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Knowledge of groundwater recharge (GR) is vital for optimal water resources 

management under an arid continental climate.  However, in vast territories such as 

Mongolia, direct measurements of GR are unfeasible because they mandate excessive 

costs, stemming from time-consuming and labor-demanding efforts. A valid alternative to 

direct measurements is numerical models based on the monitoring of precipitation (P) 

and evapotranspiration (ET) for simulating GR. While direct measurements of ET are 

logistically problematic and unpractical for large-scale applications, a reliable prediction 

may be derived from crop reference evapotranspiration (ET0) which is calculable from 

limited data and will feed numerical models to evaluate a (pseudo) realistic GR as output. 

The crop reference evapotranspiration (ET0) was calculated employing the Hargreaves 

(Har) temperature-based ET0 method that closely simulated the internationally recognized 

standard FAO Penman-Monteith (FAO-56 PM) method (calculated with available data at 

limited locations). The set of weather data required for FAO-56 PM is still mostly 

unavailable or not easily accessible in data-limited countries such as Mongolia. The Har 

temperature-based method showed good potential to replace FAO-56 PM in the region 

according to our analysis. A time-variable and spatially-variable crop coefficient (Kc) was 

used to convert Har ET0 into a biome-specific potential evapotranspiration (ETp) for 41 



 

 

 

 

study locations. However, there were no readily available estimates of Kc in natural 

vegetation specific to Mongolia. A dynamic (time-variable) radiation-dependent (in Gobi 

Desert) or LAI-dependent (in steppe) Kc was adopted from the literature and used for the 

first time in Mongolia. The LAI dependent Kc was also adjusted due to the climate 

features of the region. The developed Kc values are important to convert ET0 to ETp with 

consideration of region’s climate and any factors affecting the vegetation. The mean 

annual ET0 ranged from 685 mm to 1129 mm, while the ETp ranged from 147 mm to 695 

mm. The GR rates were calculated using the estimated ETp as input in the HYDRUS-1D 

numerical vadose zone model for 41 study locations across Mongolia. The mean annual 

GR rates were smaller than 12 mm in study locations and the GR tends to decrease when 

vegetation cover increases. 
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1. CHAPTER 1. INTRODUCTION 

Land and water resources management in Mongolia relies on the knowledge of 

groundwater recharge (GR) replenishing aquifers that represent a vital water resource 

under an arid continental climate. However, in vast territories such as Mongolia, direct 

measurements of GR are unfeasible because they mandate excessive costs stemming from 

time-consuming and labor-demanding efforts. Alternative approaches to direct 

measurements are hydrological models simulating water balance within the groundwater-

soil-plant-atmosphere continuum (Ma et al., 2003). The main advantage of using 

numerical models for Mongolia stems from the fact that the user needs "limited" data 

such as the monitoring of precipitation (P) and information to estimate evapotranspiration 

(ET).  Like direct measurements of GR, direct measurements of ET (i.e., eddy covariance 

technique, lysimeters, Bowen ratio energy balance, etc.) are logistically problematic, 

involve high investment/maintenance and are therefore completely unpractical for large-

scale applications. However, limited data may be used to calculate the crop potential 

evapotranspiration (ET0) and subsequent estimates of ET required for GR modeling.  

We recall that the vegetative-atmospheric evaporation/transpiration potential is expressed 

by the reference crop evapotranspiration (ET0), representing the evapotranspiration flux 

from a standard, vegetated (i.e., crop) surface in a well-watered field. The hypothetical 

reference crop is defined as having a height of 0.12 m, a surface resistance of 70 s m-1, 

and an albedo of 0.23 (Allen et al., 1998).  Due to a scarcity of data required to calculate 

this reference evapotranspiration, we opt to employ basic weather data recorded by 

relatively low-cost sensors installed in spatially distributed weather stations to estimate 

ET0. Xiang et al. (2020) suggest it may be inappropriate to take natural vegetation as a 
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reference crop. As Mongolia is covered mainly by steppe grasslands under arid 

conditions, it is therefore necessary to convert ET0 which is referenced to crops, into 

biome-specific potential evapotranspiration (ETp) under optimal conditions. This ETp 

represents the atmospheric evaporation demand, namely the amount of water that can be 

transferred to the air from land or water. Allen et al. (1998) discourage use of “potential 

evapotranspiration” term, but it’s usage is still common in hydrologic applications, e.g., 

when there is a need to prepare ETp for hydrological models. There are some usages of 

crop potential evapotranspiration term, but the biome specific potential 

evapotranspiration term was used in order to avoid confusion with agricultural crops. The 

developed Kc values will be used to convert reference crop evapotranspiration to specific 

biome in the region. Figure 1.1 portrays the selection of ET0 method by testing proposed 

methods in 10 weather stations in Mongolia and the optimal steps to calculate GR with a 

hydrological model with using calculated ETp and other required inputs in all 41 study 

locations.  
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Figure 1.1. Schematic overview of the two steps to model ground water recharge (GR) involving a) 

estimation of reference evapotranspiration (ET0) from basic weather data obtained employing three 

different estimates (FAO56-PM, HAR, and Tho) and (b) modeling process that starts with obtaining 

potential evapotranspiration (ETp) and crop coefficient (Kc) and leaf area index (LAI) as the inputs to of a 

hydrological model that generates values of ground water recharge (GR). 

The Chapter 2 will compare three ET0 methods and seek the most suitable that 

utilizes simple, reliable, and easily retrievable basic weather information in Mongolia. 

Then the ETp will be obtained by coupling selected ET0 method with a term referred to as 

the crop coefficient (Kc) in 41 study locations. The effect of both crop transpiration and 

soil evaporation are integrated into a single crop coefficient (Allen et al., 1998). The 

Kc coefficient incorporates plant physiology and soil moisture deficit. However, for 

natural vegetation conditions, it is hard to fully specify the vegetation stress conditions 

and integrate them into the one Kc coefficient. The developed Kc depends on physiology 

but does not consider the soil moisture stress condition due to uncertainties related to the 

field condition while soil moisture deficit will be evaluated in HYDRUS-1D. 

The Chapter 3 proceeds by using ETp results for a soil-water balance model, 

focusing on GR in 41 study locations in Mongolia characterized by different 

environmental and climatic conditions. A reliable prediction of ETp is fundamental in 

numerical models for obtaining the GR and actual evapotranspiration (ETa). The obtained 

ETp from developed Kc - s will be used to feed HYDRUS-1D, and the model will produce 

ETa that represents a reduction of ETp induced by water stress by evaluating the soil 

water condition in study locations. We assume that GR is equal to water drainage 

simulated at the end of the modeling depth in HYDRUS-1D. 

Study locations 

Mongolia is a landlocked country in north-central Asia, adjacent to China to the 

south and Russia to the north. Mongolia lies on a high plateau surrounded by mountain 
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ridges, in the transition zone between the Siberian taiga and the dry steppes and semi-

deserts of central Asia (Yu et al., 2016). The country has a distinctly dry subarctic 

continental climate, with long cold winters and short hot summers. The mean annual 

precipitation (P) in Mongolia is about 200 mm, ranging from less than 50 mm in the Gobi 

Desert region to over 500 mm in the mountainous regions in the north. Maximum 

seasonal P occurs in summer (Yu et al., 2016). The 80% of Mongolia territory is 

comprised of pasture land, 10% forest, 1% farmland, and 9% other types of land. Steppe 

vegetation is the most common in Mongolia and occupies 1.03 million km2, or 66% of 

the total territory (Indree, 2014). It lies mainly in the central part of the country, the 

transitional zone bordering the Gobi deserts to the south and mountain taiga forests to the 

north. The steppe ecosystems are associated with the semi-arid and arid continental 

temperate climates of the region and are ecologically fragile and sensitive to climate 

change and anthropogenic disturbances (Li et al., 2007). The perennial plants (50-90%) 

dominate the Mongolian steppe. The highest percentage of perennial plants occurs in the 

high-cold steppe, decreases eventually, and desert steppe has the least percentage (Indree, 

2014). In contrast, the percentage of shrub, dwarf shrub, biennials, and annuals are the 

least in the high-cold steppe; it gradually increases and occupies half of the flora in the 

desert steppe (Indree, 2014). The average elevation of the country is about 1500 m and 

decreases gradually from the west to the east. Nearly half of the Mongolian territory 

consists of the mountains. These mountains are divided into Cool and Dry types 

according to their formation of vertical vegetation range. Khentii, Khuvsgul, 

northwestern Mongolian Altai, Northern Khangai, and Khyangan mountains refer to cool 

type and compose steppe vegetation of lower range. Southern Altai, Gobi Altai, Gobi, 
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and Zuungar mountains refer to dry type, and this type's specifics are that low range has 

desert vegetation and upper range has high-cold steppe (Indree, 2014).  

We identified a total of 41 locations in Mongolia with weather data availability 

(Figure 1.2). We specify that ten weather stations (blue triangles in Fig. 2) provide a 

complete set of weather data while the remaining 31 stations provide only temperature 

(T) and P data. The study locations were chosen considering the density, physical 

geography, latitude, land use, climate class, and data availability.  

 
Figure 1.2. Locations of 41 weather stations (represented by the triangle symbol) on DEM (Digital Elevation 

Model) map retrieved from the Shuttle Radar Topography Mission (SRTM) in Mongolia (Earth Resources 

Observation And Science center, 2017). The ten blue triangles indicate the weather stations with a complete 

set of meteorological data used to compare FAO56-PM with temperature-based equations. 

The study locations’ IDs are shown in the map are used for presenting the results 

below. Complete data set belonging to the ten weather stations will be exploited for 

estimating ET0 with FAO-56 PM equation and temperature-based equations (Chapter 2.).  
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1. CHAPTER 2. SELECTION OF EVAPOTRANSPIRATION METHOD 

Introduction 

First, we define evapotranspiration (ET) being the combination of two processes, 

namely soil surface evaporation (E) and crop transpiration (T). According to Allen et al. 

(1998), evaporation is the process whereby liquid water is converted to water vapour 

(vaporization) and removed from the evaporating soil surface (vapour removal). 

Transpiration consists of the vaporization of liquid water in plant tissues and the vapour 

transfer through plant stomata to the atmosphere. Stomata are small openings or pores on 

the plant leaf through which gases and water vapour pass. Together with some nutrients, 

the water is taken up by the roots and transported through the plant. The vaporization 

occurs within the leaf, namely in the intercellular spaces and sub-stomatal cavities, and 

the stomatal aperture controls the vapour exchange with the atmosphere. Nearly all water 

taken up is lost by transpiration, and only a tiny fraction is used within the plant (Allen et 

al., 1998).  

The first step is to determine the optimal method to estimate ET0 (reference crop 

evapotranspiration) in Mongolia. Two studies have been conducted with lysimeters 

(Table 1.1). First, according to Zhang et al. (2005), during the observation period, ETa 

totaled 301.6 mm, and P totaled 319.5 mm, of which ETa accounts for 94% of total P per 

year. While according to Li et al. (2007), cumulative ETa during the study period 

estimated directly by the EC method was 163 mm, which was 66% of the P (248 mm) 

received at the site during the same period). Li et al. (2007) implies that the annual ETa 

rate would have been accounted for 82–97% of the yearly precipitation rate, if significant 
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constraints such as canopy development and soil moisture conditions were taken into 

account more precisely. 

Table 1.1. Previous ET studies in Mongolia 

Study Location ET estimation method 

(Zhang et al., 2005) Nalaikh, Mongolia Lysimeter 

(Li et al., 2007) Kherlenbayan-Ulaan (KBU), 

Khentii province, Mongolia 

Lysimeter 

(Nandintsetseg and 

Shinoda, 2011) 

26 stations throughout the 

country 

Thornthwaite formula (Thornthwaite, 1948) 

(Batkhishig et al., 

2013) 

 

Meteorological stations with 

available data 

Blaney, Criddle and Ivanov formula (Blaney and 

Criddle, 1962); Doorenbos and Pruitt 

(Doorenbos and Pruitt, 1977) 

(Yu et al., 2016) 16 stations throughout the 

country 

Penman-Monteith method 

Meanwhile, studies by Nandintsetseg and Shinoda (2011), Yu et al. (2016), 

Batkhishig et al. (2013) have calculated ET in higher numbers of study locations. 

Nandintsetseg and Shinoda (2011) assumed the GR is negligible for the calculations, 

which can be a reasonable assumption for simplifying the water balance to estimate the 

soil moisture. However, even the small amount of GR can be huge input to the aquifer 

over a large area, and in order to assess sustainable water resources management, we 

need to quantify the GR correctly and understand its characteristics.  

As seen from the previous studies, obtaining a reliable ETp estimation can be 

problematic in Mongolia, and it depends on ET0 and Kc values. The Penman-Monteith 

equation based on the Food and Agriculture Organization (FAO) guidelines (FAO-56 

PM) is internationally recognized as the standard method for computing ET0 (Allen et al., 

1998; Yu et al., 2016). The equation is considered the most reliable method because it is 

based on the energy balance equation incorporating physiological and aerodynamic 

parameters without requiring any local calibration under all types of climatic conditions 
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(Allen et al., 1998). However, the FAO-56 PM method entails the availability of a 

complete set of weather data, including wind speed, air temperature, air relative humidity. 

These variables are often unavailable in data-limited countries where various 

meteorological parameters are hard to obtain or are available only in the form of useless 

short-time series. Challenges still exist nowadays, with some countries not having 

uniform distribution of full-suite weather sites, or lack of public access to the data, by 

hindering large-scale and long-term agro-hydrological studies. Nevertheless, long-term 

air temperature data are primarily available in spatially-dense weather networks across 

Mongolia.  

Therefore we used two well-known limited-data requirement equations to predict 

ET0, namely Hargreaves (hereafter referred to as Har; Hargreaves and Samani, 1985) and 

Thornthwaite (hereafter referred to as Tho; Mintz and Walker, 1993; Thornthwaite, 

1948). First, we evaluate the prediction performance of Har and Tho equations by 

comparing these two methods with the FAO-56 PM equation by using a complete 

meteorological dataset that was available for ten weather stations. Second, the objectives 

of the study are twofold: i) to select a suitable temperature method, alternative to FAO-56 

PM, to estimate ET0; ii) to use a "dynamic" method for estimating a time-variant crop 

coefficient, Kc to convert ET0 into ETp. 

In this study, the time-variant crop coefficient, Kc, depends on either radiation 

(Gobi Desert) or LAI (steppe zone) in Mongolia. Currently, the time-variant Kc – values 

are unavailable in Mongolia, and finding any reliable estimate of Kc can become the basis 

for further studies and potential improvements to predict ETp. The proposed methodology 
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in this study can be used throughout the country to get reliable ETp results with easily 

accessible parameters.   
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Methods 

Determining the duration of the time series for simulation ET parameters  

The monthly P and T at province centers (20 locations throughout the country) 

have been analyzed to choose the most representative years and characterize the climate 

in Mongolia. Figure 1.1. shows T and P data from the weather stations in province 

centers that have been averaged between all stations from 2005 to 2019. Average T 

ranges from around -0.1 °C to 2.6 °C while average P ranges from about 130 mm to 260 

mm. 

