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ABSTRACT

In this dissertation, we propose a new spectral method that could be used to overcome two
issues in time series analysis.

The first issue is the small sample problem. The periodogram is widely used to analyze second
order stationary time series, since an expectation of the periodogram is approximately equal to the
underlying spectral density of the time series. However, it is well known that the periodogram
suffers from a finite sample bias. We show that the bias arises because of the finite boundary
of observation in the discrete Fourier transforms (DFT), which is used in the construction of the
periodogram. Moreover, we show that by using the best linear predictors of the time series outside
the observed domain, we can obtain the “complete periodogram" that is an unbiased estimator
of the spectral density. We propose a method for estimating the best linear predictors and prove,
both theoretically and empirically, that the resulting estimated complete periodogram has a smaller
bias than the regular periodogram. The estimated complete periodogram can be used to estimate
parameters, which is expressed as a weighted sum of the spectral density.

The second issue is the discrepancy between time and frequency domain methods in parameter
estimation. In time series analysis, there is a clear distinction between the two domain methods.
We draw connections between two domain methods by deriving an exact and interpretable bound
between the Gaussian and Whittle likelihood of a second order stationary time series. The deriva-
tion is based on obtaining the transformation, which is biorthogonal to the DFT of the time series.
Such a transformation yields a new decomposition for the inverse of a Toeplitz matrix and enables
the representation of the Gaussian likelihood within the frequency domain. Based on this result,
we obtain an approximation for the difference between the Gaussian and Whittle likelihoods and
define two new frequency domain quasi-likelihood criteria. We show that these new criteria are
computationally fast and yield a better approximation of the spectral divergence criterion, as com-

pared to both the Gaussian and Whittle likelihoods.
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1. INTRODUCTION

1.1 A review of the spectral methods

The analysis of a time series in the frequency domain has a long history dating back to Schus-
ter (1897, 1906). Schuster first defined the periodogram as a method of identifying periodicities
in sunspot activity. Today, spectral analysis remains an active area of research with widespread
applications in several disciplines from astronomical data to the analysis of EEG signals in the
Neuroscience. Regardless of the discipline, the periodogram remains one of the most widely used
tools in spectral analysis, as the periodogram is primarily a tool for detecting periodicities in a
signal and various types of second order behavior in a time series.

Despite the popularity of the periodogram, it well known that it can have a severe finite sample
bias (see Tukey (1967)). To be precise, we recall that {X;}, is a second order stationary time
series (we will simply call it a stationary time series) if E[ X;| = u and the autocovariance function
can be written as ¢(r) = cov(Xy, X;;,) for all  and ¢ € Z. Further, if Y, _, ¢(r)? < oo, then
flw) = >, c(r)e™ is the corresponding (well-defined) spectral density function. To simplify
the derivations, we assume {X,} is a demeaned time series, i.e., © = 0. The periodogram of an
observed time series {X;}7_, is defined as I,,(w) = |J,(w)|?, where J,,(w) is the “regular” discrete

Fourier transform (DFT), which is defined by

To(w) =072 Xpe™  with i = /—1.

t=1

It is well known that if > _ |rc(r)| < oo, then

E[In(w)] = fa(w) = f(w) + O(n7").

However, the seemingly small O(n~!) error can be large in certain situation. A more detailed

analysis shows f,(w) is the convolution between the true spectral density and the nth order Fejér



kernel F,(\) = = (S;?rfg/;)))Q This convolution smooths out the peaks in the spectral density
function due to the “sidelobes” in the Fejér kernel. This effect is often called the leakage effect and
it is greatest when the spectral density has a large peak and the sample size is small. Tukey (1967)
showed that an effective method for reducing leakage is to taper the data and evaluate the peri-
odogram of the tapered data. Brillinger (1981) and Dahlhaus (1983) showed that asymptotically
the periodogram based on tapered time series shared many properties similar to the non-tapered
periodogram. The number of points that are tapered will impact the bias, thus Hurvich (1988) pro-
posed a method for selecting the amount of tapering. A theoretical justification for the reduced bias
of the tapered periodogram is derived in Dahlhaus (1988), Lemma 5.4, where for the data tapers
of degree (k, k) = (1,0), he showed that the bias of the tapered periodogram (precise definition of
the tapered periodogram is in Section 3.1) is O(n~2). An imputation based approach to correct for
the bias has recently been proposed in Lee and Zhu (2009) and Guinness (2019).

Many parameters in time series can be written in terms of the weighted average of the spectral
density and we construct a statistic by replacing spectral density with periodogram. Therefore,
the leakage effect in spectral analysis could be, in a subtle manner, a reason for the bias issue
of the parameter estimations. Some non-trivial but related example is the Whittle’s likelihood
approximation. Whittle (1951, 1953) introduced the Whittle likelihood as an approximation of
the Gaussian likelihood. To be more precise, suppose we fit a parametric second order stationary
model with spectral density fy(w) and corresponding autocovariance function {cy,(7)}ez to the
observed time series { X;};" ;. The (quasi) negative log-Gaussian likelihood (we simple call it the

Gaussian likelihood) defined in the time domain is proportional to
Ln(0; X,) =n (X, Tn(fo) " X, + log[Ta(fo)]) (1.1)

where I',,(fg)s+ = cs,(s — t) is a Toeplitz matrix, |A| denotes the determinant of the matrix A and

X! = (Xy,...,X,). In contrast, the Whittle likelihood is a “spectral divergence” between the



periodogram and the conjectured spectral density

a0:,) =0t Y (P g o))
k=1

_ ok
fo(win) o

n

(1.2)

A decade later from Whittle, Walker (1964) derived the large sample properties of moving average
models fitted using the Whittle likelihood. Subsequently, the Whittle likelihood has become a
popular method for parameter estimation of various stationary time series (both long and short
memory) and spatial models. The Whittle likelihood is computationally a very attractive method
for estimation. Despite the considerable improvements in computation algorithms, interest in the
Whittle likelihood has not abated. Several diverse applications of the Whittle likelihood can be
found in Dahlhaus and Kiinsch (1987) (for spatial processes), Fox and Taqqu (1986), Robinson
(1995) Hurvich and Chen (2000), Giraitis and Robinson (2001), Abadir et al. (2007), Shao and
Wu (2007), Giraitis et al. (2012) (long memory time series and local Whittle methods), Choudhuri
et al. (2004), Kirch et al. (2019) (Bayesian spectral methods), and Panaretos and Tavakoli (2013),
van Delft and Eichler (2020) (functional time series), to name but few.

The Whittle likelihood can be interpreted as an “estimator’ of the spectral divergence (precise
definition is in (4.1)) which is a weighted average of the true spectral density. Therefore, despite
its advantages, the Whittle likelihood can give rise to estimators with a substantial bias due to the
leakage effect (see Priestley (1981) and Dahlhaus (1988)). Dahlhaus (1988) showed that the finite
sample bias in the periodogram impacts the performance of the Whittle likelihood. Motivated by
this discrepancy, Sykulski et al. (2019) proposed the debiased Whittle likelihood, which fits di-
rectly to the expectation of the periodogram rather than the limiting spectral density. Alternatively,
Dahlhaus (1988) used the tapered Whittle likelihood to improve the bias. Empirical studies show
that the tapered Whittle likelihood yields a smaller bias than the regular Whittle likelihood. As a
theoretical justification, Dahlhaus (1988, 1990) used an alternative asymptotic framework to show
that tapering yields a good approximation to the inverse of the Toeplitz matrix. It is worth mention-

ing that within the time domain, several authors, including Shaman (1975, 1976); Bhansali (1982)



and Coursol and Dacunha-Castelle (1982), have studied approximations to the inverse variance
matrix. These results can be used to approximate the Gaussian likelihood.

However, as far as we are aware, there are no results which investigate the exact bias term of the
spectral methods. Our main objective of this dissertation is to quantify the “loss” when using the
periodogram as a primary tool to analysis the time series data. The benefits of such insight is not
only of theoretical interest but also lead to the development of computationally simple frequency

domain methods which are comparable with the Gaussian likelihood.

1.2 Contributions

Our contributions in this dissertation are threefold. The first contribution is that we obtain the
linear transformation of the observed time series { X;}}_, which is biorthogonal to the regular DFT,
{Jn(@h.n) i1

A brief construction of such transformation is as follows. Assume that the spectral density of
the underlying stationary time series is bounded and strictly positive. Under these conditions, for
any 7 € Z we can define the best linear predictor of X, given the observed time series {X;}} ;.

We denote this predictor as )A(m. Based on these predictors we define a new DFT

o0
jn(w;f) =n 12 Z )A(meim. (1.3)

T=—00

By its definition, it is obvious that J,(w; f) € sp(X,) where sp(X,) is a span of X1, ..., X,, on
the complex field. Moreover, using the property of the best linear predictors, in particular for
1 <t <nand7 € Z that cov(Xt,)A(Tﬁn) — ¢(t — 1), we can show that {J,(wyn; f)}"_, is

biorthogonal to the regular DFTs in the sense that

COV(jn(wkl,n; f)7 Jn<wk2,n)> = f(wkl,n)(skhkz 1< kla k? <N (14)

where 0y, x, = 1 when k; = k9 and zero otherwise.



Using that )A(m = X, for 1 < 7 < n, (1.3) can be written as jn(, f)=Ju()+ jn(, f) where

0 0
In(w; f) = n=1? Z X ne™ + n~1/2 Z X ne' ™.
T=—00 T=n+1

Therefore, the biorthgonal transform (to the regular DFT) is the regular DFT plus the Fourier
transform of the best linear predictors of the time series outside the domain of observation. Since
I (w; f) is a DFT of all linear predictors, we call it the predictive DFT. Moreover, we call J,,(+; f)
the complete DFT as it “completes” the information not found in the regular DFT. Details of the
complete and predictive DFT is described in Section 2.2.

The second contribution is that using the complete DFT, we provide an alternative approach,
which yields a “periodogram” with a bias of order less than O(n~1). The complete DFT defined

as in (1.3) also satisfies

cov(Jn(w; f), Ju(w)) = flw) 0

N
&
N
3

(1.5)

Based on (1.5), we define the unbiased complete periodogram I, (w; f) = Jy,(w; f)Jp(w).

Unlike the regular periodogram, I,,(w; f) depends on the (unknown) underlying spectral den-
sity and thus it needs to be estimated. For most time series models (an important exception for
the autoregressive model of finite order), /,,(w; f) does not have a simple analytic form. Instead
in Section 2.3, we derive an approximation of I,,(w; f), and propose a method for estimating the
approximation. Both the approximation and estimation will induce errors in I, (w; f). However,
we prove, under mild conditions, that the bias of the resulting estimator of I,,(w; f) is less than
O(n~1). We show in the simulations (Section 3.4.1), that the resulting estimated complete peri-
odogram outperforms than the classical periodogram and tends to better capture the peaks of the
underlying spectral density.

