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ABSTRACT

In this dissertation, we propose a new spectral method that could be used to overcome two

issues in time series analysis.

The first issue is the small sample problem. The periodogram is widely used to analyze second

order stationary time series, since an expectation of the periodogram is approximately equal to the

underlying spectral density of the time series. However, it is well known that the periodogram

suffers from a finite sample bias. We show that the bias arises because of the finite boundary

of observation in the discrete Fourier transforms (DFT), which is used in the construction of the

periodogram. Moreover, we show that by using the best linear predictors of the time series outside

the observed domain, we can obtain the “complete periodogram" that is an unbiased estimator

of the spectral density. We propose a method for estimating the best linear predictors and prove,

both theoretically and empirically, that the resulting estimated complete periodogram has a smaller

bias than the regular periodogram. The estimated complete periodogram can be used to estimate

parameters, which is expressed as a weighted sum of the spectral density.

The second issue is the discrepancy between time and frequency domain methods in parameter

estimation. In time series analysis, there is a clear distinction between the two domain methods.

We draw connections between two domain methods by deriving an exact and interpretable bound

between the Gaussian and Whittle likelihood of a second order stationary time series. The deriva-

tion is based on obtaining the transformation, which is biorthogonal to the DFT of the time series.

Such a transformation yields a new decomposition for the inverse of a Toeplitz matrix and enables

the representation of the Gaussian likelihood within the frequency domain. Based on this result,

we obtain an approximation for the difference between the Gaussian and Whittle likelihoods and

define two new frequency domain quasi-likelihood criteria. We show that these new criteria are

computationally fast and yield a better approximation of the spectral divergence criterion, as com-

pared to both the Gaussian and Whittle likelihoods.
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1. INTRODUCTION

1.1 A review of the spectral methods

The analysis of a time series in the frequency domain has a long history dating back to Schus-

ter (1897, 1906). Schuster first defined the periodogram as a method of identifying periodicities

in sunspot activity. Today, spectral analysis remains an active area of research with widespread

applications in several disciplines from astronomical data to the analysis of EEG signals in the

Neuroscience. Regardless of the discipline, the periodogram remains one of the most widely used

tools in spectral analysis, as the periodogram is primarily a tool for detecting periodicities in a

signal and various types of second order behavior in a time series.

Despite the popularity of the periodogram, it well known that it can have a severe finite sample

bias (see Tukey (1967)). To be precise, we recall that tXtutPZ is a second order stationary time

series (we will simply call it a stationary time series) if ErXts “ µ and the autocovariance function

can be written as cprq “ covpXt, Xt`rq for all r and t P Z. Further, if
ř

rPZ cprq
2 ă 8, then

fpωq “
ř

rPZ cprqe
irω is the corresponding (well-defined) spectral density function. To simplify

the derivations, we assume tXtu is a demeaned time series, i.e., µ “ 0. The periodogram of an

observed time series tXtu
n
t“1 is defined as Inpωq “ |Jnpωq|2, where Jnpωq is the “regular” discrete

Fourier transform (DFT), which is defined by

Jnpωq “ n´1{2
n
ÿ

t“1

Xte
itω with i “

?
´1.

It is well known that if
ř

rPZ |rcprq| ă 8, then

ErInpωqs “ fnpωq “ fpωq `Opn´1
q.

However, the seemingly small Opn´1q error can be large in certain situation. A more detailed

analysis shows fnpωq is the convolution between the true spectral density and the nth order Fejér
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kernel Fnpλq “ 1
n

´

sinpnλ{2q
sinpλ{2q

¯2

. This convolution smooths out the peaks in the spectral density

function due to the “sidelobes” in the Fejér kernel. This effect is often called the leakage effect and

it is greatest when the spectral density has a large peak and the sample size is small. Tukey (1967)

showed that an effective method for reducing leakage is to taper the data and evaluate the peri-

odogram of the tapered data. Brillinger (1981) and Dahlhaus (1983) showed that asymptotically

the periodogram based on tapered time series shared many properties similar to the non-tapered

periodogram. The number of points that are tapered will impact the bias, thus Hurvich (1988) pro-

posed a method for selecting the amount of tapering. A theoretical justification for the reduced bias

of the tapered periodogram is derived in Dahlhaus (1988), Lemma 5.4, where for the data tapers

of degree pk, κq “ p1, 0q, he showed that the bias of the tapered periodogram (precise definition of

the tapered periodogram is in Section 3.1) is Opn´2q. An imputation based approach to correct for

the bias has recently been proposed in Lee and Zhu (2009) and Guinness (2019).

Many parameters in time series can be written in terms of the weighted average of the spectral

density and we construct a statistic by replacing spectral density with periodogram. Therefore,

the leakage effect in spectral analysis could be, in a subtle manner, a reason for the bias issue

of the parameter estimations. Some non-trivial but related example is the Whittle’s likelihood

approximation. Whittle (1951, 1953) introduced the Whittle likelihood as an approximation of

the Gaussian likelihood. To be more precise, suppose we fit a parametric second order stationary

model with spectral density fθpωq and corresponding autocovariance function tcfθprqurPZ to the

observed time series tXtu
n
t“1. The (quasi) negative log-Gaussian likelihood (we simple call it the

Gaussian likelihood) defined in the time domain is proportional to

Lnpθ;Xnq “ n´1
`

X 1
nΓnpfθq

´1Xn ` log |Γnpfθq|
˘

(1.1)

where Γnpfθqs,t “ cfθps´ tq is a Toeplitz matrix, |A| denotes the determinant of the matrix A and

X 1
n “ pX1, . . . , Xnq. In contrast, the Whittle likelihood is a “spectral divergence” between the
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periodogram and the conjectured spectral density

Knpθ;Xnq “ n´1
n
ÿ

k“1

ˆ

|Jnpωk,nq|
2

fθpωk,nq
` log fθpωk,nq

˙

ωk,n “
2πk

n
. (1.2)

A decade later from Whittle, Walker (1964) derived the large sample properties of moving average

models fitted using the Whittle likelihood. Subsequently, the Whittle likelihood has become a

popular method for parameter estimation of various stationary time series (both long and short

memory) and spatial models. The Whittle likelihood is computationally a very attractive method

for estimation. Despite the considerable improvements in computation algorithms, interest in the

Whittle likelihood has not abated. Several diverse applications of the Whittle likelihood can be

found in Dahlhaus and Künsch (1987) (for spatial processes), Fox and Taqqu (1986), Robinson

(1995) Hurvich and Chen (2000), Giraitis and Robinson (2001), Abadir et al. (2007), Shao and

Wu (2007), Giraitis et al. (2012) (long memory time series and local Whittle methods), Choudhuri

et al. (2004), Kirch et al. (2019) (Bayesian spectral methods), and Panaretos and Tavakoli (2013),

van Delft and Eichler (2020) (functional time series), to name but few.

The Whittle likelihood can be interpreted as an “estimator” of the spectral divergence (precise

definition is in (4.1)) which is a weighted average of the true spectral density. Therefore, despite

its advantages, the Whittle likelihood can give rise to estimators with a substantial bias due to the

leakage effect (see Priestley (1981) and Dahlhaus (1988)). Dahlhaus (1988) showed that the finite

sample bias in the periodogram impacts the performance of the Whittle likelihood. Motivated by

this discrepancy, Sykulski et al. (2019) proposed the debiased Whittle likelihood, which fits di-

rectly to the expectation of the periodogram rather than the limiting spectral density. Alternatively,

Dahlhaus (1988) used the tapered Whittle likelihood to improve the bias. Empirical studies show

that the tapered Whittle likelihood yields a smaller bias than the regular Whittle likelihood. As a

theoretical justification, Dahlhaus (1988, 1990) used an alternative asymptotic framework to show

that tapering yields a good approximation to the inverse of the Toeplitz matrix. It is worth mention-

ing that within the time domain, several authors, including Shaman (1975, 1976); Bhansali (1982)
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and Coursol and Dacunha-Castelle (1982), have studied approximations to the inverse variance

matrix. These results can be used to approximate the Gaussian likelihood.

However, as far as we are aware, there are no results which investigate the exact bias term of the

spectral methods. Our main objective of this dissertation is to quantify the “loss” when using the

periodogram as a primary tool to analysis the time series data. The benefits of such insight is not

only of theoretical interest but also lead to the development of computationally simple frequency

domain methods which are comparable with the Gaussian likelihood.

1.2 Contributions

Our contributions in this dissertation are threefold. The first contribution is that we obtain the

linear transformation of the observed time series tXtu
n
t“1 which is biorthogonal to the regular DFT,

tJnpωk,nqu
n
k“1.

A brief construction of such transformation is as follows. Assume that the spectral density of

the underlying stationary time series is bounded and strictly positive. Under these conditions, for

any τ P Z we can define the best linear predictor of Xτ given the observed time series tXtu
n
t“1.

We denote this predictor as pXτ,n. Based on these predictors we define a new DFT

rJnpω; fq “ n´1{2
8
ÿ

τ“´8

pXτ,ne
iτω. (1.3)

By its definition, it is obvious that rJnpω; fq P sppXnq where sppXnq is a span of X1, ..., Xn on

the complex field. Moreover, using the property of the best linear predictors, in particular for

1 ď t ď n and τ P Z that covpXt, pXτ,nq “ cpt ´ τq, we can show that t rJnpωk,n; fqunk“1 is

biorthogonal to the regular DFTs in the sense that

covp rJnpωk1,n; fq, Jnpωk2,nqq “ fpωk1,nqδk1,k2 1 ď k1, k2 ď n (1.4)

where δk1,k2 “ 1 when k1 “ k2 and zero otherwise.
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Using that pXτ,n “ Xτ for 1 ď τ ď n, (1.3) can be written as rJnp¨; fq “ Jnp¨q ` pJnp¨; fq where

pJnpω; fq “ n´1{2
0
ÿ

τ“´8

pXτ,ne
iτω
` n´1{2

8
ÿ

τ“n`1

pXτ,ne
iτω.

Therefore, the biorthgonal transform (to the regular DFT) is the regular DFT plus the Fourier

transform of the best linear predictors of the time series outside the domain of observation. Since

pJnpω; fq is a DFT of all linear predictors, we call it the predictive DFT. Moreover, we call rJnp¨; fq

the complete DFT as it “completes” the information not found in the regular DFT. Details of the

complete and predictive DFT is described in Section 2.2.

The second contribution is that using the complete DFT, we provide an alternative approach,

which yields a “periodogram” with a bias of order less than Opn´1q. The complete DFT defined

as in (1.3) also satisfies

covp rJnpω; fq, Jnpωqq “ fpωq 0 ď ω ď π. (1.5)

Based on (1.5), we define the unbiased complete periodogram Inpω; fq “ rJnpω; fqJnpωq.

Unlike the regular periodogram, Inpω; fq depends on the (unknown) underlying spectral den-

sity and thus it needs to be estimated. For most time series models (an important exception for

the autoregressive model of finite order), Inpω; fq does not have a simple analytic form. Instead

in Section 2.3, we derive an approximation of Inpω; fq, and propose a method for estimating the

approximation. Both the approximation and estimation will induce errors in Inpω; fq. However,

we prove, under mild conditions, that the bias of the resulting estimator of Inpω; fq is less than

Opn´1q. We show in the simulations (Section 3.4.1), that the resulting estimated complete peri-

odogram outperforms than the classical periodogram and tends to better capture the peaks of the

underlying spectral density.

The last contribution is that we derive an exact, interpretable, bound between the Gaussian

and Whittle likelihood of a stationary time series. The key to the derivation is the complete and
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predictive DFT. In Theorem 2.4.1, we show that the first term of the Gaussian likelihood is

n´1X 1
nΓnpfθq

´1Xn “
1

n

n
ÿ

k“1

rJnpωk,n; fθqJnpωk,nq

fθpωk,nq
(1.6)

thus the (first term of the) difference between the Gaussian and Whittle likelihood is

Lnpθq ´Knpθq “
1

n

n
ÿ

k“1

pJnpωk,n; fθqJnpωk,nq

fθpωk,nq
.

Therefore, the difference between the Gaussian and Whittle likelihood is due to the omission of

these linear predictors outside of the observed domain.

It is common to use the Cholesky decomposition to decompose the inverse of a Toeplitz matrix,

Γnpfθq
´1. However, an interesting aspect of (1.6) is that it provides an alternative decomposition

of the inverse of a Toeplitz matrix using the complete DFT. In general processes, the complete

DFT does not have a simple analytic expression. In Section 2.4.1, we obtain an approximation of

the complete DFT and thus an approximation of the inverse Toeplitz matrix in terms of the infinite

order causal and minimum phase autogregressive factorization of fθ. We prove in Theorem 2.4.3

that under mild conditions, element-wise `1 norm of an approximation error converges to zero

rapidly.

1.3 Organization

The rest of the dissertation is organized as follows. In Section 3, we discuss greater detail of

the complete periodogram in Section 2.3. In Section 3.1, we propose a variant of the estimated

complete periodogram, which tapers the regular DFT. In the simulations, it appears to improve on

the non-tapered complete periodogram. In Section 3.2, we consider the integrated periodogram

estimators, where the spectral density is replaced with the estimated complete periodogram (both

tapered and non-tapered). Some examples can be found in Section 3.3. In Section 3.4, we illus-

trate the proposed variant of the complete periodogram method with simulations. Two real data

analyses (ball bearing and sunspot data) are considered in Section 3.5. The various estimated
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complete periodograms, proposed in this section, are available as an R package called cspec on

CRAN(https://cran.r-project.org). Lastly, proof for the results in Sections 2.2, 2.3,

and 3 can be found in Section 3.6.

In Section 4, we discuss greater detail of the frequency domain representation of the Gaussian

likelihood in Section 2.4. In Section 4.1, we use an approximation for the difference in likelihoods,

Lnpθq ´ Knpθq in Section 2.4.1, to define two new spectral divergence criteria: The boundary

corrected and hybrid Whittle. In Section 4.2, we describe a set of assumptions which is required

to prove the sampling properties of the new likelihoods. In Section 4.3, we show consistency

results of the new likelihood estimators and in Section 4.4, we calculate an asymptotic bias and

variance of new likelihood estimators. In Section 4.5, we discuss of the implementation issues

of the new estimators. In Section 4.6, we illustrate and compare the proposed frequency domain

estimators through some simulations. We study the performance of the estimation scheme when

the parametric model is both correctly specified (Section 4.6.1) and misspecified (Section 4.6.2).

Also, empirical results when fitting lower order model (Section 4.6.3) and alternative estimating

methods (Section 4.6.4) are presented. Finally, proof for the results in Sections 2.4 and 4 can be

found in Section 4.7.

Some additional results and simulations can be found in Appendix. In Appendix A, Baxter-

type inequalities for the finite predictors and their derivatives are introduced with proof. These

inequalities play an important role to prove approximation results in the main part. In Appendix B,

we derive an expression for the asymptotic bias of the Gaussian, Whittle likelihoods, and the new

frequency domain likelihoods. Additional simulations for Section 4 are in Appendix C and some

technical lemmas are derived in Appendix D.
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2. MAIN RESULTS *

2.1 Notational conventions

In this section, we introduce most of the notation used in the dissertation. Let tXtutPZ be a

second order stationary time series and we assume that ErXts “ 0 (as it makes the derivations

cleaner). We use tcf prqurPZ to denote an autocovariance function and fpωq “
ř

rPZ cf prqe
irω its

corresponding spectral density. Sometimes, it will be necessary to make explicit the true underly-

ing covariance (equivalently the spectral density) of the process. In this case, we use the notation

covf pXt, Xt`rq “ Ef rXtXt`rs “ cf prq. We define a Toeplitz matrix corresponds to the spectral

density f , denotes Γnpfq, is an nˆ n matrix with entries Γnpfqs,t “ cf ps´ tq.

Let g be a function on r0, 2πs. We define the n ˆ n circulant matrix Cnpgq with entries

pCnpgqqs,t “ n´1
řn
k“1 gpωk,nqe

´ips´tqωk,n . Let A˚ denote the conjugate transpose of the matrix

A. Then, the circulant matrix Cnpgq can be written as a matrix form Cnpgq “ F ˚n∆npgqFn, where

∆npgq “ diagpgpω1,nq, . . . , gpωn,nqq is a diagonal matrix and Fn is the n ˆ n DFT matrix with

entries pFnqs,t “ n´1{2eisωt,n . We recall that the eigenvalues and the corresponding eigenvectors

of any circulant matrix Cnpgq are tgpωk,nqunk“1 and te1k,n “ pe
ikω1,n , . . . , eikωn,nqunk“1 respectively.

Next, we define the norms we will use. Suppose A is a n ˆ n square matrix, let }A}p “

p
řn
i,j“1 |ai,j|

pq1{p be an element-wise p-norm for p ě 1, and }A}spec denote the spectral norm.

Let }X}E,p “ pE|X|pq1{p, where X is a random variable. For the 2π-periodic square integrable

function g with gpωq “
ř

rPZ gre
irω, we use the sub-multiplicative norm }g}K “

ř

rPZp2
K `

|r|Kq|gr|. Note that if
řtKu`2
j“0 supω |g

pjqpωq| ă 8 then }g}K ă 8, where tKu is the largest integer

smaller or equal to K and gpjqp¨q denotes the jth derivative of g.

Suppose f, g : r0, 2πs Ñ R are bounded functions, that are strictly larger than zero and are

symmetric about π. By using the classical factorization results in Szegö (1921) and Baxter (1962)

*Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral meth-
ods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.] and [S. Subba Rao and J. Yang. Reconciling the Gaussian and Whittle like-
lihood with an application to estimation in the frequency domain. Annals of Statistics (To appear), arXiv:2001.06966,
2021.]
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we can write fp¨q “ σ2
f |ψf p¨q|

2 “ σ2
f |φf p¨q|

´2, where φf pωq “ 1´
ř8

j“1 φjpfqe
´ijω and ψf pωq “

1`
ř8

j“1 ψjpfqe
´ijω, the terms σg, φgp¨q, and ψgp¨q are defined similarly. In Sections 2.4.1 and 4,

we require the following notation

ρn,Kpfq “

8
ÿ

r“n`1

|rKφrpfq|,

AKpf, gq “ 2σ´2
g }ψf}0}φg}

2
0}φf}K ,

and Cf,K “
3´ ε

1´ ε
}φf}

2
K }ψf}

2
K

for some 0 ă ε ă 1.

Lastly, we denote Re and Im as the real and imaginary part of a complex variable respectively.

2.2 The biorthogonal transform to the discrete Fourier transform

We recall that the DFT of the time series plays a fundamental role in the frequency domain

methods of the second order stationary time series. With this in mind, our first goal in this section

is to derive the transformation tZk,nunk“1 Ă sppXnq, which is biorthogonal to tJnpωk,nqunk“1. That

is, we derive a transformation tZk,nunk“1 which when coupled with tJnpωk,nqunk“1 satisfies the

following condition

covf pZk1,n, Jnpωk2,nqq “ fpωk1,nqδk1,k2

where δk1,k2 “ 1 if k1 “ k2 (and zero otherwise). Since Z 1n “ pZ1,n, . . . , Zn,nq P sppXnq
n, there

exists an n ˆ n complex matrix Un, such that Zn “ UnXn. Since pJnpωk,1q, . . . , Jnpωn,nqq1 “

FnXn, the biorthogonality of UnXn and FnXn gives covf pUnXn, FnXnq “ ∆npfq.

To understand how UnXn is related to FnXn we rewrite Un “ Fn ` Dnpfq. We show in

the following theorem that Dnpfq has a specific form with an intuitive interpretation. In order to

develop these ideas, we use methods from linear prediction. In particular, we define the best linear

predictor of Xτ for τ P Z given tXtu
n
t“1 as

pXτ,n “

n
ÿ

t“1

φt,npτ ; fqXt, (2.1)
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where tφt,npτ ; fqunt“1 are the coefficients which minimize the L2-distance

ErXτ ´

n
ÿ

t“1

φt,npτ ; fqXts
2
“

1

2π

ż 2π

0

ˇ

ˇeiτω ´
n
ÿ

t“1

φt,npτ ; fqeitω
ˇ

ˇ

2
fpωqdω.

We observe that for 1 ď τ ď n, φt,npτ ; fq “ δτ,t. Furthermore, due to the stationarity, the finite

predictor coefficients φt,npτ ; fq are reflective i.e. the predictors of Xm (for m ą n) and Xn`1´m

share the same set of prediction coefficients (just reflected) such that

φt,npm; fq “ φn`1´t,npn` 1´m; fq for m ą n.

Using a notation of the finite predictor coefficients, we obtain the following biorthogonal theorem.

Theorem 2.2.1 (The biorthogonal transform). Let tXtu be a zero mean second order stationary

time series with spectral density f. Suppose that f bounded away from zero and whose autoco-

variance satisfies
ř

rPZ |rcf prq| ă 8. Let pXτ,n denote the best linear predictor of Xτ as defined in

(2.1) and tφt,npτ ; fqu the corresponding finite predictor coefficients. Then

covf
`

pFn `DnpfqqXn, FnXn

˘

“ ∆npfq, (2.2)

where Dnpfq has entries

Dnpfqk,t “ n´1{2
ÿ

τď0

`

φt,npτ ; fqeiτωk,n ` φn`1´t,npτ ; fqe´ipτ´1qωk,n
˘

, (2.3)

for 1 ď k, t ď n. And, entrywise 1 ď k1, k2 ď n, we have

covf

´

rJnpωk1,n; fq, Jnpωk2,nq
¯

“ fpωk1,nqδk1,k2 (2.4)
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where rJnpω; fq “ pFn `DnpfqqXn “ Jnpωq ` pJnpω; fq and

pJnpω; fq “ DnpfqXn “ n´1{2
ÿ

τď0

pXτ,ne
iτω
` n´1{2

ÿ

τąn

pXτ,ne
iτω. (2.5)

PROOF. See Section 3.6.1 (note that identity (2.4) can be directly verified using results on best

linear predictors). l

What we observe is that the biorthogonal transformation pFn ` DnpfqqXn extends the domain

of observation by predicting outside the boundary. A visualization of the observations and the

predictors that are involved in the construction of rJnpω; fq is given in Figure 2.1.

Figure 2.1: rJnpω; fq is the Fourier transform over both the observed time series and its predictors
outside this domain.

It is quite surprising that only a small modification of the regular DFT leads to its biorthogonal

transformation. Furthermore, we can show that the contribution of the additional DFT term is

pJnpω; fq “ Oppn
´1{2q. This is why the regular DFT satisfies the well known “near” orthogonal

property

covf pJnpωk1,nq, Jnpωk2,nqq “ fpωk1qδk1,k2 `Opn
´1
q,

see Brillinger (1981) and Lahiri (2003). For future reference, we will use the following definitions.

Definition 2.2.1. We refer to pJnpω; fq in (2.5) as the predictive DFT (as it is the Fourier transform

11



of all the linear predictors). Nothing that basic algebra yields the expression

pJnpω; fq “ n´1{2
n
ÿ

t“1

Xt

ÿ

τď0

pφt,npτ ; fqeiτω ` einωφn`1´t,npτ ; fqe´ipτ´1qω
q. (2.6)

Note that when ω “ ωk,n, the term einω in (2.6) vanishes. Further, we refer to rJnpω; fq as the

complete DFT (as it contains the classical DFT of the time series together with the predictive

DFT). Note that both rJnpω; fq and pJnpω; fq are functions of f since they involve the spectral

density fp¨q, unlike the regular DFT which is model-free.

Remark 2.2.1. Biorthogonality of random variables is rarely used in statistics. An interesting

exception is Kasahara et al. (2009). They apply the notion of biorthogonality to problems in

prediction. In particular they consider the biorthogonal transform of Xn, which is the random

vector rXn “ Γnpfq
´1Xn (since covf p rXn, Xnq “ In). They obtain an expression for the entries

of rXn in terms of the Cholesky decomposition of Γnpfq
´1. However, there is an interesting duality

between rXn and rJn “ p rJnpω1,n; fq, . . . , rJnpωn,n; fqq1. In particular, applying identity (2.28) to

the DFT of rXn gives

Fn rXn “ FnΓnpfq
´1Xn “ ∆npf

´1
q rJn.

This shows that the DFT of the biorthogonal transform of Xn is the standardized complete DFT.

Conversely, the inverse DFT of the standardized complete DFT gives the biorthogonal transform

to the original time series, where the entries of rXn are

rXj,n “
1
?
n

n
ÿ

k“1

rJnpωk,n; fq

fpωk,nq
e´ijωk,n .

Remark 2.2.2 (Connection to the orthogonal increment process). Suppose that Zpωq is the orthog-

onal increment process associated with the stationary time series tXtu and f the corresponding

spectral density. If tXtu is a Gaussian time series, then by using Theorem 4.9.1 in Brockwell and
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Davis (2006) we can show that

pXτ,n “ E rXτ |Xns “
1

2π

ż 2π

0

e´iωτErZpdωq|Xns “

?
n

2π

ż 2π

0

e´iωτ rJnpω; fqdω.

Based on the above, heuristically, ErdZpωq|Xns “
?
n rJnpω; fqdω and

?
n rJnpω; fq is the deriva-

tive of the orthogonal increment process conditioned on the observed time series. Under Assump-

tion 2.3.1, below, it can be shown that varr pJnpω; fqs “ Opn´1q, whereas varrJnpωqs “ fn “ Op1q.

Based on this, since rJnpω; fq “ Jnpωq` pJnpω; fq, then
?
n rJnpω; fq «

?
nJnpωq. Thus the regular

DFT,
?
nJnpωq, can be viewed as an approximation of the derivative of the orthogonal increment

process conditioned on the observed time series.

2.2.1 The predictive DFT for the ARppq process

In this section, we derive an explicit form of the predictive DFT for the ARppq process. To

begin with, we calculate the predictive DFT for the ARp1q process.

Example 2.2.1 (The ARp1q process). Suppose thatXt has an ARp1q representationXt “ φXt´1`

εt (|φ| ă 1). Then the best linear predictors are simply a function of the observations at the two

endpoints. That is for τ ď 0, pXτ,n “ φ|τ |`1X1 and for τ ą n pXτ,n “ φτ´nXn. Then the predictive

DFT for the ARp1q model is

pJnpω; fφq “
φ
?
n

˜

1

φpωq
X1 `

eipn`1qω

φpωq
Xn

¸

where φpωq “ 1´ φe´iω.

An illustration is given in Figure 2.2.

We now generalize Example 2.2.1 to the ARppq process. Suppose that fppωq “ σ2|1 ´
řp
j“1 φje

´ijω|´2 is the spectral density of the time series tXtutPZ (it is a finite order autoregressive

model ARppq) and where the characteristic polynomial associated with tφju
p
j“1 has roots lying

outside the unit circle. Clearly, we can represent the time series tXtutPZ as

Xt “

p
ÿ

j“1

φjXt´j ` εt t P Z

13



Figure 2.2: The past and future best linear predictors based on a AR(1) model.

where tεtutPZ are uncorrelated random variables with Erεts “ 0 and varrεts “ σ2. For finite order

ARppq processes with autoregressive coefficients tφju
p
j“1, the best linear predictor ofX0 andXn`1

given tXtu
n
t“1 are pX0,n “

řp
j“1 φjXj and pXn`1,n “

řp
j“1 φjXn`1´j respectively. In general, we

can recursively define the best linear predictors pX1´τ,n and pXn`τ,n to be

pX1´τ,n “

p
ÿ

j“1

φj pX1´τ`j,n and pXn`τ,n “

p
ÿ

j“1

φj pXn`τ´j,n for τ ě 1, (2.7)

where pXt,n “ Xt for 1 ď t ď n. Therefore, using (2.7) and similar to Example 2.2.1 for ARp1q

model, we can obtain the expression of the predictive DFT of an ARppq model in terms of the AR

coefficients tφju
p
j“1.

Theorem 2.2.2 (Predictive DFT for a finite order autoregressive models). Suppose that fppωq “

σ2|φppωq|
´2 where φppωq “ 1´

řp
j“1 φje

´ijω (the roots of the corresponding characteristic poly-

nomial lie outside the unit circle) and p ď n. Then, the predictive DFT has the analytic form

pJnpω; fpq “
n´1{2

φppωq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isω

` einω
n´1{2

φppωq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qω. (2.8)

PROOF. See Section 3.6.1. l

2.3 The complete periodogram

Using the notation of the complete and predictive DFT, we define the “complete” periodogram

Inpω; fq “ rJnpωqJnpωq “ |Jnpωq|
2
` pJnpωqJnpωq ω P r0, 2πs. (2.9)
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Then, using the similar technique in the proof of Theorem 2.2.1, it can be shown that ErInpω; fqs “

fpωq for all ω P r0, 2πs. Therefore, the complete periodogram is an unbiased estimator of the spec-

tral density for the entire frequency. However, the complete periodogram involves pJnpω; fq which

is a function of the unknown spectral density. Thus, the complete periodogram cannot be directly

evaluated. In next sections, we obtain feasible approximations of the complete periodogram and

the corresponding errors.

2.3.1 The ARppq model and an ARp8q approximation

Recall from (2.6), the predictive DFT can be expressed in terms of the finite predictor co-

efficients which is, in general, an unwieldy function of the autocovariance function. Therefore,

obtaining an approximation of the predictive DFT could be challenging. However, for certain

spectral density functions, it is approachable. In Theorem 2.2.2, we show that when f “ fp cor-

responds to the ARppq spectral density, pJnpω; fpq has a relatively simple analytic form in terms

of the AR coefficients. This tells us that for finite order autoregressive models, estimation of the

predictive DFT only requires us to estimate p number of autoregressive parameters.

For general stationary time series, such simple expressions are not possible. But (2.8) provides

a clue to obtaining a near approximation, based on the ARp8q and MAp8q representation that

many stationary time series satisfy. It is well known that if the spectral density f is strictly positive,

then it has an ARp8q and MAp8q representation see Baxter (1962) (see also equation (2.3) in

Kreiss et al. (2011))

Xt ´

8
ÿ

j“1

φjpfqXt´j “ εt

Xt “ εt `
8
ÿ

j“1

ψjpfqεt´j,

where tεtutPZ is an uncorrelated White noise process with Erε2
t s “ σ2. Unlike finite order au-

toregressive models, pJnpω; fq cannot be represented in terms of tφjpfqu8j“1, since it only involves

the sum of the best finite predictors (not infinite predictors). Instead, we define an approximation
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based on (2.8), but using the ARp8q and MAp8q representation

pJ8,npω; fq “
n´1{2

φpω; fq

n
ÿ

`“1

X`

8
ÿ

s“0

φ``spfqe
´isω

` einω
n´1{2

φpω; fq

n
ÿ

`“1

Xn`1´`

8
ÿ

s“0

φ``spfqe
ips`1qω

“
ψpω; fq
?
n

n
ÿ

`“1

X`

8
ÿ

s“0

φ``spfqe
´isω

` einω
ψpω; fq
?
n

n
ÿ

`“1

Xn`1´`

8
ÿ

s“0

φ``spfqe
ips`1qω

(2.10)

where φpω; fq “ 1 ´
ř8

j“1 φjpfqe
´ijω and ψpω; fq “

ř8

j“0 ψjpfqe
´ijω (we set ψ0pfq “ 1 by

convention). Though seemingly unwieldy, (2.10) has a simple interpretation. It corresponds to the

Fourier transform of the best linear predictors ofXτ given the infinite future tXtu
8
t“1 (if τ ď 0) and

Xτ given in the infinite past tXtu
n
t“´8 (if τ ą n), but are truncated to the observed terms tXtu

n
t“1.

Of course, this is not pJnpω; fq. However, we show that

I8,npω; fq “
´

Jnpωq ` pJ8,npω; fq
¯

Jnpωq (2.11)

is a close approximation of the complete periodogram, Inpω; fq. To do so, we require the following

assumptions.

The first set of assumptions is on the second order structure of the time series.

Assumption 2.3.1. tXtutPZ is a second order stationary time series, where

(i) The spectral density f , is a bounded and strictly positive function.

(ii) For some K ą 1, the autocovariance function is such that
ř

rPZ |r
Kcf prq| ă 8.

Assumption 2.3.1(ii) is related to the smoothness of the spectral density function. Assump-

tion 2.3.1(ii) implies that f is s-times differentiable, where the sth derivative is bounded for all

s ă K. Conversely, Assumption 2.3.1(ii) is satisfied for all 2π-periodic functions which are s-

times continuously differentiable for some s ą K ` 1. We also mention that under Assumption

2.3.1, the corresponding ARp8q and MAp8q coefficients are such that
ř8

j“1 |j
Kφjpfq| ă 8 and

ř8

j“1 |j
Kψjpfq| ă 8 (see Lemma 2.1 in Kreiss et al. (2011)).
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The next set of assumptions are on the higher order cumulants structure of the time series.

Assumption 2.3.2. tXtu is an 2m-order stationary time series such that Er|Xt|
2ms ă 8 and

cumpXt, Xt`s1 , ..., Xt`sh´1
q “ cumpX0, Xs1 , . . . , Xsh´1

q “ κhps1, ..., sh´1q for all t, s1, ..., sh´1 P

Z with h ď 2m. Further, the joint cumulant tκhps1, ..., sh´1qu satisfies

ÿ

s1,...,sh´1PZ

|κhps1, . . . , sh´1q| ă 8 for 2 ď h ď 2m.

Before studying the approximation error when replacing Inpω; fq with I8,npω; fq we first obtain

some preliminary results on the complete periodogram Inpω; fq. The following result concerns the

order of contribution of the predictive DFT in the complete periodogram. Suppose Assumptions

2.3.1 (with K ě 1) and 2.3.2 (for m “ 2) hold. Let pJnpω; fq be defined as in (2.5). Then

Er pJnpω; fqJnpωqs “ Opn´1
q, varp pJnpω; fqJnpωqq “ Opn´2

q. (2.12)

The details of the proof of the above can be found in Section 3.6.2.

Moreover, there are two main differences between the complete periodogram and the regular

periodogram. The first is that the complete periodogram can be complex, however the imaginary

part is mean zero and the variance is of orderOpn´1q. Thus without loss of generality, we can focus

on the real part of the complete periodogram rJnpω; fqJnpωq, denotes Re rJnpω; fqJnpωq. Second,

unlike the regular periodogram, Re rJnpω; fqJnpωq, can be negative. Therefore if positivity is de-

sired it makes sense to threshold Re rJnpω; fqJnpωq to be non-zero. Thresholding Re rJnpω; fqJnpωq

to be non-zero induces a small bias. But we observe from the simulations in Section 3.4 that the

bias is small (see the middle column in Figures 3.1´3.3 where the average of the thresholded true

complete periodogram for various models is given).

Lastly, we mention the variance of the complete periodogram. In the simulations, we observe

that the variance of the complete periodogram tends to be larger than the regular periodogram,

especially at frequencies where the spectral density peaks. To understand why, we focus on the
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Gaussian time series. For the complete periodogram, it can be shown that

varrInpω; fqs “ varr rJnpω; fqs ¨ varrJnpωqs `Opn
´2
q.

By Cauchy-Schwarz inequality, we have for all n that

varr rJnpω; fqs ¨ varrJnpωqs ě |covr rJnpω; fq, Jnpωqs|
2
“ fpωq2.

Thus the variance of the complete periodogram is such that varrInpω; fqs ě fpωq2. By contrast

the variance of the regular periodogram is varrInpωqs « fnpωq
2 ă fpωq2. Nevertheless, despite an

increase in variance of the periodogram, our empirical results suggest that this may be outweighed

by a substantial reduction in the bias of the complete periodogram (see Figures 3.1´3.3 and Table

3.1).

2.3.2 The estimated complete periodogram and its approximation bound

Our aim is to estimate the predictive component in the complete periodogram; pJnpω; fqJnpωq.

As a starting point, we use the Assumptions in Section 2.3.1 to bound the difference between

Inpω; fq and I8,npω; fq.

Theorem 2.3.1. Suppose Assumption 2.3.1 and 2.3.2 (form “ 2) hold. Let Inpω; fq and I8,npω; fq

is defined as in (2.9) and (2.11) respectively. Then

I8,npω; fq “ Inpω; fq `∆0pωq, (2.13)

where supω Er∆0pωqs “ O
`

n´K
˘

, supω varr∆0pωqs “ O
`

n´2K
˘

.

PROOF. See Section 3.6.2. l

A few comments on the above approximation are in order. Observe that the approximation error

between the complete periodogram and its infinite approximation is of order Opn´Kq. For ARppq

processes (where p ď n) this term would not be there. For ARp8q representations with coefficients

18



that geometrically decay (e.g., an ARMA process), then |I8,npω; fq´Inpω; fq| “ Oppρ
nq, for some

0 ď ρ ă 1. On the other hand, if the ARp8q representation has an algebraic decaying coefficients,

φjpfq „ |j|´K´1´δ (for some δ ą 0), then |I8,npω; fq ´ Inpω; fq| “ Oppn
´Kq. In summary,

nothing that Inpω; fq is an unbiased estimator of f , if K ą 1, then I8,npω; fq has a smaller bias

than the regular periodogram.

Now the aim is to estimate pJ8,npω; fq. There are various ways this can be done. In this disser-

tation, we approximate the underlying time series with an ARppq process and estimate the ARppq

parameters. This approximation will incur two sources of errors. The first is approximating an

ARp8q process with a finite order ARppq model, the second is the estimation error when esti-

mating the parameters in the ARppq model. In the following section, we obtain bounds for these

errors.

Remark 2.3.1 (Alternative estimation methods). If the underlying spectral density is highly com-

plex with several peaks, fitting a finite order ARppq model may not be able to reduce the bias. An

alternative method is to use the smooth periodogram to estimate the predictive DFT. That is to

estimate the ARp8q parameters and MAp8q transfer function ψpωq in (2.10) using an estimate of

the spectral density function. This can be done by first estimating the cepstral coefficients (Fourier

coefficients of log fpωq) using the method Wilson (1972). Then, by using the recursive algorithms

obtained in Pourahmadi (1983, 1984, 2001) and Krampe et al. (2018) one can extract estimators

of ARp8q and MAp8q parameters from the cepstral coefficients. It is possible that the probabilistic

bounds for the estimates obtained in Krampe et al. (2018) can be used to obtain bounds for the

resulting predictive DFT, but this remains an avenue for future research.

Next, we return to the definition of the predictive DFT in (2.5), which is comprised of the best

linear predictors outside the domain of observation. In time series, it is common to approximate

the best linear predictors with the predictors based on a finite ARppq recursion (the so called plug-

in estimators; see Bhansali (1996) and Kley et al. (2019)). This approximation corresponds to

replacing f in pJnpω; fq with fp, where fp is the spectral density corresponding to “best fitting"

ARppq model based on f .
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It is well known that the best fitting ARppq coefficients, given the covariances tcprqu, are

φ
p
“ pφ1,p, ..., φp,pq

1
“ R´1

p rp, (2.14)

whereRp is the pˆp Toeplitz variance matrix with pRpqps,tq “ cf ps´tq and rp “ pcf p1q, . . . , cf ppqq
1.

This leads to the ARppq spectral density approximation of f

fppωq “ σ2
|φppωq|

´2
“ σ2

ˇ

ˇ1´
p
ÿ

j“1

φj,pe
´ijω

ˇ

ˇ

´2
.

The coefficients tφj,pu
p
j“1 are used to construct the plug-in prediction estimators for Xτ (τ ď 0 or

τ ą n). This in turn gives the approximation of the predictive DFT pJnpω; fpq where the analytic

form for pJnpω; fpq is given in (2.8), with the coefficients φj replaced with φj,p.

Using rJnpω; fpq “ Jnpωq ` pJnpω; fpq we define the following approximation of the complete

periodogram

Inpω; fpq “ rJnpω; fpqJnpωq. (2.15)

We now obtain a bound for the approximation error, where we replace I8,npω; fq with Inpω; fpq.

Theorem 2.3.2. Suppose Assumption 2.3.1 holds with K ą 1. Let I8,npω; fq and Inpω; fpq, be

defined as in (2.11) and (2.15) respectively. Then we have

Inpω; fpq “ I8,npω; fq `∆1pωq, (2.16)

where supω Er∆1pωqs “ O
`

pnpK´1q´1
˘

, supω varr∆1pωqs “ O
`

pnpK´1q´2
˘

.

PROOF. See Section 3.6.2. l

Applying Theorems 2.3.1 and 2.3.2, we observe that Inpω; fpq has a smaller bias than the
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regular periodogram

ErInpω; fpqs “ fpωq `O

ˆ

1

npK´1

˙

.

In particular, the bias is substantially smaller than the usual Opn´1q bias. Indeed, if the true

underlying process has an ARpp˚q representation where p˚ ă p, then the bias is zero.

However, in reality, the true spectral density and best fitting ARppq approximation f and fp respec-

tively are unknown, and they need to be estimated from the observed data.

To estimate the best fitting ARppq model, we replace the autocovariances with the sample

autocovariances to yield the Yule-Walker estimator of the best fitting ARppq parameters

pφ
p
“ ppφ1,p, . . . , pφp,pq

1
“ pR´1

p,n prp,n, (2.17)

where pRp,n is the pˆp sample covariance matrix with p pRp,nqps,tq “ pcnps´tq and prp,n “ ppcnp1q, . . . ,pcnppqq
1

where pcnpkq “ n´1
řn´|k|
t“1 XtXt`k. We define the estimated ARppq spectral density

pfppωq “ |pφppωq|
´2
“
ˇ

ˇ1´
p
ÿ

j“1

pφj,pe
´ijω

ˇ

ˇ

´2
.

Observe that we have ignored including an estimate of the innovation variance in pfppωq as it

plays no role in the definition of pJnpω; fpq. Using this we define the estimated complete DFT

as rJnpω; pfpq “ Jnpωq ` pJnpω; pfpq, where

pJnpω; pfpq “
n´1{2

pφppωq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

pφ``s,pe
´isω

` einω
n´1{2

pφppωq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

pφ``s,pe
ips`1qω (2.18)

and corresponding estimated complete periodogram based on pfp is

Inpω; pfpq “ rJnpω; pfpqJnpωq. (2.19)
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We now show that with the estimated ARppq parameters the resulting estimated complete peri-

odogram has a smaller bias (in the sense of Bartlett (1953)) than the regular periodogram.

Theorem 2.3.3. Suppose Assumptions 2.3.1(i) and 2.3.2 (where m ě 6 and is multiple of two)

hold. Let Inpω; fpq and Inpω; pfpq be defined as in (2.15) and (2.19) respectively. Then we have the

following decomposition

Inpω; pfpq “ Inpω; fpq `∆2pωq `Rnpωq (2.20)

where ∆2pωq is the dominating error with

sup
ω

Er∆2pωqs “ O

ˆ

p3

n2

˙

, sup
ω

varr∆2pωqs “ O

ˆ

p4

n2

˙

and Rnpωq is such that supω |Rnpωq| “ Op

`

pp2{nqm{4
˘

.

PROOF. See Section 3.6.2. l

We now apply Theorems 2.3.1´2.3.3 to obtain a bound for the approximation error between

the estimated complete periodogram Inpω; pfpq and the complete periodogram.

Theorem 2.3.4. Suppose Assumptions 2.3.1 (K ą 1) and 2.3.2 (where m ě 6 and is a multiple of

two) hold. Let Inpω; fq “ rJnpω; fqJnpωq and Inpω; pfpq be defined as in (2.19) respectively. Then

we have

Inpω; pfpq “ Inpω; fq `∆pωq `Op

ˆ

pm{2

nm{4

˙

,

where ∆pωq “ ∆0pωq `∆1pωq `∆2pωq (with ∆jp¨q as defined in Theorems 2.3.1´2.3.3),

supω Er∆pωqs “ OppnpK´1q´1 ` p3{n2q and supω varr∆pωqs “ Opp4{n2q.

PROOF. The result immediately follows from Theorems 2.3.1´2.3.3. l

To summarize, by predicting across the boundary using the estimated ARppq parameters heuris-

tically we have reduced the “bias” of the periodogram. More precisely, if the probabilistic error in
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Theorem 2.3.4 is such that pm{2

nm{4
ăă

p3

n2 . Then the “bias” in the sense of Bartlett (1953) is

ErIh,npω; pfpqs “ fpωq `O

ˆ

1

npK´1
`
p3

n2

˙

.

Consequently, for K ą 1, and p chosen such that

p3
{nÑ 0, as p, nÑ 8, (2.21)

then the “bias” will be less than the Opn´1q order. This can make a substantial difference when n

is small or the underlying spectral density has a large peak.

In practice the order p of the best AR process needs to be selected. This is usually done using

the AIC. In which case the above results need to be replaced with pp, where pp is selected to minimize

the AIC

AICppq “ log pσ2
p,n `

2p

n
,

pσ2
p,n “

1
n´Kn

řn
t“Kn

pXt ´
řp
j“1 paj,pXt´jq

2, Kn is such that K2`δ
n „ n for some δ ą 0 and the

order p is chosen such that pp “ arg min1ďkďKn AICpkq. To show that the selected pp satisfies (2.21),

we use the conditions in Ing and Wei (2005) who assume that the underlying time series is a linear,

stationary time series with an ARp8q that satisfies Assumption K.1´K.4 in Ing and Wei (2005).

Under Assumption 2.3.1, and applying Baxter’s inequality, the ARp8q coefficients satisfy

8
ÿ

j“1

|aj ´ aj,p|
2
ď
`

8
ÿ

j“1

|aj ´ aj,p|
˘2
ď C

`

8
ÿ

j“p`1

|aj|
˘2
“ O

`

p´2K
˘

. (2.22)

Under these conditions, Ing and Wei (2005) obtain a bound for pp. In particular, if the underlying

time series has an exponential decaying AR coefficients, then pp “ Opplog nq (see Example 1 in Ing

and Wei (2005)) on the other hand if the rate of decay is polynomial order satisfying (2.22), then

pp “ Oppn
1{p1`2Kqq (see Example 2 in Ing and Wei (2005)). Thus, for for both these cases we have
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pp3{n
P
Ñ 0 and pp

P
Ñ 8 as nÑ 8.

In summary, using the AIC as a method for selecting p, yields an estimated complete peri-

odogram that has a lower bias than the regular periodogram.

2.4 The Gaussian likelihood in the frequency domain

In this section, we calculate the exact difference between the Gaussian and Whittle likelihood,

and using this exact bound, we obtain the frequency domain representation of the Gaussian likeli-

hood. To compare the Gaussian and Whittle likelihood, we rewrite the Whittle likelihood (defined

as in (1.2)) in a matrix form. Using the circulant matrix notation, the Whittle likelihoodKnpθ;Xnq

can be written as

Knpθ;Xnq “ n´1
`

X 1
nCnpf

´1
θ qXn `

n
ÿ

k“1

log fθpωk,nq
˘

. (2.23)

Since the focus in this dissertation will be on the first terms in the Gaussian and Whittle likelihoods,

we use Lnpθq and Knpθq to denote only these terms:

Lnpθq “ n´1X 1
nΓnpfθq

´1Xn and Knpθq “ n´1X 1
nCnpf

´1
θ qXn. (2.24)

Therefore, the difference of two likelihoods is

Lnpθq ´Knpθq “ n´1X 1
n

`

Γnpfθq
´1
´ Cnpf

´1
θ q

˘

Xn.

Since the inverse circulant matrix Cnpf´1
θ q “ F ˚n∆npf

´1
θ qFn has a relatively easy form, to obtain

the exact bound, it is essential to obtain a “good” expression for the inverse of the variance matrix.

To motivate our approach, we first study the difference in the bias of the ARp1q parameter

estimator using both the Gaussian and Whittle likelihood. In Figure 2.3, we plot the bias in the

estimator of φ in the ARp1q model Xt “ φXt´1 ` εt for different values of φ (based on sample

size n “ 20). We observe that the difference between the bias of the two estimators increases as

|φ| approaches one. Further, the Gaussian likelihood clearly has a smaller bias than the Whittle
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likelihood (which is more pronounced when |φ| is close to one).
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Figure 2.3: The model Xt “ φXt´1 ` εt with independent standard normal errors is simulated.
The bias of the estimator of φ based on sample size n “ 20 over 1,000 replications.

Straightforward calculations give explicit forms for Γnpfφq
´1 and Cnpf´1

φ q

Γnpfφq
´1

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´φ 0 0 . . . 1

´φ 1` φ2 ´φ 0 . . . 0

0 ´φ 1` φ2 ´φ . . . 0

...
...

...
... . . . ...

0 0 0 0 . . . 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Cnpf
´1
φ q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1` φ2 ´φ 0 0 . . . ´φ

´φ 1` φ2 φ 0 . . . 0

0 ´φ 1` φ2 ´φ . . . 0

...
...

...
... . . . ...

´φ 0 0 0 . . . 1` φ2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.25)

Therefore, based on (2.25), the difference between the Gaussian and Whittle likelihoods for an
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ARp1q model is

Lnpφq ´Knpφq “ n´1
“

2φX1Xn ´ φ
2
pX2

1 `X
2
nq
‰

(2.26)

Thus we observe that the closer |φ| is to one, the larger the expected difference between the likeli-

hoods. Using (2.26) and the Bartlett correction (see Bartlett (1953) and Cox and Snell (1968)), it

is possible to obtain an asymptotic expression for the difference in the biases (see also Appendix

B.2). Generalization of this result to higher order ARppq models may also be possible using the

analytic expression for the inverse of the Toeplitz matrix corresponding to an ARppqmodel derived

in Siddiqui (1958) and Galbraith and Galbraith (1974).

However, for more general models, such as the MApqq or ARMApp, qq models, using brute

force calculations for deriving the difference Lnpθq ´Knpθq and its derivatives is extremely diffi-

cult. Furthermore, such results do not offer any insight on how the Gaussian and Whittle likelihood

are related, nor what is “lost” when going from the Gaussian likelihood to the Whittle likelihood.

Therefore, we use a different approach to obtain an inverse Toeplitz matrix representation. The

key is on the matrix representation of the biorthogornal transform theorem (Theorem 2.2.1, (2.2)).

The benefit of biorthogonality between Un “ Fn `Dnpfq and Fn is that it leads to the following

simple identity on the inverse of the variance matrix.

Lemma 2.4.1. Suppose that Un and Vn are biorthogonal matrices with respect to the variance

matrix varpXnq, such that covpUnXn, VnXnq “ ∆n, where ∆n is an invertible diagonal matrix.

