement in scanning electron micros
copy (SEM) techniques has permitted us to des
cribe the microstructure of the liver. By SEM,the 
liver peritoneal surface is composed of flat me
sothelial cells possessing microvilli and cilia. 
Hepatic sinusoids connect the portal vessels with 
the terminal branches of the hepatic vein (cen
tral veins).Endothelial cells of the portal space 
arteries are elongated and arranged longitudinal
ly, while those of the central and portal veins 
are polygonal and flattened,possessing microvil
li. The sinusoidal endothelial cells show both 
small fenestrations (sieve plates),up to 200 nm 
in diameter, and large ones,up to l ~m. Within 
the sinusoids are seen bridging structures,cover
ed by fenestrated endothelium,seeming to have a 
fibrillar core. Kupffer cells resemble macropha
ges,showing microvilli, blebs, lamellipodia and 
filopodia. Within the Space of Disse are seen the 
fat-storing cells,having laminar dendritic pro
jections. The polyhedral liver cell faces the 
Space of Disse (vascular pole) or faces an adja
cent hepatocyte (biliary pole). Vascular facets 
are evenly covered by microvilli. Biliary facets 
show a central longitudinal depression,bordered 
by microvilli (bile hemicanaliculi). Canaliculo
ductular junction and bile duct epithelia show 
blebs, microvilli and cilia. Up to now,fetal li
ver and liver pathology have been scarcely inves
tigated by SEM: in the future, they can be suc
cessfully approached by three-dimensional studies. 
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Introduction 

The structure of the liver reflects its ex
tremely complex function. In fact, the liver can 
be considered as both exocrine and, to some ex
tent, endocrine in nature (81). In addition, it 
metabolizes, detoxifies and inactivates many dif
ferent substances of both endogenous and exo
genous origin ( 46). It further plays an i mpor
tant role in the hemodynamic regulation of the 
splanchnic system. 

When the first microscopists began studying 
the histological organization of the liver, it 
immediately appeared clear that a visualization 
of its three-dimensional structure was funda
mental to unravelling its complex functional mys
teries. Several ingenious attempts to draw the 
liver's three-dimensional pattern have been made 
(7, 15-17). Only in the second half of this cen
tury, however, through careful studies using ste
reological methods and statistical analysis of 
transmission electron microscopic (TEM) pictures 
(18, 126, 145), has it been possible to confront 
the heterogeneous complexity of the hepatic 
gland. The limits of these techniques have been 
recently reviewed (73) and, at the present time, 
scanning electron microscopy (SEM) seems to be 
the technique of choice for three-dimensional 
studies. Thus, after more than 15 years since the 
first SEM reports of mammalian liver lobule (4, 
23), so many SEM liver images have been obtained, 
that we feel confident in our description of the 
"microstructure of the liver" (73). In fact, SEM 
has been extensively used to obtain data from the 
livers of many mammalian species including hu
mans, and other animals, such as birds and fish 
(see Table 1). 

Most of this literature will be reviewed in 
this paper. Further, new SEM images of sinusoids 
from an unexplored rodent (Praomys Mastomys Nata
lensis) will be presented. 
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Table 1. 

SOURCE OF LIVER TISSUE FOR SEM INVESTIGATIONS. 
(Bibliography update 1985) 

Source 

CAT 
CHICK 
DOG 
FISH 
FROG 
HUMANS 

PIG 
PRIMATES 
Baboon 
Monkey 

RODENTS 
Guinea-Pig 
Hamster 
Mouse 
Rabbit 
Rat 

SHEEP 
FETAL 

animals 
humans 

Bibliography 

62; 69-72; 81. 
113. 
69; 70. 
97. 
111. 
27; 36-40; 44; 62; 76; 81; 89; 91; 
134; 136-138; 153; 160; 161. 
62; 70; 71. 

57. 
87; 108; 133; 135; 139. 

35; 62; 69-71. 
59; 160. 
27; 69-71; 92; 121; 130; 141. 
27; 105; 111; 125; 158. 
8; 9; 11; 14; 21; 22; 26; 27; 30; 
34; 41; 43; 45; 51; 54; 55; 62; 65; 
67-72; 74-79; 81; 86; 88; 90; 93; 
94; 99; 101; 112; 114; 115; 123; 
130-132; 142; 144; 149; 151-154; 
158; 160; 162. 
157. 

71; 72; 76; 113; 157. 
58; 71; 76. 

Preparation of Liver Samples for SEM 

The improvement in electron microscopic 
techniques during the past 15 years has permitted 
us to obtain optimal liver specimens for SEM 
investigation with relatively simple procedures. 
In order to avoid artifacts and to yield a clean 
surface for observation, however, it seems 
imperative to respect certain crucial points dur
ing the preparation of samples (27, 81). 

In order to obtain good preservation of hep
atic subcellular structures, fixation must be 
performed by vascular perfusion (148). In fact, 
immersion primary fixation alone does not ade
quately avoid cellular anoxic damage, does not 
preserve endothelium (150) and does not display a 
homogeneous fine structure in the whole sample 
(119).Furthermore, immersion fixation may create 
spatial artifacts due to the non-homogeneous 
hardening of the liver tissue and it may also 
cause the disappearance of delicate structures 
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such as endothelial fenestrae (156, 157). 
Primary fixation is usually performed with 

solutions of 1-3% glutaraldehyde in cacodylate or 
phosphate buffer. Paraformaldehyde has also been 
used, alone (4% in phosphate buffer), or with 
glutaraldehyde (1 .5 - 4% in phosphate buffer). No 
side effects have been demonstrated when the al
dehyde phase of fixation has been prolonged. This 
suggests that the samples may also be left in the 
primary fixative for a long period in order to 
obtain optimal tissue fixation and hardening (5). 