The last contribution is that we derive an exact, interpretable, bound between the Gaussian

and Whittle likelihood of a stationary time series. The key to the derivation is the complete and



predictive DFT. In Theorem 2.4.1, we show that the first term of the Gaussian likelihood is

-1y -1 . l < j(wknvfe) (wkn)
X (fo) X =~ ) (1.6)

S fywnn)

thus the (first term of the) difference between the Gaussian and Whittle likelihood is

= j wknaf@ (wkn)

f9 wkn)

£a(0) = Kal®) =, 3,

Therefore, the difference between the Gaussian and Whittle likelihood is due to the omission of
these linear predictors outside of the observed domain.

It is common to use the Cholesky decomposition to decompose the inverse of a Toeplitz matrix,
I'.(fo)~'. However, an interesting aspect of (1.6) is that it provides an alternative decomposition
of the inverse of a Toeplitz matrix using the complete DFT. In general processes, the complete
DFT does not have a simple analytic expression. In Section 2.4.1, we obtain an approximation of
the complete DFT and thus an approximation of the inverse Toeplitz matrix in terms of the infinite
order causal and minimum phase autogregressive factorization of fy. We prove in Theorem 2.4.3
that under mild conditions, element-wise ¢; norm of an approximation error converges to zero

rapidly.
1.3 Organization

The rest of the dissertation is organized as follows. In Section 3, we discuss greater detail of
the complete periodogram in Section 2.3. In Section 3.1, we propose a variant of the estimated
complete periodogram, which tapers the regular DFT. In the simulations, it appears to improve on
the non-tapered complete periodogram. In Section 3.2, we consider the integrated periodogram
estimators, where the spectral density is replaced with the estimated complete periodogram (both
tapered and non-tapered). Some examples can be found in Section 3.3. In Section 3.4, we illus-
trate the proposed variant of the complete periodogram method with simulations. Two real data

analyses (ball bearing and sunspot data) are considered in Section 3.5. The various estimated



complete periodograms, proposed in this section, are available as an R package called cspec on
CRAN(https://cran.r-project.org). Lastly, proof for the results in Sections 2.2, 2.3,
and 3 can be found in Section 3.6.

In Section 4, we discuss greater detail of the frequency domain representation of the Gaussian
likelihood in Section 2.4. In Section 4.1, we use an approximation for the difference in likelihoods,
L,(0) — K,(0) in Section 2.4.1, to define two new spectral divergence criteria: The boundary
corrected and hybrid Whittle. In Section 4.2, we describe a set of assumptions which is required
to prove the sampling properties of the new likelihoods. In Section 4.3, we show consistency
results of the new likelihood estimators and in Section 4.4, we calculate an asymptotic bias and
variance of new likelihood estimators. In Section 4.5, we discuss of the implementation issues
of the new estimators. In Section 4.6, we illustrate and compare the proposed frequency domain
estimators through some simulations. We study the performance of the estimation scheme when
the parametric model is both correctly specified (Section 4.6.1) and misspecified (Section 4.6.2).
Also, empirical results when fitting lower order model (Section 4.6.3) and alternative estimating
methods (Section 4.6.4) are presented. Finally, proof for the results in Sections 2.4 and 4 can be
found in Section 4.7.

Some additional results and simulations can be found in Appendix. In Appendix A, Baxter-
type inequalities for the finite predictors and their derivatives are introduced with proof. These
inequalities play an important role to prove approximation results in the main part. In Appendix B,
we derive an expression for the asymptotic bias of the Gaussian, Whittle likelihoods, and the new
frequency domain likelihoods. Additional simulations for Section 4 are in Appendix C and some

technical lemmas are derived in Appendix D.


https://cran.r-project.org

2. MAIN RESULTS *

2.1 Notational conventions

In this section, we introduce most of the notation used in the dissertation. Let { X}z be a
second order stationary time series and we assume that E[X;| = 0 (as it makes the derivations
cleaner). We use {c;(r)},ez to denote an autocovariance function and f(w) = Y, _, cp(r)e™ its
corresponding spectral density. Sometimes, it will be necessary to make explicit the true underly-
ing covariance (equivalently the spectral density) of the process. In this case, we use the notation
cov(Xt, Xitr) = Ef[ Xy Xi4r] = ¢4(r). We define a Toeplitz matrix corresponds to the spectral
density f, denotes I',,(f), is an n x n matrix with entries I',,(f)s: = cf(s —1).

Let g be a function on [0,27]. We define the n x n circulant matrix C,(g) with entries
(Co(9)st = n X0, glwpn)e 5= Dkn Let A* denote the conjugate transpose of the matrix
A. Then, the circulant matrix C),(g) can be written as a matrix form C,,(g) = F*A,(g)F,, where
A,(g) = diag(g(win),- .-, 9(wn,)) is a diagonal matrix and F), is the n x n DFT matrix with
entries (F,)s; = n~'/2e™“tn, We recall that the eigenvalues and the corresponding eigenvectors
of any circulant matrix Cy,(g) are {g(wg,n)}3—; and {e},,, = (e*1n, ... e*enn)in | respectively.

Next, we define the norms we will use. Suppose A is a n x n square matrix, let |A|, =
Q=1 |a; ;|P)? be an element-wise p-norm for p > 1, and |A|pe. denote the spectral norm.
Let | X|g, = (E|X \p)l/ P where X is a random variable. For the 27-periodic square integrable
function ¢g with g(w) = >, _, g-, we use the sub-multiplicative norm |g[x = Y, ., (2% +
7|%)|g,|. Note that if Zﬁgﬁz sup,, |¢¥) (w)| < oo then ||g|x < oo, where | K| is the largest integer
smaller or equal to K and ¢\/)(-) denotes the jth derivative of g.

Suppose f,¢g : [0,27] — R are bounded functions, that are strictly larger than zero and are

symmetric about 7. By using the classical factorization results in Szegd (1921) and Baxter (1962)

“Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral meth-
ods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.] and [S. Subba Rao and J. Yang. Reconciling the Gaussian and Whittle like-
lihood with an application to estimation in the frequency domain. Annals of Statistics (To appear), arXiv:2001.06966,
2021.]



we can write f(-) = o7[r(-)]* = 0}|ds(-)| 2, where ¢p(w) = 1 — 372 ¢;(f)e 7 and ¢(w) =
1+ 377, 4;(f)e™, the terms oy, ¢g(-), and ¢)y(-) are defined similarly. In Sections 2.4.1 and 4,

we require the following notation

o0]

paic(f) = X5 [P e (f),
r=n+1
Ak(f.9) = 207 Wslolldgl3l sk
3_
and  Cpx = [ sl oyl

for some 0 < € < 1.

Lastly, we denote Re and Im as the real and imaginary part of a complex variable respectively.
2.2 The biorthogonal transform to the discrete Fourier transform

We recall that the DFT of the time series plays a fundamental role in the frequency domain
methods of the second order stationary time series. With this in mind, our first goal in this section
is to derive the transformation {Zj. ,}}'_; < sp(X,,), which is biorthogonal to {.J,,(wk»)}}_;. That
is, we derive a transformation {Zj ,}}_; which when coupled with {J,(w)}r_, satisfies the

following condition

Ccovy (Zk‘l,n? JN(wkmn)) = f(wkl,n)(skl,kz

where Oy, r, = 1if k1 = ko (and zero otherwise). Since Z,, = (Z1p,. .., Znn) € sp(X,,)", there
exists an n x n complex matrix U, such that Z, = U, X,. Since (J,(wk1),--., Jn(wnn)) =
F, X, the biorthogonality of U,,.X,, and F,, X, gives covs (U, X,,, Fr.X,) = An(f).

To understand how U, X, is related to F,, X, we rewrite U, = F, + D,(f). We show in
the following theorem that D,,(f) has a specific form with an intuitive interpretation. In order to

develop these ideas, we use methods from linear prediction. In particular, we define the best linear

predictor of X, for 7 € Z given { X}, as

Xew = Y bun(T; £) X0, .1)
t=1



where {¢;,,(7; )}, are the coefficients which minimize the Lo-distance

n 2 n
E[X, — Y. ¢l )X, = L J €7 = Gun(rs e[ f(w)dw.
t=1 2m Jo t=1

We observe that for 1 < 7 < n, ¢;,,(7; f) = d,,. Furthermore, due to the stationarity, the finite
predictor coefficients ¢ ,(7; f) are reflective i.e. the predictors of X,,, (for m > n) and X, 1,

share the same set of prediction coefficients (just reflected) such that

¢t,n(m§ f) = ¢n+17t,n<n +1—m;f) form > n.

Using a notation of the finite predictor coefficients, we obtain the following biorthogonal theorem.

Theorem 2.2.1 (The biorthogonal transform). Let {X;} be a zero mean second order stationary
time series with spectral density f. Suppose that f bounded away from zero and whose autoco-
variance satisfies Y, _, |rcy(r)| < co. Let )A(T,n denote the best linear predictor of X, as defined in

(2.1) and {¢,,,(; f)} the corresponding finite predictor coefficients. Then

covy ((Fn + Du( /)Xo FaX,) = An(f), 2.2)
where D, (f) has entries
Do(Dig =172 (G175 F)ET + Gpirgn(rs fle D) (2.3)
7<0

for 1 < k,t < n. And, entrywise 1 < ki, ks < n, we have

COVy <’7n (wklm; f)? Jn (wkz,n)> = f(wkl,n)(skhl@ (24)
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where Jo(w; ) = (Fy + Du(f)X,, = Ju(w) + Jp(w; f) and

n

jn(w; f)=D.(HX, = n 12 Z )A(ﬂneiw +n 12 Z )A(ﬁne”w. (2.5)

7<0 T>n

PROOF. See Section 3.6.1 (note that identity (2.4) can be directly verified using results on best

linear predictors). ]

What we observe is that the biorthogonal transformation (F,, + D,(f))X,, extends the domain
of observation by predicting outside the boundary. A visualization of the observations and the

predictors that are involved in the construction of I, (w; f) is given in Figure 2.1.

Best linear Best linear
——— Predictor /\ /_\ Predictor ——
Xoon X 1m Xow I I KXot1n Xngon Xogan
o . . . - o
X, Xo Xy e

Observed

Figure 2.1: .J,, (w; f) is the Fourier transform over both the observed time series and its predictors
outside this domain.

It is quite surprising that only a small modification of the regular DFT leads to its biorthogonal
transformation. Furthermore, we can show that the contribution of the additional DFT term is

Jnlw; f) = O,(n~Y2). This is why the regular DFT satisfies the well known “near orthogonal
property
COVf(‘]n(kan)? Jn(ka,n)> = f(wkl)6k17k2 + O(nil)v

see Brillinger (1981) and Lahiri (2003). For future reference, we will use the following definitions.