Then, we have the representation

varpXnq
´1
“ V ˚n ∆´1

n Un. (2.27)

PROOF. We first note that covpUnXn, VnXnq “ UnvarpXnqV
˚
n “ ∆n. By taking determinant on

both side, we have |Un||varpXnq||Vn| “ |Dn| ‰ 0. Therefore, |Un|, |Vn| ‰ 0, i.e., Un and Vn are

invertible. (2.27) follows immediately from inverting the identity varpXnq “ U´1
n ∆npV

˚
n q
´1. l

Therefore, using Lemma 2.4.1 together with (2.2), we obtain representation of the inverse

Toeplitz matrix.
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Corollary 2.4.1 (Inverse Toeplitz identity). Let Γnpfq denote an n ˆ n Toeplitz matrix generated

by the spectral density f . Then equations (2.27) and (2.2) yield the following identity

Γnpfq
´1
“ F ˚n∆npf

´1
qpFn `Dnpfqq, (2.28)

where Dnpfq is defined in (2.3). Observe that two spectral density functions f1pωq and f2pωq with

the same autocovariance up to lag pn´1q, tcprqun´1
r“0 , can give rise to two different representations

Γnpf1q
´1
“ F ˚n∆npf

´1
1 qpFn `Dnpf1qq “ F ˚n∆npf

´1
2 qpFn `Dnpf2qq “ Γnpf2q

´1.

In the following theorem, we exploit the biorthogonality between the regular DFT and the

complete DFT to yield an exact “frequency domain” representation for the Gaussian likelihood.

We use the notation defined in Theorem 2.2.1.

Theorem 2.4.1 (A frequency domain representation of the Gaussian likelihood). Suppose the spec-

tral density fθ is bounded away from zero, and the corresponding autocovariance is such that
ř

r |rcfθprq| ă 8. Let pJnpωk,n; fθq be the predictive DFT defined as in (2.5) but replacing f with

fθ and rJnpωk,n; fθq “ Jnpωk,nq` pJnpωk,n; fθq be the complete DFT. Then, the Gaussian likelihood

has the following representation

Lnpθq “
1

n
X 1
nΓnpfθq

´1Xn “
1

n

n
ÿ

k“1

rJnpωk,n; fθqJnpωk,nq

fθpωk,nq
. (2.29)

Further

Γnpfθq
´1
´ Cnpf

´1
θ q “ F ˚n∆npf

´1
θ qDnpfθq, (2.30)

where Dnpfθq is defined as in (2.3) but replacing f with fθ. This yields the difference between the
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Gaussian and Whittle likelihood

Lnpθq ´Knpθq “ n´1X 1
n

“

Γnpfθq
´1
´ Cnpf

´1
θ q

‰

Xn

“
1

n

n
ÿ

k“1

pJnpωk,n; fθqJnpωk,nq

fθpωk,nq
. (2.31)

PROOF. (2.30) follows immediately from Corollary 2.4.1. Next, we note that FnXn “ Jn and

pFn ` DnpfθqqXn “
rJn, thus we immediately obtain equation (2.29), and since rJnpωk,n; fθq “

Jnpωk,nq ` pJnpωk,n; fθq, it proves (2.31). l

From the above theorem, we observe that the Gaussian likelihood is the Whittle likelihood plus an

additional “correction”

Lnpθq “
1

n

n
ÿ

k“1

|Jnpωk,nq|
2

fθpωk,nq
looooooooomooooooooon

“Knpθq

`
1

n

n
ÿ

k“1

pJnpωk,n; fθqJnpωk,nq

fθpωk,nq
.

To summarize, the Gaussian likelihood compensates for the well known boundary effect in the

Whittle likelihood, by predicting outside the domain of observation. The Whittle likelihood es-

timator selects the spectral density fθ which best fits the periodogram. On the other hand, since

Efθr rJnpωk,n; fθqJnpωk,nqs “ fθpωk,nq, the Gaussian likelihood estimator selects the spectral den-

sity which best fits rJnpωk,n; fθqJnpωk,nq by simultaneously predicting and fitting. Therefore, the

“larger” the level of “persistence” in the time series, the greater the predictive DFT pJnpωk,n; fθq,

and subsequently the larger the approximation error between the two likelihoods. This fits with the

insights of Dahlhaus (1988), who shows that the more peaked the spectral density the greater the

leakage effect in the Whittle likelihood, leading to a large finite sample bias.

By using Theorem 2.4.1, we have

Lnpθq ´Knpθq “
1

n

n
ÿ

k“1

pJnpωk,n; fθqJnpωk,nq

fθpωk,nq
“ n´1X 1

nF
˚
n∆npf

´1
θ qDnpfθqXn,
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where the entries of F ˚n∆npf
´1
θ qDnpfθq are

pF ˚n∆npf
´1
θ qDnpfθqqs,t

“
ÿ

τď0

rφt,npτ ; fθqG1,nps, τ ; fθq ` φn`1´t,npτ ; fθqG2,nps, τ ; fθqs (2.32)

with

G1,nps, τ ; fθq “
1

n

n
ÿ

k“1

1

fθpωk,nq
eipτ´sqωk,n “

ÿ

aPZ

Kf´1
θ
pτ ´ s` anq

G2,nps, τ ; fθq “
1

n

n
ÿ

k“1

1

fθpωk,nq
e´ipτ`s´1qωk,n “

ÿ

aPZ

Kf´1
θ
pτ ` s´ 1` anq

andKf´1
θ
prq “

ş2π

0
fθpωq

´1eirωdω. We observe that for 1 ăă t ăă n, φt,npτ ; fθq and φn`1´t,npτ ; fθq

will be “small” as compared with t close to one or n. The same is true for G1,nps, τ ; fθq and

G2,nps, τ ; fθq when 1 ăă s ăă n. Thus the entries of F ˚n∆npf
´1
θ qDnpfθq will be “small” far

from the four corners of the matrix. In contrast, the entries of F ˚n∆npf
´1
θ qDnpfθq will be largest at

the four corners at the matrix. This can be clearly seen for ARp1q model in (2.25). Moreover, in

the following theorem we generalize our observation to the case of ARppq models.

Theorem 2.4.2 (Finite order autoregressive models). Suppose that fθpωq “ σ2|φppωq|
´2 where

φppωq “ 1 ´
řp
u“1 φue

´iuω (the roots of the corresponding characteristic polynomial lie outside

the unit circle) and p ă n. Then, by Theorem 2.2.2, the predictive DFT has the analytic form

pJnpωk,n; fθq “
n´1{2

φppωk,nq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isωk,n `

n´1{2

φppωk,nq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qωk,n .
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If p ď n{2, then Dnpfθq is a rank 2p matrix where

Dnpfθq “

n´1{2

¨

˚

˚

˚

˚

˚

˚

˚

˝

φ1,ppω1,nq . . . φp,ppω1,nq 0 . . . 0 eiω1,nφp,ppω1,nq . . . eiω1,nφ1,ppω1,nq

φ1,ppω2,nq . . . φp,ppω2,nq 0 . . . 0 eiω2,nφp,ppω2,nq . . . eiω2,nφ1,ppω2,nq

... . . . ...
... . . . ...

... . . . ...

φ1,ppωn,nq . . . φp,ppωn,nq 0 . . . 0 eiωn,nφp,ppωn,nq . . . eiωn,nφ1,ppωn,nq

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.33)

and φj,ppωq “ φppωq
´1

řp´j
s“0 φj`se

´isω. Note, if n{2 ă p ď n, then the entries of Dnpfθq will

overlap. Let rφ0 “ 1 and for 1 ď s ď p, rφs “ ´φs (zero otherwise), then if 1 ď p ď n{2 we have

`

Γnpfθq
´1
´ Cnpf

´1
θ q

˘

s,t
“ pF ˚n∆npf

´1
θ qDnpfθqqs,t

“

$

’

’

’

’

&

’

’

’

’

%

σ´2
řp´t
`“0 φ``t

rφp``sq mod n 1 ď t ď p

σ´2
řp´pn´tq
`“1 φ``pn´tqrφp`´sq mod n n´ p` 1 ď t ď n

0 otherwise

. (2.34)

PROOF. See Section 4.7.1. l

Theorem 2.4.2 shows that for ARppq models, the predictive DFT only involves the p obser-

vations on each side of the observational boundary X1, . . . , Xp and Xn´p`1, . . . , Xn, where the

coefficients in the prediction are a linear combination of the AR parameters (excluding the de-

nominator φppωq). The well known result (see Siddiqui (1958) and Shaman (1975), equation (10))

that F ˚n∆npf
´1
θ qDnpfθq is non-zero only at the pp ˆ pq submatrices located in the four corners of

F ˚n∆npf
´1
θ qDnpfθq follows from equation (2.34).

By using (2.8) we obtain an analytic expression for the Gaussian likelihood of the ARppq

model in terms of the autoregressive coefficients. In particular, the Gaussian likelihood (written in
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the frequency domain) corresponding to the ARppq model Xt “
řp
j“1 φjXt´j ` εt is

Lnpφq “
σ´2

n

n
ÿ

k“1

|Jnpωk,nq|
2
|φppωk,nq|

2

`
σ´2

n

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``s

˜

Xp´sq mod n ´

p
ÿ

j“1

φjXpj´sq mod n

¸

`
σ´2

n

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``s

˜

Xps`1q mod n ´

p
ÿ

j“1

φjXps`1´jq mod n

¸

, (2.35)

where φ “ pφ1, ..., φpq
1 and φppωq “ 1´

řp
j“1 φje

´ijω. A proof of the above identity can be found

in Section 4.7.1. Equation (2.35) offers a simple representation of the Gaussian likelihood in terms

of a Whittle likelihood plus an additional term in terms of the ARppq coefficients.

2.4.1 Approximation of the Gaussian likelihood in the frequency domain

In this section, we obtain the approximation of Γnpfq
´1 ´ Cnpf

´1q “ F ˚n∆npf
´1qDnpfq for

spectral density f . This is equivalant to obtain an approximation of Dnpfq.

In Theorem 2.2.1, we replace φs,npτ ; fq in Dnpfq with φspτ ; fq which are the coefficients

of the best linear predictor of Xτ (for τ ď 0) given infinite future of time series tXtu
8
t“1 i.e.

pXτ “
ř8

t“1 φtpτ ; fqXt. This gives the approximation D8,npfq, where

pD8,npfqqk,t “ n´1{2
ÿ

τď0

`

φtpτ ; fqeiτωk,n ` φn`1´tpτ ; fqe´ipτ´1qωk,n
˘

.

One advantage of this approximation is that the infinite prediction coefficients φspτ ; fq (for τ ď 0)

admits a simple convolution-like expression

φjpτ ; fq “

|τ |
ÿ

j“0

φs`jpfqψ|τ |´jpfq τ ď 0, (2.36)

where tφjpfqujě1 and tψjpfqujě1 are ARp8q and MAp8q coefficients of tXtu (with underlying

spectral density f ) respectively. By convention, we set φ0pfq “ ψ0pfq “ 1.

31



Using (2.36), it can be shown that for 1 ď k, t ď n,

pD8,npfqqk,t “ n´1{2φ
8
t pωk,n; fq

φpωk,n; fq
` n´1{2eiωk,n

φ8n`1´tpωk,n; fq

φpωk,n; fq
, (2.37)

where φ8t pω; fq “
ř8

s“0 φt`spfqe
´isω . The proof of the above identity can be found in Section

4.7.1. Using the above we can show that pD8,npfqXnqk “
pJ8,npωk,n; fq where

pJ8,npω; fq “
n´1{2

φpω; fq

n
ÿ

t“1

Xtφ
8
t pω; fq ` eipn`1qω n´1{2

φpω; fq

n
ÿ

t“1

Xn`1´tφ8t pω; fq. (2.38)

It is not surprising that the expression of pJ8,npω; fq in (2.38) is identical to the first identity of

(2.10). This is because both constructions are based on the infinite order AR representation of the

stationary time series.

We show below that pJ8,npωk,n; fq is an approximation of pJnpωk,n; fq.

Theorem 2.4.3 (An ARp8q approximation for general processes). Suppose f satisfies Assumption

2.3.1 and fθ is bounded away from zero and }fθ}0 ă 8 (with fθpωq “ σ2
θ |φθpωq|

´2). Let Dnpfq,

D8,npfq and pJ8,npωk,n; fq be defined as in (2.3) and (2.37) and (2.38) respectively. Then we have

X 1
nF

˚
n∆npf

´1
θ q pDnpfq ´D8,npfqqXn

“

n
ÿ

k“1

Jnpωk,nq

fθpωk,nq

`

pJnpωk,n; fq ´ pJ8,npωk,n; fq
˘

(2.39)

and
›

›F ˚n∆npf
´1
θ q pDnpfq ´D8,npfqq

›

›

1
ď
Cf,0ρn,Kpfq

nK´1
AKpf, fθq. (2.40)

Further, if tXtu is a time series where supt }Xt}E,2q “ }X}E,2q ă 8 (for some q ą 1), then

n´1
›

›X 1
nF

˚
n∆npf

´1
θ q pDnpfq ´D8,npfqqXn

›

›

E,q

ď
Cf,0ρn,Kpfq

nK
AKpf, fθq}X}

2
E,2q. (2.41)
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PROOF. See Section 4.7.1. l

We state the above theorem is the general case that the spectral density f is used to construct the

predictorsDnpfq. It does not necessarily have to be the same as fθ. This is to allow generalizations

of the Whittle and Gaussian likelihoods, which we discuss in Section 4.1.

Applying the above theorem to the Gaussian likelihood gives an approximation which is anal-

ogous to (2.35)

Lnpθq “ Knpθq `
1

n

n
ÿ

k“1

pJ8,npωk,n; fθqJnpωk,nq

fθpωk,nq
`Oppn

´K
q

“ Knpθq `
1

n

n
ÿ

s,t“1

XsXt
1

n

n
ÿ

k“1

e´isωk,nϕt,npωk,n; fθq `Oppn
´K
q, (2.42)

where ϕt,npω; fθq “ σ´2
”

φpω; fθqφ
8
t pω; fθq ` e

iωφpω; fθqφ8n`1´tpω; fθq
ı

. The above approxima-

tion shows that if the autocovariance function, corresponding to fθ decays sufficiently fast (in the

sense that
ř

rPZ |r
Kcfθprq| ă 8 for some K ą 1). Then replacing the finite predictions with the

predictors using the infinite past (or future) gives a close approximation of the Gaussian likelihood.

Remark 2.4.1. Following from the above, the entrywise difference between the two matrices is

approximately

pΓnpfθq
´1
´ Cnpf

´1
θ qqs,t « pF

˚
n∆npf

´1
θ qD8,npfθqqs,t “

1

n

n
ÿ

k“1

e´isωk,nϕt,npωk,n; fθq,

thus giving an analytic approximation to (2.32).

We conclude this section by obtaining a bound between the Gaussian and Whittle likelihood.

Theorem 2.4.4 (The difference in the likelihoods). Suppose fθ satisfies Assumption 2.3.1. Let

Dnpfθq and D8,npfθq be defined as in (2.3) and (2.37) respectively. Then we have

›

›F ˚n∆npf
´1
θ qD8,npfθq

›

›

1
ď A1pfθ, fθq (2.43)
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and
›

›Γnpfθq
´1
´ Cnpf

´1
θ q

›

›

1
ď

ˆ

A1pfθ, fθq `
Cfθ,0ρn,Kpfθq

nK´1
AKpfθ, fθq

˙

. (2.44)

Further, if tXtu is a time series where supt }Xt}E,2q “ }X}E,2q ă 8 (for some q ą 1), then

}Lnpθq ´Knpθq}E,q ď n´1

ˆ

A1pfθ, fθq `
Cfθ,0ρn,Kpfθq

nK´1
AKpfθ, fθq

˙

}X}2E,2q. (2.45)

PROOF. See Section 4.7.1. l

The above result shows that under the stated conditions

n´1
›

›Γnpfθq
´1
´ Cnpf

´1
θ q

›

›

1
“ Opn´1

q,

and the difference between the Whittle and Gaussian likelihoods is of order Opn´1q.
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3. THE COMPLETE PERIODOGRAM *

In this section, we discuss greater detail of the complete periodogram in Section 2.3.

3.1 The tapered complete periodogram

We recall from Section 2.3 that the complete periodogram extends the “domain” of observation

by predicting across the boundary for one of the DFTs, but keeping the other DFT the same.

Our simulations suggest that a further improvement can be made by “softening” the boundary of

the regular DFT by using a data taper. Unusually, unlike the classical data taper, we only taper

the regular DFT, but keep the complete DFT as is. Precisely we define the tapered complete

periodogram as

Ih,npω; fq “ rJnpω; fqJh,npωq, Jh,npωq “ n´1{2
n
ÿ

t“1

ht,nXte
itω

and h “ tht,nunt“1 are positive weights. Again by using that covp pXτ,n, Xtq “ cpt´τq for 1 ď t ď n

and τ P Z it is straightforward to show that

ErIh,npω; fqs “
`

n´1
n
ÿ

t“1

ht,n
˘

¨ fpωq ω P r0, 2πs.

Thus to ensure that Ih,npω; fq is an unbiased estimator of f , we constrain the tapered weights to

be such that
řn
t“1 ht,n “ n. Unlike the regular tapered periodogram, for any choice of tht,nu

(under the constraint
řn
t“1 ht,n “ n), Ih,npω; fq will be an unbiased estimator of (no smoothness

assumptions on the taper is required). But it seems reasonable to use standard tapers when defining

tht,nu. In particular, to let

ht,n “ cnhnpt{nq

*Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral
methods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.]
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where cn “ n{H1,n and

Hq,n “

n
ÿ

t“1

hnpt{nq
q, q ě 1. (3.1)

A commonly used taper is the Tukey (also called the cosine-bell) taper, where

hn

ˆ

t

n

˙

“

$

’

’

’

’

&

’

’

’

’

%

1
2
r1´ cospπpt´ 1

2
q{dqs 1 ď t ď d

1 d` 1 ď t ď n´ d

1
2
r1´ cospπpn´ t` 1

2
q{dqs n´ d` 1 ď t ď n

. (3.2)

Since we do not observe the spectral density f , we use the estimated tapered complete periodogram

Ih,npω; pfpq “ rJnpω; pfpqJh,npωq (3.3)

where rJnpω; pfpq “ Jnpωq ` pJnpω; pfpq where pJnpω; pfpq is defined as in (2.18). In the theorem

below we obtain that the asymptotic bias of the estimated tapered complete periodogram, this

result is analogous to the non-tapered result in Theorem 2.3.4 (Noting that the tapered complete

periodogram includes the non-tapered case where we set ht,n ” 1).

Theorem 3.1.1. Suppose Assumptions 2.3.1 (K ą 1) and 2.3.2 (where m ě 6 and is a multiple of

two) hold. Let Ih,npω; pfpq be defined as in (3.3) where
řn
t“1 ht,n “ n and supt,n |ht,n| ă 8. Then

we have

Ih,npω; pfpq “ Ih,npω; fq `∆hpωq `Op

ˆ

pm{2

nm{4

˙

,

where supω Er∆hpωqs “ O
`

pnpK´1q´1 ` p3{n2
˘

and supω varr∆hpωqs “ O pp4{n2q.

PROOF. See Section 3.6.3. l

Comparing Theorem 3.1.1 with Theorem 2.3.4, if the taper satistifies
řn
t“1 ht,n “ n and

supt,n |ht,n| ă 8, then the tapered complete periodogram has the same order of approximation
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error with the regular complete periodogram. Therefore, if p is chosen using AIC, then this yields

an estimated tapered complete peridogram has a lower bias than the regular periodogram.

Theoretically, it is unclear using the tapered estimated complete improves on the non-tapered

estimated complete periodogram. But in the simulations, we do observe an improvement in the bias

of the estimator when using (3.2) with d “ n{10 (this will require further research). In contrast, in

Section 3.2 we show that the choice of data taper does have an impact on the variance of estimators

based on the complete periodogram.

3.2 The integrated complete periodogram

We now apply the estimated (tapered) complete periodogram to estimating parameters in a time

series. Many parameters in time series can be rewritten in terms of the integrated spectral mean

Apgq “
1

2π

ż 2π

0

gpωqfpωqdω,

where gp¨q is an integrable function that determines an underlying parameter, Apgq. Examples of

useful functions g are discussed in Section 3.3.

The above representation motivates the following estimator of Apgq, where we replace the

spectral density function f with the regular periodogram, to yield the following estimators

AI,npgq “
1

2π

ż 2π

0

gpωqInpωqdω or AS,npgq “
1

n

n
ÿ

k“1

gpωk,nqInpωk,nq, (3.4)

of Apgq where ωk,n “ 2πk
n

. See, for example, Milhøj (1981); Dahlhaus and Janas (1996); Bardet

et al. (2008); Eichler (2008); Niebuhr and Kreiss (2014); Mikosch and Zhao (2015) and Subba Rao

(2018). However, similar to the regular periodogram, the integrated regular periodogram has an

Opn´1q bias

ErAx,npgqs “ Apgq `Opn´1
q x P tI, Su

which can be severe for “peaky” spectral density functions and small sample sizes. The bias in the
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case that an appropriate tapered periodogram is used instead of the regular periodogram will be

considerably smaller and of order Opn´2q. Ideally, we could replace the periodogram in (3.4) with

the complete periodogram Inpω; fq this would produce an unbiased estimator. Of course, this is

infeasible, since f is unknown. Thus motivated by the results in Section 2.3.2, to reduce the bias

in Ax,npgq we propose replacing Inpωq with the estimated complete periodogram Inpω; pfpq or the

tapered complete periodogram Ih,npω; pfpq to yield the estimated integrated complete periodogram

AI,npg; pfpq “

ż 2π

0

gpωqIh,npω; pfpqdω and AS,npg; pfpq “
1

n

n
ÿ

k“1

gpωk,nqIh,npωk,n; pfpq (3.5)

of Apgq. Note that the above formulation allows for the non-tapered complete periodogram (by

setting ht,n ” 1 for 1 ď t ď n).

In the following theorem, we show that the (estimated) integrated complete periodogram has a

bias that has lower order than the integrated regular periodogram and is asymptotically “closer” to

the ideal integrated complete periodogram Ax,npg; fq than the integrated regular periodogram.

Theorem 3.2.1. Suppose the assumptions in Theorem 3.1.1 hold. Further, suppose that the func-

tions g and its derivative are continuous on the torus r0, 2πs. For x P tI, Su, define Ax,npg; fq and

Ax,npg; pfpq as in (3.4) and (3.5) respectively, where
řn
t“1 ht,n “ n and supt,n |ht,n| ă 8. Then

Ax,npg; pfpq “ Ax,npg; fq `∆pgq `Op

ˆ

pm{2

nm{4

˙

where Er∆pgqs “ O
`

pnpK´1q´1 ` p3{n2
˘

and varr∆pgqs “ O
`

pnpK´1q´2 ` p6{n3
˘

.

PROOF. See Section 3.6.3. l

From the above theorem we observe that ifm ě 6, then the term ∆pgq “ Opppnp
K´1q´1`p3{n3{2q

dominates the probablistic error. This gives

Ax,npg; pfpq “ Ax,npg; fq `Op

ˆ

1

npK´1
`

p3

n3{2

˙

x P tI, Su.
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Further, the bias (in the sense of Bartlett (1953)) is

ErAI,npg; pfpqs “ Apgq `O

ˆ

1

npK´1
`
p3

n2

˙

.

since ErAI,npg; fqs “ Apgq.

3.2.1 Distributional properties of Ax,npg; pfpq

In this section, we study the distributional properties of the (estimated) integrated tapered com-

plete periodogram. To do so, we evaluate an expression for the asymptotic variance of Ax,npg; pfpq.

We show that asymptotically the variance is same as if the predictive part of the periodogram;

pJnpω; pfpqJh,npωq were not included in the definition of Ih,npω; pfpq. To do so, we require the condi-

tion

H1,n

H
1{2
2,n

ˆ

p3

n3{2

˙

Ñ 0 as p, nÑ 8, (3.6)

which ensures the predictive term is negligible as compared to the main term. Observe that, by us-

ing the Cauchy-Schwarz inequality, (3.6) holds for all tapers if p3{nÑ 0 as p, nÑ 8. Therefore,

by the same argument at the end of Section 2.3.2, if the order p is selected using the AIC, (3.6)

holds for any taper.

Corollary 3.2.1. Suppose the assumptions in Theorem 3.1.1 hold. Let the data taper tht,nu be such

that ht,n “ cnhnpt{nq where cn “ n{H1,n and hn : r0, 1s Ñ R is a sequence of taper functions

which satisfy the taper conditions in Section 5, Dahlhaus (1988). For x P tI, Su, defineAx,npg; pfpq

as in (3.5) and suppose p, n satisfy (3.6). Then

H2
1,n

H2,n

varrAx,npg; pfpqs “ pV1 ` V2 ` V3q ` op1q
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where Hq,n is defined in (3.1),

V1 “
1

2π

ż 2π

0

gpωqgp´ωqfpωq2dω, V2 “
1

2π

ż 2π

0

|gpωq|2fpωq2dω and

V3 “
1

p2πq2

ż 2π

0

ż 2π

0

gpω1qgpω2qf4pω1,´ω1, ω2qdω1dω2,

where f4 is the fourth order cumulant spectrum.

PROOF. See Section 3.6.1. l

From the above, we observe that when tapering is used, the asymptotic variance of Ax,npg; pfpq is

OpH2,n{H
2
1,nq. If hn ” h for all n for some h : r0, 1s Ñ R with bounded variation, then above rate

has the limit

nH2,n

H2
1,n

Ñ

ş1

0
hpxq2dx

´

ş1

0
hpxqdx

¯2 ě 1.

In general, to understand how it compares to the case where no tapering is used, we note that by the

Cauchy-Schwarz inequality H2,n{H
2
1,n ě n´1, where we attain equality H2,n{H

2
1,n “ n´1 if and

only if no tapering is used. Thus, typically the integrated tapered complete periodogram will be

less efficient than the integrated (non-tapered) complete periodogram. However if nH2,n{H
2
1,n Ñ 1

as nÑ 8, then using the tapered complete periodogram in the estimator leads to an estimator that

is asymptotically as efficient as the tapered complete periodogram (and regular periodogram).

Remark 3.2.1 (Distributional properties of Ax,npg; pfpq). By using Theorems 3.2.1 and Corollary

3.2.1 Ax,npg; pfpq, Ax,npg; fq and Ax,hpgq (where Ax,hpgq is defined as in (3.4) but with Ih,npωq

replacing Inpωq) share the same asymptotic distributional properties. In particular, if (3.6) holds,

then the asymptotic distributions Ax,npg; pfpq and Ax,hpgq are equivalent. Thus if asymptotic nor-

mality of Ax,hpgq can be shown, then Ax,npg; pfpq is also asymptotically normal with the same

limiting variance (given in Corollary 3.2.1).
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3.3 Examples of the integrated complete periodogram

In this section, we apply the integrated complete periodogram to estimating various parameters.

3.3.1 Autocovariance estimation

By Bochner’s theorem, the autocovariance function at lag r, cprq, can be represented as

cprq “ A pcospr¨qq “
1

2π

ż 2π

0

cosprωqfpωqdω.

In order to estimate tcprqu, we replace f with the integrated complete periodogram to yield the

estimator

pcnpr; pfpq “ AI,npcospr¨q; pfpq “
1

2π

ż 2π

0

cosprωqIh,npω; pfpqdω.

Ih,npω; pfpq can be negative, in such situations, the sample autocovariance is not necessarily positive

definite. To ensure a positive definiteness, we threshold the complete periodogram to be greater

than a small cutoff value δ ą 0. This results in a sample autocovariance tpcT,npr; pfpqu which is

guaranteed to be positive definite, where

pcT,npr; pfpq “
1

2π

ż 2π

0

cosprωqmaxtIh,npω; pfpq, δudω.

This method is illustrated with simulations in Section 3.4.2.

3.3.2 Spectral density estimation

Typically, to estimate the spectral density one “smooths” the periodogram using the spectral

window function. The same method can be applied to the complete periodogram. Let W be a

non-negative symmetric function where
ş

W puqdu “ 2π and
ş

W puq2du ă 8. Define Whp¨q “

p1{hqW p¨{hq, where h is a bandwidth. A review of different spectral windows and their properties

can be found in Priestley (1981) and Section 10.4 of Brockwell and Davis (2006) and references

therein. For λ P r0, πs, we choose gpωq “ gλpωq “ Whpλ ´ ωq. Then the (estimated) integrated
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complete periodogram of the spectral density f is

pfnpλ; pfpq “ AI,npgλ; pfpq “
1

2π

ż 2π

0

Whpλ´ ωqIh,npω; pfpqdω.

The method is illustrated with simulations in Section 3.4.3.

3.3.3 Whittle likelihood

Suppose that F “ tfθp¨q : θ P Θu for some compact Θ P Rd is a parametric family of spectral

density functions. The parameter which minimizes the Whittle likelihood is used as an estimator

of the spectral density. Replacing the periodogram with the complete periodogram we define a

variant of the Whittle likelihood as

Knpθq “
1

2π

ż 2π

0

˜

Ih,npω; pfpq

fθpωq
` log fθpωq

¸

dω

“ AI,npf
´1
θ ; pfpq `

1

2π

ż 2π

0

log fθpωqdω.

In Section 2.4, we show that using the non-tapered DFT AS,npf
´1
θ ; fθq “ X 1

nΓpfθq
´1Xn where

X 1
n “ pX1, . . . , Xnq and Γpfθq is the Toeplitz matrix corresponding to the spectral density fθ.

Knpθq is a variant of the frequency domain quasi-likelihoods descirbe in Section 4.1. We mention

that there aren’t any general theoretical guarantees that the bias corresponding to estimators based

onKnpθq is lower than the bias of the Whittle likelihood (though simulations suggest this is usually

the case). Expression for the asymptotic bias of Knpθq are given in Appendix B and the method is

illustrated with simulations in Section 4.6 (and Appendix C).

3.4 Simulations

To understand the utility of the proposed methods, we now present some simulations. For

reasons of space, we focus on the Gaussian time series (noting that the methods also apply to non-

Gaussian time series). In the simulations we use the following ARp2q and ARMAp3, 2q models

(we let B denote the backshift operator)
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(M1) φpBqXt “ εt with φpzq “ p1´ λe
π
2
izqp1´ λe´

π
2
izq for λ P t0.7, 0.9, 0.95u.

(M2) φpBqXt “ ψpBqεt with

$

’

&

’

%

φpzq “ p1´ 0.7zqp1´ 0.9eizqp1´ 0.9e´izq

ψpzq “ 1` 0.5z ` 0.5z2
.

where Erεts “ 0 and varrεts “ 1. We observe that the peak of the spectral density for the ARp2q

model (M1) becomes more pronounced as λ approaches one (at frequency π{2). The ARMAp3, 2q

model (M2) has peaks at zero and π{2, further, it clearly does not have a finite order autoregressive

representation.

We consider three different sample sizes: n “ 20 (extremely small), 50 (small), and 300 (large)

to understand how the proposed methods perform over different sample sizes. All simulations are

conducted at over B “ 5, 000 replications.

Our focus will be on accessing the validity of our method in terms of bias, standard deviation,

and mean squared error. We will compare (a) various periodograms; (b) the spectral density esti-

mators based on smoothing the various periodograms; and the autocorrelation function based on

the various periodograms. The periodograms we will consider are (i) the regular periodogram (ii)

the tapered periodogram Ih,npωq, where

Ih,npωq “
ˇ

ˇH
´1{2
2,n

n
ÿ

t“1

hn pt{nqXte
itω
ˇ

ˇ

2
,

H2,n is defined in (3.1), (iii) the estimated complete periodogram (2.19) and (iv) the tapered com-

plete periodogram (3.3). To understand the impact estimation has on the complete periodogram,

for a model (M1) we also evaluate the complete periodogram using the true ARp2q parameters, as

this is an ARp2q model the complete periodogram has an analytic form in terms of the AR param-

eters. This allows us to compare the infeasible complete periodogram Inpω; fq with the feasible

estimated complete periodogram Inpω, pfpq.

For the tapered periodogram and tapered complete periodogram, we use the Tukey taper de-

fined in (3.2). Following Tukey’s rule of thumb, we set the level of tapering to 10% (which corre-

sponds to d “ n{10). When evaluating the estimated complete and tapered complete periodogram,
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we select the order p using the AIC, and we estimate the AR coefficients using the Yule-Walker

estimator.

For both the complete and tapered complete periodogram, it is possible to have an estimator

that is complex and/or the real part is negative. In the simulations, we found that a negative

Re Inpωk,n; pfpq tends to happen more for the spectral densities with large peaks and the true spectral

density is close to zero. To avoid such issues, for each frequency, we take the real part of the

estimator and thresholding with a small positive value. In practice, we take the threshold value

δ “ 10´3. Thresholding induces a small bias in the estimator, but, at least in our models, the effect

is negligible (see the middle column in Figures 3.1´3.3).

3.4.1 Comparing the different periodograms

In this section, we compare the bias and variance of the various periodograms for models (M1)

and (M2).

Figures 3.1´3.3 give the average (left panels), bias (middle panels), and standard deviation

(right panels) of the various periodograms for the different models and samples sizes. The dashed

line in each panel is the true spectral density. It is well known that varrInpωqs « fpωq2 for

0 ă ω ă π and varrInpωqs « 2fpωq2 for ω “ 0, π. Therefore, for a fair comparision in the

standard deviation plot for the true spectral density we replace
?

2fp0q and
?

2fpπq with fp0q and

fpπq respectively.

In Figures 3.1´3.3 (left and middle panels), we observe that in general, the various com-

plete periodograms give a smaller bias than the regular periodogram and the tapered periodogram.

This corroborates our theoretical findings that that complete periodogram smaller bias than the

Opn´1q rate. As expected, we observe that the true (based on the true AR parameters) complete

periodogram (red) has a smaller bias than the estimated complete (orange) and tapered complete

periodograms (green). Such an improvement is most pronounced near the peak of the spectral

density and it is most clear when the sample size n is small. For example, in Figure 3.1, when the

sample size is extremely small (n “ 20), the bias of the various complete periodograms reduce by

more than a half the bias of the regular and tapered periodogram. As expected, the true complete
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periodogram (red) for (M1) has very little bias even for the sample size n “ 20. The slight bias

that is observed is due to thresholding the true complete periodogram to be positive (which as we

mentioned above induces a small, additional bias). We also observe that for the same sample size

that the regular tapered periodogram (blue) gives a slight improvement in the bias over the regular

periodogram (black), but it is not as noticeable as the improvements seen when using the complete

periodograms. It is interesting to observe that even for model (M2), which does not have a finite

autoregressive representation (thus the estimated complete periodogram incurs additional errors)

also has a considerable improvement in bias.

As compared with the regular periodogram, the estimated complete periodogram incurs two

additional sources of errors. In Section 2.3.1, we show that the variance of the true complete

periodogram tends to be larger than the variance of the regular periodogram. Further in Theorem

2.3.3 we showed that using the estimated Yule-Walker estimators in the predictive DFT leads to an

additionalOpp4{n2q variance in the estimated complete periodogram. This means for small sample

sizes and large p the variance can be quite large. We observe both these effects in the right panels

in Figures 3.1´3.3. In particular, the standard deviation of the various complete periodograms

tends to be greater than the asymptotic standard deviation fpωq close to the peaks. On the other

hand, the standard deviation of the regular periodogram tends to be smaller than fpωq.

In order to globally access bias/variance trade-off for the different periodograms, we evalu-

ate their mean squared errors. We consider two widely used metrics (see, for example, Hurvich

(1988)). The first is the integrated relative mean squared error

IMSE “
1

nB

n
ÿ

k“1

B
ÿ

j“1

˜

rIpjqpωk,nq

fpωk,nq
´ 1

¸2

(3.7)

where rIpjqp¨q is the jth replication of one of the periodograms. The second metric is the integrated

relative bias

IBIAS “
1

n

n
ÿ

k“1

˜

B´1
řB
j“1

rIpjqpωk,nq

fpωk,nq
´ 1

¸2

. (3.8)
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Figure 3.1: The average (left), bias (middle), and standard deviation (right) of the spectral density
(black dashed) and the five different periodograms for Models (M1) and (M2). Length of the time
series n “ 20.

Table 3.1 summarizes the IMSE and IBIAS of each periodogram over the different models and

sample sizes. In most cases, the tapered periodogram, true complete periodogram (when it can

be evaluated) and the two estimated complete periodograms have a smaller IMSE and IBIAS than

the regular periodogram. As expected, the IBIAS of the (true) complete periodogram is almost
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Figure 3.2: The average (left), bias (middle), and standard deviation (right) of the spectral density
(black dashed) and the five different periodograms for Models (M1) and (M2). Length of the time
series n “ 50.
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Figure 3.3: The average (left), bias (middle), and standard deviation (right) of the spectral density
(black dashed) and the five different periodograms for Models (M1) and (M2). Length of the time
series n “ 300.
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zero (rounded off to three decimal digits) for (M1). The estimated complete and tapered complete

periodogram has significantly small IBIAS than the regular and tapered periodogram. But inter-

estingly, when the spectral density is “more peaky” the estimated complete periodograms tend to

have a smaller IMSE than the regular and tapered periodogram. Suggesting that for peaky spectral

densities, the improvement in bias outweighs the increase in the variance. Comparing the tapered

complete periodogram with the non-tapered complete periodogram we observe that the tapered

complete periodogram tends to have a smaller IBIAS (and IMSE) than the non-tapered (estimated)

complete periodogram.

The above results suggest that the proposed periodograms can considerably reduce the small

sample bias without increasing the variance by too much.

Model n metric Regular Tapered Complete(True) Complete(Est) Tapered complete

(M1), λ “ 0.7

20 IMSE 1.284 1.262 1.127 1.323 1.325
IBIAS 0.011 0.009 0 0.002 0.001

50 IMSE 1.101 1.069 1.055 1.098 1.117
IBIAS 0.002 0.001 0 0 0

300 IMSE 1.014 1.006 1.007 1.009 1.046
IBIAS 0 0 0 0 0

(M1), λ “ 0.9

20 IMSE 2.184 2.155 1.226 1.466 1.447
IBIAS 0.152 0.159 0 0.009 0.007

50 IMSE 1.434 1.217 1.112 1.166 1.145
IBIAS 0.029 0.011 0 0.001 0

300 IMSE 1.059 1.010 1.017 1.020 1.047
IBIAS 0.001 0 0 0 0

(M1), λ “ 0.95

20 IMSE 3.120 4.102 1.298 1.527 1.560
IBIAS 0.368 0.664 0 0.022 0.018

50 IMSE 2.238 1.486 1.211 1.295 1.200
IBIAS 0.151 0.045 0 0.002 0.001

300 IMSE 1.133 1.017 1.033 1.037 1.049
IBIAS 0.004 0 0 0 0

(M2)

20 IMSE 457.717 136.830 ´ 26.998 4.836
IBIAS 157.749 58.717 ´ 4.660 0.421

50 IMSE 81.822 3.368 ´ 3.853 1.357
IBIAS 26.701 0.692 ´ 0.288 0.002

300 IMSE 4.376 1.015 ´ 1.274 1.049
IBIAS 0.787 0 ´ 0.003 0

Table 3.1: IMSE and IBIAS for the different periodograms and models.
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3.4.2 The autocorrelation estimator

In this section, we estimate the autocorrelation function (ACF) using the integrated periodogram

estimator in Section 3.2. Recall that we estimate the autocovariances using

c̆nprq “
1

2π

ż 2π

0

cosprωqrInpωqdω (3.9)

where rInp¨q is one of the periodograms in Section 3.4. Based on c̆nprq, the natural estimator of the

ACF at lag r is

ρ̆nprq “
c̆nprq

c̆np0q
.

Note that if rInp¨q is the regular periodogram, c̆np¨q and ρ̆np¨q become the classical sample autoco-

variances and sample ACFs respectively.

We generate the Gaussian time series from (M1) and (M2) in Section 3.4 and evaluate the ACF

estimators at lag r “ 0, 1, ..., 10. For the computational purpose, we approximate (3.9) using the

Reimann sum over 500 uniform partitions on r0, 2πs.

Figures 3.4´3.6 show the average (left panels), bias (middle panels), and the mean squared

error (MSE; right panels) of the ACF estimators at each lag for different models and sample sizes.

Analogous to the results in Section 3.4.1, we observe that the complete and complete tapered

periodogram significantly reduce the bias as compared to the regular (black) and tapered (blue)

periodogram for all the models.

The MSE paints a complex picture. From the left panels in Figures 3.4´3.6 for (M1), we

observe when the lag r is odd, the true ρprq “ 0. For these lags, all the ACF estimators are almost

unbiased, and the variance dominates. This is why we observe the oscillation the MSE in (M1)

over r. For (M2), the bias of all estimators are very small even for an extremely small sample size

n “ 20, and thus the variance dominates. For the small sample sizes (n “ 20 and 50), MSE of the

complete periodograms is larger then the classical methods (Regular and tapered). Whereas for the
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Figure 3.4: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r “ 0, ..., 10. The length of the time series n “ 20.
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Figure 3.5: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r “ 0, ..., 10. The length of the time series n “ 50.
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Figure 3.6: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r “ 0, ..., 10. The length of the time series n “ 300.
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large sample size (n=300), it seems that the tapering increases the MSE.

To assess the overall performance of the ACF estimators, we evaluate the averaged mean

squared error (MSE) and squared bias (BIAS)

MSE “
1

10B

10
ÿ

r“1

B
ÿ

j“1

pρ̆pjqn prq ´ ρprqq
2, BIAS “

1

10

10
ÿ

r“1

˜

B´1
B
ÿ

j“1

ρ̆pjqn prq ´ ρprq

¸2

where ρ̆pjq is the jth replication of one of the ACF estimators. The results are summarized in Table

3.2. As described above, our method has a marked gain in the BIAS compared to the classical ACF

estimators for all models. Moreover, the MSE is comparable, at least for our models, and even has

a smaller MSE when the sample size is small and/or there is a strong dependent in the lags.

Model n metric Regular Tapered Complete(True) Complete(Est) Tapered complete

(M1), λ “ 0.7

20 MSE 0.038 0.040 0.038 0.044 0.046
BIAS 0.002 0.002 0 0.001 0.001

50 MSE 0.021 0.023 0.021 0.022 0.024
BIAS 0 0 0 0 0

300 MSE 0.004 0.005 0.004 0.004 0.004
BIAS 0 0 0 0 0

(M1), λ “ 0.9

20 MSE 0.061 0.064 0.045 0.062 0.063
BIAS 0.023 0.025 0.003 0.008 0.008

50 MSE 0.030 0.032 0.025 0.029 0.030
BIAS 0.005 0.005 0.001 0.002 0.002

300 MSE 0.005 0.006 0.005 0.005 0.005
BIAS 0 0 0 0 0

(M1), λ “ 0.95

20 MSE 0.077 0.082 0.039 0.063 0.064
BIAS 0.045 0.049 0.004 0.015 0.014

50 MSE 0.032 0.034 0.022 0.027 0.028
BIAS 0.011 0.011 0.002 0.003 0.003

300 MSE 0.005 0.005 0.004 0.004 0.004
BIAS 0 0 0 0 0

(M2)

20 MSE 0.062 0.065 ´ 0.074 0.077
BIAS 0.006 0.006 ´ 0.002 0.002

50 MSE 0.036 0.040 ´ 0.040 0.042
BIAS 0.001 0.001 ´ 0 0

300 MSE 0.008 0.009 ´ 0.008 0.008
BIAS 0 0 ´ 0 0

Table 3.2: MSE and BIAS of an ACF estimators.
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3.4.3 Spectral density estimation

Finally, we estimate the spectral density function by smoothing the periodogram. We consider

the smoothed periodogram of the form

f̆pωk,nq “
ÿ

|j|ďm

W pjqrInpωj`k,nq

where rInp¨q is one of the candidate periodograms described in the previous section and tW p¨qu are

the positive symmetric weights satisfy the conditions (i)
ř

|j|ďmW pjq “ 1 and (ii)
ř

|j|ďmW
2pjq Ñ

0. The bandwidth m “ mpnq satisfies the condition m{nÑ 0 as m,nÑ 8. We use the following

three spectral window functions:

• (The Daniell Window) ĂW pjq “ 1
2m`1

, |j| ď m.

• (The Bartlett Window) ĂW pjq “ 1´ |j|
m

, |j| ď m.

• (The Hann Window) ĂW pjq “ 1
2
r1´ cospπpj`mq

m
qs, |j| ď m.

and normalize using W pjq “ ĂW pjq{
ř

|j|ďm
ĂW pjq.

In this section, we only focus on estimating the spectral density of model (M2). We smooth the

various periodogram using the three window functions described above. For each simulation, we

calculate the IMSE and IBIAS (analogous to (3.7) and (3.8)). The bandwidth selection is also very

important. One can extend the cross-validation developed for smoothing the regular periodogram

(see Hurvich (1985), Beltrão and Bloomfield (1987) and Ombao et al. (2001)) to the complete

periodogram and this may be an avenue of future research. In this dissertation, we simply use the

bandwidth m « n1{5 (in terms of order this corresponds to the optimal MSE).

The results are summarized in Table 3.3. We observe that smoothing with the tapered peri-

odogram and the two different complete periodograms have a smaller IMSE and IBIAS as com-

pared to the smooth regular periodogram. This is uniformly true for all the models, sample sizes,

and window functions. When the sample size is small (n “ 20 and 50), the smooth complete and

tapered complete periodogram has a uniformly smaller IMSE and IBIAS than the smooth tapered
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periodogram for all window functions. For the large sample size (n “ 300), smoothing with the

tapered periodogram and tapered complete periodogram gave similar results, whereas smoothing

using the complete periodogram gives a slightly worse bias and MSE.

n m Window Metric Regular Tapered Complete Tapered complete

20

No smoothing IMSE 457.717 136.830 26.998 4.836
IBIAS 157.749 58.717 4.660 0.421

2

Daniell IMSE 1775.789 1399.366 1008.590 943.855
IBIAS 882.576 780.363 444.727 408.325

Bartlett IMSE 538.477 203.217 43.347 17.489
IBIAS 203.010 100.178 13.270 6.391

Hann IMSE 538.477 203.217 43.347 17.489
IBIAS 203.010 100.178 13.270 6.391

50

No smoothing IMSE 81.822 3.368 3.853 1.357
IBIAS 26.701 0.692 0.288 0.002

2

Daniell IMSE 87.485 7.227 5.138 3.308
IBIAS 33.327 3.947 1.954 1.346

Bartlett IMSE 78.939 2.797 2.479 0.796
IBIAS 27.883 1.106 0.425 0.074

Hann IMSE 78.939 2.797 2.479 0.796
IBIAS 27.883 1.106 0.425 0.074

300

No smoothing IMSE 4.376 1.015 1.274 1.049
IBIAS 0.787 0 0.003 0

3

Daniell IMSE 2.514 0.176 0.210 0.173
IBIAS 0.812 0.006 0.008 0.005

Bartlett IMSE 2.685 0.257 0.312 0.256
IBIAS 0.795 0.002 0.004 0.001

Hann IMSE 2.717 0.272 0.330 0.272
IBIAS 0.794 0.001 0.004 0.001

Table 3.3: IMSE and IBIAS of the smoothed periodogram for (M2).

It is intriguing to note that the smooth complete tapered periodogram gives one the smallest

IBIAS and IMSE as compared with all the other methods. These results suggest that spectral

smoothing using the tapered complete periodogram may be very useful for studying the spectral

density of short time series. Such data sets can arise in many situations, which as the analyses of

nonstationary time series, where the local periodograms are often used.

3.5 Data analysis

In this section, we present two data analysis using the (tapered) complete periodogram.
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3.5.1 Analysis of ball bearing data

Vibration analysis, which is the tracking and predicting faults in engineering devices is an

important problem in mechanical signal processing. Sensitive fault diagnostic tools can prevent

significant financial and health risks for a business. A primary interest is to detect the frequency

and amplitude of evolving faults in different component parts of a machine, see Randall and Antoni

(2011) for further details.

The Bearing Data Center of the Case Western Reserve University (CWRU; https://csegroups.

case.edu/bearingdatacenter/pages/download-data-file) maintains a reposi-

tory of times series sampled from simulated experiments that were conducted to test the robustness

of components of ball bearings. The aim of this study is not to detect when a fault has occurred

(but this will be the ultimate aim), but to understand the “signature” of the fault. In order to classify

(a) no fault, fault and the type of fault, our aim is to detect the features of different fault signals in

ball bearings, where the damage occurs in (b) inner race, (b) outer race, and (d) ball spin. Please

refer to Figure 3.7 for a schematic diagram of a typical ball bearing and locations where faults can

occur. The ball bearing either with no fault or the three different faults described above were part

of drive end of test rig motor. Vibration signals were sampled over the course of 10 seconds at

12,000 per second (12 kHz) using an accelerometer.

Figure 3.7: A schematic diagram of a ball bearing and the location of the three faults ((b) inner
race, (c) outer race, and (d) ball spin).

A commonly used analytic tool in vibration analysis is the envelope spectrum. This is where a
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smoothing filter is applied to the regular periodogram to extract the dominant frequencies. Using

the envelope spectrum, Randall and Antoni (2011) and Smith and Randall (2015), have shown that

a normal ball bearing has power distributed in the relatively lower frequency bandwidth of 60´150

Hz (0.05´0.1, radian). Whereas, faults in the ball bearings lead to deviation from the usual spectral

distribution with significant power in the 300´500 Hz (0.18´0.26, radian) bandwidth, depending

on the location of the fault. Note that the following are equally important in a vibration analysis,

frequencies where the power is greatest but also the amplitude of the power at these frequencies.

The time series in the repository are extremely long, of the order 106. But as the ultimate

aim is to devise an online detection scheme based on shorter time series, we focus on shorter

segments of the time series (n “ 609, approximately 0.05 seconds). A plot of the four different

time series is given in Figure 3.8. In this study, we estimate the spectral density of the four time

series signals by smoothing the different periodograms; regular, tapered, complete, and tapered

complete periodogram. Our aim is to highlight the differences in the dominant frequencies in the

spectral distribution of the normal ball bearing signal with three faulty signals. For the tapered

and the tapered complete periodogram, we use the Tukey taper defined in (3.2) with 10% tapering

(which corresponds to d “ n{10). For all the periodograms we smooth using the Bartlett window.

For the time series (length 609) we used m “ 16 (where m is defined in Section 3.4.3).