In a blood-rich organ such as liver, it is 
necessary to accurately wash out all blood from 
the vascular bed prior to fixation (81,116). In 
this way, precipitation of plasma proteins which 
obscure vessel surfaces, can be avoided (27). 
Several washing solutions have been used but no 
data can be referred as to which is the solution 
of choice. 

Both the addition of anticoagulants (hepa
rin) or vasodilatants (procaine), to infusates, 
and the injection of either during anesthesia im
proves the quality of perfusion, which can be 
monitored by noting the change in liver colour 
from a dark-red to a sandy-beige (116). 

Some authors suggest the maintenance of in
fusates at body temperature in order to mimic the 
physiological environment and to enhance the 
speed of fixative penetration (5). On the other 
hand, the use of lower temperatures may reduce 
anoxic damage. 

Attention must be paid to the infusion pres
sure (153). In fact, the use of vasodilatant 
drugs and aldehyde fixation through the arterial 
circulation, has the effect of converting the 
blood vessels into a rigid pipe system, causing 
loss of the arteriolar "barrage" (22). Thus, the 
infusates may reach the postarteriolar vessels 
(sinusoids) with a pressure higher than physiolo
gical values, which range from 6 to 10 mmHg in 
the mammalian portal system. In addition, there 
is evidence that a high infusion pressure of in
fusates, whether injected via the portal vein or 
via the arterial system, is associated with an 
increase in the number of larger gaps in the si
nusoidal endothelium (21). Considering certain 
properties of endothelium, such as filtering and 
sieving, these larger gaps have been also des
cribed as artifacts (155) or pathological featu
res ( 21). 

In animal experimentation, perfusion pre
ferably is performed via the portal vein, but may 
also be done via the aorta, or directly via the 
left ventricle. Biopsy samples also have been 
perfused, through the introduction of a small 
needle into the parenchyma (puncture-perfusion) 
(38,40,86,134,137) or through cannulation of the 
cut vessels (58,76,81). 



SEM of the Liver 

Osmication is not always required for SEM. 
In fact, it doesn't seem to offer any advantage 
during observation of liver samples (133). How
ever, the metal-impregnation technique with tan
nin-osmium may enhance the conductivity under the 
electron beam of non-coated specimens (84,85). 

Dehydration can be carried out gradually, 
either with ethyl alcohol or acetone (81), fol
lowed by critical-point drying (see Howard and 
Postek, 1979 for further references) (28). 
Freeze-drying also has been performed, and is ad
vantageous in exposing more of the surface area 
(8), but it seems inferior to critical-point dry
ing in high-magnification SEM (98). 

Samples are usually coated with gold or 
gold-palladium; in our experience, carbon-gold 
also gives good results (74). 

The surface tissue exposure is of particular 
importance. Several techniques have been sug
gested. Methods such as mechanical tissue dis
sociation by digital pressure (performed in dried 
samples) (55,99,157), tissue dissociation with 
jewelry forceps after cutting with a sharp razor 
blade (both in wet or dried samples) (81), 
freeze-fracture (in alcohol-infiltrated or crit
ical-point dried samples) with freon or liquid 
nitrogen (8,29,30,81,128), all have valuable ap
plications in delineating different structures. 
Thus, internal hepatocytic organelles can be well 
visualized in freeze-fractured dried samples (81) 
and bile hemicanaliculi are exposed after simple 
cutting or fragmentation of wet tissues (75). 
Isolated hepatocytes (from mechanical-dissociated 
dried samples) can be collected on a double-face 
tape placed on a stub (81). Hepatocytes can also 
be studied after isolation by elutriation and 
culture (114,142). In addition, intracellular 
hepatocytic components have been exposed by 
cracking of resin-infiltrated samples (125), by 
fracturing of tannin-osmium treated samples (36, 
39), by chemical dissociation with boric acid 
(130), or by the osmium-DMSO-distilled water me
thod (31). The hepatocyte cytoskeleton has been 
recently studied after treatment with Triton-X 
l 00 ( 112). 

Liver vasculature can also be studied well 
by vascular corrosion cast methods (for details 
about this technique see Ohtani et al, 1983 and 
Lametschwandtner et al., 1984) (53,111) that vis
ualize an exact reproduction of vessel disposi
tion in space (3,83,160). In addition, the outer 
sinusoidal wall and adjacent intercellular spaces 
may be investigated in resin-cast non-corroded 
tissue specimens (12). 

Always, all of these methods should be used 
in preparing liver samples, because they comple
ment each other. 

Finally, we believe that it is extremely 
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useful to obtain stereo pictures during SEM 
observation, to allow a better understanding of 
the three-dimensional relationships of liver 
cells (73). 

The Peritoneal Liver Surface 

The external surface of the liver is almost 
completely covered by a monolayer of serosal 
cells that rest with the basal lamina on a vari
able amount of connective-tissue fibres, forming 
the fibrous capsule (73). 

The fine granules and filamentous struc
tures, intermingled with fibroblasts and colla
genous fibrils of the fibrous capsule, can be 
easily recognized by means of SEM in chemically 
dissociated tissue (31) or through breaks of the 
peritoneal layer. Further, in vascular corrosion 
casts, Glisson's capsule, which follows the hepa
tic vessels into the liver parenchyma, has a poor 
capillary network supplied by arterioles from the 
branches of the hepatic arteries and emptying in
to the sinusoids 109). 