Definition 2.2.1. We refer to jn(w; f) in (2.5) as the predictive DFT (as it is the Fourier transform

11



of all the linear predictors). Nothing that basic algebra yields the expression

Ta(wi £) = n7 2N XD (75 £ + €™ i1 n(Ti fle ), (2.6)
t=1 <0
Note that when w = wy,, the term €™ in (2.6) vanishes. Further, we refer to jn(w; f) as the
complete DFT (as it contains the classical DFT of the time series together with the predictive
DFT). Note that both jn(w; f) and jn(w; f) are functions of f since they involve the spectral

density f(-), unlike the regular DFT which is model-free.

Remark 2.2.1. Biorthogonality of random variables is rarely used in statistics. An interesting
exception is Kasahara et al. (2009). They apply the notion of biorthogonality to problems in

prediction. In particular they consider the biorthogonal transform of X, which is the random

vector X, = T, (f) ™LX, (since covf(ln,in) = 1,,). They obtain an expression for the entries
of X ., in terms of the Cholesky decomposition of T',,(f) 1. However, there is an interesting duality
between Xn and Jn = (jn(wlvn; £, jn(wnm; 1)) In particular, applying identity (2.28) to

the DFT oan gives

This shows that the DFT of the biorthogonal transform of X, is the standardized complete DFT.
Conversely, the inverse DFT of the standardized complete DFT gives the biorthogonal transform

to the original time series, where the entries of X , are
0o~
_ b Z In (W’W )e—ijwk,n'
Remark 2.2.2 (Connection to the orthogonal increment process). Suppose that Z(w) is the orthog-

onal increment process associated with the stationary time series {X,;} and f the corresponding

spectral density. If { X} is a Gaussian time series, then by using Theorem 4.9.1 in Brockwell and

12



Davis (2006) we can show that

~ 1 m
R =ELXX,] = o J e “TE[Z(dw)|X, ] = *2/—7? e~ T (w; f)dw,
0 0

Based on the above, heuristically, E[dZ(w)|X,] = v/, (w; f)dw and /nJ,(w: f) is the deriva-
tive of the orthogonal increment process conditioned on the observed time series. Under Assump-
tion 2.3.1, below, it can be shown that Var[jn (w; /)] = O(n™1), whereas var[J,(w)] = f. = O(1).
Based on this, since J,,(w; f) = Jo(w)+ Ju(w: ), then /nd, (w; f) ~ v/ndn(w). Thus the regular

DFT, \/nJ,(w), can be viewed as an approximation of the derivative of the orthogonal increment

process conditioned on the observed time series.

2.2.1 The predictive DFT for the AR(p) process

In this section, we derive an explicit form of the predictive DFT for the AR(p) process. To

begin with, we calculate the predictive DFT for the AR(1) process.

Example 2.2.1 (The AR(1) process). Suppose that X; has an AR(1) representation X; = ¢X;_1 +
et (|¢] < 1). Then the best linear predictors are simply a function of the observations at the two
endpoints. That is for T < 0, )A(T’n = (/§|T|+1X1 and fort > n )A(T,n = ¢" " X,,. Then the predictive
DFT for the AR(1) model is

¢ 1 6i(n+1)w

In(w; fo) = T (MXl + WXR> where  ¢(w) =1 — g™,

An illustration is given in Figure 2.2.

We now generalize Example 2.2.1 to the AR(p) process. Suppose that f,(w) = o?|1 —
1;:1 ¢;e%| 72 is the spectral density of the time series { X, };cz (it is a finite order autoregressive
model AR(p)) and where the characteristic polynomial associated with {¢; ?:1 has roots lying

outside the unit circle. Clearly, we can represent the time series { X}z as

p
X, =0 X j+e tel

J=1

13



Best linear predictor Best linear predictor

(731‘9“. UT‘;"‘_“,"_”_.L ,:'_"_':'L"é'x{'"--?,)‘
Leet ;4% -.‘,qnz\‘&n‘nuif .
— & A . N O O
PN > S X Xo e X 4 X S > o
X_Q X_l X() 1 2 n—1 n Xn+1 Xn+2 Xn+3

Observed

Figure 2.2: The past and future best linear predictors based on a AR(1) model.

where {; };cz are uncorrelated random variables with E[e;] = 0 and var[e;] = o2. For finite order
AR(p) processes with autoregressive coefficients {¢; ;7:1, the best linear predictor of X and X,
given { X}, are )A(o,n = 2. ¢;X; and )A(,HM = 2.1 ¢ Xny1-j respectively. In general, we

can recursively define the best linear predictors X 1—rn and )A(Mm to be
Xirn = D0 X1 rpjm and Xpirn = 6 Xnirjm  forr>1,  (27)
j=1 j=1

where )A(t,n = X, for 1 <t < n. Therefore, using (2.7) and similar to Example 2.2.1 for AR(1)
model, we can obtain the expression of the predictive DFT of an AR(p) model in terms of the AR

coefficients {¢;};_.

Theorem 2.2.2 (Predictive DFT for a finite order autoregressive models). Suppose that f,(w) =
0?|pp(w)| 72 where dp(w) = 1 —3_ ¢pje™"* (the roots of the corresponding characteristic poly-

nomial lie outside the unit circle) and p < n. Then, the predictive DFT has the analytic form

Jn(w; fp) = X0 ) buyse ™ + ™ == Xpy1-0 ) e’ (2.8)
¢P(w) {=1 s=0 ¢p(W) =1 s=0
PROOF. See Section 3.6.1. ]

2.3 The complete periodogram

Using the notation of the complete and predictive DFT, we define the “complete” periodogram

Tn(w; f) = Tn(@)Ta(@) = [Ta(@)]” + Jo(@) Ju(w)  w e [0,2n]. 2.9)
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Then, using the similar technique in the proof of Theorem 2.2.1, it can be shown that E[I,,(w; f)] =
f(w) for allw € [0, 27]. Therefore, the complete periodogram is an unbiased estimator of the spec-
tral density for the entire frequency. However, the complete periodogram involves fn(w; f) which
is a function of the unknown spectral density. Thus, the complete periodogram cannot be directly
evaluated. In next sections, we obtain feasible approximations of the complete periodogram and

the corresponding errors.
2.3.1 The AR(p) model and an AR(co) approximation

Recall from (2.6), the predictive DFT can be expressed in terms of the finite predictor co-
efficients which is, in general, an unwieldy function of the autocovariance function. Therefore,
obtaining an approximation of the predictive DFT could be challenging. However, for certain
spectral density functions, it is approachable. In Theorem 2.2.2, we show that when f = f, cor-
responds to the AR(p) spectral density, T (w; fp) has a relatively simple analytic form in terms
of the AR coefficients. This tells us that for finite order autoregressive models, estimation of the
predictive DFT only requires us to estimate p number of autoregressive parameters.

For general stationary time series, such simple expressions are not possible. But (2.8) provides
a clue to obtaining a near approximation, based on the AR(o0) and MA(o0) representation that
many stationary time series satisfy. It is well known that if the spectral density f is strictly positive,
then it has an AR(c0) and MA(o0) representation see Baxter (1962) (see also equation (2.3) in

Kreiss et al. (2011))

X — Z ¢j(f)Xt—j = &
j=1
Xt = &+ Z ¢j<f)€t—ja
j=1

where {&;};cz is an uncorrelated White noise process with E[e?] = o2. Unlike finite order au-

toregressive models, J, (w; f) cannot be represented in terms of {¢;(f)}52,, since it only involves

the sum of the best finite predictors (not infinite predictors). Instead, we define an approximation
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based on (2.8), but using the AR(c0) and MA () representation

Tenlri ) = =31 X Y frag(fle ™ + e

where ¢(w; f) = 1 — 37, ¢;(f)e™ and ¥(w; f) = 27, ¢;(f)e ™ (we set yo(f) = 1 by
convention). Though seemingly unwieldy, (2.10) has a simple interpretation. It corresponds to the
Fourier transform of the best linear predictors of X given the infinite future {X,}, (if 7 < 0) and
X, given in the infinite past {X;}}_

_, (if 7 > n), but are truncated to the observed terms { X;}}" ;.

Of course, this is not J, (w; f). However, we show that

Lon(w; ) = (Jn(@) + Tn(w: £)) Tul) 2.11)

is a close approximation of the complete periodogram, I,,(w; f). To do so, we require the following
assumptions.

The first set of assumptions is on the second order structure of the time series.
Assumption 2.3.1. { X}z is a second order stationary time series, where
(i) The spectral density f, is a bounded and strictly positive function.

ii) For some K > 1, the autocovariance function is such that rSe(r)| < oo
rel f

Assumption 2.3.1(i1) is related to the smoothness of the spectral density function. Assump-
tion 2.3.1(ii) implies that f is s-times differentiable, where the sth derivative is bounded for all
s < K. Conversely, Assumption 2.3.1(ii) is satisfied for all 27-periodic functions which are s-
times continuously differentiable for some s > K + 1. We also mention that under Assumption
2.3.1, the corresponding AR(20) and MA(0) coefficients are such that 230:1 175 ¢;(f)| < o and

D21 1754 (f)] < oo (see Lemma 2.1 in Kreiss et al. (2011)).
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The next set of assumptions are on the higher order cumulants structure of the time series.

Assumption 2.3.2. {X;} is an 2m-order stationary time series such that E[|X;|*™] < oo and
cum(Xe, Xigsys ooy Xegs, ;) = cum(Xo, Xsp, ..., X, ) = £n(S1, ..., Spor) forall t, sy, ..., sp—1 €

) “Asp_1

Z with h < 2m. Further, the joint cumulant {kp(s1, ..., Sp—1)} satisfies

Z |kn(s1,. .. sp—1)| <0 for 2<h<2m.
S1yeeny Sh_1€EZ
Before studying the approximation error when replacing I,,(w; f) with I, ,(w; f) we first obtain
some preliminary results on the complete periodogram I,,(w; f). The following result concerns the
order of contribution of the predictive DFT in the complete periodogram. Suppose Assumptions

2.3.1 (with K > 1) and 2.3.2 (for m = 2) hold. Let jn(cu; f) be defined as in (2.5). Then

E[J,(w; f)J(@)] = O(n™),  var(J,(w; f)Jn(w)) = O(n~2). (2.12)

The details of the proof of the above can be found in Section 3.6.2.

Moreover, there are two main differences between the complete periodogram and the regular
periodogram. The first is that the complete periodogram can be complex, however the imaginary
part is mean zero and the variance is of order O(n~!). Thus without loss of generality, we can focus

on the real part of the complete periodogram J,, (w; f)J, (w), denotes Re J,, (w; f)J,(w). Second,

unlike the regular periodogram, Re jn(w; f)Jn(w), can be negative. Therefore if positivity is de-

sired it makes sense to threshold Re .J,, (w; f).J, (w) to be non-zero. Thresholding Re J,, (w; f)J, (w)
to be non-zero induces a small bias. But we observe from the simulations in Section 3.4 that the
bias is small (see the middle column in Figures 3.1—3.3 where the average of the thresholded true
complete periodogram for various models is given).