A plot of the estimated spectral densities is given in Figure 3.9. We observe that all the four

spectral density estimators (based on the different periodograms) are very similar. Further, for the

normal ball bearing the main power is in the frequency range 0.05 ´ 0.1p60 ´ 175 Hzq. Inter-

estingly, the spectral density estimator based on the tapered complete periodogram gives a larger

amplitude at the principal frequency. Suggesting that the“normal signal” has greater power at that

main frequency than is suggested by the other estimation methods. In contrast, for the faulty ball

bearings, the power spectrum is very different from the normal signal. Most of the dominant fre-

quencies are in the range 0.21´ 0.26p375´ 490 Hzq. There appears to be differences between the

power spectrum of the three different faults, but the difference is not as striking as the difference

between no fault and fault. Whether the differences between the faults are statistically significant

58



−0.2

−0.1

0.0

0.1

0.2

Time

N
or

m
al

0 122 244 366 488 610

a)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Time

In
ne

r 
ra

ce

0 122 244 366 488 610

b)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Time

O
ut

er
 r

ac
e

0 122 244 366 488 610

c)

−0.4

−0.2

0.0

0.2

0.4

Time

B
al

l s
pi

n

0 122 244 366 488 610

d)

Figure 3.8: Panels in the figure show time series plots of signals recorded from a) Normal ball
bearing b) Time series of bearing with fault in inner race, c) Time series of bearing with fault in
outer race and, d) Time series of bearing with fault in ball spin. Each time series is of length 609
(0.05 seconds).
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Figure 3.9: Plots show that smoothed periodograms of the four time series signals based on sample
size n “ 609. Top left: Normal, Top Right: Inner Race, Bottom Left: Outer Race and Bottom
Right: Ball spin. The top axis shows frequencies in Hertz(Hz).

will be an avenue of future investigation. These observations corroborate the findings of the pre-

vious analysis of similar data, see for example Smith and Randall (2015). Despite the similarities

in the different estimators the smooth tapered complete periodogram appears to better capture the

dominant frequencies in the normal ball bearing. This is reassuring as one objective in vibration

analysis is the estimation of power of the vibration at the dominant frequencies.

3.5.2 Analysis of sunspot data

We conclude by returning to the sunspot data which first motivated Schuster to define the

periodogram 120 years ago.
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Sunspots are visibly darker areas that are apparent on the surface of the Sun that are captured

from satellite imagery or man-made orbiting telescopes. The darker appearance of these areas is

due to their relatively cooler temperatures compared to other parts of the Sun that are attributed to

the relatively stronger magnetic fields.

There is a rich history of analysis of the sunspot data and probably Schuster (1897, 1906) is the

first one who analyzed this data in a frequency domain. Schuster developed the “periodogram” to

study periodicities in sunspot activity. As mentioned in the introduction the Sunspot data has since

served as a benchmark for developing several theories and methodologies and theories related to

spectral analysis of time series. A broader account of these analyses can be found in Chapter 6´8

of Bloomfield (2004) and references therein.

In this section we implement the four comparator periodograms in Section 3.4 to estimate and

corroborate the spectrum of the sunspot data. The dataset we have used is a subset of the data avail-

able at the World Data Center Sunspot Index and Long-term Solar Observations (WDC-SILSO),

Royal Observatory of Belgium, Brussels (http://sidc.be/silso/). We use length n=3168

total monthly count of sunspots from Jan 1749 to Dec 2013. All periodograms are computed af-

ter removing the sample mean from the data. Figure 3.10 shows the time series plot (right), four

different periodograms (middle) and smoothed periodograms (right). We smooth the periodogram

using the Bartlett window function from Section 3.4.3 with the bandwidth m “ 5 (« n1{5).
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Figure 3.10: Right: Monthly Sunspot time series plot of length 3168 (264 years) starting from Jan
1749. Middle: Trajectories of the four different periodograms; regular, regular tapered, complete
and tapered complete periodogram. left: Smoothed periodograms using Bartlett window.
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From the middle panel of Figure 3.10, we observe that all the periodograms detect the peak

corresponding to maximum sunspot activity at the 11-year cycle. The peak at the 11-year cycle

(frequency 0.046) for the complete periodogram (orange) is the largest, at about 7.1 ˆ 105, the

regular (black) and complete tapered(green) periodogram is slightly lower at about 6.98 ˆ 105.

Whereas, the tapered periodogram (blue) is the lowest at about 6.25 ˆ 105. Looking at in the

neighborhood of the main peak, we observe that there is very little difference between all the

periodograms. This suggests that these “side peaks” in the neighborhood of 0.046 are not an artifact

of the periodogram but a feature of the data. Which further suggests that the sunspot data does not

contain a fixed period but a quasi-dominant period in the frequencies range 0.042 ´ 0.058 (9.1 ´

12.6 years). The effect is clearer after smoothing the periodogram (right panel of Figure 3.10).

Smoothing the complete and tapered complete periodogram yields a more dominant peak at 0.046

(11 years), but the quasi-frequency band remains. Further, a secondary dominate frequency is seen

in the very low frequency around 0.006 (88 years) which is more pronounced when the smoothing

is done using the (regular) tapered periodogram and tapered complete periodogam. In summary,

due to the large sample size all the different periodograms exhibit very similar behaviour. However,

even within the large sample setting (where theoretically all the periodograms are asymptotically

equivalent) the complete periodograms appear to better capture the amplitude of the peak.

3.6 Proofs

In this section, we give a proof of Sections 2.2, 2.3, and 3.

3.6.1 Proof of Section 2.2

PROOF of Theorem 2.2.1 We recall that Theorem entails obtaining a transform UnXn where

covf pUnXn, FnXnq “ ∆npfq. Pre and post multiplying this covariance with F ˚n and Fn gives

F ˚n covf pUnXn, FnXnqFn “ covθ pF
˚
nUnXn, Xnq “ F ˚n∆npfqFn “ Cnpfq.

Thus our objective is to find the transform Y n “ F ˚nUnXn such that covf pY n, Xnq “ Cnpfq.

Then, the vector FnY n “ UnXn will be biorthogonal to FnXn, as required. We observe that the
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entries of the circulant matrix Cnpfq are

pCnpfqqu,v “ n´1
n
ÿ

k“1

fpωk,nq expp´ipu´ vqωk,nq “
ÿ

`PZ

cf pu´ v ` `nq,

where the second equality is due to the Poisson summation. The random vector Y n “ tYu,nu
n
u“1 is

such that covf pYu,n, Xvq “
ř

`PZ cf pu´v``nq and Yu P sppXnq. Since covf pXu``n, Xvq “ cf pu´

v``nq, at least “formally” covf p
ř

`PZXu``n, Xvq “
ř

`PZ cf pu´v``nq. However,
ř

`PZXu``n is

neither a well defined random variable nor does not it belong to sppXnq. We replace each element

in the sum
ř

`PZXu``n with an element that belongs to sppXnq and gives the same covariance. To

do this we use the following well known result. Let Z and X denote a random variable and vector

respectively. Let PXpZq denote the projection of Z onto sppXq, i.e., the best linear predictor of Z

given X , then covf pZ,Xq “ covf pPXpZq, Xq. Let pXτ,n denote best linear predictor of Xτ given

Xn “ pX1, . . . , Xnq (as defined in (2.1)). pXτ,n retains the pertinent properties of Xτ in the sense

that covf p pXτ,n, Xtq “ cf pτ ´ tq for all τ P Z and 1 ď t ď n. Define

Yu,n “
ÿ

`PZ

pXu``n,n “

n
ÿ

s“1

˜

ÿ

`PZ

φs,npu` `n; fq

¸

Xs P sppXnq,

where we note that Yu,n a well defined random variable, since by using Lemma A.1.1 it can be

shown that supn
řn
s“1

ř8

`“´8 |φs,npu ` `n; fq| ă 8. Thus by definition of Yu,n the following

holds

covf pYu,n, Xvq “
ÿ

`PZ

cf pu´ v ` `nq “ pCnpfqqu,v , (3.10)

and Y n “ F ˚nUnXn, gives the desired transformation of the time series. Thus, based on this

construction, FnY n “ UnXn and FnXn are biorthogonal transforms, with entries pFnXnqk “
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Jnpωk,nq and

pUnXnqk “ pFnY nqk “ n´1{2
ÿ

`PZ

n
ÿ

u“1

pXu``n,ne
iuωk,n

“ n´1{2
ÿ

τPZ

pXτ,ne
iτωk,n

“ n´1{2
n
ÿ

t“1

Xt

ÿ

τPZ

φt,npτ ; fqeiτωk,n . (3.11)

The entries of the matrix Un are pUnqk,t “ n´1{2
ř

τPZ φt,npτ ; fqeiτωk,n . To show that Un “embeds”

the regular DFT, we observe that for 1 ď τ ď n, φt,npτ ; fq “ δτ,t, furthermore, due to second

order stationarity the coefficients φt,npτ ; fq are reflective i.e. the predictors of Xm (for m ą n) and

Xn`1´m share the same set of prediction coefficients (just reflected) such that

φt,npm; fq “ φn`1´t,npn` 1´m; fq for m ą n.

Using these two observations we can decompose pUnqk,t as

pUnqk,t “ n´1{2

˜

eitωk,n `
ÿ

τď0

φt,npτ ; fqeiτωk,n `
ÿ

τěn`1

φt,npτ ; fqeiτωk,n

¸

“ n´1{2eitωk,n ` n´1{2
ÿ

τď0

`

φt,npτ ; fqeiτωk,n ` φn`1´t,npτ ; fqe´ipτ´1´nqωk,n
˘

.

It immediately follows from the above decomposition that Un “ Fn ` Dnpfq where Dnpfq is

defined in (2.3). Thus proving (2.2).

To prove (2.4), we first observe that (2.2) implies

covf pppFn `DnpfqqXnqk1 , pFnXnqk2q “ fpωk1,nqδk1,k2 .
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It is clear that pFnXnqk “ Jnpωk,nq and from the representation of FnY n given in (3.11) we have

pFnY nqk “ n´1{2
n
ÿ

τ“1

Xτe
iτωk,n ` n´1{2

ÿ

τRt1,...,nu

pXτ,ne
iτωk,n

“ Jnpωk,nq ` pJnpωk,n; fq.

This immediately proves (2.4). l

PROOF of Theorem 2.2.2 To prove Theorem 2.2.2 we study the predictive DFT for autoregressive

processes. We start by obtaining an explicit expression for pJnpω; fθq where fθpωq “ σ2|1 ´
řp
u“1 φue

´iuω|´2 (the spectral density corresponding to an ARppq process). It is straightforward to

show that predictive DFT predictor based on the ARp1q model is

pJnpω; fθq “ n´1{2
0
ÿ

τ“´8

φ´τ`1X1e
iτω
` n´1{2

8
ÿ

τ“n`1

φτ`1´nXne
iτω

“
n´1{2φ

φ1pωq
X1 `

n´1{2φ

φ1pωq
Xne

ipn`1qω,

where φ1pωq “ 1´φe´iω. In order to prove Theorem 2.2.2, which generalizes the above expression

to ARppq processes, we partition pJnpω; fθq into the predictions involving the past and future terms

pJnpω; fθq “ pJn,Lpω; fθq ` pJn,Rpω; fθq

where

pJn,Lpω; fθq “ n´1{2
0
ÿ

τ“´8

pXτ,ne
iτω and pJn,Rpω; fθq “ n´1{2

8
ÿ

τ“n`1

pXτ,ne
iτω.

We now obtain expressions for pJn,Lpω; fθq and pJn,Rpω; fθq separately, in the case the predictors are

based on the ARppq parameters where fθpωq “ σ2|1´
řp
j“1 φje

ijω|´2 and the tφju
p
j“1 correspond

to the causal ARppq representation. To do so, we define the p-dimension vector φ1 “ pφ1, . . . , φpq
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and the matrix Appφq as

Appφq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

φ1 φ2 . . . φp´1 φp

1 0 . . . 0 0

0 1 . . . 0 0

...
... . . . 0 0

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.12)

Therefore, for τ ď 0, since pXτ,n “
“

Appφq
|τ |`1Xp

‰

p1q
, where Xp “ pX1, . . . , Xpq, we can write

pJn,Lpω; fθq “ n´1{2
0
ÿ

τ“´8

“

Appφq
|τ |`1Xp

‰

p1q
eiτω. (3.13)

By using Lemma D.2.1 in Appendix, we have

rAppφq
|τ |`1Xpsp1q “

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``sψ|τ |´s.

Therefore, using (3.13) and the change of variables τ Ð ´τ

pJn,Lpω; fθq “ n´1{2
p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``s

8
ÿ

τ“0

ψτ´se
´iτω

“ n´1{2
p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isω

8
ÿ

τ“0

ψτ´se
´ipτ´sqω

“ n´1{2
p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isω

8
ÿ

τ“s

ψτ´se
´ipτ´sqω.

Let
ř8

s“0 ψse
´isω “ ψpωq “ φppωq

´1, and substitute this into the above to give

pJn,Lpω; fθq “
n´1{2

φppωq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isω, (3.14)

Thus we obtain an expression for the left hand side of the predictive DFT. Using the similar tech-
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nique, it can be shown that the right hand side predictive DFT pJn,Rpω; fθq has the representation

pJn,Rpω; fθq “ einω
n´1{2

φppωq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qω.

Thus proving equation (2.8). l

3.6.2 Proof of Section 2.3

PROOF of Theorem 2.3.1 We recall that

pJnpω; fq “ n´1{2
0
ÿ

τ“´8

pXτ,ne
iτω
` n´1{2

8
ÿ

τ“n`1

pXτ,ne
iτω

“ n´1{2
n
ÿ

t“1

Xt

`

ÿ

τď0

“

φt,npτ ; fqeiτω ` φn`1´t,npτ ; fqe´ipτ´1´nqω
‰ ˘

Using the above we write pJnpω; fq as an inner product. Let

Dt,npfq “ n´1{2
ÿ

τď0

“

φt,npτ ; fqeiτω ` φn`1´t,npτ ; fqe´ipτ´1´nqω
‰

.

Next, define the vectors

e1n “ n´1{2
pe´iω, ..., e´inωq and Dnpfq

1
“ pD1,npfq, ..., Dn,npfqq,

note that en and Dnpfq are both functions of ω, but we have suppressed this dependence in our

notation. Then, Jnpωq and pJnpω; fq can be represented as the inner products

Jnpωq “ e˚nXn and pJnpω; fq “ X 1
nDnpfq
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where ˚ denotes the Hermitian of a matrix. In the same vein we write pJ8,npω; fq as an inner

product. Let

Dtpfq “ n´1{2
ÿ

τď0

“

φtpτ ; fqeiτω ` φn`1´tpτ ; fqe´ipτ´1´nqω
‰

D8,npfq
1
“ pD1pfq, ..., Dnpfqq,

then we can write pJ8,npω; fq “ X 1
nDnpfq. Therefore,

´

pJ8,npω; fq ´ pJnpω; fq
¯

Jnpωq “ I8,npω; fq ´ Inpω; fq

“ n´1{2
n
ÿ

s,t“1

XtXspD8,npfq ´Dnpfqqptqe
´isω

“ X 1
n

`

D8,npfq ´Dnpfq
˘

e1nXn

“ X 1
nA1pωqXn

where A1pωq “
`

D8,npfq ´Dnpfq
˘

e1n, an pn ˆ nq matrix. For the remainder of this proof we

drop the dependence ofA1pωq on ω. However, if we integrate over ω this dependence does become

important. Using this notation, we have

E
”´

pJ8,npω; fq ´ pJnpω; fq
¯

Jnpωq
ı

“ ErX 1
nA1Xns

var
”´

pJ8,npω; fq ´ pJnpω; fq
¯

Jnpωq
ı

“ varrX 1
nA1Xns.

By simple algebra

ErX 1
nA1Xns “ trpA1Rnq

varrX 1
nA1Xns “ 2trpA1RnA1Rnq `

n
ÿ

s,t,u,v“1

pA1qs,tpA1qu,vcum pXs, Xt, Xu, Xvq , (3.15)
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where Rn “ varrXns (noting that Rn is a Toeplitz matrix). To bound the expectation

|ErX 1
nA1Xns| “ |trpA1Rnq| ď n´1{2

n
ÿ

s,t“1

|pD8,npfq ´Dnpfqqptqe
´isω

pRnqt,s|

“ n´1{2
n
ÿ

s,t“1

|Dtpfq ´Dt,npfq||cpt´ sq|

ď n´1{2
n
ÿ

t“1

|Dtpfq ´Dt,npfq|

˜

ÿ

rPZ

|cprq|

¸

. (3.16)

To bound the above, we observe that the sum over t is

n´1{2
n
ÿ

t“1

|Dtpfq ´Dt,npfq|

“ n´1
n
ÿ

t“1

ÿ

τď0

ˇ

ˇpφtpτ ; fq ´ φt,npτ ; fqqeiτω ` pφn`1´tpτ ; fq ´ φn`1´t,npτ ; fqqe´ipτ´1´nqω
ˇ

ˇ

ď n´1
n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φt,npτ ; fq| `
n
ÿ

t“1

ÿ

τď0

|φn`1´tpτ ; fq ´ φn`1´t,npτ ; fq|

“ 2n´1
n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φt,npτ ; fq|.

To bound the above, we use the generalized Baxter’s inequality in Lemma A.1.1. Using (A.1) with

K “ 0 the we have

n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φt,npτ ; fq| ď Cf,0
ÿ

τď0

8
ÿ

t“n`1

|φtpτ ; fq|

ď Cf,0

8
ÿ

τ“0

8
ÿ

t“n`1

8
ÿ

j“0

|φt`j||ψτ´j| ď Cf,0
ÿ

`PZ

|ψ`|
8
ÿ

t“n`1

8
ÿ

j“0

|φt`j|

ď Cf,0
ÿ

`PZ

|ψ`|
8
ÿ

u“n`1

|uφu| ď
Cf,0
nK´1

ÿ

`PZ

|ψ`|
8
ÿ

u“n`1

|uKφu|

To bound the above we use Assumption 2.3.1. By using Lemma 2.1 of Kreiss et al. (2011), under

Assumption 2.3.1, we have
ř8

u“1 |u
Kφu| ď 8. Therefore,

n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φt,npτ ; fq| “ Opn´K`1
q,
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which gives

n´1{2
n
ÿ

t“1

|Dtpfq ´Dt,npfq| ď 2n´1
n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φt,npτ ; fq| “ Opn´Kq. (3.17)

Substituting the above bound into (3.16) gives

ErX 1
nA1Xns “ trpA1Rnq ď n´1{2

n
ÿ

t“1

|Dtpfq ´Dt,npfq|

˜

ÿ

rPZ

|cprq|

¸

“ Opn´Kq. (3.18)

Next we consider the variance. The first term in the variance (3.15) is bounded with

|trpA1RnA1Rnq| ď n´1
n
ÿ

s,t,u,v“1

|pDspfq ´Ds,npfqqpDtpfq ´Dt,npfqqe
´iuωe´ivωpRnqs,upRnqt,v|

“ n´1
n
ÿ

s,t,u,v“1

|Dspfq ´Ds,npfq||Dtpfq ´Dt,npfq||cps´ uq||cpt´ vq|

ď

˜

n´1{2
n
ÿ

t“1

|Dtpfq ´Dt,npfq|

¸2 ˜
ÿ

rPZ

|cprq|

¸2

“ Opn´2K
q,

where the last line follows from (3.17). The second term in (3.15) is bounded by

n
ÿ

s,t,u,v“1

|pA1qs,tpA1qu,vcum pXs, Xt, Xu, Xvq |

“ n´1
n
ÿ

s,t,u,v“1

|Dtpfq ´Dt,npfq||Dvpfq ´Dv,npfq|κ4 pt´ s, u´ s, v ´ sq |

ď n´1
n
ÿ

t,v“1

|Dtpfq ´Dt,npfq||Dvpfq ´Dv,npfq|
n
ÿ

s,u“1

|κ4 pt´ s, u´ s, v ´ sq |

ď n´1
n
ÿ

t,v“1

|Dtpfq ´Dt,npfq||Dvpfq ´Dv,npfq|
ÿ

i,j,kPZ

|κ4 pi, j, kq |

“

˜

n´1{2
n
ÿ

t“1

|Dtpfq ´Dt,npfq|

¸2
ÿ

i,j,kPZ

|κ4 pi, j, kq | “ O
`

n´2K
˘

where the above follows from (3.17) and Assumption 2.3.2. Altogether this gives varrX 1
nA1Xns “

Opn´2Kq. This proves theorem. l
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PROOF of Theorem 2.3.2 To prove the theorem, we use the following observation. In the special

case that f “ fp corresponds to the ARppq model, the best finite linear predictor (given p observa-

tions) and the best infinite predictor are the same in this case, Dnpfpq “ D8,npfpq. Therefore, we

have

´

pJnpω; fpq ´ pJ8,npω; fq
¯

Jnpωq “ n´1{2
n
ÿ

s,t“1

XsXtpD8,npfq ´Dnpfpqqptqe
´isω

“ X 1
n

`

D8,npfpq ´D8,npfq
˘

e1nXn

“ X 1
nA2pωqXn (3.19)

where A2pωq “
`

D8,npfpq ´D8,npfq
˘

e1n. Again we drop the dependence of A2 on ω, but it

will play a role in the proof of Theorem 3.2.1. To bound the mean and variance of X 1
nA2Xn we

use similar expressions to (3.15). Thus by using the same method described above leads to our

requiring bounds for

|ErX 1
nA2Xns| ď n´1{2

n
ÿ

t“1

|Dtpfpq ´Dtpfq|

˜

ÿ

rPZ

|cprq|

¸

|trpA2RnA2Rnq| ď

˜

n´1{2
n
ÿ

t“1

|Dtpfpq ´Dtpfq|

¸2 ˜
ÿ

rPZ

|cprq|

¸2

n
ÿ

s,t,u,v“1

|pA2qs,tpA2qu,vcum pXs, Xt, Xu, Xvq |

ď

˜

n´1{2
n
ÿ

t“1

|Dtpfpq ´Dtpfq|

¸2
ÿ

i,j,kPZ

|κ4 pi, j, kq |. (3.20)

The above three bounds require a bound for
řn
t“1 |Dtpfpq ´ Dtpfq|. To obtain such a bound we

use the Lemma D.2.1 (as pÑ 8) that

φtpτ ; fq “
8
ÿ

j“0

φt`jψ|τ |´j φtpτ ; fpq “
8
ÿ

j“0

φt`j,pψ|τ |´j,p

where tφsu8s“1, tφs,pu
p
s“1, tψju8j“0 and tψj,pu8j“0 are the ARp8q, ARppq and MAp8q coefficients
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corresponding to the spectral density f and fp respectively. Taking differences gives

n´1{2
n
ÿ

t“1

|Dtpfq ´Dtpfpq| ď 2n´1
n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq ´ φtpτ ; fpq|

ď 2n´1
n
ÿ

t“1

ÿ

τď0

8
ÿ

j“0

ˇ

ˇat`jψ|τ |´j ´ φt`j,pψ|τ |´j,p
ˇ

ˇ

ď 2n´1
n
ÿ

t“1

ÿ

τď0

8
ÿ

j“0

|φt`j ´ φt`j,p| |ψ|τ |´j|

`2n´1
n
ÿ

t“1

ÿ

τď0

8
ÿ

j“0

ˇ

ˇψ|τ |´j ´ ψ|τ |´j,p
ˇ

ˇ |φt`j,p| “ I1 ` I2.

We consider first term I1. Reordering the summands gives

I1 “ 2n´1
n
ÿ

t“1

8
ÿ

j“0

|φt`j ´ φt`j,p|
ÿ

τď0

|ψ|τ |´j|

ď 2n´1
8
ÿ

`“0

|ψ`|
n
ÿ

t“1

8
ÿ

j“0

|φt`j ´ φt`j,p| plet u “ t` jq

ď 2n´1
8
ÿ

`“0

|ψ`|
8
ÿ

u“0

u |φu ´ φu,p| .

By applying the Baxter’s inequality to the above we have

I1 ď 2p1` Cqn´1
8
ÿ

`“0

|ψ`|
8
ÿ

u“p`1

|uφu| “ O

ˆ

1

npK´1

˙

.

To bound I2 we use a similar method

I2 “ 2n´1
ÿ

τě0

8
ÿ

j“0

|ψτ´j ´ ψτ´j,p|
n
ÿ

t“1

|φt`j,p|

ď 2n´1
p
ÿ

t“1

|φt,p|
8
ÿ

u“0

u |ψu ´ ψu,p| .

By using the inequality on page 2126 of Kreiss et al. (2011), for a large enough n, we have
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ř8

u“0 u|ψu ´ ψu,p| ď C
ř8

u“p`1 |uφu| “ Opp´K`1q. Substituting this into the above gives

I2 ď Cn´1
p
ÿ

t“1

|φt,p|
8
ÿ

u“p`1

|uφu| “ O

ˆ

1

npK´1

˙

,

where we note that supt
řp
t“1 |φt,p| “ Op1q. Altogether this gives

n´1{2
n
ÿ

t“1

|Dtpfpq ´Dtpfq| “ O

ˆ

1

npK´1

˙

.

Substituting the above bound into (3.20) and using a similar proof to Theorem 2.3.1, we get desired

results. l

PROOF of (2.12) We note that

pJnpω; fqJnpωq “
´

pJnpω; fq ´ pJ8,npω; fq
¯

Jnpωq ` pJ8,npω; fqJnpωq.

The mean and variance of the first term on the right hand side of the above was evaluated in

Theorem 2.3.1 and has a lower order. Now we focus on the second term. Using the same methods

as those given in (3.16) we have

ˇ

ˇ

ˇ
Er pJ8,npω; fqJnpωqs

ˇ

ˇ

ˇ
ď n´1{2

n
ÿ

s,t“1

|pD8,npfqqptqe
´isω

pRnqt,s|

“ n´1{2
n
ÿ

s,t“1

|Dtpfq||cpt´ sq|

ď n´1{2
n
ÿ

t“1

|Dtpfq|

˜

ÿ

rPZ

|cprq|

¸

ď 2n´1
n
ÿ

t“1

ÿ

τď0

|φtpτ ; fq|

˜

ÿ

rPZ

|cprq|

¸

“ Opn´1
q.

Following a similar argument for the variance we have varr pJ8,npω; fqJnpωqs “ Opn´2q and this

proves the equation (2.12) l
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PROOF of Theorem 2.3.3. Consider the expansion

Inpω; pfpq ´ Inpω, fpq “
”

pJnpω; pfpq ´ pJnpω; fpq
ı

Jnpωq “ Enpωq.

The main idea of the proof is to decompose Enpωq into terms whose expectation (and variance)

can be evaluated plus an additional error whose expectation cannot be evaluated (since it involves

ratios of random variables), but whose probabilistic bound is less than the expectation. We will

make a Taylor expansion of the estimated parameters about the true parameters. The order of

the Taylor expansion used will be determined by the order of summability of the cumulants in

Assumption 2.3.2. For a given even m, the order of the Taylor expansion will be pm{2 ´ 1q. The

reason for this will be clear in the proof, but roughly speaking we need to evaluate the mean and

variance of the terms in the Taylor expansion. The higher the order of the expansion we make,

the higher the cumulant asssumptions we require. To simplify the proof, we prove the result in the

specific case that Assumption 2.3.2 holds for m “ 8 (summability of all cumulants up to the 16th

order). This, we will show, corresponds to making a third order Taylor expansion of the sample

autocovariance function about the true autocovariance function. Note that the third order expansion

requires summability of the 16th-order cumulants.

We now make the above discussion precise. By using equation (2.8) and (2.18) we have

pJnpω; fpq “
n´1{2

φppωq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isω

` einω
n´1{2

φppωq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qω

“
1
?
n

˜

p
ÿ

`“1

X`
a`,ppωq

1´ a0,ppωq
` eipn`1qω

p
ÿ

`“1

Xn`1´`
a`,ppωq

1´ a0,ppωq

¸

and

pJnpω; pfpq “
1
?
n

˜

p
ÿ

`“1

X`
pa`,ppωq

1´ pa0,ppωq
` eipn`1qω

p
ÿ

`“1

Xn`1´`
pa`,ppωq

1´ pa0,ppωq

¸

,

where for ` ě 0

a`,ppωq “
p´
ÿ̀

s“0

φ``se
´isω

pa0 ” 0q
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and pa`,ppωq is defined similarly but with the estimated Yule-Walker coefficients. Therefore

pJnpω; fpq ´ pJnpω; fpq “ Enpωq

where

Enpωq “
1

n

n
ÿ

t“1

p
ÿ

`“1

X`Xte
itω

„

pa`,ppωq

1´ pa0,ppωq
´

a`,ppωq

1´ a0,ppωq



`eipn`1qω 1

n

n
ÿ

t“1

p
ÿ

`“1

Xn`1´`Xte
itω

«

pa`,ppωq

1´ pa0,ppωq
´

a`,ppωq

1´ a0,ppωq

ff

“
1

n

n
ÿ

t“1

p
ÿ

`“1

X`Xte
itω

“

g`,ppω,pcp,nq ´ g`,ppω, cpq
‰

`eipn`1qω 1

n

n
ÿ

t“1

p
ÿ

`“1

Xn`1´`Xte
itω

”

g`,ppω,pcp,nq ´ g`,ppω, cpq
ı

“ En,Lpωq ` En,Rpωq,

where c1p “ pcp0q, cp1q, . . . , cppqq, pc
1
p,n “ ppcnp0q,pcnp1q, . . . ,pcnppqq,

g`,ppω, cp,nq “
a`,ppωq

1´ a0,ppωq
and g`,ppω,pcp,nq “

pa`,ppωq

1´ pa0,ppωq
. (3.21)

For the notational convenience, we denote by tcku and tpcku the autocovariances and sample auto-

covariances of the time series respectively.

Let pRpqs,t “ cps´ tq, prpqk “ cpkq, p pRpqs,t “ pcnps´ tq and pprpqk “ pcnpkq. Then since Since

ap “ R´1
p rp and pap “ pR´1

p,nprp,n, an explicit expression for g`,ppω, cpq and g`,ppω,pcp,nq is

g`,ppω, cpq “
r1pR

´1
p e`pωq

1´ r1pR
´1
p e0pωq

and g`,ppω,pcp,nq “
pr1p,n

pR´1
p,ne`pωq

1´ pr1p,n
pR´1
p,ne0pωq

, (3.22)

where e`pωq are p-dimension vectors, with

e`pωq
1
“ p0, . . . , 0

loomoon

`´zeros

, e´iω, . . . , e´ipp´`qωq for 0 ď ` ď p. (3.23)
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Since En,Lpωq and En,Rpωq are near identical expressions, we will only study En,Lpωq, noting the

same analysis and bounds also apply to En,Rpωq. We observe that the random functions pa`,ppωq

form the main part of En,Lpωq. pa`,ppωq are rather complex and directly evaluating their mean and

variance is extremely difficult if not impossible. However, on careful examination we observe that

they are functions of the autocovariance function whose sampling properties are well known. For

this reason, we make a third order Taylor expansion of g`,ppω,pcp,nq about g`,ppω, cpq:

g`,ppω,pcp,nq ´ g`,ppω, cpq “

p
ÿ

j“0

ppcj ´ cjq
Bg`,ppω, cpq

Bcj
`

1

2!

p
ÿ

j1,j2“0

ppcj1 ´ cj1q ppcj2 ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2

`
1

3!

p
ÿ

j1,j2,j3“0

ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q
B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3

where rcp,n is a convex combination of cp and pcp,n. Such an expansion draws the sample autoco-

variance function out of the sum, allowing us to evaluate the mean and variance for the first and

second term. Substituting the third order expansion into En,Lpωq gives the sum

En,Lpωq “ E11pωq ` E12pωq ` E21pωq ` E22pωq
loooooooooooooooooooooomoooooooooooooooooooooon

“∆2,Lpωq

`E31pωq ` E32pωq
looooooooomooooooooon

“RLpωq

,

where

E11pωq “

p
ÿ

j“0

p
ÿ

`“1

1

n

n
ÿ

t“1

pX`Xt ´ ErX`Xtsq e
itω
ppcj ´ cjq

Bg`,ppω, cpq

Bcj

E12pωq “

p
ÿ

j“0

p
ÿ

`“1

1

n

n
ÿ

t“1

ErX`Xtse
itω
ppcj ´ cjq

Bg`,ppω, cpq

Bcj

E21pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

1

n

n
ÿ

t“1

pX`Xt ´ ErX`Xtsq e
itω
ppcj1 ´ cj1q ppcj2 ´ cj2q

B2g`,ppω, cpq

Bcj1Bcj2

E22pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

1

n

n
ÿ

t“1

ErX`Xtse
itω
ppcj1 ´ cj1q ppcj2 ´ cj2q

B2g`,ppω, cpq

Bcj1Bcj2
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and

E31pωq “
1

3!

p
ÿ

j1,j2“0

p
ÿ

`“1

1

n

n
ÿ

t“1

pX`Xt ´ ErX`Xtsq e
itω
ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q

B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3

E32pωq “
1

3!

p
ÿ

j1,j2,j3“0

p
ÿ

`“1

1

n

n
ÿ

t“1

ErX`Xtse
itω
ppcj1,n ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q

B3g`,ppω,rcpq

Brcj1Brcj2Brcj3
.

Our aim is to evaluate the expectation and variance of E11pωq, E12pωq, E21pωq and E22pωq. This

will give the asymptotic bias of Inpω, pfpq in the sense of Bartlett (1953). Further we show that

E31pωq, E32pωq are both of lower order in probabilistic sense. To do so, we define some additional

notations. Let

qµ`pωq “ n´1
n
ÿ

t“1

pXtX` ´ ErXtX`sqe
itω and qcj “ pcj,n ´ Erpcj,ns.

For I “ ti1, ..., iru and J “ tj1, ..., jsu, define the joint cumulant of an order pr ` sq

cum
`

qµb
r

I ,qcb
s

J

˘

“ cum pqµi1pωq, . . . , qµirpωq,qcj1 , . . . ,qcjsq .

Note that in the proofs below we often suppress the notation ω in qµ`pωq to make the notation less

cumbersome. To further reduce notation define the “half” spectral density

f`,npωq “
n
ÿ

t“1

ErXtX`se
itω.

We note that since ErXtX`s “ cpt´ `q and by assumption of absolute summability of the autoco-

variance function we have the bound

sup
ω,`,n

|f`,npωq| ď
ÿ

rPZ

|cprq| ă 8. (3.24)
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Using the notation above we can write E11pωq, E21pωq and E31pωq as

E11pωq “

p
ÿ

j“0

p
ÿ

`“1

qµ` ppcj ´ cjq
Bg`,ppω, cpq

Bcj
,

E21pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2
,

E31pωq “
1

3!

p
ÿ

j1,j2,j3“0

p
ÿ

`“1

qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q
B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3
(3.25)

Using Lemma D.1.3, We summarize the pertinent bounds from the above. The first order

expansion yields the bounds

ErE11pωqs “ O

ˆ

p2

n2

˙

, varrE11pωqs “ O

ˆ

p4

n2

˙

,

ErE12pωqs “ O

ˆ

p2

n2

˙

, varrE12pωqs “ O

ˆ

p4

n3

˙

.

The second order expansion yields the bounds

ErE21pωqs “ O

ˆ

p3

n2

˙

, varrE21pωqs “ O

ˆ

p6

n3

˙

,

ErE22pωqs “ O

ˆ

p3

n2

˙

, varrE22pωqs “ O

ˆ

p6

n4

˙

.

All together, the third order expansion yields the probabilistic bounds

E31pωq “ Op

ˆ

p4

n2

˙

E32pωq “ Op

ˆ

p4

n5{2

˙

.

The above are bounds hold for the expansion of En,Lpωq. A similar set of bounds also apply to

En,Rpωq. Then we have

Er∆2pωqs “ O

ˆ

p3

n2

˙

varr∆2pωqs “ O

ˆ

p4

n2

˙

.
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On the other hand

Rnpωq “ Op

ˆ

p4

n2

˙

.

This proves the result for m “ 8. The proof for m “ 6 and all even m ą 8 is similar, just the order

of the Taylor expansion needs to be adjusted accordingly. l

3.6.3 Proof of Section 3

PROOF of Theorem 3.1.1 The proof is almost identical with the proof of Theorems 2.3.1´2.3.3,

thus we only give a brief outline. As with Theorems 2.3.1´2.3.3 we can show that

´

Jnpωq ` pJ8,npω; fq
¯

Jh,npωq “ Ih,npω; fq `∆
p0q
h,npωq

Ih,npω; fpq “

´

Jnpωq ` pJ8,npω; fq
¯

Jh,npωq `∆
p1q
h,npωq

Ih,npω; pfpq “ Ih,npω; fpq `∆
p2q
h,npωq `Rh,npωq.

Since supt ht,n ď C for some constant, it is easy to verify that |∆piq
h,npωq| ď C|∆i,npωq| for i “

0, 1, 2 and |Rh,npωq| ď C|Rnpωq|, where where ∆0,npωq, ∆1,npωq, ∆2,npωq andRnpωq are the error

terms from Theorems 2.3.1´2.3.3. Thus by using the bounds in Theorems 2.3.1´2.3.3 we have

proved the result. l

PROOF of Theorem 3.2.1 To simplify notation we focus on the case that the regular DFT is not

tapered and consider the case that Ax,npg; fq is a sum (and not an integral). We will use the

sequence of approximations in Theorems 2.3.1´2.3.3. We will obtain bounds between the “ideal”

criterion AS,npg; fq and the intermediate terms. Define the infinite predictor integrated sum as

A8,S,npg; fq “
1

n

n
ÿ

k“1

gpωk,nqI8,npωk,n; fq.
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We use the sequence of differences to prove the result:

AS,npg; pfpq ´ AS,npg; fq “ pAS,npg; pfpq ´ AS,npg; fpqq ` pAS,npg; fpq ´ A8,S,npg; fqq

`pA8,S,npg; fq ´ AS,npg; fqq. (3.26)

We start with the third term A8,S,npg; fq ´ AS,npg; fq

|AS,npg; fq ´ A8,S,npg; fq| ď
1

n

n
ÿ

k“1

|gpωk,nq|
ˇ

ˇ

ˇ

´

pJnpωk,n; fq ´ pJ8,npωk,n; fq
¯

Jnpωk,nq
ˇ

ˇ

ˇ

“ sup
ω

ˇ

ˇ

ˇ

´

pJnpω; fq ´ pJ8,npω; fq
¯

Jnpωq
ˇ

ˇ

ˇ
¨

1

n

n
ÿ

k“1

|gpωk,nq| “ R0.

Using Theorem 2.3.1, we have that ErR0s “ Opn´Kq and varrR0s “ Opn´2Kq. Using a similar

method we can show that the second term of above

|A8,S,npg; fpq ´ AS,npg; fq| ď sup
ω

ˇ

ˇ

ˇ

´

pJ8,npω; fq ´ pJnpω; fpq
¯

Jnpωq
ˇ

ˇ

ˇ
¨

1

n

n
ÿ

k“1

|gpωk,nq| “ R1

where ErR1s “ Opn´1p´K`1q and varrR1s “ Opn´2p´2K`2q.

To bound the first termAS,npg; pfpq´AS,npg; fpq a little more care is required. We use the expansion

and notation from the proof of Theorem 2.3.3;

AS,npg; pfpq ´ AS,npg; fpq “ UL ` UR

where

UL “
1

n

n
ÿ

k“1

gpωk,nqEn,Lpωk,nq and UR “
1

n

n
ÿ

k“1

gpωk,nqEn,Rpωk,nq.
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We further decompose UL into

UL “
1

n

n
ÿ

k“1

gpωk,nqrE111pωk,nq ` E112pωk,nq ` E12pωk,nq ` E21pωk,nq ` E22pωk,nq

`E31pωk,nq ` E32pωk,nqs “ U1,n ` U2,n ` U3,n,

where

U1,n “
1

n

n
ÿ

k“1

gpωk,nqE111pωk,nq

U2,n “
1

n

n
ÿ

k“1

gpωk,nq rE112pωk,nq ` E12pωk,nq ` E21pωk,nq ` E22pωk,nqs

U3,n “
1

n

n
ÿ

k“1

gpωk,nq rE31pωk,nq ` E32pωk,nqs .

We note that a similar decomposition applies to the right hand decomposition, UR. Thus the bounds

we obtain for UL can also be applied to UR. To bound Ui,n for i “ 1, 2, 3, we will treat the terms

differently. Since

|U2,n| ď sup
ω
p|E112pωq| ` |E12pωq| ` |E21pωq| ` |E22pωq|q ¨

1

n

n
ÿ

k“1

|gpωk,nq|,

we can use the bounds in the Lemma D.1.3 in Appendix to show that ErU2,ns “ Opp3n´2q and

varrU2,ns “ Opp6n´3q. Similarly we can show that U3,n “ Oppp
m{2n´m{4q. However, directly

applying the bounds for E111pωq to bound U1,n leads to a suboptimal bound for the variance (of

order p4{n2). By applying a more subtle approach, we utilize the sum over k. By using Lemma

D.1.3 in Appendix, we can show that ErU1,ns “ Opp2n´2q. To obtain the variance we expand
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varrU1,ns

varrU1,ns “
1

n2

n
ÿ

k1,k2“1

gpωk1,nqgpωk2,nqcovrE111pωk1,nq, E111pωk2,nqs

“
1

n2

n
ÿ

k1,k2“1

gpωk1,nqgpωk2,nq ˆ

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

cov pqµ`1pωk1,nqqcj1 , qµ`2pωk2,nqqcj2qq
Bg`1,ppωk1,n, cpq

Bcj1

Bg`2,ppωk2,n, cpq

Bcj2

“ T1 ` T2 ` T3

where

T1 “
1

n2

n
ÿ

k1,k2“1

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

hj1,j2pωk1,n, ωk2,nqcov rqµ`1pωk1,nq, qµ`2pωk2,nqs cov rqcj1 ,qcj2s

T2 “
1

n2

n
ÿ

k1,k2“1

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

hj1,j2pωk1,n, ωk2,nqcov rqµ`1pωk1,nq,qcj2s cov rqµ`2pωk2,nq,qcj1s

T3 “
1

n2

n
ÿ

k1,k2“1

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

hj1,j2pωk1,n, ωk2,nqcum rqµ`1pωk1,nq, qµ`2pωk2,nq,qcj1 ,qcj2s

and hj1,j2pωk1,n, ωk2,nq “ gpωk1,nqgpωk2,nq ¨ Bg`1,ppωk1,n, cpq{Bcj1 ¨ Bg`2,ppωk2,n, cpq{Bcj2 . Then, by

Lemma D.1.2, we have

sup
0ďj1,j2ďp

sup
ω1,ω2

|hj1,j2pω1, ω2q| ď C ă 8.

To bound above three terms, we first consider T2. We directly apply Lemma D.1.1 and this gives

cov rqµ`1pωk1,nq,qcj2s ¨ cov rqµ`2pωk2,nq,qcj1s “ Opn´4q and thus T2 “ Opp4n´4q.
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To bound T1, we expand cov rqµ`1pωk1,nq, qµ`2pωk2,nqs

cov rqµ`1pωk1,nq, qµ`2pωk2,nqs “
1

n2

n
ÿ

t1,t2“1

ˆ

cpt1 ´ t2qcp`1 ´ `2q ` cpt1 ´ `2qcpt2 ´ `1q

`κ4p`1 ´ t1, t2 ´ t1, `2 ´ t1q

˙

eit1ωk1,n´it2ωk2,n

“
1

n2

n
ÿ

t1,t2“1

C`1,`2pt1, t2qe
it1ωk1,n´it2ωk2,n .

Substituting the above into T1

T1 “
1

n2

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

cov rqcj1 ,qcj2s
n
ÿ

t1,t2“1

C`1,`2pt1, t2q
1

n2

n
ÿ

k1,k2“1

hj1,j2pωk1,n, ωk2,nqe
it1ωk1,n´it2ωk2,n .

Since by assumption the function gp¨q and its derivative are continuous on the torus r0, 2πs and

hj1,j2p¨, ¨q and its partial derivatives are continuous of r0, 2πs2, then by the Poisson summation

formula

1

n2

n
ÿ

k1,k2“1

hj1,j2pωk1,n, ωk2,nqe
it1ωk1,n´it2ωk2,n “

ÿ

s1,s2PZ

apj1,j2qpt1 ` s1n,´t2 ` s2nq

where apj1,j2qpr1, r2q are the pr1, r2qth Fourier coefficients of hj1,j2p¨, ¨q and are absolutely summable.

Substituting the above into T1 and by Lemma D.1.2,

|T1| ď
1

n2

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

|cov rqcj1 ,qcj2s |
n
ÿ

t1,t2“1

ÿ

s1,s2PZ

|C`1,`2pt1, t2q| ¨ |a
pj1,j2qpt1 ` s1n,´t2 ` s2nq|

ď
C

n3

p
ÿ

`1,`2“1

p
ÿ

j1,j2“0

n
ÿ

t1,t2“1

ÿ

s1,s2PZ

|apj1,j2qpt1 ` s1n,´t2 ` s2nq|

“
Cp2

n3

p
ÿ

j1,j2“0

ÿ

r1,r2PZ

|apj1,j2qpr1, r2q| “ O

ˆ

p4

n3

˙

.

Therefore, T1 “ Opp4n´3q. Finally, we consider T3. We use the expansions for cumrqµ`1pωk1,nq, qµ`2pωk2,nq,qcj1 ,qcj2s

given in the proof of Lemma D.1.1 together with the same proof used to bound T1. This once again

gives the bound T3 “ Opp4n´3q. Putting these bounds together gives
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(i) ErU1,ns “ Opp2n´2q and varrU1,ns “ Opp4n´3q.

(ii) ErU2,ns “ Opp3n´2q and varrU2,ns “ Opp6n´3q

(iii) U3,n “ Oppp
m{2n´m{4q.

The above covers UL. The same set of bounds apply to UR. Thus altogether we have that

AS,npg; pfpq ´ AS,npg; fpq “ UL ` UR “ R2 ` E ,

where R2 is the term whose mean and variance can be evaluated and is ErR2s “ Opp2n´2q and

varrR2s “ Opp6n´3q and E is the term which has probabilistic bound E “ Oppp
m{2n´m{4q. Finally,

placing all the bounds into (3.26) we have

AS,npg; pfpq ´ AS,npg; fq “ R0 `R1 `R2 ` E “ ∆pgq ` E ,

where Er∆pgqs “ Opn´1p´K`1`p2n´2q, varr∆pgqs “ Opn´2p´K´2`p6n´3q and E “ Oppp
m{2n´m{4q

thus yielding the desired result. l

PROOF of Corollary 3.2.1. We prove the result for AI,npg; pfpq, noting that a similar result holds

for AS,npg; pfpq. We recall

AI,npg; pfpq “
1

2π

ż 2π

0

gpωqIh,npω; pfpqdω

“
1

2π

ż 2π

0

gpωqJnpωqJh,npωqdω `
1

2π

ż 2π

0

gpωq
´

pJnpω; pfpq ´ pJnpω; fq
¯

Jh,npωqdω

`
1

2π

ż 2π

0

gpωq pJnpω; fqJh,npωqdω (3.27)

Using Theorem 3.2.1, we can bound the second term

ˇ

ˇ

ˇ

ˇ

1

2π

ż 2π

0

gpωq
´

pJnpω; pfpq ´ pJnpω; fq
¯

Jh,npωqdω

ˇ

ˇ

ˇ

ˇ

“ Op

ˆ

pm{2

nm{4
`

1

npK´1
`

p3

n3{2

˙

.
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For the third term, we use similar technique to prove equation (2.12), we have pJnpω; fqJh,npωq “

Oppn
´1q. Therefore, integrability of g gives that the third term in (3.27) is Oppn

´1q. Combining

above results, for m ě 6 where m from Assumption 4.2.1

1

2π

ż 2π

0

gpωq pJnpω; pfpqJh,npωqdω

“
1

2π

ż 2π

0

gpωq
´

pJnpω; pfpq ´ pJnpω; fq
¯

Jh,npωqdω `
1

2π

ż 2π

0

gpωq pJnpω; fqJh,npωqdω

“ Op

ˆ

1

n
`
pm{2

nm{4
`

1

npK´1
`

p3

n3{2

˙

“ Op

ˆ

1

n
`

p3

n3{2

˙

. (3.28)

Thus we focus on the first term of (3.27), which we define as

Ah,npgq “
1

2π

ż 2π

0

gpωqJnpωqJh,npωqdω.

From (3.28) if

H1,n

H
1{2
2,n

ˆ

1

n
`

p3

n3{2

˙

Ñ 0

as p, n Ñ 8, then pH1,n{H
1{2
2,n qAh,npgq is the dominating term in pH1,n{H

1{2
2,n qAI,npg; pfpq. More-

over, by Cauchy-Schwarz inequality, we have H1,n{H
1{2
2,n ď n1{2, thus we can omit the first term of

the above condition and get condition (3.6).

Finally, by applying the techniques in Dahlhaus (1983) to pH1,n{H
1{2
2,n qAh,npgq we can show that

H2
1,n

H2,n

varrAh,npgqs “ pV1 ` V2 ` V3q ` op1q.

Since pH1,n{H
1{2
2,n qAI,npg; pfpq “ pH1,n{H

1{2
2,n qAh,npgq ` opp1q, this proves the result. l
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4. THE GAUSSIAN LIKELIHOOD IN THE FREQUENCY DOMAIN *

In this section, we discuss greater detail of the frequency domain representation of the Gaussian

likelihood in Section 2.4.

4.1 New frequency domain quasi-likelihoods

In this section, we apply the approximations from Section 2.4.1 to define two new spectral

divergence criteria.

To motivate the criteria, we recall from Theorem 2.4.1 that the Gaussian likelihood can be

written as a contrast between rJnpω; fθqJnpωq and fθpωq. The resulting estimator is based on si-

multaneously predicting and fitting the spectral density. In the case that the model is correctly

specified, in the sense there exists a θ P Θ where f “ fθ (and f is the true spectral density). Then

Efθr rJnpω; fθqJnpωqs “ fθpωq

and the Gaussian criterion has a clear interpretation. However, if the model is misspecified (which

for real data is likely), Ef r rJnpω; fθqJnpωqs has no clear interpretation. Instead, to understand what

the Gaussian likelihood is estimating, we use that Ef r pJnpω; fθqJnpωqs “ Opn´1q, which leads to

the approximation Ef r rJnpω; fθqJnpωqs “ fpωq`Opn´1q. From this, we observe that the expected

negative log Gaussian likelihood is

n´1Ef rX 1
nΓnpfθq

´1Xns ` n
´1 log |Γnpfθq| “ Ipf, fθq `Opn

´1
q,

where

Inpf ; fθq “
1

n

n
ÿ

k“1

ˆ

fpωk,nq

fθpωk,nq
` log fθpωk,nq

˙

. (4.1)

Since Inpf ; fθq is the spectral divergence between the true spectral f density and parametric spec-

*Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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tral density fθ, asymptotically the misspecified Gaussian likelihood estimator has a meaningful in-

terpretation. However, there is still a finite sample bias in the Gaussian likelihood of orderOpn´1q.