It is demonstrated by SEM that the perito
neal sheath which is absent only within the area 
of the liver-diaphragmatic attachment (46), is 
flat, and is seen as such in samples fixed by the 
perfusion technique (Fig. 1). But this sheath ap
pears corrugated when the samples are directly 
placed in the fixative (Fig. 2). This is probably 
due to a reactive contraction of the underlying 
cells, such as smooth muscle cells. 

Serosal cells, which, when examined by con
ventional electron microscopy, appear coupled to
gether by junctional complexes (73) and covered 
by a highly positive ruthenium-red coat (glycoca
lyx) (56,68), are flattened and polygonally 
shaped, often populated by abundant microvilli of 
1-2 ~min length when examined by SEM (Fig. l) 
(81). Observed at high magnification, microvilli 
show granules and filamentous structures (Fig. 3) 
which are thought to correspond to material de
rived from glycocalyx or serosal exudate (68). 
The pits and the blebs that are often detected on 
the serosal surface may be considered as signs of 
the surf ace activity of the serosa l ce 11 s. In 
fact, mesothelial cells are involved in the pro
cesses of secretion, absorption and exchange of 
fluids which may act as surface lubricants (1,2, 
73). 

Furthermore, the serosal cells covering the 
liver, like those seen in other organs, possess a 
single cilium of variable length (Fig. 4). The 
cilium might represent some rudimentary struc
ture, or it might have some chemoreceptorial or 
motile function (80,129). In any case, the role 
of these cilia is still to be clarified. 
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Liver Architecture and Vasculature 

The Lobules and Acini. 
Modern SEM techniques permit us to fully ap

preciate the complex microarchitecture of the li
ver gland (73). The liver is supplied by an ex
traordinary number of nutritive and functional 
vessels (hepatic arteries and portal veins). Such 
vessels contribute to create a three-dimensional 
labyrinthic structure (72), basically character
ized by the morpho-functional tissue unit (117) 
called the lobule or "acinus", as Wepfer (146) 
and Malpighi (61) first supposed. As recently re
viewed (73), the three tissue units of the hepa
tic architecture represent different ways of 
looking at the same structure (46): the classic 
lobule of Kiernan (50), the portal lobule of Mall 
(60) and the liver acinus (118) emphasize pecu
liar aspects revealed in different mammalian 
species according to the morphophysiological 
condition considered. The smallest hepatic func
tional unit seems to be the "acinus hepaticus" 
(117), and it offers explanations for many histo
pathological liver changes (46). The classic 
lobule that can be called, in some instances, an 
endocrine lobule (if the direction of the blood 
flow is considered) and the portal lobule that 
can be called an exocrine lobule (when one consi
ders the direction of the bile flow) (81) are 
more easily recognized in tissue preparations by 
light or electron microscopy (72). 

When fractured liver samples from properly 
perfused animal livers are examined by SEM, hepa
tic lobules can be identified as irregular poly
hedral structures (Fig. 5) with a centrally lo
cated terminal hepatic vein or portal triad, 
which are surrounded by the hepatic laminae (26, 
45,49,81,92, 139). 

Different aspects can be noted in the ar
rangement of the hepatic laminae. This seems to 
be correlated with the changes in the blood
pressure gradient along the ramifications of the 
hepatic veins producing a plastic deformation of 
the liver laminae which may temporarily alter 
their location in space. Thus, the observer may 
have the impression that the hepatic laminae ra
diate from the portal triad (portal lobule or 
acinus) or that they converge toward a central 
vein (classic lobule) (81). 
Vessels within the Portal Space. 

Arterial and venous vessels within the por
tal space present remarkable differences in their 
wall structure and endothelial surfaces (73). 

In cross sections vascular components appear 
close to the lymphatic vessels and the bile duct, 
surrounded by connective tissue fibres that also 
delimit spaces for the interstitial fluids (Fig. 
6) ( 26,81). 
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The branches of the hepatic artery show a 
thick wall formed by several layers of smooth 
muscle cells . Arterial endothelium is arranged 
in longitudinal columns running along the major 
axis of the vessels. Endothelial cells are elon
gated, with a slight central (nuclear) pro
trusion. Their surface is smooth, but, occasion
ally, microvillous projections and blebs can be 
detected. Endothelial cell margins easily can be 
recognized, and sometimes there is overlapping of 
the borders of adjacent cells (Fig. 7). 

The portal veins, as a rule, are larger than 
arterial vessels, but their walls are thinner, 
presenting one or two layers of smooth muscle 
cells. Venous endothelial cells are polygonally 
shaped or elongated. On their flat surface micro
villous projections and pits are often observed. 
Occasionally, outlets of smaller vessels and si
nusoids can be seen (Fig. 8). 

By means of vascular corrosion cast methods, 
SEM has revealed a peribiliary capillary plexus 
supplied by the branches of the hepatic arteries 
of the portal space (87,108). These vessels ana
stomose sinusoidal channels or portal veins (96, 
109). These two kinds of efferent branches of the 
plexus have been described in human and rabbits 
with the same frequency. On the other hand, the 
peribiliary plexus is drained mostly by portal 
veins in the rat, and by sinusoids in the monkey 
(87,109). This type of "portal" vascular system, 
considering its close connection with the bile 
ducts, could play a role in the intralobular 
feedback control of bile production (81,87,105, 
110). 
Terminal Hepatic Veins. 