Lastly, we mention the variance of the complete periodogram. In the simulations, we observe
that the variance of the complete periodogram tends to be larger than the regular periodogram,

especially at frequencies where the spectral density peaks. To understand why, we focus on the



Gaussian time series. For the complete periodogram, it can be shown that

var[L (w; f)] = var[ J,(w; )] - var[Ju(w)] + O(n~).

By Cauchy-Schwarz inequality, we have for all n that

var[ o (w; f)] - var[Ju(w)] = |cov[Ta(w; ), Ja(@)]]* = f(w)”

Thus the variance of the complete periodogram is such that var[l,(w; f)] = f(w)? By contrast
the variance of the regular periodogram is var[[,,(w)] ~ f,(w)? < f(w)?. Nevertheless, despite an
increase in variance of the periodogram, our empirical results suggest that this may be outweighed
by a substantial reduction in the bias of the complete periodogram (see Figures 3.1—3.3 and Table

3.1).
2.3.2 The estimated complete periodogram and its approximation bound

Our aim is to estimate the predictive component in the complete periodogram; .J,, (w; f)dn(w).

As a starting point, we use the Assumptions in Section 2.3.1 to bound the difference between

I, (w; f) and Iy 5 (w; f).

Theorem 2.3.1. Suppose Assumption 2.3.1 and 2.3.2 (form = 2) hold. Let I,,(w; f) and 1, ,,(w; f)

is defined as in (2.9) and (2.11) respectively. Then

Loon(w; f) = In(w; f) + Ao(w), (2.13)

where sup,, E[Ag(w)] = O (n™5), sup,, var[Ag(w)] = O (n=2K).

PROOF. See Section 3.6.2. ]

A few comments on the above approximation are in order. Observe that the approximation error
between the complete periodogram and its infinite approximation is of order O(n~*). For AR(p)

processes (where p < n) this term would not be there. For AR (o0) representations with coefficients
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that geometrically decay (e.g., an ARMA process), then | Iy, ,,(w; f)—I,(w; f)| = O,(p™), for some
0 < p < 1. On the other hand, if the AR(c0) representation has an algebraic decaying coefficients,
o;(f) ~ |j|~K"17° (for some § > 0), then |Iy, ,(w; f) — L,(w; f)] = O,(n~%). In summary,
nothing that 7,,(w; f) is an unbiased estimator of f, if K > 1, then [, ,(w; f) has a smaller bias
than the regular periodogram.

Now the aim is to estimate jwm (w; f). There are various ways this can be done. In this disser-
tation, we approximate the underlying time series with an AR(p) process and estimate the AR(p)
parameters. This approximation will incur two sources of errors. The first is approximating an
AR(0) process with a finite order AR(p) model, the second is the estimation error when esti-
mating the parameters in the AR(p) model. In the following section, we obtain bounds for these

CITOrS.

Remark 2.3.1 (Alternative estimation methods). If the underlying spectral density is highly com-
plex with several peaks, fitting a finite order AR(p) model may not be able to reduce the bias. An
alternative method is to use the smooth periodogram to estimate the predictive DFT. That is to
estimate the AR(o0) parameters and MA(o0) transfer function 1(w) in (2.10) using an estimate of
the spectral density function. This can be done by first estimating the cepstral coefficients (Fourier
coefficients of log f(w)) using the method Wilson (1972). Then, by using the recursive algorithms
obtained in Pourahmadi (1983, 1984, 2001) and Krampe et al. (2018) one can extract estimators
of AR(0) and MA(0) parameters from the cepstral coefficients. It is possible that the probabilistic
bounds for the estimates obtained in Krampe et al. (2018) can be used to obtain bounds for the

resulting predictive DFT, but this remains an avenue for future research.

Next, we return to the definition of the predictive DFT in (2.5), which is comprised of the best
linear predictors outside the domain of observation. In time series, it is common to approximate
the best linear predictors with the predictors based on a finite AR(p) recursion (the so called plug-
in estimators; see Bhansali (1996) and Kley et al. (2019)). This approximation corresponds to
replacing f in fn(w; f) with f,, where f, is the spectral density corresponding to “best fitting"

AR(p) model based on f.
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It is well known that the best fitting AR(p) coefficients, given the covariances {c(r)}, are

&, = (D1p: s Bpp) = R, 1, (2.14)

where R, is the px p Toeplitz variance matrix with (RR,)(s) = cy(s—t)andr, = (cf(1),...,cs(p))"

This leads to the AR(p) spectral density approximation of f
Io() = 0%10p(w) 72 = o1 = D dype ]
j=1

The coefficients {gzﬁj,p}?:l are used to construct the plug-in prediction estimators for X, (7 < 0 or
7 > n). This in turn gives the approximation of the predictive DFT jn(w; f») where the analytic
form for jn(w; fp) is given in (2.8), with the coefficients ¢, replaced with ¢; ,,.

Using jn(w; fp) = Jn(w) + T (w; fp) we define the following approximation of the complete

periodogram

Lo(w; f,) = Jolw; f,) T (w). (2.15)

We now obtain a bound for the approximation error, where we replace 1., ,,(w; f) with I,,(w; f,).

Theorem 2.3.2. Suppose Assumption 2.3.1 holds with K > 1. Let 1, ,(w; f) and I,,(w; f,), be

defined as in (2.11) and (2.15) respectively. Then we have

[n(w§ fp) = [oom(W; f) + A1(W), (2.16)

where sup,, E[A;(w)] = O ((np™~1)71), sup,, var[A;(w)] = O ((np™~1)72).
PROOF. See Section 3.6.2. [

Applying Theorems 2.3.1 and 2.3.2, we observe that [,(w; f,) has a smaller bias than the
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regular periodogram

ElL (i )] = )+ 0 (i )

npK 1

In particular, the bias is substantially smaller than the usual O(n~!) bias. Indeed, if the true

underlying process has an AR(p*) representation where p* < p, then the bias is zero.

However, in reality, the true spectral density and best fitting AR(p) approximation f and f, respec-
tively are unknown, and they need to be estimated from the observed data.
To estimate the best fitting AR(p) model, we replace the autocovariances with the sample

autocovariances to yield the Yule-Walker estimator of the best fitting AR(p) parameters

6 = Brpn i bpp) = BT, (2.17)
where }A%pvn is the p x p sample covariance matrix with (-ﬁp,n)(s,t) = Cu(s—t)andr,, = (Cu(1),...,Cu(p))

where ¢, (k) = n~! Zf;llkl X X1, We define the estimated AR(p) spectral density
Jo(w) = [@p(w \1—Z¢m€_”“\

Observe that we have ignored including an estimate of the innovation variance in fp(w) as it
plays no role in the definition of j (w; fp). Using this we define the estimated complete DFT
as J (w: fp) = Jo(w) + Ty, (w; fp) where

~1/2 P

p—¢ 1/2 P
~ ~ n ~ . n-
Tn(w; fp) = = > X0 > brpspe + € § Xni1- z§ Grpspe’ TV (2.18)
¢p(W) =1 s=0 ¢

and corresponding estimated complete periodogram based on f,, is

L(w; f,) = Jn(w; F,) T (w). (2.19)
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We now show that with the estimated AR(p) parameters the resulting estimated complete peri-

odogram has a smaller bias (in the sense of Bartlett (1953)) than the regular periodogram.

Theorem 2.3.3. Suppose Assumptions 2.3.1(i) and 2.3.2 (where m > 6 and is multiple of two)
hold. Let 1,,(w; f,) and I,,(w; fp) be defined as in (2.15) and (2.19) respectively. Then we have the

following decomposition

~

L(w; fp) = L(w; f) + As(w) + Ry (w) (2.20)

where As(w) is the dominating error with

and R, (w) is such that sup,, | R, (w)| = O, ((p*/n)™"*).

PROOF. See Section 3.6.2. N

We now apply Theorems 2.3.1—2.3.3 to obtain a bound for the approximation error between

the estimated complete periodogram I, (w; fp) and the complete periodogram.

Theorem 2.3.4. Suppose Assumptions 2.3.1 (K > 1) and 2.3.2 (where m > 6 and is a multiple of
two) hold. Let I,(w; f) = Jn(w; f)Jp(w) and I,,(w; fp) be defined as in (2.19) respectively. Then
we have

s ) = i)+ 80 + 0, (57,

nm/4

where A(w) = Ag(w) + Ay (w) + Ag(w) (with A;(-) as defined in Theorems 2.3.1—2.3.3),
sup, B[A(w)] = O((np"—1) ™ + p/n?) and sup, var[A(w)] = O(p*/n?).

PROOF. The result immediately follows from Theorems 2.3.1—-2.3.3. ]
To summarize, by predicting across the boundary using the estimated AR(p) parameters heuris-

tically we have reduced the “bias” of the periodogram. More precisely, if the probabilistic error in
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Theorem 2.3.4 is such that p o << p . Then the “bias” in the sense of Bartlett (1953) is

1 p?
Ellpn(w; fp)] = fw) + O += .
Consequently, for K > 1, and p chosen such that
p’/n—0, as pn— o, 2.21)

then the “bias” will be less than the O(n ') order. This can make a substantial difference when n
is small or the underlying spectral density has a large peak.
In practice the order p of the best AR process needs to be selected. This is usually done using

the AIC. In which case the above results need to be replaced with p, where p is selected to minimize

the AIC
2p
AIC(p) = log5? + =,
(7) = logaZ, + 2
Orn = moi 2uterc, (Xt — 20218, X, )%, K, is such that K27 ~ n for some § > 0 and the

order p is chosen such that p = arg min; <<, AIC(k). To show that the selected p satisfies (2.21),
we use the conditions in Ing and Wei (2005) who assume that the underlying time series is a linear,
stationary time series with an AR(o0) that satisfies Assumption K.1—K.4 in Ing and Wei (2005).

Under Assumption 2.3.1, and applying Baxter’s inequality, the AR (o0) coefficients satisfy

o0
Dllaj —aj,l* < Zlaj aj,))” Z la;))* = O (p~2K) . (2.22)
j=1

Jj=p+1

Under these conditions, Ing and Wei (2005) obtain a bound for p. In particular, if the underlying
time series has an exponential decaying AR coefficients, then p = O, (logn) (see Example 1 in Ing
and Wei (2005)) on the other hand if the rate of decay is polynomial order satisfying (2.22), then

P = 0,(n"/(+2K)) (see Example 2 in Ing and Wei (2005)). Thus, for for both these cases we have
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ﬁ?’/ngOandﬁgooasn—»oo.
In summary, using the AIC as a method for selecting p, yields an estimated complete peri-

odogram that has a lower bias than the regular periodogram.
2.4 The Gaussian likelihood in the frequency domain

In this section, we calculate the exact difference between the Gaussian and Whittle likelihood,
and using this exact bound, we obtain the frequency domain representation of the Gaussian likeli-
hood. To compare the Gaussian and Whittle likelihood, we rewrite the Whittle likelihood (defined
as in (1.2)) in a matrix form. Using the circulant matrix notation, the Whittle likelihood K, (0; X))

can be written as

Ko(6;X,) = n™ (X0,Cu(fy X, + D log folwrn)).- (2.23)

k=1

Since the focus in this dissertation will be on the first terms in the Gaussian and Whittle likelihoods,
we use L,,(0) and K,,(0) to denote only these terms:

Lo(0) =n"' X\Tu(fo) X, and K, (0) =n ' XCu(fy )X

n:

(2.24)
Therefore, the difference of two likelihoods is

Enw) - Kn(9> = niligm (Fn(fe)il - Cn(fgl)) X

==n-

Since the inverse circulant matrix C,,(f; ') = F*A,(f, ') F, has a relatively easy form, to obtain
the exact bound, it is essential to obtain a “good” expression for the inverse of the variance matrix.

