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ABSTRACT

Cancer is a group of diseases characterized by abnormal cell growth. Old cells do not die

and grow uncontrollably, forming a mass of tissue, called a tumor. In order to understand this

abnormal cell growth, there have been various efforts to model the interactions between different

molecules and pathways that initiate and drive cell proliferation. In this work, we analyze Bayesian

and Boolean techniques that can aid in modeling different cancer networks and infer the drug

combinations that can effectively kill tumor cells.

Signaling pathways supervise cellular processes such as growth, differentiation, and death. In

healthy cells, these processes are tightly regulated, however, in cancerous cells, mutations in cru-

cial genes often lead to irregularities in these processes and eventually cancer. In this work, we

study pathways and genes characterizing Breast cancer, Pancreatic cancer, and Lung cancer. We

make use of biological literature to construct the pathways and then use mathematical modeling

techniques to analyze and rank different therapeutic interventions. We first develop a Bayesian

network of Breast cancer and using a messaging passing algorithm, we infer the network and rank

drugs according to their ability to induce apoptosis. We then model the signaling network and

mutations of Pancreatic cancer using a multi-fault Boolean framework and simulate the network

to theoretically assess the efficacy of drug combinations. Finally, we use a modified Boolean

approach to mathematically model feedback loops in Lung cancer and determine the drug combi-

nations that produce cell death for the majority of mutations.

Our theoretical analyses point out that drug combinations containing Cryptotanshinone, a com-

pound found in traditional Chinese herbs, result in significantly increased cell death in each of

Breast, Pancreatic, and Lung cancer pathways. We corroborated our theoretical results with ex-

periments on MCF-7 breast cancer cell lines, Human Pancreatic Cancer (HPAC) cell lines, H2073

and SW900 lung cancer cell lines.
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1. INTRODUCTION ∗

Breast Cancer is the second leading cause of cancer death among US women, hence identify-

ing potential drug targets is an ever increasing need. In Section 2, we integrate existing biological

information with graphical models to deduce the significant nodes in the Breast Cancer signaling

pathway. We make use of biological information from the literature to develop a Bayesian network.

Using the relevant gene expression data we estimate the parameters of this network. Then, using a

messaging passing algorithm, we infer the network. The inferred network is used to quantitatively

rank different interventions for achieving a desired phenotypic outcome. The particular phenotype

considered here is the induction of apoptosis. The theoretical analysis pinpoints to the role of Cryp-

totanshinone, a compound found in traditional Chinese herbs, as a potent modulator for bringing

about cell death in the treatment of cancer. Using a mathematical framework, we showed that the

combination therapy of mTOR and STAT3 genes yields the best apoptosis in Breast Cancer. The

computational results we arrived at are consistent with the experimental results that we obtained

using Cryptotanshinone on MCF-7 breast cancer cell lines and also by the past results of others

from the literature, thereby demonstrating the effectiveness of our model.

The number of deaths associated with Pancreatic Cancer has been on the rise in the United

States making it an especially dreaded disease. The overall prognosis for pancreatic cancer pa-

tients continues to be grim because of the complexity of the disease at the molecular level in-

volving the potential activation/inactivation of several diverse signaling pathways. In Section 3,

we first model the aberrant signaling in pancreatic cancer using a multi-fault Boolean Network.

Thereafter, we theoretically evaluate the efficacy of different drug combinations by simulating this

∗Parts of this section are reprinted with permission from H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and
M. Bittner, “Bayesian Inference Identifies Combination Therapeutic Targets in Breast Cancer,” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 9, pp. 2684-2692, 2019, doi: 10.1109/TBME.2019.2894980 c© 2019 IEEE; and
H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and M. Bittner, “In Silico Design and Experimental Validation of
Combination Therapy for Pancreatic Cancer,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 17, no. 3, pp. 1010-1018, 2020, doi: 10.1109/TCBB.2018.2872573 c© 2020 IEEE; and H. Vundavilli, A. Datta, C.
Sima, J. Hua, R. Lopes, and M. Bittner, “Cryptotanshinone Induces Cell Death in Lung Cancer by Targeting Aberrant
Feedback Loops,” in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 8, pp. 2430-2438, 2020, doi:
10.1109/JBHI.2019.2958042 c© 2020 IEEE.
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boolean network with drugs at the relevant intervention points and arrive at the most effective

drug(s) to achieve cell death. The simulation results indicate that drug combinations containing

Cryptotanshinone, a traditional Chinese herb derivative, result in considerably enhanced cell death.

These in silico results are validated using wet lab experiments we carried out on Human Pancreatic

Cancer (HPAC) cell lines.

Signaling pathways oversee highly efficient cellular mechanisms such as growth, division, and

death. These processes are controlled by robust negative feedback loops that inhibit receptor-

mediated growth factor pathways. Specifically, the ERK, the AKT, and the S6K feedback loops

in Lung Cancer attenuate signaling via growth factor receptors and other kinase receptors to reg-

ulate cell growth. Irregularity in any of these supervised processes can lead to uncontrolled cell

proliferation and possibly cancer. These irregularities primarily occur as mutated genes, and an

exhaustive search of the perfect drug combination by performing experiments can be both costly

and complex. Hence, in Section 4, we model the Lung Cancer pathway as a Modified Boolean

Network that incorporates feedback. By simulating this network, we theoretically predict the drug

combinations that achieve the desired goal for the majority of mutations. Our theoretical analysis

identifies Cryptotanshinone, a traditional Chinese herb derivative, as a potent drug component in

the fight against cancer. We validated these theoretical results using multiple wet lab experiments

carried out on H2073 and SW900 lung cancer cell lines.
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2. BAYESIAN INFERENCE IDENTIFIES COMBINATION THERAPEUTIC TARGETS IN

BREAST CANCER ∗

2.1 Introduction

Cancer is a collection of diseases characterized by out-of-control cell growth. Cancer devel-

ops when the body’s normal control system stops working. Old cells do not die and grow out of

control, forming new, aberrant cells. These extra cells may form a mass of tissue, called a tu-

mor. Despite major progress over the last 40 years, it is estimated that in 2017 alone over 250,000

women will be diagnosed with breast cancer and more than 40,000 will die just in the United States

[4]. This calls for safe, contemporary and effective tools in the battle against breast cancer. One

way to approach several problems in Medicine and other life sciences is as a control problem, with

the objective being to find methods to drive an undesirable state of a Gene Regulatory Network

(GRN) into another, more desirable one, by means of an intervention, such as a therapeutic treat-

ment. The rationale for this is that if we can build a good model and find the targets with the

most “significance”, we may be able to design drugs for diseases, such as cancer, resulting from

gene misregulations. In this vein, there have been numerous attempts at modeling genetic regula-

tory networks, such as Boolean networks [5, 6], Differential equations [7], Probabilistic Boolean

networks [8] and Bayesian networks [9, 10, 11].

In this work, we describe a methodology that utilizes current biological knowledge from the

literature to build a GRN model and integrates this knowledge with experimental Genomic data

using a Bayesian Network based approach. Bayesian Networks are a class of Directed Acyclic

Graphs(DAGs) that encode independencies in a given network. They are suitable to the problem

since they can be used to represent causal relationships, analogous to the interactions in biological

signaling pathways. In the given network, our interest is in selecting genes which can be used as

modulators in order to drive the pathway dynamics to a desirable state. As the network grows in

∗Parts of this section are reprinted with permission from H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and
M. Bittner, “Bayesian Inference Identifies Combination Therapeutic Targets in Breast Cancer,” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 9, pp. 2684-2692, 2019, doi: 10.1109/TBME.2019.2894980 c© 2019 IEEE
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size, this modulator selection problem becomes intractable. Fortunately, we have a polynomial-

time algorithm called Pearl’s Message-Passing Algorithm for performing modulator selection in

Bayesian networks. We apply this algorithm to the Breast Cancer pathway in the human body to

derive effective drug targets related to breast cancer.

2.2 Methodology

2.2.1 Bayesian Networks

Bayesian networks (BNs), also known as belief networks, belong to the family of probabilistic

graphical models (PGMs). In the last decade, BNs have become extremely popular and have been

used for applications in various areas, such as machine learning [12], speech recognition [13],

bioinformatics [9], plant genomics [14], etc.

Interactions in gene regulatory networks are usually sparse. i.e., each gene interacts with a

very small number of genes compared to the total number of genes in the network. Due to this

sparseness, the generated BN models are easy to categorize, which promises well for both recon-

struction and visualization scalability, and this makes BN models a promising tool for the analysis

of gene regulatory networks [15, 16]. Also, biological systems are naturally stochastic, and the

probabilistic nature of Bayesian networks is well suited for capturing the uncertainties involved in

gene networks.

We represent a BN by
〈
G, θ
〉
, where G is the DAG over the set of random variables X. The

nodes X1, X2, ..., Xn in G represent random variables, and the edges in G represent the direct

dependencies between them. In a BN, each variable is independent of its nondescendents in the

graph given the state of its parents, which is consistent with a Markovian property, where the CPD

at each node depends only on its parents. The second component θ denotes the set of parameters

of the network. Accordingly, G defines a unique joint probability distribution(JPD) over X given

by:

P (X1, X2, ..., Xn) =
∏

P (Xi|Pa(Xi)) (2.1)

where Pa(Xi) are the parents of Xi.
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In a biological application, we can use the signaling pathway knowledge available in the bi-

ological literature to construct the graph skeleton according to which the JPD of our model gets

factorized.

2.2.2 Integrating Gene Expression Data

Once we obtain the graph structure G of the Bayesian network, we proceed to update the model

parameters using gene expression data. Gene expression data obtained from public repositories

such as NCBI usually consists of expressions of key genes measured across different experiments,

and results in a matrix with raw data as shown in Table 2.1.

Table 2.1: Example gene expression table. (Reprinted from [1])

Exp1 Exp2 . . . Expm

Gene1 0.34 0.49 ... 0.05
Gene2 0.86 0.62 ... 0.35

...
... . . .

Genen 0.44 0.29 ... 0.87

We use a binary quantization of gene expression data. There are several advantages to doing so

such as enhanced noise robustness and reduction of computational complexity. Gene expression

levels are heavily skewed in linear scale. Hence, using a standard threshold for discretizing mul-

tiple genes would lead to biasing error. Therefore, for each gene, assuming the gene expression

data is normally distributed, we used a maximum likelihood estimator for the mean µ, and used it

as the threshold to discretize the expression data for that specific gene. Expression values above

the threshold are assigned a 1 value and those below are assigned a 0 value. The choice of this

threshold is also justified using the Central Limit Theorem and the Law of large numbers. We next

integrate the gene expression data with the Bayesian model.

Hoff [17] showed that whenever we have a conjugate prior, the posterior distribution belongs

to the same family of distributions as the prior. The beta distribution is known to be a conjugate
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to the binomial likelihood, hence, if we choose the prior to be a Beta distribution, the conditional

posterior probability distributions of nodes are again given by a beta distribution, i.e.

P (p|X) ∼ Beta(ᾱX , β̄X) (2.2)

where ᾱX = (αX +m), β̄X = (βX +n−m), n is the number of observations, m is the number

of 1’s in the data of X and αX , βX are the shape parameters of the Beta distribution.