Terminal hepatic veins characteristically 
may be observed, in cross sections, at the center 
of converging hepatic laminae of the classic 
lobule (central veins) (Fig. 9). They present a 
wall mostly composed of the intimal lining, rest
ing on a very thin muscular layer. The vascular 
lumen shows numerous sinusoidal openings often 
crossed by bridging structures (151). These brid
ges, sometimes seen trapping blood cells (Fig. 
10), are formed by a collagen core covered by 
fenestrated endothelium (151). The fenestrated 
endothelium even may be recognized around the si
nusoidal outlets for a small area (Fig. 10). En
dothelial cells have a polygonal shape. The 
rounded nucleus is clearly seen to bulge in the 
central area of the cells, whose borders are· ea
sily detectable (Fig. ll). Leukocytes and Kupffer 
cells are frequently adherent to venous endothe
lium (Fig. 11). The different hemodynamic and 
structural patterns of these vessels (high pres
sure and thick wall in arteries; low pressure and 
thin wall in veins) may be responsible for 
the above-mentioned ultrastructural endothelial 



SEM of the Liver 

~ The serosal cells covering the surface of 
the liver are populated by numerous microvilli(m) 
Arrows delineate cell borders (Bar= 10 Mm). Rat. 
~ Liver surface appears corrugated in sam
ples fixed by immersion (Bar = 10).Jm). Humming
bird. 
~ High magnification reveals granules {g) 
adhering to microvilli (m) of mesothelial cells 
(Bar= 1 µm). Mouse. 
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~ An isolated cilium (arrow) arising from 
the serosa l surface of the liver. (m, mi crovi 11 i) 
( Bar = l ).Jm). Cat. 
~ Mammalian portal lobule.(P, portal space; 
V, terminal hepatic vein; HL, hepatic laminae) 
(Bar = l 00 ,um) . Rat . 
~ Portal area. (V, branch of portal vein; 
a, artery; b, bile duct; ly, lymphatics) (Bar = 
10 µm). Rat. 
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differences. The deforming transmural pressure 
indeed may stimulate vessels with a highly reac
tive musculature (such as arteries) that respond 
with a functional contraction, creating the lon
gitudinal folding of the arterial endothelium. 
Sinusoids, Sinusoidal Cells and Space of Disse. 

As seen by SEM, in fractured samples, as 
well as in corroded vascular casts, the liver 
"sinusoidal" network anastomoses the portal ves
sels with the terminal branches of hepatic veins 
(26,48,68,73,106, 107). 

A flat fenestrated endothelium, forming the 
sinusoidal wall, separates the capillary lumen 
from the perivascular interstitial spaces (peri
sinusoidal space of Disse) (Fig. 12) (72,88, 
148,). Sinusoidal cells are the cellular ele
ments populating the sinusoids and the Space of 
Disse (6,73,103,104). 

Three principal sinusoidal cell-types have 
been morphologically identified by SEM-TEM stud
ies: the endothelial cell, the Kupffer cell and 
the perisinusoidal stellate cell. The latter is 
also called "Ito cell" or "fat-storing cell" (32, 
140). Others types of perisinusoidal cells have 
been reported, such as "pit cells" (6,47, 149) and 
"pericytes" (97), but through employment of SEM, 
it is difficult to adequately detect their 
surface features. 

In perfusion-fixed samples, endothelial 
cells are flattened. Their only protrusion is 
seen over the nuclear region. Sinusoidal endothe
lial cells are of an extremely variable size, and 
they possess several cytoplasmic openings evenly 
distributed over their extensive cytoplasmic 
processes (Fig. 12) (71,78,79). These openings, 
or "fenestrae", permit a communication between 
Disse's space and the sinusoidal lumen. 
Dimensions and distribution of fenestrae have 
been extensively studied (26,27,35,66,79,89,127, 
132,152-155,157,158). Two principal types of 
openings are usually described (35,73): small 
fenestrae (100-200 nm), often clustered, forming 
the so-called "sieve plate" (148); and large fe
nestrae (up to 1 µm) (Fig. 12).Larger gaps gener
ally are considered as artifacts or as a result 
of some toxic agent (21,22,57,81,94,150). This 
is supported by the increased number of large fe
nestrations under particular experimental and/or 
pathological conditions (21,22,72,79). On the 
other hand, endothelium should not be considered 
as a rigid structure, but as a dynamic one (67, 
81,139). Its morphology changes from organ to 
organ (120) and even within the same organ, 
adapting its ultrastructural features to several 
different pathological and physiological condi
tions. According to such considerations, larger 
fenestrae may be an expression of temporary in
juries that may involve both endothelial and 
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Kupffer cells, whose long cellular projections 
can also be seen penetrating and enlarging the 
endothelial fenestrations (70,81). Endothelial 
dynamism also can be proven by our recent SEM ob
servations on liver of the rodent, Praomys Masto
mys Natalensis. In this animal, intrasinusoidal 
bridges arising from endothelium are often noted 
(Fig. 13). By SEM, these bridges (up to 4 µm in 
length) appear to be covered by fenestrated endo
thelium, and they probably possess a collagen 
core (Fig. 14). Considering their intraluminal 
location, their possible role may be related to 
intrasinusoidal regulation of the blood flow, a 
role similar to that which the long cytoplasmic 
projections of the Kupffer cells are thought to 
p 1 ay ( 73). 

The three-dimensional aspect and the loca
tion of the Kupffer cells are best revealed in 
stereo SEM pictures (Fig. 15) (70,81). These 
cells have an irregular cell body, which, depend
ing upon the activation of the cell, appears to 
be provided with a variable number of blebs, mi
crovilli, holes, lamellipodia and filopodia (26, 
35,51,69,70,79,89) that are characteristic fea
tures of macrophages (70,121). Kupffer cells, 
through their cell bodies and/or cytoplasmic pro
cesses, are in contact with endothelial cells 
(Fig. 16) (42,69,124), with which they may form 
junctional complexes (33). Blood cells are also 
frequently seen associated with the Kupffer cells 
(Fig. 15), possibly as an expression of the immu
nological role of liver macrophages . Further, 
Kupffer cell projections may, in some instances, 
create a kind of intrasinusoidal micro-labyrinth 
that may play a role in the regulation of blood 
fl ow ( 70). 

