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An expected value of sample information (EVSI) approach for estimating the payoff 
from a variable rate technology. 

Abstract 

This paper examines the payoff to variable rate technology (VRT) using a Bayesian 

approach following literature on the expected value of sample information (EVSI).  In  

each cell within a field, we compare the expected payoff from an optimal variable rate 

conditioned on a signal from that cell, with the expected payoff from a uniform rate 

technology (URT) that is optimal for all cells in the field. This comparison, when 

evaluated across the theoretical distribution of signals, provides an estimate of the 

expected gross benefit from VRT relative to URT. Under plausible assumptions, a 

closed-form algebraic solution relates this expected benefit to field and nitrogen response 

characteristics. We apply our approach to data from on-farm field-level experiments 

conducted by the Data-Intensive Farm Management Project (DIFM) (Bullock, et al. 

2019), which examined nitrogen (N) response across cells for which soil 

electroconductivity (EC) served as the signal related to nitrogen response. We calculate 

the expected gross benefits to be about $1.81/ac, insufficient to support costs of VRT 

implementation. Our model provides quantitative estimates of the extent to which this 

poor outcome could be improved by a higher correlation between the EC signal and the 

state of nature of interest, by higher variability of the state of nature across cells, and by a 

sharper curvature of yield response to N.   
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An expected value of sample information (EVSI) approach for estimating the payoff 
from a variable rate technology.  

Introduction 

Variable rate technology (VRT) for agricultural inputs refers to a technology that adjusts 

the application rate for cells within a field, based on information that is unique for each 

cell. The technology requires an observable signal at each cell that conditions input 

response in that cell, and a combination of software and hardware capable of changing 

the application rate across subunits.  

Computer-controlled VRT technologies have been commercially available in the U.S. 

since the late 1980s. Economic analyses of VRT beginning in the early 1990s have 

shown that VRT for fertilizer on grain crops is seldom profitable. Despite these adverse 

profitability findings, Lowenberg-DeBoer and Erickson (2019) report studies suggesting  

that by 2017, across states in the U.S. from 43% to 73% farmers had adopted VRT for 

fertilizer application.  Adoption rates this high challenge the results of economic studies 

showing the practice to have little if any economic benefit.  This suggests that further 

economic analysis is warranted. 

Intuitively, there are several underlying factors that would affect the value of VRT versus 

a uniform rate technology (URT) on a given field.  (1) The value of VRT should increase 

with the variability of the critical soil characteristics in cells across the field, and would 

be zero on a perfectly uniform field.  (2) The value of VRT should increase with the 

curvature of the response function (because the cost of the wrong decision on individual 

cells within the field becomes higher). (3) The value of VRT increases as the effect of the 

soil characteristic on yield response increases. (4) The value of VRT should increase with 
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the correlation of the signal and the critical soil characteristic(s).  (5) The value of VRT 

should increase with the price ratio of output price to input price.  An understanding of 

the relative importance of these underlying factors in determining the value of VRT from 

a given trial would be helpful in determining whether results from a given analysis can be 

extrapolated to other fields. 

The modelling approach of this paper employs the concept of the Expected Value of 

Sample Information (EVSI) from information theory to examine the expected value of 

VRT.  We assume that the response to the input is related to an unobservable soil 

characteristic distributed with some prior density across the field.  We further assume that 

there is a characteristic that we can observe, correlated with the unobservable 

characteristic, which we refer to as a signal.  Observation of this signal at a given point 

changes expectations about the unobservable characteristic at that point, and thus changes 

the optimal application rate at that point. We apply this approach to examine the expected 

payoff to nitrogen application, using soil electroconductivity (EC) as the signal, which we 

compare to expected payoff to a uniform rate technology (URT).  

 

Some relevant economic studies of VRT for nitrogen application 

Scores of economic studies have examined the benefits of adopting VRT for fertilizer 

application1. Ex-post evaluations of results on individual fields have shown widely 

 
1 Good literature reviews are provided by Lambert and Lowenberg-DeBoer (2000), Bullock and 
Lowenberg-DeBoer (2007), Lowenberg-DeBoer and Erickson (2019) 
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varying estimates of payoff2.  While a majority of these studies found a positive payoff, 

the average of estimated payoff levels for VRT have been small.  

Three previous studies estimated what we consider to be the ex-ante expected payoff to 

VRT versus URT.  By ex-ante, we mean the expected payoff from employing VRT on a 

field prior to actually obtaining information about cells within that field. Babcock, 

Carriquiry and Stern (1996 - BCS hereafter) and Bullock, Ruffo, Bullock and Bollero 

(2009 - BRBB hereafter) both explicitly cast the value of VRT in a value of information 

context, i.e., they use information theory to examine the value of observing some 

information about each cell and adjusting the rate accordingly, versus applying a 

common rate across all plots in a field. Liu, Swinton and Miller (2006 - LSM hereafter) 

do not explicitly appeal to the literature on the value of information, but their analysis is 

similar in that they compare expected payoffs from VRT versus URT over a wide range 

of outcomes using Monte Carlo simulation.  