The expected value for this Beta distribution is given by,

E(p|X) =
ᾱX

ᾱX + β̄X
(2.3)

Initially, we assign a prior for all nodes as Beta(1,1), which is a uniform distribution over the

finite interval [0,1]. Using Equation (2.2), we update the prior using the gene expression data

to obtain the posterior distribution. With the posterior distribution in hand, we can calculate the

posterior mean which is the expected value of each state of a target node conditioned on each

possible combination of states of its parent nodes. As more data are observed, we can update the

values of ᾱX and β̄X so that the posterior probabilities approach the true underlying distribution.

When this occurs, the expected values converge to the CPDs of our Bayesian network. A simple

algorithm implementing the above procedure of integrating gene expression data to calculate the

CPDs is given in Algorithm 1 below.

With the Bayesian network graph G and its CPDs calculated, we want to identify the most

significant nodes, which when used as modulators will drive our network to the desired output.

2.2.3 Significant Genes

Biologically, a gene with a stronger effect on a target (gene or output) has a higher chance of

desirably affecting the latter as compared to other genes that have only minimal effects. Not all

genes have the same influence in a network and hence identifying the gene(s) which have high

“significance” is of utmost importance while trying to carry out drug design. For example, p53 is a
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1 Calculating the CPDs of a Bayesian Network
1: procedure PROBABILITIES(G, S) . Input graph matrix G and dataset S
2: for each column in S do
3: find the mean
4: for each row in the column do
5: if value < mean then
6: value← 0
7: else
8: value← 1
9: end if

10: end for
11: end for
12:
13: for each node in G do
14: find its parents and store them
15: the number of conditional probabilities = 2(number of parents)

16: for each data-point of the node do
17: compare with the data-points of its parents
18: if match then count← count + 1
19: using count calculate ᾱX and β̄X from (2.2)
20: end if
21: P (Xi|Pa(Xi)) = ᾱX

ᾱX+β̄X
22: end for
23: end for
24: end procedure

well known tumor suppressor gene, whereas p73 another tumor suppressor gene is less productive

in activating apoptosis compared to p53 [18].

Given the bayesian network and its model parameters, we are interested in finding the nodes

that contribute the most to our desired output. In other words, we want to maximize the conditional

probability of our output when other genes are intervened. We illustrate this further by modeling

drug intervention in an example bayesian network.

2.2.4 Drug Intervention

Drugs generally work by interacting with receptors on the surface of cells or enzymes within

cells. Binding to the target receptor site, they can either block the function of the protein (inhibitory

drug), or imitate it’s effect (enhancing drug).
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Suppose we have two drugs Drug-1 and Drug-2 that bind to the receptors A and B respectively

as shown in Figure 2.1, thereby disabling their functions further downstream. Mathematically, we

model this by setting the probability of that node having the value one equal to zero. That is, in the

case of Drug-1, we have, P (A = 1) = 0 and similarly for Drug-2, we have, P (B = 1) = 0.

Figure 2.1: Modeling the drug intervention in an example bayesian network. (Reprinted from [1])

Let us assume that our desired objective is to minimize the gene expression of E. Given the

two drug choices, we would like to find the more efficient drug for achieving this. In other words,

we are interested in determining the smaller of P (E = 1|A = 0) and P (E = 1|B = 0). If our

computations result in P (E = 1|A = 0) to be the smaller of the two, we conclude Drug-1 to be

the more effective one.

To calculate P (E|A) we compute:

P (E|A) =
P (E,A)

P (A)
=

∑
C P (E,A,C)

P (A)
=

∑
C P (E|A,C)P (A,C)

P (A)

In a Bayesian network each variable is conditionally independent of all its non-descendants in the
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graph given the value of all its parents. Hence, P (E|A,C) = P (E|C). Substituting this into the

last expression and proceeding, we obtain:

∑
C P (E|A,C)P (A,C)

P (A)
=

∑
C P (E|C)P (A,C)

P (A)
=

∑
C P (E|C)

(∑
B P (A,B,C)

)
P (A)

=

∑
C P (E|C)

(∑
B P (C|A,B)P (A,B)

)
P (A)

=

∑
C P (E|C)

(∑
B P (C|A,B)P (A)P (B))

)
P (A)

Therefore, finally we obtain

P (E|A) =
∑
C

P (E|C)
(∑

B

P (C|A,B)P (B)
)

(2.4)

Similarly P (E|B) is given by:

P (E|B) =
∑
C

P (E|C)
(∑

A

P (C|A,B)P (A)
)

(2.5)

Using the CPDs calculated earlier, we can compute (2.4), (2.5) and compare the two numbers,

based on which we can make a decision about whether to intervene with A or with B. Clearly, as

the network grows in size, computing these probabilities manually becomes tedious and intractable.

Shimony [19] showed that the probabilistic reasoning problems for general Bayesian networks are

NP-hard. Fortunately, there are algorithms for special cases that solve reasoning problems in time

that is a polynomial function of the number of variables. Message passing algorithms such as

Pearl’s message-passing propagation algorithm efficiently solve the inference problem in singly-

connected networks [20, 21]. We now briefly discuss the working of this algorithm.

2.2.5 Message-Passing Algorithm

Shimony [19] showed that the probabilistic reasoning problems for general Bayesian networks

are NP-hard. However, there are algorithms for special cases that solve reasoning problems in time

that is a polynomial function of the number of variables. In this section we review a polynomial-
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time algorithm called Pearl’s Message-Passing Algorithm, which is also known as Pearl’s belief

propagation algorithm. Pearl’s algorithm provides exact solutions to inference problems in singly-

connected graphs [22]. The algorithm exploits the loop-less feature in a singly-connected graph

that allows us to partition the graph in an efficient manner, greatly simplifying the reasoning prob-

lem.

Consider a Bayesian Network over a set of nodes X with a DAG G that is a singly-connected

directed graph. Let E ∈ X be a set of evidence variables such that E = e. For all random variables

X ∈ X , we define λ message, λ value, π message and π value as the following [21, 23]:

• λ message: The message a child Y passes to its parent X. It is denoted by λy(x).

• π message: The message a parent Z passes to its child X. It is denoted by πz(x).

• λ and π values: Each node has values of λ and π for each state that it may pass on.

An illustration of λ and π messages being exchanged in a graph is shown in Figure 2.2 below.

These messages and values are defined as follows.

Figure 2.2: λ messages and π messages in a singly-connected directed graph. (Reprinted from [1])
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1. λ messages (child→ parent) : For every child Y ∈ Ch(X) and all x ∈ V al(X), define

λY (x) ≡
∑
y

[ ∑
w1,...,wk

(
P (y|x,w1, ..., wk)

k∏
i=1

πY (wi)
)]
λ(y) (2.6)

where W1, ...,Wk are other parents of Y.

2. π messages (parent→ child) : For a parent Z ∈ Pa(X) and all z ∈ V al(Z), define

πX(z) ≡ π(z)
∏

U∈Ch(Z)−{X}

λU(z) (2.7)

3. λ values :
(i) If X ∈ E and the observed values is X = x̂, for all x ∈ V al(X), define

λ(x) ≡

{
1 if x = x̂

0 else
(2.8)

(ii) If X /∈ E and X is a leaf, for all x ∈ V al(X), define λ(x) ≡ 1

(iii) If X /∈ X and X is not a leaf, for all x ∈ V al(X), define

πX(z) ≡ π(z)
∏

U∈Ch(Z)−{X}

λU(z) (2.9)

4. π values :
(i) If X ∈ E and the observed value is X = x̂, for all x ∈ V al(X), define

π(x) ≡

{
1 if x = x̂

0 else

(ii) If X /∈ E and X is a root, for all x ∈ V al(X), define π(x) ≡ P (x)

(iii) If X /∈ E and X is not a root, for all x ∈ V al(X), define

π(x) ≡
∑
z1,...zk

(
P (x|z1, ...zk)

k∏
i=1

πX(zi)
)

(2.10)

where Z1, ...Zk ∈ Pa(X) are the parents of X.

5. If we define the messages and values as above, for all X ∈ X , x ∈ V al(X) we can calculate
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our required conditional probability given evidence e by :

P (x|e) = αλ(x)π(x) (where α is a normalizing constant)

We can compute λ(x), π(x) and P (x|e) for every random variable X ∈ X and for all values

x ∈ V al(X) using Algorithm 2 given below.

2 Message-Passing algorithm
1: function INITIALIZE NETWORK

2: for X ∈ X set λ(x) = 1
3: ∀Z ∈ Pa(X) set λX(z) = 1, ∀Y ∈ Ch(X) set πY (x) = 1
4: for every Root R ∈ X set π(x) = P (x), P (r|e) = P (r)
5: for W ∈ Ch(R) send_π_message(R,W )
6: end function
7:
8: function UPDATE NETWORK . New evidence V = v̂
9: E = E ∪ {V }

10: for v ∈ V al(V ), if v = v̂ set λ(v) = π(v) = P (v|e) = 1, else set = 0
11: ∀

(
Z ∈ Pa(V ) && Z /∈ E

)
send_λ_message(V, Z)

12: for Y ∈ Ch(V ) send_π_message(V, Y )
13: end function
14:
15: function SEND_λ_MESSAGE(Y,X) . λ message Y (child)→ X(parent)
16: Compute λY (x) using equation (2.6)
17: λ(x) =

∏
U∈Ch(X) λU(x), P̃ (x) = λ(x)π(x)

18: α =
∑

x P̃ (x)⇒ P (x|e) = 1
α
P̃ (x)

19: ∀
(
Z ∈ Pa(X) && Z /∈ E

)
send_λ_message(X,Z)

20: ∀
(
U ∈ Ch(X)− {Y }

)
send_π_message(X,U)

21: end function
22:
23: function SEND_π_MESSAGE(Z,X) . π message Z(parent)→ X(child)
24: Compute πX(z) using equation (2.7)
25: if X /∈ E then
26: compute π(x) using equation (2.10)
27: P̃ (x) = λ(x)π(x)⇒ P (x|e) = 1

α
P̃ (x) where α =

∑
x P̃ (x)

28: for Y ∈ Ch(X) send_π_message(X, Y )
29: end if
30: if ∃ x such that λ(x) 6= 1 then
31: for

(
W ∈ Pa(X)− {Z} && W /∈ E

)
send_λ_message(X,W )

32: end if
33: end function
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2.3 Breast Cancer Pathways

The Breast cancer pathway mainly consists of three important sub-pathways, the JAK/STAT,

the MAPK, and the PI3K/mTOR which all interact with each other.

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) cell signaling

pathway functions as the primary component of gene transcription and immune control. Abnormal

activation of the JAK/STAT pathway has been reported in various disease states [24], and in solid

tumors, constant phosphorylation of STAT3 has been demonstrated in breast cancer. JAKs employ

Cytokine receptors (CRLF2) and mediate tyrosine phosphorylation of STAT3 [25].