This can have a knock-on effect, by increasing the finite sample bias in the resulting Gaussian

likelihood estimator. To remedy this, in the following section, we obtain a frequency domain cri-

terion which approximates the spectral divergence Inpf ; fθq to a greater degree of accuracy. This

may lead to estimators which may give a more accurate fit of the underlying spectral density. We

should emphasis at this point, that reducing the bias in the likelihood, does not necessarily translate

to a provable reduction in the bias of the resulting estimators. It is worth noting that, strictly, the

spectral divergence is defined as n´1
řn
k“1

´

fpωk,nq

fθpωk,nq
´ log

fpωk,nq

fθpωk,nq
´ 1

¯

. It is zero when fθ “ f

and positive for other values of fθ. But since´ log f ´1 does not depend on θ we ignore this term.

4.1.1 The boundary corrected Whittle likelihood

In order to address some of the issues raised above, we recall from Theorem 2.2.1 that

Ef r rJnpω; fqJnpωqs “ fpωq. In other words, by predicting over the boundary using the (unob-

served) spectral density which generates the data, the “complete periodogram” rJnpω; fqJnpωq is

an inconsistent but unbiased of the true spectral density f . This motivates the (infeasible) boundary

corrected Whittle likelihood

Wnpθq “
1

n

n
ÿ

k“1

rJnpωk,n; fqJnpωk,nq

fθpωk,nq
`

1

n

n
ÿ

k“1

log fθpωk,nq. (4.2)

Thus, if tXtu is a second order stationary time series with spectral density f , then we have

Ef rWnpθqs “ Inpf ; fθq.

Of course f and thus rJnpωk,n; fq are unknown. However, using steps of approximation in Sec-

tion 2.3.2, we show that the predictive DFT (and thus the complete DFT) can be well approximated

with relatively small error. The first step is to replacing f in rJnpωk,n; fq with the spectral density

function corresponding to the best fitting ARppq process rJnpωk,n; fpq, where an analytic form is

given in (2.8). Since we have replaced f with fp, the “periodogram” rJnpωk,n; fpqJnpωk,nq does

have a bias, but it is considerably smaller than the bias of the usual periodogram. In particular, it
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follows from Theorems 2.3.1 and 2.3.2 that

Ef r rJnpωk,n; fpqJnpωk,nqs “ fpωk,nq `O

ˆ

1

npK´1

˙

.

The above result leads to an approximation of the boundary corrected Whittle likelihood

Wp,npθq “
1

n

n
ÿ

k“1

rJnpωk,n; fpqJnpωk,nq

fθpωk,nq
`

1

n

n
ÿ

k“1

log fθpωk,nq. (4.3)

In the following lemma, we obtain a bound between the “ideal” boundary corrected Whittle likeli-

hood Wnpθq and Wp,npθq.

Lemma 4.1.1. Suppose f satisfies Assumption 2.3.1, fθ is bounded away from zero and }fθ}0 ă 8.

Let tajppqu denote the coefficients of the best fitting ARppq model corresponding to the spectral

density f and define fppωq “ |1´
řp
j“1 ajppqe

´ijω|´2. Suppose 1 ď p ă n, then we have

›

›F ˚n∆npf
´1
θ q pDnpfq ´Dnpfpqq

›

›

1

ď ρp,KpfqAKpf, fθq

ˆ

pCf,1 ` 1q

pK´1
`

2pCf,1 ` 1q2

pK
}ψf}0}φf}1 `

Cf,0
nK´1

˙

. (4.4)

Further, if tXtu is a time series where supt }Xt}E,2q “ }X}E,2q ă 8 (for some q ą 1), then

}Wnpθq ´Wp,npθq}E,q ď ρp,KpfqAKpf, fθq ˆ
ˆ

pCf,1 ` 1q

npK´1
`

2pCf,1 ` 1q2

npK
}ψf}0}φf}1 `

Cf,0
nK

˙

}X}2E,2q. (4.5)

PROOF. See Section 4.7.2. l

Remark 4.1.1. We briefly discuss what the above bounds mean for different types of spectral

densities f .

(i) Suppose f is the spectral density of a finite order ARpp0q. If p ě p0, then
›

›F ˚n∆npf
´1
θ q pDnpfq ´Dnpfpqq

›

›

1
“ 0 and }Wnpθq´Wp,npθq}E,q “ 0. On the other hand, if
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p ă p0 we replace the pK and pK´1 terms in Lemma 4.1.1 with
řp0
j“p`1 |φj| and

řp0
j“p`1 |jφj|

respectively, where tφju
p
j“1 are the ARppq coefficients corresponding to f .

(ii) If the autocovariances corresponding to f decay geometrically fast to zero (for example an

ARMA processes), then for some 0 ď ρ ă 1 we have

}Wnpθq ´Wp,npθq}E,q “ O

ˆ

ρp

n
` ρn

˙

. (4.6)

(iii) If the autocovariances corresponding to f decay to zero at a polynomial rate with
ř

r |r
Kcprq| ă

8, then

}Wnpθq ´Wp,npθq}E,q “ O

ˆ

1

npK´1

˙

. (4.7)

Roughly speaking, the faster the rate of decay of the autocovariance function, the “closer”

Wp,npθq will be to Wnpθq for a given p.

It follows from the lemma above that if 1 ď p ă n, Ef rWp,npθqs “ Inpf ; fθq `Oppnp
K´1q´1q and

Wp,npθq “ Wnpθq `Op

ˆ

1

npK´1

˙

.

Thus if p Ñ 8 as n Ñ 8, then Wp,npθq yields a better approximation to the “ideal” Wnpθq than

both the Whittle and the Gaussian likelihood.

Since f is unknown, fp is also unknown. The second step is to estimate fp from the data. We

use the Yule-Walker estimator to fit an ARppq process to the observed time series, where we select

the order p using the AIC. This leads a feasible estimator rJnpω; pfpq “ Jnpωq ` pJnpω; pfpq, where

pJnpω; pfpq is defined as in (2.18).

This estimator allows us to replace rJnpωk,n; fpq in Wp,npθq with rJnpωk,n; pfpq to give the “ob-
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served” boundary corrected Whittle likelihood

xWp,npθq “
1

n

n
ÿ

k“1

rJnpωk,n; pfpqJnpωk,nq

fθpωk,nq
`

1

n

n
ÿ

k“1

log fθpωk,nq. (4.8)

We use as an estimator of θ, pθn “ arg minxWp,npθq. It is worth bearing in mind that

Im
rJnpωk,n; pfpqJnpωk,nq

fθpωk,nq
“ ´ Im

rJnpωn´k,n; pfpqJnpωn´k,nq

fθpωn´k,nq

thus xWp,npθq is real for all θ. However, due to rounding errors it is prudent to use RexWp,npθq in

the minimization algorithm. Sometimes Re rJnpωk,n; pfpqJnpωk,nq can be negative, when this arises

we threshold it to be positive (the method we use is given in Section 4.6).

In this dissertation, we focus on estimating pJnpωk,n; fpq using the Yule-Walker estimator. How-

ever, other estimators could be used. These may, in certain situations, give better results. For exam-

ple, in the case that f has a more peaked spectral density (corresponding to AR parameters close to

the unit circle) it may be better to replace the Yule-Walker estimator with the tapered Yule-Walker

estimator (as described in Dahlhaus (1988) and Zhang (1992)) or the Burg estimator. We show in

Section 4.6.4, that using the tapered Yule-Walker estimator tends to give better results for peaked

spectral density functions. Alternatively one could directly estimate pJ8,npωk,n; fq, where we use a

non-parametric spectral density estimator of f . This is described in greater detail in Section 4.6.4

together with the results of some simulations.

4.1.2 The hybrid Whittle likelihood

The simulations in Section 4.6 suggest that the boundary corrected Whittle likelihood estimator

(defined in (4.8)) yields an estimator with a smaller bias than the regular Whittle likelihood. How-

ever, the bias of the tapered Whittle likelihood (and often the Gaussian likelihood) is in some cases

lower. The tapered Whittle likelihood (first proposed in Dahlhaus (1988)) gives a better resolution

at the peaks in the spectral density. It also “softens” the observed domain of observation. With this

in mind, we propose the hybrid Whittle likelihood which incorporates the notion of tapering.

90



Suppose h “ tht,nunt“1 is a data taper, where the weights tht,nu are non-negative and
řn
t“1 ht,n “

n. Then, using results in Section 3.1, the tapered complete periodogram Ih,npω; fq “ rJnpω; fqJh,npωq

where Jh,npωq “ n´1{2
řn
t“1 ht,nXte

itω is an unbiased estimator of fpωq.

Based on the above result we define the infeasible hybrid Whittle likelihood

Hnpθq “
1

n

n
ÿ

k“1

rJnpωk,n; fqJh,npωk,nq

fθpωk,nq
`

1

n

n
ÿ

k“1

log fθpωk,nq (4.9)

and Ef rHnpθqs “ Inpf ; fθq. Thus Hnpθq is an unbiased estimator of Inpf ; fθq. Clearly, it is not

possible to estimate θ using the (unobserved) criterion Hnpθq. Instead we replace rJnpωk,n; fq with

its estimator rJnpωk,n; pfpq and define

pHp,npθq “
1

n

n
ÿ

k“1

rJnpωk,n; pfpqJn,hnpωk,nq

fθpωk,nq
`

1

n

n
ÿ

k“1

log fθpωk,nq. (4.10)

We then use as an estimator of θ, pθn “ arg min pHp,npθq. An illustration which visualises and com-

pares the boundary corrected Whittle likelihood and hybrid Whittle likelihood is given in Figure

4.1.

Figure 4.1: Left: The estimated complete DFT and the regular DFT which yields the boundary
corrected Whittle likelihood. Right: The estimated complete DFT and the tapered DFT which
forms the hybrid Whittle likelihood.
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4.2 Assumptions

In this section, we make sets of assumptions that are used to study the sampling properties of

the boundary corrected and hybrid Whittle likelihood. Our focus will be on the hybrid Whittle

likelihood as it includes the boundary corrected likelihood as a special case, when ht,n ” 1. In

Section 3.2, we study the sampling properties of the estimated integrated complete periodogram,

which is a weighted sum of rJnpω; pfpqJn,hnpωq. Using these results and the results in Section B, we

obtain the bias and variance of the boundary corrected and hybrid Whittle likelihood.

Suppose we fit the spectral density fθpωq (where θ is an unknown d-dimension parameter vec-

tor) to the stationary time series tXtu
n
t“1 whose true spectral density is f . The best fitting spectral

density is fθn , where θn “ arg min Inpf ; fθq. Let pθn “ ppθ1,n, . . . , pθd,nq be its estimator, where

pθn “ arg min pHp,npθq.

To derive the sampling properties of pθn we assume the data taper has the following form

ht,n “ cnhnpt{nq, (4.11)

where hn : r0, 1s Ñ R is a sequence of positive functions that satisfy the taper assumptions

in Section 5, Dahlhaus (1988) and cn “ n{H1,n with Hq,n “
řn
t“1 hnpt{nq

q. We will assume

supt,n ht,n ă 8, using this it is straightforward to show H2,n{H
2
1,n “ Opn´1q. Under this con-

dition, the hybrid Whittle is n1{2–consistency and the equivalence result in Theorem 4.3.1 holds.

This assumption is used in Dahlhaus (1983) and in practice one often assumes that a fixed percent-

age of the data is tapered. A relaxation of the condition H2,n{H
2
1,n “ Opn´1q will lead to a change

of rate in Theorem 4.3.1.

Assumption 4.2.1 (Assumptions on the parameter space). (i) The parameter space Θ Ă Rd is

compact, 0 ă infθPΘ infω fθpωq ď supθPΘ supω fθpωq ă 8 and θn lies in the interior of Θ.

(ii) The one-step ahead prediction error σ2 “ exppp2πq´1
ş2π

0
log fθpωqdωq is not a function of

the parameter θ.
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(iii) Let tφjpfθqu and tψjpfθqu denote the ARp8q and MAp8q coefficients corresponding to the

spectral density fθ respectively. Then for all θ P Θ and 0 ď s ď κ (for some κ ě 4), we

have

paq sup
θPΘ

8
ÿ

j“1

}jK∇s
θφjpfθq}1 ă 8 pbq sup

θPΘ

8
ÿ

j“1

}jK∇s
θψjpfθq}1 ă 8,

where K ą 3{2, ∇a
θgpfθq is the ath order partial derivative of g with respect to θ, and

}∇a
θgpfθq}1 denotes the absolute sum of all the partial derivatives in ∇a

θgpfθq.

We use Assumption 4.2.1(ii, iii) to show that the n´1
řn
k“1 log fθpωk,nq term in boundary cor-

rected and hybrid Whittle likelihoods are negligible with respect the other bias terms. This allows

us to simplify some of the bias expansions. Without Assumption 4.2.1(ii, iii-a) the asymptotic

bias of the new-frequency domain likelihood estimators would contain some additional terms. As-

sumption 4.2.1(iii-b) is used to bound the sth derivative of the spectral density.

Assumption 4.2.2 (Assumptions on the time series). (i) tXtu is a stationary time series. Let

κ`pt1, . . . , t`´1q denote the joint cumulant cumpX0, Xt1 , . . . , Xt`´1
q.

Then for all 1 ď j ď ` ď 12,

ÿ

t1,...,t`´1

|p1` tjqκ`pt1, . . . , t`´1q| ă 8.

(ii) The spectral density of tXtu is such that the spectral density f is bounded away from zero

and for some K ą 1, the autocovariance function satisfies
ř

rPZ |r
Kcf prq| ă 8.

(iii) Ipθnq is invertible where

Ipθq “ ´
1

2π

ż 2π

0

r∇2
θfθpωq

´1
sfpωqdω. (4.12)

We require Assumption 4.2.2(i), when ` “ 4 and 6 to obtain a bound for the expectation of

the terms in the bias expansions and ` “ 12 to show equivalence between the feasible estimator

based on pHp,npθq and its infeasible counterparts Hnpθq. Under Assumption 4.2.2(i,ii), we show in
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Theorem 3.2.1 that

pHp,npθq “ Hnpθq `Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

Under Assumption 4.2.1(i,iii) the above error is uniform over the parameter space. If the model is

an ARpp0q and p0 ď p, then the term OppnpK´1q´1q in the above disappears.

4.3 Rates of convergence of the new likelihood estimators

4.3.1 The criteria

To begin with, we state the assumptions required to obtain rates of convergence of the new

criteria and asymptotic equivalence to the infeasible criteria. These results will be used to derive

the asymptotic sampling properties of the new likelihood estimators, including their asymptotic

bias (in a later section). To do this, we start by defining the criteria we will be considering.

We assume that tXtu is a stationary time series with spectral density f , where f is bounded

away from zero (and bounded above). We fit the model with spectral density fθ to the observed

time series. We do not necessarily assume that there exists a θ0 P Θ where f “ fθ0 . Since we

allow the misspecified case, for a given n, it seems natural that the “ideal” best fitting parameter is

θn “ arg min
θ
Inpf, fθq. (4.13)

where Inpf, fθq is defined in (4.1). Note that in the case the spectral density is correctly specified,

then θn “ θ0 for all n where f “ fθ0 .

We now show that Assumption 4.2.1(ii,iii) allows us to ignore the n´1
řn
k“1 log fθpωk,nq in the

Whittle, boundary corrected Whittle and hybrid Whittle likelihoods. To show why this is true, we

obtain the Fourier expansion of log fθpωq “
ř

rPZ αrpfθqe
irω, where α0pfθq “ log σ2, in terms of

the corresponding MAp8q coefficients. We use the well known Szegö’s identity

log fθp¨q “ log σ2
|ψp¨; fθq|

2
“ log σ2

` logψp¨; fθq ` logψp¨; fθq
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where ψpω; fθq “
ř8

j“0 ψjpfθqe
´ijω with ψ0pfθq “ 1 and the roots of the MA transfer function

ř8

j“0 ψjpfθqz
j lie outside the unit circle (minimum phased). Comparing

log fθpωq “
ř

rPZ αrpfθqe
irω with the positive half of the above expansion gives

logp
8
ÿ

j“0

ψjpfθqz
j
q “

8
ÿ

j“1

αjpfθqz
j for |z| ă 1,

and since log fθ is real and symmetric about π, α´jpfθq “ αjpfθq P R. This allows us to obtain

coefficients tαjpfθqu in terms of the MAp8q coefficients (it is interesting to note that Pourahmadi

(2001) gives a recursion for αjpfθq in terms of the MAp8q coefficient). The result is given in

Lemma D.2.2, but we summarize it below. Under Assumption 4.2.1(iii) we have for 0 ď s ď κ

(for some κ ě 4)
8
ÿ

j“1

}jK∇s
θαjpfθq}1 ă 8.

Using this result, we bound n´1
řn
k“1 log fθpωk,nq. Applying the Poisson summation formula to

this sum we have

1

n

n
ÿ

k“1

log fθpωk,nq “
ÿ

rPZ

αrnpfθq “ α0pfθq `
ÿ

rPZzt0u

αrnpfθq

“ logpσ2
q `

ÿ

rPZzt0u

αrnpfθq. (4.14)

The sth-order derivative (s ě 1) with respect to θ (and using Assumption 4.2.1(ii) that σ2 does not

depend on θ) we have

1

n

n
ÿ

k“1

∇s
θ log fθpωk,nq “

ÿ

rPZzt0u

∇s
θαrnpfθq.

By using Lemma D.2.2 for 0 ď s ď κ we have

}
ÿ

rPZzt0u

∇s
θαrnpfθq}1 ď 2

ÿ

jěn

}∇s
θαjpfθq}1 “ Opn´Kq. (4.15)
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Substituting the bound in (4.15) (for s “ 0) into (4.14) gives

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

k“1

log fθpωk,nq ´ log σ2

ˇ

ˇ

ˇ

ˇ

ˇ

“ Opn´Kq.

Using (4.15) for 1 ď s ď κ we have

›

›

›

›

›

1

n

n
ÿ

k“1

∇s
θ log fθpωk,nq

›

›

›

›

›

1

“ Opn´Kq.

Therefore if K ą 1, the log determinant term in the Whittle, boundary corrected, and hybrid

Whittle likelihood is negligible as compared with Opn´1q (which we show is the leading order in

the bias).

However, for the Gaussian likelihood, the log determinant cannot be ignored. Specifically, by

applying the strong Szegö’s theorem (see e.g., Theorem 10.29 of Böttcher and Silbermann (2013))

to Γnpfθq we have

1

n
log |Γnpfθq| “ log σ2

`
1

n
Epθq ` opn´1

q

where Epθq “
ř8

k“1 αkpfθq
2. Therefore, unlike the other three quasi-likelihoods, the error in

log |Γnpfθq| is of order Opn´1q, which is of the same order as the bias. In Section B.2, we show

that the inclusion and exclusion of n´1 log |Γnpfθq| leads to Gaussian likelihood estimators with

substantial differences in their bias. Further, there is no clear rule whether the inclusion of the

n´1 log |Γnpfθq| in the Gaussian likelihood improves the bias or makes it worse. In the case that

n´1 log |Γnpfθq| is included in the Gaussian likelihood, then the expression for the bias will include

the derivatives of Epθq. Except for a few simple models (such as the ARp1q model) the expression

for the derivatives of Epθq will be extremely unwieldy.

Based on the above, to make the derivations cleaner, we define all the quasi-likelihoods without
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the log term and let

Lnpθq “ n´1X 1
nΓnpfθq

´1Xn “
1

n

n
ÿ

k“1

rJnpωk,n; fθqJnpωk,nq

fθpωk,nq

Knpθq “
1

n

n
ÿ

k“1

|Jnpωk,nq|
2

fθpωk,nq

xWp,npθq “
1

n

n
ÿ

k“1

rJnpωk,n; pfpqJnpωk,nq

fθpωk,nq

pHp,npθq “
1

n

n
ÿ

k“1

rJnpωk,n; pfpqJn,hnpωk,nq

fθpωk,nq
. (4.16)

In the case of the hybrid Whittle likelihood, we make the assumption the data taper tht,nu is such

that ht,n “ cnhnpt{nq where cn “ n{H1,n and hn : r0, 1s Ñ R is a sequence of taper functions

which satisfy the taper conditions in Section 5, Dahlhaus (1988).

We define the parameter estimators as

pθpGqn “ arg minLnpθq, pθpKqn “ arg minKnpθq,

pθpW qn “ arg minxWp,npθq, and pθpHqn “ arg min pHp,npθq (4.17)

4.3.2 Asymptotic equivalence to the infeasible criteria

In this section we analyze the feasible estimators pθpW qn and pθ
pHq
n and show it is asymptotic equiv-

alence to the corresponding infeasible criteria which replace pfp with f , the true spectral density.

Before that, we discuss the condition on data taper such that H2,n{H
2
1,n “ Opn´1q. This has

some benefits. The first is that the rates for the hybrid Whittle and the boundary corrected Whittle

are the same. In particular, by using Theorems 2.3.4 and 3.2.1 (under Assumption 4.2.2) we have

r pJnpω; pfpq ´ pJnpω; fqsJn,hnpωq “ Op

ˆ

p2

n
`

p3

n3{2

˙

(4.18)
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and

pHp,npθq “ Hnpθq `Op

ˆ

p3

n3{2
`

1

npK´1

˙

. (4.19)

Using this, we show below that the Hybrid Whittle estimator has the classical n1{2–rate. If we were

to relax the rate onH2,n{H
2
1,n “ Opn´1q, then the n1{2–rate and the rates in (4.18) and (4.19) would

change. This will make the proofs more technical. Thus for ease of notation and presentation we

will assume that H2,n{H
2
1,n “ Opn´1q.

We start by obtaining a “crude” bound for ∇s
θ
xWp,npθq ´∇s

θWnpθq.

Lemma 4.3.1. Suppose that Assumptions 4.2.1(i,iii) and 4.2.2(i,ii) hold. Then for 0 ď s ď κ (for

some κ ě 4) we have

sup
θPΘ

›

›

›
∇s
θ
xWp,npθq ´∇s

θWnpθq
›

›

›

1
“ Op

ˆ

p2

n

˙

and

sup
θPΘ

›

›

›
∇s
θ
pHp,npθq ´∇s

θHnpθq
›

›

›

1
“ Op

ˆ

p2

n

˙

.

PROOF. See Section 4.7.2. l

Lemma 4.3.2. Suppose that Assumptions 4.2.1(i,iii) and 4.2.2(i,ii) hold. Then

|pθpW qn ´ θn|1
P
Ñ 0 and |pθpHqn ´ θn|1

P
Ñ 0

with p2{nÑ 0 as p, nÑ 8.

PROOF. See Section 4.7.2. l

For the simplicity, we assume θ is univariate and state the following lemma. It can be easily

generalized to the multivariate case.
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Lemma 4.3.3. Suppose Assumptions 4.2.1(i,iii) and 4.2.2 hold. Then for i “ 1, 2 we have

dixWp,npθq

dθi
uθ“θn “

diWnpθq

dθi
uθ“θn `Op

ˆ

p3

n3{2
`

1

npK´1

˙

(4.20)

and

ˇ

ˇ

ˇ

ˇ

ˇ

d3
xWp,npθq

dθ3
uθ“θn ´

d3Wnpθq

dθ3
uθ“θn

ˇ

ˇ

ˇ

ˇ

ˇ

“ Op

ˆ

p2

n

˙

` |pθpW qn ´ θn|Opp1q, (4.21)

where θn is a convex combination of pθpW qn and θn. This gives rise to the first order and second

expansions

ppθpW qn ´ θnq “ ´

„

E
„

d2Wnpθnq

dθ2
n

´1
dWnpθnq

dθn
`Op

ˆ

1

n
`

p3

n3{2
`

1

npK´1

˙

(4.22)

and

dWnpθq

dθ
uθ“θn ` p

pθpW qn ´ θnq
d2Wnpθq

dθ2
uθ“θn `

1

2
ppθpW qn ´ θnq

2d
3Wnpθq

dθ3
uθ“θn

“ Op

ˆ

p3

n3{2
`

1

npK´1

˙

. (4.23)

PROOF. See Section 4.7.2. l

The second order expansion (4.23) is instrumental in proving the equivalence result Theorem

4.3.1. By following a similar set of arguments to those in Lemma 4.3.3 for the multivariate param-

eter θ “ pθ1, . . . , θdq, the feasible estimator satisfies the expansion

BWnpθq

Bθr
`

d
ÿ

s“1

ppθpW qs,n ´ θs,nq
B2Wnpθq

BθsBθr
uθ“θn `

1

2

d
ÿ

s1,s2“1

ppθpW qs1,n
´ θs1,nqp

pθpW qs2,n
´ θs2,nq

B3Wnpθq

Bθs1Bθs2Bθr
uθ“θn “

ˆ

p3

n3{2
`

1

npK´1

˙

. (4.24)

By using the same set of arguments we can obtain a first and second order expansion for the hybrid
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Whittle estimator

ppθpHqn ´ θnq “ ´

„

E
„

d2Hnpθnq

dθ2
n

´1
dHnpθnq

dθn
`Op

ˆ

1

n
`

p3

n3{2
`

1

npK´1

˙

(4.25)

and

dHnpθq

dθ
uθ“θn ` p

pθpW qn ´ θnq
d2Hnpθq

dθ2
uθ“θn `

1

2
ppθpHqn ´ θnq

2d
3Hnpθq

dθ3
uθ“θn

“

ˆ

p3

n3{2
`

1

npK´1

˙

. (4.26)

Using the assumptions above we obtain a bound between the feasible and infeasible estimators.

Theorem 4.3.1 (Equivalence of feasible and infeasible estimators). Suppose Assumptions 4.2.1

and 4.2.2 hold. Define the feasible and infeasible estimators as rθn “ arg minHnpθq and pθn “

arg min pHp,npθq respectively. Then for p ě 1 we have

|pθn ´
rθn|1 “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

,

where |a|1 “
řd
j“1 |aj|. For the case p “ 0, pθn is the parameter estimator based on the Whittle

likelihood using the one-sided tapered periodogram Jnpωk,nqJn,hnpωk,nq rather than the regular

tapered periodogram. In this case, |pθn ´ rθn|1 “ Op pn
´1q.

Note if the true spectral density of the time series is that of an ARpp0q where p0 ď p, then the

OppnpK´1q´1q term is zero.

PROOF. See Section 4.7.2. l

The implication of the equivalence result is if p3{n1{2 Ñ 0 as p Ñ 8 and n Ñ 8, then n|pθn ´

rθn|1 Ñ 0 and asymptotically the properties of the infeasible estimator (such as bias and variance)

transfer to the feasible estimator.

100



4.4 The bias and variance of the hybrid Whittle likelihood

The expressions in this section are derived under Assumptions 4.2.1 and 4.2.2. To obtain an

expression for the mean and variance of pθn “ ppθ1,n, . . . , pθd,nq we require the following quantities.

Let

V pg, hq “
2

2π

ż 2π

0

gpωqhpωqfpωq2dω

`
1

p2πq2

ż 2π

0

ż 2π

0

gpω1qhpω2qf4pω1,´ω1, ω2qdω1dω2

and Jpgq “
1

2π

ż 2π

0

gpωqfpωqdω, (4.27)

where f4 denotes the fourth order cumulant density of the time series tXtu. We denote the ps, rqth

element of Ipθnq´1 (where Ipθnq is defined in (4.12)) as Ips,rq, and define

Grpθq “

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bf´1
θ

Bθs2
,
B2f´1

θ

Bθs1Bθr

˙

`
1

2

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

. (4.28)

4.4.1 The bias

We show in Appendix B.3, that the asymptotic bias for pθn “ ppθ1,n, . . . , pθd,nq is

Erpθj,n ´ θj,ns “
H2,n

H2
1,n

d
ÿ

r“1

Ipj,rqGrpθnq `O

ˆ

p3

n3{2
`

1

npK´1

˙

1 ď j ď d, (4.29)

where Ipj,rq andGrpθnq is defined in (4.28). We note that if no tapering were used thenH2,n{H
2
1,n “

n´1. The Gaussian and Whittle likelihood have a bias which includes the above term (where

H2,n{H
2
1,n “ n´1) plus an additional term of the form

řd
r“1 I

pj,rqEr∇θLnpθnqs, where Lnp¨q is the

Gaussian or Whittle likelihood (see Appendix B.3 for the details).

Theoretically, it is unclear which criteria has the smallest bias (since the inclusion of additional
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terms does not necessarily increase the bias). However, for the hybrid Whittle likelihood estimator,

a straightforward “Bartlett correction” can be made to estimate the bias in (4.29). We briefly outline

how this can be done. We observe that the bias is built of Ip¨q, Jp¨q and V p¨, ¨q. Both Ip¨q and Jp¨q

can easily be estimated with their sample means. The term V p¨, ¨q can also be estimated by using

an adaption of orthogonal samples (see Subba Rao (2018)), which we now describe. Define the

random variable

hrpg; fq “
1

n

n
ÿ

k“1

gpωk,nq rJnpωk`r,n; fqJnpωk,nq for r ě 1,

where g is a continuous and bounded function. Suppose g1 and g2 are continuous and bounded

functions. If r ‰ nZ, then Ef rhrpgj; fqs “ 0 (for j “ 1 and 2). But interestingly, if r ăă n, then

ncovf rhrpg1; fq, hrpg2; fqs “ nEf rhrpg1; fqhrpg2; fqs “ V pg1, g2q`Opr{nq. Using these results,

we estimate V pg1, g2q by replacing hrpgj; fq with hrpgj; pfpq and defining the “sample covariance”

pVMpg1, g2q “
n

M

M
ÿ

r“1

hrpg1; pfpqhrpg2; pfpq

where M ăă n. Thus, pVMpg1, g2q is an estimator of V pg1, g2q. Based on this construction,

pVM

ˆ

B

Bθs2
f´1
pθn
,

B2

Bθs1Bθr
f´1
pθn

˙

and pVM

ˆ

B

Bθs3
f´1
pθn
,
B

Bθs4
f´1
pθn

˙

are estimators of V
´

Bf´1
θ

Bθs2
,
B2f´1

θ

Bθs1Bθr

¯

and V
´

Bf´1
θ

Bθs3
,
Bf´1
θ

Bθs4

¯

respectively. This estimation scheme yields

a consistent estimate of the bias even when the model is misspecified. In contrast, it is unclear how

a bias correction would work for the Gaussian and Whittle likelihood under misspecification, as

they also involve the term Ef r∇θLnpθnqs. In the case of misspecification, Ef r∇θLnpθnqs ‰ 0 and

is of order Opn´1q.

It is worth mentioning that the asymptotic expansion in (4.29) does not fully depict what we

observe in the simulations in Section 4.6. A theoretical comparison of the biases of both new

likelihoods show that for the boundary corrected Whittle likelihood, the bias is asymptotically
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n´1
řd
r“1 I

pj,rqGrpθnq, whereas when tapering is used the bias is pH2,n{H
2
1,nq

řd
r“1 I

pj,rqGrpθnq ě

n´1
řd
r“1 I

pj,rqGrpθnq. This would suggest that the hybrid Whittle likelihood should have a larger

bias than the boundary corrected Whittle likelihood. But the simulations (see Section 4.6) suggest

this is not necessarily true and the hybrid likelihood tends to have a smaller bias.

4.4.2 The variance

We show in Section 3.2.1 that the inclusion of the prediction DFT in the hybrid Whittle like-

lihood has a variance which asymptotically is small as compared with the main Whittle term if

p3{n Ñ 0 as p, n Ñ 8 (under the condition H2,n{H
2
1,n “ Opn´1q) Using this observation, stan-

dard Taylor expansion methods give the asymptotic variance of pθn is

H2
1,n

H2,n

varppθnq “ Ipθnq
´1V

`

∇θf
´1
θ ,∇θf

´1
θ

˘

uθ“θnIpθnq
´1
` op1q,

where V p¨q is defined in (4.27).

4.5 Order selection and computational cost

4.5.1 The role of order estimation on the rates

Note that the order in the ARppq approximation is selected using the AIC. We assume that the

underlying time series is a linear, stationary time series with an ARp8q that satisfies Assumption

K.1´K.4 in Ing and Wei (2005). Then, using the same augument in the end of Section 2.3.2,

we show that the AIC order pp “ Oppn
1{p1`2Kqq. Thus, if K ą 5{2, then pp3{n1{2 P

Ñ 0 and

pp
P
Ñ 8 as n Ñ 8. These rates ensure that the difference between the feasible and infeasible

estimator is |pθn ´ rθn|1 “ oppn
´1q. Thus the feasible estimator, constructed using the AIC, and

the infeasible estimator are equivalent and the bias and variance derived above are valid for this

infeasible estimator.

4.5.2 The computational cost of the estimators

The Durbin-Levinson algorithm is often used to maximize the Gaussian likelihood. If this is

employed, then the computational cost of the algorithm is Opn2q. On the other hand, by using the
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FFT, the computational cost of the Whittle likelihood is Opn log nq.

For the boundary corrected Whittle and hybrid Whittle likelihood algorithm, there is an addi-

tional cost over the Whittle likelihood due to the estimation of t pJnpωk,n; pfpqu
n
k“1. We recall that pfp

is constructed using the Yule-Walker estimator pφ
p
“ ppφ1,p, ..., pφp,pq

1 where p is selected with the

AIC. We now calculate the complexity of calculating t pJnpωk,n; pfpqu
n
k“1.

The sample autocovariances, tpcnprqun´1
r“0 (which are required in the Yule-Walker estimator) can

be calculated in Opn log nq operations. Let Kn denote the maximum order used for the evaluation

of the AIC. If we implement the Durbin-Levinson algorithm, then evaluating pφ
p

for 1 ď p ď Kn

requires in total OpK2
nq arithmetic operations.

Suppose that the AR coefficients pφ
p̂

are given and compute the predictive DFT t pJnpωk,n; pfpqu
n
k“1.

Recall from (2.8),

pJnpωk,n; fpq

“
n´1{2

φppωk,nq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isωk,n `

n´1{2

φppωk,nq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qωk,n ,

where fpp¨q “ |φpp¨q|
2 and φppωk,nq “ 1 ´

řp
j“1 φje

´ijωk,n . We focus on the first term of

pJnpωk,n; fpq since the second term is almost identical. Interchange the summation, the first term is

n´1{2

φppωk,nq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isωk,n

“
n´1{2

φppωk,nq

p´1
ÿ

s“0

˜

p´s
ÿ

`“1

X`φ``s

¸

e´isωk,n “
n´1{2

φppωk,nq

p´1
ÿ

s“0

Yse
´isωk,n

where Ys “
řp´s
`“1 X`φ``s for 0 ď s ď p ´ 1. Note that Ys can be viewed as a convolution

between pX1, ..., Xpq and p0, 0, . . . , 0, φ1, ..., φp, 0, . . . , 0q. Based on this observation, the FFT can

be utilized to evaluate tYs : 0 ď s ď p´ 1u in Opp log pq operations.

By direct calculation tφppωk,nq : 0 ď k ď n ´ 1u and t
řp´1
s“0 Yse

´isωk,n : 0 ď k ď n ´

1u has Opnpq complexity. An alternative method of calculation is based on the observation that

both φppωk,nq and
řp´1
s“0 Yse

´isωk,n can be viewed as the kth component of the DFT of length n
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sequences p1,´φ1, ...,´φp, 0, ..., 0q and pY0, ..., Yp´1, 0, .., 0q respectively. Thus the FFT can be

used to evaluate both tφppωk,nq : 0 ď k ď n ´ 1u and t
řp´1
s“0 Yse

´isωk,n : 0 ď k ď n ´ 1u in

Opn log nq operations. Therefore, since either method can be used to evaluate these terms the total

number of operations for evaluation of tφppωk,nq : 0 ď k ď n ´ 1u and t
řp´1
s“0 Yse

´isωk,n : 0 ď

k ď n´ 1u is Opminpn log n, npqq.

Therefore, the overall computational cost of implementing both the boundary corrected Whittle

and hybrid Whittle likelihood algorithms is Opn log n`K2
nq. Using Ing and Wei (2005) Example

2, for consistent order selection Kn should be such that Kn „ n1{p2K`1q`ε for some ε ą 0 (where

K is defined in Assumption 2.3.1). Therefore, we conclude that the computational cost of the new

likelihoods is of the same order as the Whittle likelihood.

4.6 Simulations

To substantiate our theoretical results, we conduct some simulations (further simulations can be

found in Appendix C). To compare different methods, we evaluate six different quasi-likelihoods:

the Gaussian likelihood (equation (1.1)), the Whittle likelihood (equation (2.23)), the boundary

corrected Whittle likelihood (equation (4.8)), the hybrid Whittle likelihood (equation (4.10)), the

tapered Whittle likelihood (p.810 of Dahlhaus (1988)) and the debiased Whittle likelihood (equa-

tion (7) in Sykulski et al. (2019)).

The tapered and hybrid Whittle likelihoods require the use of data tapers. We use a Tukey

taper defined as in (3.2). We set the proportion of tapering at each end of the time series is 0.1, i.e.

d “ n{10.

When evaluating the boundary corrected Whittle likelihood and hybrid Whittle likelihood, the

order p is selected with the AIC and pfp is estimated using the Yule-Walker estimator.

Unlike the Whittle, the tapered Whittle and debiased Whittle likelihood, Re rJnpωk,n; pfpqJnpωk,nq

and Re rJnpωk,n; pfpqJn,hnpωk,nq can be negative. To avoid negative values, we apply the threshold-

ing function fptq “ maxpt, 10´3q to Re rJnpωk,n; pfpqJnpωk,nq and Re rJnpωk,n; pfpqJn,hnpωk,nq over

all the frequencies. Thresholding induces an additional (small) bias to the new criteria. The propor-

tion of times that Re rJnpωk,n; pfpqJnpωk,nq drops below the threshold increases for spectral density
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functions with large peaks and when the spectral density is close to zero. However, at least for the

models that we studied in the simulations, the bias due to the thresholding is negligible.

All simulations are conducted over 1000 replications with sample sizes n “ 20, 50, and 300.

In all the tables below and Appendix, the bias of the estimates are reported in the table and the

standard deviation are in parenthesis. The ordering of the performance of the estimators is colour

coded and is based on their squared root of the mean squared error (RMSE).

4.6.1 Estimation with correctly specified models

We first study the AR(1) and MA(1) parameter estimates when the models are correctly speci-

fied. We generate two types of time series models Xn and Y n, which satisfy the following recur-

sions

ARp1q : Xt “ θXt´1 ` et; φXpωq “ 1´ θe´iω

MAp1q : Yt “ et ` θet´1; φY pωq “ p1` θe
´iω
q
´1,

where |θ| ă 1, tetu are independent, identically distributed Gaussian random variables with mean 0

and variance 1. Note that the Gaussianity of the innovations is not required to obtain the theoretical

properties of the estimations. In Appendix C.1, we include simulations when the innovations

follow a standardized chi-squared distribution with two degrees of freedom. The results are similar

to those with Gaussian innovations. We generate the ARp1q and MAp1q models with parameters

θ “ 0.1, 0.3, 0.5, 0.7 and 0.9. For the time series generated by an ARp1q process, we fit an ARp1q

model, similarly, for the time series generated by a MAp1q process we fit a MAp1q model.

For each simulation, we evaluate the six different parameter estimators. The empirical bias

and standard deviation are calculated. Figures 4.2 gives the bias (first row) and the RMSE (second

row) of each estimated parameter θ for both ARp1q and MAp1q models. We focus on positive θ,

similar results are obtained for negative θ. The results are also summarized in Table 4.1.
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Figure 4.2: Bias (first row) and the RMSE (second row) of the parameter estimates for the Gaussian
AR(1) models and Gaussian MA(1) models. Length of the time series n “ 20(left), 50(middle),
and 300(right).
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Likelihoods θ
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

AR(1), tetu „ N p0, 1q, n “ 20 MA(1), tetu „ N p0, 1q, n “ 20
Gaussian -0.012(0.22) -0.028(0.21) -0.043(0.19) -0.066(0.18) -0.072(0.14) 0.010(0.28) 0.016(0.28) 0.025(0.24) 0.012(0.21) 0.029(0.17)
Whittle -0.015(0.21) -0.041(0.20) -0.063(0.19) -0.095(0.18) -0.124(0.15) 0.005(0.29) 0.002(0.28) -0.004(0.24) -0.052(0.23) -0.152(0.21)

Boundary -0.015(0.22) -0.037(0.21) -0.054(0.19) -0.079(0.18) -0.103(0.14) 0.007(0.30) 0.009(0.29) 0.009(0.24) -0.022(0.24) -0.111(0.20)
Hybrid -0.012(0.22) -0.030(0.21) -0.049(0.19) -0.072(0.18) -0.095(0.14) 0.011(0.30) 0.021(0.29) 0.026(0.25) -0.007(0.22) -0.074(0.17)
Tapered -0.014(0.22) -0.036(0.21) -0.063(0.19) -0.090(0.18) -0.117(0.14) 0.004(0.29) 0.004(0.28) -0.006(0.24) -0.043(0.21) -0.122(0.18)

Debiased -0.013(0.22) -0.033(0.21) -0.049(0.19) -0.069(0.19) -0.085(0.16) 0.005(0.29) 0.013(0.28) 0.021(0.25) -0.005(0.24) -0.088(0.21)
AR(1), tetu „ N p0, 1q, n “ 50 MA(1), tetu „ N p0, 1q, n “ 50

Gaussian -0.006(0.14) -0.011(0.14) -0.013(0.12) -0.033(0.11) -0.030(0.07) -0.002(0.16) 0.008(0.15) 0.017(0.14) 0.018(0.12) 0.014(0.08)
Whittle -0.008(0.14) -0.016(0.14) -0.023(0.12) -0.045(0.11) -0.049(0.08) -0.004(0.15) 0.001(0.15) 0.001(0.14) -0.020(0.13) -0.067(0.11)

Boundary -0.007(0.14) -0.012(0.14) -0.015(0.12) -0.034(0.11) -0.036(0.07) -0.003(0.16) 0.006(0.16) 0.013(0.14) 0.005(0.13) -0.026(0.09)
Hybrid -0.005(0.14) -0.011(0.14) -0.015(0.13) -0.033(0.11) -0.035(0.07) -0.001(0.16) 0.010(0.16) 0.015(0.14) 0.014(0.12) -0.010(0.07)
Tapered -0.005(0.14) -0.013(0.14) -0.018(0.13) -0.038(0.11) -0.039(0.08) 0(0.16) 0.008(0.16) 0.010(0.14) 0.003(0.12) -0.023(0.08)

Debiased -0.006(0.14) -0.011(0.14) -0.015(0.12) -0.035(0.11) -0.032(0.08) -0.002(0.16) 0.009(0.16) 0.019(0.15) 0.017(0.15) -0.011(0.11)
AR(1), tetu „ N p0, 1q, n “ 300 MA(1), tetu „ N p0, 1q, n “ 300

Gaussian 0(0.06) -0.002(0.06) -0.001(0.05) -0.004(0.04) -0.005(0.03) 0.002(0.06) 0(0.06) 0.003(0.05) 0(0.04) 0.004(0.03)
Whittle 0(0.06) -0.003(0.06) -0.003(0.05) -0.007(0.04) -0.008(0.03) 0.001(0.06) -0.001(0.06) 0(0.05) -0.007(0.04) -0.020(0.04)

Boundary 0(0.06) -0.002(0.06) -0.001(0.05) -0.004(0.04) -0.006(0.03) 0.002(0.06) 0(0.06) 0.003(0.05) 0(0.04) -0.002(0.03)
Hybrid 0(0.06) -0.002(0.06) -0.001(0.05) -0.005(0.04) -0.006(0.03) 0.002(0.06) 0(0.06) 0.004(0.05) 0.001(0.05) 0.003(0.03)
Tapered 0(0.06) -0.002(0.06) -0.001(0.05) -0.005(0.05) -0.006(0.03) 0.002(0.06) 0(0.06) 0.004(0.05) 0.001(0.05) 0.003(0.03)

Debiased 0(0.06) -0.002(0.06) -0.001(0.05) -0.004(0.04) -0.006(0.03) 0.002(0.06) 0(0.06) 0.003(0.05) 0(0.05) 0.009(0.05)

Table 4.1: Bias and the standard deviation (in the parentheses) of six different quasi-likelihoods for an AR(1) (left) and MA(1) (right)
model for the standard normal innovations. Length of the time series n “ 20, 50, and 300. We use red text to denote the smallest RMSE
and blue text to denote the second smallest RMSE.

108



For both ARp1q and MAp1q models, we observe a stark difference between the bias of the

Whittle likelihood estimator (blue line) and the other five other methods, which in most cases have

a lower bias. The Gaussian likelihood performs uniformly well for both models and all sample

sizes. Whereas, the tapered Whittle estimator performs very well for the MAp1q model but not

quite as well for the ARp1q model. The debiased Whittle likelihood performs quite well for both

models, especially when the parameter values are small (e.g. θ “ 0.1, 0.3, and 0.5).

The simulations suggest that the boundary corrected and hybrid Whittle likelihoods (referred

from now on as the new likelihoods) are competitive with the benchmark Gaussian likelihood for

both ARp1q and MAp1qmodels. For the ARp1qmodel the new likelihoods tend to have the smallest

or second smallest RMSE (over all sample sizes and more so when φ is large). A caveat is that

for the ARp1q model the bias of the new likelihoods tends to be a little larger than the bias of

the Gaussian likelihood (especially for the smaller sample sizes). This is interesting, because in

Appendix B.2 we show that if the ARp1q model is correctly specified, the first order bias of the

boundary corrected Whittle likelihood and the Gaussian likelihood are the same (both are ´2θ{n).

The bias of the hybrid Whittle likelihood is slightly large, due to the data taper. However, there are

differences in the second order expansions. Specifically, for the Gaussian likelihood, it isOpn´3{2q,

whereas, for the new likelihoods it is Opp3n´3{2q. Indeed, the Opp3n´3{2q term arises because of

the parameter estimation in the predictive DFT. This term is likely to dominate the Opn´3{2q in

the Gaussian likelihood. Therefore, for small sample sizes, the second order terms can impact the

bias. It is this second order term that may be causing the larger bias seen in the boundary corrected

Whittle likelihood as compared with the Gaussian likelihood.

On the other hand, the bias for the MAp1q model tends to be smaller for the new likelihoods,

including the benchmark Gaussian likelihood. Surprisingly, there appears to be examples where

the new likelihood does better (in terms of RMSE) than the Gaussian likelihood. This happens

when n P t50, 300u for θ “ 0.9.

In summary, the new likelihoods perform well compared with the standard methods, including

the benchmark Gaussian likelihood. As expected, for large sample sizes the performance of all the
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estimators improves considerably.

4.6.2 Estimation under misspecification

Next, we turn into our attention to the case that the model is misspecified (which is more real-

istic for real data). As we mentioned above, the estimation of the AR parameters in the predictive

DFT of the new likelihoods leads to an additional error of order Opp3n´3{2q. The more complex

the model, the larger p will be, leading to a larger Opp3n´3{2q. To understand the effect this may

have for small sample sizes, in this section we fit a simple model to a relatively complex process.

For the “true” data generating process we use an ARMAp3, 2q Gaussian time series with spec-

tral density fZpωq “ |ψZpe´iωq|2{|φZpe´iωq|2, where AR and MA characteristic polynomials are

φZpzq “ p1´ 0.7zqp1´ 0.9eizqp1´ 0.9e´izq and ψZpzq “ p1` 0.5z ` 0.5z2
q.

This spectral density has some interesting characteristics: a pronounced peak, a large amount of

power at the low frequencies, and a sudden drop in power at the higher frequencies. We con-

sider sample sizes n “ 20, 50 and 300, and fit a model with fewer parameters. Specifically, we

fit two different ARMA models with the same number of unknown parameters. The first is the

ARMA(1,1) model with spectral density

fθpωq “ |1` ψe
´iω
|
2
|1´ φe´iω|´2 θ “ pφ, ψq.

The second is the AR(2) model with spectral density

fθpωq “ |1´ φ1e
´iω
´ φ2e

´2iω
|
´2 θ “ pφ1, φ2q.

Figure 4.3 shows the logarithm of the theoretical ARMA(3,2) spectral density (solid line, fZ) and

the corresponding log spectral densities of the best fitting ARMA(1,1) (dashed line) and AR(2)

(dotted line) processes for n “ 20. The best fitting models are obtained by minimizing the spectral

divergence θBest “ arg minθPΘ Inpf ; fθq, where Inpf, fθq is defined in (4.1) and Θ is the parameter

110



space. The best fitting models for n “ 50 and 300 are similar. We observe that neither of the mis-

specified models capture all of the features of the true spectral density. The best fitting ARMA(1,1)

model has a large amount of power at the low frequencies and the power declines for the higher

frequencies. The best fitting AR(2) model peaks around frequency 0.8, but the power at the low

frequencies is small. Overall, the spectral divergence between the true and the best fitting AR(2)

model is smaller than the spectral divergence between the true and the best ARMA(1,1) model.
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Figure 4.3: Plot of log fZpωq and log fθBestpωq; Theoretical ARMA(3,2) spectral density (solid),
best fitting ARMA(1,1) spectral density (dashed), and best fitting AR(2) spectral density (dotted)
for n “ 20.

For each simulation, we calculate the six different parameter estimators and the spectral diver-

gence. The result of the estimators using the six different quasi-likelihoods is given in Table 4.2

(for ARMA(1,1)) and Table 4.3 (for AR(2)).