BCS explicitly use a traditional Bayesian information theory, with a prior density 

function describing expectations about the field characteristic, updated to a posterior 

density function using the observed signal from a cell.  They apply this approach to 

traditional experimental data from a single site over six years to estimate a linear 

response and plateuau (LRP) production function, using the applied nitrogen fertilizer 

rates to estimate the slope, and soil nitrate test levels (μ) to estimate the plateau. The 

optimal URT rate is that which maximizes expected payoff using a prior probability 

distribution on μ.  They specify this prior alternatively as a uniform prior or a three-

 
2 Examples include Hurley, Malzer and Kilian (2004); Anselin, Bongiovanni and Lowenberg-DeBoer 
(2004); Hurley, Oishi and Malzer (2005); Lambert, Lowenberg-DeBoer and Malzer (2006). 
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parameter gamma prior. For VRT, a plot-specific N rate is calculated as that which 

maximizes expected payoff using a Bayesian posterior density function that is conditional 

on the observed signal, μ. They then calculate the expected value of VRT as the 

difference between these two expected payoffs, using the posterior distribution of soil 

nitrate levels. Under the uniform prior, they found an expected VRT payoff of $10.03 per 

acre (gross payoff - without deducting soil test and extra application costs), compared to 

$2.93 using a gamma prior distribution. The BCS approach models the value of VRT 

very well using classic Bayesian theory, but the posterior density functions are not 

analytically tractable and were evaluated numerically, using Gauss-Legendre quadrature.  

Because of this complication, the approach does not appear to be operationally feasible 

for general use, and it offers no insights as to the contribution of underlying factors that 

determine the expected value of VRT.   

LSM examine results from whole-field experiments with nitrogen on fourteen Michigan 

corn fields (only eight in their final evaluation) over a three-year period.  Nitrogen 

treatments were allocated to plots of size 0.2 or 0.4 acres, and plot characteristics such as 

organic matter, electrical conductivity and wetness index (a proxy for weather) were 

included in response function estimates.  They conceptualize the variance in the response 

function coefficients of these characteristics to represent variance in response across time 

and space. They estimate this variance with the variance-covariance matrix of the 

parameter estimates . They determine the optimal URT by maximizing expected profit 

with respect to this probability density function; they use simulated values of the 

coefficients to estimate "site-specific" optimal rates.  The simulation was achieved with a 

Monte Carlo experiment that generated 3,000 yield functions, then bootstrapped to 
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estimate 80% confidence intervals for the value of VRT versus URT.  For their preferred 

model, upper bounds of these ranges are less than $0.50/ac for four of the fields, between 

$1 and $5 for three more, and $23.90/ac for the eighth.  We note that their analysis is 

consistent with estimating the expected value of perfect information about a given cell, 

rather than the value of sample information, since the simulated values of the random 

parameters are modeled as known with certainty when optimal rates and outcomes are 

calculated. This creates an upward bias in the estimate of value of VRT, because there is 

less error in estimating the optimal rate than would be the case if an imperfect signal is 

observed instead of the structural coefficients themselves. The approach also offers no 

insights as to the contributions of the various underlying factors that determine the value 

of VRT. 

BRBB estimate a “meta response” function in which fertilizer response by county is a 

function of site characteristics and weather, using data from four fields in 2002 and four 

more fields in 2003.  Plot characteristics included topographic indices and a soil nitrogen 

test, while weather included mean monthly temperature and precipitation. They identify 

URT optimal rates for each field as those that maximize expected payoffs given the 

average levels of characteristics and weather. VRT optimal rates are those that maximize 

average payoffs with respect to each of the observed characteristics-weather outcomes.  

Calculated expected profit levels from URT and VRT were also determined using the 

average of observed levels of characteristics and weather. Their framework allows them 

to distinguish between the value of information (about plot characteristics and weather) 

from the value of the variable rate technology itself.  They report an average payoff 

(willingness to pay) of about $2.50/ha for a package including both the site-specific 
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information and the variable rate technology. As was the case for LSM, this is an 

estimate of the expected value of perfect information, because the optimal N rates and 

related profits were calculated using the assumption that characteristics were known 

constants. As noted above, this results in an upward bias in the estimated value of VRT. 

The BRBB approach offers no information about the relative contributions of factors 

underlying the expected value of VRT. 

