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ABSTRACT

Localization is a critical navigation function for mobile robots. Most localization meth-

ods employ a global position system (GPS), a lidar, and a camera which are exteroceptive

sensors relying on the perception and recognition of landmarks in the environment. How-

ever, GPS signals may be unavailable because high-rise buildings may block GPS signals

in urban areas. Poor weather and lighting conditions may challenge all exteroceptive sen-

sors. In this study, we focus on proprioceptive localization (PL) methods which refer to a

new class of robot egocentric localization methods that do not rely on the perception and

recognition of external landmarks. These methods depend on a prior map and propriocep-

tive sensors such as inertial measurement units (IMUs) and/or wheel encoders which are

naturally immune to aforementioned adversary environmental conditions that may hinder

exteroceptive sensors. PL is intended to be a low-cost and fallback solution when every-

thing else fails.

We first propose a method named as proprioceptive localization assisted by magnetore-

ception (PLAM). PLAM employs a gyroscope and a compass to sense heading changes

and matches the heading sequence with a pre-processed heading graph to localize the

robot. Not all cases can be successful because degenerated maps may consist of rectangu-

lar grid-like streets and the robot may travel in a loop. To analyze these, we use information

entropy to model map characteristics and perform both simulation and experiments to find

out typical heading and information entropy requirements for localization.

We further propose a method which allows continuous localization and is less limited

by map degeneracy. Assisted by magnetoreception, we use IMUs and wheel encoders

to estimate vehicle trajectory which is used to query a prior known map to obtain loca-

tion. We named the proposed method as graph-based proprioceptive localization (GBPL).
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As a robot travels, we extract a sequence of heading-length values for straight segments

from the trajectory and match the sequence with a pre-processed heading-length graph

(HLG) abstracted from the prior known map to localize the robot under a graph-matching

approach. Using HLG information, our location alignment and verification module com-

pensates for trajectory drift, wheel slip, or tire inflation level.

With the development of communication technology, it becomes possible to leverage

vehicle-to-vehicle (V2V) communication to develop a multiple vehicle/robot collabora-

tive localization scheme. Named as collaborative graph-based proprioceptive localization

(C-GBPL), we extract heading-length sequence from the trajectory as features. When ren-

dezvousing with other vehicles, the ego vehicle aggregates the features from others and

forms a merged query graph. We match the query graph with the HLG to localize the

vehicle under a graph-to-graph matching approach. The C-GBPL algorithm significantly

outperforms its single-vehicle counterpart in localization speed and robustness to trajec-

tory and map degeneracy.

Besides, we propose a PL method with WiFi in the indoor environment targeted at

handling inconsistent access points (APs). We develop a windowed majority voting and

statistical hypothesis testing-based approach to remove APs with large displacements be-

tween reference and query data sets. We refine the localization by applying maximum

likelihood estimation method to the closed-form posterior location distribution over the

filtered signal strength and AP sets in the time window. Our method achieves a mean

localization error of less than 3.7 meters even when 70% of APs are inconsistent.
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1. INTRODUCTION

Nowadays mobile robots and autonomous vehicles (AVs) are changing our daily life in

broad and dynamic ways. Mobile robots have the capability to move around in the environ-

ment with applications such as exploration, surveillance, manufacturing, transportation,

agriculture, defense, search and rescue, domestic service, space, entertainment, education,

security, etc. For example, ground robots search in collapsed buildings and marine vehi-

cles are used to inspect bridge substructure. The fast-evolving AV technology is capable of

sensing the environment and traveling with little or no human input and has the potential

to drastically change modern transportation.

Navigation is a fundamental functionality for mobile robots and AVs. The main build-

ing blocks of navigation involve multiple tasks such as perception, localization, mapping,

path planning, obstacle avoidance, trajectory following, dynamics and control. Perception

tasks help in recognizing the environment by getting information from different sensors.

These include road or traffic signals road extraction using computer vision analysis or road

surface detection using lidar scans. Localization and mapping answers the basic questions:

“where am I?” and “what is the world like?”, correspondingly. Path planning is to find a

path for a robot to move from source to destination. To navigate safely in the environment,

obstacle avoidance keeps a robot from collision with detected objects. Trajectory follow-

ing or lane keeping is the control of the robot to reach and follow a time parameterized

reference geometric path. Robot dynamics is the relation between forces and moments act-

ing on the robot and robot motion. Robot control system is the combination of hardware

and software to program and control robots.

Localization is especially a critical navigation function for mobile robots. Knowing

the robot’s location is a prerequisite which helps making decisions for future movements.
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In the past decades, localization approaches using different sensors have been explored

which can be classified into two categories based on sensor modalities: exteroceptive sen-

sors and proprioceptive sensors. Exteroceptive sensors mainly rely on the perception and

recognition of landmarks in the environment to estimate location. Mainstream exterocep-

tive sensors include sonars, cameras, lidars and global position system (GPS) receivers.

On the other hand, proprioceptive sensors, such as inertial measurement units (IMUs) [4]

and wheel encoders, are inherently immune to external conditions.

In urban areas, common localization methods employ a GPS, a lidar, or a camera

which are exteroceptive sensors relying on the perception and recognition of landmarks

in the environment. However, GPS signals may be unavailable because high-rise build-

ings may block GPS signals in urban areas. Poor weather and lighting conditions may

challenge all exteroceptive sensors. For example, cameras are prevalent external sensors

for localization due to being low-cost and lightweight. However visual cues suffer with

environmental changes such as variant light conditions or weather conditions, as well as

being computationally expensive. A lidar is an accurate range sensor for localization and

mapping but it is expensive and limited by weather conditions.

Recent sensor fusion approaches that combine an exteroceptive sensor, such as a cam-

era or a lidar, with a proprioceptive sensor such as an IMU, greatly improve system robust-

ness and have become popular in applications [5]. However, the sensor fusion approaches

still strongly depend on exteroceptive sensors and cannot handle the aforementioned ex-

treme environmental conditions.

Therefore, there is a critical need to improve the robustness of localization in both

urban and indoor environments. To meet these challenges, we investigate low-cost local-

ization methods using proprioceptive sensors. Proprioceptive localization (PL) refers to a

new class of robot egocentric localization methods that do not rely on the perception and

recognition of external landmarks. These methods are naturally immune to bad weather,
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poor lighting conditions, or other extreme environmental conditions that may hinder exte-

roceptive sensors such as cameras or lidars. Inspired by biological systems, we combine

proprioceptive sensors, such as IMUs and wheel encoders, with magnetoreception, to de-

velop a map-based localization method to address the problem.

In this research, we first develop a minimalist and robust PL method for a robot/vehicle

traveling in an urban area. We only employ a gyroscope and a compass. To be specific, we

pre-process the prior map into a heading graph (HG) which is a new data structure captur-

ing heading changes from one segment of road to adjacent segments. During the traveling,

we process gyroscope and compass readings to obtain a heading change sequence and

match the heading sequence with a pre-processed heading graph to localize the robot. We

track the sensory and map uncertainties and model them in the process to formulate a se-

quential Bayesian estimation problem framework. Not all cases can be successful because

degenerated maps may consist of rectangular grid-like streets and the robot may travel in a

loop. To analyze these, we use information entropy to model map characteristics and per-

form both simulation and experiments to find out typical heading and information entropy

requirements for localization. We have implemented our algorithm and tested it with both

simulated and physical experiments. The results have confirmed our approach can localize

vehicles on the map for non-degenerated cases.

However, localization is intermittent using heading sequence only. This motivates us

to design a new method that enables continuous localization by considering wheel encoder

inputs and is less limited by map degeneracy (e.g. rectilinear environments). In a nutshell,

our method employs the proprioceptive sensors: IMUs, wheel encoders and assisted by

magnetoreception to estimate vehicle trajectory and match it with a prior known map. This

is non-trivial because 1) there is a significant drift issue in the dead reckoning process and

2) the true vehicle trajectory does not necessarily match the street GPS waypoints on the

map due to the fact that a street may contain multiple lanes and street GPS waypoints may

3



be inaccurate. This determines that a simple trajectory matching would not work. Instead,

we focus on matching features which are straight segments of the trajectory. We keep

track of connectivity, heading and length of each segment which converts the trajectory

to a discrete and connected query sequence. This allows us to formulate the problem as a

probabilistic graph matching problem. As a robot/vehicle travels, we extract a sequence

of heading-length values for straight segments from the trajectory and match the sequence

with a pre-processed heading-length graph abstracted from the prior known map to localize

the robot under a Bayesian approach. As the robot travels, we perform sequential Bayesian

estimation until it converges to a unique solution. Also, we bound error drift in location

alignment and verification after graph matching. We have implemented our algorithm and

tested it in both simulated and physical experiments. The algorithm runs successfully and

achieves localization accurate at the level that the prior map allows (less than 10m).

The previous two approaches still suffer from strong dependence on trajectory types

and slow convergence. On the other hand, modern vehicle-to-vehicle (V2V) communica-

tion allows real time information exchange between vehicles. Combining the PL method

with V2V communication, we design a new collaborative graph-based PL method. We ex-

tract trajectory features which are straight segments of trajectories and generate a merged

query graph by combining inputs from neighboring vehicles. To facilitate the match-

ing, we also pre-process the prior map which extends our heading-length graph (HLG)

in [2] by adding supper-vertices based on three different vehicle rendezvous types. The

localization problem becomes a graph-to-graph matching problem. Our algorithm out-

puts potential vehicle locations based on the maximization of belief functions which often

quickly converges to actual location over time. We have implemented the algorithm and

tested it against the existing approach [2]. Our algorithm significantly outperforms its

single-vehicle counterpart in localization speed and is less sensitive to trajectory and map

limitations.
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Besides, we propose a PL method with WiFi in the indoor environment. This approach

is designed to handle the inconsistent WiFi environments using proprioceptive sensors.

Building on the existing WiFi fingerprinting approach, our method also employs Gaus-

sian processes (GPs) to establish belief functions from prior collected WiFi reference data.

Moreover, our approach utilizes two important designs to handle inconsistent access points

(APs). First, majority voting is introduced to the initial matching phase which allows us

to develop a statistical hypothesis test to filter out inconsistent APs that are obvious out

of places. Second, we use a windowed approach by employing a window of recent RSS

readings along with relative motion information provided by IMUs to develop posterior

distribution of location. We formally derive the conditional distribution and determine the

length of the time window by minimizing Shannon entropy. At last, we apply the maxi-

mum likelihood estimation (MLE) method to obtain refined localization results. We have

implemented our algorithm and compared it with the state of the art k-Nearest-Neighbor

(k-NN) approach. The experimental results show that our method outperforms its coun-

terpart in inconsistent WiFi environments. Specifically, our algorithm achieves a mean

localization error of less than 3.7 meters when 70% of APs are inconsistent.

The rest of this research is organized as follows. We begin with a review of literature

in Chapter 2. In Chapter 3, we present the proprioceptive localization assisted by magne-

toreception (PLAM) which is a minimalist intermittent heading-based approach. Chapter

4 presents Graph-based proprioceptive localization (GBPL) using a Bayesian piece-wise

trajectory matching approach. Chapter 5 presents our V2V collaborative graph-based pro-

prioceptive localization (C-GBPL). Chapter 6 we present the indoor localization in incon-

sistent WiFi environment. Chapter 7 concludes the dissertation and discusses future work

directions.
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2. RELATED WORK

Our work is related to mobile robot navigation, simultaneous localization and mapping

(SLAM), dead-reckoning, and map representation.

2.1 Mobile Robot Navigation

Robot navigation is a fundamental problem in robotics research. The main building

blocks of navigation involves multiple tasks such as perception, localization, mapping,

path planning, obstacle avoidance, trajectory following, dynamics and control. Perception

tasks help in recognizing environment by getting information from different sensors [6,7].

These include road or traffic signals road extraction using computer vision analysis or

road surface detection using lidar scans. Localization and mapping answers the basic

questions: “where am I?” and “what is the world like?”, correspondingly. Path planning

is to finds a path for a robot to move from the source to destination. To navigate safely

in the environment, obstacle avoidance keeps a robot from collision with detected objects.

Ultrasonic [8] or lidars [9] are commonly used to detect obstacles. Trajectory following

or lane keeping [10] is the control of robot to reach and follow a time parameterized

reference geometric path. Robot dynamics and control [11] consider the problem that how

to execute a given joint trajectory on a robot. Robot dynamics is the relation between

forces and moments acting on the robot and robot motion. Robot control system is the

combination of hardware and software to program and control robots.

2.2 SLAM

In dealing with the robot navigation in unknown environments, localization and map-

ping are usually performed simultaneously [12]. The architecture of recent SLAM systems

mainly consist of a front-end [13–15] and back-end [5, 14, 16–18] running in parallel for
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the sake of efficiency. The front-end performs feature extraction and tracking from sen-

sory data. The back-end focuses on state estimation, refines the trajectory/map and closes

loops occasionally.

To estimate robot states, there are two popular computation frameworks for state esti-

mation: filtering approaches (e.g., [5,16]) and optimization approaches (e.g., [14,17,18]).

Filtering approach is to estimate robot state with its previous state, and update it with ob-

servations. The filtering approach maintains compact state variables and correlation his-

tory but the accuracy is not very high. Optimization approach is to take the robot states in

multiple frames as parameters and optimize them over the observations from those frames.

The accuracy of the optimization approach is good, but the computation cost is high. In

this study, we use filtering approaches to estimate robot trajectories and optimization ap-

proaches to localize the robots.

Under different applications, odometry and localization are popular related topics of

SLAM. When loop closure is not considered in the problem, SLAM problem is reduced to

an odometry estimation problem. In some robotics applications, a prior map is given and

only localization problems are considered. Since proprioceptive sensors cannot recognize

landmarks in the environment, a map is needed for localization. In this work, we focus on

localization which is the problem of estimating robot poses (position and orientation) with

respect to a known map which also has its own advantage in computational cost.

2.2.1 Different Sensor Modalities

To perform SLAM, a robot is equipped with on-board sensors to receive sensory data.

SLAM can be performed with different sensor modalities such as camera [14, 19–23],

lidar [15,24–26], global positioning system (GPS) [27–29], and inertial measurement unit

(IMU) [4,30]. We can classify the methods into two categories based on sensor modalities:

exteroceptive sensors and proprioceptive sensors.
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Exteroceptive sensors. Exteroceptive sensors mainly rely on the perception and recog-

nition of landmarks in the environment to estimate location. Mainstream exteroceptive

sensors include cameras [14, 19, 20] and laser range finders [24–26]. Cameras are preva-

lent external sensors for localization due to being low-cost and lightweight, however visual

cues suffer with environmental changes such as variant light conditions or dynamic envi-

ronments, as well as being computationally expensive. Lidar is an accurate range sensor

for localization and mapping but it is expensive and limited by specific environments (e.g.

heavy rains). GPS receiver [27, 29] is another commonly-used sensor but it malfunctions

when the vehicle travels close to high-rise buildings or inside tunnels. Additionally, it also

suffers from large power consumption for mobile devices. Localization can be performed

with different external sensors or their combinations such as a camera, a lidar, or a GPS,

but sill cannot handle the aforementioned challenging conditions.

Proprioceptive sensors. On the other hand, proprioceptive sensors, such as IMUs [4]

and wheel encoders [31], are inherently immune to external conditions. IMUs in mo-

bile devices have recently drawn attention from researchers because of its availability and

energy-efficiency for localization [30]. However, they are more susceptible to error drift

and suffer from limited accuracy.

Recent sensor fusion approaches that combine an exteroceptive sensor, such as a cam-

era or a laser ranger finder, with a proprioceptive sensor such as an IMU, greatly improve

system robustness and become popular in applications [5]. For example, visual-inertial

sensor fusion (VINS)( [13, 32]) methods are applied to a variety of domains such as au-

tonomous vehicles, virtual and augmented reality, and flying robots. However, the sensor

fusion approaches still strongly depend on exteroceptive sensor and cannot handle the

aforementioned challenging conditions. In this research, we use proprioceptive sensors

which are immune to the external weather conditions.
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2.3 Dead Reckoning

To utilize proprioceptive sensors for navigation, dead reckoning integrates sensor mea-

surements to compute robot/vehicle trajectory. The sensor measurements often include

readings from accelerometers, gyroscopes, and/or wheel encoders [33]. There are many

applications using the dead reckoning approach such as autonomous underwater vehi-

cles (AUVs) [34] and pedestrian step measurement [30, 35]. To estimate the state of the

robot/vehicle, filtering-based schemes such as unscented Kalman filter (UKF) [36] and

particle filter (PF) [37, 38] are frequently employed. However, the nature of dead reck-

oning causes it to inevitably accumulate errors over time and lead to significant drift. To

reduce the error drift, different methods have been proposed such as applying velocity

constraint on wheeled robots [39] and modeling the wheel slip for skid-steered mobile

robots [33]. These approaches have reduced error drift but cannot remove it completely.

Error still accumulates over time and causes localization failure. To fix the issue, we

will show that drift can be bounded to map accuracy level by using map matching if the

filtering-based approach with graph matching are combined.

2.4 World Modeling-Map Representation

A map is the environment representation. Since proprioceptive sensors cannot recog-

nize landmark in the environment, a map is needed for localization. Moreover, to improve

the accuracy of localization, using a prior map is a solid approach because it can alle-

viate accumulated drift in localization from time to time by comparing with the prior

map [19, 30, 40–43]. According to [12], map representation can be classified into two

categories: the location-based and the feature-based.

Location-based. The location-based maps are represented with specific locations of

objects. For example, those existing geographic maps consisted of coordinate of locations

such as OpenStreetMapsTM (OSM) [44] and Google Maps [45]. Geographic maps have
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been widely used to improve upon GPS measurements and there are common measures

being used such as point-to-point, point-to-curve, curve-to-curve matching or advanced

techniques [46]. For example, occupancy grid maps is to partition the open space into

equalized grid cells and then assign a probability of occupation to each cell [47].

Feature-based. In feature-based maps, each object is a feature of interest with its lo-

cation, and it only describes the environment with those features. To localize a vehicle on

a road map, feature-based maps are a better fit because they are more efficient to localize

vehicles on specific roads rather than the whole map space. Road maps belong to feature-

based maps since they consist of the attributes (e.g. name, orientation) of the roads as

features and the topological information among all features. The typical way of describ-

ing road networks as a topological framework is to define road segments as nodes and road

intersections as edges. The definition is applicable to map odometry data with both posi-

tion and orientation information. Recently, online road maps have become more and more

popular due to their availability and convenience, e.g. OpenStreeMapsTM (OSM) [44] and

Google Maps [45]. Another example is ORB features [48] for visual simultaneous local-

ization and mapping. In this work, we extract heading-length graph from geographic maps

which converts a location-based map to a feature-based map to facilitate robust localiza-

tion which also reduces graph size to speed up computation in the process.
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3. PROPRIOCEPTIVE LOCALIZATION ASSISTED BY MAGNETORECEPTION:

A MINIMALIST INTERMITTENT HEADING-BASED APPROACH*

We are interested in developing a minimalist and robust localization method for a

robot/vehicle traveling in urban area. We want our localization method to be immune

to environment challenges such as bad weather and poor illumination conditions. Imag-

ining a vehicle driving in a stormy or foggy night, no other sensors would work. As a

fall back solution, we do not want to rely on the perception and recognition of landmarks

from exteroceptive sensors such as a lidar or a camera. We consider it as a low-cost alter-

native to existing localization methods and the global positioning system (GPS), because

GPS signals may be obstructed by high-rise buildings in urban area. We only employ a

gyroscope and a compass. We name our localization method proprioceptive localization

assisted by magnetoreception (PLAM).

Fig. 4.1 illustrates PLAM method which requires a prior urban map. We pre-process

the prior map into a heading graph (HG) which is a new data structure capturing heading

changes from one segment of road to adjacent segments. During the traveling, we process

gyroscope and compass readings to obtain a heading change sequence (see Fig. 3.1(b)).

At the beginning, we often have many candidate solutions (see Fig. 3.1(c)). We track

the sensory and map uncertainties and model them in the process to formulate a sequential

Bayesian estimation problem framework for PLAM. As the vehicle travels, the heading se-

quence grows, the number of candidates reduces and the Bayesian probability distribution

converges to one solution (see Fig. 3.1(d)) for most cases. Not all cases can be successful

because there exist degenerated maps consisting of rectangular grid streets and the vehicle

*Reprinted with permission from “Proprioceptive Localization Assisted by Magnetoreception: A Mini-
malist Intermittent Heading-based Approach” by Hsin-Min Cheng, Dezhen Song, Aaron Angert, Binbin Li,
and Jingang Yi, in IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 2, pp. 586-593, Copyright
c© 2019 IEEE.
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Figure 3.1: An illustration of PLAM method: inputs include (a) a prior urban map and (b)
heading changes computed from the gyroscope and the compass on-board the vehicle. The
candidate locations (in green dot shown in (c)) gradually converge to one location shown
in (d) as more observations of heading changes arrive. Reprinted with permission from [1]
c© 2019 IEEE.

may travel in a loop. To analyze these, we employ information entropy to model map

characteristics and perform both simulation and physical experiments to identify typical
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heading and information entropy requirements for localization.

We have implemented the PLAM algorithm and tested it using both our own collected

data and an open dataset. The algorithm runs successfully and the information entropy

analysis results are consistent between simulation and physical experiments. The results

have confirmed that PLAM can localize vehicles on the map for non-degenerated cases.

3.1 Related Work

Most localization methods employs exteroceptive sensors such as a camera [14,19,20],

lidar [24–26], and GPS receiver [27,29]. Exteroceptive sensors are susceptible to environ-

mental changes and signal variations and are often used in combination with propriocep-

tive sensors such as inertial measurement units (IMU) [4, 30] or wheel encoders [31].

Mostly a proprioceptive method, PLAM attempts to provide a fall back localization so-

lution when everything else fails due to bad weather or poor visibility conditions. Our

method uses the magnetometer and gyroscopic readings which are subject to bias and cal-

ibration issues. Sensor bias estimation and calibration is a well-studied area [49, 50]. In

this work, we assume sensors have been calibrated before usage.