We first discuss the parameter estimates. Comparing the asymptotic bias of the Gaussian likeli-

hood with the boundary corrected Whittle likelihood (see Appendix B.3), the Gaussian likelihood

has an additional bias term of form
řd
r“1 I

pj,rqErBLn
Bθr
suθn . But there is no guarantee that the inclu-

sion of this term increases or decreases the bias. This is borne out in the simulations, where we
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n Parameter Gaussian Whittle Boundary Hybrid Tapered Debiased

20
φ 0.031p0.1q -0.095p0.16q -0.023p0.12q -0.006p0.1q -0.080p0.13q 0.187p0.11q
ψ 0.069p0.08q -0.172p0.18q -0.026p0.14q 0.028p0.1q -0.068p0.12q 0.093p0.06q

Inpf ; fθq 1.653p0.81q 1.199p1.57q 0.945p0.84q 1.024p0.89q 0.644p0.61q 2.727p0.73q

50
φ 0.012p0.07q -0.054p0.09q -0.006p0.07q 0.004p0.07q -0.005p0.07q 0.154p0.11q
ψ 0.029p0.06q -0.116p0.12q -0.008p0.08q 0.009p0.07q 0.011p0.06q 0.093p0q

Inpf ; fθq 0.354p0.34q 0.457p0.46q 0.292p0.3q 0.235p0.28q 0.225p0.26q 1.202p0.34q

300
φ 0.002p0.03q -0.014p0.03q 0p0.03q 0.001p0.03q 0p0.03q 0.093p0.08q
ψ 0.005p0.03q -0.033p0.05q 0.001p0.03q 0.003p0.03q 0.003p0.03q 0.092p0.01q

Inpf ; fθq 0.027p0.05q 0.064p0.09q 0.029p0.05q 0.026p0.04q 0.027p0.05q 0.752p0.22q
Best fitting ARMAp1, 1q coefficients θ “ pφ, ψq and spectral divergence:
´ θ20 “ p0.693, 0.845q, θ50 “ p0.694, 0.857q, θ300 “ p0.696, 0.857q.
´ I20pf ; fθq “ 3.773, I50pf ; fθq “ 3.415, I300pf ; fθq “ 3.388.

Table 4.2: The bias of estimated coefficients for six different estimation methods for the Gaussian
ARMAp3, 2q misspecified case fitting ARMAp1, 1q model. Standard deviations are in the paren-
theses. We use red text to denote the smallest RMSE and blue text to denote the second smallest
RMSE.

observe that overall the Gaussian likelihood or the new likelihoods tend to have a smaller param-

eter bias (there is no clear winner). The tapered likelihood is a close contender, performing very

well for the moderate sample sizes n “ 50. Similarly, in terms of the RMSE, again there is no

clear winner between the Gaussian and the new likelihoods.

We next turn our attention to the estimated spectral divergence Inpf, fpθq. For the fitted ARMAp1, 1q

model, the estimated spectral divergence of the new likelihood estimators tends to be the smallest

or second smallest in terms of the RMSE (its nearest competitor is the tapered likelihood). On the

other hand, for the ARp2q model the spectral divergence of Gaussian likelihood has the smallest

RMSE for all the sample sizes. The new likelihood comes in second for sample sizes n “ 20 and

300.

In the simulations above we select p using the AIC. As mention at the start of the section, this

leads to an additional error of Opp3n´3{2q in the new likelihoods. Thus, if a large p is selected

the error Opp3n´3{2q will be large. In order to understand the impact p has on the estimator, in

Appendix 4.6.3 we compare the the likelihoods constructed using the predictive DFT based on the

AIC with the likelihoods constructed using the predictive DFT based on the best fitting estimated

ARp1q model. We simulate from the ARMAp3, 2q model described above and fit an ARMAp1, 1q
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n Parameter Gaussian Whittle Boundary Hybrid Tapered Debiased

20
φ1 0.028p0.14q -0.162p0.22q -0.032p0.16q 0.003p0.14q -0.123p0.16q 0.069p0.15q
φ2 -0.004p0.09q 0.169p0.18q 0.052p0.14q 0.025p0.12q 0.132p0.12q -0.034p0.11q

Inpf ; fθq 0.679p0.72q 1.203p1.46q 0.751p0.85q 0.684p0.8q 0.862p0.97q 0.686p0.81q

50
φ1 0.019p0.09q -0.077p0.12q -0.009p0.09q 0.003p0.09q -0.017p0.09q 0.156p0.15q
φ2 -0.024p0.06q 0.066p0.1q 0.006p0.07q -0.003p0.06q 0.013p0.06q -0.121p0.06q

Inpf ; fθq 0.275p0.33q 0.382p0.45q 0.283p0.37q 0.283p0.37q 0.283p0.36q 0.65p0.7q

300
φ1 0.004p0.04q -0.013p0.04q 0p0.04q 0.001p0.04q 0.001p0.04q 0.014p0.04q
φ2 -0.005p0.02q 0.011p0.03q -0.001p0.02q -0.001p0.03q -0.001p0.03q 0.016p0.04q

Inpf ; fθq 0.049p0.07q 0.053p0.07q 0.049p0.07q 0.053p0.07q 0.054p0.08q 0.058p0.08q
Best fitting ARp2q coefficients θ “ pφ1, φ2q and spectral divergence:
´ θ20 “ p1.367,´0.841q, θ50 “ p1.364,´0.803q, θ300 “ p1.365,´0.802q.
´ I20pf ; fθq “ 2.902, I50pf ; fθq “ 2.937, I300pf ; fθq “ 2.916.

Table 4.3: The bias of estimated coefficients for six different estimation methods for the Gaussian
ARMAp3, 2q misspecified case fitting ARp2q model. Standard deviations are in the parentheses.
We use red text to denote the smallest RMSE and blue text to denote the second smallest RMSE.

and ARp2q model. As is expected, the bias tends to be a little larger when the order is fixed to

p “ 1. But even when fixing p “ 1, we do observe an improvement over the Whittle likelihood (in

some cases an improvement over the Gaussian likelihood).

4.6.3 Comparing the new likelihoods constructed with the predictive DFT with ARp1q co-

efficients and AIC order selected ARppq coefficients

In this section we compare the performance of new likelihoods where the order of the AR

model used in the predictive DFT is determined using the AIC with a fixed choice of order with

the AR model (set to p “ 1). We use ARMAp3, 2qmodel considered in Section 4.6.2 and fit the the

ARMAp1, 1q and ARp2q to the data. We compare the new likelihoods with the Gaussian likelihood

and the Whittle likelihood. The results are given in Tables 4.4 and 4.5.

4.6.4 Alternative methods for estimating the predictive DFT

As pointed out by the referees, using the Yule-Walker estimator to estimate the prediction

coefficients in the predictive DFT may in certain situations be problematic. We discuss the issues

and potential solutions below.

The first issue is that Yule-Walker estimator suffers a finite sample bias, especially when the

spectral density has a root close to the unit circle (see, e.g., Tjøstheim and Paulsen (1983)). One
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φ ψ Inpf ; fθq

Best 0.694 0.857 3.415

Bias

Gaussian 0.012(0.07) 0.029(0.06) 0.354(0.34)

Whittle -0.054(0.09) -0.116(0.12) 0.457(0.46)

Boundary(AIC) -0.006(0.07) -0.008(0.08) 0.292(0.3)

Boundary(p=1) -0.020(0.08) -0.045(0.09) 0.299(0.29)

Hybrid(AIC) 0.004(0.07) 0.009(0.07) 0.235(0.28)

Hybrid(p=1) 0.003(0.07) 0.010(0.07) 0.261(0.3)

Table 4.4: Best fitting (top row) and the bias of estimated coefficients for six different methods for
the Gaussian ARMAp3, 2q misspecified case fitting ARMAp1, 1q model. Length of the time series
n=50. Standard deviations are in the parentheses. (AIC): an order p is chosen using AIC; (p=1):
an order p is set to 1.

φ1 φ2 Inpf ; fθq

Best 1.364 -0.803 2.937

Bias

Gaussian 0.019(0.09) -0.024(0.06) 0.275(0.33)

Whittle -0.077(0.12) 0.066(0.1) 0.382(0.45)

Boundary(AIC) -0.009(0.09) 0.006(0.07) 0.283(0.37)

Boundary(p=1) -0.030(0.1) 0.032(0.07) 0.295(0.35)

Hybrid(AIC) 0.003(0.09) -0.006(0.07) 0.283(0.37)

Hybrid(p=1) -0.003(0.09) 0.003(0.06) 0.276(0.35)

Table 4.5: Best fitting (top row) and the bias of estimated coefficients for six different methods for
the Gaussian ARMAp3, 2q misspecified case fitting ARp2q model. Length of the time series n=50.
Standard deviations are in the parentheses. (AIC): an order p is chosen using AIC; (p=1): an order
p is set to 1.

remedy to reduce the bias is via data tapering (Dahlhaus (1988) and Zhang (1992)). Therefore,

we define the boundary corrected Whittle likelihood using tapered Yule-Walker (BC-tYW) replace

pfp with rfp in (4.2) where rfp is a spectral density of ARppq process where the AR coefficients are

estimated using Yule-Walker with tapered time series. In the simulations we use the Tukey taper

with d “ n{10 and select the order p using the AIC.

The second issue is if the underlying time series is complicated in the sense that the underlying

AR representation has multiple roots. Then fitting a large order ARppq model may result in a loss

of efficiency. As an alternative, we consider a fully nonparametric estimator of pJnpω; fq based

on the estimated spectral density function. To do so, we recall from Section 2.4.1 the first order
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approximation of pJnpω; fq is pJ8,npω; fq where

pJ8,npω; fq “
n´1{2

φpω; fq

n
ÿ

t“1

Xtφ
8
t pω; fq ` eipn`1qω n´1{2

φpω; fq

n
ÿ

t“1

Xn`1´tφ8t pω; fq

“
ψpω; fq
?
n

n
ÿ

t“1

Xt

8
ÿ

s“0

φs`tpfqe
´isω

` eipn`1qωψpω; fq
?
n

n
ÿ

t“1

Xn`1´t

8
ÿ

s“0

φs`tpfqe
isω,

where ψpω; fq “
ř8

j“0 ψjpfqe
´ijω be an MA transfer function. Our goal is to estimate ψpω; fq

and tφjpfqu based on the observed time series. We use the method proposed in Section 2.2. of

Krampe et al. (2018). We first start from the well known Szegö’s identity

log fp¨q “ log σ2
|ψp¨; fq|2 “ log σ2

` logψp¨; fq ` logψp¨; fq.

Next, let αkpfq be the k-th Fourier coefficient of log f , i.e., αkpfq “ p2πq´1
şπ

´π
log fpλqe´ikλdλ.

Then, since log f is real, α´kpfq “ αkpfq. Plug in the expansion of log f to the above identity

gives

logψpω; fq “
8
ÿ

j“1

αjpfqe
´ijω.

Using above identity, we estimator ψp¨; fq. let pf be a spectral density estimator and let pαk be the

estimated k-th Fourier coefficient of log pf . Then define

pψpω; pfq “ exp

˜

M
ÿ

j“1

pαje
´ijω

¸

for some large enough M . To estimate the ARp8q coefficients we use the recursive formula in

equation (2.7) in Krampe et al. (2018),

pφk`1 “ ´

k
ÿ

j“0

ˆ

1´
j

k ` 1

˙

pαk`1´j
pφj k “ 0, 1, ...,M ´ 1
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where pφ0 “ ´1. Based on this a nonparametric estimator of pJnpω; fq is

pJnpω; pfq “
pψpω; pfq
?
n

n^M
ÿ

t“1

Xt

M´t
ÿ

s“0

pφs`te
´isω

` eipn`1qω
pψpω; pfq
?
n

n^M
ÿ

t“1

Xn`1´t

M´t
ÿ

s“0

pφs`te
isω

where n ^M “ minpn,Mq. In the simulations we estimate pf using iospecden function in R

(smoothing with infinite order Flat-top kernel) and set M=30.

By replacing pJnpω; fq with its nonparametric estimator pJnpω; pfq in (4.2) leads us to define a

new feasible criterion which we call the boundary corrected Whittle likelihood using nonparamet-

ric estimation (BC-NP).

To access the performance of all the different likelihoods (with different estimates of the pre-

dictive DFT), we generate the ARp8q model

Ut “ φUpBqεt

where tεtu are i.i.d. normal random variables,

φUpzq “
4
ź

j“1

p1´ rje
iλjzqp1´ rje

´iλjzq “ 1´
8
ÿ

j“1

φjz
j (4.30)

r “ pr1, r2, r3, r4q “ p0.95, 0.95, 0.95, 0.95q and λ “ pλ1, λ2, λ3, λ4q “ p0.5, 1, 2, 2.5q. We ob-

serve that corresponding spectral density fUpωq “ |φUpe
´iωq|´2 has pronounced peaks at ω “

0.5, 1, 1.5 and 2. For all the simulations below we use n “ 100.

For each simulation, we fit ARp8q model, evaluate six likelihoods from the previous sections

plus two likelihoods (BC-tYW and BC-NP), and calculate the parameter estimators. Table 4.6

summarizes the bias and standard derivation of the estimators and the last row is an average `2-

distance between the true and estimator scaled with n. The Gaussian likelihood has the smallest

bias and the smallest RMSE. As mentioned in Section 4.6.1, our methods still need to estimate

AR coefficients which has an additional error of order Opp3n´3{2q and it could potentially increase

the bias compared to the Gaussian likelihood. The boundary corrected Whittle and hybrid Whittle
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have smaller bias than the Whittle, tapered, and debiased Whittle. Especially, the hybrid Whittle

usually has the second smallest RMSE.

Par. Bias
Gaussian Whittle Boundary Hybrid Tapered Debiased BC-tYW BC-NP

φ1p0.381q -0.008p0.08q -0.025p0.09q -0.009p0.08q -0.006p0.09q -0.012p0.09q -0.008p0.09q -0.008p0.08q -0.005p0.12q
φ2p-0.294q 0.002p0.09q 0.024p0.1q 0.005p0.09q 0.002p0.09q 0.010p0.09q 0.003p0.1q 0.003p0.09q 0.002p0.13q
φ3p0.315q -0.009p0.08q -0.038p0.09q -0.011p0.09q -0.009p0.09q -0.023p0.09q -0.010p0.09q -0.009p0.09q -0.010p0.12q
φ4p-0.963q 0.031p0.09q 0.108p0.1q 0.042p0.09q 0.034p0.09q 0.075p0.09q 0.043p0.1q 0.037p0.09q 0.076p0.12q
φ5p0.285q -0.015p0.08q -0.049p0.09q -0.020p0.09q -0.016p0.08q -0.029p0.08q -0.017p0.1q -0.018p0.09q -0.022p0.12q
φ6p-0.240q 0.010p0.08q 0.040p0.09q 0.014p0.09q 0.010p0.09q 0.024p0.08q 0.012p0.1q 0.011p0.09q 0.022p0.11q
φ7p0.280q -0.017p0.08q -0.053p0.09q -0.021p0.09q -0.020p0.09q -0.039p0.08q -0.022p0.09q -0.020p0.09q -0.027p0.1q
φ8p-0.663q 0.049p0.08q 0.116p0.08q 0.059p0.08q 0.055p0.08q 0.096p0.08q 0.061p0.09q 0.056p0.08q 0.101p0.1q

n}φ´ pφ}2 6.466 18.607 8.029 7.085 13.611 8.164 7.470 13.280

Table 4.6: Bias and the standard deviation (in the parenthesis) of eight different quasi-likelihoods
for the Gaussian ARp8q model. Length of time series n=100. True AR coefficients are in the
parenthesis of the first column.

Bear in mind that neither of the two new criteria uses a hybrid method (tapering on the actual

DFT), the BC-tYW significantly reduces the bias than the boundary corrected Whittle and it is

comparable with the hybrid Whittle. This gives some credence to the referee’s claim that the

bias due to the Yule-Walker estimation can be alleviated using tapered Yule-Walker estimation.

Whereas, BC-NP reduces the bias for the first few coefficients but overall, has a larger bias than

the boundary corrected Whittle. Also, the standard deviation of BC-NP is quite large than other

methods. We suspect that the nonparametric estimator pJpω; pfq is sensitive to the choice of the

tuning parameters (e.g. bandwidth, kernel function, etc). Moreover, since the true model follows

a finite autoregressive process, other methods (boundary corrected Whittle, BC-tYW, and hybrid

Whittle) have an advantage over the nonparametric method. Therefore, by choosing appropriate

tuning parameters under certain underlying process (e.g., seasonal ARMA model) can improve the

estimators, and this will be investigated in future research.

4.7 Proofs

In this section, we give a proof of Sections 2.4 and 4.
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4.7.1 Proof of Section 2.4

PROOF of Theorem 2.4.2 We use the same notation in the proof of Theorem 2.2.2 in Section 3.6.1.

To prove (2.33) we use that

p pJnpω1,n; fθq, . . . , pJnpωn,n; fθqq
1
“ DnpfθqXn.

Now by using (2.8) together with the above we immediately obtain (2.33).

Finally, we prove (2.34). We use the result n´1
řn
k“1 φppωk,nq exppisωk,nq “ rφs mod n where

φppωq “
řn´1
r“0

rφre
´irω and rφr “ 0 for p` 1 ď r ď n. For 1 ď t ď p we use have

pF ˚n∆npf
´1
θ qDnpfθqqs,t “

1

n

n
ÿ

k“1

φt,ppωk,nq

fθpωk,nq
expp´isωk,nq

“
σ´2

n

n
ÿ

k“1

φppωk,nq
p´t
ÿ

`“0

φ``t expp´i`ωk,nq expp´isωk,nq

“ σ´2
p´t
ÿ

`“0

φ``t
1

n

n
ÿ

k“1

φppωk,nq expp´ip`` sqωk,nq

“ σ´2
p´t
ÿ

`“0

φ``trφp``sq mod n.

Similarly, for 1 ď t ď p,

pF ˚n∆npf
´1
θ qDnpfθqqs,n´t`1 “

1

n

n
ÿ

k“1

φt,ppωk,nq

fθpωk,nq
exppip1´ sqωk,nq

“
σ´2

n

n
ÿ

k“1

φppωk,nq
p´t
ÿ

`“0

φ``t exppi`ωk,nq exppip1´ sqωk,nq

“ σ´2
p´t
ÿ

`“0

φ``t
1

n

n
ÿ

k“1

φppωk,nq exppip`` 1´ sqωk,nq

“ σ´2
p´t
ÿ

`“0

φ``trφp``1´sq mod n.

l
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PROOF of (2.35) We use that 1
φppωq

fθpωq
´1 “ σ´2φppωq. This gives

Lnpφq ´Knpφq “ I ` II

where

I “
1

n3{2

n
ÿ

k“1

Jnpωk,nq

fθpωk,nq

#

1

φppωk,nq

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``se
´isωk,n

+

“
σ´2

n3{2

n
ÿ

k“1

Jnpωk,nqφppωk,nq
n
ÿ

`“1

p´
ÿ̀

s“0

φs`ke
´isωk,nφ``se

´isωk,n

“
σ´2

n

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φs`k
1

n1{2

n
ÿ

k“1

Jnpωk,nqφppωk,nqe
´isωk,n

and

II “
σ´2

n3{2

n
ÿ

k“1

Jnpωk,nq

fθpωk,nq

1

φppωk,nq

p
ÿ

`“1

Xn`1´`

p´
ÿ̀

s“0

φ``se
ips`1qωk,n . (4.31)

We first consider I . Using that φppωk,nq “ 1 ´
řp
j“1 φje

ijωk,n and n´1{2
řn
k“1 Jnpωk,nqe

isωk,n “

Xs mod n, gives

I “ ´
σ´2

n

p
ÿ

`“1

X`

p´
ÿ̀

s“0

p
ÿ

j“0

φjφs``
1

n1{2

n
ÿ

k“1

Jnpωk,nqe
´ips´rqωk,n pset φ0 “ ´1q

“ ´
σ´2

n

p
ÿ

`“1

X`

p´
ÿ̀

s“0

p
ÿ

j“0

φjφs``X´ps´jq mod n.

The proof of II is similar. Altogether this proves the result. l

PROOF of (2.37) Since

pD8,npfθqqk,t “ n´1{2
ÿ

τď0

`

φtpτqe
iτωk,n ` φn`1´tpτqe

´ipτ´1qωk,n
˘

(4.32)

we replace φtpτq in the above with the coefficients of the MA and AR infinity expansions; φtpτq “
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ř8

s“0 φt`sψ|τ |´s. Substituting this into the first term in (4.32) gives

n´1{2
ÿ

τď0

φtpτqe
iτωk,n “ n´1{2

ÿ

τď0

8
ÿ

s“0

φt`sψ´τ´se
iτωk,n

“ n´1{2
8
ÿ

s“0

φt`se
´isωk,n

ÿ

τď0

ψ´τ´se
´ip´τ´sqωk,n

“ n´1{2ψpωk,nq
8
ÿ

s“0

φt`se
´isωk,n

“ n´1{2φpωk,nq
´1φ8t pωk,nq,

which gives the first term in (2.37). The second term follows similarly. Thus giving the identity in

equation (2.37). l

PROOF of Theorem 2.4.3. We note that the entries of F ˚n∆npf
´1
θ qD8,npfq are

pF ˚n∆npf
´1
θ qD8,npfqqs,t

“
ÿ

τď0

rφtpτ ; fqG1,nps, τ ; fθq ` φn`1´tpτ ; fqG2,nps, τ ; fθqs , (4.33)

where G1,n and G2,n are defined as in (2.32). Thus

`

F ˚n∆npf
´1
θ q rDnpfq ´D8,npfqs

˘

s,t

“
ÿ

τď0

rtφt,npτ ; fq ´ φtpτ ; fquG1,nps, τ ; fθq

` tφn`1´t,npτ ; fq ´ φn`1´tpτ ; fquG2,nps, τ ; fθqs. (4.34)

To prove Theorem 2.4.3 we bound the above terms.

To simplify notation we only emphasis the coefficients associated with fθ and not the coeffi-

cients associated with f . I.e. we set φs,npτ ; fq “ φs,npτq, φspτ ; fq “ φspτq, φf “ φ and ψf “ ψ.

The proof of (2.39) simply follows from the definitions of Dnpfq and D8,npfq.
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Next we prove (2.40). By using (4.34) we have

›

›F ˚n∆npf
´1
θ qDnpfq ´ F

˚
n∆npf

´1
θ qD8,npfq

›

›

1
ď T1,n ` T2,n,

where

T1,n “

n
ÿ

s,t“1

0
ÿ

τ“´8

|φs,npτq ´ φspτq||G1,npt, τ ; fθq|

T2,n “

n
ÿ

s,t“1

0
ÿ

τ“´8

|φn`1´s,npτq ´ φn`1´spτq||G2,npt, τ ; fθq|.

We focus on T1,n, noting that the method for bounding T2,n is similar. Exchanging the summands

we have

T1,n ď

0
ÿ

τ“´8

n
ÿ

t“1

|G1,npt, τ ; fθq|
n
ÿ

s“1

|φs,npτq ´ φspτq|.

To bound
řn
s“1 |φs,npτq ´ φspτq| we require the generalized Baxter’s inequality stated in Lemma

A.1.1. Substituting the bound in Lemma A.1.1 into the above (and for a sufficiently large n) we

have

T1,n ď Cf,0

0
ÿ

τ“´8

n
ÿ

t“1

|G1,npt, τ ; fθq|
8
ÿ

s“n`1

|φspτq|.

Using that G1,npt, τq “
ř

aPZKf´1
θ
pτ ´ t` anq we have the bound

T1,n ď Cf,0

0
ÿ

τ“´8

n
ÿ

t“1

ÿ

aPZ

|Kf´1
θ
pt´ τ ` anq|

8
ÿ

s“n`1

|φspτq|

“ Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

0
ÿ

τ“´8

8
ÿ

s“n`1

|φspτq|.
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Therefore,

T1,n ď Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

0
ÿ

τ“´8

8
ÿ

s“n`1

|φspτq|

ď Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

0
ÿ

τ“´8

8
ÿ

s“n`1

8
ÿ

j“0

|φs`j||ψ´τ´j| (use φspτq “
8
ÿ

j“0

φs`jψ|τ |´jq

“ Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

8
ÿ

τ“0

|ψτ´j|
8
ÿ

s“n`1

8
ÿ

j“0

|φs`j| pchange limits of
ÿ

τ

q

ď Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

ÿ

`

|ψ`|
8
ÿ

u“n`1

|uφu| pchange of variables u “ s` jq.

Next we use Assumption 2.3.1(i) to give

T1,n ď Cf,0
ÿ

rPZ

|Kf´1
θ
prq|

ÿ

`

|ψ`|
8
ÿ

s“n`1

sK

sK´1
|φs|

ď
Cf,0
nK´1

ÿ

rPZ

|Kf´1
θ
prq|

ÿ

`

|ψ`|
8
ÿ

s“n`1

|sKφs|

ď
Cf,0
nK´1

ρn,Kpfq}ψ}0}φ}K
ÿ

rPZ

|Kf´1
θ
prq|.

We note that the inverse covariance Kf´1
θ
prq “

ş2π

0
f´1
θ pωqe

irωdω “ σ´2
fθ

ş2π

0
|φfθpωq|

2eirωdω “

σ´2
fθ

ř

j φjpfθqφj`rpfθq. Therefore

8
ÿ

r“´8

|Kfθprq| ď σ´2
fθ
}φfθ}

2
0. (4.35)

Substituting this into the above yields the bound

T1,n ď
Cf,0

σ2
fθ
nK´1

ρn,Kpfq}ψ}0}φfθ}
2
0}φ}K .

The same bound holds for T2,n. Together the bounds for T1,n and T2,n give

›

›F ˚n∆npf
´1
θ qDnpfθq ´ F

˚
n∆npf

´1
θ qD8,npfθq

›

›

1
ď

2Cf,0
σ2
fθ
nK´1

ρn,Kpfq}ψ}0}φfθ}
2
0}φ}K .
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Replacing }ψf}0 “ }ψ}0 and }φf}K “ }φ}K , this proves (2.40).

To prove (2.41) we recall

}XtXs}E,q “ pE|XtXs|
q
q
1{q
ď
`

E|Xt|
2q
˘1{2q `E|Xs|

2q
˘1{2q

ď }X}2E,2q.

Therefore,

n´1
›

›X 1
nF

˚
n∆npf

´1
θ q pDnpfq ´D8,npfqqXn

›

›

E,q

ď n´1
n
ÿ

s,t“1

ˇ

ˇ

ˇ

`

F ˚n∆npf
´1
θ q pDnpfq ´D8,npfqq

˘

s,t

ˇ

ˇ

ˇ
}XtXs}E,q

ď n´1
›

›F ˚n∆npf
´1
θ q pDnpfq ´D8,npfqq

›

›

1
}X}2E,2q

ď
2Cf,0
σ2
fθ
nK

ρn,Kpfq}ψf}0}φfθ}
2
0}φf}K}X}

2
E,2q,

where the last line follows from the inequality in (2.40). This proves (2.41). l

PROOF of Theorem 2.4.4 For notational simplicity, we omit the parameter dependence on fθ. We

first prove (2.43). We observe that

›

›F ˚n∆npf
´1
θ qD8,npfθq

›

›

1
ď

n
ÿ

s,t“1

0
ÿ

τ“´8

p|φspτq||G1,npt, τq| ` |φn`1´spτq||G2,npt, τq|q

“ S1,n ` S2,n.

As in the proof of Theorem 2.4.3, we bound each term separately. Using a similar set of bounds to

those used in the proof of Theorem 2.4.3 we have

S1,n ď
ÿ

rPZ

|Kf´1
θ
prq|

ÿ

`

|ψ`|
n
ÿ

s“1

8
ÿ

j“0

|φs`j|

ď
ÿ

rPZ

|Kf´1
θ
prq|

ÿ

`

|ψ`|
8
ÿ

s“1

|sφs| ď
1

σ2
fθ

}ψfθ}0}φfθ}
2
0}φfθ}1,

where the bound
ř

rPZ |Kf´1
θ
prq| ď σ´2

fθ
}φfθ}

2
0 follows from (4.35). Using a similar method we
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obtain the bound S2,n ď σ´2
fθ
}ψfθ}0}φfθ}

2
0}φfθ}1. Altogether the bounds for S1,n and S2,n give

›

›F ˚n∆npf
´1
θ qD8,npfθq

›

›

1
ď

2

σ2
fθ

}ψfθ}0}φfθ}
2
0}φfθ}1,

this proves (2.43).

The proof of (2.44) uses the triangle inequality

›

›Γnpfθq
´1
´ Cnpf

´1
θ q

›

›

1
“

›

›F ˚n∆npf
´1
θ qDnpfθq

›

›

1

ď
›

›F ˚n∆npf
´1
θ q pDnpfθq ´D8,npfθqq

›

›

1

`
›

›F ˚n∆npf
´1
θ qD8,npfθq

›

›

1
.

Substituting the bound Theorem 2.4.3 (equation (2.40)) and (2.43) into the above gives (2.44).

The proof of (2.45) uses the bound in (2.44) together with similar arguments to those in the

proof of Theorem 2.4.3, we omit the details. l

4.7.2 Proof of Section 4

PROOF of Lemma 4.1.1 The proof is similar to the proof of Theorem 2.4.3, but with some subtle

differences. Rather than bounding the best finite predictors with the best infinite predictors, we

bound the best infinite predictors with the plug-in estimators based on the best fitting ARppq pa-

rameters. For example, the bounds use the regular Baxter’s inequality rather than the generalized

Baxter’s inequality.

We first prove (4.4). By using the triangular inequality we have

›

›F ˚n∆npf
´1
θ q pDnpfq ´Dnpfpqq

›

›

1

ď
›

›F ˚n∆npf
´1
θ q pDnpfq ´D8,npfqq

›

›

1
`
›

›F ˚n∆npf
´1
θ q pD8,npfq ´Dnpfpqq

›

›

1

ď
Cf,0ρn,Kpfq

nK´1
AKpf, fθq `

›

›F ˚n∆npf
´1
θ q pD8,npfq ´Dnpfpqq

›

›

1
, (4.36)

where the first term of the right hand side of the above follows from (2.40). Now we bound the
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second term on the right hand side of the above. We observe that since the AR(p) process only

uses the first and last p observations for the predictions that Dnpfpq “ D8,npfpq, thus we can write

the second term as

F ˚n∆npf
´1
θ q pD8,npfq ´Dnpfpqq “ F ˚n∆npf

´1
θ q pD8,npfq ´D8,npfpqq .

Recall that tajppqu
p
j“1 are the best fitting ARppq parameters based on the autocovariance func-

tion associated with the spectral density f . Let appωq “ 1 ´
řp
s“1 asppqe

´isω, a8j,ppωq “ 1 ´
řp´j
s“1 as`jppqe

´isω and appωq´1 “ ψppωq “
ř8

j“0 ψj,pe
´ijω. By using the expression for D8,npfq

given in (2.37) we have

“

F ˚n∆npf
´1
θ q pD8,npfq ´D8,npfpqq

‰

t,j
“ U j,t

1,n ` U
j,t
2,n

where

U j,t
1,n “

1

n

n
ÿ

k“1

e´itωk,n

fθpωk,nq

ˆ

φ8j pωk,nq

φpωk,nq
´
a8j,ppωk,nq

appωk,nq

˙

U j,t
2,n “

1

n

n
ÿ

k“1

e´ipt´1qωk,n

fθpωk,nq

˜

φ8n`1´jpωk,nq

φpωk,nq
´
a8n`1´j,ppωk,nq

appωk,nq

¸

.

We focus on U j,t
1,n, and partition it into two terms U j,t

1,n “ U j,t
1,n,1 ` U

j,t
1,n,2, where

U j,t
1,n,1 “

1

n

n
ÿ

k“1

e´itωk,n

φpωk,nqfθpωk,nq

`

φ8j pωk,nq ´ a
8
j,ppωk,nq

˘

and

U j,t
1,n,2 “

1

n

n
ÿ

k“1

e´itωk,na8j,ppωk,nq

fθpωk,nq

`

φpωk,nq
´1
´ appωk,nq

´1
˘

“
1

n

n
ÿ

k“1

e´itωk,na8j,ppωk,nq

fθpωk,nq
pψpωk,nq ´ ψppωk,nqq .
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We first consider U j,t
1,n,1. We observe φpωk,nq´1 “ ψpωk,nq “

ř8

`“0 ψ`e
´i`ωk,n . Substituting this

into U j,t
1,n,1 gives

U j,t
1,n,1 “

8
ÿ

s“0

pφj`s ´ aj`sppqq
1

n

n
ÿ

k“1

e´ipt`sqωk,n

φpωk,nqfθpωk,nq

“

8
ÿ

s“0

pφj`s ´ aj`sppqq
8
ÿ

`“0

ψ`
1

n

n
ÿ

k“1

fθpωk,nq
´1e´ipt```sqωk,n

“

8
ÿ

s“0

pφj`s ´ aj`sppqq
8
ÿ

`“0

ψ`
ÿ

rPZ

Kf´1
θ
pt` `` s` rnq,

where Kf´1
θ
prq “

ş2π

0
fθpωq

´1eirωdω. Therefore, the absolute sum of the above gives

n
ÿ

j,t“1

|U j,t
1,n,1| ď

n
ÿ

j,t“1

8
ÿ

s“0

|φj`s ´ aj`sppq|
8
ÿ

`“0

|ψ`|
ÿ

rPZ

|Kf´1
θ
pt` `` s` rnq|

“

n
ÿ

j“1

8
ÿ

s“0

|φj`s ´ aj`sppq|
8
ÿ

`“0

|ψ`|
n
ÿ

t“1

ÿ

rPZ

|Kf´1
θ
pt` `` s` rnq|

ď

˜

n
ÿ

j“1

8
ÿ

s“0

|φj`s ´ aj`sppq|

¸

}ψf}0
ÿ

τPZ

|Kf´1
θ
pτq|

ď

˜

8
ÿ

s“1

s|φs ´ asppq|

¸

}ψf}0
ÿ

τPZ

|Kf´1
θ
pτq|.

By using (4.35) we have
ř

τPZ |Kf´1
θ
pτq| ď σ´2

fθ
}φfθ}

2
0. Further, by using the regular Baxter in-

equality we have

8
ÿ

s“1

s|φs ´ asppq| ď p1` Cf,1q
8
ÿ

s“p`1

s|φs| ď p1` Cf,1qp
´K`1ρp,Kpfq}φf}K .

Substituting these two bounds into
řn
j,t“1 |U

j,t
1,n,1| yields

n
ÿ

j,t“1

|U j,t
1,n,1| ď

p1` Cf,1q

σ2
fθ
pK´1

ρp,Kpfq}φf}K}ψf}0}φfθ}
2
0.

Next we consider the second term U j,t
1,n,2. Using that ψpωk,nq “

ř8

s“0 ψse
´isω and ψppωk,nq “
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ř8

s“0 ψs,pe
´isω we have

U j,t
1,n,2 “

1

n

n
ÿ

k“1

e´itωk,na8j,ppωk,nq

fθpωk,nq
pψpωk,nq ´ ψppωk,nqq

“

8
ÿ

s“0

pψs ´ ψs,pq
1

n

n
ÿ

k“1

e´ipt`sqωk,na8j,ppωk,nq

fθpωk,nq

“

8
ÿ

s“0

pψs ´ ψs,pq
8
ÿ

`“0

aj``ppq
1

n

n
ÿ

k“1

e´ipt`s``qωk,n

fθpωk,nq

“

8
ÿ

s“0

pψs ´ ψs,pq
8
ÿ

`“0

aj``ppq
ÿ

rPZ

Kf´1
θ
pt` s` `` rnq.

Taking the absolute sum of the above gives

n
ÿ

j,t“1

|U j,t
1,n,2| ď

n
ÿ

j,t“1

8
ÿ

s“0

|ψs ´ ψs,p|
8
ÿ

`“0

|aj``ppq|
ÿ

rPZ

|Kf´1
θ
pt` s` `` rnq|

“

8
ÿ

s“0

|ψs ´ ψs,p|
n
ÿ

j“1

8
ÿ

`“0

|aj``ppq|
ÿ

rPZ

|Kf´1
θ
prq| (apply the bound (4.35)q

ď σ´2
fθ
}φfθ}

2
0

˜

8
ÿ

s“0

|ψs ´ ψs,p|

¸

8
ÿ

u“0

|uauppq|

ď σ´2
fθ
}φfθ}

2
0}ap}1

8
ÿ

s“0

|ψs ´ ψs,p|.

Next we bound }ap}1 and
ř8

s“0 |ψs ´ ψs,p|. Let φppωq “ 1 ´
řp
j“1 φje

ijω (the truncated ARp8q

process). Then by applying Baxter’s inequality, it is straightforward to show that

}ap}1 ď }φp}1 ` }ap ´ φp}1 ď pCf,1 ` 1q}φf}1. (4.37)

To bound
ř8

s“0 |ψs ´ ψs,p| we use the inequality in Kreiss et al. (2011), page 2126

8
ÿ

s“0

|ψs ´ ψs,p| ď
}ψf}

2
0 ¨

ř8

j“1 |φj ´ ajppq|

1´ }ψf} ¨ }ap ´ φ}0
.
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Applying Baxter’s inequality to the numerator of the above gives

8
ÿ

s“0

|ψs ´ ψs,p| ď
}ψf}

2
0pCf,0 ` 1qρp,Kpfq}φf}K

pKp1´ }ψf}0 ¨ }ap ´ φ}0q
(4.38)

Substituting the bound in (4.37) and (4.38) into
řn
j,t“1 |U

j,t
1,n,2| gives

n
ÿ

j,t“1

|U j,t
1,n,2| ď

pCf,1 ` 1q2

σ2
fθ
pK

¨
}ψf}

2
0}φf}1}φf}K}φfθ}

2
0ρp,Kpfq

1´ }ψf}0}ap ´ φ}0

Altogether, for sufficiently large p, where }ψf}0 ¨ }ap ´ φ}0 ď 1{2 we have

n
ÿ

t,j“1

|U j,t
1,n| ď

p1` Cf,1q

σ2
fθ
pK´1

ρp,Kpfq}φf}K}ψf}0}φfθ}
2
0

`
2pCf,1 ` 1q2

σ2
fθ
pK

}ψf}
2
0}φf}1}φf}K}φfθ}

2
0ρp,Kpfq

ď
pCf,1 ` 1q

σ2
fθ
pK´1

ρp,Kpfq}φf}K}φfθ}
2
0}ψf}0

ˆ

1`
2p1` Cf,1q

p
}ψf}0}φf}1

˙

The same bound holds for
řn
t,j“1 |U

j,t
2,n|, thus using (4.36) and ρn,Kpfq ď ρp,Kpfq gives

›

›F ˚n∆npf
´1
θ q pD8,npfq ´Dnpfpqq

›

›

1

ď ρp,KpfqAKpf, fθq

ˆ

pCf,1 ` 1q

pK´1
`

2pCf,1 ` 1q2

pK
}ψf}0}φf}1

˙

.

Substituting the above into (4.36) gives (4.4).

The proof of (4.5) is similar to the proof of Theorem 2.4.3, we omit the details. l

PROOF of Lemma 4.3.1 We first prove the result in the case that s “ 0 and for xWp,np¨q. In this

case

xWp,npθq ´Wnpθq “
1

n

n
ÿ

k“1

fθpωk,nq
´1

”

pJnpωk,n; pfpq ´ pJnpωk,n; fq
ı

Jnpωk,nq.
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Thus

sup
θPΘ

|xWp,npθq ´Wnpθq| ď sup
θ,ω

fθpωq
´1
ˆ

1

n

n
ÿ

k“1

ˇ

ˇ

ˇ

”

pJnpωk,n; pfpq ´ pJnpωk,n; fq
ı

Jnpωk,nq
ˇ

ˇ

ˇ
.

By using Theorem 2.3.4 (under Assumption 4.2.2) we have

”

pJnpω; pfpq ´ pJnpω; fq
ı

Jnpωq “ ∆pωq `Op

ˆ

p3

n3{2

˙

where ∆pωq is defined in Theorem 2.3.4,Op

`

p3n´3{2
˘

bound is uniform all frequencies, supω Er∆pωqs “

OppnpK´1q´1 ` p3{n2q and supω varr∆pωqs “ Opp4{n2q. Thus using this we have

sup
θPΘ

|xWp,npθq ´Wnpθq| “ sup
θ,ω

fθpωq
´1
ˆ

1

n

n
ÿ

k“1

|∆pωk,nq| `Op

ˆ

p3

n3{2

˙

“ Op

ˆ

p2

n
`

p3

n3{2

˙

“ Op

ˆ

p2

n

˙

.

This proves the result for s “ 0. A similar argument applies for the derivatives of xWp,npθq (together

with Assumption 4.2.1(iii)) and pHp,npθq, we omit the details. l

PROOF of Lemma 4.3.2 We start with the infeasible criterion Wnpθq. Let ErWnpθqs “ Wnpθq.

We first show the uniformly convergence of Wnpθq, i.e.,

sup
θPΘ

|Wnpθq ´Wnpθq|
P
Ñ 0. (4.39)

Using Das et al. (2021), Theorem A.1 and the classical result varrKnpθqs “ Opn´1q we have

varrWnpθqs “ var

˜

Knpθq ` n
´1

n
ÿ

k“1

pJnpωk,n; fqJnpωk,nq

fθpωk,nq

¸

ď 2varrKnpθqs `
2

n

n
ÿ

k“1

varr pJnpωk,n; fqJnpωk,nqs{fθpωk,nq
2

ď 2varrKnpθqs `Opn
´2
q “ Opn´1

q.
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Therefore, by Markov’s inequality, Wnpθq
P
Ñ Wnpθq for each θ P Θ. To show a uniform con-

vergence, since Θ is compact, it is enough to show that tWnpθq; θ P Θu is equicontinuous in

probability. For arbitrary θ1, θ2 P Θ,

Wnpθ1q ´Wnpθ2q “ n´1
n
ÿ

k“1

pf´1
θ1
pωk,nq ´ f

´1
θ2
pωk,nqq rJnpωk,n; fqJnpωk,nq

` n´1
n
ÿ

k1

plog fθ1pωk,nq ´ log fθ2pωk,nqq “ I1pθ1, θ2q ` I2pθ1, θ2q.

To (uniformly) bound I1pθ1, θ2q, we use the mean value theorem

I1pθ1, θ2q “ n´1
n
ÿ

k“1

`

f´1
θ1
pωk,nq ´ f

´1
θ2
pωk,nq

˘

rJnpωk,n; fqJnpωk,nq

“ n´1
n
ÿ

k“1

∇θf
´1
θ pωk,nqu

1

θ“θk
pθ1 ´ θ2q rJnpωk,n; fqJnpωk,nq

“ Knpθq
1
pθ1 ´ θ2q,

where Knpθq “ n´1
řn
k“1

rJnpωk,n; fqJnpωk,nq∇θf
´1
θ pωk,nquθ“θk and θ1, ..., θn are convex combi-

nations of θ1 and θ2. It is clear that

}Knpθq}1 ď sup
θ,ω
}∇θf

´1
θ pωq}1

1

n

n
ÿ

k“1

ˇ

ˇ

ˇ

rJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ
“ Kn.

Thus

|I1pθ1, θ2q| ď Kn|θ1 ´ θ2|1. (4.40)

We need to show that Kn “ Opp1q (it is enough to show that supn ErKns ă 8). To show this, we
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use the classical results on DFT

E
ˇ

ˇ

ˇ

rJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ
ď E|Jnpωk,nq|2 ` E

ˇ

ˇ

ˇ

pJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ

ď fpωk,nq ` varp pJnpωk,n; fqq1{2varpJnpωk,nqq
1{2

ď fpωk,nqp1`Opn
´1
qq.

Using above and Assumption 4.2.1(iii-a) gives

sup
n

ErKns ď sup
θ,ω
}∇θf

´1
θ pωq}1 ¨ sup

n

1

n

n
ÿ

k“1

fpωk,nqp1`Opn
´1
qq ă 8.

Therefore, Kn “ Opp1q and from (4.40), I1pθ1, θ2q is equicontinuous in probability. Using similar

argument, we can show that I2pθ1, θ2q is equicontinous in probability and thus, tWnpθq; θ P Θu

is equicontinous in probability. This imples supθPΘ |Wnpθq ´Wnpθq|
P
Ñ 0, thus we have shown

(4.39).

Next, let rθpW qn “ arg minθPΘWnpθq. Since θn “ arg minθPΘ Wnpθq we have

Wnp
rθpW qn q ´Wnp

rθpW qn q ď Wnp
rθpW qn q ´Wnpθnq ď Wnpθnq ´Wnpθnq.

Thus

|Wnp
rθpW qn q ´Wnpθnq| ď sup

θ
|Wnpθq ´Wnpθq|

P
Ñ 0.

If θn uniquely minimises Inpf, fθq, then by using the above we have that |rθpW qn ´ θn|1
P
Ñ 0.

However, Wnpθq is an infeasible criterion. To show consistency we need to obtain a uniform

bound on the feasible criterion xWp,npθq. That is

sup
θ
|xWp,npθq ´Wnpθq|

P
Ñ 0. (4.41)
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Now by using the triangular inequality, together with (4.39) and Lemma 4.3.1, (4.41) immediately

follows. Therefore, by using the same arguments those given above we have |pθpW qn ´ θn|1
P
Ñ 0,

which is the desired result.

By the same set of arguments we have |pθpHqn ´ θn|1
P
Ñ 0. l

PROOF of Lemma 4.3.3 By using Theorem 3.2.1 we have for i “ 1 and 2

dixWp,npθq

dθi
uθ“θn “

diWnpθq

dθi
uθ“θn `Op

ˆ

p3

n3{2
`

1

npK´1

˙

,

this immediately gives (4.20). Let θn denote a convex combination of θn and pθ
pW q
n (note that pθpW qn

is a consistent estimator of θn). To evaluate d3xWnpθq
dθ3

at the (consistent) estimator θn, a slightly

different approach is required (due to the additional random parameter θn). By using triangular

inequality and Lemma 4.3.1 we have

ˇ

ˇ

ˇ

ˇ

ˇ

d3
xWp,npθq

dθ3
uθ“θn ´

d3Wnpθq

dθ3
uθ“θn

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

d3
xWp,npθq

dθ3
uθ“θn ´

d3Wnpθq

dθ3
uθ“θn

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

n

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

d3

dθ3

“

fθnpωk,nq
´1
´ fθnpωk,nq

´1
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ

“ Op

ˆ

p2

n

˙

`
1

n

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

d3

dθ3

“

fθnpωk,nq
´1
´ fθnpωk,nq

´1
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ
.

For the second term in the above, we apply the mean value theorem to d3

dθ3
f´1
θ to give

ˇ

ˇ

ˇ

ˇ

d3

dθ3
pf´1
θ̄n
´ f´1

θn
q

ˇ

ˇ

ˇ

ˇ

ď sup
θ

ˇ

ˇ

ˇ

ˇ

d4

dθ4
f´1
θ

ˇ

ˇ

ˇ

ˇ

¨ |θ̄n ´ θn| ď sup
θ

ˇ

ˇ

ˇ

ˇ

d4

dθ4
f´1
θ

ˇ

ˇ

ˇ

ˇ

¨ |pθpW qn ´ θn|,

note that to bound the fourth derivation we require Assumption 4.2.1(iii) for κ “ 4. Substituting
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this into the previous inequality gives

ˇ

ˇ

ˇ

ˇ

ˇ

d3
xWp,npθq

dθ3
uθ“θn ´

d3Wnpθq

dθ3
uθ“θn

ˇ

ˇ

ˇ

ˇ

ˇ

ď Op

ˆ

p2

n

˙

`
1

n

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

d3

dθ3

“

fθnpωk,nq
´1
´ fθnpωk,nq

´1
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rJnpωk,n; fqJnpωk,nq
ˇ

ˇ

ˇ

“ Op

ˆ

p2

n

˙

` |pθpW qn ´ θn|Opp1q.

The above proves (4.21).

Using (4.20) and (4.21) we now obtain the first and second order expansions in (4.22) and

(4.23). In order to prove (4.22), we will show that

ppθpW qn ´ θnq “ Op

ˆ

1

n1{2
`

p3

n3{2

˙

.

if p2{nÑ 0 we make a second order expansion of dxWp,nppθ
pW q
n q

dθ
about θn and assuming that pθpW qn lies

inside the parameter space we have

0 “
dxWp,np

pθ
pW q
n q

dpθ
pW q
n

“
dxWp,npθnq

dθn
` ppθpW qn ´ θnq

d2
xWp,npθnq

dθ2
n

`
1

2
ppθpW qn ´ θnq

2d
3
xWp,npθnq

dθ3
n

where θn is a convex combination of θn and pθ
pW q
n . Now by using (4.20) and (4.21) we can replace

in the above xWp,npθnq and its derivatives with Wnpθnq and its derivatives. Therefore,

dWnpθnq

dθn
` ppθpW qn ´ θnq

d2Wnpθnq

dθ2
n

`
1

2
ppθpW qn ´ θnq

2d
3Wnpθnq

dθ3
n

“ Op

ˆ

p3

n3{2
`

1

npK´1

˙

` ppθpW qn ´ θnq
2Op

ˆ

p2

n

˙

` |pθpW qn ´ θn|
3Opp1q. (4.42)
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Rearranging the above gives

ppθpW qn ´ θnq “ ´

„

d2Wnpθnq

dθ2
n

´1
dWnpθnq

dθn
´

1

2

„

d2Wnpθnq

dθ2
n

´1
d3Wnpθnq

dθ3
n

ppθpW qn ´ θnq
2

`Op

ˆ

p3

n3{2
`

1

npK´1

˙

` ppθpW qn ´ θnq
2Op

ˆ

p2

n

˙

` |pθpW qn ´ θn|
3Opp1q.(4.43)

Next we obtain a bound for dWnpθnq
dθn

(to substitute into the above). Since ErdWnpθnq
dθn

s “ Opn´Kq

(from equation (4.15)) and varrdWnpθnq
dθn

s “ Oppn
´1q we have dWnpθnq

dθn
“ Oppn

´1{2q. Substituting

this into (4.43) gives

ppθpW qn ´ θnq “
1

2

„

d2Wnpθnq

dθ2
n

´1
d3Wnpθnq

dθ3
n

ppθpW qn ´ θnq
2

`Oppn
´1{2

q `Op

ˆ

p3

n3{2
`

1

npK´1

˙

` ppθpW qn ´ θnq
2Op

ˆ

p2

n

˙

` |pθpW qn ´ θn|
3Opp1q.

Using that
”

d2Wnpθnq
dθ2n

ı´1
d3Wnpθnq

dθ3n
“ Opp1q and substituting this into the above gives

ppθpW qn ´ θnq “ Op

ˆ

1

n1{2
`

p3

n3{2
`

1

npK´1

˙

` ppθpW qn ´ θnq
2Op

ˆ

p2

n
` 1

˙

` |pθpW qn ´ θn|
3Opp1q.