Ito cells, fibroblasts and fibrocytes are 
the elements populating the space of Disse. These 
cells, which easily can be differentiated in TEM 
sections, are intermingled within a delicate net
work of fibrils and collagen fibers supporting 
the endothelial lining (73). The fat-storing 
cells (perisinusoidal stellate cells or Ito 
cells) may be considered as vitamin A-storing li
pocytes (140). In SEM they can be identified 
through the larger gaps of sinusoidal endothe
lium, possessing numerous laminar dendritic pro
cesses, and rarely, microvillous projections 
(Fig. 17) (34,44,81,136). Occasionally, a single 
cilium floating in Disse's space, or emerging 
through a sinusoidal gap into the vascular lumen, 
can be recognized (81,104). The function of 
the fat-storing cells appears related to the 
metabolism and storage of vitamin A, as document
ed by the large increase of these elements in Vi
tamin A-treated animals (30, 52,140), and also by 
the features they have in common with similar 
stellate vitamin A-storing cells found in other 



SEM of the Liver 

~ Endothelium of the hepatic artery in the 
portal space. (E, endothelial cell; arrows, cell 
limits) (Bar= 10 ,l(m). Rat. 
~ Endothelium of the portal vein of the 
portal space. (E, endothelial cell; S, sinusoidal 
opening) (Bar= 10 µm). Rat. 
~ Central vein (V) surrounded by hepatic 
laminae (HL) (Bar = 10 jjm). Rat. 
Fig. 10 A sinusoidal opening in the central vein, 
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endothelial fenestrations (F) can be recognized. 
(*,bridge; B, red blood cell). (Bar= 10 µm).Rat. 
Fig.11 Endothelium of the terminal hepatic 
vein.(N, nucleus; E, endothelial cell; L, lympho
cyte; arrow, cell limits; S, small sinusoidal 
opening). (Bar = 10 ,(Jm). Rat. 
~ Fenestrated endothelium.Sieve plates (SV) 
and large fenestrae (G) of sinusoidal endothelium 
(*,microvilli of the hepatocyte).(Bar= l ,um).Rat. 
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organs (73,140}. These data demonstrate that si
nusoidal cells should be considered morpholo
gically as three distinct cell types whose re
spective roles seem to be somewhat integrated. In 
fact, sinusoidal cells have an intimate spatial 
relationship, and this seems to further represent 
coordination of certain activities carried out 
within the sinusoidal spaces, including filtra
tion and discernment of blood substances. Thus, 
the mechanical sieving activity of the en
dothelial sieve plates (148) may be enhanced by 
the anatomical barrier created within the sinu
soids by the Kupffer cell prolongations. In this 
way the Kupffer cells contact blood elements and 
substances, exerting a phagocytic, and/or immuno
logical role. Such functional complementarity of 
sinusoidal cells also may be suggested by expe
rimental studies involving treatment of choles
terol remnants that reach hepatic sinusoids. In
deed, endothelial cells and Kupffer cells may 
work together in recycling or removing choles
terol remnants that, when too large, cannot pass 
through the endothelial fenestrae (14,20,21,158) 
or are phagocytized by Kupffer cells (147). 

Liver Parenchymal Cells and lntrahepatic Biliary 
Tree. 

The hepatic parenchymal cell is able to car
ry on its various functional activities simul
taneously due to the close spatial relationship 
that this cell shares with both the vascular com
partment and biliary system. Such morphological 
relations can be successfully studied by SEM 
(73). In fact, SEM clearly demonstrated that the 
physiological polarity of the hepatocytes cor
responds to an anatomical polarity (46,81). By 
SEM, the nepatocyte appears as a polyhedral cell 
with 6 or more facets, possessing vascular poles 
facing the perivascular, interstitial spaces and 
biliary poles delimiting the bile canaliculi 
(Fig. 18) (75,82). Hepatocytic facets may have 
various morphological appearances in relation to 
their different functional polarity (19). The 
vascular facets, observable in isolated hepato
cytes or through the larger sinusoidal gaps, are 
richly covered by short microvilli (Fig. 19) (77) 
which considerably increase the membrane surface 
area destined for the absorption and treatment of 
the interstitial fluids (73). Biliary facets, 
having a different functional polarity, have dif
ferent features. In properly fractured samples, 
biliary facets present a centrally located longi
tudinal depression (width: 0.5 µmin the central 
areas of the lobule; up to 2.5 µm, near the peri
phereal area} (73) that runs along the entire 
cell surface.(75,135). These channels (bile hemi
canaliculi} are bordered by short, thick 
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microvilli (Fig.20). Bile canaliculi may possess 
branches and lateral sacculations (75). In ste
reo views, the canalicular bed appears to be pro
vided with numerous microvilli, large holes and 
small diverticulae that may be the intracellular 
sacculations observed in TEM sections (73,75). 

Both surfaces at the canalicular sides are 
relatively smooth. Such smooth bands (0.1-0.4 ~m 
width) are the areas of adjacent hepatocytes' 
junctional attachments; the latter represent the 
anatomical barrier between vascular and biliary 
compartments. It is believed that where these 
barriers are very narrow, bile regurgitation may 
occur under experimental or pathological condi
tions (73,90). Protrusions and holes also can be 
distinguished on these bands. The former to
gether may serve as an additional system of at
tachment for adjacent hepatocytes, as well as for 
sealing bile canaliculi (73,81). 