 

Figure 1.1. The mean precipitation and temperature /average of all available stations data/ 

The annual T and P data from 2005-2019 has been analyzed in order to choose the 

shorter period, which can represent this whole time series. According to the results, the 

2007-2011 cycle has the closest T and P mean results with the entire series. The mean P 

of 2007-2011 in all stations lies within one std range from the entire series, while the 

mean T of 2007-2011 in 20 stations from a total of 21 stations lies within one std range 
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from the entire series. The 2007-2011 period was the most representable of the entire 

series and therefore chosen for the study.  

Approaches to ET estimation  

In this study, we considered three methods to estimate ET0: 

 Penman-Monteith (denoted as FAO-56 PM)  

 Hargreaves (denoted as Har) 

 Thornthwaite (denoted as Tho)  

The development of ET0, although initially confused with ETp, was formally 

defined as a standard method by Allen et al. (1998). Due to vagueness in its definition, 

ETp was not always applied properly (Xiang et al., 2020). The FAO-56 PM is 

recommended as the sole standard method to calculate ET0. Given the complete 

meteorological data availability over ten weather stations, we compare the FAO-56 PM 

equation with evapotranspiration models of Har (Hargreaves and Samani, 1985) and Tho 

(Thornthwaite, 1948; Mintz and Walker, 1993). After selecting the best temperature 

model, ET0 will be calculated in all 41 study locations with daily temperature data. The 

analytical equations of these methods are reported in Table 1.2, and we briefly report 

necessary input data for each equation. 

Table 1.2. FAO-56 PM, Har and Tho equations with required input data 

Methods 

Minimum meteorological data requirements 

Equations 
Aver 

To 

Max  

To 

Min  

To 

Rel. 

humi

-dity 

Wind 

speed 

Ra 

or 

Rn 

FAO-56 

PM   + + + + + + 

𝐸𝑇0

=
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
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Hargreav

es  + + +   
+

+ 

𝐸𝑇0 = 0.0023(𝑇𝑚

+ 17.8)(𝑇𝑚𝑎𝑥

− 𝑇𝑚𝑖𝑛)0.5(0.408𝑅𝑎) 

Thornth

waite 

modified  
+      

           

2

0
10

0.553 , 0 26.5

( 13.86 1 4

0, 0

.075 0.014 ) , 26.5
12

T

E
T

T
I

T

h
T T T









 




 
  

 

   


 

𝐼 = ∑ (
𝑇𝑚

5
)

1.514
12
1   

𝛼 = (6.7510−7𝐼3) − (7.7110−5𝐼2) +

(1.7910−2I)+0.492 

In the FAO-56 PM equation, Rn is net radiation at crop surface (MJ m-2 d-1), G is 

the soil heat flux density (MJ m-2 d-1), T is air temperature (°C), u2 is the wind speed at 2 

m height above ground (m s-1), es and ea are saturated and actual vapour pressures (kPa), 

 is the slope of the vapour pressure curve (kPa °C-1) and  is the psychometric constant 

(kPa °C-1). Net radiation is usually indirectly measured by a pyranometer. We remind that 

if weather stations lack pyranometers, Rn can be estimated from the actual daily duration 

of bright sunshine (hours per day). The term G is computed as a fraction of Rn as 

suggested by Allen et al. (1998) for the reference crop. In the Har equation, Ra is the 

extraterrestrial radiation expressed in mm d-1, Tm (°C), Tmin (°C), and Tmax (°C) represent 

mean, minimum and maximum temperature, respectively. In the Tho equation, a value I 

represents the annual heat index, Tm represents i-th month mean air temperature (°C), and 

h depicts hours of sunlight (hours). 

Evaluation criteria 

To measure the predictive capability of the tested Har and Tho methods, we 

selected two statistical performance indicators: the Root Mean Square Error (RMSE), 
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which combines both bias and lack of precision, and the coefficient of determination (R2), 

which measures how well the data pairs fit to a line:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(ô𝑖 − ê𝑖)2

𝑛

𝑖=1

 (1) 

𝑅2 =
∑ (ô𝑖 − ê𝑖)2𝑛

𝑖=1

∑ (ô𝑖 − õ)2𝑛
𝑖=1

 (2) 

where ôi is the observed value (reference value, FAO-56 PM ET0), õ is the mean of 

observed values, and êi indicates estimated values of ET0 (ET0-Har and ET0-Tho). 

Subscript i is the counter for time values (in day units), and n is the total number of days. 

Daily values of ET0 will also be aggregated at monthly and annual sums; therefore, 

RMSE units are also expressed as mm month-1 and mm year-1, respectively. For an 

optimal prediction, values should be as low as possible for RMSE and as close as possible 

to 1 for R2.  

Crop coefficients, Kc 

The Kc is required to convert ET0 into ETp. Many studies have been undertaken 

for finding ET0 and Kc, but they were mainly focused on croplands (Jia et al., 2009; 

Kjaersgaard et al., 2008; Suleiman et al., 2007; Suyker & Verma, 2009). Very few studies 

have been conducted in semi-arid natural environments (Zhang et al., 2012). Crop-

specific Kc values in Mongolia are currently unavailable in pristine or anthropogenically 

affected areas. The Kc coefficient incorporates crop characteristics and averaged effects 

of evaporation from the soil (Allen et al., 1998). But for natural vegetation conditions, it 

is hard to fully specify the vegetation stress conditions and integrate them into the one Kc 

coefficient. The developed Kc depends on physiology but does not consider the soil 
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moisture stress condition due to uncertainties related to the field condition in study 

locations. The soil water condition will be evaluated in HYDRUS-1D for obtaining ETa 

from ETp.    

The study locations spread over various natural zones which are representative of 

83% of Mongolia. Nevertheless, the natural zones can be further grouped into land cover 

zones of the Gobi Desert and the steppe (Table 1.3). Previous studies have indicated that 

the Kc values vary significantly during the growing season; therefore, it is impossible to 

assume Kc as constant over time. Thus, the potential time-variable methods were 

attempted to be implemented in the study across the two land cover zones (Gobi Desert 

and the steppe). 

Table 1.3. Categorization of natural zones  

ID Stations Natural zone  ID Stations Natural zone 

1 Sukhbaatar steppe  22 Baynuul steppe 

2 Tseterleg  steppe  23 Galuut steppe 

3 Bulgan Mg steppe  24 Ulaangom  steppe 

4 Khatgal  steppe  25 Arvaikheer  steppe 

5 Tosontsengel  steppe  26 Choir   steppe 

6 Binder steppe  27 Mandalgobi  steppe 

7 Rinchinlhumbe  steppe  28 Altai  steppe 

8 Khalkh gol  steppe  29 Khoriult steppe 

9 Erdenemandal  steppe  30 Khovd  Gobi Desert 

10 Baruunkharaa   steppe  31 Ulgii Gobi Desert 

11 Baruunturuun steppe  32 Ekhiingol Gobi Desert 

12 Erdenetsagaan  steppe  33 Gurvantes Gobi Desert 

13 Chingis khaan (UB) steppe  34 Tooroi Gobi Desert 

14 Choibalsan steppe  35 Sainshand  Gobi Desert 

15 Undurkhaan steppe  36 Khanbogd Gobi Desert 

16 Matad  steppe  37 Zamiin Uud  Gobi Desert 

17 Murun steppe  38 Baitag  Gobi Desert 

18 Uliastai  steppe  39 Dalanzadgad  Gobi Desert 

19 Baruun-Urt  steppe  40 Saikhan-Ovoo  Gobi Desert 

20 Erdenesant steppe  41 Tsogt-Ovoo  Gobi Desert 

21 Dariganga steppe        

This study attempts to propose a dynamic (time-variant) Kc using easily-

retrievable data such as solar radiation or LAI. According to Xia et al. (2014), the 
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normalized difference vegetation index (NDVI) showed strong positive correlations with 

evapotranspiration over the majority of grassland areas except for the region near the 

Gobi Desert (Lamchin et al., 2015). This indicates the regular Kc evaluation might not be 

suitable in the Gobi Desert area, and some research in Inner Mongolia (China) supports 

this assumption (Zhang et al., 2012). Thus, the area-specific Kc should be used for the 

Gobi Desert area in Mongolia. According to Yang and Zhou (2011), by indicating the day 

of the year (DOY), daily Kc values in the growing season ranged from 0.02 to 0.50 with 

an average value of 0.17 in a temperate desert in Inner Mongolia. Therefore, according to 

Zhang et al. (2012), Kc during the study period averaged from 0.15 to 0.17 in Inner 

Mongolia. Both studies were performed in the Gobi Desert (China) and are taken as 

representative of the Gobi Desert in Mongolia. Since both studies match well, the 

regression equation from Yang and Zhou (2011) is implemented in Gobi Desert study 

locations in order to estimate temporal variations of Kc:  

𝐾𝑐 = 0.02 ∗ 𝑅𝑛  (3) 

where Kc is the crop coefficient, and Rn is net radiation. 

In the steppe zone in Mongolia, similar studies are scarce, and there are no readily 

available crop coefficients developed for natural vegetation from FAO-56 documents 

(Allen et al., 1998). The guideline by Allen et al. (1998) for developing  Kc for (non-crop) 

grassland in arid climates require parameters such as vegetation height, air relative 

humidity, and wind speed, and due to the data deficiency, the method is not used for our 

study. Instead, the method which can be developed with easily available data has been 

explored. According to Sumner and Jacobs (2005), the crop coefficients in a non-irrigated 
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pasture site in Florida, USA, ranged from 0.47 to 0.92 and could be calculated from a 

linear function of leaf area index (LAI):  

𝐾𝑐 = 𝛼𝐿𝐴𝐼 + 𝑏 (4) 

where empirical parameters are assumed as a=0.330 and b=0.451. 

Format of equation 4 is useful as an approximation for Kc during the mid-season stage for 

crops that almost shade the soil under pristine conditions. The natural vegetation 

condition in study locations has various constraints to the vegetation growth and does not 

have its optimal vegetation cover. In order to use equation 4, we proposed to reduce the 

Kc by introducing an adjustment. There is no guidance for specific adjustment in 

Mongolia, but the following general equation was proposed by Allen et al. (1998) for 

sparse vegetation: 

𝐾𝑐 𝑎𝑑𝑗 = 𝐾𝑐 − 𝐴𝑐𝑚 (5) 

where Kc adj is the adjustment parameter, and Acm is another empirical coefficient given by 

the equation: 

𝐴𝑐𝑚 = 1 − [
𝐿𝐴𝐼

𝐿𝐴𝐼𝑑𝑒𝑛𝑠𝑒
]

0.5

 (6) 

where LAIdense is the LAI expected for the same crop under normal, standard crop 

management practices. The LAIdense can be predicted from the ground cover ratio at the 

sites and will differ among locations.  

The same function could not be applied in all study locations throughout the 

steppe due to contrasting vegetation characteristics. After multiple attempts, the LAIdense 

values in the steppe zone in study locations with higher-than-average LAI values (LAI > 

0.6) and locations with lower-than-average values (LAI < 0.6) were calculated using 

different equations: 
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𝐿𝐴𝐼𝑑𝑒𝑛𝑠𝑒 = {

0.95 − 0.2

0.6 − 0
𝐿𝐴𝐼 + 0.2, 𝐿𝐴𝐼 < 0.6

3.03 − 0.95

2.53 − 0.6
(𝐿𝐴𝐼 − 0.6) + 0.95, 𝐿𝐴𝐼 > 0.6

 (7) 

Figure 1.2 shows Acm and LAIdense as a function of LAI. 

 
Figure 1.2. LAIdense and Acm values depending on LAI. 

In the steppe zone, as a result of experimentation, LAIdense can not be calculated 

with the same function in all locations with different vegetation cover. LAIdense is 

calculated from LAI, and the 0.6 point in LAI is proposed to be the transitional point 

(Figure 1.2). With LAIdense results, the Acm and Kc adj can be calculated, and therefore ETp 

values can be obtained using these Kc adj results in study locations of the steppe zone.  

The growing season has been identified as starting 7 days before last temperature 

-4°C in spring until 7 days after first temperature -4°C in fall in all study locations, 

assuming as grass pasture from FAO-56 document (Allen et al., 1998). The Kc in the non-

growing season is considered as 0.05 in all study locations by the guidance of Allen et al. 

(1998) for calculating evaporation in non-growing seasons. 
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The ETp will be calculated from ET0 and developed Kc-s. This ETp represents the 

atmospheric evaporation demand, namely the amount of water that can be transferred to 

the air from land or water. And the developed Kc-s convert reference crop 

evapotranspiration to a specific biome in the region. There are some usages of crop 

potential evapotranspiration term (Adane et al., 2019; Lewis & Allen, 2017), but in order 

to avoid confusion with agricultural crops, the biome-specific potential 

evapotranspiration term has used. The ETa will be obtained by evaluating the soil water 

condition and will be reduced from ETp by water stress in study locations by HYDRUS-

1D.  

Evaporation and Transpiration 

Vegetation plays a vital role in partitioning solar energy into evaporation from the 

land surface and transpiration through the vegetation. A “Beer’s law” approach partitions 

the solar radiation component of the energy budget into potential Ep and Tp via 

interception by the canopy (Ritchie, 1972) using the leaf are index (LAI): 

𝐸𝑝 = 𝐸𝑇𝑝𝑒−𝑘∗𝐿𝐴𝐼=𝐸𝑇𝑝(1 − 𝑆𝐶𝐹)= 𝐸𝑇𝑝𝑒−0.463𝐿𝐴𝐼                                                                            (8) 

𝑇𝑝 = 𝐸𝑇𝑝(1 − 𝑒−𝑘∗𝐿𝐴𝐼)=𝐸𝑇𝑝𝑆𝐶𝐹 =  𝐸𝑇𝑝 − 𝐸𝑝                                                                                  (9) 

where   ETp – potential evapotranspiration, 

Ep – potential evaporation, 

Tp – potential transpiration,  

LAI – the leaf area index [-],  

SCF – soil cover fraction [-], 

k is a constant (0.463) governing the radiation extinction by the canopy [-]  

Previous studies (Adane et al., 2018; Ritchie, 1972) have typically used a coefficient k = 

0.463 for different types of vegetation, and this coefficient was used in our study.  
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The FAO Aridity Index, AI 

The AI (Aridity index) is computed as the average of the ratio between annual 

total P and ETp (Spinoni et al., 2015) over a set time period (5 years in our case): 

 𝐴𝐼 =
1

5
∑

𝑃𝑖

𝐸𝑇𝑝𝑖

5
𝑖=1                                                                                                                                    (10) 

AI is computed as the average of the ratio between annual total precipitation (P) and 

potential evapotranspiration (ETp), and i denotes the i-th year. The classification of AI by 

FAO is shown in Table 1.4.  