(4.44)

Thus, from the above and the consistency result in Lemma 4.3.2 (|pθpW qn ´ θn| “ opp1q) we have

ppθpW qn ´ θnq “ Op

ˆ

1

n1{2
`

p3

n3{2

˙

. (4.45)

We use the above bound to obtain an exact expression for the dominating rateOppn
´1{2q. Returning

to equation (4.43) and substituting this bound into the quadratic term in (4.43) gives

ppθpW qn ´ θnq “ ´

„

d2Wnpθnq

dθ2
n

´1
dWnpθnq

dθn
`Op

ˆ

1

n
`

p3

n3{2
`

1

npK´1

˙

.
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Using that d
2Wnpθnq
dθ2n

“ E
´

d2Wnpθnq
dθ2n

¯

`Oppn
´1{2q and under Assumption 4.2.2(iii) we have

ppθpW qn ´ θnq “ ´

„

E
„

d2Wnpθnq

dθ2
n

´1
dWnpθnq

dθn
`Op

ˆ

1

n
`

p3

n3{2
`

1

npK´1

˙

.

This proves (4.22).

To prove (4.23) we return to (4.42). By substituting (4.45) into (4.42) we have

dWnpθq

dθ
uθ“θn ` p

pθpW qn ´ θnq
d2Wnpθq

dθ2
uθ“θn `

1

2
ppθpW qn ´ θnq

2d
3Wnpθq

dθ3
uθ“θn “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

This proves (4.23). l

PROOF of Theorem 4.3.1 We first prove the result for the one parameter case when p ě 1. By

using (4.23) for the feasible estimator pθpW qn “ arg minxWp,npθq we have

dWnpθq

dθ
uθ“θn ` p

pθpW qn ´ θnq
d2Wnpθq

dθ2
uθ“θn `

1

2
ppθpW qn ´ θnq

2d
3Wnpθq

dθ3
uθ“θn “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

Whereas for the infeasible estimator rθpW qn “ arg minxWp,npθq we have

dWnpθq

dθ
uθ“θn ` p

rθpW qn ´ θnq
d2Wnpθq

dθ2
uθ“θn `

1

2
prθpW qn ´ θnq

2d
3Wnpθq

dθ3
uθ“θn “ Op

ˆ

1

n3{2

˙

.

Taking differences for the two expansions above we have

prθpW qn ´ pθpW qn q
d2Wnpθq

dθ2
uθ“θn `

1

2
prθpW qn ´ pθpW qn q

”

prθpW qn ´ θnq ` ppθ
pW q
n ´ θnq

ı d3Wnpθq

dθ3
uθ“θn

“ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

Now replacing d2Wnpθq
dθ2

uθ“θn with its expectation and using that |rθpW qn ´ θn| “ opp1q and |pθpW qn ´

θn| “ opp1q we have

prθpW qn ´ pθpW qn qE
ˆ

d2Wnpθq

dθ2
uθ“θn

˙

` opp1qprθ
pW q
n ´ pθpW qn q “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.
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Since E
´

d2Wnpθq
dθ2

uθ“θn

¯

is greater than 0, the above implies

prθpW qn ´ pθpW qn q “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

Now we prove the result for the case p “ 0. If p “ 0, then xWp,npθq “ Knpθq (the Whittle

likelihood). Let

pθpKqn “ arg minKnpθq and rθpW qn “ arg minWnpθq.

Our aim is to show that |pθpKqn ´ rθ
pW q
n | “ Oppn

´1q. Note that Wnpθq “ Knpθq ` Cnpθq, where

Cnpθq “
1

n

n
ÿ

k“1

pJnpω; fqJnpωk,nq

fθpωk,nq
.

Using a Taylor expansion, similar to the above, we have

dKnpθq

dθ
uθ“θn ` p

pθpKqn ´ θnq
d2Knpθq

dθ2
uθ“θn `

1

2
ppθpKqn ´ θnq

2d
3Knpθq

dθ3
uθ“θn “ Op

ˆ

1

n3{2

˙

and

dWnpθq

dθ
uθ“θn ` p

rθpW qn ´ θnq
d2Wnpθq

dθ2
uθ“θn `

1

2
prθpW qn ´ θnq

2d
3Wnpθq

dθ3
uθ“θn “ Op

ˆ

1

n3{2

˙

.

Taking differences of the two expansions

dCnpθq

dθ
uθ“θn ` p

pθpKqn ´ rθpW qn q
d2Knpθq

dθ2
uθ“θn ´ p

pθpW qn ´ θnq
d2Cnpθq

dθ2
uθ“θn

`
1

2
ppθpKqn ´ rθpW qn q

”

ppθpKqn ´ θnq ` prθ
pW q
n ´ θnq

ı d3Knpθq

dθ3
uθ“θn

´
1

2
prθpW qn ´ θnq

2d
3Cnpθq

dθ3
uθ“θn “ Op

ˆ

1

n3{2

˙

. (4.46)
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To bound the above we use that

|pθpKqn ´ θn| “ Oppn
´1{2

q and |rθpW qn ´ θn| “ Oppn
´1{2

q.

In addition by using a proof analogous to the proves of Theorem 2.4.4, equation (2.45) we have

dsCnpθq

dθs
“

1

n

n
ÿ

k“1

pJnpωk,n; fqJnpωk,nq
ds

dθs
fθpωk,nq

´1
“ Oppn

´1
q for 0 ď s ď 3.

Substituting the above bounds into (4.46) gives

ppθpKqn ´ rθpW qn q
d2Knpθq

dθ2
uθ“θn `

1

2
ppθpKqn ´ rθpW qn qOppn

´1{2
q “ ´

dCnpθq

dθ
uθ“θn `Op

ˆ

1

n3{2

˙

.

Since rd
2Knpθq
dθ2

uθ“θns
´1 “ Opp1q we have

|pθpKqn ´ rθpW qn | “ Oppn
´1
q,

thus giving the desired rate.

For the multiparameter case we use (4.24) and the same argument to give

d
ÿ

s“1

ppθpW qs,n ´ rθpW qs,n q
B2Wnpθq

BθsBθr
uθ“θn `

1

2

d
ÿ

s1,s2“1

”

ppθpW qs1,n
´ rθpW qs1,n

qppθpW qs2,n
´ θs2,nq ` p

pθpW qs2,n
´ rθpW qs2,n

qprθpW qs1,n
´ θs1,nq

ı

ˆ
B3Wnpθq

Bθs1Bθs2Bθr
uθ“θn

“ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

Replacing B2Wnpθq
BθsBθr

uθ“θn with its expectation gives

ppθpW qn ´ rθpW qn q
1E

“

∇2
θWnpθquθ“θn

‰

` |pθpW qn ´ rθpW qn |1opp1q “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.
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Thus under the assumption that E r∇2
θWnpθquθ“θns is invertible we have

|rθpW qn ´ pθpW qn |1 “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

By a similar argument we have

|rθpHqn ´ pθpHqn |1 “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

.

The case when p “ 0 is analogous to the uniparameter case and we omit the details. This concludes

the proof. l
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5. CONCLUDING REMARKS AND DISCUSSION *

In this dissertation, we have proposed a new approach to overcome the notorious bias issue

of spectral analysis. The key idea behind the method is to obtaining a linear transform, denotes

rJnp¨; fq, that is biorthogonal to the regular DFT. We named it the complete DFT. The complete

DFT is an extension of the regular DFT by predicting the time series in the unobserved domain on

the top of the original (observed) time series. Unlike other existing methods, the complete DFT,

together with the regular DFT, fully decorrelates the second order stationary time series (equation

(2.4)). Therefore, we obtain an unbiased estimator of the spectral density Inp¨; fq “ rJnp¨; fqJnp¨q

, so called the complete periodogram. For finite order autoregressive models, the complete pe-

riodogram has a finite term analytic expression in terms of the corresponding autoregressive co-

efficients. This observation shows that estimating the complete periodogram of the finite order

autoregressive models boils down to estimate the autoregressive coefficients. In general processes,

we have provided steps of approximation to estimate the complete periodogram using data. Both

theoretically and empirically, the estimated complete DFT outperforms the ordinary periodogram.

It is interesting to note that in simulations, the complete periodogram tends to have a better local

and global performance than the tapered periodogram especially when the spectral density has a

large peak.

Using the notion of the complete DFT, we have derived an exact expression for the differences

Γnpfθq
´1´Cnpf

´1
θ q and Lnpθq ´Knpθq. These expressions are simple, with an intuitive interpre-

tation, in terms of predicting outside the boundary of observation. We have used these expansions

and approximations to define two new spectral divergence criteria (in the frequency domain). Our

simulations show that both new estimators (termed the boundary corrected and hybrid Whittle)

tend to outperform the Whittle likelihood. Intriguingly, the hybrid Whittle likelihood tends to out-

perform the boundary corrected Whittle likelihood. Currently, we have no theoretical justification

*Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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for this and one future aim is to investigate these differences.

We believe that it is possible to use a similar construction to obtain expressions for the complete

DFT and the difference between the Gaussian likelihood and the Whittle likelihood of a multivari-

ate time series. The construction we use in this dissertation (for an univariate case) relies on the

Wold-type ARp8q and MAp8q representation of a time series and makes heavy use of the com-

mutativity property of these expansions. In the multivariate situation, we lose the commutativity

property. So the expressions in the past and future predictions are asymmetric. To prove analogous

results to those in this dissertation, we will require the Baxter-type inequalities for the multivariate

framework. The bounds derived in Cheng and Pourahmadi (1993) and Inoue et al. (2018) may be

useful in this context.

An issue in the spatial grid framework is more complicated. This is because the edge effects are

accumulated as the dimension increases. Guyon (1982) Section 3.3, showed that the bias caused by

using the classical periodogram in the Whittle likelihood is not asymptotically negligible. There-

fore, some preprocessors on the time series are necessary. Examples are Guyon (1982) (edge-

correction) and Dahlhaus and Künsch (1987) (data taper). Moreover, the ARppq approximations

for spatial random fields and corresponding Baxter’s inequality described in Meyer et al. (2017)

may be useful to obtain the bound between the feasible and infeasible estimator (if possible).

Lastly, the emphasis of this dissertation is on short memory time series. But we conclude by

briefly discussing extensions to long memory time series. The fundamental feature (in the time

domain) that distinguishes a short memory time series from a long memory time series is that the

autocovariance function of a long memory time series is not absolutely summable. Proof of results

heavily replies on interchanging the order of summation which is guaranteed by the absolutely

summable autocovariances when the time series has a short memory. Therefore, for long memory

time series, a more careful argument on the interchangeability of summation is required. Series

expansion of finite predictor coefficients and Baxter’s inequality for long memory time series in

Inoue and Kasahara (2006) may be a useful tool to tackle this problem. Moreover, in the frequency

domain, the spectral density of a long memory time series is not bounded on the origin. Therefore,
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the frequency domain representation of the Gaussian likelihood in Theorem 2.4.1 is not well-

defined at k “ n. However, in our unpublished manuscript Subba Rao and Yang (2021b), we

show that the complete DFT is well-defined in a much larger class of second order stationary time

series which includes the long memory time series in certain setting. Also, in Subba Rao and Yang

(2021a) Appendix A.1, we showed a version of Theorem 2.4.1 for a long memory time series. We

state the result without proof. Suppose that Xpcq
n “ Xn ´ X1n, where X “ n´1

řn
t“1Xt is a

demeaned time series. Then,

1

n
Xpcq1
n Γnpfθq

´1Xpcq
n “

1

n

n´1
ÿ

k“1

|Jnpωk,nq|
2

fθpωk,nq
`

1

n

n´1
ÿ

k“1

pJ
pcq
n pωk,n; fθqJnpωk,nq

fθpωk,nq
,

where pJ
pcq
n p¨; fθq denotes the predictive DFT of the demeaned time series Xpcq

n . The results are not

conclusive, but they do suggest that the new likelihoods, in some settings, can be used to reduce

the bias for long memory parameter estimators.

In summary, a new spectral method using the complete DFT may be of value in future research.
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APPENDIX A

THE BAXTER’S INEQUALITY *

A.1 An extension of Baxter’s inequality

Let tXtu be a second order stationary time series with absolutely summable autocovariance

and spectral density f . We can represent f as fpωq “ ψpωqψpωq “ 1{
´

φpωqφpωq
¯

where

φpωq “ 1´
8
ÿ

s“1

φse
´isω and ψpωq “ 1`

8
ÿ

s“1

ψse
´isω.

Note that tφsu and tψsu are the corresponding ARp8q and MAp8q coefficients respectively and

ψpωq “ φpωq´1. To simplify notation we have ignored the variance of the innovation.

Many of the results in this disseration hinge on a generalization of Baxter’s inequality which

we summarize below.

Lemma A.1.1 (Extended Baxter’s inequality). Suppose fp¨q is a spectral density function which

satisfies Assumption 2.3.1. Let ψp¨q and φp¨q AR and MA characteristic function respectively.

Let φ8p`1pωq “
ř8

s“p`1 φse
´isω. Further, let tφs,npτqu denote the coefficients in the best linear

predictor of Xτ given Xn “ tXtu
n
t“1 and tφspτqu the corresponding the coefficients in the best

linear predictor of Xτ given X8 “ tXtu
8
t“1, where τ ď 0. Suppose p is large enough such that

›

›φ8p
›

›

K
}ψ}K ď ε ă 1. Then for all n ą p we have

n
ÿ

s“1

p2K ` sKq |φs,npτq ´ φspτq| ď Cf,K

8
ÿ

s“n`1

p2K ` sKq |φspτq| , (A.1)

where Cf,K “ 3´ε
1´ε
}φ}2K }ψ}

2
K and φspτq “

ř8

j“0 φs`jψ|τ |´j (we set ψ0 “ 1 and ψj “ 0 for j ă 0).

Before we give a proof, we define an appropriate norm on the subspace of L2r0, 2πs.

*Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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Definition A.1.1 (Norm on the subspace of L2r0, 2πs). Suppose the sequence of positive weights

tvpkqukPZ satisfies 2 conditions: (1) vpnq is even, i.e., vp´nq “ vpnq for all n ě 0; (2) vpn`mq ď

vpnqvpmq for all n,m P Z.

Given tvpkqu satisfies 2 conditions above, define a subspace Av of L2r0, 2πs by

Av “ tf P L2r0, 2πs :
ÿ

kPZ

vpkq|fk| ă 8u.

where, fpωq “
ř

kPZ fke
ikω. We define a norm }f} on Av by }f} “

ř

kPZ vpkq|fk|, then it is easy

to check this is a valid norm.

Remark A.1.1 (Properties of } ¨ }). Suppose the sequence tvpkqukPZ satisfies 2 conditions in Defi-

nition A.1.1, and define the norm } ¨ } with respect to tvpkqu. Then, beside the triangle inequality,

this norm also satisfies }1} “ vp0q ď 1, }f} “ }f}, and }fg} ď }f}}g} (which does not hold

for all norms but is an important component of the (extended) Baxter’s proof), i.e., pAv, } ¨ }q is a

Banach algebra with involution operator. The proof for the multiplicative inequality follows from

the fact that pfgqk “
ř

r frgk´r, where fk and gk are kth Fourier coefficient of f and g. Thus

}fg} ď
ÿ

kPZ

vpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

rPZ

frgk´r

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kPZ

vprqvpk ´ rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

rPZ

frgk´r

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

k,rPZ

vprqvpk ´ rq|fr||gk´r| “ }f}}g}.

Examples of weights include vprq “ p2q ` |r|qq or vprq “ p1 ` |r|qq for some q ě 0. In these

two examples, when q “ K, under Assumption 2.3.1, ψpωq, φpωq P Av where ψpωq “ 1 `
ř8

j“1 ψje
´ijω and φpωq “ 1´

ř8

j“1 φje
´ijω (see Kreiss et al. (2011)).

PROOF. The proof below follows closely the proof Baxter (1962, 1963). Let tφs,ppτqu
p
s“1 denote

the the coefficients of the best linear predictor of Xt`τ (for τ ě 0) given tXsu
t´1
t´p

E

«˜

Xt`τ ´

p
ÿ

s“1

φs,ppτqXt´s

¸

Xt´k

ff

“ 0 for k “ 1, . . . , p. (A.2)
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and tφspτqu denote the coefficients of the best linear predictor of Xt`τ given the infinite past

tXsu
t´1
s“´8

E

«˜

Xt`τ ´

8
ÿ

s“1

φspτqXt´s

¸

Xt´k

ff

“ 0 for k “ 1, 2, . . . (A.3)

We use the same proof as Baxter, which is based on rewriting the normal equations in (A.2)

within the frequency domain to yield

1

2π

ż 2π

0

˜

eiτω ´
p
ÿ

s“1

φs,ppτqe
´isω

¸

fpωqe´ikωdω “ 0, for k “ 1, . . . , p

Similarly, using the infinite past to do prediction yields the normal equations

1

2π

ż 2π

0

˜

eiτω ´
8
ÿ

s“1

φspτqe
´isω

¸

fpωqe´ikωdω “ 0, for k ě 1.

Thus taking differences of the above two equations for k “ 1, . . . , p gives

1

2π

ż 2π

0

˜

p
ÿ

s“1

rφs,ppτq ´ φspτqs e
´isω

¸

fpωqe´ikωdω

“
1

2π

ż 2π

0

˜

8
ÿ

s“p`1

φspτqe
´isω

¸

fpωqe´ikωdω 1 ď k ď p. (A.4)

These p-equations give rise to Baxter’s Weiner-Hopf equations and allow one to find a bound

for
řp
s“1 |φs,ppτq ´ φspτq| in terms of

ř8

s“p`1 |φspτq|. Interpreting the above, we have two dif-

ferent functions p
řp
s“1 rφs,ppτq ´ φspτqs e

´isωq fpωq and
´

ř8

s“p`1 φspτqe
´isω

¯

fpωq whose first p

Fourier coefficients are the same.

Define the polynomials

hppωq “
p
ÿ

s“1

rφs,ppτq ´ φspτqs e
´isω and gppωq “

p
ÿ

k“1

gk,pe
ikω (A.5)

where

gk,p “ p2πq
´1

ż 2π

0

˜

8
ÿ

s“p`1

φspτqe
´isω

¸

fpωqe´ikωdω. (A.6)
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For the general norm } ¨ } defined in Definition A.1.1, will show that for a sufficiently large p,

}hp} ď Cf}gp}, where the constant Cf is a function of the spectral density (that we will derive).

The Fourier expansion of hpf is

hppωqfpωq “
8
ÿ

k“´8

rgk,pe
ikω,

where rgk,p “ p2πq´1
ş2π

0
hppωqfpωqe

´ikωdω. Then, by (A.4) for 1 ď k ď p, rgk,p “ gk,p (where gk,p

is defined in (A.6)). Thus

hppωqfpωq “ G0
´8pωq ` gppωq `G

8
p`1pωq (A.7)

where

G0
´8pωq “

0
ÿ

k“´8

rgk,pe
ikω and G8p`1pωq “

8
ÿ

s“p`1

rgk,pe
ikω.

Dividing by f´1 “ φφ and taking the } ¨ }-norm we have

}hp} ď
›

›f´1G0
´8

›

›`
›

›f´1gp
›

›`
›

›f´1G8p`1

›

›

ď
›

›f´1G0
´8

›

›`
›

›f´1
›

› }gp} `
›

›f´1G8p`1

›

›

ď
›

›φ
›

›

›

›φG0
´8

›

›`
›

›f´1
›

› }gp} ` }φ}
›

›φG8p`1

›

› . (A.8)

First we obtain bounds for
›

›φG0
´8

›

› and
›

›φG8p`1

›

› in terms of }gp}. We will show that for a suffi-

ciently large p

›

›φG0
´8

›

› ď }φ} }gp} ` ε
›

›φG8p`1

›

›

›

›φG8p`1

›

› ď
›

›φ
›

› }gp} ` ε
›

›φG0
´8

›

› .

The bound for these terms hinges on the Fourier coefficients of a function being unique, which

allows us to compare coefficients across functions. Some comments are in order that will help in
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the bounding of the above. We recall that fpωq´1 “ φpωqφpωq, where

φpωq “ 1´
8
ÿ

s“1

φse
´isω φpωq “ 1´

8
ÿ

s“1

φse
isω.

Thus φpωqG0
´8pωq and φpωqG8p`1pωq have Fourier expansions with only less than the first and

greater than the pth frequencies respectively. This observation gives the important insight into the

proof. Suppose bpωq “
ř8

j“´8 bje
ijω, we will make the use of the notation tbpωqu` “

ř8

j“1 bje
ijω

and tbpωqu´ “
ř0
j“´8 bje

ijω, thus bpωq “ tbpωqu´ ` tbpωqu`.

We now return to (A.7) using that f “ ψpωqψpωq we multiply (A.7) by ψpωq´1 “ φpωq to give

hppωqψpωq “ φpωqG0
´8pωq ` φpωqgppωq ` φpωqG

8
p`1pωq. (A.9)

Rearranging the above gives

´φpωqG0
´8pωq “ ´hppωqψpωq ` φpωqgppωq ` φpωqG

8
p`1pωq.

We recall that hppωqψpωq only contain positive frequencies, whereas φpωqG0
´8pωq only contains

non-positive frequencies. Based on these observations we have

´φpωqG0
´8pωq

“
 

´φpωqG0
´8pωq

(

´
“ tφpωqgppωqu´ `

 

φpωqG8p`1pωq
(

´
. (A.10)

We further observe that G8p`1 only contains non-zero coefficients for positive frequencies of p+1

and greater, thus only the coefficients of φpωq with frequencies less or equal to ´pp` 1q will give

non-positive frequencies when multiplied with G8p`1. Therefore

´φpωqG´1
´8pωq “ tφpωqgppωqu´ `

 

φ8p`1pωqG
8
p`1pωq

(

´
,

where φ8p`1pωq “
ř8

s“p`1 φse
´isω. Evaluating the norm of the above (using both the triangle and
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the multiplicative inequality) we have

›

›φG0
´8

›

› ď }φ} }gp} `
›

›φ8p`1G
8
p`1

›

›

ď }φ} }gp} `
›

›φ8p`1

›

›

›

›ψ
›

›

›

›φG8p`1

›

› since ψpωqφpψq “ 1.

This gives a bound for
›

›φG0
´8

›

› in terms of }gp} and
›

›φG8p`1

›

›. Next we obtain a similar bound for
›

›φG8p`1

›

› in terms of }gp} and
›

›φG0
´8

›

›.

Again using (A.7), fpωq “ ψpωqψpωq, but this time multiplying (A.7) by ψpωq
´1
“ φpωq, we

have

hppωqψpωq “ φpωqG0
´8pωq ` φpωqgppωq ` φpωqG

8
p`1pωq.

Rearranging the above gives

φpωqG8p`1pωq “ hppωqψpωq ´ φpωqG
0
´8pωq ´ φpωqgppωq.

We observe that φpωqG8p`1pωq contains frequencies greater than p whereas hppωqψpωq only con-

tains frequencies less or equal to the order p (since hp is a polynomial up to order p). Therefore

multiply e´ipω on both side and take tu` gives

e´ipωφpωqG8p`1pωq

´

!

e´ipωφpωqG0
´8pωq

)

`
´

!

e´ipωφpωqgppωq
)

`
, (A.11)

By the similar technique from the previous, it is easy to show

!

e´ipωφpωqG0
´8pωq

)

`
“

!

e´ipωφ8p`1pωqG
0
´8pωq

)

`
. (A.12)
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Multiplying eipω and evaluating the } ¨ }-norm of the above yields the inequality

›

›φG8p`1

›

› ď
›

›φgp
›

›`
›

›φ8p`1G
0
´8

›

›

ď
›

›φ
›

› }gp} `
›

›φ8p`1

›

› }ψ}
›

›φG0
´8

›

› .

We note that }φ8p`1} “ }φ8p`1}. For φ P Av (see Definition A.1.1 and Remark A.1.1), }φ8p`1} “

ř8

s“p`1 vpsq|φs| Ñ 0 as pÑ 8, for a large enough p, }ψpωq} ¨ }φ8p`1} ă 1. Suppose that p is such

that
›

›φ8p`1pωq
›

› }ψpωq} ď ε ă 1, then we have the desired bounds

›

›φG0
´8

›

› ď }φ} }gp} ` ε
›

›φG8p`1

›

›

›

›φG8p`1

›

› ď
›

›φ
›

› }gp} ` ε
›

›φG0
´8

›

› .

The above implies that
›

›φG0
´8

›

›`
›

›φG8p`1

›

› ď 2p1´ εq´1 }φ} }gp}. Substituting the above in (A.8),

and using that }φ} ě 1 (since φ “ 1´
ř8

s“1 φse
´isω, }φ} ě }1} “ vp0q ě 1) we have

}hp} ď
2 }φ} }gp}

1´ ε
`
›

›f´1
›

› }gp}

ď p1´ εq´1
`

2 }φ} ` p1´ εq }φ}2
˘

}gp} ď
3´ ε

1´ ε
}φ}2 }gp} .

Thus based on the above we have

}hp} ď
3´ ε

1´ ε
}φ}2 }gp} . (A.13)

Finally, we obtain a bound for }gp} in terms of
ř8

s“p`1 |φspτq|. We define an extended version of

the function gppωq. Let rgppωq “
ř

kPZ gk,pe
ikω where gk,p is as in (A.5). By definition, rgppωq “

´

ř8

s“p`1 φspτqe
´isω

¯

fpωq and the Fourier coefficients of gppωq are contained within rgppωq, which

implies

}gp} ď }rgp} “
›

›φ8p`1pτqf
›

› ď
›

›φ8p`1pτq
›

› }f} ď
›

›φ8p`1

›

› }ψ}2. (A.14)

where φ8p`1pτqpωq “
ř8

s“p`1 φspτqe
´isω. Finally, substituting (A.14) into (A.13), implies that if p
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is large enough such that
›

›φ8p`1

›

› }ψ} ď ε ă 1, then

}hp} ď
3´ ε

1´ ε
}φ}2 }ψ}2

›

›φ8p`1pτq
›

› .

Thus, if the weights in the norm are vpmq “ p2K `mKq (it is well-defined weights, see Remark

A.1.1) we have

p
ÿ

s“1

p2K ` sKq |φs,ppτq ´ φspτq|

ď
3´ ε

1´ ε
}φ}2K }ψ}

2
K

8
ÿ

s“p`1

p2K ` sKq |φspτq| . (A.15)

A.2 Baxter’s inequality on the derivatives of the coefficients

Our aim is to obtain a Baxter-type inequality for the derivatives of the linear predictors. These

bounds will be used when obtaining expression for the bias of the Gaussian and Whittlelikelihoods.

However, they may also be of independent interest. It is interesting to note that the following

result can be used to show that the Gaussian and Whittle likelihood estimators are asymptotically

equivalent in the sense that
?
n|pθ

pGq
n ´ pθ

pKq
n |1

P
Ñ 0 as nÑ 8.

The proof of the result is based on the novel proof strategy developed in Theorem 3.2 of Meyer

et al. (2017) (for spatial processes). We require the following definitions. Define the two n-

dimension vectors

ϕ
n
pτ ; fθq “ pφ1,npτ ; fθq, . . . , φn,npτ ; fθqq

1
pbest linear finite future predictorq (A.16)

φ
n
pτ ; fθq “ pφ1pτ ; fθq, . . . , φnpτ ; fθqq

1
ptruncated best linear infinite future predictorq.

Lemma A.2.1. Let θ be a d-dimension vector. Let tcθprqu, tφjpfθqu and tψjpfθqu denote the

autocovariances, ARp8q, and MAp8q coefficients corresponding to the spectral density fθ. For all
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θ P Θ and for 0 ď i ď κ we assume

8
ÿ

j“1

}jK∇i
θφjpfθq}1 ă 8

8
ÿ

j“1

}jK∇i
θψjpfθq}1 ă 8, (A.17)

where K ą 1. Let ϕ
n
pτ ; fθq and φ

n
pτ ; fθq, be defined as in (A.16). We assume that τ ď 0. Then

for all 0 ď i ď κ, we have

›

›

›

›

Bi

Bθr1 . . . Bθri

”

ϕ
n
pτ ; fθq ´ φnpτ ; fθq

ı

›

›

›

›

2

ď f0

ˆ

ÿ

a1`a2“i

a2‰i

Ca1

ˆ

i

a1

˙

›

›

›
∇a2
θ rϕnpτ ; fθq ´ φnpτ ; fθqs

›

›

›

2

`
ÿ

b1`b2“i

Cb1

ˆ

i

b1

˙ 8
ÿ

j“n`1

›

›∇b2
θ φjpτ ; fθq

›

›

1

˙

,

where f0 “ pinfω fθpωqq
´1 andCa “

ř

r }∇a
θcθprq}1, ∇a

θgpfθq is the ath order partial derivative of

g with respect to θ “ pθ1, . . . , θdq and }∇a
θgpfθq}p denotes the `p´norm of the matrix with elements

containing all the partial derivatives in ∇a
θgpfθq.

PROOF. To prove the result, we define the n-dimension vector

cn,τ “ pcpτ ´ 1q, cpτ ´ 2q, . . . , cpτ ´ nqq1 pcovariances from lag τ ´ 1 to lag τ ´ nq.

To simplify notation we drop the fθ notation from the prediction coefficients φj,npτ ; fθq and φjpτ ; fθq.

Proof for the case i “ 0 This is the regular Baxter inequality but with the `2-norm rather than `1-

norm. We recall that for τ ď 0 we have the best linear predictors

pXτ,n “

n
ÿ

j“1

φj,npτqXj and Xτ “

8
ÿ

j“1

φjpτqXj.

Thus by evaluating the covariance of the above with Xr for all 1 ď r ď n gives the sequence of r

normal equation, which can be written in matrix form

Γnpfθqϕnpτq “ cn,τ and Γnpfθqφnpτq `
8
ÿ

j“n`1

φjpτqcn,j “ cn,τ .
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Taking differences of the above gives

Γnpfθq
”

ϕ
n
pτq ´ φ

n
pτq

ı

“

8
ÿ

j“n`1

φjpτqcn,j

ñ

”

ϕ
n
pτq ´ φ

n
pτq

ı

“ Γnpfθq
´1

8
ÿ

j“n`1

φjpτqcn,j (A.18)

The `2-norm of the above gives

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2
ď }Γnpfθq

´1
}spec

8
ÿ

j“n`1

|φjpτq| ¨ }cn,j}2.

To bound the above we use the well known result }Γnpfθq´1}spec ď 1{ infω fpωq “ f0 and

}cn,j}2 ď
ř

rPZ |cθprq| “ C0. This gives the bound

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2
ď f0C0

8
ÿ

j“n`1

|φjpτq|.

Proof for the case i “ 1. As our aim is to bound the derivative of the difference ϕ
n
pτq ´ φ

n
pτq,

we evaluate the partial derivative of (A.18) with respective to θr and isolate Brϕ
n
pτq´φ

n
pτqs{Bθr.

Differentiating both sides of (A.18) with respect to θr gives

BΓnpfθq

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

` Γnpfθq
B

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

“

8
ÿ

j“n`1

„

Bφjpτq

Bθr
cn,j ` φjpτq

Bcn,j
Bθr



. (A.19)

Isolating Brϕ
n
pτq ´ φ

n
pτqs{Bθr gives

B

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

“ ´Γnpfθq
´1BΓnpfθq

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

`Γnpfθq
´1

8
ÿ

j“n`1

„

Bφjpτq

Bθr
cn,j ` φjpτq

Bcn,j
Bθr



. (A.20)
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Evaluating the `2 norm of the above and using }ABx}2 ď }A}spec}B}spec}x}2 gives the bound

›

›

›

›

B

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

›

›

›

›

2

ď }Γnpfθq
´1
}spec

ˆ›

›

›

›

BΓnpfθq

Bθr

›

›

›

›

spec

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2

`

8
ÿ

j“n`1

ˇ

ˇ

ˇ

ˇ

Bφjpτq

Bθr

ˇ

ˇ

ˇ

ˇ

}cn,j}2 `
8
ÿ

j“n`1

|φjpτq|

›

›

›

›

Bcn,j
Bθr

›

›

›

›

2

˙

ď f0

ˆ›

›

›

›

BΓnpfθq

Bθr

›

›

›

›

spec

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2

`C0

8
ÿ

j“n`1

ˇ

ˇ

ˇ

ˇ

Bφjpτq

Bθr

ˇ

ˇ

ˇ

ˇ

`

˜

ÿ

rPZ

}∇θcθprq}2

¸

8
ÿ

j“n`1

|φjpτq|

˙

ď f0

ˆ
›

›

›

›

BΓnpfθq

Bθr

›

›

›

›

spec

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2
` C0

8
ÿ

j“n`1

ˇ

ˇ

ˇ

ˇ

Bφjpτq

Bθr

ˇ

ˇ

ˇ

ˇ

` C1

8
ÿ

j“n`1

|φjpτq|

˙

(A.21)

where the last line in the above uses the bound
ř

rPZ }∇a
θcθprq}2 ď

ř

rPZ }∇a
θcθprq}1 “ Ca (for

a “ 0 and 1). We require a bound for }BΓnpfθq{Bθr}spec. Since Γnpfθq is a symmetric Toeplitz

matrix, then BΓnpfθq{Bθr is also a symmetric Toeplitz matrix (though not necessarily positive

definite) with entries

„

BΓnpfθq

Bθr



s,t

“
1

2π

ż 2π

0

Bfθpωq

Bθr
exppips´ tqωqdω.

We mention that the symmetry is clear, since Bcps´t;fθq
Bθr

“
Bcpt´s;fθq

Bθr
. Since the matrix is symmetric

the spectral norm is the spectral radius. This gives

›

›

›

›

BΓnpfθq

Bθr

›

›

›

›

spec

“ sup
}x}2“1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

s,t“1

xsxt
Bcps´ t; fθq

Bθr

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
}x}2“1

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

ż 2π

0

|

n
ÿ

s“1

xse
isω
|
2Bfθpωq

Bθr
dω

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
ω

ˇ

ˇ

ˇ

ˇ

Bfθpωq

Bθr

ˇ

ˇ

ˇ

ˇ

sup
}x}2“1

1

2π

ż 2π

0

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

s“1

xse
isω

ˇ

ˇ

ˇ

ˇ

ˇ

2

dω “ sup
ω

ˇ

ˇ

ˇ

ˇ

Bfθpωq

Bθr

ˇ

ˇ

ˇ

ˇ

.
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By using the same argument one can show that the ath derivative is

›

›

›

›

BaΓnpfθq

Bθr1 . . . Bθra

›

›

›

›

spec

ď sup
ω

ˇ

ˇ

ˇ

ˇ

Bafθpωq

Bθr1 . . . Bθra

ˇ

ˇ

ˇ

ˇ

“
ÿ

rPZ

ˇ

ˇ

ˇ

ˇ

Bacpr; fθq

Bθr1 . . . Bθra

ˇ

ˇ

ˇ

ˇ

ď Ca. (A.22)

This general bound will be useful when evaluating the higher order derivatives below. Substituting

(A.22) into (A.21) gives

›

›

›

›

B

Bθr

”

ϕ
n
pτq ´ φ

n
pτq

ı

›

›

›

›

2

ď f0

ˆ

C1

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2
` C1

8
ÿ

j“n`1

|φjpτq| ` C0

8
ÿ

j“n`1

}∇θφjpτq}1

˙

.

This proves the result for i “ 1.

Proof for the case i “ 2 We differentiate both sides of (A.19) with respect to θr2 to give the second

derivative

ˆ

B2Γnpfθq

Bθr1Bθr2

˙

”

ϕ
n
pτq ´ φ

n
pτq

ı

`
BΓnpfθq

Bθr2

B

Bθr1

”

ϕ
n
pτq ´ φ

n
pτq

ı

`

BΓnpfθq

Bθr1

B

Bθr2

”

ϕ
n
pτq ´ φ

n
pτq

ı

` Γnpfθq

ˆ

B2

Bθr2Bθr1

”

ϕ
n
pτq ´ φ

n
pτq

ı

˙

“

8
ÿ

j“n`1

„

B2φjpτq

Bθr2Bθr1
cn,j `

Bφjpτq

Bθr1

Bcn,j
Bθr2

`
Bφjpτq

Bθr2

Bcn,j
Bθr1

` φjpτq
B2cn,j
Bθr2Bθr1



.

(A.23)

Rearranging the above to isolate B2

Bθr2Bθr1

”

ϕ
n
pτq ´ φ

n
pτq

ı

gives

B2

Bθr1Bθr2

”

ϕ
n
pτq ´ φ

n
pτq

ı

“ ´Γnpfθq
´1

ˆ

B2Γnpfθq

Bθr1Bθr2

˙

”

ϕ
n
pτq ´ φ

n
pτq

ı

´ Γnpfθq
´1BΓnpfθq

Bθr2

B

Bθr1

”

ϕ
n
pτq ´ φ

n
pτq

ı

´Γnpfθq
´1BΓnpfθq

Bθr1

B

Bθr2

”

ϕ
n
pτq ´ φ

n
pτq

ı

`Γnpfθq
´1

8
ÿ

j“n`1

„

B2φjpτq

Bθr2Bθr1
cn,j `

Bφjpτq

Bθr1

Bcn,j
Bθr2

`
Bφjpτq

Bθr2

Bcn,j
Bθr1

` φjpτq
B2cn,j
Bθr2Bθr1



.
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Taking the `2-norm of B2

Bθr1Bθr2

”

ϕ
n
pτq ´ φ

n
pτq

ı

and using (A.22) gives

›

›

›

›

B2

Bθr1Bθr2

”

ϕ
n
pτq ´ φ

n
pτq

ı

›

›

›

›

2

ď f0

ˆ

C2

›

›

›
ϕ
n
pτq ´ φ

n
pτq

›

›

›

2
` 2C1

›

›

›
∇θrϕnpτq ´ φnpτqs

›

›

›

2

`C0

8
ÿ

j“n`1

›

›∇2φjpτq
›

›

1
` 2C1

8
ÿ

j“n`1

}∇φjpτq}1 ` C2

8
ÿ

j“n`1

|φjpτq|

˙

.

This proves the result for i “ 2. The proof for i ą 2 follows using a similar argument (we omit the

details). l

The above result gives an `2-bound between the derivatives of the finite and infinite predictors.

However, for our purposes an `1-bound is more useful. Thus we use the Cauchy-Schwarz inequal-

ity and norm inequality } ¨ }2 ď } ¨ }1 to give the `1-bound

›

›

›

›

Bi

Bθr1 . . . Bθri

”

ϕ
n
pτ ; fθq ´ φnpτ ; fθq

ı

›

›

›

›

1

ď n1{2f0

ˆ

ÿ

a1`a2“i

a2‰i

ˆ

i

a1

˙

Ca1

›

›

›
∇a2
θ rϕnpτ ; fθq ´ φnpτ ; fθqs

›

›

›

1
`

ÿ

b1`b2“i

ˆ

i

b1

˙

Cb1

8
ÿ

j“n`1

›

›∇b2
θ φjpτ ; fθq

›

›

1

˙

, (A.24)

this incurs an additional n1{2 term. Next, considering all the partial derivatives with respect to θ of

order i and using (A.16) we have

n
ÿ

t“1

}∇i
θrφt,npτ ; fθq ´ φtpτ ; fθqs}1

ď din1{2f0

ˆ

ÿ

a1`a2“i

a2‰i

ˆ

i

a1

˙

Ca1

›

›

›
∇a2
θ rϕnpτ ; fθq ´ φnpτ ; fθqs

›

›

›

1
`

ÿ

b1`b2“i

ˆ

i

b1

˙

Cb1

8
ÿ

j“n`1

›

›∇b2
θ φjpτ ; fθq

›

›

1

˙

, (A.25)
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where d is the dimension of the vector θ. The above gives a bound in terms of the infinite predictors.

We now obtain a bound in terms of the corresponding ARp8q and MAp8q coefficients. To do this,

we recall that for τ ď 0, φjpτ ; fθq “
ř8

s“0 φs`jpfθqψ|τ |´jpfθq. Thus the partial derivatives of

φjpτ ; fθq give the bound

8
ÿ

j“n`1

}∇θφjpτ ; fθq}1 ď
8
ÿ

s“0

8
ÿ

j“n`1

`

|ψ|τ |´jpfθq| ¨ }∇θφs`jpfθq}1 ` |φs`jpfθq| ¨ }∇θψ|τ |´jpfθq}1
˘

.

Substituting the above bound into (A.25) and using Lemma A.1.1 for the case i “ 1 gives

n
ÿ

s“1

}∇θrφs,npτ ; fθq ´ φspτ ; fθqs}1

ď n1{2df0

"

C1pC0 ` 1q
8
ÿ

j“n`1

|φjpτ ; fθq| `

C0

8
ÿ

s“0

8
ÿ

j“n`1

`

|ψ|τ |´jpfθq| ¨ }∇θφs`jpfθq}1 ` |φs`jpfθq| ¨ }∇θψ|τ |´jpfθq}1
˘

*

. (A.26)

The above results are used to obtain bounds between the derivatives of the Whittle and Gaussian

likelihood in Appendix A.3. Similar bounds can also be obtained for the higher order derivatives
řn
s“1 }∇i

θrφs,npτ ; fθq ´ φspτ ; fθqs}1 in terms of the derivatives of the MAp8q and ARp8q coeffi-

cients.

A.3 The difference between the derivatives of the Gaussian and Whittle likelihoods

We now obtain an expression for the difference between the derivatives of the Gaussian likeli-

hood and the Whittle likelihood using the variant of Baxter’s inequality. These expression will be

used later for obtaining the bias of the Gaussian likelihood (as compared with the Whittle likeli-

hood).

For the Gaussian likelihood, we have shown in Theorem 2.4.1 that

X 1
nΓnpθq

´1Xn “ X 1
nF

˚
n∆npf

´1
θ qFnXn `X

1
nF

˚
n∆npf

´1
θ qDnpfθqXn,
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where the first term is the Whittle likelihood and the second term the additional term due to the

Gaussian likelihood. Clearly the derivative with respect to θ1 “ pθ1, . . . , θdq is

X 1
n∇i

θΓnpθq
´1Xn “ X 1

nF
˚
n∇i

θ∆npf
´1
θ qFnXn `X

1
nF

˚
n∇i

θr∆npf
´1
θ qDnpfθqsXn.

The first term on the right hand side is the derivative of the Whittle likelihood with respect to θ,

the second term is the additional term due to the Gaussian likelihood.

For the simplicity, assume θ is univariate. Our objective in the next few lemmas is to show that

›

›

›

›

X 1
nF

˚
n

di

dθi
∆npf

´1
θ qDnpfθqXn

›

›

›

›

1

“ Op1q,

which is a result analogous to Theorem 2.4.4, but for the derivatives. We will use this result

to prove Theorem B.1.1, in particular to show the derivatives of the Whittle likelihood and the

Gaussian likelihood (after normalization by n´1) differ by Opn´1q.

Just as in the proof of Theorem 2.4.4, the derivative of this term with respect to θ does not

(usually) have a simple analytic form. Therefore, analogous to Theorem 2.4.3 it is easier to replace

the derivatives of Dnpfθq with the derivatives of D8,npfθq, and show that the replacement error is

“small”.

Lemma A.3.1. Suppose Assumption 4.2.1(i),(iii) holds and g is a bounded function. Then for

1 ď i ď 3 we have

›

›

›

›

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq

›

›

›

›

1

“ Opn´K`3{2
q, (A.27)

and

›

›

›

›

›

F ˚n

i
ÿ

k“0

ˆ

i

k

˙

dk∆n

`

f´1
θ

˘

dθk
dk´iD8,npfθq

dθk´i

›

›

›

›

›

1

“ Op1q. (A.28)

PROOF. To bound (A.27), we use the expression for F ˚n∆npg
´1q pDnpfθq ´D8,npfθqq given in
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(4.34)

`

F ˚n∆npg
´1
q rDnpfθq ´D8,npfθqs

˘

s,t
“

ÿ

τď0

rtφt,npτ ; fθq ´ φtpτ ; fθquG1,nps, τ ; gq

` tφn`1´t,npτ ; fθq ´ φn`1´tpτ ; fθquG2,nps, τ ; gqs.

Differentiating the above with respect to θ gives

„

F ˚n∆npgq
d

dθ
pDnpfθq ´D8,npfθqq



s,t

“
ÿ

τď0

„

G1,nps, τq
d

dθ
rφt,npτq ´ φtpτqs `G2,nps, τq

d

dθ
rφn`1´tpτq ´ φn`1´tpτqs



“ Ts,t,1 ` Ts,t,2.

We recall that equation (A.26) gives the bound

n
ÿ

s“1

ˇ

ˇ

ˇ

ˇ

d

dθ
rφs,npτ ; fθq ´ φspτ ; fθqs

ˇ

ˇ

ˇ

ˇ

ď n1{2f0

"

C1pCf,0 ` 1q
8
ÿ

j“n`1

|φjpτ ; fθq| `

C0

8
ÿ

s“0

8
ÿ

j“n`1

ˆ

|ψ|τ |´jpfθq| ¨

ˇ

ˇ

ˇ

ˇ

d

dθ
φs`jpfθq

ˇ

ˇ

ˇ

ˇ

` |φs`jpfθq| ¨

ˇ

ˇ

ˇ

ˇ

d

dθ
∇θψ|τ |´jpfθq

ˇ

ˇ

ˇ

ˇ

˙*

.

Substituting this into Ts,t,1 gives the bound

|Ts,t,1| ď Cn1{2
ÿ

τď0

G1,nps, τq

ˆ 8
ÿ

j“n`1

8
ÿ

s“0

|φs`j||ψ|τ |´j| `
8
ÿ

s“0

8
ÿ

j“n`1

ˇ

ˇ

ˇ

ˇ

dφs`j
dθ

ψ|τ |´j ` φs`j
dψ|τ |´j
dθ

ˇ

ˇ

ˇ

ˇ

˙

.

Using the same techniques used to prove Theorem 2.4.3 yields

n
ÿ

s,t“1

|Ts,t,1| “ O
`

n1{2n´K`1
˘

“ Opn´K`3{2
q.
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Similarly, we can show that
řn
s,t“1 |Ts,t,2| “ O

`

n1{2n´K`1
˘

“ Opn´K`3{2q. Altogether this gives

}F ˚n∆npgq pDnpfθq ´D8,npfθqq}1 “ Opn´K`3{2
q.

This proves (A.27) for the case i “ 1. The proof for the cases i “ 2, 3 is similar.

To prove (A.28) we use the same method used to prove Theorem 2.4.3, equation (2.40). But

with dkf´1
θ

dθk
replacing fθ in ∆np¨q and di´k

dθk
φjpτ ; fθq “

di´k

dθk

ř8

s“0 φs`jψ|τ |´j replacing φjpτ ; fθq “
ř8

s“0 φs`jψ|τ |´j in Dnpfθq. We omit the details. l

We now apply the above results to quadratic forms of random variables.

Corollary A.3.1. Suppose Assumptions 4.2.1 (i),(iii) hold and g is a bounded function. Further, if

tXtu is a time series where supt }Xt}E,2q “ }X}E,2q ă 8 (for some q ą 1), then

›

›

›

›

1

n
X 1
n

„

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq



Xn

›

›

›

›

E,q
“ Opn´K`1{2

q, (A.29)

and

›

›

›

›

›

1

n
X 1
nF

˚
n

i
ÿ

`“0

ˆ

i

`

˙

d`∆n

`

f´1
θ

˘

dθ`
d`´iD8,npfθq

dθ`´i
Xn

›

›

›

›

›

E,q

“ Opn´1
q (A.30)

for i “ 1, 2 and 3.

PROOF. To prove (A.29), we observe that

›

›

›

›

1

n
X 1
n

„

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq



Xn

›

›

›

›

E,q

ď
1

n

n
ÿ

s,t“1

ˇ

ˇ

ˇ

ˇ

ˇ

„

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq



s,t

ˇ

ˇ

ˇ

ˇ

ˇ

}XsXt}E,q

“
1

n
sup
t
}Xt}

2
E,2q

n
ÿ

s,t“1

ˇ

ˇ

ˇ

ˇ

ˇ

„

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq



s,t

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

n
}X}2E,2q

›

›

›

›

F ˚n∆npgq
di

dθi
pDnpfθq ´D8,npfθqq

›

›

›

›

1

“ Opn´K`1{2
q
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where the above follows from Lemma A.3.1, equation (A.27). This proves (A.29).

To prove (A.30) we use the the bound in (A.28) together with a similar proof to that described

above. This immediately proves (A.30). l

We now apply the above result to the difference in the derivatives of the Gaussian and Whittle

likelihood. It is straightforward to show that

X 1
nF

˚
n

di

dθi
∆npf

´1
θ qDnpfθqXn (A.31)

“ X 1
nF

˚
n

«

i
ÿ

`“0

ˆ

i

`

˙

d`∆n

`

f´1
θ

˘

dθ`
d`´iDnpfθq

dθ`´i

ff

Xn

“ X 1
nF

˚
n

«

i
ÿ

`“0

ˆ

i

`

˙

d`∆n

`

f´1
θ

˘

dθ`
d`´iD8,npfθq

dθ`´i

ff

Xn

`X 1
nF

˚
n

˜

i
ÿ

`“0

ˆ

i

`

˙

d`∆n

`

f´1
θ

˘

dθ`

„

d`´iDnpfθq

dθ`´i
´
d`´iD8,npfθq

dθ`´i



¸

Xn. (A.32)

First we study the second term on the right hand side of the above. By applying Corollary A.3.1

(and under Assumption 4.2.1) for 1 ď i ď 3 we have

›

›

›

›

n´1X 1
nF

˚
n

ˆ

di

dθi
∆npf

´1
θ q rDnpfθq ´D8,npfθqs

˙

Xn

›

›

›

›

E,1

“

›

›

›

›

›

n´1X 1
nF

˚
n

i
ÿ

`“0

ˆ

i

`

˙

d`∆n

`

f´1
θ

˘

dθ`

„

d`´iDnpfθq

dθ`´i
´
d`´iD8,npfθq

dθ`´i



Xn

›

›

›

›

›

E,1

“ Opn´K`1{2
q. (A.33)

On the other hand, the first term on the right hand side of (A.31) has the bound

›

›

›

›

n´1X 1
nF

˚
n

di

dθi
“

∆npf
´1
θ qDnpfθq

‰

Xn

›

›

›

›

E,1
“ Opn´1

q. (A.34)
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APPENDIX B

THE BIAS OF THE DIFFERENT CRITERIA *

In this section, we derive the approximate bias of the Gaussian, Whittle, boundary corrected

and hybrid Whittle likelihoods under quite general assumptions on the underlying time series tXtu.