Due to its reliance on angle measurements, PLAM is related to bearing-based local-

ization. Bearing-based localization relies on observing the bearing towards landmarks

to localize the client. Many rely on fixed landmarks with known locations. The robot

localizes itself by measuring the bearings to a sufficient number of landmarks through tri-

angulation [51–53]. Most bearing-based localizations are still exteroceptive sensing. Our

method employs the headings of the robot without observing or recognizing landmarks.

PLAM needs a prior map to provide reference for matching with a heading sequence.

Map-based localization is a common approach in robotics [30,40–43]. A map of the envi-

ronment is a representation of objects and locations. The representation can be classified

into two types: the location-based and the feature-based [12]. The location-based maps
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consist of a list of objects, where each object corresponds to a specific location. Exist-

ing geographic maps such as OpenStreetMapsTM (OSM) [44] and Google Maps [45] are

indexed by longitude and latitude can be viewed as location-based maps. In the feature-

based maps, each object is a feature of interest with its location. Visual features such as

ORB [48] are often used for constructing the feature-based maps for visual simultane-

ous localization and mapping. Our approach extracts heading graphs out of geographic

maps and actually converts a location-based map to a feature-based map for localization

purposes.

Closely-related works include [43, 54] which focus on position correction with orien-

tation changes but they still depend on camera inputs for motion estimation. As an inde-

pendent work, Funke et al. [55] propose a localization algorithm using electronic compass

readings, which is represented as path shapes for matching. They introduce a special data

structure to store all possible shortest paths in the map to transfer the map matching prob-

lem to a pattern search in texts. The data structure requires a large space storage and has

the limitation that not all possible paths can be found (only shortest paths). Moreover, the

data structure only allows pattern search if the impression of electronic compass readings

is within a fixed range. Their approach relies on global trajectory matching and assumes

constant velocity while our method can be viewed as feature-based matching without ve-

locity constraints. Moreover, compass alone is not very reliable due to frequent electro-

magnetic interference. We combine a gyroscope with a digital compass and monitor their

uncertainties in the localization process, which improves robustness.

3.2 Problem Formulation

A robot or vehicle equipped with a gyroscope and a digital compass navigates in an

area with a given prior map, e.g. OSM. We have the following assumptions:

a.1 The robot only performs forward motion during the localization process.
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a.2 The gyroscope and the compass are co-located, pre-calibrated, and fixed inside the

robot.

As part of the input of the problem, a prior road map consisting of a set of roads with

GPS way points are required. The typical distance between adjacent way points is around

20m. Gyroscope and compass readings are time-stamped and synchronized. We denote

the sampling intervals of gyroscope and compass readings by τω and τφ, respectively. A

gyroscope often has a higher sampling frequency than that of a compass and thus we have

τφ = cωτω where cω ≥ 1. Common notations are defined as follows,

• Mp := {xm = [xm, ym]T|m ∈M } ⊂ R2 represents the prior road map which is a

set of GPS positions where M is the position index set.

• R = {Rir |ir ∈ Ir} represent roads on Mp where Ir is the road index set. Each

Rir := {xm = [xm, ym]T|m ∈ R(ir)} is a set of ordered GPS positions where

R(ir) collects all indexes of positions onRir . Rir ⊂Mp.

• ω0:t ∈ R3 denotes gyroscope angular velocities readings up to time t.

• φ0:tφ ∈ R denotes electronic compass readings up to time t. Note that ω0:t contains

more entries than φ0:tφ due to the higher sampling frequency.

The PLAM problem is defined as follows.

Problem 1. GivenMp,R, ω0:t and φ0:tφ , localize the robot after its heading changes.

It is worth noting that we can localize the robot only when the robot changes its head-

ing. This is an intermittent localization. Also, the localization accuracy is determined by

map accuracy.
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Figure 3.2: [HG construction. (a) A prior road map: two bidirectional roads with 2D GPS
coordinates represented by dots and road connectivities shown in circles. (b) Overlay of
edges and vertices for gray roads in (a). We use ·/· to represent a bi-directional road.
Vertices are shown in gray and edges are in blue. (c) Constructed HG, where vertices with
dotted lines have zero length. (Best viewed in color.) Reprinted with permission from [1]
c© 2019 IEEE.

3.3 PLAM Modeling and Design

Our algorithm contains three main blocks: 1) Heading graph (HG) construction where

we estimate road curvature changes to capture orientation change and construct an HG. 2)
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Query sequence generation, where we estimate heading orientation using gyroscope and

compass readings to capture orientation change to generate a query sequence. 3) Location

inference, where we match the query sequence with the HG to find the current location of

the vehicle. We begin with HG construction.

3.3.1 HG Construction

The prior road map Mp cannot be directly used for localization purposes. We pre-

process Mp to construct an HG to facilitate heading matchings. We use Fig. 3.2 as an

example. Fig. 3.2(a) is the blowup view of the prior road map showing GPS 2D positions

in black dots and road intersections in circles. We denote the set of road intersections

by Ix. We denote the HG by Mh = {Vh, Eh} where Vh is the vertex set and Eh and

is the edge set. A vertex vi ∈ Vh represents a straight and continuous road segment

with neither orientation changes nor intersections. An edge ei,i′ ∈ Eh characterizes the

orientation change between the connected two vertices vi and vi′ . Mh is a directed graph

(see Fig. 3.2(c)). Mh have two types of edges: road intersections and curve segments;

and two types of vertices: long straight segment vertices and short transitional segment

vertices. The long straight segment vertices are used for heading matching later. The short

transitional segment vertices are often formed between curve segments or curved roads

entering intersections. See Fig. 3.2(b) for examples.

3.3.1.1 Road Segmentation Based on Curvature Estimation

To buildMh, we first split each roadRir at road intersections and then further segment

it into two types of segments to capture orientation changes: straight segments and curved

segments. Fig. 3.2(b) shows an example.

We consider a complex road can be approximated with straight and curve segments

by jointing short segments together. To find straight segments and curve segments, we

identify the locations when the road curvature sign changes. Thus we approximate the
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road curve by a circular arc where its curvature is defined to be the reciprocal of radius as

illustrated in Fig. 3.2(b). For each xm ∈ Rir , the set of its neighboring points are Nxm =

{xm′ = [xm′ , ym′ ]
T|m − 2 ≤ m′ ≤ m + 2}, where xm′ ∈ Rir . For xm with insufficient

neighboring points, we take it as straight segment and thus assign zero curvature. We

estimate the circle using all xm′ ∈ Nxm . The circle equation is written by (xm′ − xc,m)2 +

(ym′ − yc,m)2 = r2
m with center at xc,m = [xc,m, yc,m]T and radius rm. We represent the

circle equation using matrix form by

x̃T
m′Qmx̃m′ = 0, ∀xm′ ∈ Nxm , (3.1)

where x̃m′ = [xm′ , ym′ , 1]T and Qm =


1 0 −xc,m

0 1 −yc,m

−xc,m−yc,m r2
m

. By using all measurements

xm′ , we estimate xc,m and rm by minimizing

[xT
c,m, rm] = arg min

xc,m,rm

∑
xm′∈Xm

x̃T
m′Qmx̃m′ . (3.2)

The curvature of a circle is 1
rm

. Straight lines can be considered as the degenerate case

of circles with infinite radius. To avoid ill-condition for solving (3.2), we first check if

the points fit a line well. If not, we apply (3.2). To segment a road by the sign of road

curvature, we define the label function l(m) for xm:

l(m) =


0, 1

rm
≤ τκ (on a straight segment),

1, 1
rm

> τκ and 〈xm − xc,m,n〉 > 0 (positive curvature),

−1, otherwise (negative curvature),

(3.3)
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where τκ is a thresholding parameter used to classify curve segment and straight segments,

the symbol 〈·, ·〉 represents the inner product between vectors, and n = [0, 1]T is the unit

vector of the geographic north direction.

After assigning the label value using l(m) for all xm ∈ Rir , the segmentation of Rir

takes place at road intersections (xm ∈ Ix) and positions where l(m) 6= l(m − 1). We

denote the segments ofRir by {Rir,s|s ∈ S(ir)}where S(ir) is the index set of segmented

Rir .

3.3.1.2 HG Vertex Orientation Estimation

With all roads segmented, we compute orientation for vertices corresponding to those

long straight road segments. Each vertex contains the following information vi = {θi,xi,s,xi,e},

where orientation θi ∈ (−π, π] is the angle between the geographic north and the orienta-

tion of the road segment, xi,s = [xi,s, yi,s]
T is the starting position, and xi,e = [xi,e, yi,e]

T

is the ending position of the road segment. Note that θi also depends on vehicle traveling

direction and hence Mh is a directed graph. We only perform orientation estimation if

‖xi,s − xi,e‖ > tl where tl is the threshold for road segment length. Only long road seg-

ments will be used in localization which defines vertex subset Vh,l ⊂ Vh corresponding to

long straight segments.

We use all 2D positions on the segment to form Xi = [xT
i,s, · · · ,xT

i,e]
T and compute

θi. Given Xi, we fit the positions using the linear model y = a1x + a0 where a1 and a0

are the parameters. Using least squares estimation, the estimated parameter is h(Xi) =

[a1, a0]T = (ATA)
−1

ATb, where A =

 1 , · · · , 1

xi,s , · · · ,xi,e


T

and b = [yi,s, · · · , yi,e]T. We

denote the estimated xi,s and xi,e by x̂i,s and x̂i,e, where x̂i,s = [xi,s, a1xi,s + a0]T and
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x̂i,e = [xi,e, a1xi,e + a0]T. We compute θi by

θi = fθ(Xi) = atan2
(
〈 x̂i,e − x̂i,s
||x̂i,e − x̂i,s||

,n〉
)
. (3.4)

Through derivation, we rewrite 〈 x̂i,e − x̂i,s
||x̂i,e − x̂i,s||

,n〉 = g([a1, a0]T) = |a1|
a21+1

.

The GPS errors in each entry of Xi affects the accuracy of θi. We can derive the dis-

tribution of θi since GPS errors can be modeled as Gaussian distribution. We assume GPS

measurement noise to be uncorrelated because GPS points from map do not necessarily

coming from the same time series. From the first order approximation of error propaga-

tion [56], the variance of θi in (3.4) is σ2
θi

= JθΣθJ
T
θ , where Jθ = ∂fθ

∂Xi
= ∂fθ

∂g
∂g
∂h

∂h
∂Xi

and

Σθ = σ2
gI given the GPS measurement variance σ2

g . According to [19], typical consumer

grade navigation systems offer positional accuracy of around 10m. The distribution of θi

that characterizes its uncertainty is

θi ∼ N (µθi , σ
2
θi

). (3.5)

3.3.2 Query Sequence Generation

Gyroscope readings ω0:t and compass readings φ0:tφ can help us extract orientation

and construct a query heading sequence Qt. To improve the robustness, we only keep

headings when the vehicle is traveling on long and straight road segments. This means

the headings should be stable and constant in a long stretch of travel time. To obtain the

query sequence: (1) we first utilize an EKF-based approach using ω0:t and φ0:tφ to estimate

heading, (2) sequence segmentation to obtain stable orientations, and (3) remove headings

that do not correspond to long and straight road segments.
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Figure 3.3: (a) Heading estimation by fusing gyroscope and compass readings. Blue
line shows raw compass readings, orange line shows result using gyroscope only and red
line shows result using gyroscope and with compass readings. (b) Query representations.
Black line is estimated orientation using EKF, blue vertical lines are indices where gyro-
scope data are segmented, red lines mark out stable heading segments with no orientation
changes. Reprinted with permission from [1] c© 2019 IEEE.

3.3.2.1 Heading Orientation Estimation

Given ω0:t and φ0:tφ , we employ an EKF-based approach to estimate heading orienta-

tion [57–59]. Body frame {B} is gyroscope body frame, and the fixed inertial coordinate

system {I} shares origin with {B} at the initial pose. Its Z axis is vertical and points up-

ward. Frame {I}’sX and Y plane is a horizontal plane parallel to the ground plane with Y

axis pointing to magnetic north direction. Both frames are right hand coordinate systems.

Θ := [α, β, γ]T in X-Y -Z order representing roll, pitch, and yaw angles. In the state

representation, we denote state vector by ΘI(t) being its discrete format and superscripts

indicate in which frame the vector is defined. The transformation from {I} to {B} is the

Z-Y -X ordered Euler angle rotation. The state transition equations for ω0:t are described

as follows:

Θ̇
I

= I
BE(ω) + cγ, (3.6)
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where cγ = [0 0 φ0]T is the initial orientation determined by φ0 and

I
BE =


1 sinα tan β cosα tan β

0 cosα − sinα

0 sinα/ cos β cosα/ cos β


is the rotation rate matrix from {B} and {I}. We take φ0:tφ as observations of γ values in

EKF model when compass readings are available:

γ(t) = φ(t), (3.7)

where t = cωtφ.

Since compass readings may be The orientation of the device is represented by three

Euler angles polluted by nearby electrical devices or materials, we can recognize faulty

readings by cross-validating with IMU reading and not using them as EKF observations.

From the coordinate definition, the heading is γ in {I} and is denoted by γ0:t. As an

example, Fig. 3.3(a) shows φ0:tφ in blue, estimated heading orientation result using only

ω0:t in orange, and γ0:t in red.

3.3.2.2 Stable Heading Sequence Generation

To capture the trend of orientation change of γ0:t, we detect change points of γ0:t and

segment data into a set of non-overlapping, consecutive segments. We employ the sliding

window algorithm [60] to segment γ0:t. The sliding window starts from the time at γ0

which is the anchor point of potential segment and the segment is grown if the error of

line-fitting data segments [61] does not exceed error bound. This filtering can help smooth

out the situation when vehicles change lanes on a long and straight roads. Until some time

t′, the error is greater than the threshold, the subsequence from the anchor to t′ − 1 is
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transformed into a segment. The process repeats until the entire sequence is covered. To

generate the query sequence, we extract segments with absolute slope smaller than 10−4

and obtain the segmentation indices for the sequence (e.g. blue lines in Fig. 3.3(b)). Red

horizontal segments are candidate stable headings, which are obtained by apply the indices

to the original γ0:t from EKF.

3.3.2.3 Remove False Positive Segments

We want to extract headings corresponding to the time when the vehicle is driving

along a long and straight road segments. However, the stable headings may be caused by

vehicle stopping at curved roads or slowing driving over a short distance which creates

false positives. At the same time, we should allow the vehicle to stop or change speed

while traveling along long and straight roads to accommodate different traffic conditions.

We can filter false positive segments by observing the zero-crossing properties of angular

speed. If the vehicle stops or slows down before resuming its speed, the beginning and

the ending moments of the angular velocities are determined by the road curvature and its

traveling speed. For curved road, the angular velocity starts from a non-zero value and

reaches zero or a very small value during stopping or slow driving. If the road is straight,

the angular velocity remains close to zero at all time. Of course, there may be occasional

noises caused by vehicle suspension during stop and go but they can be filtered out using

low pass filters. Hence we can remove false positive segments and obtain the set of query

sequence by Θq = {Θq,k|k = 1, · · · , n} where k is query data index, n is the cardinality,

and each subset Θq,k corresponding to continuous observations from EKF for a stable

segment (e.g. a red segment in Fig. 3.3(b)).

3.3.3 Location Inference

Given Θq, we search for the best matching robot trajectory as a sequence of vertices in

Mh.
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3.3.3.1 Sequence Matching

We start with sequence matching. Given Θq = {Θq,k|k = 1, · · · , n}, let us denote the

orientation of vertices in Mh by Θh = {θk|k = 1, · · · , n} correspondingly. We define

θq,k as the sample mean orientation of segment Θq,k which contains nθq,k observations

of random variable θq,k. θq,k has a variance of σ2
θq,k

obtained from EKF. We denote the

mean vector of Θq by µΘq = [µθq,1 , · · · , µθq,n ] and the mean vector of Θh by µΘh =

[µθ1 , · · · , µθn ]. Due to independence in sensor noises and the mean difference between two

normal distributions follows Student’s t-distribution, the matching probability between Θq

and Θh is

P (µΘq = µΘh|Θq,Θh) =
n∏
k=1

P (µθq,k = µθk |Θq,k, θk) (3.8)

∝
n∏
k=1

fT (t(θk, θq,k)), (3.9)

where fT (t(θk, θq,k)) is the probability density function of Student’s t-distribution, and

t(θk, θq,k) =
θk − θq,k√

σ2
θk

+ σ2
θq,k
/nθq,k

. (3.10)

According to (5.2), sequence matching is considered as multiple pair matching. For

each pair (θk, θq,k), it is a hypothesis testing with

H0 : µθq,k = µθk (3.11)

H1 : otherwise (3.12)

Hypothesis H0 can be tested with significance level 1 − α where α is a small probability.

Since this is a two-tailed distribution, we choose tα/2,ν as the t statistic that has a cumula-
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tive probability of (1− α
2
) where ν is the degree of freedom. That is, P (t > tα/2) = α/2.

Thus we reject H0 if

|t(θk, θq,k)| > tα/2,ν . (3.13)

This hypothesis test serves as a building block of the localization scheme. By sequen-

tially applying the hypothesis on each corresponding pair (µθq,k , µθk) from Θq and Θh, we

can determine whether Θh represents the actual trajectory and hences the vehicle location

is obtained.

3.3.3.2 Localization Scheme and Analysis

The remaining problem is whether this sequence of hypothesis would converge to the

true trajectory. Let us define binary event Ck = 1 if the node k in Θh is the actual location,

and binary event Bk = 1 if µθq,k = µθk is true. With these definitions, candidate set Θh

represents the true trajectory is the joint event of C1C2 · · ·Cn = 1. Let nv = |Vh,l| be the

cardinality of Vh,l and nb be the expected number of neighbors for each vertex. However,

we do not know C1C2 · · ·Cn. We only know the joint event B1B2 · · ·Bn by performing

the sequence matching.

To facilitate our analysis, we assume there are kd levels of distinguishable discrete

headings in the [0, 2π) and each vertex heading takes a heading value with an equal prob-

ability of 1/kd. This is a very rudimentary way to describe map/trajectory property. We

know nv � kd ≥ nb is generally true for most maps. We have the following lemma.

Lemma 1. The conditional probability that Θh is the true matching sequence given that

Θq matches Θh is,

P (C1C2 · · ·Cn|B1B2 · · ·Bn) =
(1− α)kd

nv

[
(1− α)

kd
nb

]n−1

(3.14)
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Proof. Apply Bayesian equation, we have

P (C1C2 · · ·Cn|B1B2 · · ·Bn) =

P (B1B2 · · ·Bn|C1C2 · · ·Cn)P (C1C2 · · ·Cn)

P (B1B2 · · ·Bn)
. (3.15)

Note that P (B1B2 · · ·Bn|C1C2 · · ·Cn) is the conditional probability that a correct matched

sequence survive n hypothesis tests for each corresponding pair (µθq,k , µθk). Since, these

tests are independent due to independent sensor noises, we have

P (B1B2 · · ·Bn|C1C2 · · ·Cn) = (1− α)n. (3.16)

Joint probability P (C1C2 · · ·Cn) refers to the unconditional probability of being correct

locations. We know that P (C1) = 1/nv given there are nv possible solutions. Then

P (C1C2) = P (C2|C1)P (C1) =
1

nb

1

nv

because C2 can only be chosen from neighbors of C1. Extending this process by induction,

we have

P (C1C2 · · ·Cn) =
1

nn−1
b

1

nv
(3.17)

Since each node has equal and independent probability of being one of kd readings, we

have P (Bk) = 1/kd for k = 1, · · · , n, we have,

P (B1B2 · · ·Bn) =
1

knd
. (3.18)

Plugging (4.20), (4.21), and (4.22) into (5.9), we obtain the lemma.

Remark 1. Lemma 1 reveals important results about when the localization scheme works
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and how efficient it would be. If P (C1C2 · · ·Cn|B1B2 · · ·Bn) increases as n increases,

then the algorithm would eventually find the correct location. The rate of increase deter-

mines localization speed. This is largely determined by (1− α)kd
nb

.

Quantity (1−α)kd
nb

is determined by sensor accuracy, the map property, and the trajec-

tory. Let us take a close look. nb is the expected number of neighbors and mostly remains

as a constant since most intersections are 4-way intersections. If a map contains many

different road headings, then

(1− α)
kd
nb

> 1

and P (C1C2 · · ·Cn|B1B2 · · ·Bn) increases as n increases. In such cases, the localization

will be swift. However, if the map is purely rectilinear, then kd = nb is the worst case

scenario which leads to a decreasing P (C1C2 · · ·Cn|B1B2 · · ·Bn). The algorithm fails in

such cases. Fortunately, most maps are not completely rectilinear [62].

Since the hypothesis test setup is very conservative in rejection, we might end up with

many candidate solutions in the process. To address the problem and find the most possible

candidates, we classify the computed probabilities of (5.9) into two groups using the Ostu

method [63] which selects the global optimal threshold by maximizing the between-class

variance. If the group with higher probability only has one candidate then the vehicle is

localized. Otherwise, it means that the group with higher probability contains several tra-

jectories with higher probabilities which indicate more observations are needed to localize

the vehicle. The number of solutions is the group size.

3.3.4 Map Entropy Analysis

Since quantity (1 − α)kd
nb
> 1 is a necessary condition for localization feasibility and

it also determines the localization efficiency, it is important to know how well it stands in

real world. Note that ultimately, this is related to the value of kd, the number of possible

headings. To measure the heading variation, we introduce the Shannon entropy to mea-
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sure road heading distributions [62]. We will experimentally investigate how information

entropy in heading impacts localization performance in Section 4.4.

We divide orientation from 0◦ to 360◦ into nj bins, and represent the orientation range

set by {Oj|j = 1, 2, · · · , nj}. In our set up, nj = 36. Let ρj be the relative frequency that

θi in Oj

ρj =
∑
vi∈Vh,l

I(θi ∈ Oj)/nv, (3.19)

where I(A) = 1 if A is true and I(A) = 0 if false. The entropy of road orientation of Vh,l

is

H(Vh,l) = −
∑
j

ρj lognj ρj. (3.20)

Fig. 3.4 shows the entropy of different maps. As for road maps with grid-like streets,

e.g. Manhattan, NY (Fig. 3.4 (c)), the constructed HG has lower entropy than those with

street orientation in all directions, e.g. College Station, TX (Fig. 3.4 (a)). Based on data

from [64], we obtained entropies for 100 cities around the world analyzed in Fig. 3.4(d). 75

cities have entropies higher than 0.90 and only 5 cities have entropies lower than 0.70. This

entropy histogram helps us predict how likely it is that our algorithm will be successful,

which will be shown in Section 4.4.