In this paper we elaborate an approach to estimating the expected value of VRT that has 

two important features relative to previous approaches: it is tractable in allowing us to 

analytically identify the effects of underlying factors on the value of VRT (variability of 

soil characteristics across the field, response curvature, etc), and it acknowledges the 

reduction in expected value caused by the imperfection of observable signals relative to 

underlying soil characteristics. 

 

Theoretical approach 

Our approach is to postulate that crop yield (expressed per acre) at each point on a field is 

a quadratic function of the quantity of fertilizer applied and an unobservable soil 

characteristic at that point. A prior density function describes the decision-maker's beliefs 

about the frequency distribution of the unobservable characteristic across the field. There 

exists an observable signal at each point on the field, the distribution of which is 

correlated with the unobservable characteristic.  

At each point in the field, there is a choice of observing the signal so as to apply a rate 

that maximizes expected profit conditional on the signal (a variable application rate), or 
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simply applying the rate that maximizes expected profit conditional on the prior density 

of the characteristic (a uniform application rate). We define the expected payoff from 

observing the signal as the difference between the two expected payoffs, which in the 

decision theoretic literature is known as EVSI – the Expected Value of Sample 

Information3.  We follow the approaches of Kihlstrom (1976) and Lawrence (1999) to 

model EVSI.  

In this analysis, VRT is a package consisting of hardware capable of varying the 

application rate across the field, hardware capable of monitoring the signal s, and 

software supporting them4.  At issue is the expected value of VRT relative to URT for a 

field, prior to knowing the values of the signal, s, that would be observed at points within 

that field. This difference we refer to in this paper as the ex-ante expected payoff from 

adoption, which is the same as the expected value of s, or the Expected Value of Sample 

Information, EVSI. 

 

A simple Bayesian decision making framework  

At every point on the field, profit5 is determined by a variable input x and an unknown 

and unobservable state of nature γ :  

		𝜋(𝑥, 𝛾) = 𝑝. 𝑓(𝑥, 𝛾) − 𝑤. 𝑥 , (1) 

 
3 Perfect information would be knowledge of the characteristic itself, whereas the observed signal is merely 
correlated with the characteristic. 
4 Bullock, et al (2009) examine the value of these components separately rather than as a package. 
5 We express profit, output and variable input on a per-acre basis, though it occurs at points in the field. 
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where 𝑓(𝑥, 𝛾) is the production function (yield response function), 𝑝 is the price of 

output, and 𝑤 is the input price. In the absence of information about γ at a given point, 

the profit-maximizing choice of 𝑥 is obtained from:  

max
!
𝐸"[𝜋(𝑥, 𝛾)	] =∫ 𝜋(𝑥, 𝛾)# 𝑔(𝛾)𝑑𝛾 ,        (2) 

where 𝑔(𝛾) is the density function representing the prior probability distribution of  𝛾,  

and G is its range.  We denote as x'  the level of input that maximizes expected profits in 

equation (2). If the signal is not observed at any point, x' is optimal for the entire field and 

is thus the optimal uniform rate under URT.  Following Kihlstrom (1976), we introduce 

the possibility of obtaining some soil information (a signal) 𝑠 ∈ 𝑆, that is correlated with 

the true unknown soil characteristic 𝛾. Having observed s, the expected profit  

maximization problem becomes:  

max
!
𝐸"|%[𝜋] =max! ∫ 𝜋(𝑥, 𝛾)# 	ℎ(𝛾|𝑠)𝑑𝛾 , (3) 

where ℎ(𝛾|𝑠) represents the posterior probability distribution of 𝛾 given s, obtained by 

Bayes’ rule6. We denote 𝑥′′(𝒔) as the application rate that maximizes expected profits 

when s is observed. It can be interpreted as a contingency plan describing the input 

decision in response to any message s that might be observed. 

We assume that prior to adopting VRT on a given field, the prior distribution of γ and the 

response function are known. When a decision maker decides whether to obtain the 

 
6 Bayes’ rule: the posterior density function describing the probability distribution of γ is  

ℎ(𝛾|𝑠) =
𝑣(𝑠|𝛾) ∙ 𝑔(𝛾)

𝜙(𝑠) 	where	𝜙(s) = 2 𝑣(𝑠|𝛾)
!