The mammalian target of rapamycin (mTOR), lies downstream of receptor phosphoinositide 3

kinase (PIK3CA) [26], and PI3K/Akt/mTOR is a well known pathway, which causes cell growth

and tumor proliferation in breast cancer [27]. Upregulated mTOR activates downstream riboso-

mal p70S6 kinase (RPS6KB1) and hyperphosphorylates Eukaryotic Translation Initiation Factor

4E (eIF4E) [28]. Hussain [29] showed a compelling biological connection between NF-κB and

PI3K/Akt pathway, where Akt activates the IKB kinase, a positive regulator of the survival factor

NF-κB. Studies have shown that Akt can directly inactivate pro-apoptotic factors such as BAD

[30].

Mitogen-Activated Protein Kinase (MAPK) families are well known to play an important

role in cellular functions such as proliferation, development and apoptosis. Raf activates the

MAPK/ERK kinase (MAP2K1), which then activates MAPK [31].

Wilson [32] displayed that SRC kinases are prime second messengers of HER2 (ERBB2),

and the connection between SRC activation and overexpression of ERBB2 has been reported in

breast carcinoma [33]. Ceramide (CERK) has been linked in diverse cellular processes, including

proliferation and apoptosis [34], and Phosphoglycolate Phosphatase (PGP) is a Protein Coding

gene that could increase the level of CERK in cells [35].

BCL-2 an apoptosis regulator is over-expressed in about 85% of ER-positive tumors [36]. Stud-

ies have shown that anamolous STAT3 signaling advances breast tumor growth through deregula-

tion of BCL-2, BIRC5 and MCL1 [37]. Targeting the mTOR pathway also resulted in decreased
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MCL1 expression postulating a link between them [38].

On the basis of the above biological information, we formulated the Breast Cancer signaling

pathway as shown in Figure 2.3. The gene interactions are represented by arrows, where a normal

arrow denotes activation and a red hammer arrow denotes inhibition.

Figure 2.3: Breast Cancer Signaling Pathway. An arrow indicates activation and a red hammer
arrow represents inhibition. (Reprinted from [1])
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2.4 Results

2.4.1 Simulations

In this section, we discuss the application of our model to select critical points of intervention

in the Breast Cancer pathway. We use real experimental data deposited in the NCBI database to

test the efficacy of our model. Analysis of expression data has three key uses: classifying diseases,

identifying decisive genes, and decoding biological pathways. Our choice of datasets meets these

pivotal requirements. Two datasets GSE2990 [39] and GSE6532 [40] were discretized and pooled

together. Each of these datasets contains the gene expression data obtained from the microarray

experiments carried out on primary breast tumors. Using this gene expression data we calculated

the CPDs of our Bayesian model using the method discussed in section 2.2.

Cancer is a disease in multicellular organisms that results from an imbalance between cell pro-

liferation and programmed cell death leading to the formation of tumors that become malignant.

Thus, a possible approach for treating cancer could be to enhance Apoptosis(cell death). It is

well known that the BCL-2 protein family, consisting of anti-apoptotic and pro-apoptotic mem-

bers, is involved in the regulation of apoptotic cell death. The anti-apoptotic members prevent

apoptosis by preventing the release of Cytochrome-c into the cytoplasm. On other hand, enhanced

expression of pro-apoptotic molecules can result in increased mitochondrial outer membrane per-

meability(MOMP), which leads to the release of Cytochrome-c. The hemeprotein Cyotchrome-c

then recruits Apaf-1 and pro-caspase-9 to form the Apoptosome, which triggers the Caspase 9/3

cascade, resulting in apoptosis [41]. In our signaling pathway, CERK and BAD are pro-apoptotic

genes, whereas, MCL1, BCL-2 and BIRC5 are anti-apoptotic genes.

We define a mathematical expression that incorporates the effect of both pro-apoptotic and

anti-apoptotic factors. Define the Apoptosis Ratio by:

Apoptosis Ratio =
Gene Expression (Pro-Apoptotic genes)
Gene Expression (Anti-Apoptotic genes)

(2.11)

Clearly, the higher the ratio, the greater the chances of Cytochrome-c release and consequently

15



greater cell death.

Now, using ’s messaging passing algorithm discussed earlier, we computed this ratio condi-

tioned on the evidence set E, where E is the set of the genes being directly targeted by drugs. In

the next section, we discuss the results obtained.

Using the approach described above, we calculated the Apoptosis Ratio for two scenarios. First,

we assumed a single gene intervention and then we looked at a combination therapy involving the

simultaneous modulation of two genes.

2.4.2 Single Gene Intervention

We ran the algorithm for modulation using only one gene at a time and computed the cor-

responding Apoptosis Ratios as shown in Table 2.2. We then overlaid these ratios on the breast

cancer pathway as shown in Figure 2.4, and for elegance, we plotted only the most significant

genes in Figure 2.5. From the figure and the graph, it is evident that mTOR and Akt1 are the

most preferred nodes for single gene intervention. From the figure, it is also evident that both the

location of the gene and the number of crucial genes it intervenes with influence its apoptosis ratio.

2.4.3 Combination Therapy using Two Genes

Assuming that we can simultaneously intervene with a pair of genes, we ran the algorithm for

every set of two genes. Due to the large number of combinations, we only tabulated the most

significant ones in Table 2.3 and plotted them in Figure 2.6. From the graph, we infer that a

combination of mTOR and STAT3 is the most preferred pair for intervention purposes.

2.4.4 Drug Intervention

We now look at the drugs that are well known to intervene and bind specific genes in the

pathway, and compare computational results with the experimentally obtained ones.

APTSTAT3-9R is a specific STAT3-binding peptide that blocks STAT3 phosphorylation and re-

duces expression of STAT3 targets in various types of cancer cells [42]. Another STAT3 inhibitor

HO-3867 has been shown to disrupt the JAK/STAT3 signaling pathway thereby reducing the ex-

pression levels of both JAK and STAT3 [43]. Lapatinib, a reversible inhibitor of HER-2/ERBB2,
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Table 2.2: Ratio of Apoptosis: Single gene intervention. (Reprinted from [1])

Number Gene Name State Value

1 CRLF2
OFF 0.484234
ON 0.325834

2 JAK2
OFF 0.492859
ON 0.300862

3 MUC1
OFF 0.387579
ON 0.343696

4 STAT3
OFF 0.570441
ON 0.262752

5 RAS
OFF 0.484234
ON 0.333091

6 PIK3CA
OFF 0.742564
ON 0.235739

7 RAF1
OFF 0.395569
ON 0.350117

8 mTOR
OFF 1.249280
ON 0.215840

9 eIF4E
OFF 0.697592
ON 0.200470

11 Akt
OFF 1.047970
ON 0.182339

12 MEK
OFF 0.43825
ON 0.336071

14 NF-κB
OFF 0.716033
ON 0.169933

15 MAPK1
OFF 0.422930
ON 0.342773

16 PGP
OFF 0.813258
ON 0.190818

17 FOS
OFF 0.380059
ON 0.346885

18 CERK
OFF 0.133953
ON 0.780397

22 JUN
OFF 0.423528
ON 0.332256

23 RPS6KB1
OFF 0.899283
ON 0.220879

24 ERBB2
OFF 0.363305
ON 0.362379

25 SRC
OFF 0.364518
ON 0.362207
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Figure 2.4: Apoptosis Ratios calculated by intervening different nodes independently. (Reprinted
from [1])
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Figure 2.5: Bar graph illustrating the Apoptosis Ratio calculated by intervening different nodes.
(Reprinted from [1])

has shown some success in different cancers [44]. LY294002, a selective PI3K inhibitor signifi-

cantly induced cell apoptosis in MCF-7 cells [45]. Temsirolimus is a potent mTOR inhibitor that

showed significant activity in vitro against a variety of cancer cells including MCF-7 breast cancer

cells [46]. An et al. [47] showed the suppression of human breast cancer cell line using U0126

which is a specific MEK inhibitor. Cryptotanshinone, a naturally occurring drug has been shown

to suppress the mTOR signaling pathway [48], and STAT3 signaling through blocking its dimer-

ization [49]. Using the above biological information, we tabulated the drugs and the gene(s) they

intervene in Table 2.4, and plotted the apoptosis ratio for different drugs.
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Table 2.3: Ratio of Apoptosis: Combination therapy involving two genes. (Reprinted from [1])

Number Gene Name State Value

1,2 CRLF2+JAK2
OFF 0.492859
ON 0.300862

2,4 JAK2+STAT3
OFF 0.582264
ON 0.262945

4,6 STAT3+PIK3CA
OFF 0.883097
ON 0.222168

6,8 PIK3CA+mTOR
OFF 1.477788
ON 0.188257

8,9 mTOR+eIF4E
OFF 1.275501
ON 0.196231

6,9 PIK3CA+eIF4E
OFF 1.477788
ON 0.188257

4,8 STAT3+mTOR
OFF 2.08768
ON 0.186954

8,11 mTOR+Akt
OFF 1.281037
ON 0.181387

9,11 eIF4E+Akt
OFF 1.264280
ON 0.165171

1,8 CRLF2+mTOR
OFF 1.808874
ON 0.205043

11,14 Akt+NF-κB
OFF 1.105998
ON 0.137457

14,16 NF-κB+PGP
OFF 0.868523
ON 0.148477

11,23 Akt+RPS6KB1
OFF 1.325971
ON 0.174062

Table 2.4: Drugs used and their gene intervention points. (Reprinted from [1])

Drug Gene(s) targeted

APTSTAT3-9R STAT3
Lapatinib HER-2/ERBB2
LY294002 PIK3CA
HO-3867 STAT3

Temsirolimus mTOR
U0126 MEK

Cryptotanshinone STAT3 + mTOR
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Figure 2.6: Bar graph illustrating the Apoptosis Ratio calculated by intervening a set of two nodes.
(Reprinted from [1])

2.4.5 Single Drug Intervention

We calculated the apoptosis ratios when a single drug is used and plotted them in Figure 2.7.

2.4.6 Combination of Two Drugs

Considering the harmful side-effects of drugs, we restricted the maximum number of drugs per

combination to two in our theoretical analysis and experiments. Hence, here we are interested in

finding the drug combinations that maximize cell death with minimum side-effects. We calculated

the apoptosis ratios when a combination of two drugs is used and plotted them in Figure 2.8.

From the plots in Figure 2.7 and Figure 2.8, it is clear that Cryptotanshinone either by itself, or
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Figure 2.7: Bar graph illustrating the Apoptosis Ratio calculated when different drugs are used
independently. (Reprinted from [1])

in combination with other drugs results in greatly enhanced cell death. To verify this, we treated

MCF-7 breast cancer cell lines with these drug combinations and the experimental results agree

closely with the computational predictions. We now present the experimental results.

2.4.7 Experimental Validation

The theoretical results obtained above were validated using MCF–7 breast cancer cell lines

subjected to the various alternative drug treatments. The cell line was supplied to Dr. Jeffrey

Trent’s laboratory at the NIH from ATCC in 1996. This line is currently being used in the current

collaboration between Dr. Trent’s Institute, TGen, and the Texas A&M Center for Bioinformatics

and Genomic Systems Engineering. We used high–content fluorescent protein reporter imaging

22



Figure 2.8: Bar graph illustrating the Apoptosis Ratio calculated when a set of two drugs are used.
(Reprinted from [1])

method to track cell death in MCF–7 cells. We extracted cell processing dynamics using a two-

part data processing procedure introduced in Hua et. al. [50]. We condensed this data obtained

into expression profiles and represented as plots to interpret further.