To motivate our approach, we first study the difference in the bias of the AR(1) parameter
estimator using both the Gaussian and Whittle likelihood. In Figure 2.3, we plot the bias in the
estimator of ¢ in the AR(1) model X; = ¢X; 1 + & for different values of ¢ (based on sample
size n = 20). We observe that the difference between the bias of the two estimators increases as

|¢| approaches one. Further, the Gaussian likelihood clearly has a smaller bias than the Whittle
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likelihood (which is more pronounced when |¢| is close to one).

0.16+

Bias of AR(1), Gaussian error
0.124 =~

0.08+ Ty

0.04+ =

BIAS
o
]

-0.04-

-0.08

-0.12-

—— Gaussian = = Whittle
-0.16-

T T T T
-0.9 -0.7 -0.5 -0.3 -0.1 (p 0.1 0.3 0.5 0.7 0.9

Figure 2.3: The model X; = ¢X; 1 + ¢; with independent standard normal errors is simulated.
The bias of the estimator of ¢ based on sample size n = 20 over 1,000 replications.

Straightforward calculations give explicit forms for I',,(f4) ™ and C,,( fdjl)

1 -6 0 0 1
—¢ 14¢> —¢ 0 0
Tu(fe)™ = [0 -6 1+¢2 —¢ ... 0]
0 0 0 0 1
1+¢> —¢ 0 0 —¢
—¢ 14+¢* ¢ 0 0
Culfyh) = 0 —¢ 1+¢* —¢ ... 0 | (2.25)
—¢ 0 0 0 ... 1+¢?

Therefore, based on (2.25), the difference between the Gaussian and Whittle likelihoods for an
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AR(1) model is
Lo(0) — Kn(¢) = n7' [20X1 X, — 6°(XT + X7)] (2.26)

Thus we observe that the closer |¢| is to one, the larger the expected difference between the likeli-
hoods. Using (2.26) and the Bartlett correction (see Bartlett (1953) and Cox and Snell (1968)), it
is possible to obtain an asymptotic expression for the difference in the biases (see also Appendix
B.2). Generalization of this result to higher order AR(p) models may also be possible using the
analytic expression for the inverse of the Toeplitz matrix corresponding to an AR(p) model derived
in Siddiqui (1958) and Galbraith and Galbraith (1974).

However, for more general models, such as the MA(q) or ARMA(p, ¢) models, using brute
force calculations for deriving the difference £,,(0) — K, (6) and its derivatives is extremely diffi-
cult. Furthermore, such results do not offer any insight on how the Gaussian and Whittle likelihood
are related, nor what is “lost” when going from the Gaussian likelihood to the Whittle likelihood.
Therefore, we use a different approach to obtain an inverse Toeplitz matrix representation. The
key is on the matrix representation of the biorthogornal transform theorem (Theorem 2.2.1, (2.2)).
The benefit of biorthogonality between U,, = F,, + D,,(f) and F,, is that it leads to the following

simple identity on the inverse of the variance matrix.

Lemma 2.4.1. Suppose that U, and V,, are biorthogonal matrices with respect to the variance
matrix var(X,), such that cov(U,X,,, V,X,)) = A,, where A, is an invertible diagonal matrix.

Then, we have the representation

var(X,,) ' = VAU, (2.27)

PROOF. We first note that cov(U,X,,,V,,X,,) = U,var(X,)V.* = A,. By taking determinant on
both side, we have |U,||var(X,,)||V.| = |Dn| # 0. Therefore,

Unl, [Va| # 0, ice., U, and V,, are
invertible. (2.27) follows immediately from inverting the identity var(X,,) = U, 'A,(V.))"'. O
Therefore, using Lemma 2.4.1 together with (2.2), we obtain representation of the inverse

Toeplitz matrix.
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Corollary 2.4.1 (Inverse Toeplitz identity). Let I',,(f) denote an n x n Toeplitz matrix generated

by the spectral density f. Then equations (2.27) and (2.2) yield the following identity

Lo(f)™ = EXAL(f ) (Fa + Dalf)), (2.28)

where D,,(f) is defined in (2.3). Observe that two spectral density functions f1(w) and fo(w) with

the same autocovariance up to lag (n—1), {c(r)}'Z,, can give rise to two different representations

Fn(fl)_l = F;An(fflxpn + Dn(ﬂ)) = FﬁkAn(fglen + Dn(fZ)) = Fn(f2)_1

In the following theorem, we exploit the biorthogonality between the regular DFT and the
complete DFT to yield an exact “frequency domain” representation for the Gaussian likelihood.

We use the notation defined in Theorem 2.2.1.

Theorem 2.4.1 (A frequency domain representation of the Gaussian likelihood). Suppose the spec-
tral density fy is bounded away from zero, and the corresponding autocovariance is such that
> |rep,(r)] < oo. Let jn(wkvn; fo) be the predictive DFT defined as in (2.5) but replacing f with
fo and jn(wk,n; fo) = Jn(wWkn) + jn(wk,n; fo) be the complete DFT. Then, the Gaussian likelihood

has the following representation

L£.,(0) :lX’ X, % In “’“;9 J:‘)k )M") (2.29)
Further
Co(fo) ™t = Culfy ) = FrAw(f3 ) Dulfo), (2.30)

where D, (fp) is defined as in (2.3) but replacing f with fy. This yields the difference between the
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Gaussian and Whittle likelihood

‘Cn(e) - Kn(e) = _IX/ [ (f9>_1 - n(f9_1>] Xn
_* Wk s f@ (Wk n)
= Z Foloorn) ) (2.31)

PROOF. (2.30) follows immediately from Corollary 2.4.1. Next, we note that £, X, = J, and
(F, + Dy(fo)X,, = in, thus we immediately obtain equation (2.29), and since J~n (Wen; fo) =
In(Win) + jn(wk,n; fa), it proves (2.31). J

From the above theorem, we observe that the Gaussian likelihood is the Whittle likelihood plus an

additional “correction”

,n E f0 Wkn)

liun wk,n ) 1 $ j (Wr,ns fo) In (Wi n)
n

To summarize, the Gaussian likelihood compensates for the well known boundary effect in the
Whittle likelihood, by predicting outside the domain of observation. The Whittle likelihood es-
timator selects the spectral density fy which best fits the periodogram. On the other hand, since
Ey, [J (Wrkn; fo)Jn(Wkm)] = fo(wrn), the Gaussian likelihood estimator selects the spectral den-
sity which best fits J (Wk.n; f@)m by simultaneously predicting and fitting. Therefore, the
“larger” the level of “persistence” in the time series, the greater the predictive DFT Jn(wk,n; fo),
and subsequently the larger the approximation error between the two likelihoods. This fits with the
insights of Dahlhaus (1988), who shows that the more peaked the spectral density the greater the
leakage effect in the Whittle likelihood, leading to a large finite sample bias.

By using Theorem 2.4.1, we have

£.0) Kol = 3 R P n) 1 X P D )Xo
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where the entries of F*A,(f; ") D, (fs) are

(F:An(fa_l)Dn(fG))s,t
= Z [¢t,n(7-; f@)Gl,n(Sa T3 f@) + gbn-i—l—t,n(T; f@)GZ,n(Sy T, fG)] (232)

7<0

with

HSWM_ZK (1 —s+an)
a€l

Glm(saT; f9) =

3|*—‘

I M: i M:

—i(rts—Dwrn — ZK (T+s—1+an)

a€Z

§|*—‘

GQ,n(Sa T f9) =

and ng—1(r) = §7r fo(w) e dw. We observe that for 1 << t << n, ¢y ,(7; fo) and 11, (7; fo)
will be “small” as compared with ¢ close to one or n. The same is true for Gy ,(s, 7; fy) and
Gon(s,T; fo) when 1 << s << n. Thus the entries of F*A,(f;")Dn(fs) will be “small” far
from the four corners of the matrix. In contrast, the entries of F* A, (f; ) D, (fs) will be largest at
the four corners at the matrix. This can be clearly seen for AR(1) model in (2.25). Moreover, in

the following theorem we generalize our observation to the case of AR(p) models.

Theorem 2.4.2 (Finite order autoregressive models). Suppose that fo(w) = 02|¢,(w)|™2 where
Op(w) =1 =3P _ e ™ (the roots of the corresponding characteristic polynomial lie outside

the unit circle) and p < n. Then, by Theorem 2.2.2, the predictive DFT has the analytic form

-1/2 P p—¢ n—1/2

X0 3 e+ s

n

j (wkn1f9) (bp( )

P p—¢
Z XnJrlfé Z ¢€+sel(s+l)whn'
s=0

Op (Wkn>e 1
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If p < n/2, then D,(fy) is a rank 2p matrix where

Dn(fG):
gbl,p(wl,n) gzﬁp’p(wm) 0O ... 0 €iw1’"¢p’p(w17n) eiwl’"gzﬁljp(wl’n)
n_1/2 ¢17p(w2,n) gbp’p(wg’n) 0 ... 0 €iw2‘”¢p7p(CU27n) €iw2‘"¢17p(0c.)27n)
Sip(@nn) o Dop(wnn) O .. O €@nng (oY L gy (on )

(2.33)

and ¢;p(w) = ¢p(w)™! Zs:é Gjrs€” . Note, if n/2 < p < n, then the entries of D, (fp) will

overlap. Let 50 =landforl <s<p, 58 = —¢s (zero otherwise), then if 1 < p < n/2 we have

(Fn(f(%)il - Cn(fgl))s,t - (F;An(fgl)Dn<f9)>s,t

o Zi;(t) gbf-&-t%(f-i—s) mod n I1<t< p
- o2 Z?;%nit) ¢€+(n—t)¢(€—s) modn M —pP+ 1<t<n. (234)
0 otherwise
PROOF. See Section 4.7.1. 0

Theorem 2.4.2 shows that for AR(p) models, the predictive DFT only involves the p obser-
vations on each side of the observational boundary X;,..., X, and X,,_,;1,...,X,, where the
coefficients in the prediction are a linear combination of the AR parameters (excluding the de-
nominator ¢,(w)). The well known result (see Siddiqui (1958) and Shaman (1975), equation (10))
that F*A,,(f; ") Dn(fs) is non-zero only at the (p x p) submatrices located in the four corners of
F*A, (£, 1) Dy(fo) follows from equation (2.34).