Table 1.4. Macro-classes and classes of the FAO AI 

Macro-class Class Value 

Arid 

Desert AI≤0.03 

Hyper-Arid 0.03<AI≤0.05 

Arid 0.05<AI≤0.2 

Semi-Arid 0.2<AI≤0.5 

Mid 
Dry 0.5<AI≤0.65 

Sub-humid 0.65<AI≤0.75 

Humid Humid AI>0.75 

Cold Cold ETP≤400 mm 

The AI results can be a good illustration of classification of study locations for 

various analyses.  
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Data collection 

In order to select the applicable method in Mongolia, the daily maximum, 

minimum, average temperature, relative humidity, and wind speed data were obtained 

from NAMEM (http://tsag-agaar.gov.mn) in ten test locations. The hours of sunlight data 

were obtained by WeatherOnline Ltd (2021) at the nearest available station from 

(https://www.weatheronline.co.uk/ ). The terms Ra and Rn were indirectly estimated from 

the guidelines on missing climatic data from the FAO-56 report (Allen et al., 1998). For 

the chosen method, Table 1.5 gives details on the data available for the 41 study 

locations.  

Table 1.5. Data sources  

Collected 

data/parameters 
Unit Location 

Period of 

data 

availability 

Source References 

Daily P mm 

Study 

locations are 

shown in Fig. 

2. 

2007-2011 NAMEM 

(National Agency for 

Meteorology and 

Environmental 

Monitoring) 

Daily max T, min 

T, average T  
(Co) 

Study 

locations are 

shown in Fig. 

2. 

2001-2020 

NOAA National 

Centers for 

Environmental 

Information  

(Menne et al., 2012)   

LAI (-) 

Locations are 

shown in Fig. 

3. 

1981-2015 ORNL DAAC  (Mao and Yan., 2019) 

Temperature 

T measurements were obtained from National Oceanic and Atmospheric 

Administration (NOAA) website (https://www.ncdc.noaa.gov/cdo-web/) (Menne et al., 

2012), and the reliability of the data was tested in the following part. Remotely sensed 

and ground-based measured T data are strongly correlated (Figure 1.3). 

http://tsag-agaar.gov.mn/
https://www.weatheronline.co.uk/
https://www.ncdc.noaa.gov/cdo-web/
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Figure 1.3. The comparison of daily temperature measurements in Khatgal 

As seen from the figure, the remotely measured temperature data potentially can 

replace the ground measured temperature. Thus the T  measurements from NOAA 

(Menne et al., 2012) are collected in 41 study locations.  

Leaf Area Index, LAI 

The region's climate is characterized by a long and cold winter and a short but 

warm summer (Romanova et al., 1983). The development of vegetation cover depends on 

the quantity plus the seasonal and geographical distribution of precipitation. The 

geobotanical diversity of Mongolia is extremely high. Mongolia extends over 1,200 km 

from the north to the south, and one can find a spectrum of the landscape as in the 

temperate belt of Eurasia, e.g., from typical forests to extra-arid deserts. The contrasts in 

these communities cause compression of vegetation zones, and very high gradient 

changes are characteristic of the vegetation cover. However, a wide spectrum of the 

zones and interzonal transitions exist. The dynamics of Mongolia’s vegetation are 
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controlled by changes in climatic parameters (a decrease and long-term oscillations in 

precipitation), an intensification of natural destructive processes that are subject to the 

influence of economic activity, improper nature management practices, and numerous 

direct human-associated disturbances and changes in vegetation cover. The natural 

pasture land can be divided into 200 types of pasture, and 900 of the total 2,800 plant 

species that are documented in Mongolia are vascular plants and are used for livestock 

forage. Since Mongolia is located between the Siberian taiga in the north and the Gobi 

Desert in the south, the pasture vegetation decreases from north to south (Khishigsuren 

and Linden, 2012).  

LAI was collected from literature and remotely sensed products. Since the LAI 

measurements are highly time-variable and differ a lot throughout the country, the spatial 

results from the remotely sensed products were much efficient. The LAI monthly mean 

values were obtained from the global monthly mean LAI climatology index, 1981-2005 

(Mao and Yan., 2019). This dataset provides a global 0.25o x 0.25o gridded monthly 

mean LAI climatology as averaged over the period from August 1981 to August 2015. 

The data were derived from the Advanced Very High-Resolution Radiometer (AVHRR) 

Global Inventory Modeling and Mapping Studies (GIMMS), and the bi-weekly LAI 

values were averaged for every month. Then, the monthly long-term mean LAI (1981-

2015) was calculated (Mao and Yan, 2019). 
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Figure 1.4. Map showing the monthly mean LAIs in the growing season, extracted from the dataset by (Mao 

& Yan., 2019). 

Due to the low cover of vegetation and bushy vegetation, the LAI in the Gobi area 

from the maps was unknown. The LAI values from the closest locations are used to 

represent the LAI in Gobi Desert locations. The monthly LAI values at study locations are 

shown in Annex 2.1.  The daily LAI has calculated from linear interpolation in 41 study 

locations. Then the extracted LAI values have used to partition the ETp, as shown in 

equations 8 and 9.  
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Results and discussion 

The method selection for reference crop evapotranspiration, ET0 

In order to understand the relationship between meteorological variables and 

FAO-56 PM, ET0 over the ten weather stations is expressed in terms of Pearson 

correlation coefficients presented in Table 1.6. 

Table 1.6. Pearson correlation coefficients between FAO-56 PM ET0 and meteorological variables over the 

ten weather stations in Mongolia 

  

Wind 

speed 

Relative 

humidity 

Air 

temperature 

Net 

radiation 

Sunshine 

hours 

1.Galuut 0.51 -0.57 0.91 0.92 0.74 

2.Tsetserleg 0.16 -0.23 0.91 0.91 0.84 

3.Bulgan 0.30 -0.47 0.90 0.92 0.75 

4.Khovd 0.58 -0.76 0.90 0.92 0.84 

5.Erdenetsagaan -0.02 -0.63 0.91 0.88 0.69 

6.Choibalsan 0.04 -0.69 0.91 0.91 0.83 

7.Khatgal 0.01 -0.28 0.90 0.92 0.85 

8.Baruunurt 0.20 -0.72 0.91 0.90 0.71 

9.Undurkhaan 0.20 -0.73 0.90 0.90 0.72 

10.Tsogtovoo 0.21 -0.68 0.91 0.91 0.84 

Note: the dark blue color indicates a high correlation coefficient (close to 1) 

High positive correlation coefficients are observed between ET0 and air 

temperature and net radiation, while negative correlation coefficients are reported when 

relating ET0 with relative humidity. The results agree with the conclusion of  Wang et al. 

(2007) that the net radiation and air temperature are the most important controlling 

factors on ET0, which is evidence of the potential of temperature-based ET0 models.  

 The accuracy of Har and Tho methods is assessed by computation of daily RMSE 

and R2 values quantifying the relationship with FAO-56 PM (Figure 1.5).  
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Figure 1.5. Model performance indicators comparing the FAO-56 PM with Har (blue line) and Tho (red line) 

to estimate daily values of ET0: (a) RMSE (mm d-1) values and (b) values of R2 (-) for ten weather stations. 

The comparison between Har and FAO-56 PM equations (blue line in Figure 1.5) 

leads to a minimum RMSE of 0.56 mm d-1 in Khatgal (R2=0.93) and maximum RMSE of 

1.44 mm d-1 in Tsogtovoo (R2=0.87). The average RMSE is 0.83 mm d-1 and R2=0.90. 

The comparison between Tho and FAO-56 PM equations (red line in Figure 1.5) leads to 

a minimum RMSE of 0.76 mm d-1 in Bulgan (R2=0.88) and maximum RMSE of 1.74 mm 

d-1 in Tsogtovoo (R2=0.85). The average RMSE is 1.10 mm d-1 and R2=0.86. The Har ET0 

method shows lower RMSE and higher R2 than those obtained from the Tho equation 

over the 10 test locations. The inaccuracy in a temperature-based model in estimating ET0 

is attributed to their inability to consider meteorological variables such as relative 

humidity, solar radiation, and vapor pressure deficit as diagnosed by high correlation 

coefficients listed in Table 5. Similar RMSE values between FAO-56 PM and 

uncalibrated Har equation are reported in southern Italy (Pelosi et al., 2016), in south-east 

Spain (Gomariz-Castillo et al., 2018), in the U.S. High Plains (Kukal et al., 2020), 
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northwest China (Celestin et al., 2020), while lower RMSE values are reported in arid and 

semi-arid areas in China (Gao et al., 2017).  

 
Figure 1.6. Comparison between FAO-56 PM-based and temperature-based equations (Har ET0 values are 

represented by blue circles and Tho ET0 values are depicted by red circles) for predicting daily values of ET0 

at (a) Khatgal weather station, and b) Tsogtovoo weather station. 

Figure 1.6 shows a comparison between FAO-56 PM-based and temperature-

based equations over Khatgal and Tsogtovoo weather stations, where we obtained the 

best and worst performance, respectively. A closer inspection of Figure 1.6 reveals 

several zero values of ET0 predicted by the Tho equation that might suffer from 

underestimation if compared to the Har equation. 

The annual average ET0 sums by three methods are visualized in Figure 1.7. The 

FAO-56 PM-based predictions annual average ET0 sums are in accordance with the 

estimates in Inner Mongolia (China) reported by Bian et al. (2020). 

Khatgal Tsogtovoo

a b

Har ET0

Tho ET0
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Figure 1.7. Annual average ET0 calculated with FAO56-PM (blue bars), Har (orange bars), and Tho (gray 

bars) for ten weather stations in Mongolia. 

Both Har-based and Tho-based models tend to underestimate FAO-56 PM-based 

average annual ET0 in most weather stations. The underestimation is observed in other 

studies evaluating the Har model in arid and semi-arid conditions in several parts of the 

world (Amatya et al., 1995; Mohawesh and Talozi, 2012; Xu and Singh, 2002; Tabari 

and Talaee, 2011). As expected from previous outcomes, the annual average ET0 sums 

based on the Har method are closer to FAO-56 PM in 9 out of 10 weather stations when 

compared to the Tho equation performance. The monthly cumulative FAO-56 PM ET0 

also better matches the result from the Har method. One of the drawbacks of the Tho 

method is that ET0 cannot be used in winter months when the temperature drops below 

0 °C. Therefore, according to the cumulative results, the Tho method systematically 

underestimates the ET0. As seen from the statistical results and cumulative comparisons, 

the Har outperforms the Tho equation for estimating ET0; thus Har ET0 method is selected 

in the study. 
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Reference crop evapotranspiration results  

Daily values of ET0 were calculated by using the selected Har method over the 41 

study locations between 2007 and 2011 that had the same mean and standard deviation as 

any other 5-year cycle. Annual sums of ET0 are presented in Table 1.7. 

Table 1.7. Annual sums of ET0 over the 41 weather stations in Mongolia  

№ Stations 
Annual Har ET0 (mm) 

Average mean  

Har ET0 

(mm) 

CV (%) 

2007 2008 2009 2010 2011 

1 Sukhbaatar 861 847 929 812 812 852 5.6 

2 Tseterleg  845 819 801 763 769 799 4.3 

3 Bulgan Mg 891 854 854 835 782 843 4.7 

4 Khatgal  742 715 694 691 695 707 3.0 

5 Tosontsengel  791 762 753 696 729 746 4.8 

6 Binder 907 818 823 793 840 836 5.1 

7 Rinchinlhumbe  723 686 663 666 687 685 3.5 

8 Khalkh gol  910 872 834 863 839 863 3.5 

9 Erdenemandal  871 836 810 793 789 820 4.2 

10 Baruunkharaa   921 889 884 846 849 878 3.5 

11 Baruunturuun 792 769 727 713 749 750 4.2 

12 Erdenetsagaan  926 848 847 849 820 858 4.7 

13 Chingis khaan (UB) 584 561 571 757 694 634 13.8 

14 Choibalsan 952 881 876 860 880 890 4.0 

15 Undurkhaan 987 914 883 874 894 910 5.0 

16 Matad  976 882 882 877 854 894 5.3 

17 Murun 865 834 814 777 798 817 4.1 

18 Uliastai  842 818 790 755 772 795 4.4 

19 Baruun-Urt  972 896 900 880 862 902 4.6 

20 Erdenesant 881 843 804 772 750 810 6.5 

21 Dariganga 835 841 819 864 866 845 2.4 

22 Baynuul 819 770 741 714 735 756 5.4 

23 Galuut 769 797 763 739 708 755 4.4 

24 Ulaangom  863 846 798 790 819 823 3.8 

25 Arvaikheer  830 808 825 780 776 804 3.1 

26 Choir   954 893 898 857 839 888 5.0 

27 MandalGobi  954 915 922 861 871 905 4.2 

28 Altai  778 753 740 691 706 733 4.8 

29 Khoriult 987 982 1001 955 952 975 2.2 

30 Khovd  902 898 867 824 846 867 3.9 

31 Ulgii 846 838 781 777 808 810 3.9 

32 Ekhiingol 1121 1139 1159 1106 1118 1129 1.8 

33 Gurvantes 886 891 921 869 871 888 2.4 

34 Tooroi 1104 1130 1121 1039 1038 1086 4.1 
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35 Sainshand  1029 1000 1012 984 952 996 2.9 

36 Khanbogd 1034 995 1029 971 983 1002 2.8 

37 Zamiin Uud  1033 1010 1041 1002 1010 1019 1.7 

38 Baitag  1000 1006 957 886 964 962 5.0 

39 Dalanzadgad  985 985 1012 964 960 981 2.1 

40 Saikhan-Ovoo  981 957 1003 946 926 963 3.1 

41 Tsogt-Ovoo  1015 985 1012 955 936 981 3.5 

Spatial-average ET0 902 873 867 840 843   

According to Table 1.7, the ET0 annual sums broadly vary in space with low 

temporal variability in each station through 5 years. The coefficient of variation (CV) is 

lower than 10% in 40 out of 41 stations. If we consider the spatial-average ET0 in each 

year, 2007 and 2011 have the highest and lowest values, respectively.  

 The Har ET0 results are close to the previous studies carried out in Mongolia (Li 

et al., 2007; Zorigt et al., 2012; Yu et al., 2016). However, to our knowledge, there is a 

lack of studies on ET0 in the period 2007-2011. A global map of monthly reference 

evapotranspiration obtained from FAO (2009) was chosen for comparison among the 

available remote sensing products. The map was produced by using the FAO-56 PM 

method with a spatial resolution of 10 arc minutes. The monthly map was developed 

from the various meteorological datasets for the period 1961-1990; thus, it is assumed to 

be representative of mean monthly ET0 results. To be consistent with our study, the mean 

annual ET0 (Figure 1.8) map is obtained from the monthly ET0 maps. 
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Figure 1.8. The annual mean spatial FAO-56 PM ETo map by FAO (2009) with corresponding Har ETo 

values. The plot on the right shows the comparison between FAO-56 PM ETo and Har ETo. Diagonal dashed 

line depicts the identity line (1:1 line) 

This comparison of results for different periods must be taken with caution, even 

having similar mean and standard deviation values. As seen from the identity line, the 

two methods have a generally good correlation, but the performance slightly fluctuates 

from place to place. According to Figure 1.8, values of ET0 tend to increase towards the 

south in general. The lowest annual mean ET0 value is 634 mm, while the highest is 1129 

mm.  