The plots in Figure 2.9 show the cell killing produced in MCF7 breast cancer cell lines under the

effect of different drug combinations compared against the untreated cell line. Cryptotanshinone

has been used in each of the drug combinations and from the plots, it is clear that in each case,

impressive cell death occurs within 6-8 hours. Furthermore, all the drug combinations have more

than 95% apoptosis in 10 hours.
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Figure 2.9: Apoptosis fraction versus time(in hours) for different drug combinations. The
drug combinations in the legend from left to right are Cryptotanshinone, Cryptotanshinone +
APTSTAT3-9R, Cryptotanshinone + HO-3867, Cryptotanshinone + LY294002, Cryptotanshinone
+ Lapatinib and Untreated cell line. (Reprinted from [1])

Figure 2.10: Apoptosis fraction versus time (in hours) for different drug combinations. The drug
combinations in the legend from left to right are Untreated cell line, Paxlitaxel, Cryptotanshinone
+ Paxlitaxel. (Reprinted from [1])
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In order to compare our results with the standard therapy for breast cancer, we treated the

MCF7 cell line with Paxlitaxel [51] and its combination with Cryptotanshinone and compared

against untreated cell line. We plotted these results as shown in Figure 2.10. From the figure,

the drug is completely ineffective by itself, but upon the introduction of Cryptotanshinone, the

performance of cell death improves significantly over time. These results further strengthen our

argument that Cryptotanshinone substantially enhances cell death.

The ordering of the efficacy of cell death induction by the different combinations appears to be

in line with what is predicted by our computational approach. Hence, our computational results

agree closely with the experimentally obtained ones.
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3. IN SILICO DESIGN AND EXPERIMENTAL VALIDATION OF COMBINATION

THERAPY FOR PANCREATIC CANCER∗

3.1 Introduction

Pancreatic ductal adenocarcinoma (commonly referred to as pancreatic cancer) is the most

common malignancy of the pancreas. The American Cancer Society recently reported that the

number of deaths associated with pancreatic cancer has been increasing at an alarming rate making

it the third leading cause of cancer related deaths in the United States [4]. In 2018, it is estimated

that there will be 55,440 new diagnosed cases and 44,330 deaths linked to pancreatic cancer in the

United States alone. It is also estimated that by 2030, annual deaths due to pancreatic cancer will

exceed that of breast, prostate, and colorectal cancers [52].

The annual number of deaths for most cancers has decreased in recent decades, but the death

rate for pancreatic cancer has remained significantly flat. The absence of clinical progress in pan-

creatic cancer in comparison with other cancers is ascribed to a lack of success in developing novel

and effective therapies. This grim outlook for pancreatic cancer is linked to various reasons. Pan-

creatic cancer is usually diagnosed at advanced stages, which is usually due to an absence of early

symptoms and a lack of detecting/imaging techniques for early-stage tumors [53]. Pancreatic can-

cer also sets itself apart from other cancers because of its exceptional resistance to most traditional

medications, including radiotherapy and chemotherapy. This resistance stems from the complex-

ity pancreatic cancers carry at the genomic level, with diverse activated pathways and apparent

cross-talk [54].

Historically, biologists have captured cause-effect interactions between different biological

molecules using signaling pathways. Although marginal in nature, such information can provide

useful therapeutic pointers for diseases that result from a simple breakdown of such signaling. In

∗Parts of this section are reprinted with permission from H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes,
and M. Bittner, “In Silico Design and Experimental Validation of Combination Therapy for Pancreatic Cancer,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 17, no. 3, pp. 1010-1018, 2020, doi:
10.1109/TCBB.2018.2872573 c© 2020 IEEE
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the case of cancer, however, the success with this approach has been very limited mainly because of

the complexity of the possible breakdowns resulting in the manifestation of the disease [55]. Con-

sequently, in recent years there have been several attempts to holistically model the interactions

between different biological molecules of interest. Specific approaches used include Bayesian

networks [14], Differential equations [56], Boolean Networks [57] and Probabilistic Boolean net-

works [8].

In this work, we describe a methodology that utilizes current biological knowledge from the

literature to build a Boolean Network model of the pancreatic cancer pathway. We model the gene

interactions in the pathway using appropriate logic gates. We simulate this boolean network with

drugs at appropriate intervention points to calculate a “measure”, which is defined to capture the

extent of activation/deactivation of cell death. Such a measure can aid us in theoretically assessing

the effectiveness of drugs, provided the primary goal of therapy is to facilitate the death of cancer

cells.

3.2 Methodology

Gene regulatory networks, which describe the interactions between genes and other molecules,

play a pivotal role in orchestrating most biological processes such as cell proliferation, differenti-

ation, metabolism, and apoptosis. Understanding the mechanics of these networks can assist us in

dissecting the mechanisms of the diseases that result when these cellular processes deviate from

the norm [58]. Mathematical and computational methods have been developed for modeling these

gene interactions. These mathematical models have had some success in capturing some of the

complexities of biological networks [59].

One such widely used model is the Boolean Network (BN) model. Modeling of biological

interactions using BN has been successfully used for studying the Growth Factor signaling pathway

[57] and the Prostate Cancer pathway [6]. We now briefly review the key concepts needed for

modeling biological pathways with Boolean networks.
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3.2.1 Boolean Networks

In a Boolean network, each node can be in one of two binary states, inactive or active. It

is customary to assign a ‘0’ value to the inactive state and a ‘1’ value to the active state. In a

gene regulatory network (GRN), genes can be binarily quantized [60] and classified as either up-

regulated or down-regulated based on their gene expression levels. This switch-like behavior of

genes clearly can be modeled within a binary framework, thereby making boolean networks an

apparent choice to model GRNs. Furthermore, in a GRN, a gene is influenced by one or more

genes. This interaction among different genes can be modeled as a boolean logic function, where

the nodes represent the genes and the edges represent the interactions among the genes.

3.2.2 Modeling Abnormalities

Cancer is a collection of diseases in which abnormal cells are busy producing more cells, the

death of many produced cells, and the movement of cancer cells to other places in the body. This

abnormality can be caused by a malfunction in the normal signaling pathways leading to the loss

of cell cycle control and uncontrolled cell proliferation. One of the most common and well known

malfunctions is the mutation of a gene, which leads to its over- or under-expression. This aberration

can be modeled as a stuck-at fault in the BN. When a stuck-at fault occurs at a gene, its value gets

fixed at (0/1) and is no longer influenced by the activity status of other genes.

3.2.3 Modeling Drug Intervention

Drugs usually work by interacting with receptors on the surface of cells or on enzymes within

cells. They can either block the function of the protein (inhibitory drug), or induce it’s effect

(enhancing drug) by binding to the target receptor site. This interaction of the drug with a gene

can be mapped to a BN by either forcibly suppressing or enhancing the value of the gene at the

appropriate location.

We illustrate the type of modeling just discussed with the help of an example. Let us assume a

scenario where genes A and B independently activate gene C, genes C and D form a heterodimer

and activate gene E which then activates gene F. Furthermore, let us suppose that gene D is mutated
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and a drug precisely inhibits gene F. These interactions and the associated equivalent BN could be

represented as shown in Figure 3.1.

Figure 3.1: a) Example gene regulatory network. b) Boolean equivalent of the example gene
regulatory network. (Reprinted from [2])

We next analyze the signaling pathways and the specific drug intervention points associated

with pancreatic cancer.

3.3 Pancreatic Cancer Pathways

Signaling pathways supervise cellular processes such as growth, division, and death. Abnor-

mality in any of these controlled processes can lead to cancer. Abnormal paracrine and autocrine

signalling cascades in pancreatic cancer advance cell proliferation, invasion and metastasis.

Signalling molecules such as epidermal Growth Factor (EGF), insulin-like growth factor 1

(IGF1), heparin binding EGF like growth factor (HBEGF), and their respective tyrosine kinase
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receptors such as epidermal growth factor receptor (EGFR), IGF1 receptor (IGF1R), receptor

tyrosine-protein kinase (ERBB2), activate different pathways that strengthen pancreatic cancer

cells’ self-reliance and boost migration and invasion [61]. EGFR can form both homodimers and

heterodimers with ERBB2, and in the case of mutated Kirsten ras (KRAS), downstream signalling

has been shown to be excessively activated. In the presence of growth factor receptor-bound pro-

tein 2 (GRB2), these tyrosine kinase receptors were shown to be more effectively activated [62].

Liver kinase B1 (LKB1) is a well known serine/threonine kinase which senses changes in cel-

lular energy and adjusts metabolic processes by triggering its downstream kinase, AMP-activated

protein kinase (AMPK) [63]. These binding events make way for the activation of RAS, RAF

and mitogen-activated protein kinase (MAPK) signalling. In addition to these signaling cascades,

anti-apoptotic and pro-survival pathways such as signal transducer and activator of transcription 3

(STAT3), phosphatidylinositol 3-kinase (PI3K) and AKT are simultaneously activated [64]. Addi-

tionally, extracellular-regulated kinase (ERK1/2) and c-jun N-terminal kinase (JNK), members of

the MAPK family, have been demonstrated to regulate cell survival.

These pathways are supervised by a series of phosphatases, kinases and multiple exchange

proteins, and mutations in these pathways can lead to uncontrolled cell proliferation and eventually

cancer.

3.3.1 Drug Interventions

In the literature, scientists have established the specific receptors/enzymes where different

drugs intervene in a signaling pathway. We superimpose that data on our BN model to specify

the genes that will be inhibited by a particular drug. Before doing so, we first list our drugs of

interest and their specific targets.

HO-3867, a specific STAT3-binding peptide has been shown to block STAT3 phosphorylation

which results in the disruption of the JAK/STAT3 signaling pathway [65]. Temsirolimus is a selec-

tive mTOR inhibitor that has demonstrated significant activity in vitro against a variety of cancer

cells [66, 67]. Lapatinib, a reversible inhibitor of HER-2/ERBB2 and growth factor receptors has

shown some success in multiple cancers [68, 69]. LY294002 is a potent PI3K inhibitor that has
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Figure 3.2: Pancreatic cancer pathway. A black arrow denotes activation and a red arrow denotes
inhibition. The legends explain the role of different bounding boxes. (Reprinted from [2])
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notably induced cell death in cancer cells by impeding the PI3K/AKT pathway [70]. Cryptotanshi-

none (CPT), a naturally occurring drug has been shown to suppress STAT3 signaling in pancreatic

cancer cells by arresting the cell cycle in the G1-G0 phase, indicating that CPT is an effective

STAT3 inhibitor [71]. In the same study, the expression level of ERK1/2 was also significantly

inhibited by CPT. Cryptotanshinone has shown exceptional success in not only pancreatic cancer

cells but also in prostate cancer [48], human glioma [72], and chronic myeloid leukemia cells [73].

Consequently, we decided to include CPT in our list of drugs so that we could theoretically analyze

its beneficial effects, both while acting solo or in combination with other drugs.

Using the information presented above and the available literature, we constructed the gene reg-

ulatory network of pancreatic cancer as shown in Figure 3.2. The gene interactions are represented

by arrows, where a black arrow denotes activation and a red arrow denotes inhibition.