Bile canaliculi become wider (1-2.5 ,um) near 
the portal zones, where they may be seen emptying 
into the intralobular ductules of Hering (62,38). 
Two kinds of connections of bile canaliculi with 
bile ductules (canalicular-ductular junctions) 
are described (41). Bile canaliculi usually emp
ty into bile ductules, forming an ampulla just 
before the junction. Sometimes, bile canaliculi 
may also be connected directly with the bile duc
tules without any sacculation or dilatation. The 
ductule's wall is made of a few epithelial cells 
joined to converging hepatocytes (37,62,81). 
Numerous microvilli and, rarely, long cilia ari
sing from epithelial cells, are also described 
(27,74,). 

Ductules empty bile directly into the bili
ary ducts located in the portal space (Figs. 5-
6). The epithelial cells forming the bile duct 
wall possess microvilli and cilia (37). Micro
villi are characteristically disposed in longitu
dinal rows (62,81) that, in the larger ducts, 
seem to delimit hexagonal profiles corresponding 
to the cell borders (Fig. 21). Almost all epithe
lial cells of the larger ducts show a centrally 
located cilium on their surface (Fig. 21). Lumi
nal holes (0.1 µm diameter) are present in the 
smallest bile ducts. These openings represent 
the inlets of bile canaliculi that occasionally 
may empty directly into biliary ducts without 
ductular passage (62). 

Intracellular components of the liver paren
chymal cells are poorly studied by SEM (36,81, 
112,125). In fractured hepatocytes, the nucleus 
appears spherical and centrally located (81) 
(Fig. 22). Nuclear pores have been demonstrated 
in chemically dissociated tissues (36). When ex
amined three-dimensionally, other cytoplasmic or
ganelles and inclusions appear evenly dispersed 
throughout a network of fibrous tubular 
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Fig. 13 An endothelial bridge (B) covered by fenestrated endothelium,within a sinusoid.(*,space 0f Dis
se; H,hepatocyte; bc,bile canaliculus. Fig. 14 A bridge where endothelium (El has been removed.Note the 
fibrillar composition of this structure.(S,sinusoid; H,hepatocyte). (Bars= l ~m). Praomys. 

Fig.15 A stereo pair show
ing the intimate rela
tionship between a Kupffer 
cell and a lymphocyte. 
(Bar= l µm). Rat. 

Fig. 16 Within a sinusoid is present a Kupffer cell (K) having a long cytoplasmic extension (arrow). 
(be, bile canaliculus). Fig. 17 Through an artifactual gap of the sinusoidal endothelium it is possible 
to see the laminar dendritic processes of a fat-storing cell (Fl located in the space of Disse. (SV, 
sieve plate; m, microvilli of the hepatocyte). (Bars= l µm). Rat. 
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components (in cracked resin-infiltrated samples) 
(125) or filamentous structures (as recently evi
denced in liver perfused with Triton-XlOO) (112). 
In any case, identification and classification of 
intracellular structures and organelles, along 
with their three-dimensional relationships, will 
be better clarified in SEM-TEM (freeze-etching) 
correlated studies. 

Future Applications of SEM in Hepatology 

The actual three-dimensional arrangement of 
the liver's cells, as well as of the cells of ma
ny other organs, has been revealed by SEM (24,49, 
80,81). Normal liver structure easily can be 
studied by comparing SEM data with data col
lected through employment of other morphological 
techniques, including morphometrical analysis 
(73). The achievement of this primary step will 
be extremely useful for the development of other 
biological fields. Unfortunately, hepatic physio
pathology and organogenesis are important areas 
of biological research that are still scarcely 
investigated by means of SEM. 

Morphological studies, whether in experimen
tal animal models or in human pathology, are one 
of the interesting topics in biological investi
gations, today. SEM may offer valuable informa
tion toward a better understanding of many 
physio-pathological processes occurring in all 
organs (10), especially in liver. Up to the pre
sent, however, the liver has not been extensively 
studied by SEM pathologists, hence, very few pa
pers describing human pathological samples are 
available. 

Hepatobiliary lesions produced by bile duct 
ligation (9, 11,13,81,90,131) or treatment with 
cholestatic agents (54,55,65,162) in animals, as 
well as those biopsied in humans (137), have been 
studied. In intra-extra-hepatic cholestasis, SEM 
easily revealed diffuse dilatation of bile cana
liculi that had lost their bordering microvilli 
and emitted numerous ramifications (81,90). In 
addition, increased microvillosity of newly 
formed side-branches of the bile canaliculi has 
been observed in humans (137). Diffuse prolifer
ation of the intrahepatic biliary tree, enlarged 
canaliculo-ductular junctions and numerous endo
exocytotic formations of the hepatocytic surfaces 
also have been reported (11). These changes may 
help to explain the mechanism of bile regurgita
tion into the vascular compartment, i.e., jaun
dice formation. This would seem to suggest that 
bile regurgitation is related to increased duc
tular reabsorption of bile and trans-hepatocytic 
transport, leading to release of bile into the 
space of Disse (11). On the other hand, areas 
with minimal distance between the bile canaliculi 
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and the space of Disse have been revealed by SEM 
(75). These areas, which correspond to the nar
rowest smooth bands present at the canalicular 
sides, may be considered "loci minoris resisten
tiae" for their supposed tendency to rupture and 
leak bile in response to increases in intrabil
iary pressure (73,90,122). However, SEM data on 
the occurrence of free communications between 
perivascular spaces and bile canaliculi are 
contradictory (11,63,90), so further studies must 
be done to clarify this problem. SEM also has 
been successfully employed in studies of hepatic 
vascular diseases (138), including vascular tu
mors (59,137,159). In addition, parenchymal di
sorders, such as hepatic necrosis, cirrhosis and 
tumors, both in animals (43,81,93,99-102,115,l41, 
143,144,) and in humans (39,91,137,161 ), have 
been investigated three-dimensionally. All of 
these reports clearly have shown that SEM is a 
helpful technique for the elucidation of the pa
thogenesis of hepatic alterations (73), as well 
as for the collection of data for differential 
diagnosis in human pathology (95,137), especially 
when compared with other morphological and immu
no-histochemical studies (10,64). 