By using (2.8) we obtain an analytic expression for the Gaussian likelihood of the AR(p)

model in terms of the autoregressive coefficients. In particular, the Gaussian likelihood (written in

30



the frequency domain) corresponding to the AR(p) model X; = Z?zl O;Xi—j + e s

_9 n
£0(9) = = 3 V) Pl6p ()
k=1

o2& p—t P

+— Z Xy Z ¢€+s (X(s) modn — Z ¢jX(jfs) mod n)
"o = j=1

g2 & p—t P

+T Z Xn+17€ Z ¢€+s (X(erl) modn Z ¢jX(s+17j) mod n) ) (235)
=1 5=0

=1

where ¢ = (41, ..., $p)" and ¢, (w) = 1 =37, ¢;e~“. A proof of the above identity can be found
in Section 4.7.1. Equation (2.35) offers a simple representation of the Gaussian likelihood in terms

of a Whittle likelihood plus an additional term in terms of the AR(p) coefficients.
2.4.1 Approximation of the Gaussian likelihood in the frequency domain

In this section, we obtain the approximation of T',,(f)~! — C,,(f ') = FE*A,(f~1)D,(f) for
spectral density f. This is equivalant to obtain an approximation of D,,(f).

In Theorem 2.2.1, we replace ¢, (7; f) in D, (f) with ¢,(7; f) which are the coefficients
of the best linear predictor of X, (for 7 < 0) given infinite future of time series {X;}{%, i.e.

X, = e, (75 f)X,. This gives the approximation Do, ,,( f), where

(Doo,n(f))k’t - n*l/QZ (¢t(7' f) iTWE p + Prii t(T f) —i(T— 1wkn).

7<0

One advantage of this approximation is that the infinite prediction coefficients ¢,(7; f) (for 7 < 0)

admits a simple convolution-like expression

7]

Z¢s+a W (f) T <0, (2.36)

where {¢;(f)};>1 and {¢;(f)};>1 are AR(0) and MA(o0) coefficients of {X,} (with underlying

spectral density f) respectively. By convention, we set ¢o(f) = ¥o(f) =
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Using (2.36), it can be shown that for 1 < k,¢ < n,

—1/2 01 (Wrns f) NUPIES VoI s ¢f+1—t(wk,n; f)

(Do (f))rt = n O(wrn: f) B(wins f)

, (2.37)

where ¢f°(w; f) = Yo, Grrs(f)e” . The proof of the above identity can be found in Section
4.7.1. Using the above we can show that (D, ,(f)X,,)r = foo,n(wk,n; f) where

— n —
n—1/2 n-

2 n
T . o 0/, . i(n+1)w o7 .
Jonlwi ]) = S f)t;thﬁt (wi ) e f)t;XnH_tqbt @ - @38

It is not surprising that the expression of joo,n(w; f) in (2.38) is identical to the first identity of
(2.10). This is because both constructions are based on the infinite order AR representation of the
stationary time series.

We show below that joom(wk,n; f) is an approximation of jn (Wens f)-

Theorem 2.4.3 (An AR(c0) approximation for general processes). Suppose f satisfies Assumption
2.3.1 and fy is bounded away from zero and || fg|o < o0 (with fo(w) = o3|de(w)|72). Let D, (f),

Dy (f) and j\oo,n(wk,n; f) be defined as in (2.3) and (2.37) and (2.38) respectively. Then we have

B n Jn(UJk,n> T e 7 e
—kZl fe(wk,n)( (e f) = Joom(@Wrmi f)) (2.39)
and
|E2 86 (Dulh) — Do), < 000D g, (5. 55, (2.40)

Further, if {X,} is a time series where sup, | X:|g 2, = | X |g2q < o0 (for some ¢ > 1), then

0 XL EEAL ) (Da(f) = Do () X,

Cropn
< CoaPnacld) g (1 X @41)
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PROOF. See Section 4.7.1. O

We state the above theorem is the general case that the spectral density f is used to construct the
predictors D,,(f). It does not necessarily have to be the same as fy. This is to allow generalizations
of the Whittle and Gaussian likelihoods, which we discuss in Section 4.1.

Applying the above theorem to the Gaussian likelihood gives an approximation which is anal-

ogous to (2.35)
1 & Toon(@hons fo) Tn(@hn) K
L,(0) = K,0)+ — (@)
O) = Kol + ) T 0,7 )
1 & 1 @
= Kall) 45 3 XX 2 e el o) + 0078, 240)

whete iy (w; fo) = 072 [0 Fa)67 (w: fo) + €0(w; fo)Fr_,(: Jo)|. The above approxima-
tion shows that if the autocovariance function, corresponding to f, decays sufficiently fast (in the
sense that >, _, |1 ¢y, (r)| < oo for some K > 1). Then replacing the finite predictions with the

predictors using the infinite past (or future) gives a close approximation of the Gaussian likelihood.

Remark 2.4.1. Following from the above, the entrywise difference between the two matrices is

approximately

n

(Ca(fo) ™" = Calfg e ~ (Fr Dn(f5 ) Doon(fo)) s = %Z ey (Whns o),

k=1

thus giving an analytic approximation to (2.32).
We conclude this section by obtaining a bound between the Gaussian and Whittle likelihood.

Theorem 2.4.4 (The difference in the likelihoods). Suppose fy satisfies Assumption 2.3.1. Let
D, (fs) and Dy, ,,(fp) be defined as in (2.3) and (2.37) respectively. Then we have

|E# A (7Y Do (fo) |, < Ar(fo, fo) (2.43)
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and

It = Gt < (At o) + L5 ao ). 4

Further, if { X,} is a time series where sup, | X:|g 2, = | X |g2q < o0 (for some ¢ > 1), then

120) = KOl < 07 (o fo) + LI o)) X, 249

PROOF. See Section 4.7.1. O

The above result shows that under the stated conditions

n T (fo) ™t = Cu(f5 Y], = O™,

and the difference between the Whittle and Gaussian likelihoods is of order O(n™1).
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3. THE COMPLETE PERIODOGRAM *

In this section, we discuss greater detail of the complete periodogram in Section 2.3.
3.1 The tapered complete periodogram

We recall from Section 2.3 that the complete periodogram extends the “domain” of observation
by predicting across the boundary for one of the DFTs, but keeping the other DFT the same.
Our simulations suggest that a further improvement can be made by “softening” the boundary of
the regular DFT by using a data taper. Unusually, unlike the classical data taper, we only taper
the regular DFT, but keep the complete DFT as is. Precisely we define the tapered complete

periodogram as

~ S

[ﬁ,n(w; f) = Jn(wv f)Jﬁ,n(w)v Jﬁ,n(w) = n—1/2 Z ht,nXteitw

t=1

and h = {h;,};_, are positive weights. Again by using that cov()?m, Xy)=c(t—7)forl <t <n

and 7 € Z it is straightforward to show that

E[Ipn(w; f)] = (n_Ithm) - f(w) w € [0, 27].

Thus to ensure that [, ,(w; f) is an unbiased estimator of f, we constrain the tapered weights to
be such that > , by, = n. Unlike the regular tapered periodogram, for any choice of {h;,}
(under the constraint >, | hy,, = n), I ,(w; f) will be an unbiased estimator of (no smoothness
assumptions on the taper is required). But it seems reasonable to use standard tapers when defining

{htn}. In particular, to let

hin = cuhn(t/n)

“Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral
methods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.]
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where ¢, = n/H; , and

Z (t/n)!,  ¢=1. (3.1)
A commonly used taper is the Tukey (also called the cosine-bell) taper, where

t<d

[1— cos(m(t —1)/d)] 1

d+

N
N

N | =

n—d - (3.2)

[1—cos(mr(n—t+3)/d)] n—d+1<t<n

—_
N
N

>=
3
VR
S|
N~
[
—_

[

Since we do not observe the spectral density f, we use the estimated tapered complete periodogram

Lyn(w; o) = Ju(w; ) Jn (@) (3.3)

where J,, (w; J?p) = Jo(w) + Jp(w; J?p) where J,, (w; fp) is defined as in (2.18). In the theorem
below we obtain that the asymptotic bias of the estimated tapered complete periodogram, this
result is analogous to the non-tapered result in Theorem 2.3.4 (Noting that the tapered complete

periodogram includes the non-tapered case where we set ;. , = 1).

Theorem 3.1.1. Suppose Assumptions 2.3.1 (K > 1) and 2.3.2 (where m = 6 and is a multiple of
two) hold. Let I, ,(w; fp) be defined as in (3.3) where 33" | hy, = n and sup,,, |hyn| < 0. Then

we have

nm/4

~ m/2
B ) = Tl )+ 8a) + 0, (22
where sup,, E[Ay(w)] = O ((np® =)~ + p*/n?) and sup,, var[Aj(w)] = O (p*/n?).
PROOF. See Section 3.6.3. 0

Comparing Theorem 3.1.1 with Theorem 2.3.4, if the taper satistifies Y, h;,, = n and

sup; , |ht,n| < oo, then the tapered complete periodogram has the same order of approximation

36



error with the regular complete periodogram. Therefore, if p is chosen using AIC, then this yields
an estimated tapered complete peridogram has a lower bias than the regular periodogram.
Theoretically, it is unclear using the tapered estimated complete improves on the non-tapered
estimated complete periodogram. But in the simulations, we do observe an improvement in the bias
of the estimator when using (3.2) with d = n/10 (this will require further research). In contrast, in
Section 3.2 we show that the choice of data taper does have an impact on the variance of estimators

based on the complete periodogram.
3.2 The integrated complete periodogram

We now apply the estimated (tapered) complete periodogram to estimating parameters in a time
series. Many parameters in time series can be rewritten in terms of the integrated spectral mean

Alg) = - f " (@) f () de,

where ¢(-) is an integrable function that determines an underlying parameter, A(g). Examples of
useful functions ¢ are discussed in Section 3.3.
The above representation motivates the following estimator of A(g), where we replace the

spectral density function f with the regular periodogram, to yield the following estimators

1

T o

2 1 n
Aiale) = o= | 9@ or Asale) = 5 Vgl lera). G
k=1

0

of A(g) where wy,,, = % See, for example, Milhgj (1981); Dahlhaus and Janas (1996); Bardet
et al. (2008); Eichler (2008); Niebuhr and Kreiss (2014); Mikosch and Zhao (2015) and Subba Rao

(2018). However, similar to the regular periodogram, the integrated regular periodogram has an

O(n~') bias
E[Asn(9)] = Alg) + O(n™") =z € {I,S}

which can be severe for “peaky” spectral density functions and small sample sizes. The bias in the
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case that an appropriate tapered periodogram is used instead of the regular periodogram will be
considerably smaller and of order O(n~2). Ideally, we could replace the periodogram in (3.4) with
the complete periodogram I,,(w; f) this would produce an unbiased estimator. Of course, this is
infeasible, since f is unknown. Thus motivated by the results in Section 2.3.2, to reduce the bias
in A, ,,(g) we propose replacing I,,(w) with the estimated complete periodogram /,,(w; fp) or the

tapered complete periodogram I, ,, (w; fp) to yield the estimated integrated complete periodogram

2w 1

AralgiB) = [ 9@ (s f)dw and As,(g: ) PN CDIMCERIANED

0

3

of A(g). Note that the above formulation allows for the non-tapered complete periodogram (by
setting 1, = 1 for 1 <t < n).