The Har ET0 values are compared to the corresponding FAO-56 PM ET0 by 

obtaining RMSE=93 mm y-1 and R2=0.69. Nevertheless, the Har-based ET0 results look 

consistent with FAO (2009) and previous studies carried out in Mongolia (Li et al., 2007; 

Zorigt et al., 2012; Yu et al., 2016) and appear to form a reliable basis for further 

processing and modeling.  

Prediction of biome-specific potential evapotranspiration, ETp  

The ETp is calculated by multiplying ET0 with the calculated time-variant Kc 

described in the Crop coefficient, Kc. Annual fluxes and corresponding aridity index, AI 

in 41 study locations in Mongolia are presented in Table 1.8.  
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Table 1.8. 5-year annual average sums of water fluxes over 41 weather stations in Mongolia 

№ Stations P (mm) ET0 (mm) ETp (mm) Ep (mm) Tp (mm) AI Class 

1 Sukhbaatar 277 852 695 329 366 0.32 Semi-arid 

2 Tseterleg  323 799 615 270 344 0.4 Semi-arid 

3 Bulgan Mg 287 843 448 284 164 0.34 Semi-arid 

4 Khatgal  277 707 449 245 204 0.39 Semi-arid 

5 Tosontsengel  193 746 501 271 230 0.26 Semi-arid 

6 Binder 301 836 521 297 224 0.36 Semi-arid 

7 Rinchinlhumbe  193 685 428 243 185 0.28 Semi-arid 

8 Khalkh gol  291 863 489 299 190 0.34 Semi-arid 

9 Erdenemandal  254 820 423 269 154 0.31 Semi-arid 

10 Baruunkharaa   316 878 460 298 162 0.36 Semi-arid 

11 Baruunturuun 210 750 400 266 135 0.28 Semi-arid 

12 Erdenetsagaan  207 858 353 233 120 0.24 Semi-arid 

13 Chingis khaan (UB) 244 634 293 207 86 0.39 Semi-arid 

14 Choibalsan 205 890 305 197 108 0.23 Semi-arid 

15 Undurkhaan 238 910 389 291 98 0.26 Semi-arid 

16 Matad  211 849 362 267 95 0.25 Semi-arid 

17 Murun 227 755 323 232 90 0.3 Semi-arid 

18 Uliastai  188 795 338 247 91 0.24 Semi-arid 

19 Baruun-Urt  172 902 359 270 88 0.19 Arid 

20 Erdenesant 246 810 308 237 71 0.3 Semi-arid 

21 Dariganga 145 845 305 239 66 0.17 Arid 

22 Baynuul 190 756 290 225 65 0.25 Semi-arid 

23 Galuut 193 755 244 196 47 0.26 Semi-arid 

24 Ulaangom  109 823 271 223 48 0.13 Arid 

25 Arvaikheer  219 804 228 187 41 0.27 Semi-arid 

26 Choir   111 888 237 200 38 0.12 Arid 

27 MandalGobi  93 731 188 161 26 0.13 Arid 

28 Altai  156 733 173 150 23 0.21 Semi-arid 

29 Khoriult 95 975 247 212 35 0.1 Arid 

30 Khovd  119 867 242 210 32 0.14 Arid 

31 Ulgii 95 810 126 108 18 0.12 Arid 

32 Ekhiingol 57 1129 159 139 20 0.05 Arid 

33 Gurvantes 100 888 162 141 21 0.11 Arid 

34 Tooroi 60 1086 157 137 21 0.05 Arid 

35 Sainshand  109 996 148 133 16 0.11 Arid 

36 Khanbogd 115 1002 174 156 18 0.11 Arid 

37 Zamiin Uud  93 1019 154 138 16 0.09 Arid 

38 Baitag  93 962 145 131 14 0.1 Arid 

39 Dalanzadgad  128 981 176 161 15 0.13 Arid 

40 Saikhan-Ovoo  113 963 147 134 13 0.12 Arid 

41 Tsogt-Ovoo  79 981 239 218 21 0.08 Arid 
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We observe the consistent reduction of ET0 into ETp in accordance with the study 

by Zhang et al. (2012) in arid and semi-arid classes. The difference between ET0 and ETp 

increases in the Gobi Desert region, where the vegetation cover decreases (Table 1.8).  

Based on the proposed dynamic method, the Kc in the steppe zone is dependent on 

LAI, while in the Gobi Desert zone, Kc is dependent on Rn. Generally, the Kc decreases 

from north to south. The ratio of ET0 to P varies from 3 to 12 times in study locations, 

while the ratio ETp to P is about 2.5 to 3 times. The relationship between ETp and LAI is 

shown in Figure 1.9. 

 
Figure 1.9. Annual average sums of Ep (white bars) and Tp (gray bars) and annual average LAI (orange line) 

over the 41 weather stations in Mongolia. 

 

Ep constitutes a large portion of ETp with low LAI in the southern Gobi Desert 

locations, while in northern Mongolia, Tp is higher, as seen from Table 1.6 and Figure 

1.7. Especially in the Gobi Desert region, Ep constitutes more than 86% of ETp over the 

study locations. The variations in Tp closely follow the variation in LAI.  

The AI is calculated by using Har ET0 in study locations and listed in Table 1.8. 

The AI ranges from 0.05 to 0.40. All study locations in Mongolia are categorized into the 
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Arid macro-class. According to Table 1.8, climate classes belong to arid to semi-arid 

classes in study locations. Figure 1.10 shows the aridity index values (FAO-UN AI) 

reported by FAO-UN (2015) developed using 1961-1990 data. The map indicates that 

there is an aridity gradient from north to south.  

 
Figure 1.10. Calculated AI values obtained over the 41 weather stations compared to the aridity map (FAO-

UN AI) extracted from the Global Aridity map (FAO-UN, 2015). The plot on the right shows the comparison 

between FAO-UN AI and Har AI. The diagonal dashed line depicts the identity line (1:1 line). 

The calculated AI values are consistent with FAO-UN AI as shown in the map 

(Figure 1.10) in most study locations, especially in arid zones. Yet, Har AI in the northern 

study locations underestimates the FAO-UN AI values (2015) map. The discrepancy is 

quantified through the RMSE=0.11 and R2=0.76. 

 
Figure 1.11. Maps showing the a) mean annual temperature and b) mean annual precipitation in study 

locations on DEM (Digital Elevation Model) map from SRTM (Earth Resources Observation And Science 

center, 2017). 
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The aridity increases to the south with ET0, T increase, and P decrease (Figure 

1.11). The effect of mountain ranges also can be seen, especially in the south part of 

Mongol-Altai and Gobi-Altai mountain ranges (Figure 1.2, Figure 1.8). The drastic 

differences in ET0 are also present in the north and south of the mountain ranges, along 

with increased T, aridity, and decreased P patterns (Figure 1.10, Figure 1.11) in the area.  

While ET0 is higher in the Gobi Desert region due to the higher net radiation 

(Figure 1.12), the ETp is now lower in the Gobi Desert Region due to its aridity, 

vegetation cover decrease, and vegetation stress in the region (Figure 1.12). 

 
Figure 1.12.Annual average sums of ET0 and ETp with AI. Weather stations are grouped in the Gobi Desert 

and steppe zones  

The general trend of aridity increases towards the Gobi Desert region (Figure 

1.12). According to the graph, the difference between ET0 and ETp gets higher in the Gobi 

Desert and closer in the steppe. The impact of AI on the reduction of ET0 into ETp is 

represented by the relation between AI and the ratio of ETp to ET0 (or ETp/ET0) in Figure 

1.13. Data are grouped according to the land cover class (Gobi Desert and steppe) and 
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climate class (vertical dashed line delimit arid and semi-arid climate classes, 

respectively). The locations belonging to the Gobi Desert (yellow circles) cluster very 

closely in the arid class, while the steppe points are scattered mostly in the semi-arid 

climate. The fit of the linear regression shows an acceptable R2 value and describes more 

than 80% reduction of ET0 in the Gobi Desert and about 54% reduction in the steppe 

locations under semi-arid conditions on average. Figure 1.13 shows the relationship 

between LAI and the reduction of ETp into Ep defined by the ratio Ep/ETp. The fit of the 

linear regression depicts a very high R2 value. In the Gobi Desert, Ep constitutes almost 

90% of ETp, while in steppe zones, Ep constitutes 70% of ETp on average. In the Gobi 

Desert, the potential transpiration component is marginal as manifested by low LAI in the 

growing season (Figure 1.13). 

 

Figure 1.13. Relationships between a) aridity index, AI and the ratio of ETp over ET0, and b) leaf 

area index, LAI, and the ratio of Ep over ETp. Solid black lines represent linear regression equations reported 

with associated R2. Vertical dashed lines delimit in a) plot delimit climate classes (arid and semi-arid). The 

data over the 41 weather stations are grouped in Gobi Desert (yellow circles) and steppe (green circles). 

Arid

a b

Gobi desert
steppe

Semi-arid

y = 1.533x + 0.0403

R2=0.75

y = 0.595x + 0.976

R2=0.91
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Conclusions 

As seen from the statistical results and cumulative comparisons, the Har shows 

good potential to replace FAO 56-PM method. ET0 calculated by selected Har method 

tend to increase towards the south in general. The lowest annual mean ET0 is 634 mm, 

while the highest is 1129 mm in the Gobi Desert. 

The prediction of biome-specific potential evapotranspiration depends on the crop 

coefficient, Kc, which is assumed LAI-dependent in the steppe and radiation-dependent in 

the Gobi Desert zone. The estimated Kc -values decrease from north to south in the Gobi 

Desert. The ETp tends to decrease to the south with the proposed Kc. 

Using Beer's Law, the ETp was partitioned to Ep and Tp using available maps of 

LAI in Mongolia. The Ep constitutes a major part of ETp with low LAI in the southern 

Gobi Desert locations, while Tp increases toward the northern region. Results can help 

verify and improve the ETp estimation methods and Kc developments in similar areas. 

The ETp results will be used in the following chapter for GR estimation.   
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2. CHAPTER 3. THE ANALYSIS OF GROUNDWATER RECHARGE 

Introduction  

The GR will be accounted for as the infiltrated precipitation reaches the 

groundwater table after the ET process and capillary force effects in the vadose zone. 

Infiltration refers to water movement from the surface into the subsurface. In many 

unsaturated-zone studies, terms such as net infiltration, drainage, or percolation are used 

to describe water movement below the root zone, and these are often equated to recharge 

(Scanlon et al., 2002). Diffuse (direct) recharge refers to recharge derived from P or 

irrigation that occurs fairly uniformly over large areas, whereas focused or localized 

recharge refers to concentrated recharge from depressions in surface topography, such as 

streams, lakes, and playas (Small, 2005). Diffuse recharge is expected to be much smaller 

than focused recharge. However, it may be a significant component of a basin’s water 

balance if rates are nonzero over extensive areas (Small, 2005). An example is Mongolia, 

with an area of 1.566.000 km2. However, in most studies, flow processes in the 

unsaturated zone were not given due importance, oversimplified, or neglected due to 

constraints on computation resources (Rockhold et al., 1995). About the previous other 

studies in GR, the renewable groundwater resources map (that is a proxy of GR) was 

developed using the hydrograph separation method in 1982 and later updated by 

Jadambaa et al. (2012). It is a primary available data source for water resources planning 

in Mongolia. However, other than that, the studies ignore GR or fail to use recent 

methodologies. Our study focuses on estimating diffused GR.  

GR can be estimated by using various methods depending on the scope and extent 

of the study. Frequently used techniques include direct measurement by lysimeters, tracer 
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techniques, and stream gauging (Lerner et al., 1990). However, these methods are 

susceptible to measurement errors and spatial variability and are often limited by their 

cost (Jyrkama et al., 2002; Scanlon et al., 2002). Especially in our case where the country 

area is so large and with a low density of human settlements in areas, it is hard to reach 

by a vehicle in some places. Due to the time, labor, and costs, the physical techniques are 

not an option. The study is also limited by data availability and consistency. The potential 

option for estimating GR is vadose-zone techniques that are applied mostly in semiarid 

and arid regions (Scanlon et al., 2002). The rate of GR in the arid areas depends on the 

amount of water stored and other flow processes in the vadose zone. Therefore, for 

accurate prediction of recharge rate, modeling the unsaturated flow process is required 

(Dandekar et al., 2018). A commonly used vadose zone model, HYDRUS-1D, was 

chosen because its accuracy has been verified by analytical techniques (Wang et al., 

2009).  

Based on the regional climatic features of the study and data availability, the 

different methods can be chosen in different functions of HYDRUS-1D. To run the 

model, the meteorological data and parameters of soil and vegetation are required in each 

location. ETp results from Chapter 2 are used and other required datasets are shown in the 

following sections. In each study location, we consider a soil profile with a known 

thickness that separates the soil surface from the water table. By evaluating the vegetation 

characteristics including their root depth in Mongolia, we selected 2m-deep soil profile 

for all study locations in HYDRUS-1D considering availability soil data up to this depth. 

Our strategy is to numerically simulate the water drainage across this layer. The root zone 

depth (Drz) in all study locations is less than 1 m. There are no other constraints for 
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infiltrating water after it passes the root zone. It will infiltrate towards the water table due 

to the gravity and traverse the entire vadose zone over some time and become GR. Travel 

time may vary depending on the actual depth to water table (Dwt) in study locations and 

will be obtained separately from GR and will be calculated by a simple physically-based 

analytical equation (Rossman et al., 2014) described in Methods. 
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Methods  

 Modeling groundwater recharge using HYDRUS-1D 

The water balance in the soil-plant-atmosphere system was numerically evaluated 

using HYDRUS 1-D in the top 2-m-thick soil layer. This model solves the one-

dimensional Richards equation (Šimůnek et al., 2008): 

 
𝜕𝜃

𝜕𝑡
= 𝐶(𝜓)

𝜕𝜓

𝜕𝑡
=

1

𝜕𝑧
𝜕 [𝐾(𝜓) (

𝜕𝜓

𝜕𝑧
+ 1)] − 𝜉(𝑧, 𝜓, 𝑇𝑝)                                                    (1) 

where   t – time expressed in units of days (d), 

 – soil pressure head (cm),  

z – soil depth (positive upward) (cm),  

 – (cm3 cm-3) is soil water content,  

C – () is the differential water capacity function (cm-1),  

  (z,ψ,Tp) – the sink term (d-1) describing actual plant root water extraction rate 

function depending on z,  and the potential transpiration (Tp).  