	𝑔(𝛾)𝑑𝛾	 

where 𝑣(𝑠|𝛾) represents the sampling distribution of the signal and 𝜙(𝑠) is the marginal density function of 
the signal.  
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signal, she does not know what message the signal will provide. The decision is thus 

based on an expected profit maximization in which the profit associated with each 

possible message provided by the signal is weighted by the probability of receiving that 

message. EVSI is the extra expected profit from observing s, with expectations taken 

with respect to the density functions of both 𝛾 and s: 

 𝐸𝑉𝑆𝐼 = ∫ ∫ 𝜋(𝒙"(𝑠), 𝛾)# 	ℎ(𝛾|𝑠)𝑑𝛾	𝜙(𝑠)𝑑𝑠 − ∫ 𝜋(𝒙&, 𝛾)# 	𝑔(𝛾)𝑑𝛾' ,         (4)                                                            

where 𝜙(𝑠) is the marginal probability density function of the signal.  The first 

expression on the right-hand side identifies the expected payoff from first observing the 

signal s and then applying the rate that maximizes expected profit given that signal, 

evaluated prior to actually observing the signal7.  The expectation is taken with respect 

to the density of s across the field, 𝜙(𝑠), and since the profit is scaled to the level of one 

acre, it is the expected profit per acre using VRT across the field.  Similarly, the second 

expression is the comparable expected profit per acre if the optimal uniform rate is 

applied across the field. Thus equation (4) is the expected extra profit per acre from 

observing and using the signal compared to a uniform rate. Note that this is the gross 

value of observing the signal, from which cost of adopting the VRT package must be 

deducted to determine the net benefit of VRT relative to URT. 

 

A specification with a quadratic response function and bivariate Normal distributions.  

 
7 This is known as a preposterior analysis (see for example Raiffa and Schlaifer (1961)) 
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Following Lawrence (1999), we specify a quadratic response function8 𝑓(𝑥, 𝛾) and a 

bivariate Normal distribution of g and s.  The quadratic yield function is:  

										𝑦 = 𝛼 + 𝛽(𝑥 + 𝛽)𝑥) + 𝛽*𝛾 + 𝛽+𝛾𝑥																																																	(5) 

where 𝛽) < 0. The density functions g and h are Normal with means μγ and μγ|s , 

respectively, and correlation ρ.  The solutions to the maximization problems in (2) and (3) 

are, respectively,  

𝑥′J𝜇"L = 𝑥J𝑤, 𝑝, 𝜇"L =
, -⁄ /0"/0#1$

)0%
      and         (5a) 

𝑥′′J𝜇"|%L = 𝑥J𝑤, 𝑝, 𝜇"|%L =
, -⁄ /0"/0#	1$|'

)0%
 .  

The two optimal rates in (5a) yield two expected maximum profit functions, V(𝜇") and 

V(𝜇"|%). The theoretical expected value of sample information (EVSI) in (4) can be 

expressed in terms of these expectations rather than integrals :  

																																					EVSI = 	E3QV(𝜇"|%)R − 	V(𝜇")																																									(6) 

where E3[. ] indicates the expectation over the distribution of the signal. As Lawrence 

(1999) has demonstrated, for the quadratic yield function, these maximum expected profit 

functions can be expressed as: 

V(𝜇") = 𝑐(𝜇") + 𝑐)𝜇" + 𝑐* 

 
8 The quadratic yield specification is required for Lawrence's closed form analytical results. While some 
studies of alternative specifications have shown others to be preferable for nitrogen response (i.e., Bullock 
and Bullock, 1994), other studies have not (Perrin, 1976; Liu, 2006). In any case, the quadratic is probably 
the most commonly used in economic studies (see Anselin, Bongiovanni and Lowenberg-DeBoer, 2004; 
Liu et al., 2006; and Bullock, et al, 2009).  
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																																														V(𝜇"|%) = 𝑐(𝜇"|%) + 𝑐)𝜇"|% + 𝑐*																																										(7) 

where 𝑐( = − -0#%

+0%
, 𝑐) = 𝑝𝛽* +

-0#
)0%

V,
-
− 𝛽(W and 𝑐* = 𝑝𝛼 + (

)0%
V𝑤𝛽( −

,%

-
− -0"%

)
W, 

combinations of the known output and input prices and the parameters of the quadratic 

yield function. Plugging (7) into (6) yields:   

																																																			EVSI = 𝑐(QE3J𝜇"|%) L − 𝜇")R																																																										(8) 

Lawrence (1999), equation 5.7, pp118-119, shows that using the law of iterated 

expectations, equation (8) can also be presented in terms of the variances as:  

																																																					EVSI = 𝑐(Q𝜎") − E3J𝜎"|%) LR		,																																																		(9) 

where 𝜎") and 𝜎"|%)  are the prior and the posterior variances of 𝛾, respectively. The 

expected value of obtaining information 𝑠 about the unknown 𝛾 is proportional to the 

reduction in uncertainty about 𝛾 (ignoring the cost of the VRT technology package). 