3.4 Experiments

We have implemented our algorithm using MATLAB under a PC with Windows 7.

Here we first investigate how HG entropy affects PLAM performance using simulation

in 4.4.1.2. We then evaluate real world maps on simulated vehicle trajectories and lastly

test our proposed method in physical experiments.

3.4.1 Simulated Maps with Different Entropies

Here we simulate maps with different entropies and study the relationship among HG

entropy, number of query observations (i.e. n in (5.2)), and number of solutions.
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Figure 3.4: HG entropies for (a) College Station, TX, (b) Washington D.C., (c) Manhat-
tan, NY, and (d) entropy distribution for 100 cities. Reprinted with permission from [1]
c© 2019 IEEE.

Based on the entropy range in Fig. 3.4(d), we generate 40 maps with entropy ranging

from 0.60 to 0.99. We start with generating a square grid street map with 15 × 15 road

intersections and 420 straight bi-directional roads. The map setup leads to a heading graph

with 840 vertices and 2334 edges. With the fixed HG structure, we increase the entropy

level by randomly selecting roads and perturbing their orientations. Figs. 3.5(a) and 3.5(b)

show examples of a low entropy map and a high entropy map, respectively. On each of
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Figure 3.5: (a) Simulated map with low entropy (entropy=0.60). (b) Simulated map with
high entropy (entropy=0.99). (c) Average #solutions with respect to map entropies and
#observations. Reprinted with permission from [1] c© 2019 IEEE.

the 40 simulated maps, we generate 20 query sequence samples with n = 1, · · · , 20 with

orientation standard deviation σθq,k = 5◦. To show the simulation result of #solutions

with respect to map entropies and #observations, we take the average of results from 20

query sequence samples to obtain results shown in Fig. 3.5(c).

As expected, when the HG has a low entropy in orientation, it is likely to have multi-
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ple solutions which fail to uniquely localize the vehicle even given more observations. Of

course, these candidate solutions can be useful if combined with other localization meth-

ods. When the map entropy is above 0.9, #solutions converges to 1 quickly as n increases.

Fig. 3.5(c) shows if the map entropy is above 0.9, the vehicle can be localized with n ≤ 10.

This covers a majority of cities according to Fig. 3.4(d). By analyzing the entropy of HG,

we can evaluate if the proposed algorithm is applicable for localization task in advance.

3.4.2 Physical Experiments

Table 3.1: MAP INFO. AND #OBSERVATIONS n FOR LOCALIZATION. c© 2019 IEEE.

Maps Size (km2) Drivable road (km) Entropy # nodes n
KITTI00 4.75 44.2 0.972 583 10,5
KITTI05 3.24 43.7 0.950 548 4,5
CSMap1 3.24 52.7 0.994 483 6,6
CSMap2 5.75 92.43 0.994 1102 4,6

We evaluate real world maps on simulated vehicle trajectories and test our proposed

method using real world data from physical experiments. The real world maps are obtained

from OSM. We tested maps from two cities:

• CSMap: College Station, Texas, U.S.. We have two test maps: CSMap1 and

CSMap2.

• KITTI: Karlsruhe, Germany. We have two test maps: KITTI00 and KITTI05.

The first 4 columns of Tab. 4.1 describe the map size, the total length of drivable roads,

entropy, and # nodes in the constructed HG for each map. On each map, similar to the

process in Sec. 4.4.1.2, we generate 100 query sequence samples with n = 1, · · · , 20 and

orientation noise σθq,k = 5◦ and the averaged results regarding both mean #solutions and
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Figure 3.6: The localization speed for four maps, which are measured by number of ob-
servation needed to find a unique solution. Reprinted with permission from [1] c© 2019
IEEE.

their corresponding standard deviations are visualized in Fig. 3.6. The entropy range of

the four maps is 0.95 to 0.995. The results in Fig. 3.6 show the vehicle can be localized

using no more than 10 observations which is consistent with the results in simulated maps

(Fig. 3.5(c)).

We then test on query sequence collected from cars. We have sequences from both

CSMap and KITTI. We obtain heading information from both IMU and compass readings.

The two datasets are:

• CSData: We collect the query data using a Google PIXEL phone which consist of

gyroscope readings at 400Hz and compass readings at 50Hz.

• KITTI: The KITTI dataset [65] consists of images recorded by an autonomous driv-

ing platform with ground truth of camera trajectory provided by a high-grade GPS-

INS system. We use the gyroscope readings (100Hz) in INS as relative orientation

input. To get the absolute heading, we only use the GPS readings to synthesize
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compass readings to test our algorithm.

We summarize the results in the last column of Tab. 4.1. We have two sample trajectories

For each map and a total of eight trials. Four typical sample trajectories are shown in

Fig. 3.7. In all tests, the localization succeeds using no more than 10 observations.

(a) KITTI00 (b) KITTI05

(c) CSMap1 (d) CSMap2

Figure 3.7: Sample results from physical experiments. Candidate positions are green
nodes. The map region is shown in blue color and the vehicle trajectory is shown in
red line. (Best viewed in color) Reprinted with permission from [1] c© 2019 IEEE.
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3.5 Conclusion

We reported our PLAM method that did not rely on the perception and recognition of

landmarks to localize robots/vehicles in urban environments. The proposed method in-

tended to serve as a fall back solution when everything else fails due to bad weather or

other environmental challenges. The method only employed a gyroscope and a compass

along with a prior geographical map which was a low cost solution. PLAM pre-processed

geographic maps into a heading graph which stores all long and straight segments of road

as nodes. The information from the sensors was used to obtain heading changes dur-

ing traveling. To localize the robot, the heading sequence was matched to the heading

graph in a Bayesian framework that tracks both sensor and map uncertainties. Since the

degenerated maps with a rectangular grid-like pattern may cause localization failure, we

introduced information entropy to investigate map properties and studied how the PLAM

method perform under maps with different entropies. Our results found that the PLAM

method can serve as an effective localization method for a majority of cities.
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4. GRAPH-BASED PROPRIOCEPTIVE LOCALIZATION USING A DISCRETE

HEADING-LENGTH FEATURE SEQUENCE MATCHING APPROACH*

While the PLAM method in Chapter 3 is able to localize the vehicle using only heading

sequence, the localization is only intermittent for turns. Also, it suffers if the vehicle

travels in a degenerated map (e.g. rectilinear environments). This motivates us to design

a new method enables continuous localization by considering inertial measurement units

(IMUs) and wheel encoder inputs and is less limited by map degeneracy (e.g. rectilinear

environments). Inspired by biological systems, we combine proprioceptive sensors, such

as IMUs and wheel encoders, with magnetoreception, to develop a map-based localization

method to address the problem, which is named as graph-based proprioceptive localization

(GBPL).

In a nutshell, our new GBPL method employs the proprioceptive sensors to estimate

vehicle trajectory and match it with a prior known map. However, this is non-trivial be-

cause 1) there is a significant drift issue in the dead reckoning process and 2) the true

vehicle trajectory does not necessarily match the street GPS waypoints on the map due to

the fact that a street may contain multiple lanes and street GPS waypoints may be inaccu-

rate. This determines that a simple trajectory matching would not work. Instead, we focus

on matching features which are straight segments of the trajectory (Fig. 4.1). We keep

track of connectivity, heading and length of each segment which converts the trajectory to

a discrete and connected query sequence. This allows us to formulate the GBPL problem

as a probabilistic graph matching problem. To facilitate the Bayesian graph matching, we

pre-process the prior known map consisting of GPS waypoints into a heading-length graph

*Reprinted with permission from “Graph-based Proprioceptive Localization Using a Discrete Heading-
Length Feature Sequence Matching Approach” by Hsin-Min Cheng and Dezhen Song. IEEE Transactions
on Robotics (T-RO), Copyright c© 2020 IEEE.
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(HLG) to capture the connectivity of straight segments and their corresponding heading

and length information. As the robot travels, we perform sequential Bayesian probability

estimation until it converges to a unique solution. With global location obtained, we track

robot locations continuously and align the trajectory with HLG to bound error drift.

We have implemented our algorithm and tested it in physical experiments using our

own collected data and an open dataset. The algorithm successfully and continuously

localizes the robot. The experimental results show that our method outperforms in local-

ization speed and robustness when compared with the counterpart in [1]. The algorithm

achieves localization accurate at the level that the prior map allows (less than 10m).

4.1 Related Work

Our GBPL is related to localization using different sensor modalities, dead-reckoning,

and map-based localization.

We can classify the localization methods into two categories based on sensor modali-

ties: exteroceptive sensors and proprioceptive sensors. Exteroceptive sensors mainly rely

on the perception and recognition of landmarks in the environment to estimate location.

Mainstream exteroceptive sensors include cameras [14, 19, 20] and lidars [24–26]. These

methods are often challenged by poor lighting conditions or weather conditions. GPS

receiver [27, 29] is another commonly-used sensor but it malfunctions when the vehicle

travels close to high-rise buildings or inside tunnels. On the other hand, proprioceptive

sensors, such as IMUs [4] and wheel encoders [31], are inherently immune to external

conditions. However, they are more susceptible to error drift and suffer from limited ac-

curacy. Recent sensor fusion approaches that combine an exteroceptive sensor, such as

a camera or a laser ranger finder, with a proprioceptive sensor such as an IMU, greatly

improve system robustness and become popular in applications [5]. However, the sen-

sor fusion approaches still strongly depend on exteroceptive sensor and cannot handle the
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Figure 4.1: An illustration of GBPL method. Left: our inputs include a prior known map
and the trajectory estimated from an IMU, a compass, and a wheel encoder. Middle: we
process the prior map in to a straight segment connectivity graph and also the trajecory into
a query sequence of headings and lengths of straight segments. Right: Aligned trajectory
to the map after graph matching. Reprinted with permission from [2] Copyright c© 2020
IEEE.

aforementioned challenging conditions.

To utilize proprioceptive sensors for navigation, dead reckoning integrates sensor mea-

surements to compute robot/vehicle trajectory. The sensor measurements often include

readings from accelerometers, gyroscopes, and/or wheel encoders [33]. There are many

applications using the dead reckoning approach such as autonomous underwater vehi-

cles (AUVs) [34] and pedestrian step measurement [30, 35]. To estimate the state of the

robot/vehicle, filtering-based schemes such as unscented Kalman filter (UKF) [36] and

particle filter (PF) [37, 38] are frequently employed. However, the nature of dead reck-

oning causes it to inevitably accumulate errors over time and lead to significant drift. To

reduce the error drift, different methods have been proposed such as applying velocity

constraint on wheeled robots [39] and modeling the wheel slip for skid-steered mobile

robots [33]. These approaches have reduced error drift but cannot remove it completely.
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Error still accumulates over time and causes localization failure. To fix the issue, we

will show that drift can be bounded to map accuracy level by using map matching if the

filtering-based approach with graph matching are combined.

Our method is a map-based localization [19,40–43]. According to [12], map represen-

tation can be classified into two categories: the location-based and the feature-based. The

location-based maps are represented with specific locations of objects. For example, those

existing geographic maps consisted of coordinate of locations such as OpenStreetMapsTM (OSM) [44]

and Google Maps [45]. Geographic maps have been widely used to improve upon GPS

measurements and there are common measures being used such as point-to-point, point-

to-curve, curve-to-curve matching or advanced techniques [46]. The feature-based map

is consisted with features of interest with its location. An example is ORB features [48]

for visual simultaneous localization and mapping. In this work, we extract heading-length

graph from geographic maps which converts a location-based map to a feature-based map

to facilitate robust localization which also reduces graph size to speed up computation in

the process.

Closely-related works include [40, 66, 67], which focus on map-aided localization us-

ing proprioceptive sensors for mobile robots. In [66], only vehicle speed and speed limit

information from map are used as a minimal sensor setup. However, known initial posi-

tion is required and the method achieves an accuracy of around 100 meters. In [40], the

velocity from wheel encoder and steering angles are used for odometry and a particle filter

based map matching scheme helps estimate vehicle positions. It does not consider velocity

errors from the wheel encoder such as slippery or inflation levels. In [67], odometer and

gyroscope readings are used for extended Kalman filter (EKF)-based dead reckoning and

a map is used to correct errors when driving a long distance or turning at road intersec-

tions. The average positional error is 5.2 meters, but it again requires an initial position

from GPS. It is worth noting that our localization solution does not require a known initial
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position.

This paper is a significant improvement over our early work [1] where only heading

sequence is used and localization is only intermittent for turns. The new method enables

continuous localization by considering wheel encoder inputs and is less limited by map de-

generacy (e.g. rectilinear environments). Also, we bound error drift in location alignment

and verification after graph matching.

4.2 Problem Formulation
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Figure 4.2: GBPL System Diagram. Reprinted with permission from [2] c© 2020 IEEE.

4.2.1 Scenarios and Assumptions

In our set up, a robot or a vehicle (We interchangeably use “robot” and “vehicle.”)

is navigating in a poor weather conditions such as a severe thunderstorm or a whiteout

snowstorm. No other exteroceptive sensors work properly. However, it is still necessary

for the vehicle to find its location.

The vehicle/robot is equipped with an IMU, a digital compass or a magnetometer, and

an on-board diagnostics (OBD) scanner which provides velocity feedback while navigat-

ing in an area with a given prior road map, e.g. OpenStreetMaps (OSM) [44]. We have the
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following assumptions:

a.0 The vehicle is able to navigate in the environment and make turns at appropriate

locations. If needed, the vehicle is willing to change its course by making additional

turns to assist our algorithm to find its location.

a.1 The prior road map contains straight segments in most part of its streets and streets

are not strict grids with equal side lengths.

a.2 The robot is a nonholonomic system,. i.e. it only performs longitudinal motion

without lateral or vertical motions.

a.3 The IMU and the compass are co-located, pre-calibrated, and fixed at the vehicle

geometric center.

a.4 The IMU, compass, and velocity readings are synchronized and time-stamped.

As part of the input of the problem, a prior road map consisting of a set of roads with

GPS waypoints is required. The typical distance between adjacent waypoints is around

20m.

4.2.2 Nomenclature

Common notations are defined as follows,

• Mp := {xm = [xm, ym]T ∈ R2|m ∈ M } represents the prior road map which

is a set of GPS positions where M is the position index set. Note that these GPS

positions are map points instead of live GPS inputs. We do NOT use GPS receiver

in our algorithm design.

• a = {aj ∈ R3|j = 0, 1, · · · , Nj} and ω = {ωj ∈ R3|j = 0, 1, · · · , Nj} denote ac-

celerometer readings and gyroscope angular velocities from the IMU, respectively.
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• φ = {φjφ ∈ R|jφ = 0, · · · , bNj
cφ
c} denotes compass readings where cφ ≥ 1 since a

compass often has lower sampling frequency than that of the IMU.

• v = {vjv ∈ R|jv = 0, · · · , bNj
cv
c} denotes wheel speed readings from OBD where

cv ≥ 1 because it has a lower sampling frequency than that of IMU. And vjv is the

speed at midpoint of car rear wheels.

• Mh = {Vh, Eh} denotes the HLG where Vh is the vertex set and Eh and is the edge

set.

• Q = {Θq, Dq} denotes the query heading-length sequence which consists of the

segmented heading-length sequence. Θq is the set of heading sequence and Dq is

the set of travel length sequence.

• Ck represents the candidate vertex set where k = 1, · · · , n is the length of the query

sequence.

The GBPL problem is defined as follows.

Problem 2. GivenMp, a, ω, φ and v, localize the robot after its heading changes. As its

localized, report robot location continuously.

4.3 GBPL Modeling and Design

Our system diagram is illustrated in Fig. 5.2 which consists of four main building

blocks: HLG construction, query sequence generation (QSG) thread, global localization

(GL) thread, and location alignment and verification (LAV) thread. HLG construction is

shaded in light gray which converts the prior geographic map into an HLG which runs

only once in advance. For the rest shaded in dark gray, we refer to them as threads because

they can be implemented as a parallel multi-threaded application. The QSG thread runs

EKF constantly at the back end as the system receives sensory readings a, ω, φ and v
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and outputs the estimated trajectory. GL thread searches for the global location on a turn-

by-turn basis. GL thread performs Bayesian graph matching between the query sequence

extracted from the trajectory and the HLG. After the global location is obtained, GL ter-

minates and LAV aligns the latest segment with the map and uses the result to rectify error

drifting in the EKF in QSG. If no satisfying alignment is found, LAV terminates and the

system restarts GL. In fact, GL thread and LAV thread work alternatively depending on

whether the robot is localized or not. We begin with HLG construction.

4.3.1 HLG Construction

We pre-process map Mp to construct an HLG to facilitate heading-length matching.

There are three reasons for using HLG instead of matching onMp directly.

• First, the vehicle trajectory may not exactly match withMp. SinceMp and most

maps do not have lane-level information, the discrepancy between the estimated tra-

jectory andMp is non-negligible which makes the direct trajectory-to-map match-

ing unreliable. Fig. 4.3 shows an example. For the same route, the trajectories may

be different due to driving on different lanes, driver habit, traffic, etc.

• Second, matching trajectory withMp directly is computationally expensive because

the searching space grows with the total number of GPS waypoint positions inMp.

• Third, the inevitably accumulated trajectory drift deteriorates the matching quality

and makes the matching unreliable.

Therefore, we extract features from the map which are the long straight segments and

represent them as the HLG. This leads to a graph matching approach that can mitigate the

influence of the aforementioned three issues. We start with HLG construction based on

our prior work [1] where we have estimated road curvature changes to capture orientation

change and construct a heading graph (HG). Build on [1], we augment length information
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GPS Waypoint

 Trajectory 1

Trajectory 2

Figure 4.3: Map and trajectory discrepancy illustration. Given the trajectory generated by
proprioceptive sensors, directly matching trajectory with the map may not be desirable.
For the same route, trajectories 1 and 2 appear quite differently. Neither of them matches
blue waypoints in the map. Reprinted with permission from [2] c© 2020 IEEE.

di

θi

Xi

vi

xi,s

xi,e

Figure 4.4: HLG illustration in color. The left figure shows a satellite image with road map
consisted of GPS waypoints (blue dots) overlaying on top of the image and intersections
represented in small black circles. We estimate road curvature changes to capture heading
change and construct HLG. As an example, we color a long and straight segment with light
blue and a curve segment with light orange. The right figure shows the corresponding
HLG, and we only employ long road segment vertices for localization. Reprinted with
permission from [2] c© 2020 IEEE.
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in HG to construct HLG for heading-length matching. Fig. 4.4 illustrates an example. For

completeness, we provide an overview here and more detail description of constructing the

graph can be found in [1]. The HLGMh = {Vh, Eh} is a directed graph. A vertex vi ∈ Vh

represents a straight and continuous road segment with neither orientation changes nor

intersections. An edge ei,i′ ∈ Eh captures the connectivity between nodes and characterizes

the orientation change between the two connected vertices vi and vi′ . Mh has two types

of edges: road intersections and curve segments; and two types of vertices: long straight

segment vertices and short transitional segment vertices. The short transitional segment

vertices are often formed between curve segments or curved roads entering intersections.

To buildMh, we split each road at road intersections and further segment them into

two types of segments to capture orientation changes: straight segments and curved seg-

ments [1]. With all roads segmented, we compute orientation and length for vertices

corresponding to those long straight road segments. Each vertex contains the following

information

vi = {Xi, θi, di, bi}, (4.1)

where Xi = [xT
i,s, · · · ,xT

i,e]
T contained all 2D waypoint positions in GPS coordinates

of the road segment with starting position xi,s and ending position xi,e, orientation θi ∈

(−π, π] is the angle between the geographic north and the orientation of the road segment

computed using Xi with a least squares estimation method adopted from [1], di is road

segment length which is computed. by

di = ||xi,s − xi,e||, (4.2)

and bi is the binary variable indicate if the vertex is a long road segment. We only perform
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orientation estimation if di > tl where tl is the threshold for road segment length. That is,

bi =


1, di > tl,

0, otherwise.
(4.3)

Only long road segments (bi = 1) will be used in localization which defines vertex subset

Vh,l ⊆ Vh corresponding to long straight segments. Note that θi depends on the robot

traveling direction and henceMh is a directed graph.

The errors of GPS waypoints in each entry of Xi affect the accuracy of θi and di. To

track map uncertainties caused by GPS errors, we derive the distribution of θi and di using

error variance propagation analysis [56]. We model GPS errors by using Gaussian distribu-

tion and assuming GPS measurement noises to be independent and identically distributed.

We denote the GPS measurement variance by σ2
g . According to [19], typical consumer

grade navigation systems offer positional accuracy around σg = 10m. The distribution of

θi that characterizes its uncertainty is

θi ∼ N (µθi , σ
2
θi

), (4.4)

where σ2
θi

is derived in [1]. And the distribution of di is

di ∼ N (µdi , σ
2
di

) = N (µdi , 2σ
2
g). (4.5)

4.3.2 Query Sequence Generation (QSG) Thread

To localize the vehicle onMh, we estimate the trajectory from sensory readings with

an EKF-based approach. We then generate a discrete query consisting of a heading-length

sequence extracted from the EKF trajectory results. It is worth noting that our method is
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not sensitive to the global drift of the EKF estimated trajectory because we only use short

segmented trajectory to extract heading and length of its straight segments.

4.3.2.1 EKF-based Trajectory Estimation

Note that readings from the IMU, the digital compass, and the vehicle velocity: a, ω,

φ, and v, are the inputs to the EKF-based approach to estimate vehicle trajectory [57–59].