The numerical integration of equation (1) is performed by a finite element 

scheme, with computational nodes applied to the centers of a finite number of elements. 

The soil water retention function  () is described by van Genuchten’s equation (van 

Genuchten, 1980): 

𝜃(𝜓) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+(𝛼𝜓𝑛)]𝑚                                                  (2) 

where    (cm-1), 

m (-) and n (-) are water retention shape parameters,  

r (cm3 cm-3),  

s (cm3 cm-3) are residual and saturated water contents, respectively.  
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Parameters m and n are related to the Mualem’s condition as m=1-1/n (Mualem, 

1976).  Considering the degree of saturation, Se=(-r)/( s-r), which varies from 0 ( = 

r) to 1 ( = s), the unsaturated hydraulic conductivity function, K(Se) is given by the 

following equation: 

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)

𝑚
]

2

                                                                 (3) 

where   KS (cm d-1) – the saturated hydraulic conductivity  

l – the tortuosity parameter that is assumed to be 0.5 (Mualem, 1976).  

Water mass is considered mobile in the pore space delimited between the residual 

water content (θr) and saturated water content (θs) that correspond to null K and saturated 

hydraulic conductivity (Ks), respectively.  

 Pedotransfer functions 

Soil hydraulic properties control soil mosture movement described by the 

Richards equation (Equation 1) and includes all the hydrological processes occurring in 

the vadose zone, namely the infiltration, runoff, drainage, and soil surface evaporation, 

together with root water uptake. Depending on the soil type, the same amount of moisture 

content can have a different amount of water available for the plant (Radcliffe and 

Simunek, 2010). Thus, the understanding of soil water potential and building the soil 

water retention curve is one of the important steps of the study. However, the 

parameterization based on in situ data collection is quite time-consuming and expensive.  

The application of vadose zone models is usually restricted by finding these 

parameters, especially because of a lack of in-situ soil hydraulic characteristics (SHCs) 

(Wösten et al., 2001). In response, the soil science community has developed 
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pedotransfer functions (PTFs), which estimate soil hydraulic properties from easily 

measured soil attributes, such as soil texture, organic carbon, and oven-dry bulk density 

(van Genuchten, 1980; Bouma, 1989; Yonggen Zhang & Schaap, 2017b). 

PTFs have been widely used to predict soil hydraulic parameters in favor of 

expensive laboratory or field measurements (Yonggen Zhang & Schaap, 2017a). Most 

PTFs estimate parameters of empirical hydraulic functions with modest accuracy (Zhang 

& Schaap, 2017a) when available from generalized regional data. Since PTFs show 

promising results in description of soil hydraulic parameters used in the HYDRUS-1D 

model, the one with the closest geographical and climatic background can be 

implemented in the study. Recently, some PTFs have been obtained for the Gobi and 

other border regions with China. The attempt to use this PTF (Liao et al., 2011) has been 

implemented, however the soil hydraulic results were not reliable. Thus, the Rosetta built 

in PTF in HYDRUS will be used for the study. 

Rosetta (Schaap et al., 2001) denoted as Rosetta1, is one of many PTFs and is 

based on artificial neural network (ANN) analysis coupled with the bootstrap resampling 

method, which allows the estimation of van Genuchten water retention parameters (van 

Genuchten, 1980), (abbreviated here as VG), saturated hydraulic conductivity (Ks), and 

their uncertainties (Zhang & Schaap, 2017b). Table 2.2 shows the soil properties in each 

station as well as soil hydraulic results obtained from Rosetta in HYDRUS-1D.  

Net precipitation 

The rainfall interception RI has calculated as shown in the following equation 

(Nasta & Gates, 2013).  

𝑅𝐼 = 𝑎𝐿𝐴𝐼(1 −
1

1+
𝑏𝑃

𝑎𝐿𝐴𝐼

)                                                                                                                              (4) 
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where a (cm/d) is an empirical coefficient, assumed as 0.025 cm/d and b (-) denotes the 

soil cover fraction given by: 

𝑏 = 1 − 𝑒−𝑘𝐿𝐴𝐼                                                                                                                                               (5) 

Interception is subtracted from the measured rainfall in order to obtain the net 

rainfall P that has been calculated in study locations and used as the HYDRUS-1D input.  

 Root water uptake  

Most terrestrial plants exert root water uptake from the vadose zone. Plants wilt 

when soils become too dry because the forces holding the water in the soil are too strong 

to allow the plants to maintain a pressure gradient with lower pressure inside the root. 

Understanding the movement of soil water, and its uptake by plants, and “loss” through 

evapotranspiration and recharge to the groundwater system, is essential (Patricia et al., 

2015). 

The sink term, S, is defined as the volume of water removed from a unit volume 

of soil per unit time due to plant water uptake. (Feddes, 1978) defined 𝜉 as 

𝜉() = 𝛼()𝑇𝑝                                                                                                                                                       (6) 

Where the root-water uptake water stress response function α() is a prescribed 

dimensionless function of the soil water pressure head (0 ≤ α ≤ 1), and Tp the potential 

water uptake rate (potential transpiration). Water uptake is assumed to be zero close to 

saturation (i.e., wetter than some arbitrary "anaerobiosis point", 1). For <4 (the 

wilting point pressure head), the water uptake is also assumed to be zero. Water uptake is 

considered optimal between pressure heads 2 and 3, whereas for pressure heads 

between 3 and 4 (or 1 and 2), water uptake decreases (or increases) linearly with . 
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The variable Tp in is equal to the water uptake rate during periods of no water stress when 

α()=1 (Figure 2.1). 

 
Figure 2.1. Schematic of the plant water stress function, α() by (Feddes, 1978)  

 Comparing Groundwater recharge with existing groundwater recharge map 

In general, the groundwater recharge in Mongolia is small and often is entirely 

neglected when this component of the water budget is negligible compared with P 

(Nandintsetseg et al., 2010). There is one main study addressing the groundwater 

recharge in Mongolia developed by Jadambaa et al. (2012). Using “Regional 

Hydrogeological Map of Mongolia, Multi-year Mean Flow of Surface Water and 

Groundwater” at the scale of 1:1.000.000, aquifer information, and borehole information, 

they developed the Renewable Groundwater Resource map.  

The Map of “Multi-year Mean Flow of Surface Water and Groundwater” at the 

scale of 1:1,000,000 was created and printed in Aero-Geology Research Institute in 

Moscow, Russian Federation in 1981 (Aerogeology Research Institute in Moscow, 1981). 

The map shows the surface water runoff as contours and the groundwater flow as 
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polygons. The groundwater flow polygons represent the total flow that originates from 

groundwater flow and infiltration of surface water and precipitation and presented in 

mm/year.  Therefore, the map is also sometimes described as a groundwater flow map. 

The groundwater flow indicated on the map corresponds to the renewable (or natural) 

groundwater resources. This map obtained from stream gaging, spring analysis, and 

hydrograph separation was used over 40 years for state planning. 

The renewable groundwater resource map (Figure 2.10) has developed from the 

groundwater flow resources of the area, composed of lateral groundwater flow and 

recharge from infiltration of surface water and precipitation on 1:1,000,000 “Multi-year 

Mean Flow of Surface Water and Groundwater” Map in mm/year was converted into 

m3/day as follows: 

𝑄 = 2.74𝐻𝐹                                                                                                                                                   (7) 

where  Q – groundwater renewable resource (m3/day), 

H – groundwater resource (mm/year), 

F – flow area, km2. 

Legend presents a classification of the natural resources per 1 km2 as follows: <5 

mm/year, 5-10 mm/year, 10-20 mm/year, 20-50 mm/year, 50-100 mm/year, 100-200 

mm/year, and >200 mm/year (Jadambaa et al., 2012). Our GR results will be compared 

with this map with consideration of its methodology.   

Vadose zone lag time 

It is important to remember that drainage rates in thick unsaturated zones do not 

always reflect current recharge rates at the water table (Scanlon et al., 2002). Annual 

average drainage in HYDRUS-1D in the top 2-m-thick soil layer is equal to potential GR 
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infiltrating to the bottom soil layer with depth Zbot. According to (Rossman et al., 2014), 

vadose zone lag time can be calculated using depth to water table and vertical soil 

moisture velocity (c).  The equation for c is expressed as: 

𝑐 =
𝑑𝐾(𝜃)

𝑑𝜃
=

𝐾𝑠(1−𝑆𝑓
𝑚)

2(𝜃𝑠−𝜃𝑟)𝑆𝑒
1/2 [1 +

4𝑆𝑒
1/𝑚

𝑆𝑓
𝑚−1

(1−𝑆𝑓
𝑚)

]                                                                                             (8) 

where Sf is:   

𝑆𝑓 = 1 − 𝑆𝑒
1/𝑚 

                                                                                                                                          (9) 

Once c had been determined from Equation 6, the lag time can be computed as follows: 

𝜏 = 𝑍𝑏𝑜𝑡/𝑐                                                                                                                                                 (10) 

where Zbot is the mean depth to the water table or vadose zone thickness excluding root 

zone and can be computed as follows: 

𝑍𝑏𝑜𝑡 = 𝐷𝑤𝑡 − 𝐷𝑟𝑧                                                                                                            (11) 

where Dwt – the mean depth to the water table or vadose zone thickness. 

           Drz – Root zone depth. 
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Data collection 

The collected in study locations dataset and data sources are shown in the following 

table.  

Table 2.1. Data sources  

Collected 

data/parameters 
Unit 

Period of data 

availability 
Source References 

Daily P mm 2007-2011 NAMEM 

(National Agency 

for Meteorology 

and Environmental 

Monitoring) 

Daily Ep and Tp 
mm 

2007-2011 Study results from chapter 

2 

 

Soil physical properties 

(Sand percentage, 

Silt percentage, 

Clay percentage, 

Bulk density) 

%,  - ISRIC – World Soil 

Information 

(van den Bosch & 

Batjes, N, 2013) 

Depth to the water table m - Hydrogeological maps (Mineral 

Resources and 

Petroleum 

Authority, 1994) 

The detailed information about datasets is shown in the following sections. 

Biome-specific potential Evapotranspiration 

The ETp has been calculated from Har ET0 and Kc in study locations. Then ETp 

values have been partitioned into daily values of Ep and Tp using Beer’s law as shown in 

Chapter 2 in each study location.  

 Soil hydraulic parameters 

In order to use the PTFs, there is a need to collect soil physical properties in the 

study locations. However, there are no accessible measured data in these locations; thus, 

the remote sensing products have been explored. The most data-rich and reliable source 



50 

 

 

 

was Soilgrids (Van Den Bosch and Batjes, 2013), and therefore this data product was 

used for the study. SoilGrids is a system of global digital soil mapping that uses state-of-

the-art machine learning methods to map the spatial distribution of soil properties across 

the globe. SoilGrids prediction models are fitted using over 230,000 soil profile 

observations from the WoSIS database and a series of environmental covariates (Van 

Den Bosch and Batjes, 2013). Covariates were selected from a pool of over 400 

environmental layers from Earth observation-derived products and other environmental 

information, including climate, land cover, and terrain morphology. The outputs of 

SoilGrids are global soil property maps at six standard depth intervals (according to the 

GlobalSoilMap IUSS working group and its specifications) at a spatial resolution of 250 

meters. Prediction uncertainty is quantified by the lower and upper limits of a 90% 

prediction interval (Van Den Bosch and Batjes, 2013). The soil physical properties up to 

200 cm in 6 soil intervals have been collected from Van Den Bosch and Batjes (2013) 

and prepared as input for Rosetta in HYDRUS-1D.  

 Root zone  

The sink term  is defined as the volume of water removed from a unit 

volume/depth of soil per unit time due to the plant water uptake (Šimunek, 2015). The 

major root zone was identified as a 30 cm soil layer (Yanagawa et al., 2015) in Mongolia. 

However, some of the species commonly have a well-developed root system. Most often, 

one finds Haloxylon ammodendron, Nitraria sphaerocarpa, and less often Tamarix 

ramosissima. The Ekhiin gol and Tooroi study locations are covered with Haloxylon 

ammodendron nearby thus the root depth of 97 cm has been set for this specific 

https://www.isric.org/explore/wosis/faq-wosis
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vegetation according from (Wang et al., 2017). The root zone in other study locations are 

considered as a 30 cm soil layer. 

 Soil moisture 

Soil moisture is an important variable that characterizes water balance of 

hydrological processes occurring within the groundwater-soil-plant-atmosphere system 

(Robock et al., 2000). Furthermore, soil moisture regulates the ratio of runoff and 

infiltration and controls major energy fluxes (Natsagdorj et al., 2019).  

However, the soil moisture is not systematically measured or accessible in 

Mongolia agencies, except for remote sensing sources (Robock et al., 2000).  Only 

Nandintsetseg and Shinoda (2011) and Nandintsetseg and Shinoda (2014) provide 

substantial analysis of soil moisture status in different natural zones in Mongolia is 

avavilable. However, time-variable θ measurements for using directly in HYDRUS-1D 

are unavailable at study locations. 

Remote sensing techniques are increasingly used for monitoring surface soil-

moisture conditions over large areas, but extending surface soil moisture to the root zone 

is still facing some limitations, especially when no time-series observations are available, 

which is very common in practice (Zeng et al., 2017). 

The soil moisture data were taken from https://ismn.geo.tuwien.ac.at/en/ (Dorigo 

et al., 2011) for several stations in Mongolia between 1975 to 2002. The measurement 

frequency was variable, and most data are available in province center weather stations. 

The θ measurements are collected for few study locations to test whether the data is 

reliable (Annex 3.1). The results have been used to set up the initial θ through the soil 

profile in HYDRUS-1D and checked whether the final θ are in the range from the data; 

https://ismn.geo.tuwien.ac.at/en/
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however, some anomaly results are observed.  As seen from the results, data might not be 

correct in site-specific studies; therefore, site-specific calibration is required. Thus, the 

result is considered not to be reliable and no soil moisture data has used for HYDRUS-

1D in the study.   

Depth to the water table  

The water table data in parts of Mongolia have been obtained from available maps 

(Mineral Resources and Petroleum Authority, 1994), but have substantial uncertainty. 

The collected depths to the water table are shown in Annex 3.2. The unknown depths to 

water table in some locations are assigned at 10 m.    
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HYDRUS-1D setup  

Over the 41 study sites, we set the depth of the 2 m soil layer for all study 

locations which is assumed adequate depth that passes the root zone. The upper boundary 

condition is subject to measured (net P) and estimated (Ep) fluxes monitored by the 

weather station. P and Ep represent the system-dependent time-variable daily water fluxes 

of the upper boundary condition. The lower boundary condition is set to free drainage.  