When 𝛾 and 𝑠 are bivariate normally distributed with correlation 𝜌9, the posterior 

variance of the distribution of 𝛾 is 𝜎"|%) = 𝜎")(1 − 𝜌)). Lawrence then shows (his 

equation 5.8) that equation (9) above can in this case be expressed as: 

																																							EVSI = 𝑐(Q𝜌)𝜎")R 	= − -0#%

+0%
Q𝜌)𝜎")R				.																																						(10)   

Equation (10) is a fundamental contribution of this analysis. It expresses the value of 

VRT as an explicit function of parameters representing the underlying factors we 

intuitively identify as affecting the value of VRT: the variance of the state of nature 

 
9 i.e. (𝛾, 𝑠)~𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒	𝑁𝑜𝑟𝑚𝑎𝑙	(𝜇( , 	𝜎(); 	𝜇*, 	𝜎*); 𝜌).  
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across the field, 𝜎"); the correlation between the signal and the state of nature, r ; the 

curvature of the response function10 𝛽); the effect of the state of nature on the response, 

𝛽+; and the price of output, p.  

 

The sensitivity of EVSI to underlying parameters  

While we cannot observe underlying parameters r and sg , the assumed bivariate normal 

distribution of 𝛾 and s allows us to derive an approximation of equation (10).  By Bayes’ 

rule, the posterior mean of the distribution of 𝛾, given 𝑠 , is given by: 

𝐸(𝛾|𝑠) = 𝜇"|% = 𝜇" + 𝜌
𝜎"
𝜎%
(𝑠 − 𝜇%) (11) 

Taking the expectation of (4) with respect to the prior distribution of g, we obtain the 

following expression, for given values of x:  

𝐸"(𝑦) = 𝛼 + 𝛽(𝑥 + 𝛽)𝑥) + 𝛽*𝜇" + 𝛽+𝜇"𝑥. (12) 

Similarly, we take the expectation of (4) with respect to the posterior distribution of g to 

obtain:	

𝐸"|%(𝑦) = 𝛼 + 𝛽(𝑥 + 𝛽)𝑥) + 𝛽* ]𝜇" + 𝜌
4$
4'
(𝑠 − 𝜇%)^ + 𝛽+ ]𝜇" + 𝜌

4$
4'
(𝑠 − 𝜇%)^ 𝑥.   (13) 

 
10 The value of VRT varies inversely with the curvature of the response function, 𝛽), i.e., the flatter the 
response curve, the smaller is the potential loss from a suboptimal application rate and therefore the less is 
the value in knowing the optimum rate.  
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Substituting �̃� = (%/1')
4'

, so that  �̃�	~𝑁𝑜𝑟𝑚𝑎𝑙	(0, 1), re-arranging terms and adding a random 

error term 𝜖	, we obtain the following estimating equation:  

𝐸"|%(𝑦) = 𝜃7 + 𝜃(𝑥 + 𝜃)𝑥) + 𝜃*�̃� + 𝜃+�̃�	𝑥 + 𝜖	,	 (14) 

where 𝜃7 = 𝛼 + 𝛽*𝜇", 𝜃( = 𝛽( + 𝛽+𝜇", 𝜃) = 𝛽), 𝜃* = 𝛽*𝜌𝜎" and 𝜃+ = 𝛽+𝜌𝜎". 

Given that the expected value of �̃� is zero,  the first order condition for the expected profit 

maximizing application rate without observing s, the optimal uniform rate applied to all 

cells is 

𝑥′J𝜇"L =
,

)8%-
− 8"

)8%
 ,                                                     (15)  

and the first order condition for the expected profit maximizing application rate conditional 

on having observed s (the variable rate for a given cell) yields 

𝑥′′(�̃�) = ,
)8%-

− 8"
)8%

− 8#%̃
)8%

    .                                                                        (16) 

      

Notably, the EVSI measure of the value of VRT in equation (10) becomes 

𝐸𝑉𝑆𝐼 = 	−
𝑝𝛽+)

4𝛽)
		Q𝜌)𝜎")R = −

𝑝𝜃+)

4𝜃)
																																																																														(17) 

 

Sensitivity 

Equation (17) reveals some of the determinants of the payoff from VRT. In brackets, we 

see that EVSI increases with the correlation between the signal and the state of nature, 
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and with the variability of the state of nature across the field. There is no benefit to 

variable rate application if the field is perfectly uniform, or if the correlation between the 

signal and the state of nature is zero.  From equation (17), the elasticity of EVSI with 

respect to the correlation r, is 

:;<=>'?
:;<@

= 2  .        (18) 

Similarly, elasticity of EVSI with respect to variance of the state of nature, 𝜎") is 1.0, and 

the elasticity with respect to curvature 𝛽), is -1.0, while the elasticity with respect to the 

interaction coefficient, 𝛽+, is 2.0. 