The boolean equivalent of this regulatory network is shown in Figure 3.3. The fault locations

are denoted by numbers in parentheses, where black numbers denote stuck-at-1 faults and blue

numbers denote stuck-at-0 faults. We next discuss the theoretical results obtained from the devel-

oped model and then present experimental results to support our theoretical conclusions.

Figure 3.3: Boolean equivalent of pancreatic cancer pathway. The numbers in parentheses
represent the identifying number assigned to a fault at that location. Here, black numbers denote
stuck-at-1 faults and blue numbers denote stuck-at-0 faults. (Reprinted from [2])
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3.4 Results

3.4.1 Simulations

Using the Boolean model constructed above, we can now compare the different drug com-

binations and their efficacies. For each possible mutation/fault, the objective is to find the best

combination therapy that can alleviate the deleterious impact of that fault.

Referring to the Boolean model in figure 3, we have six inputs and six outputs. The inputs in-

clude two tumor suppressors ( PTEN, LKB1) and four growth factors (EGF, HBEGF, IGF, NRG1).

The outputs consist of pivotal genes (CCND1, BCL2, SRF-ELK1, FOS-JUN, SRF-ELK4, SP1) as-

sociated with and indicative of cell proliferation and apoptosis.

For mathematical analysis, we can represent these inputs and outputs as row vectors. A zero

corresponds to an inactive gene in the matching location, and on the other hand, a one corresponds

to an active gene. So the binary input and output vectors will be given by:

Input = [PTEN, LKB1, EGF, HBEGF, IGF, NRG1] and

Output = [CCND1, BCL2, SRF-ELK1, FOS-JUN, SRF-ELK4, SP1].

For the input [110000], the tumor suppressors are active and the growth factors are inactive,

and this input corresponds to an absence of proliferation and a non-reduction in apoptosis. In the

Boolean network with no faults, this input produces the output [000000], which also corresponds

to a lack of cell proliferation and a non-suppression of apoptosis. However, for the same input,

the network with faults will produce a different non-zero output vector. Our goal here is to guide

this non-zero output vector closer to the zero vector with the assistance of drugs. Biologically, this

is equivalent to driving a mutated pathway towards non-proliferation and unsuppressed apoptosis

using therapy.

The drugs we used in our simulations and experiments are, Cryptotanshinone (20 µM), LY294002

(10 µM), Temsirolimus (10 µM), Lapatinib (5 µM), and HO-3867 (10 µM). The drug dosage lev-

els of Lapatinib and Temsirolimus are those of human medical use, and the dosages for HO-3867,
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LY294002, and Cryptotanshinone are at levels similar to the tests of their utilities on human and

canine cell lines. Once again, we can represent the activity status of the different drugs using a row

vector:

Drug = [Cryptotanshinone, LY294002,Temsirolimus, Lapatinib, HO-3867].

Each component of the drug vector will be one or zero according to whether that particular

drug is applied or not.

As stated above, we are interested in steering the output vector of a network with faults in

the direction of a desirable output vector. In order to quantify the dissimilarity between two output

vectors, we introduce a measure called Size Difference (SD). This quantity measures how different

two vectors are, and its value is proportional to the dissimilarity between the two vectors.

Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be two binary vectors. Then, we can count the

number of matches and mismatches at each bit location and construct a confusion matrix as shown

in Figure 3.4. Here the entries B and C keep count of the two types of possible mismatches

summed across all locations while the entries A and D keep count of the two types of possible

matches summed across all locations.

Figure 3.4: Example confusion matrix. (Reprinted from [2])

Using these quantities, the Size Difference (SD) is then defined by:

ds(ā, b̄) =

(
B + C

A+B + C +D

)2

(3.1)
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Since a higher size difference correlates with a higher deviation from the ideal output, the

outputs with greater SD would correspond to greater cell proliferation and/or reduced apoptosis

and possibly a higher risk of cancer.

The Boolean network when simulated across all possible faults and drug combinations yields

a matrix of SDs. An example matrix is shown below in Table 3.1. For each fault, we compare the

row entries, and the drug vector that corresponds to the row with the smallest value yields the most

desirable combination (for that fault). Similarly, in order to ascertain the most advantageous drug

combination across all faults, we add all the columns and choose the row corresponding to smallest

sum. In our example matrix, the second combination is favored across all faults and specifically

for faults 1 and 3.

Table 3.1
Example size difference matrix. (Reprinted from [2])

Fault 1 Fault 2 Fault 3
Drug combination 1 0.3 0.4 0.3
Drug combination 2 0.1 0.5 0.2
Drug combination 3 0.5 0.3 0.6

In this work, we additionally examined the existence of two faults and three faults simulta-

neously. Considering the harmful side-effects of drugs, we restricted the maximum number of

drugs per combination to two in our experiments. A simple algorithm to summarize the complete

method discussed is presented in Algorithm 3 below. The outputs 1 and 2 correspond to the best

drug combinations for each fault and across all faults respectively.

Using the method discussed above, we implemented the boolean network and simulated the

model in Matlab. We now present the theoretical results obtained followed by the experimental

results.
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3 Algorithm to find the best drug combinations
1: function
2: construct pathway from literature

3: design boolean network from pathway

4: simulate the boolean network

5: for each fault j do
6: for each drug combination i do
7: calculate SD(i, j)

8: end for
9: end for

10: output1(j) = arg mini SD(i, j)

11: output2 = arg mini
∑

j SD(i, j)

12: end function

3.4.2 Theoretical Results

We calculated the Size Difference for each combination of drug and fault. This arithmetic

was performed for one, two and three faults occurring simultaneously, and since there are 26

possible fault locations, a total of 26C1 + 26C2 + 26C3 = 2951 combinations were considered. We

plotted these values as a box plot as shown in Figure 3.5. Clearly, the drug combinations with

Cryptotanshinone yield small SD for a higher fraction of networks.

Furthermore, for each therapy, we find the average of size differences across all faults, and

call it an “overall measure". Since we are interested in finding the best drug combination, the

smallest overall measure corresponds to the most favorable combination. We first present the

overall measure values for at most one and at most two faults occurring simultaneously for each

drug combination in Table 3.2. We further present the overall measure for at most three faults

occurring simultaneously for each drug combination in Table 3.3. From the table, it is evident that

the bottom rows involving Cryptotanshinone resulted in very small measures, and the combination

of Cryptotanshinone with LY294002 had the lowest value. This mathematical output promises low

cell-proliferation and/or enhanced apoptosis in cells when Cryptotanshinone is used.
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Figure 3.5: Box plot of the size differences calculated across all faults for different drug combina-
tions. (Reprinted from [2])

3.4.3 Experimental Results

The theoretical results we obtained above were corroborated using experiments conducted on

HPAC pancreatic cells subjected to different drug treatments.

Using a high-content fluorescent protein reporter imaging method, we detected cell death in

HPAC cells. We extracted cell processing dynamics using a two-step data processing methodology

introduced in 2012 [50]. Subsequently, we condensed this acquired data into expression profiles

and plotted them to elucidate further.

The plots in Figure 3.6 display the cell killing produced in HPAC pancreatic cancer cell lines

under the effect of different drug combinations. The black line denotes the untreated cell line

which serves as a reference. Cryptotanshinone has been used in each of the drug combinations and

from the plots, it is apparent that in each instance, impressive cell death occurs within 6-8 hours.
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Table 3.2
The overall measure obtained for each of the drug combinations for at most one fault & two faults

occurring simultaneously. (Reprinted from [2])

Drug combinations Overall Measure (one fault) Overall Measure (two faults)

Untreated 1.0000 1.0000

HO-3867 0.9055 0.8710

Lapatinib 0.5721 0.6245

Lapatinib + HO-3867 0.5323 0.5570

Temsirolimus 1.000 0.9982

Temsirolimus + HO-3867 0.9055 0.8693

Temsirolimus + Lapatinib 0.5721 0.6227

LY294002 0.6716 0.7089

LY294002 + HO-3867 0.6269 0.6299

LY294002 + Lapatinib 0.3881 0.4422

LY294002 + Temsirolimus 0.6716 0.7060

Cryptotanshinone 0.1443 0.1402

Cryptotanshinone + HO-3867 0.1443 0.1402

Cryptotanshinone + Lapatinib 0.0846 0.0899

Cryptotanshinone + Temsirolimus 0.1443 0.1384

Cryptotanshinone + LY294002 0.0149 0.0293

Moreover, all the drug combinations have more than 90% apoptosis in 15 hours. The fluorescent

images capturing cell death over time for Cryptotanshinone + LY294002 are shown in Figure 3.7.

From the figure, the tumor cells show increase in fluorescence and a lack of membrane integrity

over time and this demonstrates the cell killing carried out by Cryptotanshinone over time.

In order to compare our results with the standard therapy for pancreatic cancer, we treated

the PANC1 cell line with Gemcitabine [74], Gefitinib [75, 76] and their combinations with Cryp-

totanshinone and plotted these results in Figure 3.8. From the figure, the drugs are completely

ineffective by themselves, but upon the introduction of Cryptotanshinone, the performance of cell

38



Table 3.3
The overall measure obtained for each of the drug combinations for at most three faults occurring

simultaneously. (Reprinted from [2])

Drug combinations Overall Measure

Untreated 1.0000

HO-3867 0.8493

Lapatinib 0.6727

Lapatinib + HO-3867 0.5852

Temsirolimus 0.9983

Temsirolimus + HO-3867 0.8473

Temsirolimus + Lapatinib 0.6705

LY294002 0.7460

LY294002 + HO-3867 0.6386

LY294002 + Lapatinib 0.4984

LY294002 + Temsirolimus 0.7419

Cryptotanshinone 0.1377

Cryptotanshinone + HO-3867 0.1377

Cryptotanshinone + Lapatinib 0.0957

Cryptotanshinone + Temsirolimus 0.1353

Cryptotanshinone + LY294002 0.0419

death improves significantly over time. These results further strengthen our argument that Cryp-

totanshinone substantially enhances cell death.