The few SEM papers concerning liver develop
ment that are presently available, lend support 
to the assertion that the study of the dynamic 
evolution of cell and tissue during hepatogenesis 
may be approached through a three-dimensional e
valuation (58,76,113). Nevertheless, various de
velopmental stages of the liver, and hemopoiesis, 
have been extensively investigated by TEM (25, 
124,163). The architecture of the fetal liver is 
characterized by the presence of extensive vascu
lar areas and by a greater number of sinusoids 
than is found in the adult liver (58,76), allow
ing increased blood filtration and absorption 
(113). Sinusoidal endothelial cells possess nu
merous gaps, and they seem morphologically dif
ferent from Kupffer cells, even in early develop
mental stages (71). Hepatoblasts, which may be 
classified best through correlated SEM-TEM stud
ies, show surfaces extensively covered by short 
microvilli (71). These microvilli, which increase 
as the liver matures (113), are sometimes seen to 
be arranged in longitudinal parallel rows. They 
are probably related to the formation of the bile 
canaliculi (73). 

As demonstrated in this review, the "world 
of the liver" offers many other suitable topics 
for future three-dimensional studies. The exact 
function of endothelial fenestrae and their chan
ges during pathological processes, the morpho
functional relationships of endothelium with 
other sinusoidal cells, the origin and the trans
formation of hepatic cells during the fetal 
period or during regeneration and, finally, the 
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three-dimensional microstructure of liver patho
logical processes, a subject which is virtually 
unexplored and unresolved, are all fascinating 
problems. Indeed, we have demonstrated that many 
of the liver cell 's components can be easily well 
identified only by means of SEM alone. 

We therefore conclude that SEM investiga
tions will surely help to elucidate many of the 
problems regarding physiological and pathological 
processes occurring in the liver (27,73). It is 
our hope, then, that scanning electron micros
copists will continue in their efforts to unravel 
the mysteries entwined within this complex organ, 
especially so that clinicians and surgeons might 
find new approaches to treatment of the several 
hepatic disorders still known to be incurable. 

Fig. 18 Hepatic laminae. (H, hepatocytes; S, si
nusoids; be, bile canaliculi).(Bar = 10 µm). Rat. 
Fig. 19 The vascular pole of a hepatocyte toward 
the space of Disse is seen through a large arte
factual endothelial rupture. (H, hepatocyte; m, 
microvilli; E, endothelium). (Bar= l µm). Rat. 
Fig. 20 Bile facet of a hepatocyte showing the 
bile groove (be) bordered by microvilli (m). The 
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arrows show holes which are part of the junctio
nal complex (*, Space of Disse; S, sinusoid). 
(Bar= l µm). Guinea Pig. 
Fig. 21 Epithelial surface of a bile duct of the 
portal area. The arrows evidence cilia. (m, mi
crovilli). (Bar= 1 µm). Rat. 
Fig. 22 Fractured hepatocytes. (N, nucleus; C, 
cytoplasm; S, sinusoid). (Bar = l µm). Rat. 
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Discussion with Reviewers 

E. Wisse: In your introduction you mention that 
new SEM images on the liver sinusoids of the ani
mal Praomys wi 11 be shown. May we know your reason 
for looking at the sinusoids of these animals? 
What were the results? 
Authors: Praomys Mastomys Natalensis (PMN) is a 
rodent native to South Africa which easily deve
lops neoplastic processes in certain organs. Fur
ther, it has a female prostate that often deve
lops cancer. Up to now, its ultrastructural mi
croanatomy has not been extensively studied. Our 
group, in collaboration with Dr. DiDio's group at 
the Medical College of Ohio, is reviewing the mi
croanatomy of the liver as well as that of other 
organs (ovary, uterus, heart), in order to eluci
date the basis of the pathological processes. As 
far as the results are concerned, PMN liver, in 
healthy animals, appeared similar to that of 
other rodents, except for the sinusoidal bridging 
structures described in this paper. We reported 
these structures, in the present paper, because 
it is a new finding and it is of interest in un
derstanding the hemodynamics of the liver micro
circulation. 

E. Wisse: You are summing up quite a number of 
data and considerations concerning fixation and 
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tissue preparation. In a review like this, we 
might expect a point of view or a conclusion with 
regard to this matter. Would you please formulate 
your opinion on how we should judge the quality 
and correctness of a good SEM liver preparation? 
Authors: It is not easy to define in a few words 
what the standard of quality is for a good SEM 
liver preparation. Actually, as demonstrated in 
this paper, one singular mode of preparation of 
liver samples does not exist. In fact, due to the 
complicated structure of the liver, different 
techniques are needed to evidence different 
structures: most of the time, it is not possible 
to obtain a good conservation of sinusoids and of 
bile canaliculi in the same sample. As to how we 
should judge the SEM liver preparations,our meter 
is represented by the pictures offered in this 
paper as well as those presented in other 
publications of our group (text ref. 73,81,82). 