The partitioned Ep and Tp from Chapter 2 and net P are used as input data for 

upper boundary. Tp determines the potential root water uptake (sink term in the Richards 

equation). Root distribution is assumed to be linear along with the soil profile by varying 

from maximum at the soil surface to minimum at maximum root depth which are 30 cm 

or 97 cm depending from the location. Both Ep and Tp are reduced by water limitation 

into actual evaporation (Ea) and actual transpiration (Ta). The actual root water extraction 

rate  is modeled according to Feddes et al. (1978). HYDRUS 1-D includes a dataset of 

specific-crop root water stress parameters. The transpiration efficiency function (between 

0 and 1) depends on the soil pressure head. In our case, the vegetation is chosen as 

pasture in study locations in HYDRUS-1D.  For this pasture, the wilting point 

corresponds to -8000 cm (Figure 2.1. ) in HYDRUS-1D. 

The soil physical properties are used to obtain soil hydraulic parameters in study 

locations. Due to the absence of soil moisture data, initial condition set by approximate 

value and the spin-up method used to diminish the effect from initial condition. The short 

configuration of study locations are shown below.  

The HYDRUS-1D configuration  

The HYDRUS-1D configuration in study locations is set as shown in the following. 
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Main processes Water flow, Root water uptake 

Boundary conditions Upper boundary: Atmospheric BC with Surface runoff 

Lower boundary: Free drainage 

Initial conditions 39% of θs through the 200 cm soil profile 

Soil profile depth 200 cm 

Root zone depth 30 or 97 cm 

Due to the absence of soil temperature data, the winter freezing effect has not 

been calculated.  

Setting initial condition and spin-up 

Reliable numerical simulation of soil water movement requires accurate 

determination of model parameters as well as initial and boundary conditions. However, 

the accurate initial soil moisture or matric potential along with the soil profile at the 

beginning of simulation time is unavailable, making it necessary to run the simulation 

model from the arbitrary initial condition until the uncertainty of the initial condition 

(UIC) diminishes (Yu et al., 2019). The spin-up method will be used for running a model 

using our 5-year data repeatedly. The number 5-year cycles is run repeatedly until the 

model output adjusts from the initial conditions to a realistic soil moisture profile where 

the water and energy budgets are balanced, and there is minimal drift in model state 

variables or prognostic variables (Ajami et al., 2014). After completion of these model 

spin-ups, the model should contain a physically realistic state of equilibrium between the 

external forcing and the simulated water fluxes.  

The initial soil moisture set by observing the various runs with different initial 

condition. When the initial condition being closer to final equilibrated soil moisture, the 
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lesser number of 5-year cycles will be required. And in order make the initial soil 

condition as close to final equilibrated soil moisture, the 39 % of θs is proposed to be 

used as initial condition the soil profile in all study locations uniformly.  

Due to the initial condition set-up, soil hydraulic parameters, and other factors, 

the study locations can have different number of 5-year cycles. Thus, the study locations 

have been categorized into groups based on the soil hydraulic conductivity, texture type, 

and aridity index to get an idea of how many repetitions are needed. The main parameters 

to group the study locations are shown in Table 2.2. 

Table 2.2. The main parameters of study locations 

ID 
Study 

locations 

Aver Ks, 

(cm/d) 

Aver θs, 

(cm/d) 
Texture AI Class 

1 Sukhbaatar 23.13 0.43 Loam 0.37 Semi-arid 

2 Tsetserleg 15.3 0.42 Loam 0.44 Semi-arid 

3 Bulgan 17.22 0.42 Loam 0.41 Semi-arid 

4 Khatgal  29.13 0.46 Sandy clay loam 0.45 Semi-arid 

5 Tosontsengel 19.2 0.43 Loam 0.34 Semi-arid 

6 Binder 22.19 0.42 Loam 0.42 Semi-arid 

7 Rinchinlhumbe 32.37 0.46 Sandy loam 0.41 Semi-arid 

8 Khalkh gol 15.62 0.41 Loam 0.39 Semi-arid 

9 Erdenemandal 16.26 0.43 Loam 0.36 Semi-arid 

10 Baruunkharaa 18.59 0.41 Loam 0.42 Semi-arid 

11 Baruunturuun 21.19 0.44 Loam 0.29 Semi-arid 

12 Erdenetsagaan 12.39 0.42 Loam 0.28 Semi-arid 

13 Chingis khan 18.6 0.41 Loam 0.35 Semi-arid 

14 Choibalsan 11.16 0.4 Loam 0.27 Semi-arid 

15 Undurkhaan 12.05 0.41 Loam 0.33 Semi-arid 

16 Matad 17.2 0.4 Loam 0.28 Semi-arid 

17 Murun 15.75 0.44 Loam 0.31 Semi-arid 

18 Uliastai 16.52 0.42 Loam 0.27 Semi-arid 

19 Baruun-Urt 11.23 0.41 Loam 0.23 Semi-arid 

20 Erdenesant 15.69 0.41 Loam 0.29 Semi-arid 

21 Dariganga  16.15 0.41 Loam 0.16 Arid 

22 Bayan-Uul 21.63 0.43 Loam 0.26 Semi-arid 

23 Galuut  20.29 0.42 Loam 0.3 Semi-arid 

24 Ulaangom 16.78 0.43 Loam 0.15 Arid 

25 Arvaikheer 12.92 0.41 Loam 0.3 Semi-arid 
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26 Choir 11.87 0.42 Loam 0.15 Arid 

27 MandalGobi 12.35 0.41 Loam 0.12 Arid 

28 Altai 13.71 0.42 Loam 0.23 Semi-arid 

29 Khoirult 13.57 0.4 Loam 0.09 Arid 

30 Khovd 12.92 0.42 Loam 0.15 Arid 

31 Ulgii 17.31 0.42 Loam 0.13 Arid 

32 Ekhiingol 8.82 0.42 Silt loam 0.05 Hyper-arid 

33 Gurvantes 11.59 0.4 Loam 0.1 Arid 

34 Tooroi 11.34 0.44 Loam 0.05 Hyper-arid 

35 Sainshand 8.34 0.4 Silt loam 0.13 Arid 

36 Khanbogd 9.9 0.39 Silt loam 0.1 Arid 

37 Zamiinuud 8.93 0.4 Silt loam 0.15 Arid 

38 Baitag 12.27 0.41 Loam 0.11 Arid 

39 Dalanzadgad 14.22 0.39 Loam 0.15 Arid 

40 Saikhanovoo 11.49 0.4 Loam 0.15 Arid 

41 Tsogt-Ovoo 10.82 0.41 Loam 0.1 Arid 

The study locations are divided into groups based on its similarity of conditions 

shown in Table 2.2. The following texture and aridity index combination (Table 2.3) are 

chosen to represent these groups, and its result will be used to identify spin-up repetition.  

Table 2.3. Texture and AI class  

Texture  AI class 
Chosen station to 

represent  

Sandy loam Semi-arid Rinchinlhumbe 

Sandy clay loam Semi-arid Khatgal 

Loam 

Semi-arid Tsetserleg 

Arid Dariganga 

Hyper arid Tooroi 

Silt Loam 

  

Arid Khanbogd 

Hyper arid Ekhiin gol 

Each repetition of the HYDRUS-1D computations in spin-up consists of 5-year 

dataset. The same number of repetitions was used in other locations from the same soil 

texture and aridity combination. If needed, the additional repetitions were conducted in 

some study locations. The volumetric water content dynamics at the bottom of the 

simulated depth from spin-ups are presented in the following graphs.  
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Figure 2.2. Soil moisture at the bottom spin ups 

Generally, spin-up time increases when the soil is more fine-textured, drier, or 

located in higher aridity locations (Figure 2.2). In addition, the repetition of times 

depends on how the initial soil moisture has set. The spin-ups stopped when the soil 

moisture at the beginning of each cycle becomes repetitive or becomes small.  Those 

spin-up repetitions are used to run the study locations from the same combination of 

initial conditions and duo in HYDRUS-1D. In the study locations, which could not be 

equilibrated during identified spin-ups, additional spin-ups will be conducted on a case-

by-case basis. The volumetric water content or pressure head results at the end of each 

spin-up in study locations are used to set initial conditions in actual runs.  
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Results and discussion 

Actual evapotranspiration result, ETa 

Five-year dataset 2007-2011 with improved initial conditions from spin-ups has 

been used for the runs.  The water balance results are obtained from HYDRUS-1D output 

text files in study locations. These results will be used to understand how the P partitions 

into ETa and GR in study locations. In Chapter 1, we calculated ETp and used it as one of 

the inputs in HYDRUS-1D. The following graph shows mean annual ET0, ETp, and Ea, Ta 

results from HYDRUS-1D. 

 
Figure 2.3. Overall ET results in study locations 

As seen from the graph, ET0 increases to the south towards the Gobi region. With 

consideration of natural zone and soil water stress conditions, the ETp were calculated 

from using Kc in study locations that were developed in Chapter 2. It can be seen that the 

general trend of ETp follows ETa.  
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Analyses of the ETa indicate that the Ta constitutes a major part in steppe regions 

with higher LAI, while it decreases towards the Gobi region. In the study location in the 

Gobi regions, Ea constitutes from 71 to 89 % of ETa. Generally, it can be clearly seen that 

ETa follows LAI trends (Figure 2.4).   

 
Figure 2.4.Trends in mean annual ETa and LAI, and AI  

Calculated results for ETa in study locations and the ETa map by FAO (2009a) 

obtained from the one-dimensional water balance method are presented in Figure 2.5. 
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Figure 2.5. Comparison of values of actual annual ETa obtained from HYDRUS-1D one- dimensional soil-

water balance method prepared by FAO (FAO, 2009a) on the map with a spatial resolution of 5 arc minutes. 

The highest mean annual ETa is 298 mm in Tsetserleg (ID 10), while the lowest is 

58 mm in Ekhiin gol (ID 32) as shown in Figure 2.5. Our ETa from HYDRUS-1D 

matches well in three most study locations in the southern part, where ETa is lower than 

250 mm. However, in the northern part, the FAO map seems like overestimate of the ETa. 

The overestimation was also observed earlier in ET0 and AI maps by FAO in Figure 1.10.  

Groundwater recharge rates 

While the previous part presents the ETa results, Figure 2.6 shows how P 

partitions into ETa and GR.  
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Figure 2.6. Precipitation, evapotranspiration, and groundwater recharge (mm/year), obtained from 

Hargreaves equation for ETp and reduced Kc 

The P was lower than the infiltration capacity of soil in study locations; thus, the 

runoff was 0 in all study locations. The runoff can be better represented in regional 

hydrology models in Mongolia. The country is located in high elevations, windy, and 

with very limited P throughout the country. The soil is dry during most of the year 

(Nandintsetseg & Shinoda, 2011), the P tends to become ETa, and there is very little left 

to percolate. ETa constitutes more than 88 % of P in all study locations. The GR 

constitutes only up to 11 % of P (highest 11% at Saikhanovoo (ID 40)) in study locations. 

The following table shows the yearly GR and P in the study period.  

Table 2.4. GR and P (mm/year)  

ID Stations 

Yearly GR (mm/year) Mean annual 

GR 

(mm/year) 
2007 2008 2009 2010 2011 

1 Sukhbaatar 0.4 0.4 0.4 0.4 0.4 0.4 

2 Tseterleg  1.2 1.4 1.3 1.1 1.2 1.2 

3 Bulgan Mg 1.8 1.8 1.6 1.3 1.4 1.6 

4 Khatgal  1.5 1.2 1.0 0.9 1.2 1.2 

5 Tosontsengel  1.2 1.2 0.9 0.7 0.6 0.9 

6 Binder 2.0 1.5 2.0 2.7 2.7 2.2 

7 Rinchinlhumbe  0.3 0.4 0.3 0.3 0.1 0.3 

8 Khalkh gol  5.5 4.4 4.6 4.6 4.1 4.6 
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9 Erdenemandal  0.6 0.7 0.8 0.7 0.7 0.7 

10 Baruunkharaa   2.9 4.5 6.7 5.5 4.3 4.8 

11 Baruunturuun 2.1 1.7 1.4 1.2 1.7 1.6 

12 Erdenetsagaan  2.4 1.5 1.8 1.9 1.0 1.7 

13 Chingis khaan (UB) 4.5 4.4 8.8 10.7 5.9 6.9 

14 Choibalsan 0.4 0.4 0.4 0.4 0.4 0.4 

15 Undurkhaan 5.8 3.9 3.0 3.8 3.8 4.1 

16 Matad  4.7 3.6 3.4 2.9 2.6 3.4 

17 Murun 1.2 1.0 0.9 1.0 1.0 1.0 

18 Uliastai  0.9 0.8 0.8 0.7 0.8 0.8 

19 Baruun-Urt  0.7 0.9 0.9 0.8 0.7 0.8 

20 Erdenesant 13.0 6.3 4.2 3.3 5.9 6.5 

21 Dariganga 0.8 0.8 0.9 0.9 1.0 0.9 

22 Baynuul 4.9 2.9 2.9 3.9 6.2 4.1 

23 Galuut 20.9 9.1 4.1 3.2 5.9 8.6 

24 Ulaangom  1.0 0.9 0.8 0.7 0.8 0.8 

25 Arvaikheer  17.3 16.2 10.2 5.9 6.7 11.3 

26 Choir   1.5 1.6 1.3 1.1 1.1 1.3 

27 Mandalgobi  5.3 3.0 2.0 1.7 8.7 4.1 

28 Altai  17.1 9.1 5.6 3.8 16.9 10.5 

29 Khoriult 0.9 0.8 0.8 0.8 0.9 0.8 

30 Hovd  0.7 0.7 0.6 0.5 0.5 0.6 

31 Ulgii 0.9 0.8 0.8 0.7 0.7 0.8 

32 Ekhiingol 0.8 0.8 1.2 1.2 1.0 1.0 

33 Gurvantes 2.5 8.1 8.6 4.7 2.9 5.3 

34 Tooroi 0.7 0.7 0.8 0.8 0.7 0.7 

35 Sainshand  2.3 2.5 1.9 1.9 1.9 2.1 

36 Khanbogd 5.8 3.9 5.4 4.3 6.3 5.2 

37 Zamiin Uud  1.5 1.5 1.5 1.5 1.5 1.5 

38 Baitag  5.6 4.2 3.1 4.8 7.7 5.1 

39 Dalanzadgad  11.2 13.0 12.2 6.0 11.0 10.7 

40 Saikhan-Ovoo  4.6 21.4 20.9 8.4 4.7 12.0 

41 Tsogt-Ovoo  0.5 0.5 0.5 0.5 0.5 0.5 

GR varies through the 5 years; however, it was not directly related to the higher P 

rate in a particular year. The fluctuation over the years in study locations varies. In a 

spatial average of all study locations, 2011 had the highest P and 2007 had the least P, 

while about the GR, the highest observed in 2007 and least observed in 2010. The 

variability of hydrometeorological and hydrogeological conditions is believed to strongly 

control whether diffuse recharge occurs; precipitation P rate may exceed the ETp over 

some interval, even though P/ETp < 1. According to our yearly P and GR rates, there has 
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not direct GR effect been observed in years with higher P. However, the occurrence of a 

single large precipitation event or a series of events may yield diffuse recharge (Barnes et 

al., 1994; Stephens, 1994). According to our results, the GR was cumulative of many 

small recharge events through the year rather than several large GR events. For example 

in the Sukhbaatar station, where we have highest P rate, there was no peak GR observed 

with higher P rate. Since the GR results are so small, it was hard to distinguish whether 

which P event caused more GR, but the soil moisture fluctuates due to the P, which 

certainly impacts GR.  