As a final observation, we identify that different drugs have different kinetics in Figure 3.6, and

we believe that there are primarily two reasons for this. Firstly, since the binding of a drug to a

specific receptor is a chemical process, the docking and activation probably takes different times

for different structures. Secondly, since different drugs act at different locations in the pathway,

the locations of these receptors might play an important role in the time course of the experiment.
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Figure 3.6: Apoptosis fraction versus time (in hours) for different drug combinations. The drug
combinations in the legend from left to right are Cryptotanshinone, Cryptotanshinone + HO-3867,
Cryptotanshinone + LY294002, Cryptotanshinone + Lapatinib, Cryptotanshinone + Temsirolimus,
Untreated cell line. (Reprinted from [2])

Figure 3.7: Fluorescent images capturing cell death over time. (a) Without the presence of any
therapy, the tumor cells are intact and there is no fluorescence. (b,c) After adding Cryptotanshinone
+ LY294002, the tumor cells show a lack of membrane integrity with the presence of fluorescence
over time. The increase in fluorescence over time demonstrates the cell killing carried out by
Cryptotanshinone over time. (Reprinted from [2])

40



Figure 3.8: Apoptosis fraction versus time (in hours) for different drug combinations. The drug
combinations in the legend from left to right are Gemcitabine, Gefitinib, Cryptotanshinone + Gem-
citabine, Cryptotanshinone + Gefitinib. (Reprinted from [2])

The ordering of the potency of cell death by the different combinations seems to be in line with

what is expected by our mathematical approach. Hence, our computational results concur with the

experimentally obtained ones.
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4. CRYPTOTANSHINONE INDUCES CELL DEATH IN LUNG CANCER BY TARGETING

ABERRANT FEEDBACK LOOPS∗

4.1 Introduction

Lung Cancer is globally the dominant cancer killer for both sexes. It is estimated that in the

United States alone, there will be 228,150 new diagnosed cases and 142,670 deaths linked to lung

cancer in 2019 [4]. In the last 40 years, the 5-year survival rate in the US has only increased to

20% from 12% showing a large room for improvement. This meager progress in the treatment of

lung cancer is mainly linked to its complex and heterogeneous molecular basis. Since lung cancers

advance through a multistage process comprising the evolution of multiple mutations, a deeper

understanding of the mutations at multiple levels and their significance has the potential to help

develop treatment strategies that can impact the diagnosis and treatment of the disease [77].

Multicellular organisms have developed highly sophisticated communication networks to inte-

grate and coordinate various biological processes. Potent negative feedback loops regulate these

processes in a controlled fashion and hence the elucidation of these feedback loops has surfaced

as an important research area for designing effective cancer therapies [78]. In recent times, scien-

tists have approached this drug-design problem as a control theoretic one and have used signaling

pathways to examine the cause-effect interactions between biological molecules and therapeutic

drugs [79]. The major approaches used to date for modeling gene regulatory network (GRN) inter-

actions include Differential equations [80], Bayesian networks [9, 81, 1], Boolean Networks [57],

and Probabilistic Boolean networks [82, 83]. Specifically, Boolean networks have lately shown

considerable success in modeling various cancers when modeling of biological feedbacks is not all

that crucial. On the other hand, they are not well-suited for capturing the typical feedback loops

in GRNs that administer many cellular processes. Therefore, we propose here a Modified Boolean

∗Parts of this section are reprinted with permission from H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and
M. Bittner, “Cryptotanshinone Induces Cell Death in Lung Cancer by Targeting Aberrant Feedback Loops,” in IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 8, pp. 2430-2438, 2020, doi: 10.1109/JBHI.2019.2958042
c© 2020 IEEE.
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Network that can address this crucial aspect. We make first use of the literature to construct the

lung cancer pathway. We then design the appropriate boolean network using the modified rules.

Lastly, we simulate this boolean network with drugs at appropriate intervention points to theo-

retically assess their effectiveness for killing cancer cells and validate our theoretical results with

experiments on cell lines.

4.2 Methodology

It is intuitively obvious that a better comprehension of the workings of gene regulatory net-

works could aid us in dissecting the mechanisms of diseases such as cancer that arise when cellular

processes behave in an aberrant fashion. In order to achieve this, several mathematical frameworks

have been developed to model these networks [59].

4.2.1 Boolean Network

Boolean Network (BN) modeling is one such framework that has recently proven useful for

studying multiple cancers [6, 2]. In a nutshell, for a Boolean network, we assign binary values

(‘0’ for an inactive state and ‘1’ for an active state) to each gene in the network and model the

interactions between them using boolean logic gates. This quantization of genes in binary space

is justified because genes are either down-regulated or up-regulated in the majority of cellular

processes [84]. When aberrations, such as those due to mutations, develop in controlled and well

regulated biological processes such as apoptosis, cells can multiply uncontrollably and possibly

form a tumor. We model these anomalies as faults in the network, where the mutated gene’s

activity status is stuck at some value and is non-responsive to the inputs from its regulator genes.

Although this traditional approach to BN modeling has provided some degree of success with

respect to biological relevance [85, 86], it is not well-suited for incorporating the feedback loops

that often arise in a biological context. Hence, in order to accommodate this, we propose a modified

boolean network. We now discuss the proposed modifications and then explain their benefits with

the help of an example.
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4.2.2 Modified Boolean Network

To date, we have used BNs to study the genes in a regulatory network that are abnormally

up-regulated or down-regulated and have used this knowledge to establish the decisive targets that

merit intervention. However, there are two major drawbacks with this classical approach.

First, this technique is incapable of distinguishing between the severity of two different gene

mutations. To circumvent this drawback, we introduce the following rules:

• Rule 1: Each node in the network can take values in the positive integer set Z+ ∈ {0, 1, 2, . . . }

where ‘0’ corresponds to the gene being down-regulated and the value n > 0 corresponds to

n units of the gene product.

• Rule 2: The output of an OR gate is the sum of its inputs and the output of an AND gate is

the minimum of its inputs, as shown in Figure 4.1.

Figure 4.1: Modified rules of ‘OR’ and ‘AND’ logic gates. The output of an OR gate is the sum
of its inputs (∈ Z+) and the output of an AND gate is the minimum of its inputs. (Reprinted from
[3])

The central idea of these rules is to not only qualitatively capture the up-regulation and down-

regulation of genes occurring in the network but also to quantify their activity status. Let us

elucidate this with the help of an example.

Consider a simple boolean network as shown in Figure 4.2a with possible faults occurring at F

and G. With the conventional approach, the scenarios of a fault occurring at either of F or G and
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that of faults at both F and G will produce the same output J = 1, thereby making the two scenarios

indistinguishable from the output J . On the other hand, with the new rules incorporated, a fault

occurring at either of F or G will return an output J = 1 whereas the simultaneous occurrence

of faults at both F and G will produce the output J = 2. This increased output can possibly

demonstrate enhanced proliferation and a faster-growing cancer.

The second drawback of classical Boolean network modeling stems from the fact that pivotal

genes in pathways oversee and control cellular processes by constraining the upstream activators.

This feedback necessitates a comparative approach where a gene applies brakes based on the dif-

ference between its abundance and the need for the particular gene product [87]. Clearly, the

traditional approach of BN modeling fails to incorporate this. Once again, we shall illustrate this

with the help of an example.

Consider a simple gene regulatory network (GRN) with 8 genes as shown in Figure 4.2b.

Suppose gene A activates gene B, and genes A, B dimerize and stimulate gene E, genes B and

E independently regulate gene C, gene E activates gene F which stimulates gene H and further

dimerizes with C to form G. Additionally, let us assume that genes C and H negatively regulate

genes A and D respectively through a feedback loop, gene E is mutated, and a drug inhibits gene F.

Using the conventional approach, we can construct the boolean equivalent of this GRN as shown in

Figure 4.2: a) Example boolean network with possible faults occurring at F and G. b) Example gene
regulatory network. c) The conventional boolean network of the example GRN. d) The Modified
boolean network of the example GRN. (Reprinted from [3])
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Figure 4.2c, but this network is missing the controlled feedbacks. Hence, in order to incorporate the

controlled feedback discussed above, we modeled the feedback using an integrator, a comparator,

and a delay block as shown in Figure 4.2d. Over time, the amount of gene products of genes C

and H will accumulate and an integrator computes this and feeds it to a comparator that determines

whether the brakes need to be applied. The delay block models the feedback delay that might occur

during inhibition. Here, k1, k2 and the amount of delay are design parameters.

Now having understood the methodology and examined its benefits, we apply it in the context

of lung cancer. First, we build the gene interaction network of lung cancer from the literature and

then simulate it using the framework discussed.

4.3 Lung Cancer Pathways

Lung cancer develops through a multistage process involving the progression of multiple ge-

netic aberrations. These abnormalities mainly occur in the three important sub-pathways, the

PI3K/AKT/mTOR, the JAK/STAT, and the RAS/RAF/ERK which all connect and interact with

each other [88].

The PI3K/AKT/mTOR pathway is a critical signal transduction pathway that is a key player in

the regulation of proliferation, differentiation, and survival of cells [89]. Mutations in this path-

way have been reported in various lung cancers. This pathway is activated downstream through

tyrosine kinase receptors including epidermal growth factor receptor (EGFR), insulin-like growth

factor 1 (IGF1), and receptor tyrosine-protein kinase (ERBB2) [90]. Activated receptor tyrosine

kinases engage PI3K to phosphorylate PIP2 to PIP3 which in turn recruits the serine-threonine

kinase AKT. AKT controls the expression of EGFR through a negative feedback. AKT also in-

hibits the tuberous sclerosis complex 1/2 (TSC1/2) which indirectly activates mTOR, a key man-

ager of cell growth and metabolism. Adenosine monophosphate-activated protein kinase (AMPK)

is an energy sensor in the cell which when activated by Metformin, a well known anti-diabetic

drug, phosphorylates TSC1/2 which in turn inhibits mTOR [91]. Upregulated mTOR activates

downstream ribosomal p70S6 kinase (RPS6KB1) which promotes growth signaling and regulates

Insulin Receptor Substrate 1 (IRS1) through a negative feedback loop [92].
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The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays

the role of a fundamental block in immune control and gene transcription. Abnormal activation of

the JAK/STAT pathway has been reported in multiple cancers. JAKs employ receptors and mediate

phosphorylation of STAT3 [93].

Finally, the RAS/RAF/ERK pathway (MAPK pathway) is an intracellular pathway that is in-

tegral in the cellular proliferation, differentiation, survival, and apoptosis. When stimulated aber-

rantly, this pathway can induce tumorigenesis and has been linked with multiple malignancies [94].

EGFR is an important tyrosine kinase receptor involved in the induction of the MAPK pathway.

RAS is a protein that is crucial for EGFR signaling whose mutations can activate downstream cas-

cade despite the regulation of EGFR. RAF is a downstream protein of RAS which upon activation

phosphorylates MEK and subsequently ERK [95]. The gene ERK promotes growth signaling and

also regulates GRB2/SOS activation through a negative feedback loop [96].

In the literature, there is generally broad agreement among scientists about the specific loca-

tions of receptors/genes where different drugs intervene in a signaling pathway. We tabulate the

list of drugs of interest to us and their targets in Table 4.1, along with the relevant references. The

arrows in the parentheses represent whether a drug inhibits (↓) or activates (↑) its target(s).

Table 4.1: Drugs used and their gene intervention points. (Reprinted from [3])

Drug Gene(s) targeted References

HO-3867 STAT3 (↓) [65]

LY294002 PIK3CA (↓) [70]

Temsirolimus mTOR (↓) [67]

Metformin AMPK (↑) [97]

Cryptotanshinone STAT3 (↓) + ERK (↓) [71, 48]

Lapatinib EGFR (↓) + ERBB2 (↓) [68, 69]
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Figure 4.3: Lung cancer signaling pathway. A black arrow denotes activation, a red arrow
denotes inhibition, and a dashed-red arrow denotes negative feedback. The legends explain the
role of different bounding boxes. Growth factors are signaling proteins that promote cell-growth,
survival, and differentiation. Receptors are proteins which bind to ligands such as growth receptors
and cause responses in the immune system. They also play an important role in signal transduction
and immunetherapy. Reporter genes are genes that help us in reporting expression levels and
activity of important processes such as cell growth and apoptosis. (Reprinted from [3])
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Using the above-discussed information available from the literature, we constructed the gene

regulatory pathway of lung cancer as shown in Figure 4.3. The gene interactions are represented

by arrows, where a black arrow denotes activation and a red arrow denotes inhibition. Using

the methodology discussed earlier, we constructed the boolean equivalent of this gene regulatory

network as shown in Figure 4.4. We now discuss the simulations followed by the theoretical and

experimental results.