The bias we evaluate will be in the sense of Bartlett (1953) and will be based on the second order

expansion of the loss function. We mention that for certain specific models (such as the speci-

fied AR, or certain MA or ARMA) the bias of the least squares, Whittle likelihood or maximum

likeihood estimators are given in Taniguchi (1983); Tanaka (1984); Shaman and Stine (1988).

B.1 Bias for the estimator of one unknown parameter

In order to derive the limiting bias, we require the following definitions

Ipθq “ ´
1

2π

ż 2π

0

ˆ

d2fθpωq
´1

dθ2

˙

fpωqdω and Jpgq “
1

2π

ż 2π

0

gpωqfpωqdω.

For real functions g, h P L2r0, 2πs we define

V pg, hq “
2

2π

ż 2π

0

gpωqhpωqfpωq2dω

`
1

p2πq2

ż 2π

0

ż 2π

0

gpω1qhpω2qf4pω1,´ω1, ω2qdω1dω2, (B.1)

where f4 denotes the fourth order cumulant density of the time series tXtu. Further, we define

BG,npθq “ Re
2

n

n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
d

dθ

”

φpωk,n; fθqφ
8
t pωk,n; fθq

ı

BK,npθq “
1

n

n
ÿ

k“1

fnpωk,nq
dfθpωk,nq

´1

dθ

*Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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where fnpωkq “
ş

Fnpω ´ λqfpλqdλ and Fnp¨q is the Fejér kernel of order n.

Theorem B.1.1. Suppose that the parametric spectral densities tfθ; θ P Θu satisfy Assumptions

4.2.1. Suppose the underlying time series tXtu is a stationary time series with spectral density f

and satisfies Assumption 4.2.2. Let pθpGqn , pθpKqn and pθ
pW q
n , and pθ

pHq
n be defined as in (4.17). Then the

asymptotic bias is

EθrpθpGqn ´ θns “ Ipθq´1
pBK,npθnq `BG,npθnqq ` n

´1Gpθnq `Opn
´3{2

q

EθrpθpKqn ´ θns “ Ipθq´1BK,npθnq ` n
´1Gpθnq `Opn

´3{2
q

EθrpθpW qn ´ θns “ n´1Gpθnq `O
`

p3n´3{2
` n´1p´K`1

˘

and EθrpθpHqn ´ θns “
H2,n

H2
1,n

Gpθnq `O
`

p3n´3{2
` n´1p´K`1

˘

where Hq,n “
řn
t“1 hnpt{nq

q,

Gpθq “ Ipθq´2V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

` 2´1Ipθq´3V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

J

ˆ

d3f´1
θ

dθ3

˙

,

and V pg, hq is defined in (B.1).

PROOF. In Theorem 4.3.1 we showed that

|pθpW qn ´ rθpW qn | “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

and |pθpHqn ´ rθpHqn | “ Op

ˆ

p3

n3{2
`

1

npK´1

˙

,

where pθ
pW q
n “ arg minxWp,npθq, rθ

pW q
n “ arg minWnpθq, pθ

pHq
n “ arg min pHp,npθq, and

rθ
pHq
n “ arg minHnpθq. We will show that the asymptotic bias of rθ

pW q
n and rθ

pHq
n (under certain

conditions on the taper) are of order Opn´1q, thus if p3n´1{2 Ñ 0 as n, pÑ 8, then the infeasible

estimators and feasible estimators share the same asymptotic bias. Therefore in the proof we obtain

the bias of the infeasible estimators.

Now we obtain a general expansion (analogous to the Bartlett correction). Let Lnp¨q denote the
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general minimization criterion (it can be Lnpθq, Knpθq, Wnpθq, or Hnpθq) and pθ “ arg minLnpθq.

For all the criteria, it is easily shown that

ppθ ´ θq “ Upθq´1dLnpθq

dθ
`Oppn

´1
q

where Upθq “ ´Erd2Ln
dθ2
s and

dLnpθq

dθ
` ppθ ´ θq

d2Lnpθq

dθ2
`

1

2
ppθ ´ θq2

d3Lnpθq

dθ3
“ Oppn

´3{2
q.

Ignoring the probabilistic error, the first and second order expansions are

ppθ ´ θq « Upθq´1dLnpθq

dθ
, (B.2)

and
dLnpθq

dθ
` ppθ ´ θq

d2Lnpθq

dθ2
`

1

2
ppθ ´ θq2

d3Lnpθq

dθ3
« 0.

The method described below follows the Bartlett correction described in Bartlett (1953) and Cox

and Snell (1968). Taking expectation of the above we have

E
„

dLnpθq

dθ



` E
„

ppθ ´ θq
d2Lnpθq

dθ2



`
1

2
E
„

ppθ ´ θq2
d3Lnpθq

dθ3



“ E
„

dLnpθq

dθ



` E
”

ppθ ´ θq
ı

E
„

d2Lnpθq

dθ2



` cov

„

ppθ ´ θq,
d2Lnpθq

dθ2



`
1

2
E
”

ppθ ´ θq2
ı

E
„

d3Lnpθq

dθ3



`
1

2
cov

„

ppθ ´ θq2,
d3Lnpθq

dθ3



.

Substituting ppθ ´ θq « Upθq´1 dLnpθq
dθ

into the last three terms on the right hand side of the above
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gives

E
ˆ

dLnpθq

dθ

˙

´ UpθqEppθ ´ θq ` Upθq´1cov

ˆ

dLnpθq

dθ
,
d2Lnpθq

dθ2

˙

`2´1Upθq´2E
ˆ

dLnpθq

dθ

˙2

E
ˆ

d3Lnpθq

dθ3

˙

`2´1Upθq´2cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

« 0.

Using the above to solve for Eppθ ´ θq gives

Eppθ ´ θq “ Upθq´1E
ˆ

dLnpθq

dθ

˙

` Upθq´2cov

ˆ

dLnpθq

dθ
,
d2Lnpθq

dθ2

˙

`2´1Upθq´3E
ˆ

dLnpθq

dθ

˙2

E
ˆ

d3Lnpθq

dθ3

˙

` 2´1Upθq´3cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

“ Upθq´1E
ˆ

dLnpθq

dθ

˙

` Upθq´2cov

ˆ

dLnpθq

dθ
,
d2Lnpθq

dθ2

˙

`2´1Upθq´3

«

var

ˆ

dLnpθq

dθ

˙

`

"

E
„

dLnpθq

dθ

*2
ff

E
ˆ

d3Lnpθq

dθ3

˙

`2´1Upθq´3cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

.

Thus

Eppθ ´ θq “ I0 ` I1 ` I2 ` I3 ` I4 (B.3)
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where

I0 “ Upθq´1E
ˆ

dLnpθq

dθ

˙

I1 “ Upθq´2cov

ˆ

dLnpθq

dθ
,
d2Lnpθq

dθ2

˙

I2 “ 2´1Upθq´3var

ˆ

dLnpθq

dθ

˙

E
ˆ

d3Lnpθq

dθ3

˙

I3 “ 2´1Upθq´3

"

E
ˆ

dLnpθq

dθ

˙*2

E
ˆ

d3Lnpθq

dθ3

˙

I4 “ 2´1Upθq´3cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

.

Note that the term E
´

dLnpθq
dθ

¯

will be different for the four quasi-likelihoods (and will be of order

Opn´1q). However the remaining terms are asymptotically the same for three quasi-likelihoods

and will be slightly different for the hybrid Whittle likelihood.

The first derivative We first obtain expressions for E
´

dLnpθq
dθ

¯

for the four quasi-likelihoods:

E
ˆ

dKnpθq

dθ

˙

“
1

n

n
ÿ

k“1

Er|Jnpωk,nq|2s
d

dθ
fθpωk,nq

´1
“

1

n

n
ÿ

k“1

fnpωk,nq
d

dθ
fθpωk,nq

´1
“ BK,npθq,

where fnpωq “
ş

Fnpω ´ λqfpλqdλ and Fn is the Fejér kernel of order n.

To obtain the expected derivative of Lnpθq we recall that

E
„

d

dθ
Lnpθq



“ E
„

d

dθ
Knpθq



` E
„

n´1X 1
nF

˚
n

d

dθ
∆npf

´1
θ qDnpfθqXn



.
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Now by replacing Dnpfθq with D8,npfθq and using (A.31) we have

E
„

d

dθ
Lnpθq



“ E
„

d

dθ
Knpθq



` E
„

n´1X 1
nF

˚
n

d

dθ
∆npf

´1
θ qD8,npfθqXn



`E
„

n´1X 1
nF

˚
n

d

dθ
∆n

`

f´1
θ

˘

pDnpfθq ´D8,npfθqqXn



“ E
„

d

dθ
Knpθq



` n´1
n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
d

dθ
ϕt,npωk,n; fθq

`n´1E
„

X 1
nF

˚
n

d

dθ
∆n

`

f´1
θ

˘

pDnpfθq ´D8,npfθqqXn



where ϕt,npω; fθq “ σ´2
”

φpω; fθqφ
8
t pω; fθq ` e

iωφpω; fθqφ8n`1´tpω; fθq
ı

. The first term on the

RHS of the above is BK,npθq. Using the change of variables t1 “ n ` 1 ´ t, the second term in

RHS above can be written as

n´1
n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
d

dθ
ϕt,npωk,n; fθq

“ n´1
n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

d

dθ

”

e´isωk,nφpωk,n; fθqφ
8
t pωk,n; fθq ` e

´ips´1qωk,nφpωk,n; fθqφ8n`1´tpωk,n; fθq
ı

“ n´1
n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
d

dθ
φpωk,n; fθqφ

8
t pωk,n; fθq

`n´1
n
ÿ

s,t1“1

cps´ n´ 1` t1q
1

n

n
ÿ

k“1

e´ips´1qωk,n
d

dθ
φpωk,n; fθqφ8t1 pωk,n; fθq plet t1 “ n` 1´ tq

“ Re
2

n

n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
d

dθ
φpωk,n; fθqφ

8
t pωk,n; fθq “ BG,npθq.

Finally, by using Corollary A.3.1 we have

n´1

›

›

›

›

X 1
nF

˚
n

d

dθ
∆npf

´1
θ q rDnpfθq ´D8,npfθqsXn

›

›

›

›

E,1
“ Opn´K`1{2

q.

Thus the derivative of the Gaussian likelihood is

E
ˆ

dLnpθq
dθ

˙

“ BK,npθq `BG,npθq `Opn
´K`1{2

q.
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Next we consider the boundary corrected Whittle likelihood. By using that

Er rJnpωk,n; fqJnpωk,nqs “ fpωk,nq

we have

E
ˆ

dWnpθq

dθ

˙

“
1

n

n
ÿ

k“1

Er rJnpωk,n; fqJnpωk,nqs
d

dθ
fθpωk,nq

´1

“
1

n

n
ÿ

k“1

fpωk,nq
d

dθ
fθpωk,nq

´1.

Finally, the analysis of Hnpθq is identical to the analysis of Wnpθq and we obtain

E
ˆ

dHnpθq

dθ

˙

“
1

n

n
ÿ

k“1

Er rJnpωk,n; fqJhn,npωk,nqs
d

dθ
fθpωk,nq

´1

“
1

n

n
ÿ

k“1

fpωk,nq
d

dθ
fθpωk,nq

´1.

In summary, evaluating the above at the best fitting parameter θn and by Assumption 4.2.1(ii) gives

E
ˆ

dKnpθq

dθ

˙

uθ“θn “ BK,npθnq

E
ˆ

dLnpθq
dθ

˙

uθ“θn “ BK,npθnq `BG,npθnq `Opn
´K`1{2

q

and E
ˆ

dWnpθq

dθ

˙

uθ“θn “ E
ˆ

dHnpθq

dθ

˙

uθ“θn “ 0. (B.4)

It can be shown that BK,npθnq “ Opn´1q and BG,npθnq “ Opn´1q. These terms could be negative

or positive so there is no clear cut answer as to whether BK,npθnq or BK,npθnq `BG,npθnq is larger

(our simulations results suggest that often BK,npθnq tends to be larger).

The second and third order derivatives The analysis of all the higher order terms will require com-

parisons between the derivatives of Lnpθq, Knpθq,Wnpθq and Hnpθq. We first represent the deriva-
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tives of the Gaussian likelihood in terms of the Whittle likelihood

diLnpθq
dθi

“
diKnpθq

dθi
` E

„

n´1X 1
nF

˚
n

di

dθi
∆npf

´1
θ qDnpfθqXn



.

By using (A.34), for 1 ď i ď 3 we have

›

›

›

›

n´1X 1
nF

˚
n

di

dθi
∆npf

´1
θ qDnpfθqXn

›

›

›

›

E,1
“ Opn´1

q. (B.5)

Similarly, we represent the derivatives of Wnpθq and Hp,npθq in terms of the derivatives of Knpθq

diWnpθq

dθi
“

diKnpθq

dθi
` Ci,n

diHnpθq

dθi
“

diKn,hn
pθq

dθi
`Di,n

where Kn,hn
pθq “ n´1

řn
k“1

Jnpωk,nqJn,hn pωk,nq

fθpωk,nq
and

Ci,n “
1

n

n
ÿ

k“1

di

dθi

pJnpωk,n; fqJnpωk,nq

fθpωk,nq
“

1

n
X 1
nF

˚
n∆np

di

dθi
f´1
θ qDnpfqXn

Di,n “
1

n

n
ÿ

k“1

di

dθi

pJnpωk,n; fqJn,hnpωk,nq

fθpωk,nq
“

1

n
X 1
nHnF

˚
n∆np

di

dθi
f´1
θ qDnpfqXn,

where Hn “ diagph1,n, . . . , hn,nq. In the analysis of the first order derivative obtaining an exact

bound between each “likelihood” and the Whittle likelihood was important. However, for the

higher order derivatives we simply require a moment bound on the difference. To bound Ci,n, we

use that

›

›

›

›

F ˚n∆np
di

dθi
f´1
θ qDnpfq

›

›

›

›

1

ď

›

›

›

›

F ˚n∆np
di

dθi
f´1
θ qrDnpfq ´D8,npfqs

›

›

›

›

1

`

›

›

›

›

F ˚n∆np
di

dθi
f´1
θ qD8,npfq

›

›

›

›

1

.

We use a similar method to the proof of Theorem 2.4.3, equation (2.40) and Theorem 2.4.4, equa-
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tion (2.43) with ∆np
di

dθi
f´1
θ q and D8,npfq replacing ∆npf

´1
θ q and D8,npfθq respectively together

with Assumption 4.2.1 and 4.2.2. By using the proof of Theorem 2.4.3, equation (2.40), we have

}F ˚n∆np
di

dθi
f´1
θ qrDnpfq ´ D8,npfqs}1 “ Opn´K`1q. Similarly, by using the proof of Theorem

2.4.4, equation (2.43) we have }F ˚n∆np
di

dθi
f´1
θ qD8,npfq}1 “ Op1q. Altogether this gives

pE|Ci,n|2q1{2 “ n´1

›

›

›

›

X 1
nF

˚
n∆np

di

dθi
f´1
θ qDnpfqXn

›

›

›

›

E,2
“ Opn´1

q. (B.6)

For the hybrid likelihood, we use that supt,n |ht,n| ă 8, this gives

}HnF
˚
n∆np

di

dθi
f´1
θ qDnpfq}1 ď psup

t
ht,nq ˆ }F

˚
n∆np

di

dθi
f´1
θ qDnpfq}1 “ Op1q.

Therefore, under the condition that tht,nu is a bounded sequence

pE|Di,n|
2
q
1{2
“ n´1

›

›

›

›

HnX
1
nF

˚
n∆np

di

dθi
f´1
θ qDnpfqXn

›

›

›

›

E,2
“ O

`

n´1
˘

. (B.7)

Thus the expectations of the derivatives are

E
ˆ

diLnpθq
dθi

˙

“ E
ˆ

diKnpθq

dθi

˙

`Opn´1
q

E
ˆ

diWnpθq

dθi

˙

“ E
ˆ

diKnpθq

dθi

˙

`Opn´1
q

E
ˆ

diHnpθq

dθi

˙

“ E
ˆ

diKnpθq

dθi

˙

`O
`

n´1
˘

.

This gives the expectation of the second and third derivatives of all likelihoods in terms of Ipθq

and Jpd
3f´1
θ

dθ3
q:

E
ˆ

d2Lnpθq

dθ2

˙

“ ´Ipθq `Opn´1
q, and E

ˆ

d3Lnpθq

dθ3

˙

“ Jp
d3f´1

θ

dθ3
q `Opn´1

q.

Bounds for the covariances between the derivatives The terms I1, I2 and I4 all contain the covari-

ance between various likelihoods and its derivatives. Thus to obtain expression and bounds for
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these terms we use that

var

ˆ

di

dθi
Knpθq

˙

“ Opn´1
q, (B.8)

where the above can be proved using Brillinger (1981), Theorem 4.3.2. Further, if the data taper

tht,nu is such that ht,n “ cnhnpt{nq where cn “ n{H1,n and hn : r0, 1s Ñ R is a sequence of taper

functions which satisfy the taper conditions in Section 5, Dahlhaus (1988), then

var

ˆ

di

dθi
Kn,hn

pθq

˙

“ O

ˆ

H2,n

H2
1,n

˙

. (B.9)

By using (B.5), (B.6), and (B.8) we have

cov

ˆ

dLnpθq
dθ

,
d2Lnpθq
dθ2

˙

“ cov

ˆ

dKnpθq

dθ
,
d2Knpθq

dθ2

˙

`Opn´3{2
q

cov

ˆ

dWnpθq

dθ
,
d2Wnpθq

dθ2

˙

“ cov

ˆ

dKnpθq

dθ
,
d2Knpθq

dθ2

˙

`Opn´3{2
q

var

ˆ

dLnpθq
dθ

˙

“ var

ˆ

dKnpθq

dθ

˙

`Opn´3{2
q

var

ˆ

dWnpθq

dθ

˙

“ var

ˆ

dKnpθq

dθ

˙

`Opn´3{2
q.

For the hybrid Whittle likelihood, by using (B.7) and (B.9)

cov

ˆ

dHnpθq

dθ
,
d2Hnpθq

dθ2

˙

“ cov

ˆ

dKn,hn
pθq

dθ
,
d2Kn,hn

pθq

dθ2

˙

`O

˜

H
1{2
2,n

nH1,n

¸

var

ˆ

dHnpθq

dθ

˙

“ var

ˆ

dKn,hn
pθq

dθ

˙

`O

˜

H
1{2
2,n

nH1,n

¸

.

Using that H2,n{H
2
1,n “ Opn´1q, we show that the above error terms OpH1{2

2,n {pnH1,nqq (for the

hybrid Whittle likelihood) is the same as the other likelihoods. Next, having reduced the above

covariances to those of the derivatives of Knpθq and Kn,hn
pθq. We first focus on Knpθq. By using

the expressions for cumulants of DFTs given in Brillinger (1981), Theorem 4.3.2 and well-known
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cumulant arguments we can show that

cov

ˆ

dKnpθq

dθ
,
d2Knpθq

dθ2

˙

“ n´1V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

`Opn´2
q

and var

ˆ

dKnpθq

dθ

˙

“ n´1V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

`Opn´2
q.

To obtain expressions for the covariance involving Kn,hn
pθq, we apply similar techniques as those

developed in Dahlhaus (1983), Lemma 6 together with cumulant arguments. This gives

cov

ˆ

dKn,hn
pθq

dθ
,
d2Kn,hn

pθq

dθ2

˙

“
H2,n

H2
1,n

V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

`O

ˆ

H2,n

nH2
1,n

˙

and var

ˆ

dKn,hn
pθq

dθ

˙

“
H2,n

H2
1,n

V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

`O

ˆ

H2,n

nH2
1,n

˙

.

These results yield expressions for I1 and I2 (we obtain these below).

Expression for I0 and a bound for I3. Using the results above we have

• The Gaussian likelihood

I0 “ Ipθnq
´1
rBK,npθnq `BG,npθnqs `Opn

´2
q (B.10)

• The Whittle likelihood

I0 “ Ipθnq
´1BK,npθnq `Opn

´2
q

• The boundary corrected Whittle and hybrid Whittle likelihood

I0 “ 0

However, since for all the likelihoods ErdLnpθq
dθ

uθ“θns “ Opn´1q, this implies that for all the likeli-
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hoods the term I3 is

I3 “ 2´1Upθq´3

"

E
ˆ

dLnpθq

dθ

˙*2

E
ˆ

d3Lnpθq

dθ3

˙

“ Opn´2
q.

Expression for I1 and I2. For the Gaussian, Whittle, and boundary corrected Whittle likelihoods

we have

I1 “ n´1Ipθnq
´2V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

`Opn´3{2
q

I2 “ n´12´1Ipθnq
´3V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

J

ˆ

d3f´1
θ

dθ3

˙

`Opn´3{2
q.

For the hybrid Whittle likelihood we obtain a similar expression

I1 “
H2,n

H2
1,n

Ipθnq
´2V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

`O
`

n´3{2
˘

I2 “
H2,n

H2
1,n

2´1Ipθnq
´3V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

J

ˆ

d3f´1
θ

dθ3

˙

`O
`

n´3{2
˘

.

A bound for I4 We now show that I4 has a lower order term than the dominating terms I0, I1 and

I2. We recall that

I4 “ 2´1Upθq´3cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

.

To bound the above we focus on cov

ˆ

´

dLnpθq
dθ

¯2

, d
3Lnpθq
dθ3

˙

. By using indecomposable partitions
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we have

cov

˜

ˆ

dLnpθq

dθ

˙2

,
d3Lnpθq

dθ3

¸

“ 2cov

ˆ

dLnpθq

dθ
,
d3Lnpθq

dθ3

˙

E
ˆ

dLnpθq

dθ

˙

`cum

ˆ

dLnpθq

dθ
,
dLnpθq

dθ

d3Lnpθq

dθ3

˙

`

„

E
ˆ

dLnpθq

dθ

˙2

E
ˆ

d3Lnpθq

dθ3

˙

.

We use (B.8), (B.5) and (B.6) to replace Lnpθq with Knpθq or Kh,npθq. Finally by using the

expressions for cumulants of DFTs given in Brillinger (1981), Theorem 4.3.2 we have that for the

non-hybrid likelihoods

I4 “ Opn´2
q

and for the hybrid Whittle likelihood

I4 “ O

ˆ

H2,n

nH2
1,n

˙

.

Thus, altogether for all the estimators we have that

ppθn ´ θnq “ I0 ` I1 ` I2 `Opn
´2
q,

where for the Gaussian, Whittle and boundary corrected Whittle likelihoods

I1 ` I2 “ n´1

„

Ipθnq
´2V

ˆ

df´1
θ

dθ
,
d2f´1

θ

dθ2

˙

` 2´1Ipθnq
´3V

ˆ

df´1
θ

dθ
,
df´1
θ

dθ

˙

J

ˆ

d3f´1
θ

dθ3

˙

`Opn´3{2
q

“ n´1Gpθnq `Opn
´3{2

q

and for the hybrid Whittle likelihood

I1 ` I2 “
H2,n

H2
1,n

Gpθnq `O
`

n´3{2
˘

.
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The terms for I0 are given in (B.10). This proves the result. l

Remark B.1.1. In the case that the model is linear, then f4pω1,´ω1, ω2q “ pκ4{σ
4qfpω1qfpω2q

where σ2 and κ4 is the 2nd and 4th order cumulant of the innovation in the model.

Furthermore, in the case the model is correct specification and linear, we can show that As-

sumption 4.2.1(ii) implies that fourth order cumulant term in V
´

df´1
θ

dθ
,
d2f´1

θ

dθ2

¯

and V
´

df´1
θ

dθ
,
df´1
θ

dθ

¯

is zero. This results in the fourth order cumulant term in Gp¨q being zero.

B.2 The bias for the AR(1) model

In general, it is difficult to obtain a simple expression for the bias defined in Theorem B.1.1, but

in the special case a modelARp1q is fitted to the data the bias can be found. In the calculation below

let θ denote the ARp1q coefficient for the best fitting ARp1q parameter. We assume Gaussianity,

which avoids dealing with the fourth order spectral density.

If the true model is a Gaussian ARp1q the bias for the various criteria is

• The Gaussian likelihood

ErpθGn ´ θs “ ´
1

n
θ `Opn´3{2

q

• The Whittle likelihood

ErpθKn ´ θs “ ´
3

n
θ `

1

n
θn´1

`Opn´3{2
q

• The boundary corrected Whittle likelihood

ErpθWn ´ θs “ ´
2

n
θ `Opp3n´3{2

` pnpK´1
q
´1
q

• The hybrid Whittle likelihood

ErpθHn ´ θs “ ´2
H2,n

H2
1,n

θ `Opp3n´3{2
` pnpK´1

q
´1
q.
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Moreover, if the Gaussian likelihood included the determinant term in the Gaussian likelihood, i.e.

rθGn “ arg minθrLnpθq ` n´1 log |Γnpfθq|s, then

ErrθGn ´ θs “ ´
2

n
θ `Opn´3{2

q.

We observe for the ARp1q model (when the true time series is Gaussian with an ARp1q represen-

tation) that the “true” Gaussian likelihood with the log-determinant term has a larger bias than the

Gaussian likelihood without the Gaussian determinant term.

The above bounds show that the Gaussian likelihood with the log-determinant term and the

boundary corrected Whittle likelihood have the same asymptotic bias. This is substantiated in

the simulations. However, in the simulations in Section 4.6.1, we do observe that the bias of the

Gaussian likelihood is a little less than the boundary corrected Whittle. The difference between

two likelihoods is likely due to differences in the higher order terms which are of order Opn´3{2q

(for the Gaussian likelihood) and Opp3n´3{2q (for the boundary corrected Whittle likelihood, due

to additional estimation of the predictive DFT).

PROOF. The inverse of the spectral density function and autocovariance function is

fθpωq
´1
“ σ´2

`

1` θ2
´ 2θ cospωq

˘

and cprq “
σ2θ|r|

1´ θ2
.

Thus

d

dθ
fθpωq

´1
“ 2σ´2

pθ ´ cosωq and
d2

dθ2
fθpωq

´1
“ 2σ´2.

This gives

Ipθq “ ´
1

2π

ż 2π

0

d2fθpωq
´1

dθ2
fpωqdω “ ´

1

πσ2

ż 2π

0

fpωqdω “ ´
2

σ2
cp0q. (B.11)
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Next we calculate BG,n, since φpωq “ 1´ θe´iω it is is easy to show

φ81 pωq “ θ and φ8j pωq “ 0 for j ě 2.

Therefore,

BG,npθq “ Re
2

n

n
ÿ

t,j“1

cpt´ jq
1

n

n
ÿ

k“1

e´itωk,n
d

dθ

”

φpωk,n; fθqφ
8
j pωk,n; fθq

ı

“
2σ´2

n

n
ÿ

t“1

cpt´ 1q
1

n

n
ÿ

k“1

e´itωk,n
d

dθ

“

p1´ θeiωk,nqθ
‰

“
2σ´2

n

n
ÿ

t“1

cpt´ 1q
1

n

n
ÿ

k“1

`

e´itωk,n ´ 2θe´ipt´1qωk,n
˘

“
2σ´2

n

n
ÿ

t“1

cpt´ 1q

«

1

n

n
ÿ

k“1

e´itωk,n ´
2θ

n

n
ÿ

k“1

e´ipt´1qωk,n

ff

The second summation (over k) is 0 unless t P t1, nu. Therefore,

BG,npθq “
2σ´2

n
cpn´ 1q ´

4σ´2θ

n
cp0q. (B.12)

To calculate BK,n we have

BK,npθq “
1

n

n
ÿ

k“1

fnpωk,nq
dfθpωk,nq

´1

dθ

“
2σ´2

n

n
ÿ

k“1

fnpωk,nq pθ ´ cospωk,nqq

“ 2σ´2

„

θcp0q ´

ˆ

n´ 1

n

˙

cp1q ´
1

n
cp1´ nq



“
2σ´2

n
rcp1q ´ cpn´ 1qs . (B.13)
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Altogether this gives

Ipθq´1
pBK,npθq `BG,npθqq “ ´

σ2

2ncp0q

`

2σ´2
rcp1q ´ cpn´ 1qs ` 2σ´2cpn´ 1q ´ 4σ´2θcp0q

˘

“ ´
1

ncp0q
pcp1q ´ 2θcp0qq “

θ

n
(B.14)

and

Ipθq´1BK,npθq “ ´
1

ncp0q
rcp1q ´ cpn´ 1qs “ ´

1

n
pθ ´ θn´1

q. (B.15)

Next, we calculate Gpθq. Since the third derivative of f´1
θ with respect to θ is zero we have

Gpθq “ Ipθq´2V

ˆ

d

dθ
f´1
θ ,

d2

dθ2
f´1
θ

˙

where

V

ˆ

d

dθ
f´1
θ ,

d2

dθ2
f´1
θ

˙

“
1

π

ż 2π

0

ˆ

2θ ´ 2 cospωq

σ2

˙ˆ

2

σ2

˙

fpωq2dω

“
4

σ4

1

π

ż 2π

0

rθ ´ cospωqs fpωq2dω

“
8

σ4
pθc2p0q ´ c2p1qq

where tc2prqu is the autocovariance function associated with fpωq2, it is the convolution of cprq

with itself;

c2prq “
ÿ

`PZ

cp`qcp`` rq

Using this expansion we have

V

ˆ

d

dθ
f´1
θ ,

d2

dθ2
f´1
θ

˙

“
8

σ4

ÿ

`PZ

cp`q rθcp`q ´ cp`` 1qs
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and

Gpθq “
σ4

4cp0q2
8

σ4
pθc2p0q ´ c2p1qq “

2

cp0q2
pθc2p0q ´ c2p1qq . (B.16)

Putting (B.16) with (B.14) gives

ErpθGn ´ θs « Ipθq´1
pBK,npθq `BG,npθqq ` n

´1Gpθq

“
θ

n
`

2

ncp0q2
pθc2p0q ´ c2p1qq ,

ErpθKn ´ θs « Ipθq´1BK,npθq ` n
´1Gpθq

“ ´
1

n
pθ ´ θn´1

q `
2

ncp0q2
pθc2p0q ´ c2p1qq ,

ErpθWn ´ θs «
2

ncp0q2
pθc2p0q ´ c2p1qq ,

ErpθHn ´ θs «
2

cp0q2
H2,n

H2
1,n

pθc2p0q ´ c2p1qq .

It is not entirely clear how to access the above. So now we consider the case that the model is fully

specified. Under correct specification we have

V

ˆ

d

dθ
f´1
θ ,

d2

dθ2
f´1
θ

˙

“
2σ2

π

ż 2π

0

fpωq2
dfθpωq

´1

dθ
dω

“ ´
2σ2

π

ż 2π

0

fpωq2
ˆ

1

fθpωq2

˙

dfθpωq

dθ
dω

“ ´
2σ2

π

ż 2π

0

dfθpωq

dθ
dω “ ´

2σ2

π

d

dθ

ż 2π

0

fθpωqdω

“ ´4σ2 d

dθ
cp0q “ ´

8σ4θ

p1´ θ2q2
.
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Thus Ipθq´2V
´

d
dθ
f´1
θ , d

2

dθ2
f´1
θ

¯

“ ´2θ{n. Substituting this into the above we have

ErpθpGqn ´ θs “
1

n
θ ´

2

n
θ `Opn´3{2

q “ ´
1

n
θ `Opn´3{2

q,

ErpθpKqn ´ θs “ ´
1

n

“

θ ´ θn´1
‰

´
2

n
θ ` opn´1

q « ´
3

n
θ `

1

n
θn´1

`Opn´3{2
q,

ErpθpW qn ´ θs “ ´
2

n
θ `Opn´3{2

q,

ErpθpHqn ´ θs “ ´2
H2,n

H2
1,n

θ `Opn´3{2
q.

This proves the main part of the assertion. To compare the above bias with the “true” Gaussian

likelihood, we consider the Gaussian likelihood with the log determinant term. First, consider the

correlation of AR(1) matrix pAnqs,t “ θ|s´t|. Then,

An`1 “

¨

˚

˝

An Bn

B1n 1

˛

‹

‚

, Bn “ pθ
n, ..., θq1.

Therefore, using block matrix determinant identity, |An`1| “ |An|p1´B
1
nA

´1
n Bnq. Moreover, it is

easy to show AnRn “ Bn, where Rn “ p0, ..., 0, θq
1. Thus

|An`1| “ |An|p1´B
1
nRnq “ |An|p1´ θ

2
q.

Using iteration, |An| “ p1´ θ2qn´2|A2| “ p1´ θ
2qn´1 and thus,

|Γnpfθq| “

ˇ

ˇ

ˇ

ˇ

σ2

1´ θ2
An

ˇ

ˇ

ˇ

ˇ

“

ˆ

σ2

1´ θ2

˙n

p1´ θ2
q
n´1

“
pσ2qn

1´ θ2
.

Then, by simple calculus,

d

dθ
n´1 log |Γnpfθq| “

2θ

np1´ θ2q
“

2σ´2

n
cp1q.
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and thus,

ErrθG ´ θs « Ipθq´1

ˆ

BK,npθq `BG,npθq `
d

dθ
n´1 log |Γnpfθq|

˙

` n´1Gpθq

“ Ipθq´1 1

n
p2σ´2cp1q ´ 4σ´2θcp0q ` 2σ´2cp1qq ´

2θ

n
“ ´

2θ

n
,

which proves the results. l

B.3 Bias for estimators of multiple parameters

We now generalize the ideas above to multiple unknown parameters. Suppose we fit the spectral

density fθpωq to the time series tXtu where θ “ pθ1, . . . , θdq are the unknown parameters in

Θ Ă Rd. Lnpθq, Knpθq, xWp,npθq and pHp,npθq denote the Gaussian likelihood, Whittle likelihood,

boundary corrected Whittle and hybrid Whittle likelihood defined in (4.16). Let pθpGqn , pθpW qn , pθpW qn

and pθ
pHq
n be the corresponding estimators defined in (4.17) and θn “ pθ1,n, ..., θd,nq is the best fitting

parameter defined as in (4.13). Then under Assumption 4.2.1 and 4.2.2 we have the following

asymptotic bias:

• The Gaussian likelihood (excluding the term n´1 log |Γnpθq|)

ErpθpGqj,n ´ θj,ns “
d
ÿ

r“1

Ipj,rq
“

Br,K,npθq `Br,G,npθq ` n
´1Grpθq

‰

`O
`

n´3{2
˘

• The Whittle likelihood has bias

ErpθpKqj,n ´ θj,ns “
d
ÿ

r“1

Ipj,rq
“

Br,K,npθq ` n
´1Grpθq

‰

`O
`

n´3{2
˘

.

• The boundary corrected Whittle likelihood has bias

ErpθpW qj,n ´ θj,ns “ n´1
d
ÿ

r“1

Ipj,rqGrpθq `O
`

p3n´3{2
` pnpK´1

q
´1
˘

.
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• The hybrid Whittle likelihood has bias

ErpθpHqj,n ´ θj,ns “
H2,n

H2
1,n

d
ÿ

r“1

Ipj,rqGrpθq `O
`

p3n´3{2
` pnpK´1

q
´1
˘

. (B.17)

PROOF. Let Lnpθq be the criterion and pθn “ arg minLnpθq and θn the best fitting parameter. We

use a similar technique used to prove Theorem B.1.1. The first order expansion is

pθn ´ θn “ Upθnq
´1∇θLnpθnq

where Upθq is the dˆ d matrix

Upθq “ ´E
“

∇2
θLnpθq

‰

.

Thus entrywise we have

pθr,n ´ θr,n “
d
ÿ

s“1

U r,sBLnpθq

Bθs

where U pr,sq denotes the pr, sq-entry of the d ˆ d matrix Upθnq´1. To obtain the “bias” we make

a second order expansion. For the simplicity, we omit the subscript n from pθr,n and θr,n. For

1 ď r ď d we evaluate the partial derivative

BLnpθq

Bθr
`

d
ÿ

s“1

ppθs ´ θsq
B2Lnpθq

BθsBθr
`

1

2

d
ÿ

s1,s2“1

ppθs1 ´ θs1qp
pθs2 ´ θs2q

B3Lnpθq

Bθs1Bθs2Bθr
« 0.

Taking expectation of the above gives

E
„

BLnpθq

Bθr



`

d
ÿ

s“1

E
„

ppθs ´ θsq
B2Lnpθq

BθsBθr



`
1

2

d
ÿ

s1,s2“1

E
„

ppθs1 ´ θs1qp
pθs2 ´ θs2q

B3Lnpθq

Bθs1Bθs2Bθr



« 0.
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We now replace the product of random variables with their covariances

E
„

BLnpθq

Bθr



`

d
ÿ

s“1

Erpθs ´ θssE
„

B2Lnpθq

BθsBθr



`

d
ÿ

s“1

cov

„

pθs ´ θs,
B2Lnpθq

BθsBθr



`
1

2

d
ÿ

s1,s2“1

cov
´

pθs1 ´ θs1 ,
pθs2 ´ θs2

¯

E
„

B3Lnpθq

Bθs1Bθs2Bθr



`
1

2

d
ÿ

s1,s2“1

Erpθs1 ´ θs1sErpθs2 ´ θs2sE
„

B3Lnpθq

Bθs1Bθs2Bθr



`
1

2

d
ÿ

s1,s2“1

cov

„

ppθs1 ´ θs1qp
pθs2 ´ θs2q,

B3Lnpθq

Bθs1Bθs2Bθr



« 0.

With the exception of Erpθs ´ θss, we replace pθs ´ θs in the above with their first order expansions
řd
j“1 U

ps,jq BLnpθq
Bθj

. This gives

E
„

BLnpθq

Bθr



´

d
ÿ

s“1

Erpθs ´ θssUs,r `
d
ÿ

s1,s2“1

U ps1,s2qcov

„

BLnpθq

Bθs2
,
B2Lnpθq

Bθs1Bθr



`
1

2

d
ÿ

s1,s2,s3,s4“1

U ps1,s3qU ps2,s4qcov

ˆ

BLnpθq

Bθs3
,
BLnpθq

Bθs4

˙

E
„

B3Lnpθq

Bθs1Bθs2Bθr



`
1

2

d
ÿ

s1,s2,s3,s4“1

U ps1,s3qU ps2,s4qE
„

BLnpθq

Bθs3



E
„

BLnpθq

Bθs4



E
„

B3Lnpθq

Bθs1Bθs2Bθr



`
1

2

d
ÿ

s1,s2,s3,s4“1

U ps1,s3qU ps2,s4qcov

„

BLnpθq

Bθs3

BLnpθq

Bθs4
,
B3Lnpθq

Bθs1Bθs2Bθr



« 0,

where Us,r denotes the ps, rq-entry of the dˆ d matrix Upθnq

Now we consider concrete examples of likelihoods. Using the same arguments as those used

in the proof of Theorem B.1.1 we have the last two terms of the above are of order Opn´2q or

OpH2,n{pnH
2
1,nqq depending on the likelihood used. This implies that

E
„

BLnpθq

Bθr



´

d
ÿ

s“1

Erpθs ´ θssUs,r `
d
ÿ

s1,s2“1

U ps1,s2qcov

„

BLnpθq

Bθs2
,
B2Lnpθq

Bθs1Bθr



`
1

2

d
ÿ

s1,s2,s3,s4“1

U ps1,s3qU ps2,s4qcov

ˆ

BLnpθq

Bθs3
,
BLnpθq

Bθs4

˙

E
„

B3Lnpθq

Bθs1Bθs2Bθr



« 0.
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Let

J pgq “
1

2π

ż 2π

0

gpωqfpωqdω

Ipθq “ ´
1

2π

ż 2π

0

r∇2
θfθpωq

´1
sfpωqdω

and Is,r (and Ips,rq) corresponds to the ps, rq-th element of Ipθnq (and I´1pθnq). So far, we have

no specified the likelihood Lnpθq. But to write a second order expansion for all four likelihoods

we set H2,n{H
2
1,n “ n´1 for the Gaussian, Whittle, and boundary corrected Whittle likelihood and

using the notation a similar proof to Theorem B.1.1 we have

E
„

BLnpθq

Bθr



´

d
ÿ

s“1

Is,rErpθs ´ θss `
H2,n

H2
1,n

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bf´1
θ

Bθs2
,
B2f´1

θ

Bθs1Bθr

˙

`
H2,n

2H2
1,n

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

« 0.

Thus

d
ÿ

s“1

Is,rErpθs ´ θss « E
„

BLnpθq

Bθr



`
H2,n

H2
1,n

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bf´1
θ

Bθs2
,
B2f´1

θ

Bθs1Bθr

˙

`
H2,n

2H2
1,n

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

.

In the final stage, to extract Erpθs ´ θss from the above we define the d-dimensional column vector

D1 “ pD1, . . . , Ddq, where Dr “
řd
s“1 Is,rErpθs ´ θss “ rIpθnqppθn ´ θnqsr. Substituting this in the

above gives

Dr « E
„

BLnpθq

Bθr



`
H2,n

H2
1,n

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bfθpωq
´1

Bθs2
,
B2fθpωq

´1

Bθs1Bθr

˙

`
H2,n

2H2
1,n

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

.
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Using that Erpθn ´ θns « Ipθnq
´1D and substituting this into the above gives the bias for pθj

Erpθj ´ θjs «

d
ÿ

r“1

Ipj,rq
„

E
„

BLnpθq

Bθr



`
H2,n

H2
1,n

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bfθpωq
´1

Bθs2
,
B2fθpωq

´1

Bθs1Bθr

˙

`
H2,n

2H2
1,n

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

.(B.18)

The above is a general result. We now obtain the bias for the different criteria. Let

Br,G,npθq “ Re
2

n

n
ÿ

s,t“1

cps´ tq
1

n

n
ÿ

k“1

e´isωk,n
B

Bθr

”

φpωk,n; fθqφ
8
t pωk,n; fθq

ı

Br,K,npθq “
1

n

n
ÿ

k“1

fnpωk,nq
Bfθpωk,nq

´1

Bθr

and Grpθq “

d
ÿ

s1,s2“1

Ips1,s2qV

ˆ

Bfθpωq
´1

Bθs2
,
B2fθpωq

´1

Bθs1Bθr

˙

`
1

2

d
ÿ

s1,s2,s3,s4“1

Ips1,s3qIps2,s4qV

ˆ

Bf´1
θ

Bθs3
,
Bf´1

θ

Bθs4

˙

J

ˆ

B3f´1
θ

Bθs1Bθs2Bθr

˙

.

Then, using similar technique from the univariate case, we can show

• The Gaussian likelihood: E rBLnpθq{Bθrs “ Br,G,npθq `Br,K,npθq.

• The Whittle likelihood: E rBKnpθq{Bθrs “ Br,K,npθq

• The boundary corrected Whittle and hybrid Whittle likelihood:

E rBWnpθq{Bθrs “ E rBHnpθq{Bθrs “ 0.

Substituting the above into (B.18) gives the four difference biases in (B.17). Thus we have proved

the result. l
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APPENDIX C

ADDITIONAL SIMULTIONS *

C.1 Figures and Table of results for the ARp1q and MAp1q for a non-Gaussian time series

In this section, we provide figures and table of the results in Section 4.6.1 when the innovations

follow a standardized chi-squared distribution two degrees of freedom, i.e. εt „ pχ2p2q ´ 2q{2

(this time the asymptotic bias will contain the fourth order cumulant term). The results are very

similar to the Gaussian innovations.

*Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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Figure C.1: Bias (first row) and the RMSE (second row) of the parameter estimates for the AR(1)
and MA(1) models where the innovations follow the standardized chi-squared distribution with 2
degrees of freedom. Length of the time series n “ 20(left), 50(middle), and 300(right).
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Likelihoods θ
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

AR(1), tetu „ pχ2p2q ´ 2q{2, n “ 20 MA(1), tetu „ pχ2p2q ´ 2q{2, n “ 20
Gaussian -0.007(0.21) -0.007(0.20) -0.029(0.19) -0.053(0.17) -0.069(0.13) -0.001(0.28) 0.030(0.25) 0.020(0.23) 0.004(0.20) 0.056(0.17)
Whittle -0.009(0.21) -0.016(0.20) -0.043(0.20) -0.086(0.18) -0.119(0.14) -0.005(0.27) 0.018(0.26) 0(0.24) -0.061(0.22) -0.153(0.21)

Boundary -0.007(0.22) -0.013(0.20) -0.035(0.20) -0.068(0.18) -0.097(0.13) -0.002(0.28) 0.024(0.26) 0.009(0.25) -0.030(0.23) -0.113(0.20)
Hybrid -0.002(0.22) -0.005(0.20) -0.026(0.20) -0.058(0.18) -0.088(0.13) 0.005(0.29) 0.035(0.26) 0.021(0.24) 0.004(0.20) -0.074(0.17)
Tapered -0.003(0.21) -0.011(0.20) -0.037(0.20) -0.077(0.18) -0.109(0.13) 0.002(0.28) 0.023(0.25) 0.002(0.23) -0.032(0.21) -0.112(0.18)

Debiased -0.011(0.21) -0.018(0.19) -0.040(0.20) -0.070(0.19) -0.090(0.15) -0.007(0.27) 0.021(0.25) 0.010(0.24) -0.039(0.24) -0.140(0.23)
AR(1), tetu „ pχ2p2q ´ 2q{2, n “ 50 MA(1), tetu „ pχ2p2q ´ 2q{2, n “ 50

Gaussian 0.004(0.13) -0.011(0.13) -0.012(0.11) -0.031(0.10) -0.029(0.07) 0.009(0.15) 0.003(0.15) 0.017(0.13) 0.014(0.12) 0.010(0.08)
Whittle 0.001(0.13) -0.016(0.13) -0.019(0.12) -0.044(0.10) -0.049(0.07) 0.005(0.14) -0.004(0.14) 0.004(0.14) -0.020(0.13) -0.065(0.12)

Boundary 0.001(0.13) -0.013(0.13) -0.012(0.12) -0.033(0.10) -0.036(0.07) 0.006(0.15) 0.001(0.15) 0.015(0.14) 0.001(0.12) -0.030(0.10)
Hybrid 0.003(0.13) -0.009(0.14) -0.010(0.12) -0.032(0.11) -0.034(0.07) 0.008(0.15) 0.005(0.15) 0.018(0.13) 0.010(0.12) -0.014(0.09)
Tapered 0.003(0.13) -0.011(0.14) -0.013(0.12) -0.036(0.11) -0.038(0.07) 0.007(0.15) 0.004(0.15) 0.014(0.13) 0(0.11) -0.026(0.08)

Debiased 0.002(0.13) -0.013(0.13) -0.014(0.11) -0.034(0.11) -0.030(0.08) 0.007(0.15) 0.001(0.15) 0.017(0.14) 0.015(0.14) -0.027(0.13)
AR(1), tetu „ pχ2p2q ´ 2q{2, n “ 300 MA(1), tetu „ pχ2p2q ´ 2q{2, n “ 300

Gaussian 0(0.06) -0.005(0.05) -0.004(0.05) -0.004(0.04) -0.006(0.03) 0(0.06) -0.002(0.05) 0(0.05) 0.003(0.04) 0.003(0.03)
Whittle -0.001(0.06) -0.006(0.05) -0.005(0.05) -0.006(0.04) -0.009(0.03) 0(0.06) -0.003(0.05) -0.003(0.05) -0.004(0.04) -0.018(0.04)

Boundary 0(0.06) -0.005(0.05) -0.004(0.05) -0.004(0.04) -0.007(0.03) 0(0.06) -0.002(0.05) 0(0.05) 0.002(0.04) -0.002(0.03)
Hybrid 0(0.06) -0.006(0.06) -0.004(0.05) -0.004(0.04) -0.007(0.03) 0.001(0.06) -0.002(0.06) 0(0.05) 0.003(0.04) 0.002(0.03)
Tapered 0(0.06) -0.006(0.06) -0.005(0.05) -0.004(0.04) -0.007(0.03) 0.001(0.06) -0.002(0.06) 0(0.05) 0.003(0.04) 0.001(0.03)

Debiased 0(0.06) -0.005(0.05) -0.004(0.05) -0.004(0.04) -0.006(0.03) 0(0.06) -0.002(0.05) 0(0.05) 0.003(0.05) 0.013(0.05)

Table C.1: Bias and the standard deviation (in the parentheses) of six different quasi-likelihoods for an AR(1) (left) and MA(1) (right)
model for the standardized chi-squared innovations. Length of the time series n “ 20, 50, and 300. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.
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C.2 Misspecified model for a non-Gaussian time series

In this section, we provide figures and table of the results in Section 4.6.2 when the innovations

follow a standardized chi-squared distribution two degrees of freedom, i.e. εt „ pχ2p2q ´ 2q{2.

The results are given in Tables C.2 and C.3.

n Parameter Gaussian Whittle Boundary Hybrid Tapered Debiased

20
φ 0.029p0.1q -0.102p0.16q -0.032p0.12q -0.001p0.1q -0.088p0.13q 0.170p0.12q
ψ 0.066p0.08q -0.184p0.20q -0.039p0.15q 0.030p0.09q -0.064p0.12q 0.086p0.09q

Inpf ; fθq 1.573p0.82q 1.377p3.11q 0.952p0.91q 1.006p0.84q 0.675p0.63q 2.618p0.84q

50
φ 0.014p0.07q -0.051p0.10q -0.004p0.07q 0.007p0.07q -0.003p0.07q 0.143p0.11q
ψ 0.027p0.06q -0.118p0.13q -0.013p0.09q 0.008p0.07q 0.009p0.06q 0.090p0.03q

Inpf ; fθq 0.342p0.34q 0.478p0.53q 0.298p0.32q 0.230p0.27q 0.222p0.27q 1.158p0.37q

300
φ 0.001p0.03q -0.015p0.03q -0.002p0.03q 0p0.03q -0.001p0.03q 0.090p0.08q
ψ 0.006p0.03q -0.033p0.05q 0.002p0.03q 0.003p0.03q 0.003p0.03q 0.091p0.02q

Inpf ; fθq 0.029p0.05q 0.067p0.10q 0.034p0.06q 0.027p0.04q 0.028p0.04q 0.747p0.23q
Best fitting ARMAp1, 1q coefficients θ “ pφ, ψq and spectral divergence:
´ θ20 “ p0.693, 0.845q, θ50 “ p0.694, 0.857q, θ300 “ p0.696, 0.857q.
´ I20pf ; fθq “ 3.773, I50pf ; fθq “ 3.415, I300pf ; fθq “ 3.388.