Second, the presence and type of vegetation are believed to play a key role in 

controlling diffuse recharge. At sites in New Mexico and Nevada, Gee et al. (1994) found 

that water accumulated in deep lysimeters kept vegetation-free, whereas deep percolation 

did not occur in lysimeters the same sites with growing vegetation. Desert vegetation, 

such as the shrub Larrea (Creosote bush), have relatively deep root systems (David and 

Vokhmin, 2002) and transpires until soil water potential is highly negative (-8 MPa) 

(Pockman and Sperry, 2000). Recharge is generally much greater in non-vegetated than 

in vegetated regions (Gee et al. 1994) and greater in areas of annual crops and grasses 

than in areas of trees and shrubs (Adane et al., 2018; Prych, 1998; Scanlon et al., 2002). 

According to our results, the same pattern has been observed, and it can be seen in Figure 

2.7.  
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Figure 2.7. The LAI vs. GR in study locations 

In areas with higher P, there is most likely more vegetation, which results in 

higher transpiration. Thus, in those stations, there was very small GR observed in more 

vegetated areas where the LAI is higher. Therefore, an inverse relationship has been 

observed between LAI and GR (Figure 2.7). However, in the Gobi Desert study, locations 

with deeper root systems Ekhiingol (ID 32) and Tooroi (ID 34) have a smaller GR than 

other Gobi Desert study locations. The two stations have P less than mean annual 100 

mm/year, and they have saxaul vegetations (Haloxylon ammodendron). With their deeper 

root depth, they extract most of the available water in the soil and leave almost none to 

percolate.  

Third, the diffuse recharge is expected to be greater through coarse soils than fine 

soils because wetting fronts propagate more deeply into coarse soils (Small, 2005). The 

following figure shows the relationship between GR rates (mm/year) and soil texture as a 

fraction of sand (%), silt (%), and clay (%).  
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Figure 2.8. Relationship between GR rates and soil texture as a fraction of sand (%), silt (%), and clay (%). 

However, GR rates are small, and with other factors influencing GR rates, it is 

hard to distinguish the clear relationship between them. According to the Figure 2.8, there 

are some differences for each texture fraction. For example, trends in GR differ between 

silt and clay at low values of GR, while sand fraction role is uncertain. 

Overall, interactions of climate, soil, geology, vegetation, land use, and 

topography are the important factors that control GR (Dandekar et al., 2018). The 

cumulative mean annual GR is less than 12 mm in study locations (Figure 2.9).  

 
Figure 2.9. The mean annual GR rates in study locations 

There is no universal GR pattern observed throughout the country; rather, the GR 

in study locations reflect combination of these factors depending on different natural 
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zones, vegetation, and soil types. The GR rates were compared with the map on Figure 

2.10 which is used widely in Mongolia (Jadambaa et al., 2012), although with limited 

description of the methodology. The map is practically the only regional groundwater 

recharge assessment in Mongolia because it contains groundwater resources, estimated 

using hydrograph separation. These groundwater resources are naturally the upper limit 

of the GR, which represents just a fraction of these resources. It is also called 

“Renewable Groundwater Resource map”. 

 

Figure 2.10. Our mean annual GR results on the Renewable Groundwater Resource map by (Jadambaa et al., 

2012, Figure A1-A80) 

According to this map, 76 % of the country has lower than 10 mm/year GR, and 

84 % of the country has lower than 20 mm/year GR. These are areas of desert and steppe. 

Our mean annual GR is lower than 20 mm/year in all study locations and is consistent 

with the map in most locations. However, it is important to remember that our results 
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represent the diffused GR at the point level, while the map represents both diffused and 

local GR. Thus, the groundwater resources in the map are greater than our simulated GR 

rates. It is apparent that GR rates are very variable in large river catchments as well as 

within the mountain ranges.  

Calculating vadose zone lag time  

The θ at the bottom of soil profile in HYDRUS-1D can be assumed to be equal to 

the θ across the bottom soil layer (Zbot) and used to calculate groundwater travel time 

(Equation 8). The θ at the bottom of the 200 cm soil profile was obtained from the 

HYDRUS-1D output file at the end of the simulation in all study locations. The travel 

time in 41 stations has been calculated (Equation 8) with depths to the water table shown 

in Annex 3.2. The unknown depths to the water table in some locations was replaced with 

10 m. The lag time results are shown in Annex 3.3. It can be seen that when the soil is 

wetter, the depth to the water table is shallower, or when hydraulic conductivity is higher 

the vadose zone lag time is shorter (Figure 2.11, Annex 3.3).  

 
Figure 2.11. Vadose zone lag time vs depth to water table, mean hydraulic conductivity and soil moisture  
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Conclusions 

The GR rates were calculated by the vadose zone model HYDRUS-1D in 41 

study locations, using climate data for 2007-2011 period. This period provides accurate 

representation of the various meteorological and vegetation data for entire observation 

period in each location. The resulting critical input ETp has been calculated in Chapter 2. 

Previously GR was often neglected in Mongolia or methods failed to consider various 

factors to GR. The study results are site-specific, point results for the diffused GR.  

In such an arid area, the GR rates are very small compared to precipitation in all 

locations, with an annual mean of less than 12 mm. The inverse relationship between LAI 

and GR has been observed, in which the higher GR occurs in less vegetated areas. 

Therefore in two study locations of the Gobi Desert area, smaller GR than in other Gobi 

Desert study locations can be seen due to the saxaul vegetation with deeper roots. The GR 

values in the larger part of the area are consistent with the Renewable Groundwater 

Resource map, while it shows differences in some river watersheds. This comparison is 

consistent with total groundwater recharge composition, which includes both diffused 

and localized recharge.  

The study was the first attempt to estimate diffused GR in Mongolia with a 

numerical vadose zone model. The new methodology and data deficiency study may have 

some uncertainties, which is discussed in the following chapter.     
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3. CHAPTER 4. UNCERTAINTY AND CONCLUSIONS 

Uncertainty 

While different GR estimation studies exist in Mongolia, they fail to use recent 

methodologies, data, or certain hydrologic factors. In some cases, the GR is often totally 

ignored. Thus, it was challenging to use a new method for evaluating GR without any 

previous background knowledge in a less studied arid region. We tried to use 

methodologies with less data requirements, but required data for the study are unavailable 

in Mongolia, limited, not in the public domain, or inconsistent. Therefore, our study tried 

to take advantage of remotely sensed products. Still, some parameters require in situ 

measured data or at least some evaluation of remote sensing data, and replacement 

methodologies must be implemented. The following identified issues may lead to 

uncertainties in results, listed in Table 3.1.  

Table 3.1. Uncertainties in study 

Missing data Uncertainties Measurement taken 

Kc 

There are no available crop 

coefficients for agricultural crops or 

natural vegetation in Mongolia. 

We proposed the method to develop time-

variable Kc in the steppe and implemented 

Kc method from similar regions in the Gobi 

Desert area.  

LAI in Gobi 

Desert area  

Partitioning ET in Gobi regions 

lacks reliable LAI measurements. 

Even though some areas are bare and 

sparsely vegetated, those desert-type 

areas still had with more bushy type 

vegetation.  

The nearest location with available LAI data 

has been used.  

Root water 

uptake 

parameters for 

desert type 

vegetation 

They often have more ability to 

extract water from drier soils than 

other vegetation. But the HYDRUS-

1D does not offer root water uptake 

parameters selection for those types 

of vegetation.  

The Tp in the Gobi area constitutes a small 

portion of total ETp; thus, the overall affect 

can be small. Even though specific root 

water uptake parameters for this specific 

vegetation was not modified, the root depth 

was changing in HYDRUS-1D  

Depth to the 

groundwater table 

Most data are not digitized or 

available for access. For example, 

groundwater wells data in some 

The groundwater table depth in study 

locations is obtained from some maps 
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cases are considered as state secret 

information; thus it is hard to obtain 

the wells data.  

approximately, and it may not represent the 

exact depth to the groundwater table. 

Soil hydraulic 

parameters 

There are not any site-specific 

developed PTFs in Mongolia.     

The commonly used Rosetta PTF and VG 

soil hydraulic model have been used.  

Soil temperature 

data 

The soil moisture data can be helpful 

to optimize the study reliability, or it 

can be used to calibrate the 

computations in HYDRUS-1D.   

The “spin-up” method has been used to 

equilibrate soil moisture conditions with 

atmospheric flux. 

The available measurements were accessed to overcome arising issues to the best of our 

knowledge.   
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Conclusions 

The study has developed the time-variable Kc and calculated ETp in study 

locations. With the ETp and other required data, the numerical vadose zone modeling tool 

HYDRUS-1D has been used for estimating the diffuse GR. Most of the data required for 

this study have been collected from the remote sensing products, and their reliability was 

verified by locally measured meteorological data. This practice can be useful in areas 

with data paucity. The advantage of calculating GR with HYDRUS-1D is in its 

consideration of meteorological, soil, and vegetation processes and parameters; therefore, 

depending on the site characteristics, various functions of HYDRUS-1D can be used. 

This aspect is important for understanding various processes of the infiltrating 

precipitation before soil moisture becomes GR in a given location. Method helps to 

understand GR characteristics in different locations with different vegetation types, 

vegetation cover, precipitation rate, and soil texture.  

The mean annual GR rates were smaller than 12 mm in study locations. These 

values were consistent with the groundwater resources maps of Mongolia available from 

hydrograph separation. Although the diffuse GR rates at selected points are small, the 

total recharge volume over a large area is very significant. Therefore, even such small GR 

rates are important for sustainable water resources management.  

This study is the first calculation of ETp using new crop coefficient in natural 

vegetated areas with the HYDRUS-1D applications for GR estimation. Although the 

uncertainties of these methodologies in less-studied regions are apparent, further studies 

can improve the calculation of crop coefficients for natural vegetation conditions 

throughout the country, including the Gobi Desert plants. The accuracy of the study can 
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be improved by obtaining missing data listed above. For example, in situ studies can be 

conducted with lysimeters in various settings to estimate the ET and GR. It is crucial to 

use hydrologic and vadose zone models and provide better verification in future studies. 
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2. CHAPTER 2. SELECTION OF EVAPOTRANSPIRATION METHOD 

Annex 2.1. LAI values at study locations 

 