4.4 Results

4.4.1 Simulations

Utilizing the Boolean model constructed in Figure 4.4 and the methodology discussed, when

the growth factors (EGF, HBEGF, IGF, NRG1) are present, the proliferation of cells measured

using the genes SRF-ELK4, FOS-JUN, SP1, SRF-ELK1, and BCL2 is controlled with the help of

the negative feedback loops present at AKT, ERK1/2, and RPS6KB1 genes. As discussed earlier,

we modeled each of these negative feedback loops as a cascade of an integrator and a comparator.

In Figure 4.4, k1, k2, and k3 are model parameters which decide whether to apply the brakes or

not. However, if a gene is mutated (over-expressed or under-expressed), the feedback loops can

no longer keep the proliferation in check and this can possibly cause cancer. Hence, our goal here

is to find the best drug combination that can mitigate the damaging effect of the majority of the

abberations/faults. For our simulations, we chose k1 = k2 = k3 = 50.

As discussed in the methodology section, each gene can assume a value in Z+ where ‘0’ cor-

responds to the gene being down-regulated and the value n > 0 corresponds to n units of the gene

product.

In case of inactive growth factors, all of EGF, HBEGF, IGF, and NRG1 are equal to 0, and in

the network with no faults, this corresponds to all the output genes, SRF-ELK4, FOS-JUN, SP1,

SRF-ELK1, and BCL2 equal to 0. However, in a network with faults present, the output genes will

yield non-zero values.

Now, to assess the extent of abnormality in the network, we plot the sum of output genes’
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Figure 4.4: The Modified Boolean equivalent of lung cancer pathway. The numbers in paren-
theses represent the identifying number assigned to a fault at that location. Here, black numbers
denote stuck-at-1 faults and blue numbers denote stuck-at-0 faults. (Reprinted from [3])
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values over time and compute its Area Under Curve (AUC). Biologically, the AUC is comparable

to the total number of cells produced in that time. Clearly, if the output genes’ values are equal to

0, then the AUC in that scenario is equal to 0 and this corresponds to inactive cell proliferation.

Since non-zero output genes’ values correlate with a cancerous network, a higher AUC associates

with greater cell proliferation and/or reduced apoptosis and possibly a higher risk of cancer.

We now simulate our lung cancer network across all possible faults and drug combinations and

this will return a matrix (rows = faults, columns = drug combinations) of AUCs. For each fault, we

compare the entries in the corresponding row, and the drug combination that matches the column

with the smallest AUC yields the most desirable combination (for that fault). Similarly, in order

to determine the most potent drug combination across all possible faults, we sum all the rows and

select the column with the smallest value.

In this work, we also examined the existence of two faults, three faults, and four faults occurring

simultaneously. Considering the harmful side-effects of drugs, in our experiments, we restricted

ourselves to a maximum of three drugs per combination. Here, we provide the simulation results

for at most three drugs per combination.

Using the method discussed above, we implemented the boolean network and simulated the

model. We now present the theoretical results obtained followed by the experimental ones.

4.4.2 Theoretical Results

For our lung cancer model, we calculated the Area Under Curve for each combination of drug

and fault. This arithmetic was performed for one, two, three, and four faults occurring simultane-

ously, and since there are 24 possible fault locations, we examined a total of 24C1 + 24C2 + 24C3 +

24C4 = 12950 combinations of faults. Furthermore, as explained above, to find the most domi-

nant drug combination, we find an average AUC across all faults, and the smallest average AUC

corresponds to the most favorable combination. In Table 4.2, we present the normalized (with no

therapy as the reference) average AUC for each drug combination. Here, we present the values

for at most four faults occurring simultaneously. From the table, it is evident that the bottom rows

(27-42) involving Cryptotanshinone result in remarkable therapeutic success.
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Table 4.2
The normalized average AUC obtained for each of the drug combinations. (Reprinted from [3])

Drug combinations Average AUC

1 Untreated 1.0000

2 Metformin 0.9988

3 HO-3867 0.8922

4 HO-3867 + Metformin 0.8904

5 Lapatinib 0.7849

6 Lapatinib + Metformin 0.7834

7 Lapatinib + HO-3867 0.7067

8 Lapatinib + HO-3867 + Metformin 0.7045

9 Temsirolimus 0.9951

10 Temsirolimus + Metformin 0.9951

11 Temsirolimus + HO-3867 0.8846

12 Temsirolimus + HO-3867 + Metformin 0.8846

13 Temsirolimus + Lapatinib 0.7767

14 Temsirolimus + Lapatinib + Metformin 0.7767

15 Temsirolimus + Lapatinib + HO-3867 0.6949

16 LY294002 0.9857

17 LY294002 + Metformin 0.9829

18 LY294002 + HO-3867 0.8834

19 LY294002 + HO-3867 + Metformin 0.8807

20 LY294002 + Lapatinib 0.7698

21 LY294002 + Lapatinib + Metformin 0.7666

22 LY294002 + Lapatinib + HO-3867 0.7018

23 LY294002 + Temsirolimus 0.9672

24 LY294002 + Temsirolimus + Metformin 0.9672

25 LY294002 + Temsirolimus + HO-3867 0.8696

26 LY294002 + Temsirolimus + Lapatinib 0.7468

27 Cryptotanshinone 0.2253

28 Cryptotanshinone + Metformin 0.2157

29 Cryptotanshinone + HO-3867 0.2253

30 Cryptotanshinone + HO-3867 + Metformin 0.2157

31 Cryptotanshinone + Lapatinib 0.1634

32 Cryptotanshinone + Lapatinib + Metformin 0.1597

33 Cryptotanshinone + Lapatinib + HO-3867 0.1634

34 Cryptotanshinone + Temsirolimus 0.2030

35 Cryptotanshinone + Temsirolimus + Metformin 0.2030

36 Cryptotanshinone + Temsirolimus + HO-3867 0.2030

37 Cryptotanshinone + Temsirolimus + Lapatinib 0.1450

38 Cryptotanshinone + LY294002 0.1498

39 Cryptotanshinone + LY294002 + Metformin 0.1340

40 Cryptotanshinone + LY294002 + HO-3867 0.1498

41 Cryptotanshinone + LY294002 + Lapatinib 0.1158

42 Cryptotanshinone + LY294002 + Temsirolimus 0.0771
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For a better visual depiction, we plotted a heat map of AUCs for two faults occurring simul-

taneously for different drug combinations. We ran the simulations using the same parameters as

provided in the codes online. In Figure 4.5, we have heat maps which are 24 × 24 matrices (for

each of 24 faults) for three scenarios: Untreated, Temsirolimus + Lapatinib, and Cryptotanshinone

+ LY294002. The color in each cell represents the magnitude of AUC for that combination of two

faults. Here, a color closer to red in the spectrum represents a higher AUC value and a color closer

to green in the spectrum represents a lower AUC value. From the figure, the mutated pathway

when treated with Temsirolimus + Lapatinib has a minimal effect, whereas, Cryptotanshinone +

LY294002 shows promising therapeutic outcome. Further, we also provide the heat maps for all

two-drug combinations in Figure 4.6.

We also plotted the sum of output genes’ values for the fault-free network with active growth

factors and the network with fault at ERK1/2 before and after it is treated with Cryptotanshinone

in Figure 4.7. From the figure, the network without mutations is stabilized when growth factors

are present. However, with a fault (at ERK1/2), the network is driven to an abnormally active state,

and upon introduction of Cryptotanshinone, the growth is controlled. This mathematical output

promises low cell-proliferation and/or enhanced apoptosis in cells when Cryptotanshinone is used.

4.4.3 Experimental Results

The theoretical results we obtained above were corroborated using experiments conducted on

H2073 and SW900 lung cancer cell lines subjected to different drug treatments. We used a high-

content fluorescent protein reporter imaging method and detected cell death in these cells. Then,

using a well-known two-step data processing methodology, we extracted cell processing dynamics

[50]. To demonstrate further, we condensed this collected data into expression profiles and plotted

them.

The plots in Figure 4.8 demonstrate the cell killing produced in the H2073 lung cancer cell

line using the intervention of different drug combinations. The black line denotes the untreated

cell line which serves as a reference. Cryptotanshinone (CRY) has been used in each of the drug

combinations and from the plots, it is apparent that in each instance, impressive cell death occurs
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Figure 4.5: Heat map of AUC values for two faults occurring simultaneously for different drug
combinations. The drug combinations (from top to bottom) are Untreated, Temsirolimus + Lap-
atinib, and Cryptotanshinone + LY294002. Here, a color closer to red in the spectrum represents
a higher AUC value and a color closer to green in the spectrum represents a lower AUC value.
(Reprinted from [3])
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Figure 4.6: Heat map of AUC values for two faults occurring simultaneously for different drug
combinations. Here, a color closer to red in the spectrum represents a higher AUC value and a
color closer to green in the spectrum represents a lower AUC value. (Reprinted from [3])
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Figure 4.6 Continued
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Figure 4.6 Continued
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Figure 4.6 Continued
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Figure 4.7: The plot of the sum of output genes’ values for the fault free network (with active
growth factors) and the network with fault at ERK1/2 before and after Cryptotanshinone is added.
(Reprinted from [3])

and we have around 85% or more apoptosis in 24 hours. Hence, our computational predictions

made using the modified boolean approach seem to be in line with the experimentally obtained

ones.

In order to further confirm the efficacy of Cryptotanshinone, we carried out experiments with

and without Cryptotanshinone on SW900 lung cancer cell line. From Figure 4.9, it is clear that

the drugs (Metformin and HO-3867) are rather ineffective by themselves, but upon the addition of

Cryptotanshinone in the mixture, we observe a remarkable increase in the efficacy of inducing cell

death. These results further strengthen our argument that Cryptotanshinone substantially enhances

cell death. As a side remark, we also note that the average AUC values of Metformin (compare

rows 2, 28) and HO-3867 (compare rows 3, 29) from Table 4.2 are in line with our experimental

results.
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Figure 4.8: Apoptosis fraction versus time (in hours) for different drug combinations on H2073
cancer cell line. The drug combinations in the legend from left to right are Untreated cell line,
Cryptotanshinone, Cryptotanshinone + HO-3867, Cryptotanshinone + Lapatinib, Cryptotanshi-
none + Temsirolimus, Cryptotanshinone + HO-3867 + Lapatinib, Cryptotanshinone + HO-3867 +
Temsirolimus, and Cryptotanshinone + Lapatinib + Temsirolimus. (Reprinted from [3])

Figure 4.9: Apoptosis fraction versus time (in hours) for different drug combinations on SW900
cancer cell line. The drug combinations in the legend from left to right are Untreated cell line, Met-
formin, HO-3867, Cryptotanshinone + HO-3867, and Cryptotanshinone + Metformin. (Reprinted
from [3])
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5. DISCUSSION ∗

Biologists are always interested in identifying a few pivotal genes that can be controlled rather

than a large group of genes, since it is both tedious and expensive to test the efficacy of the latter.