 

Data 

We use a rich set of experimental data from the Data-Intensive Farm Management 

(DIFM, 2018) project at University of Illinois11. To estimate the response function (14), 

we pooled data from 10 farm fields, 4 in Illinois in 2016, 5 in Illinois and 1 in Ohio in 

2017, with a total of 7,294 cells12. The data consists of corn yields, applied nitrogen (N) 

and soil electroconductivity (EC), which is the observed signal for each cell i in field j. 

EC is usually associated with the availability of nitrate in the soil in which high levels are 

expected to increase yields (Johnson et al., 2003, Liu et al., 2006). It is a soil signal that 

correlates with some soil properties as: texture, drainage, cation-exchange capacity and 

subsoil characteristics (Grisso et al., 2005). Data on EC can be obtained in a shorter 

 
11 See https://publish.illinois.edu/data-intensive-farm-managment/2016/02/23/hello-world/ 
12 We refer to sub-units within fields as “cells”, but in the precision agriculture literature they are also 
referred to variously as “management zones”, "sites", “plots”, or “grids”, depending somewhat on how the 
subunits are identified. 
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period and is more cost-efficient than traditional grid-based soil testing. Figure 1 depicts 

the whole-field experimental layout of a field typical of the DIFM project. Figure 2 

illustrates a scatter plot of pooled yields vs N rates. Figure 3 illustrates the location of the 

2017 trials. Descriptive statistics for the 10 fields used in this study are in Table 1. 

 
 
Results 
 

Estimated response function 

To estimate equation (14) the signal �̃� is reprented as standardized observed ECs, referred 

to as 𝐸𝐶l . Table 2 presents the estimate of the pooled yield response function for all 10 

fields, 7,294 observations. The nitrogen and the nitrogen squared coefficients are both 

statistically significant at 10%. We included dummy variables for fields 2 to 10 so 

coefficients of these dummies are intercept changes relative to field 1. From the variable 

N response equation (14), we conclude that, because estimates of 𝜃) and 𝜃+ are both 

negative, there is an inverse relationship between 𝐸𝐶l  and optimal N rate. In other words, 

𝐸𝐶l  is a substitute for N. 

Table 3 presents for each field the mean, standard deviation, minimum and maximum of 

EC and optimal VRT rates across the cells within each field, calculated using estimated 

equations (12) and (14), evaluated at the values of x and s for each cell in each field.  

Ordering from lowest to highest average EC, we observe the clear inverse relationship 

between optimal VRT rate and EC, as implied by the negative estimate of the interaction 

coefficient for N and EC, θ4. For example, fields 7 and 10, which have the lowest average 

EC, have the largest average optimal VRT applications of 180.80 and 183.23 lbs/ac. 
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Fields 1 and 4, with the highest average EC, have the lowest average optimal VRT 

application of 143.62 and 130.77 lbs/ac. The relationship between the standard deviation 

of EC and the standard deviation of optimal VR application is similarly monotonic.  

Using equation (17) with the parameter estimates for the pooled sample of 10 fields, we 

estimate EVSI to be 1.81/ac:  

EVSIm = − -8A#%

+8A%
		= 	− *∗(/.7+D+)%

+(/.77(7()
= $1.81/𝑎𝑐				.																				                   (19) 

We also use equation (14) to estimate EVSI for each individual cell, using the observed 

EC. Table 4 presents the average and range of cell-level EVSI estimates by field, using 

observed EC and estimated optimal VRT by cell from Table 3. These estimates range 

from $0 to $38.21/ac, but average $1.82/ac; essentially the same as the estimate in 

equation (19).  

The $1.81/ac from equation (19) is our best ex-ante estimate of gross return to VRT for 

fields drawn from a distribution of fields similar to those in our sample.  It is the expected 

return from using the signal from each cell to generate an optimal rate, ignoring the costs 

of the VRT technology package.  While it is below estimates in the literature of those 

costs, this result is similar to the ones in other empirical studies.  BCS (1996) estimated 

higher comparable payoffs at $2.93-10.03 per acre. Bullock, et al (2009) found 

comparable payoffs to be a dollar per acre or less, and concluded that prospects for VAR 

“are generally dim”.   