To start the EKF, we need a stabilized initial compass reading φ0 to determine the initial

vehicle orientation which can be obtained by driving on a long and straight segment of

road (Assumption a.2). We define two right-handed coordinate systems: IMU/compass

device body frame {B} (also overlapping with vehicle geometric center), the fixed inertial

frame {I} which shares its origin with {B} at the initial pose. Frame {I}’s X-Y plane

is a horizontal plane parallel to the ground plane with Y axis pointing to magnetic north

direction and Z axis is vertical and points upward. In the state representation, let state

vector Xs,j at time j be:

Xs,j := [pIj ,v
I
j ,Θ

I
j , sj]

T, (4.6)

which includes position pI = [x, y, z]T ∈ R3, velocity vI = [ẋ, ẏ, ż]T ∈ R3, and the Euler

angles ΘI := [α, β, γ]T in {I} in X-Y -Z order, and scale/slip factor (SSF) s. We define

s here to address vehicle velocity error which can be caused by tire radius error such as

inflation level, road slippery, etc. The superscripts indicate in which frame the vector is

defined. The transformation from {I} to {B} is the Z-Y -X ordered Euler angle rotation.

The state transition equations are described as follows:

pIj = pIj−1 + τωv
I

vIj = vIj−1 + τω( IBR(a)−G)

Θj = Θj−1 + τω
I
BE(ω) + cγ

sj = sj−1,

(4.7)
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where τω is the IMU sampling interval, G = [0 0 − 9.8]T is the gravitational vector,

cγ = [0 0 φ0]T is the initial orientation determined by φ0, I
BR is the rotation matrix from

{B} to {I}, and I
BE is the rotation rate matrix from {B} to {I}.

For EKF observation models, we use velocity constraint from vehicle movement, sen-

sory readings φ and v, and estimated scale by matching trajectory with map which will

be discussed in Section 4.3.4.3. First, according to Assumptions a.2 there is no lateral or

vertical movements in {B}, the velocities along Y axis and Z axis in {B} are set to be

zeros. The velocity constraint is written as:

(BIR)2:3v
I
j =

[
0 0

]T
, (4.8)

where B
IR2:3 is the second and third rows of BIR.

From the coordinate definition, the heading direction is γ defined in {I} (last com-

ponent of ΘI), we take compass reading φ as its observation. In our physical system,

compass readings have a lower sampling frequency than that of the IMU readings, we use

the latest available reading. Also, compass readings may be polluted by other magnetic

fields, we can recognize faulty readings by cross-validating compass readings with IMU

readings. We discard the faulty compass readings if the difference between the estimated

heading state and the compass reading exceeds an threshold. With the cross-validated

compass reading, we update heading direction γ by

γj =


φjφ , if j = cφjφ

φjφ−1, otherwise.
(4.9)

We compensate SSF sj by estimating its value from aligned map data after taking a

turn. We will detail how to compute sssf and its variance in Section 4.3.4.3. For s, we
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have

sj = sssf , (4.10)

where sssf is the ratio of the trajectory length from the map versus that from the query.

Lastly, we take wheel velocity v as observations. Similar to φ that the sampling frequency

is lower than IMU readings, we have

||vIj || =


sjvjv , if j = cvjv

sjvjv−1, otherwise.
(4.11)

Combining (4.9), (4.8), (4.11), and (4.10), we complete the observation model functions.

The rest is to follow the standard EKF setup. Fig. 4.5(a) shows the estimated EKF trajec-

tory compared with the corresponding GPS ground truth trajectory. Note that the vehicle

takes some additional turns to assist localization (Assumption a.0) and the trajectory is not

the shortest.

4.3.2.2 Heading-Length Sequence Generation

With the estimated trajectory, we generate query heading-length sequence by capturing

vehicle heading changes. We adopt the method for heading sequence generation from [1]

and augment corresponding length sequence in this work. To improve the robustness,

we only keep headings when the vehicle is traveling on long and straight road segments.

This means the headings should be stable and constant in a long stretch of travel time

and corresponding travel distance is long. From the coordinate definition, the headings

is γ in {I} and is denoted by γ0:j . To obtain the query sequence, we segment γ0:j to

get stable headings and remove false positive headings that do not correspond to long

and straight road segments. In Fig. 4.5(b), red horizontal segments are detected stable

headings. Hence we obtain the set of query heading sequence which is denoted by Θq =
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Figure 4.5: (a) Trajectory estimation result: the red line is the GPS ground truth, and
black line illustrates the EKF estimated trajectory. (b) Query heading representations.
Blue line is estimated heading, black vertical lines are indices where data segmented, red
lines mark out stable heading segments and unmarked segments are detected turns. (c)
Corresponding travel heading and length segment representations. Different segments are
marked in different colors. Reprinted with permission from [2] c© 2020 IEEE.

{Θq,k|k = 1, · · · , n} where k is query data index, n is the number of straight segments.

Each subset Θq,k corresponding to continuous observations from EKF represents a straight

segment. At the same time, we generate the corresponding travel length sequence which

is denoted by Dq = {dq,k|k = 1, · · · , n} where dq,k is the travel length of the segmented

route (e.g. colored segments in Fig. 4.5(c)).

The query heading-length sequenceQ = {Θq, Dq} is consists of the segmented heading-

length sequence. The uncertainty of query sequence Q is obtained from EKF variance

estimation. For Θq, we define θq,k as the sample mean orientation of segment Θq,k which

contains nθq,k observations of random variable θq,k. θq,k has it covariance matrix obtained

from EKF. For Dq, the variance of dq,k can also be derived from EKF and we denote it by

σ2
dq,k

. Those variables will be used later in the analysis part.

It is worth noting that each entry of the sequence is not sensitive to the overall trajectory

drift due to local trajectory segment computation. When segmenting into short segments,
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the drift in each segment is smaller compare to the overall trajectory drift. The resulting

sequence also can be understood as local features for the trajectory. Also, reducing the

query to the discrete feature sequence helps in reducing computation complexity.

4.3.3 Global Localization Thread

4.3.3.1 GL Overview

With the query sequence obtained from on-board sensors, we are ready to match it with

sequences on the HLG to search for the actual location. This is a graph matching problem.

In the GL thread, we localize the robot when the robot changes its heading which is the

moment the query sequence grows its length. It is worth noting that GL is an intermittent

localization. The continuous localization will be address later in the paper.

Given the query heading-length sequence, we search for the best match of heading-

length sequence in the HLGMh. For any long straight candidate vertex in Vh,l, we match

the query heading-length sequence with sequences of the vertices starting at the candidate

vertex. We discard candidate vertices with poor matching. In each candidate sequence

to query sequence matching, We model sensory and map uncertainties and formulate the

matching process as a sequential hypothesis test problem. The result of GL depends on if

a satisfying matching sequence can be found.

4.3.3.2 Graph Matching

The center part of GL is the matching of query sequence and candidate sequence

on the graph. To achieve this, we expand the heading sequence matching in [1] to find

the best heading-length matching in Mh. Given query sequence Q = {Θq, Dq} =

{(θq,k, dq,k)|k = 1, · · · , n}, let us denote a candidate heading-length vertex sequence in

Mh by M := {Θ, D} = {(θk, dk)|k = 1, · · · , n} correspondingly. As a convention in

this paper, for random vector ?, µ? represents its mean vector. Following the convention,

mean matrix of Q is defined as µQ = [µT
Θq
, µT

Dq
]T where µΘq = [µθq,1 , · · · , µθq,n ]T and
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µDq = [µdq,1 , · · · , µdq,n ]T. The mean matrix of M is denoted by µM = [µT
Θ, µ

T
D]T where

µΘ = [µθ1 , · · · , µθn ]T and µD = [µd1 , · · · , µdn ]T.

Due to independent measurement noises, the conditional matching probability between

query sequence Q := {Θq, Dq} and a candidate sequence M := {Θ, D} on HLGMh is

P (µQ = µM |Q,M)

= P (µΘq = µΘ|Θq,Θ)P (µDq = µD|Dq, D). (4.12)

From [1], the conditional heading matching probability between Θq and Θh is

P (µΘq = µΘ|Θq,Θ) ∝
n∏
k=1

fT (t(θq,k, θk)), (4.13)

due to independent sensor noises and fT (t(θq,k, θk)) is the probability density function

(a) (b)

Figure 4.6: An example of global localization. (a) The candidate locations using heading
matching (green dots), length matching (black circle). We show that performing heading-
length matching (locations with green dot and black circle) helps reducing candidates. (b)
The candidate localization is reduced to the single solution if the joint distribution between
heading and length is used. Reprinted with permission from [2] c© 2020 IEEE.
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(PDF) of Student’s t-distribution. For length matching, the conditional matching probabil-

ity between Dq and D is

P (µDq = µD|Dq, D) ∝
n∏
k=1

f(z(dq,k, dk)), (4.14)

where f(·) is the PDF of standard normal distribution, and z(dq,k, dk) =
dq,k−dk√
σ2
dk

+σ2
dq,k

. Com-

bining (4.13) and (4.14) and recalling that n is the number of straight segments in the

query sequence, we rewrite (4.12) as follows,

P (µQ = µM |Q,M) ∝
n∏
k=1

fT (t(θq,k, θk))f(z(dq,k − dk)). (4.15)

4.3.3.3 Candidate Vertex Selection

To select on candidate vertices during matching, we perform statistical hypothesis test-

ing to remove unlikely matchings. According to (4.12), sequence matching is considered

as multiple pair matching. For each pair ({θk, dk}, {θq,k, dq,k}), it is a hypothesis testing

H0 : [µθq,k , µdq,k ]
T = [µθk , µdk ]

T

H1 : otherwise. (4.16)

Hypothesis H0 can be seen as two null hypotheses: H0,θ : µθq,k = µθk and H0,d : µdq,k =

µdk . We perform two individual tests separately with significance level 1 − α where α is

a small probability. Both H0,θ and H0,d are two-tailed distributions. We choose tα/2,ν as

the t-statistic with a cumulative probability of (1 − α
2
) where ν is the degrees of freedom

(DoF) and zα/2 as the z-statistic with a cumulative probability of (1− α
2
). We reject H0 if

(|t(θk, θq,k)| > tα/2,ν) ∨ (|z(dk, dq,k)| > zα/2). (4.17)
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By sequentially applying the hypothesis testing on each corresponding pair ({θk, dk}, {θq,k, dq,k})

from query sequence Q and candidate sequence M on HLGMh, we determine whether

M represents the actual trajectory. Fig. 4.6 has shown that using the joint distribution of

heading and length significantly reduce the number of solutions in the matching process.

In the matching process, we might get many candidate solutions because the hypothesis

test is conservative in rejection. To address the problem and check if we converge to a

unique solution, we classify the computed probabilities of (4.12) into two groups using

the Ostu method [63]. The number of solutions is the group size. If the group with higher

probability has only one candidate then the vehicle is localized. Otherwise, it means that

the group with higher probability contains several trajectories with higher probabilities. It

indicates that more observations are needed to localize the vehicle.

4.3.3.4 GL Algorithm

We summarize the heading-length matching method in Algorithm 2. In a nutshell,

as we sequentially match the vertex down the query sequence, we compare it with the

out-neighbor of remaining vertices on the graph using breadth-first search.

Note that vertex vi may have adjacent vertices with same orientation. For example,

consider the vehicle reaches a long straight road (with road intersections). This long

straight road corresponds a set of vertices with same orientation. We denote the set of

straight path start from vi by Vs.

To reuse the computed information as the query sequence grows, we define the candi-

date vertex information set Ck where k = 1, · · · , n is the length of the query sequence.

The candidate vertex set is denoted by Ck = {{vi,VM,i, pi}|i = 1, · · · , nCk}, where each

element in Ck record the candidate vertex vi (the starting vertex of the trajectory/path),

VM,i is the set of vertex path, and the matching probability pi in (4.12) and nCk is the car-

dinality of Ck. To initialize, we set C0 := {{vi, ∅, 1
|Vh,l|
}|i = 1, · · · , |Vh,l|} because each
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vertex in Vh,l is equally likely to be the path starting vertex. The computational complex-

ity of calculating each term in (4.12) is O(1) using the alias sampling method [68]. The

upper bound of candidate vertex cardinality is |Vh,l| and thus it takes O(|Vh,l|) to compute

probability of all candidate vertices. The size of straight path set takes O(|Vs|) which is

related to variation of map road headings in Sec. 4.3.3.6. With little variation in headings

(e.g. Manhattan streets), |Vs| is larger. On the contrary, |Vs| is small compared to |Vh,l|

with large variation in road headings. In this case, O(|Vs|) = O(1). The classification of

probabilities into two groups is O(|Vh,l|) using Hoare’s selection algorithm.

We summarize the computational complexity of Algorithm 2 in Lemma 6.

Lemma 2. The computation complexity of the heading-length matching is O(n|Vs||Vh,l|).

4.3.3.5 Localization Analysis

The remaining problem is whether this sequence of hypothesis testing would converge

to the true trajectory as the length of the sequence grows. To analyze this, let us define

three binary events: Ak = 1 if µdq,k = µdk , Bk = 1 if µθq,k = µθk , and Ck = 1 if

vertex k in Mh is the actual location. The joint event C1 · · ·Cn = 1 is to say M :=

{Θ, D} represent the true trajectory, whereas we know A1 · · ·AnB1 · · ·Bn from sequence

matching. In the analysis, we denote nv = |Vh,l| as the cardinality of Vh,l and nb as the

expected number of neighbors for each vertex. We describe map/trajectory property in

a rudimentary way by assuming kd levels of distinguishable discrete headings in [0, 2π)

and kl levels of distinguishable discrete road lengths. Each vertex takes a heading value

and length value with equal probabilities of 1/kd and 1/kl correspondingly. Generally

speaking, we know nv � kd ≥ nb and nv � kl ≥ nb for most maps. we have the

following lemma.
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Algorithm 1: Heading-length Graph Matching
Input: Mh = {Vh, Eh} and Q = {Θq, Dq}
Output: Ck or vehicle location, IG

1 C0 := {{vi, ∅, 1
|Vh,l|

}|i = 1, · · · , |Vh,l|} O(1)

2 Initialize IG = 0 O(1)
3 for k = 1, · · · , n do O(n)
4 Ck ← ∅; O(1)
5 for i = 1, · · · , nCk−1

do O(|Vh,l|)
6 if k == 1 then
7 Access straight path set Vs start from vi; O(1)
8 else
9 vi′ ← last vertex in path VM,i O(1)

10 Vi′ ← adjacent verteices of vi′ ( with different angles); O(1)
11 Access straight path set Vs start from each vertex in Vi′ ; O(1)

12 for Vs ∈ Vs do O(|Vs|)
13 Access θs and ds of Vs; O(1)
14 compute p← fT (t(θs, θq,k))f(z(ds, dq,k)) O(1)
15 if Pass hypothesis testing in (4.16) then
16 Update matching probability pi′ ← pi · p O(1)
17 VM,i′ ← Append Vs to VM,i O(1)

18 Ck ← Ck ∪ {vi,VM,i′ , pi′} O(1)

19 Classify probabilies in (4.12) of Ck using Otsu’s method; O(|Vs||Vh,l|)
20 Remove group in Ck with lower probabilities; O(1)
21 if |Ck| > 1 then
22 Return Ck; O(1)
23 else
24 Set IG = 1; O(1)
25 Return vehicle location; O(1)

Lemma 3. The conditional probability that M = {Θ, D} is the true matching sequence

given that Q = {Θq, Dq} matches M is,

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn) = (1−α)2kdkl
nv

[
(1− α)2 kdkl

nb

]n−1

(4.18)

Proof. Applying the Bayesian equation, we have

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn) =

P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn)P (C1 · · ·Cn)

P (A1 · · ·AnB1 · · ·Bn)
. (4.19)

Indeed P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn) is the conditional probability that a correct matched
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sequence survives n hypothesis tests in (4.16). Due to independent measurement noises,

we have P (A1B1|C1) = (1−α)2. Besides, these tests are independent due to independent

sensor noises, we have

P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn) = (1− α)2n. (4.20)

Joint probability P (C1 · · ·Cn) is actually the unconditional probability of being correct

locations. We know P (C1) = 1/nv given there are nv possible solutions, and P (C2|C1) =

1/nb because there are nb neighbors of C1. By induction,

P (C1 · · ·Cn) =
1

nn−1
b

1

nv
. (4.21)

Lastly, each vertex takes a heading value and length value with equal and independent

probabilities of 1/kd and 1/kl. We have P (AkBk) = 1
kdkl

and

P (A1 · · ·AnB1 · · ·Bn) =
1

(kdkl)n
. (4.22)

Plugging (4.20), (4.21), and (4.22) into (5.9), we obtain the lemma.

Corollary 1. We have shown in [1] that the conditional probability that Θ is the true

matching given Θq is

P (C1 · · ·Cn|B1 · · ·Bn) = (1−α)kd
nv

[
(1− α)kd

nb

]n−1

(4.23)

Compare (4.18) with (4.23), we have

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn)

P (C1 · · ·Cn|B1 · · ·Bn)
= [(1− α)kl]

n (4.24)
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Since kl > 1
1−α is generally true, localization using both heading and length information

Q = {Θq, Dq} is faster than using heading Θq only.

Under assumption a.1, Lemma 7 shows the probabilistic convergence of right match-

ing. Also, it reveals when the localization scheme works and localization efficiency. If

P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn) increases as n increases, the proposed method

would find the correct location eventually. The localization speed is determined by (1 −

α)2 kdkl
nb

which is determined by sensor accuracy, the map property, and the trajectory [1].

Since nb (the expected number of neighbors) remains constant as most intersections are

4-way intersections, kd and kl (spreading in heading and length) are the main factors deter-

mining the increasing rate of P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn). If a map contains

many different road headings and lengths, then P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn)

increases swiftly as n increases. On the contrary, if the map only contains purely recti-

linear grids then kd = nb and kl = 1. This is the worst case scenario which leads to a

decreasing P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn) and the algorithm fails. Fortunately,

most maps do not have the issue [64]. If a rectilinear map has different side lengths in each

distribute, the algorithm still works (assumption a.1). To better understand how it stands

in real world, we analyze map proprieties in the following section.

4.3.3.6 Map Entropy Analysis

To provide a measure of variation and spreading in heading and road length, we in-

troduce the Shannon information entropy to measure road heading and length distribu-

tions [69]. To minimize the effect of bin size on calculated entropy, we set orientation

bin widths to be 5◦, and 20 meters for road length. Let us denote orientation range set

by {Oj|j = 1, 2, · · · , nj} and length range set by {Li|i = 1, 2, · · · , ni}. We define

nji = njni and ρji be the relative frequency that θi ∈ Oj and di ∈ Li. The joint Shannon
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entropy in heading and road length is

Hθ,d(Vh,l) = −
∑
j

∑
i

ρji lognji ρji. (4.25)

By analyzing the entropy of different maps, we predict localization efficiency of our algo-

rithm, which will be shown in Section 4.4.

4.3.4 Location Alignment and Verification Thread
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Lh
Virtual start pointVirtual end point

Xq

Xh
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X h

T

(a)

Lq

Lq-Lq+

Lh
Virtual start pointVirtual end point

Xq

Xh

L h

X h

T

(b)

Figure 4.7: Illustration of LAV. The solid small dots represent vehicle trajectory where
red points are turn points and black points belongs to SSPTE. The roads are shaded gray
regions characterizing their width,and GPS waypoints inMp are represented in larger blue
dots. (a) Virtual start and end points (i.e. red circles) of an SSPTE. (b) Left: misalignment
between Xq and Xh. It is clear that SSPTM only has three points. Exact point-to-point
matching is not appropriate. We fit a line Lh using SSPTM which is used as reference line
for finding the best transformation between SSPTE and SSPTM points. Reprinted with
permission from [2] c© 2020 IEEE.

If the GL thread finds a unique position, we can start LAV thread to continuously report

vehicle location. The key is to fix the EKF drift issue using the prior map information.

This is achieved by monitoring if the vehicle makes a turn. Once a turn is identified, the
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straight segment prior to the turn (SSPT) can be extracted. Comparing the SSPT from

EKF estimation (SSPTE) to the corresponding SSPT on the mapMp (SSPTM), we can

reset EKF parameters which rectifies the drifting issue.

Let us define the set of points in SSPTE by

Xq = {pι ∈ R2|ι = 1, · · · , nq} (4.26)

with each element obtained from EKF pI1:2 = [x, y]T where pI1:2 is the first and second

element of pI . The distribution of pι is pι ∼ N (µpι ,Σpι), where µpι is the mean vector

and Σpι is the covariance matrix obtained from the EKF. The corresponding GPS SSPTM

points are defined by

Xh = {xl|l = 1, · · · , nh} (4.27)

and the covariance of GPS points is denoted by Σg = diag(σ2
g , σ

2
g) as mentioned in Sec-

tion 4.3.1. We obtain Xh by using the localized position from GL thread and performing

graph matching with the out-neighbor of vertices. Thus we have xl ∼ N (µxl ,Σg).

4.3.4.1 Virtual Starting-Point and End-Point Estimation

However, SSPTE points do not necessary follow SSPTM as shown in Fig. 4.7(a). This

is because we do not know which lane the vehicle is driving in and the map may not

provide lane-level waypoint accuracy. Fig. 4.7(a) also shows the effect of vehicle turn

radius which makes the length of SSPTE shorter than that of the corresponding SSPTM.

To address the problem, we estimate virtual starting and end points for an SSPTE.

We find the virtual starting and end points by computing line intersection of two con-

secutive SSPTE segments. With the current segment positions Xq, we denote the set of

points from previous and next SSPTE segments by Xq− and Xq+ , respectively. Applying

line fitting to Xq, Xq− , and Xq+ , we obtain three 2D lines Lq, Lq− , and Lq+ , respectively.
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We parameterize each line by two reference points. Thus we denote Lq = [aT
q ,b

T
q ]T,

Lq− = [aT
q− ,b

T
q− ]T, and Lq+ = [aT

q+ ,b
T
q+]T. Also, the line direction vectors are vq =

bq − aq, vq+ = bq+ − aq+ , and vq− = bq− − aq− . Finding the intersection between Lq

and Lq− allows us to obtain the virtual starting point. We denote the virtual starting point

of Xq by ps.

ps = aq −
v⊥q− .(aq − a−q )

v⊥q− .vq
vq, (4.28)

where · is dot product and v⊥q− is the perp operator of vq− . Similarly, the intersection

between Lq and Lq+ gives us the virtual end point pe. We have

pe = aq −
v⊥q+ .(aq − a+

q )

v⊥q+ .vq
vq, (4.29)

where v⊥q+ is the perp operator of vq+ . When SSPTE is connected with an curve segment

(e.g. caused by vehicle turn), we add ps and pe to Xq to help alignment process. ps and

pe become the first and the last points in Xq, respectively.