In Section 2, we presented a mathematical framework to deduce the significant modulator genes

in a biological signaling pathway and applied it to the Breast Cancer pathway. For a single gene

intervention, our results showed mTOR as the most favourable target to achieve cell death. In the

case of simultaneous intervention using two genes, a combination therapy targeting mTOR and

STAT3 emerged as an outstanding modulator of cell death.

Most of the cancer treatments to date, for instance the drug Gleevec used to treat Chronic

Myeloid Leukemia (CML), have utilized kinase inhibitors to keep cell proliferation in check. Al-

though such a treatment does provide good results when the inhibitory action of the drug matches

the particular mutation present, the success is usually short-lived as the cell figures out a mecha-

nism to bypass the activity of that drug and/or additional mutations develop. On the other hand,

if one could bring about a robust induction of cell death, independent of the particular mutations

involved, then this might provide a very effective strategy for killing cancer cells. We believe that

a robust modulator of this type should be capable of reinforcing its own activity via a positive feed-

back type of mechanism. This is similar to what happens in a servomechanism in control theory

where to robustly achieve zero steady-state error in the presence of a persistent disturbance, one

includes an internal model of the disturbance in the feedback loop [98, 99]. Although the idea of

such an engineering approach to cancer therapy needs more thorough exploration, intuitively it is

quite appealing as the imbalance between cell proliferation and cell death in a mature multicellular

∗Parts of this section are reprinted with permission from H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and
M. Bittner, “Bayesian Inference Identifies Combination Therapeutic Targets in Breast Cancer,” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 9, pp. 2684-2692, 2019, doi: 10.1109/TBME.2019.2894980 c© 2019 IEEE; and
H. Vundavilli, A. Datta, C. Sima, J. Hua, R. Lopes, and M. Bittner, “In Silico Design and Experimental Validation of
Combination Therapy for Pancreatic Cancer,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 17, no. 3, pp. 1010-1018, 2020, doi: 10.1109/TCBB.2018.2872573 c© 2020 IEEE; and H. Vundavilli, A. Datta, C.
Sima, J. Hua, R. Lopes, and M. Bittner, “Cryptotanshinone Induces Cell Death in Lung Cancer by Targeting Aberrant
Feedback Loops,” in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 8, pp. 2430-2438, 2020, doi:
10.1109/JBHI.2019.2958042 c© 2020 IEEE.
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organism is what leads to tumorigenesis, and this imbalance could be considered to be the error

signal that needs to be zeroed out to restore homoeostasis of the cell numbers.

Pancreatic cancer has a 5 year survival rate of 9%, whereas, that of breast cancer is about

90% [100]. This appallingly low rate of success is commonly attributed to its late detection and

the existence of multiple activated pathways with cross-talk. With the possibility for so many

different mutations, combination therapy appears to be a promising approach. However, since the

potential number of drug combinations is large, and conducting biological experiments is complex

and costly, an exhaustive method might not be a perfect strategy. Hence, it is crucial to devise

mathematical models and methods that can curtail the search space.

In Section 3, we presented a Boolean framework to deduce the effective drug combinations

in a biological signaling pathway. The approach discussed was then applied to the Pancreatic

Cancer pathway. For the cancer pathway with three potential mutations, our results showed that

Cryptotanshinone in combination with LY294002 resulted as the most favourable drug therapy to

attain apoptosis.

Cancer is a disease characterized by unsupervised cell growth and it often progresses by the

failure of the body’s natural control system [101]. Using negative feedback loops, cells regulate

proliferation, and a breakdown of this system leads to unchecked cell proliferation which may

result in the formation of tumors. The primary reason for this uncontrolled growth is generally

associated with mutations in genes, and diverse activated pathways with interference make the

regulation additionally difficult. Hence, to simultaneously intervene in multiple pathways, combi-

nation therapy appears to be an attractive choice [102]. However, just with six drugs, the number of

experiments to be conducted to decide the best combination is 26−1 = 63, which is a prohibitively

large number, both from the point of view of expense and the associated manual labor. Thus, we

need to develop methods that can predict via simulations the combinations that are promising.

In Section 4, we presented a Modified Boolean model to theoretically infer the potent drug

combinations to affect the time evolution of a biological network. We then applied the framework

to the Lung Cancer pathway. Our results showed that Cryptotanshinone in itself or in combination
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with other drugs resulted in significant improvement in terms of promoting apoptosis.

Three critical pathways, the JAK/STAT, the PI3K/mTOR, and the MAPK pathway interact

with one another and play significant roles in cell growth, survival, and differentiation in several

human cancers. The Phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway has been strongly

implicated to play a key role in the promotion of cell survival and its alteration in multiple can-

cers and is associated with resistance to several types of therapy. In advanced cancers, the PI3K

mutation rate can increase remarkably in different tumour types. In ovarian cancer, for example,

PI3K/Akt/mTOR pathway is activated in a staggering 70% of the cases [103].

PI3K activates the downstream kinase AKT which activates the mTOR protein, an essential

node in cell growth. As a serine/threonine kinase and a downstream member of the PI3K/Akt

pathway, mTOR is an essential regulator of cell growth and its survival. PI3K is an enzyme that

phospohorylates certain components of the cell membrane. Upon phosphorylation, these compo-

nents bind to the protein Akt which becomes phosphorylated and activated. This upregulated Akt

then activates mTOR, which promotes cell growth and proliferation by stimulating protein synthe-

sis. In addition to receiving signals from Akt, mTOR keeps track of the environment of the cell for

the presence of nutrients and growth factors. mTOR pathway has the capacity to control growth

factor, estrogen-dependent and estrogen-independent, pathways which contribute to the patholog-

ical process and advancement of tumors. Hence, in recent years, a new approach in breast cancer

therapy has been to obstruct this mTOR pathway. To inhibit this pathway, research has focused

on developing mTOR inhibitors as therapeutic agents for patients with breast cancer. Pre-clinical

reports back inhibition of this pathway, and stage I–III trials associating inhibitors of the mTOR

pathway have been carried out in solid tumors. The drug Everolimus is a well known mTOR

inhibitor, and recently, FDA approved it for the treatment of HR-positive, HER2-negative breast

cancer [104].

Additionally, mutated PI3K pathway along with other activated pathways avert drugs from

carrying out the inhibitory effects by devising an escape mechanism that leads to resistance. In

the majority of cancers, one such pathway is the MAPK pathway (RAS/RAF/MEK/ERK cascade)
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where abnormal KRAS activity prompts a cascade of up-regulated genes that contribute to the

progression of cancer [105]. Abnormal KRAS activity has been shown to trigger many downstream

signaling pathways and plays a decisive role in the development and progression of multiple human

cancers including pancreatic cancer [106]. On account of these diverse activated pathways, a

combination of agents targeting multiple steps of the intracellular machinery has a better chance of

yielding a successful therapeutic outcome. In order to affect the PI3K pathway, we used LY294002,

a well known PI3K inhibitor. LY294002 was shown to exclusively block the PI3K pathway in

different cancers and indicated a good potential when used in combination therapy to fight gastric

cancer [107].

The Janus kinase (JAK)/STAT signaling plays an important role in cell growth, differentiation

and tumor invasion in diverse human cancers. This pathway is an epitome of biological interac-

tions where extracellular factors regulate gene expression [108]. The STAT family of transcription

factors integrate Cytokine and growth factor signaling to supervise a diverse array of cellular pro-

cesses. STAT3, a member of the STAT protein family of transcription factors, forms dimers in the

nucleus of cells and supervises the gene expressions of its target genes. The JAK/STAT pathway

is mostly activated in all human cancers including breast, pancreatic, and lung cancers.

Under ordinary physiological habitat, STAT3 activation is tightly controlled, but strong evi-

dence indicates that STAT3 is constitutively activated in many cancers and is a key transcription

factor that is oncogenic in human cells [109]. STAT3 was recently found to have a key role in

cultivating cancer stem cells in both in-vitro and in-vivo mouse tumor models. This result indi-

cates its crucial involvement in tumor initiation, progression and maintenance [110]. In pancreatic

cancer, activated STAT3 forms dimers, and this exhibited an advancement of pancreatic intraep-

ithelial neoplasia growth and PDAC development [111]. Moreover, a down-regulation of STAT3

significantly abated the invasion ability of pancreatic cancer cells in vitro [112].

Further, aberrant STAT3 is expressed in about 55% of Non-small cell lung cancer (NSCLC)

tumors and this evidence of STAT3’s indispensable role in the initiation and progression of tumors

makes it a pivotal target [113]. As a result, it is only natural to look for STAT3 inhibitors that can
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obstruct the dimerization of STAT3 and restrict cell growth and differentiation. Recently, the drug

Pyrimethamine, a STAT3 inhibitor was approved by the FDA. Khan [114] reported inhibition of

STAT3 activity by Pyrimethamine in breast cancer cells.

Cryptotanshinone is one of the active components of Salvia miltiorrhiza Bunge and a naturally

occurring compound derived from a traditional Chinese herb, and has been previously shown to

possess anti-tumor properties in various types of human cancer cells [115]. Chen [116] recently

showed that Cryptotanshinone suppressed the mTOR signaling pathway in MCF-7 breast cancer

cell lines. Cryptotanshinone inhibited the expression of cyclin D1 thereby arresting cells in the

G1 −G0 phase of the cell cycle and preventing proliferation.

Shin et. al. [48] corroborated the effectiveness of Cryptotanshinone on prostate cancer cell

lines, where it inhibited STAT3 signaling through blocking its dimerization and decreasing the

expression of its downstream target proteins. In pancreatic cancer cells, Ge et. al. [71] recently

demonstrated that Cryptotanshinone inhibited proliferation and significantly induced apoptosis and

cell cycle arrest via inhibition of the STAT3 pathway.

Cryptotanshinone has also been shown to decrease the expression of its downstream target

proteins such as cyclin D1, survivin, and Bcl-xL. Evista (Raloxifene·HCl), another well known

drug, is a selective estrogen receptor modulator, and is used for preventing osteoporosis and treat-

ing cases of ER positive breast cancer in postmenopausal women with high risk of invasive breast

cancer. Shi [49] reported the inhibition of STAT3 phosphorylation by Evista in multiple cell lines

including MCF-7. In the same vein our theoretical and experimental results demonstrated that

Cryptotanshinone when used in combination undoubtedly boosts cell death [117].

In view of the preceding discussion, the literature on cancer signaling and Cryptotanshinone

backs our computational result that Cryptotanshinone by itself and when used in combination is a

promising drug in multiple cancers including breast, pancreatic, and lung cancers. The computa-

tional predictions made in this work agree with the past experimental results, thereby demonstrat-

ing the effectiveness of our models. We conclude that applying these methodologies to various

biological signaling pathways could help the medical community in designing effective drugs,
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without having to rely solely on conducting costly experiments. Finally, we believe that these find-

ings can form a basis for the advancement of new and better methodologies for the drug design

and treatment of other cancers.
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