E. Wisse: You state that the morphology of endo
thelial cells differs from organ to organ, even 
within one organ. Do you think there only exists 
one type of endothelial cell with different mor
phological expression (adapted to local circum
stances), instead of a multitude of differently 
programmed endothelial cell types? 
Authors: Both hypotheses are likely. According to 
morphological data we cannot express any further 
comment. However "local circumstances" easily may 
induce changes of the endothelium. 

E. Wisse: Have you seen junctional complexes 
between endothelial and Kupffer cells? 
Authors: No, personally, we have not seen them, 
but they have been reported (text reference: 33). 

T. Itoshima: The bridge in 
but broken.We would like 
bridge in the whole. 
Authors: See Fig. 23. 

Fig.14 seems likely 
to see an unbroken 

Fig. 23 Praomys liver. An entire intrasinusoidal 
bridge (arrow). (S = sinusoid). Bar is 10 µm. 
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T. Itoshima: The arrangement of the hepatic lami
nae: you describe that changes in the blood pres
sure gradient produce a deformation of the liver 
laminae, which may temporarily alter their loca
tion in space. I cannot understand what you say. 
Do you mean to say that hepatic laminae change 
their interrelationships dynamically? As you know 
hepatic labyrinth is interconnected three-dimen
sionally and their relationships are rigidly re
stricted by hepatocyte continuity. 
Authors: We agree that the interrelations of the 
hepatic labyrinth are rigidly restricted by hepa
tocytic continuity. Actually, when we state that 
deformation of the liver laminae may occur, we 
mean to say that the aspect of the liver archi
tecture is dependent upon the filling state of 
the sinusoids with blood. In fact, as you know, 
not all the liver sinusoids are filled with blood 
at the same time, but distribution of blood flow 
changes according to the momentary functional 
state of the liver. Thus, we can find both empty 
and filled sinusoids. This causes variations in 
the sinusoidal caliber. It is precisely due to 
the close relationship existing between sinusoids 
and hepatic laminae, that the latter changes 
their location in the space. The same phenomena 
happen in all soft, highly vascularized tissues, 
including the liver. 

R.D. Soloway: What is known about the SEM struc
ture of the sinusoidal valves that control the 
microcirculation within the lobule? It is known 
that kinetic studies of the hepatic microvascula
ture show that blood flows intermittently through 
many of the sinusoids. 
Authors: Up to now, we have no SEM data to con
firm the existence of sinusoidal valves. We be
lieve that the regulation of the "intermittent" 
blood flow through the sinusoids is controlled 
mostly by the smooth muscle cell contraction of 
the intrahepatic vessels, and partially by struc
tures present inside the sinusoids themselves. 
These latter structures may include the intrasi
nusoidal bridges or the prolongations of the 
Kupff er cells. 

F. Low: Regarding the question of the basement 
membrane in the liver could you make some com
ments about what is revealed by SEM along the 
lines of Burkel and Low, Am J Anat 118:769-784 
(1966)? 
Authors: Unfortunately, SEM gives very little in
formation on those structures that are not ex
posed during preparation. Particular techniques 
are needed in order to expose basement membrane 
surface, and it is poorly studied by SEM methods. 
However, SEM seems to confirm the fact that the 
basement membrane is not continuous in the liver, 
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but correlated SEM-TEM studies are needed to 
better elucidate this problem. 

S.G. McClugage: Endothelial bridges are described 
in figures 10, 13 and 14. Have these structures 
been described in other parts of the vascular 
system such as the cavernous sinus in the cranial 
vault? Does their incidence vary from one end of 
the sinusoid (peri-portal) to the other (cen
tral)? Since such endothelial-covered structures 
would increase the potential surface area for 
thrombosis could they not affect nutritional 
blood flow through the lobule under certain pa
thologic conditions? 
Authors: We have no data concerning the presence 
of similar structures in organs other than liver. 
- The endothelial bridges were found uniformly 
throughout the entire sinusoid. - Any structure 
that changes the regular laminar flow through a 
vessel creates turbulence. This happens at the 
level of any vascular branch or at the site of an 
endothelial lesion (disendothelization). When 
turbulent blood flow occurs, platelets may be ac
tivated, with consequent thrombus formation at 
the level of an endothelial lesion. Partial or 
total vascular occlusion occurs as a consequence 
of thrombotic process. (Spaet TH, Gaynor E, Ste
mermann MB; Thrombosis, atherosclerosis and endo
thelium. Am Heart J ~: 661-667, 1974 - Ross R, 
Faggiotto A, Bowen-Pope D, Raines E; The role of 
endothelial injury and platelet and macrophage 
interactions in atherosclerosis. Circulation 
2.Q_(suppl III):77-82, 1984). Thus, structures such 
as the intrasinusoidal bridges may actually crea
te a risk factor for vascular occlusion, but only 
when disendothelization occurs. 

F.J. Vonnahme: 
pits which you 
the liver may 
asci tes? 

Is there any evidence that the 
describe on the serosal surface of 
play a role in the formation of 

Authors: No. But it is likely that they may. 

F.J. Vonnahme: You did not mention the functional 
role of "fat-storing cells" in fibrogenesis. 
Would you please comment? 
Authors: Often, fat-storing cells are seen close
ly associated with collagen fibrils only in those 
areas fronting the hepatocytes (text reference 
73). Therefore, it has been suggested that they 
may have a role in secreting collagen and rein
forcing the reticular network in the Space of 
Disse. This may support the hypothesis that these 
cells have some common or1g1n with fibroblasts; 
but further evidence is needed (text references 
73, 126, 140). Up to now, fat-storing cells are 
surely recognized as lipocytes,storing vitamin A. 
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