4.3.4.2 Location Alignment and Verification

With augmented Xq, we can match Xq to Xh to rectify drifting issue by finding the

transformation T between them (see Fig. 4.8). Here T is 3-DoF rigid body transformation

represented by a 2x2 rotation matrix R, and a 2x1 translation vector t,

T(x) := Rx + t, (4.30)

where x is a 2D point. Xq usually contains significantly more entries than that of Xh due

to its higher sampling frequency (nq � nh). Directly matching two point sets is not the

best solution. Instead, we fit a line through points in Xh and minimizing the distance of

all points in Xq to this line (Fig. 4.7(b)).
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Figure 4.8: An example of location alignment and verification that keeps drifting under
control where n is the number of long straight segments for the vehicle. The unaligned
trajectory is shown in black, the aligned trajectory is shown in red, and GPS waypoints are
shown in dark blue square. Adapted with permission from [2] c© 2020 IEEE.

Let us denote Lh = [aT
h ,b

T
h ]T where ah and bh are two reference points on the line. For

every point pj in Xq, the point after transformation is denoted by T(pι). The point-to-line

distance between T(pι) and Lh is defined as

d⊥(T(pι),Lh) =
||(ah −T(pι)× (ah − bh)||

||ah − bh||
, (4.31)
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where ‘×’ is the cross product and || · || is the L2 norm. We define the cost function CT

by

CT =



d⊥(T(ps),Lh)

d⊥(T(p1),Lh)

...

d⊥(T(pnq),Lh)

d⊥(T(pe),Lh)


, (4.32)

and formulate the following optimization problem

arg min
T

CT
TΣ−1

C CT + λ||T(ps)− x1||+ λ||T(pe)− xnh||, (4.33)

where ΣC = diag(σ2
d⊥,ps

, · · · , σ2
d⊥,pe

), β is a nonnegative weight, and x1 and xnh are the

first and the last entries in (4.27), respectively. σ2
d⊥,pι

is obtained using error propagation.

In detail, let d⊥(T(pι),Lh) = fd(pι,Lh) and ξ = [pT
s ,L

T
h ]T, we have σ2

d⊥,pι
= JdΣdJ

T
d ,

where Jd = ∂fd
∂ξ

and Σd = diag(Σpι ,ΣLh) because pι is independent of Lh which comes

from Xh. Define Lh = fL(Xh), we have ΣLh = JLΣXhJ
T
L where JL = ∂fL

∂Xh
and

ΣXh = diag(Σg, · · · ,Σg). The second and third terms are soft constraints due to po-

tential alignment errors. To solve (4.33), we start with a small positive weight for λ and

apply a nonlinear optimization solver, e.g. Levenberg-Marquardt algorithm. Initially, we

set R = I2×2, and t from the result of the global location obtained from Section 4.3.3. For

each turn, we use previous solution as the initial solution and increase λ gradually until

the change in solution is negligible.

Now we have optimized T and we denote the aligned locations by X̂q = T(Xq). We

need to verify if the matching result is reliable by performing hypothesis testing. We have
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two hypotheses:

H0 :Xh and X̂q are from the same distribution,

H1 :otherwise. (4.34)

We set the significance level by α and reject H0 if the statistic is less than α. Note H0 is

examined by the Mahalanobis distance CT
TΣ−1

C CT which follows a χ2 distribution with

2(nq + 2) DoFs. Thus we reject H0 if CT
TΣ−1

C CT > χ2
2(nq+2)(α). Correspondingly, we set

localization status indicator variable IG values by IG =


0, H0 is rejected,

1, otherwise.
If IG = 1,

we accept T and use the aligned trajectory X̂q := T(Xq) which is used to reset the EKF

states (Fig. 5.2). After LAV execution, we keep acquiring the vehicle locations EKF pI1:2

until next turn. When turn is detected and IG = 1, we execute LAV thread repeatedly. If

IG = 0, it means that we cannot find the position and we lose the global position. Thus we

terminate the LAV thread and start the GL thread again. The possible reasons for losing

global location could be the vehicle drives off the prior map or keep straight without turns

which cause drifting too much.

4.3.4.3 SSF Estimation

To further reduce drift in the dead-reckoning process, we consider SSF in the EKF-

based trajectory estimation. There are two sources of biases: systematic and non-systematic

biases from wheel encoder inputs [70]. The systematic error can be caused by tire radius

error such as inflation level, tire wear, gear ratio, etc. Non-systematic error comes from

wheel slippage on road. To compensate for those errors, we introduce scale and slip factor

sssf in (4.10).

To compute sssf , we need the travel length for each vertex on HLG for both query
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data and map data. We obtain the travel length dq on the query data using the virtual

starting/end points pe and ps in (4.28) and (4.29). That isdq = ||pe − ps||. According

to (4.27), the corresponding travel length on the map is denoted by d := ||xnh − x1||.

Assuming GL thread ends at the n-th turn, for k = (n + 1), · · · , n′ we estimate sssf by

computing the ratio of accumulated length dq,k and dk:

sssf =
n′∑

k=n+1

dk

/ n′∑
k=n+1

dq,k. (4.35)

We then model the variance of sssf to be used in the EKF measurement variance in

Section 4.3.2.1. It is not accurate to set a constant variance value for sssf , since at the

beginning traveling length is short and thus se has larger variance. As the traveling length

increases, the variance of sssf ought to decrease. Denote the variance of sssf by σ2
sssf

, we

derive the following Lemma.

Lemma 4. The variance of scale and slip factor sssf is

σ2
sssf

=
1

L2
q

(2nsσ
2
g +

L2
g

L2
q

n′∑
k=n+1

σ2
dq ,k). (4.36)

Proof. First, we write sssf as function of measurements from dk and dq,k according to

(4.35). That is, sssf = fs(dn+1, · · · , dn′ , dq,n+1, · · · , dq,n′). We know the variance of dk is

σ2
dk

= 2σ2
g from (4.5) and the variance of dq,k is σ2

dq ,k
which is defined in Section 4.3.2.2.

Let us define Lq =
∑n′

k=n+1 dq,k, Lg =
∑n′

k=n+1 dk, and ns = n′ − n. Through forward

error propagation,

σ2
sssf

= JsΣsJ
T
s , (4.37)
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where Σs = diag(2σ2
g , · · · , 2σ2

g , σ
2
dq,n+1

· · ·σ2
dq,n′

) and Js is

Js = [
∂fs
∂dn+1

, · · · , ∂fs
∂dn′

,
∂fs

∂dq,n+1

, · · · , ∂fs
∂dq,n′

]

= [
1

Lq
· · · , 1

Lq
,
−Lg
L2
q

, · · · , −Lg
L2
q

]. (4.38)

Plug (4.38) into (4.37), we have

σ2
sssf

= JsΣsJ
T
s = 2ns

σ2
g

L2
q

+
n′∑

k=n+1

σ2
dq ,k

L2
g

L4
q

=
1

L2
q

(2nsσ
2
g +

L2
g

L2
q

n′∑
k=n+1

σ2
dq ,k). (4.39)

Remark 2. Let us take a close look at (4.39). We have Lq ≈ Lg because the estimated

travel length should be similar to the corresponding path in map. Therefore, we can

approximate σ2
sssf

as

σ2
sssf

= JsΣsJ
T
s =

1

L2
q

(2nsσ
2
g +

n′∑
k=n+1

σ2
dq ,k).

Thus we show that σ2
sssf

decrease as Lq =
n′∑

k=n+1

dq,k increases. As time goes, we have

longer travel length and the estimation of sssf becomes more accurate. Using the accu-

mulated travel length to adjust SSF is suitable to compensate systematic biases. If the

traveling length is long and systematic biases are compensated, setting a sliding window

for accumulated distance can be used to detect non-systematic biases that varies through

traveling.

The resulting sssf and σ2
sssf

are fed into the EKF in Section 4.3.2.1. This completes
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our overall method.

4.4 Experiments

We have implemented the proposed GBPL method using MATLAB and validated the

algorithm in both simulation and physical experiments. We first validate the proposed

global localization approach. Second, we test the LAV performance.

For physical experiments, we evaluate our approach on three maps with seven outdoor

data sets, as described below. We obtain the corresponding three maps from OSM:

• CSMap : College Station, Texas, U.S.

• KITTI00Map: Karlsruhe, Germany, and

• KITTI05Map: Karlsruhe, Germany.

Map information including map size, total length of drivable roads, HLG entropy, and

#nodes in HLG is shown in the first four columns of Tab. 4.1.

The seven query sequences are three self-collected CSData sequences and four KITTI

sequences:

• CSData: We record IMU readings at 400Hz and compass readings at 50Hz using a

Google Pixel phone mounted on a passenger car. Also, we read the vehicle speed

at 46.6Hz sampling frequency in average using a Panda OBD-II Dongle which pro-

vides the velocity feedback from vehicle wheel encoder. We have collected three

sequences: CS-1, CS-2 and CS-3.

• KITTI: We use the KITTI GPS/IMU dataset [65] which contains synchronized IMU

readings from its inertial navigation system (INS) as inputs. We only use the GPS

readings to synthesize compass readings to test our algorithm since the data sets do

not provide compass readings. We have four sequences: KITTI00-1, KITTI00-2,

KITTI05-1, and KITTI05-2.
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4.4.1 Global Localization Test

4.4.1.1 Evaluation Metrics and Methods Tested

It is worth noting that the speed of methods are characterized by n, number of straight

segments in the query. Since computation speed is not a concern, we are more interested in

how many inputs it takes to localize the vehicle. Therefore, n is a good metric for this. For

a given n, the algorithms may provide multiple solutions if there is many similar routes

in the map. If the number of solutions is one, then the vehicle is uniquely localized. The

number of solutions is also an important measure for algorithm efficiency. Two algorithms

are compared in our experiments:

• GBPL: Current method that uses both heading and length information of straight

segments.

• PLAM: The counterpart method using heading only [1].

4.4.1.2 Map Entropy Evaluation

Map entropy describes how much the heading and distance distribution spread out in a

given map. Higher entropy means distributions are more spread out and hence it is easier

for the vehicle to localize itself, as proved in Lem. 7. Therefore, we want to find out

what are map entropy range of real cities and use the range to test our GBPL. As shown in

Fig. 4.9(a), we calculate map entropy distributions of 100 cites based on the data from [64].

Table 4.1: MAP INFO. AND #STRAIGHT SEGMENTS n FOR LOCALIZATION. c© 2020
IEEE.

Maps Size (km2) Drivable road (km) Entropy #nodes n(PLAM) n (GBPL)
CSMap 3.24 52.7 0.724 483 9,5,6 3,3,2

KITTI00Map 4.75 44.2 0.877 583 10,5 4,3
KITTI05Map 3.24 43.7 0.797 548 4,5 3,4
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For comparison, the normalized sum of heading entropy and length entropy are in orange

bars, and the heading entropy are in blue bars. For each city, the sum of heading entropy

and length entropy is the upper bound of the joint entropy. We generate histogram plots for

entropy distribution in Fig. 4.9(b) and Fig. 4.9(c). As shown in Fig. 4.9(c), 95 cities have

entropy values higher than 0.70 and the lowest entropy is around 0.6. This determines that

entropy range of maps that we will use to test our algorithm is from 0.60 to 0.99.

To better understand the relationship among HLG entropy, n, and the number of so-

lutions, we simulate 40 maps with joint entropy of heading and length ranging from 0.60

to 0.99. Building on the simulation in [1], we expand it from Heading Graph to HLG in

this work. For completeness, we repeat information about experimental settings here. The

simulated maps are with a fixed graph structure, and we increase the entropy level in both

heading and length by perturbing selected road intersection positions. For each map, we

generate 20 query sequence samples with n = 1, · · · , 20 and the uncertainties of orienta-

tion and length are considered by setting σθq,k = 5◦, σdq,k =
√

2σg, and σg = 5 meters.

We compute the number of solutions by averaging the results of 20 sequences for each

map. The simulation result is shown in Fig. 4.10(b) and we adapt Fig. 4.10(a) from [1] for

comparison.

For PLAM which uses heading only (Fig. 4.10(a)), the vehicle can be localized with

n ≤ 10 if the entropy in orientation is above 0.9 [1]. Under GBPL, the vehicle can be

localized with n ≤ 7 even if the heading/length entropy is 0.6. It is worth noting that

lower entropy means less spreading of heading and segment length and road network is

closer to be a rectilinear grid and hence it is more challenging to localize a vehicle in such

settings. GBPL appears to be more robust to low map entropy than PLAM.

Fig. 4.10(a) and Fig. 4.10(b) show the number of solutions with regard to n values

and different HLG entropy values. We fix the entropy as 0.87 and n = 3 in Figs. 4.10(c)

and 4.10(d), respectively to observe how quickly the number of solutions decreases in each
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setting. It shows the #solutions decreases more rapidly in GBPL than that of PLAM using

heading only. This result is consistent with Cor. 1.
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Figure 4.9: (a) Entropy of 100 cities. (b) Heading entropy distribution of 100 cities. (c)
Heading and length entropy distribution of 100 cites. Adapted with permission from [2]
c© 2020 IEEE.
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Figure 4.10: (a) #solutions with respect to map entropy values (heading only) and n.
(b) #solutions with respect to map entropy values (heading+length) and n. (c) n versus
#solutions with fixed map entropy = 0.86. (d) Map entropy values versus #solutions with
n = 3. Adapted with permission from [2] c© 2020 IEEE.

4.4.1.3 Physical Experiments

We also compare the two aforementioned methods in physical experiments. Again,

the speed is described in n needed to reach a unique solution. Smaller n is more desir-

able. We test three sequences from CSData on CSMap, two sequences on KITTI00Map

and two sequences on KITTI05Map. The comparison results are shown in the last two
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columns of Tab. 4.1. In all tests, GBPL takes n = 3.1 in average with a standard deviation

of 0.69 to localize the vehicle while PLAM takes n = 6.3 on average with a standard

deviation of 2.29 in comparison. As expected, GBPL has a faster localization speed than

that of PLAM. As shown in Tab. 4.1, the entropy values (heading+length) of CSMap,

KITTI00Map and KITTI05Map are 0.724, 0.877, and 0.797, respectively. By checking

the results in Fig. 4.10(b), n required for reaching a unique solution in the real map agrees

with simulation results.

4.4.2 Localization Alignment and Verification Test

Global localization only provides an initial position and the accuracy of continuous

localization is determined by the LAV thread. We show localization accuracy result for all

seven test sequences. PLAM does not have the capability of continuous localization and

hence is not tested here. We only compare GBPL result with the ground truth.

4.4.2.1 Ground Truth and Evaluation Metric

The ground truth in our experiments is the actual GPS trajectory. The localization

error is defined as the Euclidean distance between the estimated aligned trajectory and the

ground truth. The localization errors are measured in meters.

4.4.2.2 Accuracy Results

Figs. 4.11 and 4.12 show the accuracy results by plotting the localization errors of each

sequence. Red vertical lines are where LAV is excuted, i.e., when turns are detected. The

first red vertical line corresponds to where we obtain global location. In all test sequences,

the error in vehicle position is reduced to less than 5m when LAV runs at the moments

indicated by the red lines. After that error slowly grows until reaching the next LAV

moment. This matches the expected map uncertainty (around 10m). The localization

accuracy of CSData on CSMap appears to be less than that of KITTI data. This is mostly
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Figure 4.11: LAV accuracy results using KITTI sequences on KITTI00Map and
KITTI05Map: (a) KITTI00-1, (b) KITTI00-2, (c) KITTI05-1, and (d) KITTI05-2.
Adapted with permission from [2] c© 2020 IEEE.

due to the fact that the ground truth of CSData is not as accurate as that of the KITTI

dataset. CSData uses the GPS receiver on the cell phone with an accuracy of about 10

meters or worse while the GPS receiver for KITTI data set is high quality GPS (model

RT3000v3) with an accuracy of 1 centimeter.
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Figure 4.12: LAV accuracy results using CSData on CSMap: (a) CS-1, (b) CS-2, and (c)
CS-3. Adapted with permission from [2] c© 2020 IEEE.

4.4.2.3 Scale and Slip Factor

Fig. 4.13 shows the estimated SSF in EKF (i.e. sj in (4.10)). These results show the

effectiveness of LAV in detecting systematic bias in wheel odometry. For CSData, SSF

values are between 1.09 to 1.15 while the SSF values from KITTI data are close to 1.00.

It is clear that the vehicle velocity from the Panda OBD II dongle contains bias. It tends to

underestimated vehicle velocity by about 10%. This may be due to incorrect parameters
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Figure 4.13: Scale and slip factor value over time in EKF (4.10): (a) KITTI data and
(b) CSData. Note the sequences are color coded and are not of the same length in time.
Adapted with permission from [2] c© 2020 IEEE.
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Figure 4.14: Scale and slip factor variance over time in EKF: (a) KITTI data and (b)
CSData. Note the sequences are color coded and are not of the same length in time.
Adapted with permission from [2] c© 2020 IEEE.

in gear ratio or wheel/tire size. Also, the fluctuation in SSF in CSData is also large. This

may also be a result of less accurate GPS values or variable tire inflation status since data
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is collected at different times over several months. Nonrigid mounting of the cellphone

also contributes to the issue. Nevertheless, our GBPL algorithm is robust to these factors

and still provides a good localization result. We also shows the variance of sj in Fig. 4.14.

These results show σ2
sssf

decreasing as travel length increases as in Lemma (4).

4.5 Conclusion

We reported our GBPL method that did not rely on the perception and recognition

of external landmarks to localize robots/vehicles in urban environments. The proposed

method is designed to be a fallback solution when everything else fails due to poor light-

ing conditions or bad weather conditions. The method estimated a rudimentry vehicle

trajectory computed from an IMU, a compass, and a wheel encoder and matched it with

a prior road map. To address the drifting issue in the dead-reckoning process and the

fact that the vehicle trajectory may not overlap with road waypoints on the map, we de-

veloped a feature-based Bayesian graph matching where features are long and straight

road segments. GBPL pre-processed maps into an HLG which stores all long and straight

segments of road as nodes to facilitate global localization process. Once the map match-

ing is successful, our algorithm tracks vehicle movement and use the map information to

regulate EKF’s drifting issue. The algorithm was tested in both simulation and physical

experiments and results are satisfying.
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5. VEHICLE-TO-VEHICLE COLLABORATIVE GRAPH-BASED

PROPRIOCEPTIVE LOCALIZATION*

In Chapter 3 and Chapter 4, we propose two PL methods, PLAM and GBPL, as fall-

back solutions that are naturally immune to these extreme environmental conditions be-

cause the PL methods only depend on a prior map and proprioceptive sensors such as

inertial measurement units (IMUs) and/or wheel encoders. PL methods localize vehicles

by extracting features from the estimated vehicle trajectories using the proprioceptive sen-

sors and matching the features with a prior map.

However, the existing approaches suffer from strong dependence on trajectory types

and slow convergence. Combining the PL method with modern vehicle-to-vehicle (V2V)

communication which allows real time information exchange between vehicles, we de-

sign a new collaborative graph-based proprioceptive localization (C-GBPL) method (see

Fig. 5.1). We extract trajectory features which are straight segments of trajectories and

generate a merged query graph by combining inputs from neighboring vehicles. The lo-

calization problem becomes a graph-to-graph matching problem. Our algorithm outputs

potential vehicle locations based on the the maximization of belief functions which often

quickly converges to actual location over time.

Building our existing work on the single vehicle PL [2], our new collaborative frame-

work alleviates the trajectory-dependence issue by exploiting the shared information. To

facilitate the matching, we also pre-process the prior map which extends our heading-

length graph (HLG) by adding super-vertices based on three different vehicle rendezvous

types. The new algorithm that builds on new graph structure speeds up the matching com-

*Reprinted with permission from “Vehicle-to-Vehicle Collaborative Graph-based Proprioceptive Local-
ization” by Hsin-Min Cheng, Chieh Chou and Dezhen Song. in IEEE Robotics and Automation Letters
(RA-L), vol. 6, no. 2, pp. 990-997, April 2021, Copyright c© 2021 IEEE.
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putation. Furthermore we explicitly prove that it can accelerate the convergence of belief

functions for vehicle location. We have implemented the C-GBPL algorithm and tested

it against the existing approach [2]. The C-GBPL algorithm significantly outperforms its

single-vehicle counterpart in localization speed and is less sensitive to trajectory and map

limitations.

5.1 Related Work

Our C-GBPL method is related to localization using different sensor modalities, map-

based localization, and multi-robot localization.

Localization methods can be grouped into two categories: exteroceptive sensors and

proprioceptive sensors according to sensor modalities. Exteroceptive sensors perceive ex-

ternal signals and recognize landmarks in the environment to estimate location. Main-

stream exteroceptive sensors include cameras [14,19,20], laser range finders [26], and GPS

receivers [27,29]. These methods are considerably susceptible to adversary environmental

conditions such as low visibility, extreme weather conditions, or electromagnetic infer-

ence. On the contrary, proprioceptive sensors, such as IMUs [4] and wheel encoders [31]

do not rely on external signals and are inherently immune to external conditions. However,

they are more susceptible to error drift. Recent approaches combining a camera or a laser

ranger finder with an IMU [5] which design is an exteroceptive-proprioceptive sensor

fusion approach, greatly improves system robustness and has become popular in appli-

cations. However, these approaches still heavily rely on their exteroceptive sensors and

cannot function properly under the aforementioned adversary environmental conditions.

Our PL method is a map-based localization [19,40–43]. Thrun et al. [12] classify map

representation into two categories: the location-based and the feature-based. The location-

based maps are represented with specific locations of objects. For example, those exist-

ing geographic maps consisted of coordinate of locations such as Google MapsTM [45]
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Figure 5.1: An illustration of C-GBPL method using a two-vehicle rendezvous case. The
ego vehicle is colored in red and the other vehicle is in black. At rendezvous, we aggregate
vehicle trajectories to form a merged feature graph to facilitate localization. Reprinted with
permission from [3] c© 2021 IEEE.

and OpenStreetMapsTM (OSM) [44]. Geographic maps often based on GPS measure-

ments. Researchers develop map matching techniques such as point-to-point, point-to-

curve, curve-to-curve matching, or advanced extensions [46]. The feature-based map con-

sists of features of interest at its location. An example is ORB features [48] for visual

simultaneous localization and mapping. Our PL methods extract heading-length features

from proprioceptive sensors and prior maps to convert a location-based map matching to

a feature-based map matching which improves localization robustness to sensor drift and

also speeds up computation in the process.