In the following theorem, we show that the (estimated) integrated complete periodogram has a
bias that has lower order than the integrated regular periodogram and is asymptotically “closer” to

the ideal integrated complete periodogram A, ,,(g; f) than the integrated regular periodogram.

Theorem 3.2.1. Suppose the assumptions in Theorem 3.1.1 hold. Further, suppose that the func-
tions g and its derivative are continuous on the torus 0, 2r|. For x € {I, S}, define A, ,,(g; f) and

A, n(g; fp) as in (3.4) and (3.5) respectively, where Y} | hy,, = n and sup,,, |hyn| < . Then

~

m/2
Aen(g; fp) = Aan(g; f) + Ag) + O, (pm/4)

where E[A(g)] = O ((np™~1)~! + p*/n?) and var[A(g)] = O ((np™~1) 72 + p°/n?).
PROOF. See Section 3.6.3. [

From the above theorem we observe that if m > 6, then the term A(g) = O, ((np® =)=t +p3/n3/?)

dominates the probablistic error. This gives

3

Aa:,n(g;fp) :Aa:,n(g§ f)+0p (W_‘_T/?) $E{I,S}.
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Further, the bias (in the sense of Bartlett (1953)) is

E[Ara(g: f,)] = Alg) + O ( = i) '

npK—l n2

since E[A7,(g; )] = A(g).
3.2.1 Distributional properties of A, ,(g; fp)

In this section, we study the distributional properties of the (estimated) integrated tapered com-
plete periodogram. To do so, we evaluate an expression for the asymptotic variance of A, ,,(g; J/C;))

We show that asymptotically the variance is same as if the predictive part of the periodogram;

A~ A~

In(w; fp)JInn(w) were not included in the definition of 1, ,, (w; fp) To do so, we require the condi-

tion

Hl,n p3
H21/2 (W) — 0 as p,n — 0O, 3.6)
which ensures the predictive term is negligible as compared to the main term. Observe that, by us-
ing the Cauchy-Schwarz inequality, (3.6) holds for all tapers if p*/n — 0 as p,n — . Therefore,
by the same argument at the end of Section 2.3.2, if the order p is selected using the AIC, (3.6)

holds for any taper.

Corollary 3.2.1. Suppose the assumptions in Theorem 3.1.1 hold. Let the data taper {h; ,} be such
that hy,, = cpyh,(t/n) where ¢,, = n/Hy, and h,, : [0,1] — R is a sequence of taper functions
which satisfy the taper conditions in Section 5, Dahlhaus (1988). For x € {I, S}, define A, (g; fp)

as in (3.5) and suppose p, n satisfy (3.6). Then

H?, R
HL var[A;.(g; fp)] = (Vi + Vo + V3) +0(1)
2.n
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where H,, ,, is defined in (3.1),

1 2 1 21
o= o | swisTeite s Vam o | )P w?ds and
™ Jo 27 0
1 2m 2w
Vo = o || genson i, —onw)dindis,
2m)2 Jo Jo
where fy is the fourth order cumulant spectrum.
PROOF. See Section 3.6.1. ]

From the above, we observe that when tapering is used, the asymptotic variance of A, ,,(g; fp) is
O(Hazn/H3,). If hy, = h for all n for some A : [0, 1] — R with bounded variation, then above rate
has the limit

nHs, R S(l) h(z)%dx

Hiy (S(l) h(x)dx)

2/

In general, to understand how it compares to the case where no tapering is used, we note that by the
Cauchy-Schwarz inequality Hs,,/H7, > n~', where we attain equality Hy,,/H{, = n~" if and
only if no tapering is used. Thus, typically the integrated tapered complete periodogram will be
less efficient than the integrated (non-tapered) complete periodogram. However if nHs ,,/ H 12n — 1
as n — oo, then using the tapered complete periodogram in the estimator leads to an estimator that

is asymptotically as efficient as the tapered complete periodogram (and regular periodogram).

Remark 3.2.1 (Distributional properties of A, ,(g; ]?p)). By using Theorems 3.2.1 and Corollary
3.2.1 A, (g fp), A, n(g; f) and Ay p(g) (where A, 4 (g) is defined as in (3.4) but with I}, ,(w)
replacing I,,(w)) share the same asymptotic distributional properties. In particular, if (3.6) holds,
then the asymptotic distributions A, ,(g; fp) and A, ,(g) are equivalent. Thus if asymptotic nor-
mality of A, n(g) can be shown, then A, ,(g; fp) is also asymptotically normal with the same

limiting variance (given in Corollary 3.2.1).
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3.3 Examples of the integrated complete periodogram
In this section, we apply the integrated complete periodogram to estimating various parameters.
3.3.1 Autocovariance estimation

By Bochner’s theorem, the autocovariance function at lag 7, ¢(r), can be represented as

c(r) = A(cos(r-)) ! f Wcos(rw)f(w)dw.

:%0

In order to estimate {c(r)}, we replace f with the integrated complete periodogram to yield the

estimator

1 27

:% .

~ ~

Cn(r5 fo) = Arn(cos(r:); fp)

~

cos(rw) Iy n(w; fp)dw.

I n(w; j/;) can be negative, in such situations, the sample autocovariance is not necessarily positive
definite. To ensure a positive definiteness, we threshold the complete periodogram to be greater
than a small cutoff value § > 0. This results in a sample autocovariance {Cr,(7; fp)} which is
guaranteed to be positive definite, where

~ 1 (27 ~
crn(rs fp) f cos(rw) max{I ,(w; f,), 0 }dw.

This method is illustrated with simulations in Section 3.4.2.
3.3.2 Spectral density estimation

Typically, to estimate the spectral density one “smooths” the periodogram using the spectral
window function. The same method can be applied to the complete periodogram. Let I be a
non-negative symmetric function where { W (u)du = 27 and { W (u)*du < co. Define W,,(-) =
(1/h)W (-/h), where h is a bandwidth. A review of different spectral windows and their properties
can be found in Priestley (1981) and Section 10.4 of Brockwell and Davis (2006) and references

therein. For A\ € [0, 7], we choose g(w) = gx(w) = Wj(A — w). Then the (estimated) integrated
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complete periodogram of the spectral density f is

~

- - - 27
R B = Araloni ) = 3 | WO = )Tl s

The method is illustrated with simulations in Section 3.4.3.
3.3.3 Whittle likelihood

Suppose that F = {fs(-) : # € ©} for some compact © € R? is a parametric family of spectral
density functions. The parameter which minimizes the Whittle likelihood is used as an estimator
of the spectral density. Replacing the periodogram with the complete periodogram we define a

variant of the Whittle likelihood as

o 1 2 Iﬁ,n(w;f)
Kn(0) = o ). (Tw)p +logf9(w)> dw
27

= A 5B+ g | log i@

0

In Section 2.4, we show that using the non-tapered DFT Ag,,(f, " fo) = X/ T(fs) *X,, where
X! = (Xy,...,X,) and T'(fp) is the Toeplitz matrix corresponding to the spectral density fy.
K,,(0) is a variant of the frequency domain quasi-likelihoods descirbe in Section 4.1. We mention
that there aren’t any general theoretical guarantees that the bias corresponding to estimators based
on K, (0) is lower than the bias of the Whittle likelihood (though simulations suggest this is usually
the case). Expression for the asymptotic bias of K, () are given in Appendix B and the method is

illustrated with simulations in Section 4.6 (and Appendix C).
3.4 Simulations

To understand the utility of the proposed methods, we now present some simulations. For
reasons of space, we focus on the Gaussian time series (noting that the methods also apply to non-
Gaussian time series). In the simulations we use the following AR(2) and ARMA (3, 2) models

(we let B denote the backshift operator)
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(M1) ¢(B)X; = g; with ¢(2) = (1 — Xe22)(1 — Ae~2'2) for A € {0.7,0.9,0.95}.

(M2) ¢(B)X; = ¢(B)e; with $(z) = (1 —0.72)(1 — 0.9¢'2)(1 — 0.9¢"2) |

¥(z) =1+ 0.5z + 0.522

where E[e;] = 0 and var[e;] = 1. We observe that the peak of the spectral density for the AR(2)
model (M1) becomes more pronounced as A approaches one (at frequency 7/2). The ARMA(3, 2)
model (M2) has peaks at zero and 7 /2, further, it clearly does not have a finite order autoregressive
representation.

We consider three different sample sizes: n = 20 (extremely small), 50 (small), and 300 (large)
to understand how the proposed methods perform over different sample sizes. All simulations are
conducted at over B = 5, 000 replications.

Our focus will be on accessing the validity of our method in terms of bias, standard deviation,
and mean squared error. We will compare (a) various periodograms; (b) the spectral density esti-
mators based on smoothing the various periodograms; and the autocorrelation function based on
the various periodograms. The periodograms we will consider are (i) the regular periodogram (ii)

the tapered periodogram I}, ,,(w), where

2

Y

Iyn(w) = |Hy® > i (/0) Xee™

t=1

H, ,, is defined in (3.1), (iii) the estimated complete periodogram (2.19) and (iv) the tapered com-
plete periodogram (3.3). To understand the impact estimation has on the complete periodogram,
for a model (M1) we also evaluate the complete periodogram using the true AR(2) parameters, as
this is an AR(2) model the complete periodogram has an analytic form in terms of the AR param-
eters. This allows us to compare the infeasible complete periodogram I,,(w; f) with the feasible
estimated complete periodogram I, (w, fp)

For the tapered periodogram and tapered complete periodogram, we use the Tukey taper de-
fined in (3.2). Following Tukey’s rule of thumb, we set the level of tapering to 10% (which corre-

sponds to d = n/10). When evaluating the estimated complete and tapered complete periodogram,
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we select the order p using the AIC, and we estimate the AR coefficients using the Yule-Walker
estimator.

For both the complete and tapered complete periodogram, it is possible to have an estimator
that is complex and/or the real part is negative. In the simulations, we found that a negative
Re I, (W n; fp) tends to happen more for the spectral densities with large peaks and the true spectral
density is close to zero. To avoid such issues, for each frequency, we take the real part of the
estimator and thresholding with a small positive value. In practice, we take the threshold value
§ = 1073. Thresholding induces a small bias in the estimator, but, at least in our models, the effect

is negligible (see the middle column in Figures 3.1—-3.3).
3.4.1 Comparing the different periodograms

In this section, we compare the bias and variance of the various periodograms for models (M1)
and (M2).