Sensitivity  
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The estimated EVSI of $1.81/ac is too low to warrant adoption. We examine here 

changes in various parameters that would be sufficient to achieve an EVSI of (arbitrarily) 

$10/ac, which is about 5.6 times higher than the estimated level.  We solve equation (17) 

for the various parameters to derive estimates of the changes in individual parameters that 

would be sufficient to increase the EVSI by about 5.5 times, to $10/ac. Solving (17) for 

dlnρ, for example 

																																																					𝑑𝑙𝑛𝜌 =
5.52
2 = 2.76.																																																														(20) 

We estimate that a r 2.76 times larger than the r of these fields would be sufficient to 

raise EVSI to $10/ac.  But of course, we do not have an estimate of r.  Judging from the 

generally low VRT payoff measured here, this correlation must be low – perhaps r=0.1 

or as little as r=0.01.  If r=0.1, then from the equation above, r would need to increase 

from 0.1 to 0.376. If r=0.01,  𝜌 would need to increase from 0.01 to 0.038. However, if r 

³ 0.362, apparently there is no increase that would yield an EVSI of $10/ac or more.   In 

any case, if a 2.8-fold increase in r is required it seems that electrical conductivity is not 

sufficiently correlated with N response on these fields to be a profitable signal. 

Considering now the variance of the state of nature over the field, 𝜎"), from equation (11) 

and given that the elasticity of EVSI with respect to 𝜎") is 1.0, the necessary percentage 

increase in variance to achieve an EVSI of $10/ac is 10/1.81= 5.52.  If the distribution of 

γ is similar to that of EC, this would imply an increase of 𝜎") from about 87.6 (the 

variance of EC across all fields) to 484, which is much higher than the EC variance of 

132 in field 7, the most variable of any of the fields. . Similarly, the curvature coefficient, 
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𝛽), would need to increase from an absolute value of 0.001 to 0.0065, which is an 

indication that profits in our sample are not highly sensitive to the level of N applied. The 

interaction coefficient,  𝛽+, would need to change from -0.0494 to -0.186, a further 

indication that N response in this sample is not greatly affected by the level of EC.  

 

Conclusions 

In this paper we have adapted insights from the decision theory literature on the value of 

information to provide an economic model of the value of VRT (variable rate 

technology) as the expected value of sample information (EVSI).  The sample 

information in our case is the observed electroconductivity (EC) of the soil as a signal for 

an unobservable soil characteristic affecting nitrogen response.  Our theoretical results 

provide an estimate of the expected value of VRT as an explicit function of parameteers 

representing five underlying factors: variability of soil characteristic across the field; 

curvature of the response function; effect of the soil characteristic on input response; 

correlation of the signal with the soil characteristic; and the ratio of crop price to input 

price.  The expected value of VRT is taken with respect to the frequency distribution of 

the state of nature and the sampling distribution of the signal obtained across all cells in 

all eight field/years observed.  This expected value can therefore be taken as the ex-ante 

expected payoff from adopting VRT on any field drawn from the same population of 

field/years as those observed.    

To obtain tractable analytical results for this approach, we assume that the yield response 

to fertilizer is quadratic in applied nitrogen (N) and the state of nature, g. The state of 



 20 

nature cannot be observed, but a signal s can be observed for each cell. A second 

assumption critical to our results is that g and s are distributed bivariate normally across 

cells in these fields.  Given this underlying structure, individual cell application rates can 

be adjusted to the level that maximizes the expected payoff conditional on the signal. The 

difference between this optimal expected payoff and the expected payoff from an optimal 

uniform application rate (UAR) provides the expected gross payoff from the adoption of 

VRT.  In the decision theory literature, this is known as the expected value of sample 

information  (EVSI) 

We apply this approach to estimate the exante expected payoff to VRT using data from 

field-level experimental trials with nitrogen on 10 farmers’ corn fields in Illinois and 

Ohio in 2017 and 2018, consisting of 7,294 gridded cells .  The signal used to adjust the 

fertilizer rate for each cell is electrical conductivity.  Our EVSI estimate of the ex-ante 

expected payoff of VRT is $1.81/ac (prior to subtracting VAR implementation costs).  

This is insufficient to warrant VAR implementation costs, which we believe to be in the 

range of $10/ac.  Our analysis suggests that for VAR benefits to reach this level, the 

correlation between state of nature and signal would need to increase by roughly 2.8 

times, though we are not able to estimate the level of that correlation.  Alternatively, the 

same improvement in VRT value could be attained by an increase of similar size for 

either the curvature coefficient or the N times EC interaction coefficient, or a five-fold 

increase in the variance of the state of nature could reach the same outcome.  Clearly, 

some of these changes could occur if we had a more robust measure than electrical 

conductivity (EC) of the state of nature affecting N response. 
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Our approach has obtained some results regarding the determinants of VRT payoff that 

were previously understood intuitively, but not analytically or quantitatively. Our claim 

for our results to be a measure of the expected payoff of VRT on a similar field, is that 

the $1.81/ac is a plausible estimate of the expected gross benefit of VRT across a field 

with cells drawn from the same distribution as the 7,294 cells in our sample. Perhaps 

such variables as soil classification, remote sensing data, etc., may provide coarser but 

cheaper signals for calibrating application levels. 
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Figures and Tables 

 

 

Figure 1. Layout of a 2018 on-farm N fertilizer trial conducted on a 32-ha field in Central Illinois. 
Source: DIFM data.   
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Figure 2. Scatter plot of (N, Corn Yield) data from 2017 trials. Source: DIFM.     
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Figure 3. Location of six 2017 trials used in the study. Source: DIFM.    
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Table 1: Descriptive statistics for cells within ten fields in Illinois (4 fields in 2016, 5 in 2017), and Ohio (1 
in 2017). 