In the area of multi-robot research, decentralized estimation of robot poses has gained

considerable attention [71–74]. The multi-robot systems outperform single-robot sys-

tems in many aspects, such as improving localization efficiently, reducing computational

cost, increasing accuracy and fault tolerance, and accelerating map exploration and cov-

erage. Our work is related to multi-robot localization in particular [71, 75, 76]. To tackle

the decentralized multi-robot localization problem, researchers propose [75] and use [74]

the concept of checkpoints representing delayed synchronization of observation after ex-
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changes of information between robots. Also, the concept is extended to the decentralized

information transfer scheme [77] based on communication constraints. Our problem is

similar in the way that we can benefit from exchanged motion information from other

robots, but it is different because we do not rely on landmarks or exteroceptive sensing to

acquire relative positions with other robots.

PL methods are gaining attention in vehicle localization [1, 2, 40, 66, 67], all of which

are map-aided localization using proprioceptive sensors. Wahlstrom et al. [66] employ a

minimal setup using vehicle speed and speed limit information map. Yu et al. [67] develop

an extended Kalman filter (EKF)-based dead reckoning approach based on odometer and

gyroscope readings and a map is used to correct errors. However, an initial position from

GPS is required for both methods. Our localization solution does not require a known

initial position. In [40], the velocity from the wheel encoder and steering angle are used

for odometry and a particle filter based map matching scheme helps estimating vehicle

positions.

Our group studies localization using proprioceptive sensors under different setups [1,

2]. This paper extends our prior work [2] for a single vehicle to a multiple-vehicle PL

method.

5.2 Problem Formulation and System Design

All vehicles have a prior map of the city. Each vehicle is equipped with proprioceptive

sensors including an IMU and an on-board diagnostics (OBD) scanner which provides

velocity feedback (similar to a wheel encoder). To compensate for direction drift, each

vehicle has a digital compass. To formulate our collaborative localization problem, we

have the following assumptions:

a.0 The ego vehicle is able to navigate in the environment and make turns at appropriate

locations. All vehicles are nonholonomic.
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a.1 The prior road map contains straight segments in most part of its streets and streets

are not strict grids with equal side lengths.

a.2 IMU and compass are co-located, pre-calibrated, and fixed inside the vehicle. Their

readings are synchronized and time-stamped.

a.3 Vehicles communicate with each other in close range and we can assume that they

are on the same street or same intersection.

As part of the input of the problem, a prior road map consisting of a set of roads with

GPS waypoints is required. Common notations are defined as follows,

• Mp represents the prior road map which is a set of GPS positions.

• z = {a, ω, φ,v} denote in situ sensory readings of vehicle, where a denotes ac-

celerometer readings of the IMU, ω denotes gyroscope readings of the IMU, φ de-

notes compass readings, and v denotes velocity readings.

The C-GBPL problem is defined as follows.

Problem 3. When ego vehicle l rendezvous with vehicle l′, localize vehicles collabora-

tively given sensory reading z, z′, andMp.

It is worth mentioning that this problem formulation only concerns a two-vehicle ren-

dezvous case. However, it is the atomic case of multiple vehicles rendezvous case because

an n-vehicle rendezvous case can be easily decomposed into a sequence of n − 1 two-

vehicle rendezvous cases.

5.3 Algorithm

Since our algorithm builds on GBPL algorithm, we begin with a brief review of GBPL

algorithm [2] in Section 5.3.1. Then we will extended it into C-GBPL in Section 5.3.2.
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5.3.1 GBPL Review

As a single vehicle localization method, GBPL employs the proprioceptive sensors to

estimate vehicle trajectory and match it with a prior map. GBPL is a feature-based map

matching method instead of raw trajectory matching because 1) there is a significant drift

issue in the dead reckoning process and 2) the vehicle trajectory may not match the GPS

waypoints on the map where a street may contain multiple lanes and trajectories may differ

due to lane selection or different traffic patterns. GBPL has three main building blocks:

heading length graph (HLG) construction, query generation from sensory data, and vehi-

cle localization. GBPL can be viewed as a feature-based map matching with each feature

to be a straight segment of a road with heading and length as its feature descriptors. HLG

construction reduces the prior map Mp, which is a set of GPS waypoints, to a discrete

feature structure HLG Mh to facilitate the feature matching. Query generation extracts

features from dead reckoning trajectory based on the proprioceptive sensors. The vehi-

cle localization performs the feature-based Bayesian map matching and vehicle tracking

afterwards.

5.3.1.1 HLG construction

HLG is a feature representation of the prior map. In HLG, a vertex vi ∈ Vh represents

a straight and continuous road segment with no intersections. An edge ei,i′ ∈ Eh char-

acterizes the orientation change between the connected two vertices vi and vi′ . Mh have

two types of edges: road intersections and curve segments; and two types of vertices: long

straight segment vertices and short transitional segment vertices. The long straight seg-

ment vertices are used for heading-length matching later. The short transitional segment

vertices are often formed between curve segments or curved roads entering intersections.
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Each vertex contains the following information

vi = {Xi, θi, di, bi}, (5.1)

where Xi = [xT
i,s, · · · ,xT

i,e]
T contain all 2D positions of waypoints on the road segment,

orientation θi ∈ (−π, π] is the angle between the geographic north, di is road segment

length, and bi is the binary variable indicate if the vertex is a long road segment. Only

long road segments (bi = 1) are used in localization which defines vertex subset Vh,l ⊂ Vh

corresponding to long straight segments.

5.3.1.2 Query Generation

When the vehicle is driving down the road, we can estimate the trajectory from sensory

readings with an EKF-based approach and generate a query heading-length sequence. In

the state representation, the state vector Xs,j at time j of the EKF is:

Xs,j := [pIj ,v
I
j ,Θ

I
j ]

T,

where pI ∈ R3, velocity vI ∈ R3, and the X-Y -Z Euler angles ΘI in fixed inertial

frame {I}. The EKF-based dead reckoning provides a vehicle trajectory but is inevitably

drift-prone. Instead of using it for directly matching to the prior map, we extract heading

and length of the straight segments for our feature-based matching. The resulting query

heading-length sequence is denoted by

Q := {Θq, Dq},

where Θq = {Θq,k|k = 1, · · · , n}, Dq = {dq,k|k = 1, · · · , n}, and Θq,k and dq,k are the

observations of heading and length from EKF for a straight segment k.
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5.3.1.3 Vehicle localization

This is two-step process: i) perform global graph match that finds the query-HLG

match and ii) track the vehicle location to provide continuous localization result after a

global match is identified. Since the second step is the trivial, we focus on global graph

match only. Given Q = {Θq, Dq}, let us denote a candidate heading-length vertex se-

quence in Mh by M := {Θ, D} = {{θk, dk}|k = 1, · · · , n} correspondingly. As a

convention in this paper, for random vector ?, µ? represents its mean vector. The belief

that Q and M match is the following conditional probability

P (µQ = µM |Q,M) ∝
n∏
k=1

fT (t(θq,k, θk))f(z(dq,k, dk)) (5.2)

due to independent sensor noises where fT (t(θq,k, θk)) is the probability density function

(PDF) of Student’s t-distribution and f(·) is the PDF of standard normal distribution. As

the length of the matching sequence grows, the belief function converges for the correct

matching and a global location is identified when thresholding condition is satisfied and

only one solution remains. We search for the best matching by generating different candi-

date sequences on the map using breadth-first search on the HLG.

5.3.2 C-GBPL

In a single vehicle case, we simply match query sequence with a candidate sequence

constructed from the HLG. This changes when vehicles can talk to each other. The ren-

dezvous events describe moments when a vehicle moves into another vehicle’s commu-

nication range (assumption a.3). At the moment of rendezvous, one vehicle can pass its

query sequence to the other. The two query sequences combine into a query graph which

will be matched against HLG. The matching problem evolves into a graph-to-graph match-

ing problem.
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Figure 5.2: C-GBPL system diagram. Reprinted with permission from [3] c© 2021 IEEE..

Fig. 5.2 show the system diagram of C-GBPL. Before rendezvous, each vehicle runs

GBPL algorithm in [2]. In C-GPBL, we propose the following building blocks to compose

and solve the graph-to-graph matching problem to simultaneously improve localization

efficiency and reduce computational cost. The first block is HLG modification where we

modify HLG with super vertex groups to capture potential rendezvous locations to facil-

itate the graph-to-graph matching process. With the modified HLG, the remaining three

blocks are rendezvous event identification, merged query graph, and multi-vehicle belief

aggregation. We will detail each block in separate subsections.

5.3.2.1 HLG Modification

At rendezvous, the vehicle pair must be within communication range of each other to

exchange information (Assumption a.3). This only occurs with a limited set of possibilities

and can be utilized to facilitate graph-matching because we can trim the searching space on

subset of vertices inMh by focusing on the possible rendezvous locations. We capture all

possible rendezvous locations by augmenting the pre-processed HLG with an additional

layer which are candidate rendezvous super vertex (CRSV) groups (see Fig. 5.3) which

only have three types.

• Type 0: same vertex. This type is embedded in the original HLG and does not

require additional processing. The number of Type 0 CRSV is O(Vh,l).
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Figure 5.3: HLG Modification. (a) A prior road map overlay with edges (in light yellow)
and vertices (in gray). (b) An illustration of two CRSV types: Type 1 coupled vertices
(green color) and Type 2 intersection sharing vertices (orange color). Reprinted with per-
mission from [3] c© 2021 IEEE.

• Type 1: coupled vertices. We define coupled vertices by pair of vertices with oppo-

site directions on same road segment. In Fig. 5.3(b), we show examples of coupled

vertices in green color. The number of Type 1 CRSV is also O(Vh,l).

• Type 2: intersection sharing vertices. We define intersection sharing vertices as a

group of vertices sharing the same road intersection. For vertices in a group, the

corresponding road segments share the same intersection. In some cases that the

road intersections are connected with a curved road segment (e.g. an edge inMh),

the nearest vertices are included instead. We show an example in Fig. 5.3(b) where

v7 and v8 are considered as intersection sharing vertices. The number of Type 2

CRSV is O(Vh,l) which happens when a map consists with square grids and bi-

directional roads.
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5.3.2.2 Rendezvous Event Identification

On the vehicle side, we also need to identify corresponding rendezvous types using

on-board sensors.

Recall that the ego-vehicle index is denoted by l and the other vehicle index by l′,

where l, l′ ∈ L. We develop algorithm from ego-vehicle l view and as it is established vice

versa for the other vehicle l′ where prime symbol ′ indicates the other vehicle. We label

the vehicle status by ‘V ’ or ‘E’ based on whether it is on a vertex or an edge. For vehicles

(l, l′), this results in four kinds of rendezvous events denoted by EE,E , EE,V , EV,E , and

EV,V . To further reduce the four kinds into the three types in the CRSV groups, we check

whether vehicles (l, l′) have the same headings at rendezvous. Note whenever vehicle

changes heading, it does not have stable heading. Thus we specify vehicle rendezvous

heading by its latest stable heading. We set binary variable to bθ = 1 if vehicle (l, l′)

have same headings and bθ = 0 otherwise. See Fig. 5.4 for examples. The three types are

identified as follows,

• Type 0: When bθ = 1, vehicles travel through same vertex in all four rendezvous

events as shown in top four figures in Fig. 5.4. Vehicle trajectories are linked by

hidden super vertices (Type 0) of HLG.

• Type 1: When bθ = 0, EV,V and vehicles have opposite orientations, vehicles travel

through vertices corresponding to same road segment with opposite directions. Their

trajectories are linked by coupled vertices (Type 1) of HLG. This case is shown in

the right bottom of Fig. 5.4.

• Type 2: When bθ = 0 and {EE,E, EE,V , EV,E} or EV,V and vehicles have different

orientations other than opposite, vehicles rendezvous at intersection from different

directions which are connected by intersection sharing vertices (Type 2) of HLG.
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Figure 5.4: Rendezvous events with same/different heading (bθ) which we use to identify
vehicle relative locations. The yellow rectangular boxes mark out the latest vehicle stable
headings used to determine bθ. Reprinted with permission from [3] c© 2021 IEEE.

5.3.2.3 Merged Query Graph

With different rendezvous event types identified, we can combine individual query

sequences and form a merged query graph. We denote the merged query graph by QG

which consists of nodes and edges in query sequences/graph Q and Q′ for vehicles l and

l′, respectively. They are connected together using the type info.

5.3.2.4 Multi-Vehicle Belief Aggregation

The main part of global localization is the matching of the merged query graph QG to

the corresponding part on the modified HLG. This requires us to establish a belief function

to evaluate QG and a candidate matching graph MG on the map.

The type associated with QG helps us identify the corresponding MG which consist

of nodes in M and M ′, where M and M ′ are candidate sequences for vehicles l and l′,
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respectively.

At rendezvous, the matching belief from vehicle l′ is aggregated with matching belief

from ego-vehicle l. We extend the single vehicle belief function in (5.2) to a multi-vehicle

belief.

Lemma 5. The multi-vehicle belief function is the conditional probability for the joint

belief function which is obtained by multiplying individual components below.

P (µQ = µM , µQ′ = µM ′|Q,M,Q′,M ′) (5.3)

= P (µQ = µM |Q,M)P (µQ′ = µM ′|Q′,M ′)

∝
n∏
k=1

fT (t(θq,k, θk))f(z(dq,k, dk))×

n′∏
k′=1

fT (t(θq,k′ , θk′))f(z(dq,k′ , dk′)),

where n and n′ are number of observations in Q and Q′, respectively, and k and k′ are

index variables.

Proof. Note that µQ = µM and µQ′ = µM ′ are independent given Q,M,Q′ and M ′. We

decompose (5.3) into two terms

P (µQ = µM , µQ′ = µM ′ |Q,M,Q′,M ′) (5.4)

=P (µQ = µM |Q,M,Q′,M ′)P (µQ′ = µM ′|Q,M,Q′,M ′)

Since µQ = µM is independent of Q′,M ′ given Q,M , we write

P (µQ = µM |Q,M,Q′,M ′) = P (µQ = µM |Q,M), (5.5)
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which is the belief that Q and M match in (5.2). Similarly,

P (µQ′ = µM ′|Q,M,Q′,M ′) = P (µQ′ = µM ′ |Q′,M ′). (5.6)

Plugging (5.5), (5.6) using the form derived in (5.2) into (5.4), we obtain the lemma.

Fig. 5.5 illustrates the ego vehicle belief and aggregated multi-vehicle belief after ren-

dezvous with the other vehicle.

(a) (b)

Figure 5.5: An example of multi-vehicle belief aggregation (best viewed in color). The
probability value of each location is colored according to color bar. (a) The candidate loca-
tions with corresponding probabilities of ego vehicle. (b) After rendezvous with the other
vehicle, the candidate locations and probabilities are updated. There is a significant drop
in number of candidate locations after rendezvous. Reprinted with permission from [3]
c© 2021 IEEE.

5.3.2.5 Algorithm Framework

Lemma 5 provides us with a method to localize the vehicle by thresholding the belief

function over candidate solution MG. It can be done by applying a breadth-first search
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strategy starting with matching CRSV types. We summarize the C-GBPL framework in

Algorithm 2. We denote the set of Type 1 CRSV by VT1 where VT1 = {VT1,m1
|m1 =

1, · · · , nT1} and each VT1,m1
contain vertices in the same group. nT1 is the cardinality of

VT1 . Similarly, We define VT2 = {VT2,m2
|m2 = 1, · · · , nT2}. Recall that Vh,l is vertex

set of HLG. For vi ∈ Vh,l, we augment information of CRSV type and element index for

searching purpose. Note that vi may belong to more than one CRSV types.

Not all pairs of candidate sequences M and M ′ satisfy the CRSV type constraint. Let

us use Fig. 5.6 as an example. In the left figure, we show trajectories of two vehicles and

their rendezvous. The right figure shows the graph matching between M and M ′ in HLG

Mh. In this example, the QG is classified as Type 2 and thus MG belongs to Type 2 CRSV

group. We show three candidates (M ′
1, M ′

2, M ′
3) for ego vehicle. Only M ′

1 satisfies the

CRSV and feature sequence matching constraints and both M ′
2 and M ′

3 are trimmed.

...
M’1 M’2M’3

M

Ego vehicle trajectory 

Ego vehicle trajectory (candidates)

The other vehicle trajectory

M

M’1M’3
M’2

Figure 5.6: An example of graph-based candidate trimming. Left figure: we show tra-
jectories of two vehicles and their rendezvous. Right figure: HLG Mh and candidate
heading-length vertex sequence M and M ′. We show three candidates (M ′

1, M ′
2, M ′

3) for
ego vehicle and trim candidates are not correct CRSV type, both M ′

2 and M ′
3 are trimmed.

Reprinted with permission from [3] c© 2021 IEEE.

To reduce possible prior correlations, we use the following two rules. First, when
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the ego vehicle rendezvouses the other vehicle, we do not update its belief if they have

same candidate vertices. Second, we only update the ego vehicle belief once for the same

rendezvous with the other vehicle. According to assumption a.3, this implies the next

rendezvous happens when either vehicles has new observations.

In Lemma 5, the product format of belief function in (5.2) still holds for multi-vehicle

case as described in (5.5) and (5.6). The only difference is the number of nodes involved

in the product. Computing the multi-vehicle beliefs in (5.3) can be computation intensive

if we do not effectively reuse the prior computation. We store the prior computation from

each individual vehicle and exchange the information between vehicles. For each vehi-

cle, we define the candidate vertex information set Ck where k = 1, · · · , n is the length

of the query sequence. The candidate vertex set is denoted by Ck = {{vi,VM,i, pi}|i =

1, · · · , nCk},where each element in Ck record the candidate vertex vi (the starting vertex of

the trajectory/path), VM,i is the set of vertex path, and the matching probability pi in (5.2)

and nCk is the cardinality of Ck. By thresholding the belief function over candidate solu-

tions, we might still get many candidate solutions because the hypothesis is conservative

in rejection as in GBPL [2]. The Otsu method [63] can be applied to further trim candidate

trajectories with lower probabilities. If more than one solution survives, it indicates that

more observations are needed to localize the vehicle.

We now analyze the complexity of C-GBPL algorithm. The upper bound of candidate

vertex cardinality is Vh,l and thus it takes O(|Vh,l|) to traverse Cn and C ′n. For Type 0

cases, we can find set intersection of Vi and V ′i inO(|Vh,l| log(|Vh,l|)) by sorting and binary

search. Similarly, for Type 1 or Type 2 cases, we can find (vi, v
′
i) pairs with the same group

index in O(nT1 log(nT1)) or O(nT2 log(nT2)). In the worst case scenario, both nT1 and nT2

are O(|Vh,l|). Then line 7, 10, 13 are the same in complexity of O(|Vh,l| log(|Vh,l|)).

The classification of probabilities into two groups is O(|Vh,l|) using Hoare’s selection

algorithm. We summarize the computational complexity of Algorithm 2 in Lemma 6.
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Lemma 6. The computation complexity of the C-GBPL is O(|Vh,l| log(|Vh,l|)).

5.3.3 Localization Analysis

Intuitively, combining inputs from the other vehicle helps the ego-vehicle to reduce

ambiguity in map matching and hence leads to faster convergence in the localization pro-

cess. Let us show this by analyzing the how conditional probability of localization given

the matching sequence changes.

Let us define three binary events: Ak = 1 if µdq,k = µdk , Bk = 1 if µθq,k = µθk ,

and Ck = 1 if vertex k in Mh is the actual location. Same as [2], we employ hypothesis

testing to reject unlikely matching by setting the significance level α, where α is a small

probability. According to the definition, P (Ak|Ck) = (1−α) and and P (Bk|Ck) = (1−α)

are the conditional probabilities that a correct matched sequence survive the test for pair

µdq,k = µdk and µθq,k = µθk correspondingly. For convenience, for vehicle l we define

joint events: A = A1 · · ·An, B = B1 · · ·Bn, and C = C1 · · ·Cn. The joint event C is

equivalent to say that M := {Θ, D} represents the true trajectory, whereas we know joint

event AB from sequence matching. Similarly, for vehicle l′ we define joint events: A′,

B′, and C ′. We define a binary event E if vehicle l rendezvous with l′. Also, there are n

observations for vehicle l and n′ observations for vehicle l′ at the rendezvous.