Table C.2: Best fitting (bottom lines) and the bias of estimated coefficients for six different methods
for the ARMAp3, 2q misspecified case fitting ARMAp1, 1q model for the standardized chi-squared
innovations. Standard deviations are in the parentheses. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.

C.3 Alternative methods for estimating the predictive DFT results for a non-Gaussian time

series

This time we assess the different estimation schemes for non-Gaussian time series. We generate

the same ARp8qmodel in Section 4.6.4 but the innovations tεtu are i.i.d. standardarized chi-square

random variables with two-degrees of freedom i.e. εt „ pχ2p2q´ 2q{2. For each simulation, we fit

ARp8q model, evaluate six likelihoods from the previous sections plus two likelihoods (BC-tYW

and BC-NP), and calculate the parameter estimators. The results are summarized in Table C.4.
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n Parameter Gaussian Whittle Boundary Hybrid Tapered Debiased

20
φ1 0.017p0.13q -0.178p0.23q -0.047p0.17q -0.006p0.14q -0.134p0.15q 0.044p0.14q
φ2 0.002p0.09q 0.176p0.2q 0.057p0.16q 0.023p0.12q 0.135p0.13q -0.019p0.13q

Inpf ; fθq 0.652p0.72q 1.3073p1.46q 0.788p0.85q 0.671p0.8q 0.887p0.97q 0.658p0.81q

50
φ1 0.018p0.09q -0.079p0.12q -0.010p0.09q 0.002p0.09q -0.018p0.09q 0.140p0.15q
φ2 -0.018p0.06q 0.072p0.11q 0.012p0.07q 0.001p0.06q 0.016p0.06q -0.1p0.09q

Inpf ; fθq 0.287p0.36q 0.406p0.52q 0.302p0.39q 0.298p0.39q 0.293p0.38q 0.631p0.7q

300
φ1 0.002p0.04q -0.015p0.04q -0.002p0.04q 0p0.04q -0.001p0.04q 0.012p0.04q
φ2 -0.005p0.02q 0.011p0.03q -0.001p0.02q -0.001p0.02q -0.001p0.02q -0.016p0.04q

Inpf ; fθq 0.050p0.07q 0.056p0.07q 0.051p0.07q 0.052p0.07q 0.054p0.08q 0.061p0.08q
Best fitting ARp1q coefficients θ “ pφ1, φ2q and spectral divergence:
´ θ20 “ p1.367,´0.841q, θ50 “ p1.364,´0.803q, θ300 “ p1.365,´0.802q.
´ I20pf ; fθq “ 2.902, I50pf ; fθq “ 2.937, I300pf ; fθq “ 2.916.

Table C.3: Best fitting (bottom lines) and the bias of estimated coefficients for six different meth-
ods for the ARMAp3, 2q misspecified case fitting ARp2q model for the standardized chi-squared
innovations. Standard deviations are in the parentheses. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.

Par. Bias
Gaussian Whittle Boundary Hybrid Tapered Debiased BC-tYW BC-NP

φ1p0.381q 0.001p0.08q -0.013p0.09q -0.002p0.09q 0.001p0.09q -0.003p0.09q 0.004p0.09q 0p0.09q 0.001p0.12q
φ2p-0.294q -0.001p0.09q 0.014p0.1q -0.001p0.09q -0.002p0.09q 0.006p0.09q -0.008p0.11q -0.002p0.09q -0.010p0.13q
φ3p0.315q -0.004p0.09q -0.027p0.1q -0.005p0.09q -0.003p0.09q -0.015p0.09q 0p0.1q -0.003p0.09q -0.005p0.12q
φ4p-0.963q 0.034p0.09q 0.097p0.09q 0.040p0.09q 0.034p0.09q 0.073p0.09q 0.038p0.11q 0.036p0.09q 0.068p0.12q
φ5p0.285q -0.007p0.09q -0.032p0.09q -0.009p0.09q -0.005p0.09q -0.018p0.09q -0.004p0.1q -0.007p0.09q -0.005p0.12q
φ6p-0.240q 0.007p0.09q 0.029p0.09q 0.009p0.09q 0.006p0.09q 0.018p0.09q 0.003p0.1q 0.007p0.09q 0.006p0.12q
φ7p0.280q -0.019p0.08q -0.047p0.09q -0.021p0.09q -0.018p0.09q -0.034p0.09q -0.020p0.1q -0.019p0.09q -0.026p0.11q
φ8p-0.663q 0.058p0.08q 0.114p0.08q 0.062p0.09q 0.059p0.09q 0.098p0.08q 0.065p0.1q 0.060p0.08q 0.107p0.1q

n}φ´ pφ}2 7.006 16.607 7.728 7.107 13.054 7.889 7.319 13.001

Table C.4: Bias and the standard deviation (in the parenthesis) of eight different quasi-likelihoods
for the ARp8q model for the standardized chi-squared innovations. Length of time series n=100.
True AR coefficients are in the parenthesis of the first column. We use red text to denote the
smallest RMSE and blue text to denote the second smallest RMSE.
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APPENDIX D

TECHNICAL LEMMAS *

D.1 Technical lemmas in Sections 2.3 and 3

The purpose of this section is to prove the main two lemmas which are required to prove

Theorems 2.3.3 and 3.2.1.

Lemma D.1.1. Suppose Assumption 2.3.2 holds. Let

qµ`pωq “ n´1
n
ÿ

t“1

pXtX` ´ ErXtX`sqe
itω and qcj “ pcj,n ´ Erpcj,ns,

where pcj,n “ n´1
řn´|j|
t“1 XtXt`|j|. Then for any I and J of size r and s with r “ 0, 1, 2 and

r ` s “ m ě 2

cum
´

qµb
0

I ,qcb
m

J

¯

“ O
`

n´m`1
˘

r “ 0,m ě 2 (D.1)

cum
´

qµb
1

I ,qcb
m´1

J

¯

“

$

’

&

’

%

O pn´mq r “ 1,m “ 2

O pn´m`1q r “ 1,m ě 3
(D.2)

cum
´

qµb
2

I ,qcb
m´2

J

¯

“

$

’

&

’

%

O pn´m`1q r “ 2,m “ 2, 3

O pn´m`2q r “ 2,m ě 4
(D.3)

The next result is a little different to the above and concerns the bias of pcj,n. Suppose Assumption

2.3.1 (ii) holds. Then,

sup
0ďjďn

|Erpcj,ns ´ cj| “ Opn´1
q. (D.4)

*Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral meth-
ods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.] and [S. Subba Rao and J. Yang. Reconciling the Gaussian and Whittle like-
lihood with an application to estimation in the frequency domain. Annals of Statistics (To appear), arXiv:2001.06966,
2021.]
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PROOF. By assumption 2.3.1 (ii), sup0ďjďn n|Erpcjs ´ cj| “ sup0ďjďn |jcj| “ Op1q as n Ñ 8,

thus (D.4) holds.

Before we show (D.1)„(D.3), it is interesting to observe the differences in rates. We first

consider the very simple case and from this, we sketch how to generalize it. When m “ 2,

|cum pqµi,qcjq | ď
1

n2

n
ÿ

t“1

n´|j|
ÿ

τ“1

|covpXtXie
itω, XτXτ`jq|

ď
1

n2

n
ÿ

t“1

n´|j|
ÿ

τ“1

ˇ

ˇcovpXt, Xτ qcovpXi, Xτ`rq

`covpXt, Xτ`jqcovpXi, Xτ q ` cumpXt, Xi, Xτ , Xτ`jq
ˇ

ˇ.

Under Assumption 2.3.2,

n
ÿ

t“1

n´|j|
ÿ

τ“1

p|κ2pt´ τqκ2pi´ τ ` jq| ` |κ2pt´ τ ´ jqκ2pi´ τq| ` |κ4pi´ t, τ ´ t, τ ` j ´ tq|q ă 8

for all n. Thus

|cum pqµi,qcjq | “ Opn´2
q.

This is in contrast to

cum pqcj1 ,qcj2q “
1

n2

n´|j1|
ÿ

t“1

n´|j2|
ÿ

τ“1

covpXtXt`j1 , XτXτ`j2q

“
1

n2

n´|j1|
ÿ

t“1

n´|j2|
ÿ

τ“1

“

covpXt, Xτ qcovpXt`j1 , Xτ`j2q ` covpXt, Xτ`j2qcovpXt`j1 , Xτ q

`cumpXt, Xt`j1 , Xτ , Xτ`j2q
‰

“ n´2

n´|j1|
ÿ

t“1

n´|j2|
ÿ

τ“1

“

κ2pt´ τqκ2pt´ τ ` j1 ´ j2q ` κ2pt´ τ ´ j2qκ2pt´ τ ` j1q

`κ4pj1, τ ´ t, τ ´ t` j2q
‰

.
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and

cum pqµi1 , qµi2q “
1

n2

n
ÿ

t,τ“1

covpXtXi1e
itω, XτXi2e

iτω
q

“ n´2
n
ÿ

t,τ“1

eipt´τqω
“

κ2pt´ τqκ2pi1 ´ i2q ` κ2pt´ i2qκ2pτ ´ i1q

`κ4pi1 ´ t, τ ´ t, i2 ´ tq
‰

.

Unlike cum pqµi,qcjq, there is a term that contains pt´ τq which cannot be separable. Thus

|cum pqcj1 ,qcj2q| “ Opn´1
q, |cum pqµi1 , qµi2q| “ Opn´1

q.

From the above examples, it is important to find the number of “free” parameters in each term

of the indecomposable partition. For example, in cum pqµi,qcjq there are 3 possible indecomposable

partitions, and for the first term, |κ2pt´ τqκ2pi´ τ ` jq|, we can reparametrize

z1 “ t´ τ, z2 “ τ

then by the assumption,

n´2
n
ÿ

t“1

n´|j|
ÿ

τ“1

|κ2pt´ τqκ2pi´ τ ` jq| ď n´2
ÿ

z1,z2PZ

|κ2pz1qκ2pi` j ´ z2q| ă Cn´2.

However, for the first term of cum pqcj1 ,qcj2q, κ2pt ´ τqκ2pt ´ τ ` j1 ´ j2q, there is only one free

parameter which is pt´ τq and thus gives a lower order, Opn´1q.

Lets consider the general order when m ą 2. To show (D.1), it is equivalent to show the

number of “free” parameters in each indecomposable partition are at least m ´ 1, then, gives an

order at least Opn´m`1q which proves (D.1). To show this, we use a mathmatical induction for m.

We have shown above that (D.1) holds when m “ 2. Next, assume that (D.1) holds for m, and
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consider

cum
`

qcb
m

J ,qcj
˘

“ n´1

n´|j|
ÿ

t“1

cum
`

qcb
m

J , XtXt`j

˘

“ n´pm`1q

n´|j|
ÿ

t“1

ÿ

vPΓ

cumv

`

qcb
m

J , XtXt`j

˘

where Γ is a set of all indecomposable partitions, and cumv is a product of joint cumulants char-

acterized by the partition v. Then, we can separate Γ into 2 cases.

‚ The first case, Γ1, is that the partition it still be an indecomposable partition for qcb
m

J after

removing tt, t`ju. In this case, by the induction hypothesis, there are at leastm´1 free parameters

in the partition, plus “t”, thus at least m free parameters.

‚ The second case, Γ2, is that the partition becomes a decomposable partition for qcb
m

J after

removing tt, t ` ju. Then, it is easy to show that Γ2ztt, t ` ju “ A Y B where A and B are

indecomposable partitions with elements 2a and 2b respectively where a` b “ m. Moreover,t and

t` j are in the different indecomposable partitions A and B. In this case,

n´|j|
ÿ

t“1

ÿ

vPΓ2

cumv

`

qcb
m

J , XtXt`j

˘

“

n´|j|
ÿ

t“1

ÿ

v1PA

cumv1

`

qcb
a

JA
, Xt

˘

ÿ

v1PB

cumv2

´

qcb
b

JB
, Xt`j

¯

.

In the first term
`

qcb
a

JA
, Xt

˘

, there are at least a´1 free parameters plus “t”, and thus
ř

v1PA
cumv1

`

qcb
a

JA
, Xt

˘

“

Op1q, thus

n´m`1

n´|j|
ÿ

t“1

ÿ

v1PA

cumv1

`

qcb
a

JA
, Xt

˘

ÿ

v1PB

cumv2

´

qcb
b

JB
, Xt`j

¯

ď Cn´m`1

n´|j|
ÿ

t“1

1 “ Opn´mq.

Therefore, by induction (D.1) is true. For (D.2), when m ą 2, it loses an order of one. For

example, when m “ 3

|cumpqµi,qcj1 ,qcj2q| ď
1

n3

n
ÿ

t1“1

n´j1
ÿ

t2“1

n´j2
ÿ

t3“1

|cumpXt1Xi, Xt2Xt2`j1 , Xt3Xt3`j2q|.
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Then, above contains an indecomposable partition (see left panel of Figure D.1)

n´3
n
ÿ

t1“1

n´j1
ÿ

t2“1

n´j2
ÿ

t3“1

|cumpXt1 , Xt2 , Xt2`j1qcumpXi, Xt3 , Xt3`j2q|

“ n´3

˜

n
ÿ

t1“1

n´j1
ÿ

t2“1

|κ3pt2 ´ t1, t2 ´ t1 ` j1q|

¸˜

n´j2
ÿ

t3“1

|κ3pt3, t3 ` j2 ´ iq|

¸

“ Opn´2
q.

Similarly, for (D.3), when m “ 4, cumpqµi1 , qµi2 ,qcj1 ,qcj2q contains an indecomposable partition

Figure D.1: Left: indecomposable partition of cumpqµi,qcj1 ,qcj2q. Right: indecomposable partition
of cumpqµi1 , qµi2 ,qcj1 ,qcj2q

(see right panel of Figure D.1)

n´4
ÿ

t1,t2,t3,t4

|cumpXt1 , Xt4 , Xt4`j2qcumpXt2 , Xt3 , Xt3`j1qcumpXi1 , Xi2q|

ď Cn´4

˜

n
ÿ

t1,t4“1

|κ3pt4 ´ t1, t4 ´ t1 ` j2q|

¸˜

n
ÿ

t2,t3“1

|κ3pt3 ´ t2, t3 ´ t2 ` j1q|

¸

“ Opn´2
q.

thus loses an order of two. Proof for (D.2) and (D.3) in a general case uses a similar induction

argument from the above but we omit the proof. l

We now need to prove that the derivative of the random function gp¨q defined in Theorem 2.3.3,

equation (3.21) is bounded in probability. We recall these bounds are required to show that the

final term in the Taylor expansion of pJnpω; fpq ´ pJnpω; fpq with respect to tcju
p
j“0 is bounded in

probability.
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To do so, we define the following notation. Let rcp “ prc0,rc1, . . . ,rcpq
1 be a random vector such

that rcp is a convex combination of the true covariance vector cp “ pc0, . . . , cpq
1 and the sample

covariance vector pcp “ ppc0,n, . . . ,pcp,nq
1. Thus rcs is also a sample covariance that inherits many

of the properties of the original sample covariance pcs,n. Based on these definitions we define the

matrix and vector rRp,nand rrp,n where p rRp,nqs,t “ rcs´t and prrp,nqs “ rcs. As our aim is to bound the

derivatives in the proof Theorem 2.3.3, using (3.21) and (3.22) we define the random function

g`,ppω,rcp,nq “
rr1p,n

rR´1
p,ne`pωq

1´ rr1p
rR´1
p,ne0pωq

“
ra`,ppωq

1´ ra0,ppωq
(D.5)

where

ra`,ppωq “
p´
ÿ̀

s“0

ra``s,ne
´isω, a0 ” 0,

rap,n “ rR´1
p,nrrp,n and e`pωq is defined in (3.23). In the following lemma we show that the derivatives

of g`,ppω,rcp,nq are uniformly bounded in probability.

Lemma D.1.2. Suppose Assumptions 2.3.1 and 2.3.2 hold with m “ 2. For 1 ď ` ď p, let

g`,ppω,rcpq be defined as in (D.5), where we recall rcp denote a convex combination of the true

covariances cp “ pc0, . . . , cpq
1 and the sample autocovariances pcp “ ppc0,n, . . . ,pcp,nq

1.

If p3{2n´1{2 Ñ 0 as p, nÑ 8, then for k P N` we have

sup
ω

sup
1ď`ďp

sup
0ďj1,...,jkďp

ˇ

ˇ

ˇ

ˇ

ˇ

Bkg`,ppω,rcpq

Brcj1 ¨ ¨ ¨ Brcjk

ˇ

ˇ

ˇ

ˇ

ˇ

“ Opp1q.

PROOF. First some simple preliminary comments are in order. We observe that ra`,ppωq is a linear

function of rap “ pra1,p, ...,rap,pq
1 and rap “ rR´1

p rrp. Therefore

g`,ppω,rcp,nq “
rr1p,n

rR´1
p,ne`pωq

1´ rr1p
rR´1
p,ne0pωq

“
ra`,ppωq

1´ ra0,ppωq

is an analytic function of rcp, thus for all k we can evaluate its k order partial derivative.
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Since g`,ppω,rcp,nq is a function of rap we require some consistency results on rap. By Lemma

D.1.1 (here we use Assumptions 2.3.1(ii) and 2.3.2), it is easy to show sups Erpcs,n ´ css
2 “

Opn´1{2q and rcs is a convex combination of pcs,n and cs, then sups Errcs ´ css
2 “ Opn´1{2q. Thus

since rap “ rR´1
p rrp we have

ˇ

ˇ

rap ´ ap
ˇ

ˇ

1
“ Opppn

´1{2
q. (D.6)

where | ¨ |p is an `p-norm. With this in hand, we can prove that the derivatives of g`,ppω,rcpq are

uniformly bounded in probability. We give the precise details below.

In order to prove the result, we first consider the first derivative of g`,ppω,rcp,nq. By the chain

rule, we have

Bg`,p
Brcj

“

p
ÿ

r“1

Bg`,p
Brar,p

Brar,p
Brcj

(D.7)

where basic algebra gives

Bg`,p
Brar,p

“
e´irω

p1´ ra0,ppωqq2
ˆ

$

’

&

’

%

ra`,ppωq r ă `

ei`ωp1´
ř`´1
s“1 ras,pe

´isωq r ě `
(D.8)

and

ˆ

Bra1,p

Brcj
, . . . ,

Brap,p
Brcj

˙1

“
Brap
Brcj

“
B

Brcj
rR´1
p rrp “ rR´1

p

˜

B rRp

Brcj

¸

rap ` rR´1
p

Brrp
Brcj

. (D.9)

Therefore to bound (D.7) we take its absolute. We will bound the left hand side of an inequality

below

ˇ

ˇ

ˇ

ˇ

Bg`,p
Brcj

ˇ

ˇ

ˇ

ˇ

ď sup
ω,s,`

ˇ

ˇ

ˇ

ˇ

Bg`,p
Bras,p

ˇ

ˇ

ˇ

ˇ

p
ÿ

r“1

ˇ

ˇ

ˇ

ˇ

Brar,p
Brcj

ˇ

ˇ

ˇ

ˇ

, (D.10)

which will prove the result for the first derivative. Therefore, we bound each term:
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supω,s,` |Bg`,p{Bras,p| and pBra1,p{Brcj, . . . , Brap,p{Brcjq.

A bound for supω,s,` |Bg`,p{Bras,p| Using (D.8) gives

sup
1ď`,rďp

sup
ω

ˇ

ˇ

ˇ

ˇ

Bg`,ppω,rcq

Brar,p

ˇ

ˇ

ˇ

ˇ

ď sup
ω

sup
1ď`ďp

1

|1´
řp
s“1 ras,pe

´isω|2

˜

p´
ÿ̀

s“0

ˇ

ˇ

ras``,pe
´isω

ˇ

ˇ` |1´
p
ÿ

s“1

ras,pe
´isω

|

¸

ď sup
ω

1

|1´
řp
s“1 ras,pe

´isω|2

˜

1` 2
p
ÿ

s“1

|ras,p|

¸

. (D.11)

We first bound the denominator of the above. It is clear that

inf
ω
|1´

p
ÿ

s“1

ras,pe
´isω

| ě inf
ω

˜

|1´
p
ÿ

s“1

as,pe
´isω

| ´ |

p
ÿ

s“1

pas,p ´ ras,pqe
´isω

|

¸

ě inf
ω

˜

|1´
p
ÿ

s“1

as,pe
´isω

| ´

p
ÿ

s“1

|as,p ´ ras,p|

¸

.

By using (D.6), we have |ap ´ rap|1 “ Opppn
´1{2q thus for pn´1{2 Ñ 0, we have that

řp
s“1 |as,p ´

ras,p| “ opp1q. Moreover, by Assumption 2.3.1(i) (and the Baxter’s inequality), the first term is

bounded away from 0 for large p. Therefore, we conclude that infω |1´
řp
s“1 ras,pe

´isω| is bounded

away in probability from zero, thus giving

1

|1´
řp
s“1 ras,pe

´isω|2
“ Opp1q (D.12)

as n, p Ñ 8 and pn´1{2 Ñ 0. This bounds the denominator of (D.11). Next to bound the

numerator in (D.11) we use again (D.6)

p
ÿ

s“1

|ras,p| ď
p
ÿ

s“1

|as,p| `
p
ÿ

s“1

|ras,p ´ as,p| “ Opp1` pn
´1{2

q. (D.13)

Therefore, by (D.12) and (D.13) we have

sup
ω

sup
1ď`ďp

sup
1ďkďp

ˇ

ˇ

ˇ

ˇ

Bg`,ppω,rcq

Brak,p

ˇ

ˇ

ˇ

ˇ

“ Opp1q. (D.14)
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A bound for pBra1,p{Brcj, . . . , Brap,p{BrcjqWe use the expansion in (D.9):

ˆ

Ba1,p

Bcj
, . . . ,

Bap,p
Bcj

˙1

“
Bap
Bcj

“
B

Bcj
R´1rp “ R´1

p

ˆ

BRp

Bcj

˙

ap `R
´1
p

Brp
Bcj

.

We observe that the structure of Toeplitz matrix of Rp means that BRp{Bcj has ones on the lower

and upper jth diagonal and is zero elsewhere and Brrp{Bcj is one at the jth entry and zero elsewhere.

Using these properties we have

sup
0ďjďp

ˇ

ˇ

ˇ

ˇ

BRp

Bcj
ap

ˇ

ˇ

ˇ

ˇ

1

ď 2
p
ÿ

s“1

|as,p| and sup
0ďjďp

ˇ

ˇ

ˇ

ˇ

R´1
p

Brp
Bcj

ˇ

ˇ

ˇ

ˇ

1

ď }R´1
p }1

where }A}p is an operator norm induced by the vector `p-norm. Therefore, using the above and the

inequality |Ax|1 ď }A}1|x|1 gives

sup
0ďjďp

p
ÿ

s“1

ˇ

ˇ

ˇ

ˇ

Bras,p
Brcj

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

rR´1
p

B rRp

Brcj
rap

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

ˇ

ˇ

ˇ

ˇ

rR´1
p

Brrp
Brcj

ˇ

ˇ

ˇ

ˇ

1

ď 2} rR´1
p }1

p
ÿ

s“1

|ras,p| ` } rR
´1
p }1 ď }

rR´1
p }1

˜

2
p
ÿ

s“1

|ras,p| ` 1

¸

, (D.15)

where we note that in (D.13) we have shown that
řp
s“1 |ras,p| “ Opp1 ` pn´1{2q. Next we show

} rR´1
p }1 “ Opp1q. To do this we define the circulant matrix Cppf´1q where

pCppf
´1
qqu,v “ n´1

p
ÿ

k“1

f´1

ˆ

2πk

p

˙

exp

ˆ

´ipu´ vq
2πk

p

˙

“
ÿ

rPZ

Kf´1pu´ v ` rpq

with Kf´1prq “ p2πq´1
ş2π

0
f´1pωqe´irωdω. By using Theorem 3.2 in SY20,

}R´1
p }1 ď }Cppf

´1
q}1 ` }R

´1
p ´ Cppf

´1
q}1 ď }Cppf

´1
q}1 ` Apfq

where Apfq is a finite constant that does not depend on p (the exact form is given in SY20).
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Furthermore we have

}Cppf
´1
q}1 “ max

1ďvďp

p
ÿ

u“1

|Cppf
´1
qu,v| ď max

1ďvďp

p
ÿ

u“1

ÿ

rPZ

|Kf´1pu´ v ` rpq| “
ÿ

rPZ

|Kf´1prq| ă 8.

altogether this gives }R´1
p }1 “ Op1q. To bound the random matrix } rR´1

p }1 we use that

} rR´1
p }1 ď }R

´1
p }1 ` }

rR´1
p ´R´1

p }1 ď }R
´1
p }1 `

?
p} rR´1

p ´R´1
p }2.

By using similar argument to Corollary 1 in McMurry and Politis (2015), we have } rR´1
p ´R

´1
p }2 “

Oppn´1{2q. Thus, if p3{2n´1{2 Ñ 0 as p and n Ñ 8, then } rR´1
p }1 “ Opp1q. Substituting this into

(D.15) gives

sup
0ďjďp

p
ÿ

s“1

ˇ

ˇ

ˇ

ˇ

Bras,p
Brcj

ˇ

ˇ

ˇ

ˇ

ď } rR´1
p }1

˜

2
p
ÿ

s“1

|ras,p| ` 1

¸

“ Opp1q. (D.16)

‚ Bound for the first derivatives Substituting the two bounds above into (D.10), gives the bound

for the first derivative:

sup
ω

ˇ

ˇ

ˇ

ˇ

Bg`,ppω,rcpq

Brcj

ˇ

ˇ

ˇ

ˇ

ď sup
ω

sup
1ď`ďp

sup
1ďkďp

ˇ

ˇ

ˇ

ˇ

Bg`,ppω,rcpq

Brak,p

ˇ

ˇ

ˇ

ˇ

} rR´1
p }1

˜

2
p
ÿ

s“1

|ras,p| ` 1

¸

“ Op p1q .

‚ Bound for the second derivatives To simplify notation, we drop the subscript p in ak,p (though

we should keep in mind it is a function of p). Using the chain rule we have

B2g`,p
BciBcj

“

p
ÿ

r“1

Bg`,p
Bar

¨
B2ar
BciBcj

`

p
ÿ

r1,r2“1

B2g`,p
Bar1Bar2

¨
Bar1
Bci

¨
Bar2
Bcj

.

Thus taking absolute of the above gives

ˇ

ˇ

ˇ

ˇ

B2g`,p
BciBcj

ˇ

ˇ

ˇ

ˇ

ď sup
k,ω

ˇ

ˇ

ˇ

ˇ

Bg`,p
Bak

ˇ

ˇ

ˇ

ˇ

p
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

B2ak
BciBcj

ˇ

ˇ

ˇ

ˇ

` sup
r1,r2,ω

ˇ

ˇ

ˇ

ˇ

B2g`,p
Bar1Bar2

ˇ

ˇ

ˇ

ˇ

˜

p
ÿ

r“1

ˇ

ˇ

ˇ

ˇ

Bar
Bci

ˇ

ˇ

ˇ

ˇ

¸2

. (D.17)
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We now bound the terms in (D.17). We first consider the term B2g`,p{BakBat, which by using (D.8)

is

B2g`,p
BakBat

“
e´ipk`tqω

p1´ a0,ppωqq3
ˆ

$

’

’

’

’

&

’

’

’

’

%

a`,ppωq k, t ă `

ei`ωp1´
ř`´1
s“1 ase

´isωq ` a`,ppωq k ă ` ď t

ei`ωp1´
ř`´1
s“1 ase

´isωq k, t ě `

Therefore, using a similar argument as used to bound (D.14), we have

sup
ω

sup
1ď`,k,tďp

ˇ

ˇ

ˇ

ˇ

B2g`,ppω,rcpq

BrakBrat

ˇ

ˇ

ˇ

ˇ

“ Opp1q (D.18)

with pn´1{2 Ñ 0 as pÑ 8 and nÑ 8

Next, we obtain a probabilistic bound for |B2
ra{BrciBrcj|1. Note that by (D.9)

B2ap
BciBcj

“ R´1
p

ˆ

BRp

Bci

˙

R´1
p

ˆ

BRp

Bcj

˙

ap `R
´1
p

ˆ

BRp

Bci

˙

R´1
p

Brp
Bcj

`R´1
p

ˆ

BRp

Bcj

˙

R´1
p

ˆ

BRp

Bci

˙

ap `R
´1
p

ˆ

BRp

Bcj

˙

R´1
p

Brp
Bci

“ R´1
p

ˆ

BRp

Bci

˙

Bap
Bcj

`R´1
p

ˆ

BRp

Bcj

˙

Bap
Bci

.

Our focus will be on the first term of right hand side of the above. By symmetry, bound for the

second term is the same. Using the submultiplicative of the operator norm we have

ˇ

ˇ

ˇ

ˇ

R´1
p

ˆ

BRp

Bci

˙

Bap
Bcj

ˇ

ˇ

ˇ

ˇ

1

ď }R´1
p

ˆ

BRp

Bci

˙

}1

ˇ

ˇ

ˇ

ˇ

Bap
Bcj

ˇ

ˇ

ˇ

ˇ

1

ď }R´1
p }1}

BRp

Bci
}1

ˇ

ˇ

ˇ

ˇ

Bap
Bcj

ˇ

ˇ

ˇ

ˇ

1

ď 2}R´1
p }1

ˇ

ˇ

ˇ

ˇ

Bap
Bcj

ˇ

ˇ

ˇ

ˇ

1

.

Therefore by (D.16),

sup
0ďi,jďp

ˇ

ˇ

ˇ

ˇ

B2
rap

BrciBrcj

ˇ

ˇ

ˇ

ˇ

1

ď 4} rR´1
p }1 sup

0ďjďp

ˇ

ˇ

ˇ

ˇ

Brap
Brcj

ˇ

ˇ

ˇ

ˇ

1

“ Op p1q . (D.19)

The bounds in (D.18) and (D.19) gives bounds for two of the terms in (D.17). The remaining two

terms in (D.17) involve only first derivatives and bounds for these terms are given in equations
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(D.14) and (D.16). Thus by using (D.17) and the four bounds described above we have

sup
ω

sup
1ď`ďp

sup
0ďj1,j2ďp

ˇ

ˇ

ˇ

ˇ

B2g`,p
Brcj1Brcj2

pω,rcp,nq

ˇ

ˇ

ˇ

ˇ

“ Opp1q,

which gives a bound for the second derivative.

‚ Bounds for the higher order derivatives The bounds for the higher order derivatives follows a

similar pattern. We bound the mth order derivatives

Bmg`,p
Brat1Brat2 . . . Bratm

and
Bmrap

Brci1Brci1 . . . Brcim
,

using the methods described above. In particular, we can show that

ˇ

ˇ

ˇ

ˇ

Bmg`,p
Brat1Brat2 . . . Bratm

ˇ

ˇ

ˇ

ˇ

“ Opp1q and
ˇ

ˇ

ˇ

ˇ

Bmra

Brcj1Brcj1 . . . Brcjm

ˇ

ˇ

ˇ

ˇ

“ Opp1q.

Since these bounds hold for 1 ď m ď k, by using the chain rule we have

sup
ω

sup
1ď`ďp

sup
0ďj1,...,jkďp

ˇ

ˇ

ˇ

ˇ

Bkg`,p
Brcj1Brcj2 . . . Brcjk

pω,rcpq

ˇ

ˇ

ˇ

ˇ

“ Opp1q.

This proves the lemma. l

Finally, we state the following lemma which is required to prove Theorem 2.3.3

Lemma D.1.3. Suppose the same set of Assumptions in Theorem 2.3.3 holds. Let E11p¨q, ..., E32p¨q

is defined as in (3.25). Then, the following error bounds hold:

The first order expansion yields the bounds

ErE11pωqs “ O

ˆ

p2

n2

˙

, varrE11pωqs “ O

ˆ

p4

n2

˙

,

ErE12pωqs “ O

ˆ

p2

n2

˙

, varrE12pωqs “ O

ˆ

p4

n3

˙

.
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The second order expansion yields the bounds

ErE21pωqs “ O

ˆ

p3

n2

˙

, varrE21pωqs “ O

ˆ

p6

n3

˙

,

ErE22pωqs “ O

ˆ

p3

n2

˙

, varrE22pωqs “ O

ˆ

p6

n4

˙

.

Altogether, the third order expansion yields the probablistic bounds

E31pωq “ Op

ˆ

p4

n2

˙

E32pωq “ Op

ˆ

p4

n5{2

˙

.

PROOF. Bound for E11pωq and E12pωq

‚ Bound for E11pωq: We partition E11pωq into the two terms

E11pωq “
p
ÿ

j“0

p
ÿ

`“1

qµ` ppcj ´ cjq
Bg`,ppω, cpq

Bcj
“ E111pωq ` E112pωq

where

E111pωq “
p
ÿ

j“0

p
ÿ

`“1

qµ`qcj
Bg`,ppω, cpq

Bcj
and E112pωq “

p
ÿ

j“0

p
ÿ

`“1

qµ` pErpcjs ´ cjq
Bg`,ppω, cpq

Bcj
.

We first bound E111pωq;

ErE111pωqs “
p
ÿ

j“0

p
ÿ

`“1

cumpqµ`,qcjq
Bg`,ppω, cpq

Bcj

Thus by using Lemma D.1.1 and D.1.2 we have

|ErE111pωqs| ď
C

n2

p
ÿ

j“0

p
ÿ

`“1

ˇ

ˇ

ˇ

ˇ

Bg`,ppω, cpq

Bcj

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

p2

n2

˙

.
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Next we consider the variance

varrE111pωqs ď
p
ÿ

j1,j2“0

p
ÿ

`1,`2“1

|covpqµ`1qcj1 , qµ`2qcj2q|

ˇ

ˇ

ˇ

ˇ

Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2

ˇ

ˇ

ˇ

ˇ

.

Splitting the covariance gives

covpqµ`1qcj1 , qµ`2qcj2q

“ covpqµ`1 , qµ`2qcovpqcj1 ,qcj2q ` covpqµ`1 ,qcj2qcovpqµ`2 ,qcj1q ` cumpqµ`2 ,qcj1 , qµ`2 ,qcj2q.

By using Lemma D.1.1, the above is

|covpqµ`1qcj1 , qµ`2qcj2q| “ Opn´2
q,

thus by Lemma D.1.2

varrE111pωqs “
C

n2

p
ÿ

j1,j2“1

p
ÿ

`1,`2“1

ˇ

ˇ

ˇ

ˇ

Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

p4

n2

˙

.

Next we consider E112pωq:

ErE112pωqs “
p
ÿ

j“1

p
ÿ

`“1

Erqµ`s
loomoon

“0

pErpcjs ´ cjsq
Bg`,ppω, cpq

Bcj
“ 0

and

varrE112pωqs “
p
ÿ

j1,j2“1

p
ÿ

`1,`2“1

covpqµ`1 , qµ`2q pErpcj1s ´ cj1q pErpcj2s ´ cj2q
Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2
.

Again by using Lemma D.1.1 and D.1.2 (which gives |covpqµ`1 , qµ`2q| ď C{n and |Erpcj1s ´ cj1 | ď
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C{n), a bound for the above is

varrE112pωqs ď
C

n3

p
ÿ

j1,j2“1

p
ÿ

`1,`2“1

ˇ

ˇ

ˇ

ˇ

Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

p4

n3

˙

.

Thus altogether we have

ErE11pωqs “ O

ˆ

p2

n2

˙

, varrE11pωqs “ O

ˆ

p4

n2

˙

. (D.20)

‚ Bound for E12pωq. We partition E12pωq into the two terms

E12pωq “

p
ÿ

j“0

p
ÿ

`“1

1

n

n
ÿ

t“1

ErXtX`se
itω
ppcj ´ cjq

Bg`,ppω, cpq

Bcj

“
1

n

p
ÿ

j“0

p
ÿ

`“1

f`,npωq ppcj ´ cjq
Bg`,ppω, cpq

Bcj

“ E121pωq ` E122pωq

where

E121pωq “
1

n

p
ÿ

j“0

p
ÿ

`“1

f`,npωqqcj
Bg`,ppω, cpq

Bcj

E122pωq “
1

n

p
ÿ

j“0

p
ÿ

`“1

f`,npωqpErpcjs ´ cjq
Bg`,ppω, cpq

Bcj
.

We first bound E121pωq:

ErE121pωqs “
1

n

p
ÿ

j“0

p
ÿ

`“1

f`,npωqErqcjs
Bg`,ppω, cpq

Bcj
“ 0

and

varrE121pωqs “
1

n2

p
ÿ

j1,j2“0

p
ÿ

`1,`2“1

f`1,npωqf`2,npωqcovpqcj1 ,qcj2q
Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2
.
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By using Lemma D.1.1 and D.1.2, and (3.24) we have

varrE122pωqs “
C

n3

p
ÿ

j1,j2“0

p
ÿ

`1,`2“1

ˇ

ˇ

ˇ

ˇ

Bg`1,ppω, cpq

Bcj1

Bg`2,ppω, cpq

Bcj2

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

p4

n3

˙

.

Next we consider E122pωq (which is non-random), using (3.24) we have

|E122pωq| ď
C

n2

p
ÿ

j“1

p
ÿ

`“1

ˇ

ˇ

ˇ

ˇ

Bg`,ppω, cpq

Bcj

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

p2

n2

˙

.

Thus we have

ErE12pωqs “ O

ˆ

p2

n2

˙

varpE12pωqq “ O

ˆ

p4

n3

˙

. (D.21)

This gives a bound for the first order expansion. The bound for the second order expansion given

below is similar.

Bound for E21pωq and E22pωq The proof closely follows the bounds for E11pωq and E12pωq but

requires higher order moment conditions.

‚ Bound for E21pωq: We have

E21pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2

“
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ` pqcj1 ` pErpcj1s ´ cj1qq pqcj2 ` pErpcj2s ´ cj2qq
B2g`,ppω, cpq

Bcj1Bcj2

“ E211pωq ` E212pωq
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where

E211pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ`qcj1qcj2
B2g`,ppω, cpq

Bcj1Bcj2

E212pωq “
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ`qcj1pErpcj2s ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2
`

1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ`qcj2pErpcj1s ´ cj1q
B2g`,ppω, cpq

Bcj1Bcj2

`
1

2

p
ÿ

j1,j2“0

p
ÿ

`“1

qµ`pErpcj1s ´ cj1qpErpcj2s ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2
.

Comparing E212pωq with E111pωq, we observe that E212pωq is the same order as pp{nqE111pωq, i.e.

ErE212pωqs “ O

ˆ

p3

n3

˙

varrE212pωqs “ O

ˆ

p6

n4

˙

.

Now we can evaluate the mean and variance of the “lead” term E211pωq. To bound the mean and

variance, we use the following decompositions together with Lemma D.1.1

Erqµ`qcj1qcj2s “ cumpqµ`,qcj1 ,qcj2q “ Opn´2
q

and

covrqµ`1qcj1qcj2 , qµ`2qcj3qcj4s “ covpqµ`1 , qµ`2qcovpqcj1 ,qcj3qcovpqcj2 ,qcj4q ` plower orderq “ O
`

n´3
˘

.

Therefore, using Lemma D.1.2 we get ErE211pωqs “ Opp3n´2q and varrE211pωqs “ Opp6n´3q.

Thus combining the bounds for E211pωq and E212pωq we have

ErE21pωqs “ O

ˆ

p3

n2

˙

varrE21pωqs “ O

ˆ

p6

n3

˙

. (D.22)
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‚ Bound for E22pωq Next we consider E22pωq

E22pωq “
1

2n

p
ÿ

j1,j2“0

p
ÿ

`“1

f`,npωq ppcj1 ´ cj1q ppcj2 ´ cj2q
B2g`,ppω, cpq

Bcj1Bcj2

“
1

2n

p
ÿ

j1,j2“0

qcj1qcj2

p
ÿ

`“1

f`,npωq
B2g`,ppω, cpq

Bcj1Bcj2
` (lower order term).

By using Lemma D.1.1 we have

ErE22pωqs “ O

ˆ

p3

n2

˙

varrE22pωqs “ O

ˆ

p6

n4

˙

.

Probabilistic bounds for E31pωq, E32pωq. Unlike the first four terms, evaluating the mean and

variance of E31pωq and E32pωq is extremely difficult, due to the random third order derivative

B3g`,ppω,rcp,nq{Brcj1Brcj2Brcj3 . Instead we obtain probabilistic rates.

‚ Probabilistic bound for E31pωq: Using Lemma D.1.2, we have supω,`,j1,j2,j2 |
B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3
| “ Opp1q

this allows us to take the term out of the summand:

|E31pωq| ď sup
ω,`,j1,j2,j2

ˇ

ˇ

ˇ

ˇ

B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3

ˇ

ˇ

ˇ

ˇ

1

3!

p
ÿ

j1,j2,j3“0

p
ÿ

`“1

|qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q|

“ Opp1q
p
ÿ

j1,j2,j3“0

p
ÿ

`“1

|qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q|

Thus the analysis of the above hinges on obtaining a bound for E |qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q|,

whose leading term is E |qµ`qcj1qcj2qcj3 |. We use that E|A| ď varrAs1{2 ` |ErAs| to bound this term

by deriving bounds for its mean and variance. By using Lemma D.1.1, expanding E rqµ`qcj1qcj2qcj3s

in terms of covariances and cumulants gives

E rqµ`qcj1qcj2qcj3s “
ÿ

ta,b,cu“t1,2,3u

covpqµ`,qcjaqcovpqcjb ,qcjbq ` cum rqµ`,qcj1 ,qcj2 ,qcj3s “ Opn´3
q
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and

varrqµ`qcj1qcj2qcj3s “ varpqµ`q
3
ź

s“1

varpqcjsq ` . . .` cum
´

qµb
2

I ,qcb
6

J

¯

` cumpqµ`,qcj1 ,qcj2 ,qcj3q
2
“ Opn´4

q.

This gives E |qµ` ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q| “ Opn´2q, therefore

E31pωq “ Op

ˆ

p4

n2

˙

.

‚ Probabilistic bound for E32pωq: Again taking the third order derivaive out of the summand gives

E32pωq ď sup
ω,`,j1,j2,j2

ˇ

ˇ

ˇ

ˇ

B3g`,ppω,rcp,nq

Brcj1Brcj2Brcj3

ˇ

ˇ

ˇ

ˇ

1

3!n

p
ÿ

j1,j2,j3“0

p
ÿ

`“1

|f`,npωq| |ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q|

“ Oppn
´1
q

p
ÿ

j1,j2,j3“0

p
ÿ

`“1

|ppcj1 ´ cj1q ppcj2 ´ cj2q ppcj3 ´ cj3q| .

Using Lemma D.1.1 to evaluate the mean and variance of qcj1qcj2qcj3 we have

Erqcj1qcj2qcj3s “ Opn´2
q and varrqcj1qcj2qcj3s “ Opn´3

q,

thus, E32pωq “ Op

´

p4

n5{2

¯

. l

D.2 Technical lemmas in Sections 2.4 and 4

In the case that the spectral density f corresponds to an ARppqmodel, φjpτ ; fq “
řp´j
s“0 φj`sψ|τ |´s

for τ ď 0. This result is well known (see Inoue and Kasahara (2006), page 980). However we

could not find the proof, thus for completeness we give the proof below.

Lemma D.2.1. Suppose fθpωq “ σ2|1 ´
řp
j“1 φje

´ijω|´2 “ σ2|
ř8

j“0 ψje
´ijω|2, where tφju

p
j“1

correspond to the causal ARppq representation. Let φjpτ ; fq be defined as in (2.1). Then φjpτ ; fq “
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řp´j
s“0 φj`sψ|τ |´s.

rAppφq
|τ |`1Xpsp1q “

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``sψ|τ |´s. (D.23)

where we set ψj “ 0 for j ă 0.

PROOF. To simplify notation let A “ Appφq. The proof is based on the observation that the jth

row of Am (m ě 1) is the pj ´ 1qth row of Am´1 (due to the structure of A). Let pa1,m, . . . , ap,mq

denote the first row of Am. Using this notation we have

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1,m a2,m . . . ap,m

a1,m´1 a2,m´1 . . . ap,m´1

...
... . . . ...

a1,m´p`1 a2,m´p`1 . . . ap,m´p`1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

φ1 φ2 . . . φp´1 φp

1 0 . . . 0 0

0 1 . . . 0 0

...
... . . . ...

...

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1,m´1 a2,m´1 . . . ap,m´1

a1,m´2 a2,m´2 . . . ap,m´2

...
... . . . ...

a1,m´p a2,m´p . . . ap,m´p

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

From the above we observe that a`,m satisfies the system of equations

a`,m “ φ`a1,m´1 ` a``1,m´1 1 ď ` ď p´ 1

ap,m “ φpa1,m´1. (D.24)

Our aim is to obtain an expression for a`,m in terms of tφju
p
j“1 and tψju8j“0 which we now define.

Since the roots of φp¨q lies outside the unit circle the function p1´
řp
j“1 φjz

jq´1 is well defined for

|z| ď 1 and has the power series expansion p1´
řp
i“1 φizq

´1 “
ř8

i“0 ψiz
i for |z| ď 1. We use the

well know result rAms1,1 “ a1,m “ ψm (which can be proved by induction). Using this we obtain

an expression for the coefficients ta`,m; 2 ď ` ď pu in terms of tφiu and tψiu. Solving the system
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of equations in (D.24), starting with a1,1 “ ψ1 and recursively solving for ap,m, . . . , a2,m we have

ap,r “ φpψr´1 m´ p ď r ď m

a`,r “ φ`a1,r´1 ` a``1,r´1 1 ď ` ď p´ 1, m´ p ď r ď m

This gives ap,m “ φpψm´1, for ` “ p´ 1

ap´1,m “ φp´1a1,m´1 ` ap,m´1

“ φp´1ψm´1 ` ψpψm´2

ap´2,m “ φp´2a1,m´1 ` ap´1,m´1

“ φp´2ψm´1 ` φp´1ψm´2 ` ψpψm´3

up to

a1,m “ φ1a1,m´1 ` a2,m´1

“

p´1
ÿ

s“0

φ1`sψm´1´s “ pψmq.

This gives the general expression

ap´r,m “

r
ÿ

s“0

φp´r`sψm´1´s 0 ď r ď p´ 1.

In the last line of the above we change variables with ` “ p´ r to give for m ě 1

a`,m “

p´
ÿ̀

s“0

φ``sψm´1´s 1 ď ` ď p,
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where we set ψ0 “ 1 and for t ă 0, ψt “ 0. Therefore

rA|τ |`1Xpsp1q “

p
ÿ

`“1

X`

p´
ÿ̀

s“0

φ``sψ|τ |´s.

Thus we obtain the desired result. l

Lemma D.2.2. Let tφjpfθqu and tψjpfθqu denote the ARp8q, and MAp8q coefficients correspond-

ing to the spectral density fθ. Suppose the same set of Assumptions in Lemma A.2.1 holds. Let

tαjpfθqu denote the Fourier coefficients in the one-sided expansion

logp
8
ÿ

j“0

ψjpfθqz
j
q “

8
ÿ

j“1

αjpfθqz
j for |z| ă 1, (D.25)

Then for all θ P Θ and for 0 ď s ď κ we have

8
ÿ

j“1

}jK∇s
θαjpfθq}1 ă 8,

PROOF. We first consider the case s “ 0. The derivative of (D.25) with respect to z together with

ψpz; fθq
´1 “ φpz; fθq “ 1´

ř8

j“1 φjpfθqz
j gives

8
ÿ

j“1

jαjpfθqz
j´1

“

˜

8
ÿ

j“1

jψjpfθqz
j´1

¸˜

8
ÿ

j“0

ψjpfθqz
j

¸´1

“

˜

8
ÿ

j“1

jψjpfθqz
j´1

¸˜

8
ÿ

j“0

rφjpfθqz
j

¸

, (D.26)

where
ř8

j“0
rφjpfθqz

j “ 1 ´
ř8

j“1 φjpfθqz
j . Comparing the coefficients of zj´1 from both side of

above yields the identity

jαjpfθq “
j´1
ÿ

`“0

pj ´ `qψj´`pfθqrφ`pfθq

ñ αjpfθq “ j´1
j´1
ÿ

`“0

pj ´ `qψj´`pfθqrφ`pfθq for j ě 1. (D.27)

217



Therefore, using the above and taking the absolute into the summand we have

8
ÿ

j“1

jK |αjpfθq| ď
8
ÿ

j“1

j´1
ÿ

`“0

jK´1
pj ´ `q|ψj´`pfθq||rφ`pfθq|

“

8
ÿ

`“1

|rφ`pfθq|
8
ÿ

j“``1

jK´1
pj ´ `q|ψj´`pfθq| (exchange summation)

“

8
ÿ

`“1

|rφ`pfθq|
8
ÿ

s“1

ps` `qK´1s|ψspfθq| (change of variable s “ j ` `)

ď

8
ÿ

`“1

|rφ`pfθq|
8
ÿ

s“1

ps` `qK |ψspfθq|. pps` `q´1
ď s´1

q

Since K ě 1, using inequality pa` bqK ď 2K´1paK ` bKq for a, b ą 0, we have

8
ÿ

j“1

jK |αjpfθq| ď
8
ÿ

`“1

|rφ`pfθq|
8
ÿ

s“1

ps` `qK |ψspfθq|

ď 2K´1
8
ÿ

`“1

|rφ`pfθq|
8
ÿ

s“1

psK ` `Kq|ψspfθq|

“ 2K´1

ˆ 8
ÿ

`“1

`K |rφ`pfθq| ¨
8
ÿ

s“1

|ψspfθq| `
8
ÿ

`“1

|rφ`pfθq| ¨
8
ÿ

s“1

sK |ψspfθq|

˙

ď 8

and this proves the lemma when s “ 0.

To prove lemma for s “ 1, we differentiate (D.27) with θ, then, by Assumption 4.2.1 (iii),

8
ÿ

j“1

jK}∇θαjpfθq}1

ď

8
ÿ

j“1

j´1
ÿ

`“0

}jK´1
pj ´ `q∇θψj´`pfθqrφ`pfθq}1 `

8
ÿ

j“1

j´1
ÿ

`“0

}jK´1
pj ´ `qψj´`pfθq∇θ

rφ`pfθq}1

Using similar technique to prove s “ 0, we show
ř8

j“1 }j
K∇θαjpfθq}1 ă 8 and the proof for

s ě 2 is similar (we omit the detail). l
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