Variable Observations Units Mean Std. Dev. Min Max 

Corn dry yield 7,294 bushels/acre 232.65 31.45 0.0 315.67 

Applied nitrogen (N) 7,294 pounds/acre 174.15 35.89 29.88 315.94 

Soil EC 7,294 Veris EC scale 37.32 9.36 7.6 80.2 

Standardized EC (𝐸𝐶G) 7,294 Veris EC scale 0.0 1.0 -3.17 4.58 
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Table 2: Estimated nitrogen response equation (equation 14), pooled data from within ten fields in Illinois 
(4 fields in 2016, 5 in 2017), and Ohio (1 in 2017), 7,294 cells. 

Variable Coefficient Estimate 

(standard error) 

𝑁+, 𝜃- 0.455* 

  (0.225) 

𝑁+,)  𝜃) -0.00101* 

  (0.000547) 

𝐸𝐶G +, 𝜃. 9.540*** 

  (2.182) 

𝐸𝐶G+, . 𝑁+, 𝜃/ -0.0494*** 

  (0.0113) 

  77.75*** 

                    Fixed effect, field 2 d2 (0.455) 

  87.53*** 

“ d3 (0.791) 

  86.84*** 

“ d4 (0.831) 

  38.82*** 

“ d5 (0.932) 

  99.53*** 

“ d6 (1.435) 

  86.84*** 

“ d7 (1.889) 

  119.7*** 

“ d8 (1.281) 

  109.9*** 

 d9 (0.767) 

“  78.23*** 

 d10 (2.408) 
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Constant  90.80*** 

  (21.99) 

Note: D2-D10 are dummy variables for fields 2 to 10. Standard errors in parentheses are clustered at the 
farm level. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 3: Soil electroconductivity (EC) and estimated optimal VRT Nitrogen application per field, Illinois (4 fields 
in 2016, 5 in 2017), and Ohio (1 in 2017). 

    EC   Optimal VR N Application (estimated)a 

Field 
Obs. 

(plots) Mean 
Std. 
Dev. Min Max 

 
Mean Std. Dev. Min Max 

1 127 42.25 6.66 32.68 66.97 
 

143.62 17.46 78.76 168.71 

2 160 38.42 3.24 31.40 44.26 
 

153.66 8.51 138.33 172.07 

3 160 35.58 4.05 24.73 42.48 
 

161.11 10.63 143.01 189.58 

4 256 47.15 6.31 34.58 60.41 
 

130.77 16.56 95.99 163.74 

5 581 35.47 8.86 20.12 79.57 
 

161.41 23.24 45.71 201.68 

6 1,548 40.44 6.22 22.81 59.22 
 

148.37 16.32 99.10 194.61 

7 682 28.08 11.48 7.60 78.85 
 

180.80 30.11 47.60 234.52 

8 819 33.06 9.07 14.57 59.45 
 

167.72 23.79 98.48 216.23 

9 2,347 41.28 6.98 22.68 80.22 
 

146.17 18.31 44.01 194.97 

10 614 27.15 6.17 15.92 48.32   183.23 16.20 127.69 212.69 

Pooled 
cells 7,294 37.32 9.36 7.6 80.2    44.01 234.52 

aIn lbs/a, using corn price=$3/bu and nitrogen price=$0.42/lb 
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Table 4: Estimated EVSI by cell, average and range per field in Illinois and Ohio, 2016-2017. (US$/a).  

Field ID Obs (cells). Mean (Std. Dev) Min Max 

1 127 1.42 (3.29) 0 18.25 

2 160 0.24 (0.23) 0 0.99 

3 160 0.40 (0.72) 0 3.29 

4 256 2.83 (2.59) 0 11.06 

5 581 1.70 (3.50) 0 37.07 

6 1,548 1.00 (1.17) 0 9.95 

7 682 4.50 (3.97) 0 35.81 

8 819 2.08 (2.13) 0 10.75 

9 2,347 1.33 (2.31) 0 38.21 

10 614 2.94 (2.29) 0 9.52 

Pooled cells 7,294 1.82 (2.64) 0 38.21 
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