In the analysis, we denote nv = |Vh,l| as the cardinality of Vh,l and nb as the expected

number of neighbors for each vertex. nb depends on how many streets an intersection

has. We describe map/trajectory property in a rudimentary way by assuming kd levels

of distinguishable discrete headings in [0, 2π) and kl levels of distinguishable discrete

road lengths. Each vertex takes a heading value and length value with equal probabilities

of 1/kd and 1/kl correspondingly. Generally speaking, we know nv � kd ≥ nb and

nv � kl ≥ nb for most maps. We denote nc the total observations of vehicle l combining

of vehicle l′ trajectory given event E. We have the following lemma.
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Algorithm 2: C-GBPL
Input: Mh, {Cn, Q} and {C ′n, Q′}
Output: vehicle l location or updated {Cn, Q}

1 Cres ← ∅, pres ← ∅ O(1)
2 Identify rendezvous event and Recognize CRSV type using Q and Q′ O(1)
3 Form merged query graph QG O(1)
4 Vi ← latest vertices in Cn, V ′i ← latest vertices in C′n O(|Vh,l|)
5 switch CRSV Type do
6 case ‘Type 0’ do
7 Vi ← intersect of Vi, V ′i O(|Vh,l| log(|Vh,l|))

8 case ‘Type 1’ do
9 Vi ← ∀vi ∈ Vi with label T1, V ′i ← ∀v′i ∈ V ′i with label T1 O(|Vh,l|)

10 Find (vi, v
′
i) pair with same element index; O(nT1 log(nT1 ))

11 case ‘Type 2’ do
12 Vi ← ∀vi ∈ Vi with label T2, V ′i ← ∀v′i ∈ V ′i with label T2 O(|Vh,l|)
13 Find (vi, v

′
i) pair with same element index; O(nT2 log((nT2 ))

14 for vi ∈ Vi do O(|Vh,l|)
15 Access (vi, v

′
i) pair information O(1)

16 p← pi · p′i O(1)
17 pres ← pres ∪ p O(1)
18 Cres ← Cres ∪ Cn,i O(1)

19 Classify pres using Otsu’s method; O(|Vh,l|)
20 Remove elements in Cres with lower probabilities; O(1)
21 if |Cres| == 1 then
22 Return vehicle location; O(1)
23 else
24 Cn ← Cres O(1)
25 Return {Cn, Q}; O(1)

Lemma 7. The joint conditional probability that M = {Θ, D} is the true matching se-

quence given Q = {Θq, Dq} matches M , M ′ is the true matching sequence given Q′

matches M ′ with rendezvous is,

P (C, C ′|A,B,A′,B′, E) =
[
(1− α)2kdkl

]n+n′ 1

nnc−1
b

1

nv
. (5.7)

Proof. Applying the Bayesian equation, we have

P (C, C ′|A,B,A′,B′, E)

=
P (A,B,A′,B′, E|C, C ′)P (C, C ′)

P (A,B,A′,B′, E)
(5.8)

93



SinceA, B,A′, B′ are conditional independent toE given C and C ′, we have P (A,B,A′,B′, E|C, C ′) =

P (A,B,A′,B′|C, C ′)P (E|C, C ′). Also, A and B are conditional independent to A′ and B′

given C and C ′ since each vehicle perform GBPL independently. Thus we have P (A,B,A′,B′|C, C ′) =

P (A,B|C) and P (A,B,A′,B′|C, C ′) = P (A′,B′|C ′). We rewrite (5.8) by

P (C, C ′|A,B,A′,B′, E)

=
P (A,B|C)P (A′,B′|C ′)P (E|C, C ′)P (C, C ′)

P (A)P (B)P (A′)P (B′)P (E)

=
P (A,B|C)
P (A)P (B)

P (A′,B′|C ′)
P (A′)P (B′)

P (C, C ′|E) (5.9)

It is shown in [2] that the first two terms are

P (A,B|C)
P (A)P (B)

= (1− α)2n 1

(kdkl)n
, (5.10)

P (A′,B′|C ′)
P (A′)P (B′)

= (1− α)2n′ 1

(kdkl)n
′ . (5.11)

Joint conditional probability P (C, C ′|E) can be seen as two vehicle trajectories stitch at

rendezvous and form a combined trajectory. We know P (C1) = 1/nv given there are nv

possible solutions, and P (C2|C1) = 1/nb because there are nb neighbors of C1. And the

combined trajectory has nc unique observations where

max(n, n′) ≤ nc ≤ (n+ n′). (5.12)

By induction,

P (C, C ′|E) =
1

nnc−1
b

1

nv
. (5.13)

Plugging (5.10)-(5.13) into (5.9), we obtain the lemma.

P (C, C ′|A,B,A′,B′, E) reflects how fast the conditional probability increase as query
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graph grows when combining inputs from two vehicles. Its counterpart in single vehicle

localization is P (C|A,B) from [2]. Comparing the two, we have the following theorem.

Theorem 1. The C-GBPL algorithm converges to actual localization is at least as fast as

GBPL, because

P (C, C ′|A,B,A′,B′, E) ≥ P (C|A,B) (5.14)

Proof. For single vehicle, it is shown in [2] that the conditional probability that M =

{Θ, D} is the true matching sequence given Q = {Θq, Dq} matches M is,

P (C|A,B) = [(1− α)2kdkl]
n 1

nn−1
b

1

nv
. (5.15)

Comparing (5.7) with (5.15), we have

P (C, C ′|A,B,A′,B′, E)

P (C|A,B)
=
[
(1− α)2(kdkl)

]n′
nnc−nb ≥ 1, (5.16)

Because kl > 1
1−α and kd > 1

1−α are generally true, nb > 1, and nc − n ≥ 0 according to

(5.12).

The minimum value of nc happens when vehicle trajectories are the same. The maxi-

mum value of nc happens when vehicles have non-overlapping trajectories. When n′ = 0,

we have nc = n and thus (5.16) has a ratio of 1. In such case, there is no gain on local-

ization efficiency. However, for most cases, P (C, C ′|A,B,A′,B′, E) is much bigger than

P (C|A,B) which results in significant increase in localization speed.

5.4 Experiments

We have implemented the proposed C-GBPL method using MATLAB and validated

the algorithm in both simulation and physical experiments. The experiments are based

on a map of College Station, Texas, U.S. which is 3.24 km2 in area with 52.7 km roads.
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The map is from OSM and termed as CSMap. We pre-process it to the modified HLG

with 1102 nodes. For comparison purpose, we evaluate its performance against GBPL [2],

which is the single vehicle localization counterpart.

5.4.1 Simulation

5.4.1.1 Data Generation

We track the localization performance of the 25 seed vehicles as vehicles of interests

and gradually increase other vehicles on the street from a total of 25 to 1000 vehicles on

the map. It simulates sparse to moderately dense traffic. At 1000 vehicles in CSMap, it

means that the mean car-space is around 53 meters. All simulation results are the statistics

of the 25 seed vehicles.

27%

43%

30%

Type 0
Type 1
Type 2

(a)

27%

36%

37%

Type 0
Type 1
Type 2

(b)

Figure 5.7: Pie chart of rendezvous events. (a) Trajectory type: random walk. (b) Trajec-
tory type: same-street. Reprinted with permission from [3] c© 2021 IEEE.

To generate vehicles trajectories, each vehicle starts at random vertices at the same

time. Vehicles take two different driving strategies: random-walk and same-street. In the
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random-walk strategy, the vehicle takes random turns at intersections. For the same-street

strategy, the vehicle keeps driving on the same street. In reality, a vehicle’s driving be-

havior is somewhere between the two extreme types. Fig. 5.7(a) and Fig. 5.7(b) show

rendezvous event distribution for random walk and same-street for 1000 simulated ve-

hicles, respectively. It is interesting that random walk generate more type 1 events (i.e.

vehicles meet at the same street with different direction) while same street generates more

type 2 events (vehicles meet at intersections).

5.4.1.2 Localization Comparison

To compare the two algorithms, we first compute the failure rate. A localization failure

occurs when the algorithm fails to converge to a unique location. It may happen due

vehicle trajectory or map itself. For example, if a city map consists of perfect square grid

everywhere, our algorithm will fail. Fig. 5.8 shows the failure percentage for same-street

strategy. We omit the failure percentage of random walk strategy because in this setting

all vehicles can be localized. It is expected because random walk generates more unique

query graphs. From Fig. 5.8, it is clear that C-GBPL utilizes the information from other

vehicles and hence reduces failure rate to zero as traffic increases.

When GBPL and C-GBPL algorithms successfully localize the vehicle, it is also im-

portant to compare how fast the localization process takes. we use n which is the number

of straight segments in the query to measure localization speed, because it tells how many

inputs it takes to localize the vehicle. For a given n, the algorithm may provide multiple

solutions if there are many similar routes in the map. If the number of solutions is one,

then the vehicle is uniquely localized. Fig. 5.9 illustrate n’s mean and ±σ range for both

algorithms under the two driving strategies where σ is the standard deviation of n. Again,

C-GBPL outperforms GBPL with a smaller n. The mean value n for C-GBPL decreases

as traffic increases while the mean value for n for GBPL remains unchanged.
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Figure 5.8: Failure rate percentage of trajectory type: same-street. Reprinted with permis-
sion from [3] c© 2021 IEEE.
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Figure 5.9: Localization speed comparison. Each marker position is the mean, and each
vertical segment is its corresponding 1 ± σ range. (a) Trajectory type: random walk. (b)
Trajectory type: same-street. Reprinted with permission from [3] c© 2021 IEEE.
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5.4.2 Physical Experiments

We compare GBPL and C-GBPL in physical experiment and test on different ren-

dezvous scenarios. We collect three sequences which correspond to the trajectories of

three vehicles. We record IMU readings at 400Hz and compass readings at 50Hz using a

Google PixelTM phone. Also, we access vehicle speed readings at 46.6Hz in average use

an panda OBD-II Interface which provide velocity feedback from wheel encoder. To test

C-GBPL, we vary different rendezvous time of these three vehicles and test on six ren-

dezvous scenarios as shown in Fig. 5.10. We use #sols (number of solutions) for a given

n to measure algorithm efficiency. For a given n, if the algorithm has fewer #sols than the

other algorithm, the better in efficiency.

Tab. 5.1 shows the comparison between GBPL and C-GBPL in both localization effi-

ciency and speed in terms of #sols and n accordingly. In summary, in all tests C-GBPL

has better efficiency and with a speedup factor of 1.6x on average.

Table 5.1: LOCALIZATION SPEED AND EFFICIENCY. c© 2021 IEEE.

GBPL C-GBPL

Fig. 5.10 Vehicle CRSV Speed Efficiency Speed Efficiency
(Case) (Ego, the other) (Type) (n) (#sols) (n) (#sols)

(a) (car3, car1) Type 2 5 122 1 1
(b) (car2, car1) Type 0 6 5 5 1
(c) (car2, car1) Type 2 6 3 4 1
(d) (car1, car2) Type 2 5 9 3 1
(e) (car1, car2) Type 0 5 9 4 1
(f) (car2, car1) Type 0 6 3 4 1

5.5 Conclusion

To assist vehicles in extreme weather or extreme environmental conditions, we devel-

oped the C-GBPL method that did not rely on the perception and recognition of external
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Figure 5.10: Rendezvous of three vehicles under different scenarios. We show the ego
vehicle trajectory in red and mark straight segments in translucent yellow. The other vehi-
cle trajectory is shown in gray and straight segments in translucent green. Reprinted with
permission from [3] c© 2021 IEEE.

landmarks to localize robots/vehicles in urban environments. The method was a multiple

vehicle/robot collaborative localization scheme using V2V communication which com-

bines features from rendezvous vehicles to accelerate the mapping process. We identified

different rendezvous events to form the merged query graph. We performed graph-to-

graph matching by aggregating vehicle prior beliefs and trim candidate vertex. We proved

that the collaborative localization strategy is faster than its single vehicle counterpart in

general cases. The algorithm was tested in both simulation and physical experiments and

show superior performance over the single vehicle counterpart.
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6. LOCALIZATION IN INCONSISTENT WIFI ENVIRONMENT*

In this Chapter, we propose a PL method in indoor environment with WiFi assistance.

This is because indoor localization has become more important in recent years as mobile

robots and mobile device users often need to find their locations where global positioning

system (GPS) signals are unavailable. One low-cost solution is to utilize WiFi signals in

the environment. The number of WiFi access points (APs) has dramatically increased in

the past few years. A large number of APs are temporarily generated by cellphones and

other mobile devices. Moreover, more and more infrastructural APs are equipped with

beamforming capabilities which adjust radiation patterns according to client locations.

These APs have large variation in their signal fields. We name those APs as inconsis-

tent APs. Fig. 6.1 shows an example of a WiFi environment with inconsistent APs which

dramatically change received signal strength (RSS) patterns. When the client cannot in-

terrogate APs for their whereabouts and signal pattern changes, the existing WiFi local-

ization approaches cannot handle inconsistent WiFi environments well. Their assumption

of small variations in RSS spatial distribution is broken because a majority of APs may be

inconsistent.

Building on existing WiFi fingerprinting approach, our method also employs Gaussian

processes (GPs) to establish belief functions from priorly collected WiFi reference data.

However, our approach utilizes two important designs to handle inconsistent APs. First,

majority voting is introduced to the initial matching phase which allows us to develop a

statistical hypothesis test to filter out inconsistent APs that are obvious out of places. Sec-

ond, we use a windowed approach by employing a window of recent RSS readings along

*Reprinted with permission from Springer Nature Customer Service Centre GmbH: “Localization in
Inconsistent WiFi Environment” by Hsin-Min Cheng and Dezhen Song 2016. International Symposium on
Robotics Research (ISRR), Copyright c© 2017.
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Figure 6.1: Example of localization scenarios. Left: APs and their RSS readings at refer-
ence collection time. Right: APs and their RSS readings at localization time. Even though
the robot’s trajectory is identical, the RSS pattern may be very different which leads to
unsatisfying localization results. Reprinted with permission from [59].

with relative motion information provided by inertial measurement units (IMU) to develop

posterior distribution of location. We formally derive the conditional distribution and de-

termine the length of the time window by minimizing Shannon entropy. At last, we apply

the maximum likelihood estimation (MLE) method to obtain refined localization results.

We have implemented our algorithm and compared it with the state of the art k-Nearest-

Neighbor (k-NN) approach. The experimental results show that our method outperforms

its counterpart in inconsistent WiFi environments. Specifically, our algorithm achieves a

mean localization error of less than 3.7 meters when 70% of APs are inconsistent.

6.1 Related Work

Our work is related to the simultaneous localization and mapping (SLAM) [12] using

on-board sensors. SLAM using a lidar [24] and/or a camera [14, 23, 78–80] can be more

accurate but is computation intensive and suffers from reliability issues and specific re-

quirements for environments. WiFi localization has its own advantages when considering

102



sensor size, power, and cost. Recently, researchers have applied the graph-SLAM structure

using WiFi and other wireless signals [81–83]. These methods provide good localization

results, but the inconsistent WiFi environments have not been considered as SLAM in

dynamic environments remains a difficult problem [84, 85]. SLAM approaches usually

assume stationary environment/landmark locations. The underlying assumption that WiFi

APs or RSS patterns can be treated as stationary landmarks is no longer true under incon-

sistent WiFi environments. In fact, inconsistent WiFi environments are highly dynamic

instead of just containing a few moving landmarks in a largely stationary background.

WiFi localization has been a popular research area [90, 104, 113]. We can classify the

existing methods into four types: angle based, time based, RSS modeling based, and fin-

gerprinting based approaches (see Tab. 6.1). Angle based approaches use AP with multiple

antennas to compute Angle of Arrival (AoA) of the multi-path signals received at each AP

and localize through triangulation. Time based approaches include time of arrival (ToA)

or time difference of arrival (TDoA) relies on the propagation time of signals traveling

from a transmitter to a receiver. However, precise time synchronization is required which

is not available using commodity WiFi. Both the two methods relies on known AP loca-

tions, and the client needs to interrogate APs for their locations or precise synchronization.

Although more accurate in general, these two methods bear high cost in infrastructure and

are difficult to be deployed. The RSS modeling based approaches model WiFi RSS signal

Table 6.1: OVERVIEW OF WIFI INDOOR LOCALIZATION METHODS. REPRINTED WITH

PERMISSION FROM [59].

Method Hardware cost Known Communications System/Solution
AP Locations b/w AP and client

Angle based (AoA) High Y Y [86–89]
Time based(ToA/ TDoA) High Y Y [90–94]

RSS modeling based Low Y N [74, 95–101]
Fingerprint based Low N N [83, 102–112]
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propagation in the space assuming known AP locations, which have advantages of low cost

and easy deployment. These methods often suffer from low accuracy because signal atten-

uation is often complex and hard to be predicted. Fingerprinting based approaches require

priorly-mapped WiFi RSSs in the working space to construct a database for localization

purpose which does not require communication between APs and the client or known AP

locations. Our approach inherits the benefits with focus on addressing the dynamic signal

pattern issues.

In order to improve WiFi localization accuracy, auxiliary sensors are combined into the

above approaches, such as cameras, which are used to recognize landmarks, and IMUs for

motion estimation [108,114–116]. The sensor configuration in our approach is the same as

the latter. Existing work in the IMU-assisted WiFi localization systems [117,118] localize

pedestrians by utilizing step count information to mitigate IMU drifting issue. However,

the step count information is not available for robots and these methods have not explicitly

consider inconsistent WiFi environments.

To deal with uncertainties in WiFi environment, existing works detect outliers using

k-NN [119, 120], penalize RSS readings from uncertain APs, and signify APs with strong

RSS readings in the k-NN method. Laoudias et al. [120] assume the fault model of AP with

on and off status and set threshold on sum of distance of k-NN method to mitigate errors

from faulty APs. These works have demonstrated the advantages of removing outliers.

However, they use only RSS at the current moment which may be challenging for moving

users who experience signal fluctuations. We take a windowed approach by using sequence

matching which greatly improves the robustness to inconsistent APs. AP selection is not a

new technique in WiFi localization. However, the main focus is to reduce the computation

cost and improve accuracy instead of handling inconsistent WiFi environments. Existing

approaches choose APs with the highest RSS observation [121] or select APs based on

entropy-based information gain criterion [122]. They cannot be guaranteed the selected
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APs are reliable in inconsistent WiFi environments due to different design purposes.

6.2 Problem Formulation

6.2.1 Application Scenario and Assumptions

Our system extends the aforementioned fingerprinting methods, which assume that

there is a mobile robot equipped with SLAM ability to pre-scan the environment to es-

tablish a database of WiFi RSS readings and their corresponding listening locations. The

database is referred to as the WiFi reference data thereafter. It is clear that the reference

data contain inconsistent AP RSSs.

At client side, the robot also perceives WiFi signal strengths and accumulates them

over time which are referred to as WiFi query data. It is true that WiFi query data may

also contain noisy data from inconsistent APs. The focus here is the client side localiza-

tion problem in the presence of inconsistent AP signals in both query and reference data.

Each localization client is equipped with an IMU. The client may be a mobile robot or a

cellphone user. To focus on the most relevant issues, we have the following assumptions:

1. WiFi and IMU readings have been synchronized and time-stamped.

2. The RSS reception noises are Gaussian and IMU signal noises are white.

It is also worthing noting that we do not assume that we start with a known initial po-

sition and hence our localization is a global location problem instead of an incremental

localization problem.

6.2.2 Notations and Problem Definition

Common notations are defined as follows,

• Reference data: D = {(zr,i, Xr,i)|i = 1, · · · , n} is composed of n input-output pairs

where i is the index variable, Xr,i is the position in 2D or 3D Cartesian coordinate
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system, and vector zr,i contains the WiFi RSS readings at Xr,i. Subscript r refers to

the reference data. zr,i’s dimension is determined by number of APs in the environ-

ment. Let us define AP index m ∈ M where M := {1, · · · ,mmax} is the AP index

set. There are mmax = |M | distinct APs.

• Query data: subscript q refers to query data. Let j be the time index where j ≥ 0.

Vector zq,j contains all WiFi RSS readings at time j. The sequence of WiFi query

data from the beginning to time j is denoted as

zq,0:j = {zq,0, · · · , zq,j}. (6.1)

• IMU readings from the beginning to time j are denoted as a0:j and ω0:j for acceler-

ations and angular velocities, respectively. Note that a0:j and ω0:j contain a lot more

entries than that of query set in (6.1) due to high sampling frequency.

With important notations defined, let us formulate the localization problem,

Problem 4. Given D, zq,0:j , a0:j , and ω0:j at time j, estimate location Xj .

6.3 System Design and Algorithm

Our system architecture is illustrated in Fig. 6.2 which contains four main blocks

shaded in gray: 1) Reference pre-processing where we construct RSS-location belief

model using the reference data, 2) Query pre-processing where we match a time window

of query APs with reference data and reconstruct the corresponding window of relative

motion of the client using IMU inputs, 3) Query AP selection where we match query WiFi

with those in the reference data to remove unmatched query APs, and 4) Location esti-

mation where we fuse the recent relative motion with historical RSS to localize the client
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Figure 6.2: System Diagram: the light gray region needs only one time computation and all
the dark gray regions are computed for each frame. Reprinted with permission from [59].

and determine the optimal window size for next time frame. We begin with reference pre-

processing (Box 1 of Fig. 6.2) where we construct an RSS-location belief model from the

WiFi reference data using GPs.

6.3.1 Reference Pre-processing

Let Xr,i be i-th location where reference data is collected and zr,i,m be the perceived

RSS for the m-th AP at this location. Xr,i can be either 2D or 3D depending on the

environment. Let Xr := [Xr,1, · · · , Xr,n]T be a location matrix containing all collection
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locations in the reference data D. Define zr∗,m := [zr,1,m · · · , zr,n,m] as all RSSs for the

m-th AP in the reference data. Then the combined data set Dm := {zr∗,m,Xr} be the

training set of the m-th AP to instantiate a GP to characterize a regression model fm(·)

between Xr and zr∗,m. For each element in zr∗,m,

zr,i,m = fm(Xr,i) + ε, (6.2)

where ε ∼ N (0, σ2
nm) is the observation noise and σ2

nm is the variance. For two different

locations Xr,i and Xr,i′ , we employ the kernel function km(·) in GP to characterize the

correlation between their function values, namely, fm(Xr,i) and fm(Xr,i′):

km(Xr,i, Xr,i′) = σ2
fm exp(− 1

2λ2
m

|Xr,i −Xr,i′ |2), (6.3)

where σ2
fm is the signal variance and λm is the length scale. The covariance matrix Km

is an n × n matrix with the (i, i′)-th element Km(i, i′) = km(Xr,i, Xr,i′) where i, i′ ∈

{1, · · · , n}. For the m-th AP, the predicted function value z̃ for an arbitrary location Xa

conditioned on Xr and zr∗,m is

z̃ = KT
a (Km + σ2

nmI)−1zr∗,m, (6.4)

where I is an n-dimensional identity matrix and Ka is an n × 1 vector which captures

the relationship between Xa and Xr using (6.3), Ka(i, 1) = km(Xr,i, Xa) where i ∈

{1, · · · , n}. The values of parameters σ2
fm, σ2

nm and λm are learned using hyperparameter

estimation mentioned in [83]. Since GP is a zero mean process, we subtract the mean of

zr∗,m before training and add it back after to get the required z̃.

We can do this for each AP and hence we can obtain a location belief model based on

all APs in the reference data.
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6.3.2 Query Pre-processing

Before we match query data with the reference data, we need to remove query APs that

do not exist in the reference data. It is clear that their RSSs would not assist localization.

Subsequently, we reorganize zq,j in (6.1) to zj by trimming out the useless RSSs. Define

the surviving AP index set as Mj . Similarly, we also update the historic query data set

z0:j := {z0, · · · , zj} from zq,0:j . In fact, it is not necessary to employ the entire historic

query data set for localization computation. We only need to backtrack a window of length

w readings, which allow us to establish the windowed query data set zj−w:j from time j−w

to time j. We will discuss how to determine the optimal window length in Section 6.3.5.