№ 

Stations / 

LAI 

Avera

ge 

LAI 

Jan 
Fe

b 

Ma

r 

Ap

r 

Ma

y 
Jun Jul 

Au

g 

Se

p 

Oc

t 

No

v 

De

c 

1 Sukhbaatar 0.98 0.27 

0.2

2 

0.3

2 

0.5

9 

1.2

9 

1.9

6 

1.7

0 

2.0

2 

1.8

0 

0.6

9 

0.4

0 

0.4

3 

2 Tseterleg  0.86 0.20 

0.1

3 

0.1

9 

0.2

9 

0.7

4 

1.7

9 

2.5

4 

2.4

4 

1.3

5 

0.3

2 

0.2

1 

0.1

2 

3 Bulgan Mg 0.86 0.19 

0.1

1 

0.2

0 

0.3

0 

0.4

6 

0.9

3 

1.3

6 

1.3

1 

0.8

9 

0.3

3 

0.2

2 

0.1

3 

4 Khatgal  0.64 0.17 

0.1

0 

0.1

4 

0.2

7 

0.4

7 

1.2

2 

1.9

1 

1.7

9 

0.9

6 

0.2

8 

0.1

8 

0.1

2 

5 

Tosontseng

el  0.63 0.15 

0.1

0 

0.0

5 

0.2

4 

0.6

1 

1.4

6 

1.8

1 

1.6

6 

0.9

3 

0.3

0 

0.1

4 

0.1

1 

6 Binder 0.62 0.16 

0.1

1 

0.1

6 

0.3

0 

0.6

0 

1.0

0 

1.6

9 

1.7

7 

1.0

6 

0.3

1 

0.1

7 

0.1

3 

7 

Rinchinlhu

mbe  0.60 0.15 

0.1

0 

0.0

8 

0.2

5 

0.5

8 

1.2

3 

1.7

0 

1.5

9 

0.9

0 

0.3

1 

0.1

5 

0.1

1 

8 Khalkh gol  0.56 0.16 

0.1

0 

0.1

0 

0.3

0 

0.5

5 

0.8

5 

1.4

8 

1.5

5 

0.9

9 

0.3

1 

0.1

7 

0.1

1 

9 

Erdeneman

dal  0.52 0.17 

0.1

1 

0.1

7 

0.2

3 

0.4

6 

0.9

6 

1.4

0 

1.3

0 

0.8

0 

0.2

7 

0.1

8 

0.1

2 

1

0 

Baruunkhar

aa   0.52 0.16 

0.0

9 

0.1

7 

0.3

0 

0.4

6 

0.8

8 

1.2

8 

1.2

9 

0.9

2 

0.3

5 

0.1

9 

0.1

1 

1

1 

Baruunturu

un 0.50 0.16 

0.1

0 

0.0

7 

0.3

2 

0.6

1 

1.0

4 

1.0

2 

1.1

2 

0.7

6 

0.4

2 

0.2

2 

0.1

1 

1

2 

Erdenetsaga

an  0.49 0.18 

0.1

1 

0.1

4 

0.3

2 

0.4

5 

0.7

4 

1.1

6 

1.2

7 

0.7

7 

0.3

5 

0.2

3 

0.1

2 

1

3 

Chingis 

khaan (UB) 0.42 0.18 

0.1

1 

0.1

4 

0.2

6 

0.4

5 

0.7

7 

1.0

0 

0.9

7 

0.6

0 

0.2

5 

0.1

5 

0.1

1 

1

4 Choibalsan 0.41 0.17 

0.1

1 

0.1

5 

0.3

0 

0.3

6 

0.5

6 

0.8

9 

1.0

6 

0.6

6 

0.3

0 

0.1

9 

0.1

2 

1

5 Undurkhaan 0.40 0.17 

0.1

1 

0.1

6 

0.3

0 

0.3

6 

0.5

8 

0.8

3 

1.0

0 

0.6

2 

0.3

0 

0.1

9 

0.1

2 

1

6 Matad  0.39 0.17 

0.1

0 

0.1

1 

0.2

8 

0.4

7 

0.5

5 

0.8

1 

0.9

6 

0.6

2 

0.2

8 

0.1

5 

0.1

1 

1

7 Murun 0.39 0.17 

0.1

1 

0.1

5 

0.2

0 

0.2

8 

0.6

8 

0.9

5 

1.0

1 

0.5

1 

0.2

5 

0.1

8 

0.1

3 

1

8 Uliastai  0.38 0.17 

0.1

0 

0.0

7 

0.2

5 

0.3

2 

0.7

3 

0.9

1 

0.8

8 

0.4

9 

0.3

3 

0.1

8 

0.1

0 

1

9 Baruun-Urt  0.38 0.18 

0.1

1 

0.1

7 

0.3

0 

0.3

2 

0.3

8 

0.7

9 

0.9

4 

0.6

1 

0.3

1 

0.2

4 

0.1

3 

2

0 Erdenesant 0.34 0.17 

0.1

1 

0.1

6 

0.2

4 

0.3

3 

0.5

1 

0.7

0 

0.8

5 

0.5

2 

0.2

7 

0.1

5 

0.1

0 

2

1 Dariganga 0.32 0.15 

0.1

0 

0.1

2 

0.3

1 

0.2

9 

0.3

6 

0.6

5 

0.8

5 

0.4

6 

0.2

9 

0.1

9 

0.1

1 
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2

2 Baynuul 0.31 0.12 

0.1

0 

0.0

4 

0.1

8 

0.3

2 

0.5

9 

0.6

6 

0.7

4 

0.4

0 

0.2

5 

0.1

5 

0.1

1 

2

3 Galuut 0.28 0.16 

0.1

0 

0.1

1 

0.2

0 

0.2

2 

0.3

6 

0.6

0 

0.7

3 

0.3

6 

0.2

3 

0.1

4 

0.1

0 

2

4 Ulaangom  0.26 0.14 

0.1

0 

0.0

4 

0.1

9 

0.3

4 

0.3

8 

0.4

9 

0.5

9 

0.3

4 

0.2

6 

0.1

6 

0.1

0 

2

5 Arvaikheer  0.24 0.18 

0.1

0 

0.0

6 

0.1

3 

0.2

1 

0.2

3 

0.5

5 

0.7

1 

0.3

8 

0.2

0 

0.0

7 

0.1

0 

2

6 Choir   0.24 0.15 

0.1

0 

0.1

3 

0.2

2 

0.2

1 

0.3

4 

0.4

6 

0.6

3 

0.3

1 

0.2

3 

0.1

4 

0.1

0 

2

7 Mandalgobi  0.20 0.18 

0.1

0 

0.1

1 

0.2

0 

0.2

0 

0.3

0 

0.4

0 

0.5

0 

0.2

2 

0.2

1 

0.1

1 

0.1

0 

2

8 Altai  0.20 0.16 

0.1

0 

0.1

0 

0.1

7 

0.2

1 

0.3

1 

0.4

1 

0.5

0 

0.2

2 

0.2

0 

0.0

8 

0.1

0 

2

9 Khoriult 0.21 0.15 

0.1

0 

0.0

8 

0.1

8 

0.2

0 

0.3

1 

0.4

2 

0.4

9 

0.1

9 

0.2

0 

0.0

9 

0.1

0 

3

0 Hovd  0.21 0.17 

0.1

0 

0.0

9 

0.1

2 

0.2

2 

0.2

5 

0.4

4 

0.5

2 

0.2

5 

0.1

9 

0.0

9 

0.1

0 

3

1 Ulgii 0.23 0.18 

0.1

0 

0.1

1 

0.1

2 

0.2

9 

0.3

7 

0.4

5 

0.5

0 

0.1

4 

0.2

0 

0.1

3 

0.1

1 

3

2 Ekhiingol 0.21 0.15 

0.1

0 

0.0

8 

0.1

8 

0.2

0 

0.3

1 

0.4

2 

0.4

9 

0.1

9 

0.2

0 

0.0

9 

0.1

0 

3

3 Gurvantes 0.21 0.15 

0.1

0 

0.0

8 

0.1

8 

0.2

0 

0.3

1 

0.4

2 

0.4

9 

0.1

9 

0.2

0 

0.0

9 

0.1

0 

3

4 Tooroi 0.22 0.16 

0.1

0 

0.1

0 

0.1

7 

0.2

1 

0.3

1 

0.4

1 

0.5

0 

0.2

2 

0.2

0 

0.0

8 

0.1

0 

3

5 Sainshand  0.18 0.15 

0.1

0 

0.0

9 

0.2

0 

0.2

0 

0.2

6 

0.3

1 

0.3

5 

0.1

0 

0.1

9 

0.0

7 

0.1

0 

3

6 Khanbogd 0.17 0.17 

0.1

0 

0.0

9 

0.2

0 

0.2

0 

0.2

5 

0.3

0 

0.3

3 

0.0

9 

0.2

0 

0.0

6 

0.1

0 

3

7 Zamiin Uud  0.17 0.17 

0.1

0 

0.0

9 

0.2

0 

0.2

0 

0.2

5 

0.3

0 

0.3

3 

0.0

9 

0.2

0 

0.0

6 

0.1

0 

3

8 Baitag  0.15 0.10 

0.1

0 

0.0

5 

0.1

0 

0.2

8 

0.2

8 

0.2

7 

0.2

5 

0.0

1 

0.2

0 

0.0

4 

0.1

0 

3

9 

Dalanzadga

d  0.14 0.12 

0.1

0 

0.0

5 

0.1

7 

0.2

9 

0.2

4 

0.2

0 

0.2

0 

0.0

2 

0.1

8 

0.0

2 

0.1

0 

4

0 

Saikhan-

Ovoo  0.14 0.12 

0.1

0 

0.0

5 

0.1

7 

0.2

9 

0.2

4 

0.2

0 

0.2

0 

0.0

2 

0.1

8 

0.0

2 

0.1

0 

4

1 Tsogt-Ovoo  0.14 0.12 

0.1

0 

0.0

5 

0.1

7 

0.2

9 

0.2

4 

0.2

0 

0.2

0 

0.0

2 

0.1

8 

0.0

2 

0.1

0 
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3. CHAPTER 3. THE ANALYSIS OF GROUNDWATER RECHARGE 

Annex 3.1. The soil moisture at test locations 

Stations 
Depth 

(cm) 

θ 

0-10 10-20 
20-

30 

30-

40 

40-

50 

50-

60 

60-

70 

70-

80 

80-

90 

90-

100 

1. Galuut  

Avg 0.22 0.22 0.21 0.23 0.24 0.25 0.25 0.26 0.26 0.26 

Max  0.38 0.37 0.37 0.41 0.42 0.41 0.40 0.44 0.45 0.50 

Min 0.16 0.16 0.15 0.18 0.18 0.19 0.19 0.20 0.19 0.20 

2.Tsetserleg 

Avg 0.19 0.16 0.17 0.20 0.20 0.20 0.18 0.17 0.17 0.16 

Max  0.38 0.32 0.41 0.35 0.38 0.38 0.27 0.26 0.26 0.23 

Min 0.09 0.07 0.08 0.09 0.08 0.10 0.10 0.10 0.11 0.09 

3.Bulgan 

Avg 0.38 0.36 0.36 0.36 0.38 0.40 0.39 0.39 0.40 0.40 

Max  0.61 0.67 0.63 0.58 0.63 0.67 0.63 0.64 0.67 0.64 

Min 0.27 0.26 0.25 0.25 0.26 0.27 0.26 0.27 0.26 0.26 

4.Khovd 

Avg 0.22 0.22 0.22 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

Max 0.30 0.33 0.33 0.34 0.29 0.28 0.33 0.38 0.34 0.35 

Min 0.18 0.18 0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

5.Erdenetsag

aan 

Avg 0.27 0.27 0.28 0.29 0.30 0.31 0.31 0.32 0.32 0.32 

Max 0.43 0.44 0.45 0.43 0.48 0.50 0.49 0.61 0.58 0.58 

Min 0.20 0.20 0.21 0.23 0.23 0.24 0.25 0.26 0.25 0.24 

6.Choibalsa

n 

Avg 0.22 0.22 0.22 0.24 0.24 0.24 0.25 0.25 0.25 0.25 

Max 0.32 0.32 0.35 0.37 0.37 0.37 0.40 0.40 0.40 0.38 

Min 0.18 0.17 0.18 0.19 0.19 0.19 0.19 0.18 0.18 0.18 

7.Khatgal  

Avg 0.26 0.27 0.28 0.29 0.28 0.28 0.25 0.24 0.31 0.27 

Max 0.48 0.43 0.44 0.49 0.43 0.45 0.40 0.41 0.50 0.43 

Min 0.13 0.13 0.12 0.14 0.14 0.15 0.11 0.13 0.18 0.16 

8.Baruunurt 

Avg 0.27 0.27 0.28 0.29 0.30 0.31 0.31 0.32 0.32 0.32 

Max 0.43 0.44 0.45 0.43 0.48 0.50 0.49 0.61 0.58 0.58 

Min 0.20 0.20 0.21 0.23 0.23 0.24 0.25 0.26 0.25 0.24 

9.Undurkhaa

n 

Avg 0.29 0.29 0.33 0.34 0.33 0.32 0.31 0.32 0.37 0.33 

Max 0.41 0.53 0.57 0.57 0.47 0.41 0.37 0.40 0.46 0.37 

Min 0.22 0.23 0.23 0.26 0.24 0.26 0.26 0.26 0.31 0.29 

10. Tsogt-

ovoo  

Avg 0.19 0.17 0.14 0.19 0.19 0.19 0.18 0.19 0.19 0.20 

Max 0.41 0.34 0.34 0.37 0.39 0.36 0.36 0.36 0.42 0.43 

Min 0.11 0.10 0.07 0.13 0.13 0.12 0.11 0.12 0.12 0.14 
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Annex 3.2. Depth to the water table in study locations 

ID Stations Dwt (m) Drz (m) Zbot (m) 

1 Sukhbaatar 12 0.3 11.7 

2 Tseterleg  25 0.3 24.7 

3 Bulgan Mg 6 0.3 5.7 

4 Khatgal  30 0.3 29.7 

5 Tosontsengel  30 0.3 29.7 

6 Binder 15 0.3 14.7 

7 Rinchinlhumbe  7.5 0.3 7.2 

8 Khalkh gol  5 0.3 4.7 

9 Erdenemandal  20 0.3 19.7 

10 Baruunkharaa   5 0.3 4.7 

11 Baruunturuun 30 0.3 29.7 

12 Erdenetsagaan  8 0.3 7.7 

13 Chingis khaan (UB) 5 0.3 4.7 

14 Choibalsan 5 0.3 4.7 

15 Undurkhaan 5 0.3 4.7 

16 Matad  30 0.3 29.7 

17 Murun 5 0.3 4.7 

18 Uliastai  5 0.3 4.7 

19 Baruun-Urt  7.5 0.3 7.2 

20 Erdenesant 31 0.3 30.7 

21 Dariganga 5 0.3 4.7 

22 Baynuul 15 0.3 14.7 

23 Galuut 15 0.3 14.7 

24 Ulaangom  5 0.3 4.7 

25 Arvaikheer  15 0.3 14.7 

26 Choir   5 0.3 4.7 

27 Mandalgobi  15 0.3 14.7 

28 Altai  15 0.3 14.7 

29 Khoriult 15 0.3 14.7 

30 Hovd  5 0.3 4.7 

31 Ulgii 5 0.3 4.7 

32 Ekhiingol 15 0.97 14.0 

33 Gurvantes 15 0.3 14.7 

34 Tooroi 15 0.97 14.0 

35 Sainshand  15 0.3 14.7 

36 Khanbogd 15 0.3 14.7 

37 Zamiin Uud  52 0.3 51.7 

38 Baitag  5 0.3 4.7 

39 Dalanzadgad  15 0.3 14.7 

40 Saikhan-Ovoo  15 0.3 14.7 

41 Tsogt-Ovoo  10 0.3 9.7 
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Annex 3.3. Travel time to groundwater table  

ID Stations Zbot (m) θ at 2m (-) 
Mean Ks 

(cm/day) 
Days Years 

1 Sukhbaatar 11.7 0.16 23 762.52 2.09 

2 Tseterleg  24.7 0.18 15 499.17 1.37 

3 Bulgan Mg 5.7 0.17 17 86.63 0.24 

4 Khatgal  29.7 0.20 29 403.23 1.10 

5 Tosontsengel  29.7 0.16 19 1106.83 3.03 

6 Binder 14.7 0.18 22 163.72 0.45 

7 Rinchinlhumbe  7.2 0.17 32 682.47 1.87 

8 Khalkh gol  4.7 0.19 16 36.62 0.10 

9 Erdenemandal  19.7 0.16 16 990.04 2.71 

10 Baruunkharaa   4.7 0.18 19 25.70 0.07 

11 Baruunturuun 29.7 0.20 21 311.69 0.85 

12 Erdenetsagaan  7.7 0.19 12 201.46 0.55 

13 

Chingis khaan 

(UB) 4.7 0.18 19 25.25 0.07 

14 Choibalsan 4.7 0.15 11 465.68 1.28 

15 Undurkhaan 4.7 0.20 12 41.38 0.11 

16 Matad  29.7 0.17 16 906.57 2.48 

17 Murun 4.7 0.17 16 275.80 0.76 

18 Uliastai  4.7 0.16 17 171.95 0.47 

19 Baruun-Urt  7.2 0.16 11 707.92 1.94 

20 Erdenesant 30.7 0.20 16 97.99 0.27 

21 Dariganga 4.7 0.17 16 165.61 0.45 

22 Baynuul 14.7 0.19 22 96.16 0.26 

23 Galuut 14.7 0.20 20 59.56 0.16 

24 Ulaangom  4.7 0.18 17 84.65 0.23 

25 Arvaikheer  14.7 0.22 13 46.01 0.13 

26 Choir   4.7 0.17 12 172.67 0.47 

27 Mandalgobi  14.7 0.19 12 109.36 0.30 

28 Altai  14.7 0.22 14 40.79 0.11 

29 Khoriult 14.7 0.16 14 614.48 1.68 

30 Hovd  4.7 0.16 13 273.21 0.75 

31 Ulgii 4.7 0.16 17 225.82 0.62 

32 Ekhiingol 14.0 0.20 9 864.97 2.37 

33 Gurvantes 14.7 0.17 12 282.00 0.77 

34 Tooroi 14.0 0.20 11 1314.84 3.60 

35 Sainshand  14.7 0.18 8 317.80 0.87 

36 Khanbogd 14.7 0.20 10 147.81 0.40 

37 Zamiin Uud  51.7 0.18 9 2105.13 5.77 

38 Baitag  4.7 0.19 12 53.27 0.15 

39 Dalanzadgad  14.7 0.19 14 61.13 0.17 

40 Saikhan-Ovoo  14.7 0.18 11 197.96 0.54 

41 Tsogt-Ovoo  9.7 0.15 11 945.61 2.59 
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