Next, we associate the relative motion from time j − w to j for the query data zj−w:j .

Although we do not know the absolute position, we can utilize IMU data to obtain the rela-

tive motion in the time window. We define ∆Xa:b = Xb−Xa as the travel distance between

time a and time b. To get ∆Xa:b, we employ an EKF-based approach for IMUs [123–125].

From the EKF, ∆Xa:b follows Gaussian distribution with a mean of ∆Xa:b and a covari-

ance of Σ∆Xa:b . Define the relative motion set ∆Xj−w:j := {∆Xj−k+1:j−k|k = 1, · · · , w},

which captures the relative motion within the time window.

6.3.3 Query AP Selection

With zj−w:j and ∆Xj−w:j obtained, we can perform statistical testing to remove incon-

sistent APs which refers to APs that may have changed locations or have significant signal

strength changes. If we do not remove inconsistent APs, localization results may suffer. In

fact, we can visualize this issue. We can obtain posterior distribution of Xj directly using

GPs in (6.4) based on zj which is shown in Fig. 6.3(a). A desirable outcome is supposed

to be a unimodal distribution with its peak close to or overlapping with the actual location.

Unfortunately, the inconsistent APs have lead to a multimodal distribution and the ground

truth position does not correspond to a peak position which indicated localization would
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(a) (b) (c) 

Figure 6.3: Sample cases of posterior condition probability of robot/client location. The
color changing from yellow to blue corresponds to high to low probability regions, re-
spectively. The red star is the ground truth location. The x-axis and y-axis that span
horizontal plane are 2D Cartesian coordinates, and vertical z-axis represents probability.
(a) Directly computed from GPs without removing inconsistent APs and using windowed
inputs. (b) After inconsistent AP removal. (c) After inconsistent AP removal and location
refinement. Reprinted with permission from [59].

fail if such belief model is naively used.

6.3.3.1 Initial Localization Using Majority Voting

To remove inconsistent APs, we perform an initial low resolution localization by sim-

ply assuming current location Xj is co-located at each location Xr,i in reference set and

then we can compare the sequence of RSSs. Relative motion set ∆Xj−w:j allow us to gen-

erate assumed reference location information X̃r,i = {Xr,i}∪{Xr,i−
∑k

p=1 ∆Xj−p:j−p+1|k =

1, · · · , w} for the entire window. Plug X̃r,i into (6.4), we obtain the assumed reference

RSSs z̃r,i. Note that z̃r,i is of the same length as zj−w:j .

Now we find the most possible location by matching query zj−w:j to reference z̃r,i. We

find best match location from initial location candidates using majority voting over best

location candidates identified by each AP.

For the m-th AP at time j−k, its query entry in zj−w:j is zj−k,m and the corresponding

reference entry in z̃r,i is z̃i,m,k. The matching metric function fE is the summation of the
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squared l2−norm over the window,

fE(m, i) =
w∑
k=0

(z̃i,m,k − zj−k,m)2. (6.5)

Them-th AP can predict best location im by comparing fE values over the entire reference

set

im = arg min
i∈{1,···n}

fE(m, i).

Combining the best solutions for all APs, we have a candidate solution set Im := {im|m =

1, · · ·mmax}. We employ majority voting to find the most agreed location index i∗j as the

solution. Specifically, we define a binary ballot function bb:

bb(im, i) =


1, i = im,

0, otherwise.

The location with the most votes wins,

i∗j = arg max
i∈Im

mmax∑
m=1

bb(im, i). (6.6)

Now we know that the actual location is close to the location at reference index i∗j . This

information can be exploited to filter out inconsistent APs.

6.3.3.2 Inconsistent AP Removal

We develop statistical hypothesis testing to remove inconsistent APs. To perform the

statistics testing, we begin with analyzing fE(m, i∗j) as a distribution. We would like

to derive the probability that fE(m, i∗j) is abnormally large. For the m-th AP, have two
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hypotheses:

H0 : The m-th AP is an inconsistent AP vs. H1 : The m-th AP is a consistent AP

The significance level is α. We reject H0 if p−value is less than α.

Let z̃∗m,k be the reference entry for the m-th AP corresponds to location i∗j . From the

GP model, we know (z̃∗m,k − zj−k,m)/σnm ∼ N (0, 1) is a random variable following the

normal distribution with zero mean and a variance of 1. We know that fE(m, i∗j)/σ
2
nm

is the sum of squares of multiple normal distributions according to (6.5), fE(m, i∗j)/σ
2
nm

has to follow χ2-distribution with w + 1 degrees of freedom. Its cumulative probability

function is F (x,w + 1) =
γ((w + 1)/2, x/2)

Γ((w + 1)/2)
where γ(a, x) =

∫ x
0
ta−1e−tdt and Γ(a) =∫∞

0
ta−1e−tdt. The probability of a value from χ2-distribution distribution is larger than x

is

P{fE(m, i∗j)/σ
2
nm ≥ x} = 1− F (x,w + 1) = α. (6.7)

Setting F (x,w + 1) = 1 − α allows us to find threshold x = F−1(1 − α) where F−1(·)

is the quantile function defined as F−1(a) = inf{y : F (y) ≥ a}. Thus we reject H0 if

fE(m, i∗j) ≤ σ2
nmF

−1(1 − α). After the statistical testing, we remove inconsistent APs.

The remaining AP index set is defined as M∗
j . We trim zj−w:j accordingly. Fig. 6.3(b)

illustrates how inconsistent AP removal help reshape the posterior location distribution

which has its highest peak closer to the actual AP location. However, inconsistent AP

removal cannot distinguish APs which change their positions slightly. Therefore, we still

have a multi-modal distribution with many peaks, which limits the localization accuracy.

To handle this issue, we introduce localization refinement.
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6.3.4 Location Refinement Using Windowed Sequence

Our idea is to derive the posterior probability of Xj for present time j given RSS

readings zj−w:j and relative motion information ∆Xj−w:j and then apply MLE method to

obtain the location estimation (Fig. 6.2 Box 4).

Let P (Xj|zj−w:j,∆Xj−w:j) be the posterior probability ofXj given zj−w:j and ∆Xj−w:j .

With ∆Xj−w:j , the robot/client position Xj−k can be obtained (see Fig. 6.4),

Xj−k = Xj −∆Xj−k = Xj −
k∑
p=1

∆Xj−p+1:j−p. (6.8)

Assuming Xj = xj , then the conditional distribution of Xj−k given (xj , ∆Xj−k) is,

Xj−k|xj,∆Xj−k = xj −∆Xj−k, (6.9)

where operator ‘·|·’ represents the condition for a random variable with conditions at the

right side of ‘|’. Since ∆Xj−k is obtained from EKF based on IMU inputs, it follows

Gaussian distribution with a mean of ∆Xj−k, and a covariance matrix of Σ∆Xj−k :

Xj−k|xj,∆Xj−k ∼ N (xj −∆Xj−k,Σ∆Xj−k). (6.10)

Now let us derive the posterior probability using Bayes theorem,

P (Xj|zj−w:j,∆Xj−w:j) =
P (Xj, zj−w:j,∆Xj−w:j)

P (zj−w:j,∆Xj−w:j)
. (6.11)
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Figure 6.4: Relationships between locations, displacements, and RSS readings in the win-
dow of prior locations and RSSs. Each prior location can be associated to its RSS readings
using GPs. Reprinted with permission from [59].

We decompose P (Xj, zj−w:j,∆Xj−w:j) by taking zj to the front,

P (Xj, zj−w:j,∆Xj−w:j) (6.12)

= P (zj|Xj,∆Xj−w:j, zj−w:j−1)P (Xj,∆Xj−w:j, zj−w:j−1)

= P (zj|Xj)P (Xj,∆Xj−w:j, zj−w:j−1).

This is because the current observation zj only depends on the current location. Again, we

decompose P (Xj,∆Xj−w:j, zj−w:j−1)

P (Xj,∆Xj−w:j, zj−w:j−1) (6.13)

= P (zj−1|Xj,∆Xj−w:j, zj−w:j−2)P (Xj,∆Xj−w:j, zj−w:j−2)

= P (zj−1|Xj−1 = Xj −∆Xj,j−1)P (Xj,∆Xj−w:j, zj−w:j−2).

This is because zj−1 is independent of zj−w;j−2 given Xj−1.
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For P (Xj,∆Xj−w:j, zj−w:j−2), we have

P (Xj,∆Xj−w:j, zj−w:j−2) (6.14)

= P (zj−2|Xj,∆Xj−w:j, zj−w:j−3)P (Xj,∆Xj−w:j, zj−w:j−3)

= P (zj−2|Xj−2 = Xj −
2∑
p=1

∆Xj−p+1,j−p)P (Xj,∆Xj−w:j, zj−w:j−3).

Xj−2 and Xj are related using (6.8). By decomposing P (Xj|zj−w:j,∆Xj−w:j) iteratively,

we rewrite (6.11) as

P (Xj|zj−w:j,∆Xj−w:j) =

P (zj|Xj)
w∏
k=1

P (zj−k|Xj−k = Xj −
k∑
p=1

∆Xj−p+1,j−p)

P (zj−w:j,∆Xj−w:j)
.

(6.15)

We integrate displacement ∆Xj−k:j for each term:

P (zj−k|Xj−k = Xj −
k∑
p=1

∆Xj−p+1,j−p) =

∫
P (zj−k|xj−k)f(∆xj−k)d(∆xj−k), (6.16)

where f(∆xj−k) is a Gaussian distribution function (6.10) obtained from EKF result.

Under the GP model, the probability distribution for the m-th AP’s RSS conditioned

on Xj = xj is

zj,m|Xj ∼ N (µm(xj,D),Σm(xj,D)), (6.17)

where µm(xj,D) = kTXj(Km + σ2
nmI)−1zTr,∗m and Σm(xj,D) = k(xj, xj) − kTXj(Km +

σ2
nmI)−1kXj with k(xj, xj) = σ2

fm obtained from (6.3). Since RSSs of all APs are inde-

pendent, we have

f(zj|Xj = xj) =
∏

m∈M∗j

f(zj,m|Xj = xj). (6.18)
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Similarly, we can obtain a probability distribution function for zj−k|Xj−k. With results

from (6.16) and (6.18) and the fact that zj−w:j and ∆Xj−w:j are independent, we can

compute (6.15) to obtain P (Xj|zj−w:j,∆Xj−w:j). Fig. 6.3(c) illustrates the posterior dis-

tribution for the windowed inputs which appears as a unimodal distribution with its peak

located close to the actual location. This significantly increases the accuracy of the local-

ization algorithm.

Finally, we estimate Xj by applying MLE to the posterior probability in (6.15),

X̂j =arg max
Xj

P (zj|Xj)

∫ w∏
k=1

P (zj−k|Xj−k = Xj −
k∑
p=1

∆Xj−p+1,j−p)d(∆xj−k).

(6.19)

Note that we dropped the denominator in (6.15) because it is not a function of Xj .

6.3.5 Determine Optimal Window Size

The remaining issue is how to determine the optimal window size w of RSS sequence.

It is worth noting that increasing window size w significantly increases computation load.

Also, the relative motion information ∆Xj−w:j has its variance increasing over time due to

IMU drifting and eventually becomes useless due to its large spatial uncertainty. To choose

an appropriate window size, we minimize the Shannon entropy over window size. Define

A as a latticed set of the localization space. The lattice resolution is 0.1 meters in each

dimension in our settings. Define H(w, j) as the Shannon entropy over the probability

distribution P (Xj|zj−w:j,∆Xj−w:j),

H(w, j) = −
∑
Xj∈A

P (Xj|zj−w:j,∆Xj−w:j) logP (Xj|zj−w:j,∆Xj−w:j).

We choose the optimal w that minimizes H(w, j) over all possible window length set

w := {0, 1, ..., wmax} where wmax is the maximum allowable window size that covers the
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entire A. Then we find the optimal solution w∗,

w∗ = arg min
w∈w

H(w, j). (6.20)

The resulting w∗ will be used as the window size for time frame j + 1.

6.4 Experiments

We have implemented our algorithm using MATLAB under a PC with Windows 7. We

evaluate our method using real world data from physical experiments. Three algorithms

are compared in our experiment.

• MLE-S: Our complete method including both AP removal and MLE refinement,

• MLE-NS: our algorithm without AP removal in Section 6.3.3.2. We test this variant

of our method to show the benefit of inconsistent AP removal, and

• k-NN [115]: This method is chosen as the counterpart because it has ability to

handle some degrees of inconsistent WiFi environments despite it only targets at

handling RSS fluctuations. It also employs IMU to assist WiFi localization. For

brevity, we name it as k-NN method here.

Dataset: We have collected datasets from three different buildings: H. R. Bright build-

ing (HRBB), Scoates Hall (SCTS), and Wisenbaker Engineering Building (WEB) at Texas

A&M University using a Nexus 7 tablet and a mobile robot (see Fig. 6.5). Our robot is

equipped with a Hokuyo UTM-30LX lidar and provides 2D lidar map (see Fig. 6.5 (b))

with timestamps. The location from lidar-based SLAM is used as a ground truth with an

error of less than 10 centimeters. The dataset consists of WiFi RSS readings collected at

1Hz and IMU readings at 100Hz. Tab. 6.2 describes details of each dataset including the

overall trajectory, the number of APs in reference data, and query data. We have collected
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Figure 6.5: (a) Our data collection robot and sensor configuration. 2D lidar maps are used
as ground truth: (b) HRBB, (c) SCTS, and (d) WEB. Reprinted with permission from [59].

the reference data and query data in different days. Therefore, the two data sets do not

share the exact same number of APs. The shared AP number are shown in the last row of

the Tab. 6.2.

Table 6.2: DATASET DESCRIPTION. REPRINTED WITH PERMISSION FROM [59].

Building HRBB SCTS WEB
Trajectory (meters) 96 50 80

Reference Data # of AP 252 132 159
Query Data AP # of AP 246 135 171

Shared APs between two data sets 195 130 158

Evaluation Metric: The localization error at time j is defined as the Euclidean distance

between the estimation X̂j and ground truthXg,j: εj = ||X̂j−Xg,j||. The error is measured

in meters.

Tab. 6.3 shown the test results. The best results are highlighted in bold fonts. We have

tested all three algorithms under different percentage of inconsistent APs ranging from 0%

to 90% in the environment. To generate inconsistent APs, we first use systematic random

sampling on the shared APs between reference data and query data and shift AP RSS
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Table 6.3: MEAN LOCALIZATION ERROR (METERS). REPRINTED WITH PERMISSION

FROM [59].

Inconsistent APs
Dataset Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

HRBB
k-NN 3.3 3.5 3.8 4.2 4.4 5.5 6.5 8.6 9.7 15.1

MLE-NS 3.2 3.4 3.9 4.2 4.3 5.6 7.0 6.7 7.3 10.0
MLE-S 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.5 4.6 9.1

SCTC
k-NN 1.6 1.8 1.9 2.6 3.0 3.8 5.8 7.1 8.0 10.4

MLE-NS 2.1 2.1 2.1 2.6 2.9 3.6 6.9 6.6 6.4 6.4
MLE-S 1.7 1.6 1.7 1.7 2.1 2.0 2.4 3.1 4.9 10.1

WSB
k-NN 1.2 1.3 1.3 1.5 2.1 2.9 6.2 8.9 12.7 16.3

MLE-NS 1.6 1.5 1.6 1.7 1.9 2.3 4.4 6.4 8.9 14.5
MLE-S 1.4 1.5 1.4 1.4 1.4 1.6 2.3 3.7 10.3 19.4

patterns randomly to form inconsistent APs. It is clear that our method is more robust than

the counterpart under inconsistent WiFi environments. Also, the inconsistent AP removal

process does help in maintain consistent localization accuracy up to 70% inconsistent APs.

Our methods achieve the best or close to the best mean localization error as long as the

inconsistent AP ratio is less than 70%. At 80% or 90% inconsistent AP ratio, our proposed

method does not work well, this is because signal to noise ratio is too low and inconsistent

AP removal process may fail.

Fig. 6.6 shows the effectiveness of inconsistent AP removal scheme by illustrating true

positive (TP) rates, which is defined as

TP =
#consistent AP selected

#All selected APs
,

over different inconsistent AP ratios. Our method ensures that TP rates remain above 0.5

under 70% inconsistent APs environment among different datasets with a mean localiza-

tion error less than 3.7 meters.

The last evaluation is runtime of our approach. From We report the average runtime

for each time frame are 0.30 seconds on average for SCTS dataset, 0.89 seconds for HRBB
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Figure 6.6: Average TP rates of selected APs after the AP removal process. Reprinted
with permission from [59].

dataset, and 0.63 seconds for WEB dataset. From alogithm analysis, the most time con-

suming operation is computing location posterior probability which is proportional to the

number of APs (Tab. 6.2.). Our runtime result confirm it. Recall that the time interval for

each time frame is 1 second in experiment set up, the runtime for localization is tolerable.

6.5 Conclusion

We reported a WiFi-based localization method designed to handle inconsistent WiFi

environments where mobile APs and APs with beamforming capabilities cause significant

changes in radiation patterns in RSSs. Building on the WiFi fingerpinting method that

utilizes GPs to establish a belief model from reference data, our method employed major-

ity voting along with embedded statistical hypothesis testing to remove inconsistent APs.

Instead of using RSS pattern at a single time instance, we used a historical sequence to

further improve the robustness to inconsistent APs. We derived a posterior location dis-

tribution function for the sequence and applied MLE to refine localization results. Our
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method was tested and compared to an existing method. The results showed that our

method outperforms the counterpart and our design is effective. In the future, we will

conduct more experiments and comparison studies. We will also focus on analysis and

improving computation speed.
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7. CONCLUSION AND FUTURE WORK

In this study, we investigated PL approaches as fallback solutions to enhance localiza-

tion robustness under conditions that may challenge all exteroceptive sensors. We explore

PL approaches in two application scenarios: urban areas and indoor environments.

7.1 Conclusion: PL approaches in urban areas

We proposed three PL approaches in urban area application. In Chapter 3, we pro-

posed a minimalist intermittent heading-based approach which employed a gyroscope and

a compass along with a prior map. The PLAM method extracted long and straight road

segment headings and pre-processed it into a heading graph. The information from the

sensors was used to obtain heading changes during traveling. To localize the robot, the

heading sequence was matched to the heading graph in a Bayesian framework that tracks

both sensor and map uncertainties. We introduced entropy to investigate map properties

and studied how the PLAM method performs under maps with different entropies.

In Chapter 4, we developed the GBPL method to estimate a rudimentary vehicle tra-

jectory computed from an IMU, a compass, and a wheel encoder and matched it with a

prior map. This method improves localization robustness in a degenerated map and en-

ables continuous localization. To address the drifting issue in the dead-reckoning process

and the fact that the vehicle trajectory may not overlap with road waypoints on the map,

we developed a heading-length feature sequence graph-based matching approach. Once

the map matching is successful, our algorithm tracks vehicle movement and uses the map

information to regulate EKF’s drifting issue.

In Chapter 5, we developed a collaborative localization scheme to remove the depen-

dency of vehicle trajectory and improve localization efficiency. We developed the C-GBPL

method which was a multiple vehicle/robot collaborative localization scheme using V2V
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communication. The C-GBPL method combines features from rendezvous vehicles to

accelerate the mapping process. We identified different rendezvous events to form the

merged query graph. We performed graph-to-graph matching by aggregating vehicle prior

beliefs and trim candidate vertices. We proved that the collaborative localization strategy

is faster than its single vehicle counterpart in general cases. The algorithm was tested

in both simulation and physical experiments and showed superior performance over the

single vehicle counterpart.

To conclude, we designed graph-based matching algorithms using propioceptive sen-

sors in urban areas to enhance localization robustness. The superiority of our PL ap-

proaches was demonstrated on urban datasets by comparing with state-of-the-art methods.

7.2 Conclusion: PL approaches in indoor environments

In Chapter 6, we explored a PL approach in an indoor environment with WiFi to handle

inconsistent WiFi environments with mobile APs and APs with beamforming capabilities.

Building on the WiFi fingerprinting method that utilizes GPs to establish a belief model

from reference data, our method employed majority voting along with embedded hypoth-

esis testing to remove inconsistent APs. Instead of using RSS patterns at a single time

instance, we used the relative motion information provided by IMU to further improve

the robustness to inconsistent APs. We derived a posterior location distribution function

for the sequence and applied MLE to refine localization results. The results showed that

our method outperforms the counterpart and our design is effective to localize the robot in

inconsistent wifi environment.

7.3 Future Works

Our work is the beginning toward PL with a prior map. We discuss the future work

from the following perspectives.

• Embedding into exteroceptive methods. The PL method is served as a fall-back
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solution when exteroceptive sensors cannot work properly. To ensure a seamless

switch between GPS or other exteroceptive localization methods to PL is a very

interesting future topic. As an example, since both our method and existing GPS/

inertial navigation system (INS) rely on the INS system, they can be naturally in-

tegrated. Also, PL methods can be combined with visual place recognition to pro-

pose a human-like localization for robots. As mentioned by early researchers [126],

robots do not always need precise location information. In the future, localization

methods that can work with local metrical and global topological maps can be con-

sidered.

• Other trajectory features. The proposed method uses straight and long segments

as features in graph-matching in Chapter 3, 4, and 5. However, when the trajectory

contains only continuous curves, the proposed methods cannot deal with it. In this

case, it is interesting to consider designing curve segments as features. On the other

hand, in this study we mainly use single straight and long segments as features.

Other high-level representation of trajectory features can also be explored. For ex-

ample, such as finding distinguishable road sequences in the map and pre-processed

the map with additional layers. Adding trajectory features can assist the localization

method in robustness and increase the localization speed.

• Planning for localization. In the proposed method, it is assumed that the robot is

able to navigate in the environment and make turns at appropriate locations to assist

localization. As one direction of future study, the path planning for localization can

be explored so the robot can localize itself more efficiently. For example, a system-

atic way of generating turns may be employed. A possible direction is using the

maximum probability framework to find best turns. Also, for some task-oriented

robots the path planning and localization tasks need to be carefully considered si-
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multaneously. A planning strategy that the robot can find its location while not

sacrificing the task performance is also an interesting topic.
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