Figures 3.1—3.3 give the average (left panels), bias (middle panels), and standard deviation
(right panels) of the various periodograms for the different models and samples sizes. The dashed
line in each panel is the true spectral density. It is well known that var[l,(w)] ~ f(w)? for
0 < w < mand var[[,(w)] ~ 2f(w)? for w = 0, 7. Therefore, for a fair comparision in the
standard deviation plot for the true spectral density we replace v/2f(0) and /2f () with f(0) and
f () respectively.

In Figures 3.1-3.3 (left and middle panels), we observe that in general, the various com-
plete periodograms give a smaller bias than the regular periodogram and the tapered periodogram.
This corroborates our theoretical findings that that complete periodogram smaller bias than the
O(n~!) rate. As expected, we observe that the true (based on the true AR parameters) complete
periodogram (red) has a smaller bias than the estimated complete (orange) and tapered complete
periodograms (green). Such an improvement is most pronounced near the peak of the spectral
density and it is most clear when the sample size n is small. For example, in Figure 3.1, when the
sample size is extremely small (n = 20), the bias of the various complete periodograms reduce by

more than a half the bias of the regular and tapered periodogram. As expected, the true complete
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periodogram (red) for (M1) has very little bias even for the sample size n = 20. The slight bias
that is observed is due to thresholding the true complete periodogram to be positive (which as we
mentioned above induces a small, additional bias). We also observe that for the same sample size
that the regular tapered periodogram (blue) gives a slight improvement in the bias over the regular
periodogram (black), but it is not as noticeable as the improvements seen when using the complete
periodograms. It is interesting to observe that even for model (M2), which does not have a finite
autoregressive representation (thus the estimated complete periodogram incurs additional errors)
also has a considerable improvement in bias.

As compared with the regular periodogram, the estimated complete periodogram incurs two
additional sources of errors. In Section 2.3.1, we show that the variance of the true complete
periodogram tends to be larger than the variance of the regular periodogram. Further in Theorem
2.3.3 we showed that using the estimated Yule-Walker estimators in the predictive DFT leads to an
additional O(p*/n?) variance in the estimated complete periodogram. This means for small sample
sizes and large p the variance can be quite large. We observe both these effects in the right panels
in Figures 3.1—3.3. In particular, the standard deviation of the various complete periodograms
tends to be greater than the asymptotic standard deviation f(w) close to the peaks. On the other
hand, the standard deviation of the regular periodogram tends to be smaller than f(w).

In order to globally access bias/variance trade-off for the different periodograms, we evalu-
ate their mean squared errors. We consider two widely used metrics (see, for example, Hurvich
(1988)). The first is the integrated relative mean squared error

1 n B T(j)(wk,n) 2
IMSE = — ;1 Zl <ﬁ - 1) (3.7)
=i

f Wk.n

where 1) (+) is the jth replication of one of the periodograms. The second metric is the integrated

relative bias

n f(wk,n)

k=1

~, . 2
18 (B2 T0(w,.,
IBIAS = — Z ( 2=y I (k) 1] . (3.8)
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Figure 3.1: The average (left), bias (middle), and standard deviation (right) of the spectral density
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series n = 20.

Table 3.1 summarizes the IMSE and IBIAS of each periodogram over the different models and
sample sizes. In most cases, the tapered periodogram, true complete periodogram (when it can
be evaluated) and the two estimated complete periodograms have a smaller IMSE and IBIAS than

the regular periodogram. As expected, the IBIAS of the (true) complete periodogram is almost
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Figure 3.2: The average (left), bias (middle), and standard deviation (right) of the spectral density
(black dashed) and the five different periodograms for Models (M1) and (M2). Length of the time
series n = 50.
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Figure 3.3: The average (left), bias (middle), and standard deviation (right) of the spectral density
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zero (rounded off to three decimal digits) for (M1). The estimated complete and tapered complete
periodogram has significantly small IBIAS than the regular and tapered periodogram. But inter-
estingly, when the spectral density is “more peaky” the estimated complete periodograms tend to
have a smaller IMSE than the regular and tapered periodogram. Suggesting that for peaky spectral
densities, the improvement in bias outweighs the increase in the variance. Comparing the tapered
complete periodogram with the non-tapered complete periodogram we observe that the tapered
complete periodogram tends to have a smaller IBIAS (and IMSE) than the non-tapered (estimated)
complete periodogram.

The above results suggest that the proposed periodograms can considerably reduce the small

sample bias without increasing the variance by too much.

Model \ n  metric \ Regular Tapered Complete(True) Complete(Est) Tapered complete
20 IMSE 1.284 1.262 1.127 1.323 1.325
IBIAS | 0.011 0.009 0 0.002 0.001
MDA =07 | 50 IMSE 1.101 1.069 1.055 1.098 1.117
’ IBIAS | 0.002 0.001 0 0 0
300 IMSE 1.014 1.006 1.007 1.009 1.046
IBIAS 0 0 0 0 0
20 IMSE 2.184 2.155 1.226 1.466 1.447
IBIAS | 0.152 0.159 0 0.009 0.007
MDA =09 | 50 IMSE 1.434 1.217 1.112 1.166 1.145
’ IBIAS | 0.029 0.011 0 0.001 0
300 IMSE 1.059 1.010 1.017 1.020 1.047
IBIAS | 0.001 0 0 0 0
20 IMSE 3.120 4.102 1.298 1.527 1.560
IBIAS | 0.368 0.664 0 0.022 0.018
MDA = 0.05 | 50 IMSE 2.238 1.486 1.211 1.295 1.200
’ IBIAS | 0.151 0.045 0 0.002 0.001
300 IMSE 1.133 1.017 1.033 1.037 1.049
IBIAS | 0.004 0 0 0 0
20 IMSE | 457.717 136.830 — 26.998 4.836
IBIAS | 157.749  58.717 — 4.660 0.421
IMSE | 81.822 3.368 — 3.853 1.357
(M2) >0 IBIAS | 26.701 0.692 — 0.288 0.002
300 IMSE 4.376 1.015 — 1.274 1.049
IBIAS | 0.787 0 — 0.003 0

Table 3.1: IMSE and IBIAS for the different periodograms and models.

49



3.4.2 The autocorrelation estimator

In this section, we estimate the autocorrelation function (ACF) using the integrated periodogram

estimator in Section 3.2. Recall that we estimate the autocovariances using

2m
Cn(r) = %fo cos(rw) I, (w)dw (3.9

where T, (-) is one of the periodograms in Section 3.4. Based on &, (r), the natural estimator of the

ACF at lag r is

Note that if INn() is the regular periodogram, ¢,(-) and p,(-) become the classical sample autoco-
variances and sample ACFs respectively.

We generate the Gaussian time series from (M1) and (M2) in Section 3.4 and evaluate the ACF
estimators at lag » = 0,1, ..., 10. For the computational purpose, we approximate (3.9) using the
Reimann sum over 500 uniform partitions on [0, 27].

Figures 3.4—3.6 show the average (left panels), bias (middle panels), and the mean squared
error (MSE; right panels) of the ACF estimators at each lag for different models and sample sizes.
Analogous to the results in Section 3.4.1, we observe that the complete and complete tapered
periodogram significantly reduce the bias as compared to the regular (black) and tapered (blue)
periodogram for all the models.

The MSE paints a complex picture. From the left panels in Figures 3.4—3.6 for (M1), we
observe when the lag r is odd, the true p(r) = 0. For these lags, all the ACF estimators are almost
unbiased, and the variance dominates. This is why we observe the oscillation the MSE in (M1)
over r. For (M2), the bias of all estimators are very small even for an extremely small sample size
n = 20, and thus the variance dominates. For the small sample sizes (n = 20 and 50), MSE of the

complete periodograms is larger then the classical methods (Regular and tapered). Whereas for the
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Figure 3.4: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r = 0,...,10. The length of the time series n = 20.
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ACF: (M1), A=0.7, n=50
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Figure 3.5: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r = 0,...,10. The length of the time series n = 50.
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ACF: (M1), A=0.7, n=300
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Figure 3.6: ACF: The average (left), bias (middle), and MSE (right) of the ACF estimators at lag
r = 0,...,10. The length of the time series n = 300.
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large sample size (n=300), it seems that the tapering increases the MSE.
To assess the overall performance of the ACF estimators, we evaluate the averaged mean

squared error (MSE) and squared bias (BIAS)

2
10 B 10
1

MSE — H)LB 2 2,0 0) = p(n)*, BIAS = == > /| BT ) 5 (r) = p(r)

r=1j=1 r=1 j=1

where 9 is the jth replication of one of the ACF estimators. The results are summarized in Table
3.2. As described above, our method has a marked gain in the BIAS compared to the classical ACF
estimators for all models. Moreover, the MSE is comparable, at least for our models, and even has

a smaller MSE when the sample size is small and/or there is a strong dependent in the lags.

Model \ n  metric \ Regular Tapered Complete(True) Complete(Est) Tapered complete
20 MSE 0.038 0.040 0.038 0.044 0.046
BIAS 0.002 0.002 0 0.001 0.001
MD.A=07 | 50 MSE 0.021 0.023 0.021 0.022 0.024
' BIAS 0 0 0 0 0
300 MSE 0.004 0.005 0.004 0.004 0.004
BIAS 0 0 0 0 0
20 MSE 0.061 0.064 0.045 0.062 0.063
BIAS 0.023 0.025 0.003 0.008 0.008
MD.A=09 | 50 MSE 0.030 0.032 0.025 0.029 0.030
' BIAS 0.005 0.005 0.001 0.002 0.002
300 MSE 0.005 0.006 0.005 0.005 0.005
BIAS 0 0 0 0 0
20 MSE 0.077 0.082 0.039 0.063 0.064
BIAS 0.045 0.049 0.004 0.015 0.014
MDA =095 | 50 MSE 0.032 0.034 0.022 0.027 0.028
’ BIAS 0.011 0.011 0.002 0.003 0.003
300 MSE 0.005 0.005 0.004 0.004 0.004
BIAS 0 0 0 0 0
20 MSE 0.062 0.065 — 0.074 0.077
BIAS 0.006 0.006 — 0.002 0.002
MSE 0.036 0.040 - 0.040 0.042
(M2) >0 BIAS 0.001 0.001 — 0 0
300 MSE 0.008 0.009 — 0.008 0.008
BIAS 0 0 — 0 0

Table 3.2: MSE and BIAS of an ACF estimators.
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3.4.3 Spectral density estimation

Finally, we estimate the spectral density function by smoothing the periodogram. We consider

the smoothed periodogram of the form

Fwin) = 35 W (@jinn)

lj|<m
where I,,(-) is one of the candidate periodograms described in the previous section and {W(-)} are
the positive symmetric weights satisfy the conditions (i) 3 ; ., W (j) = Land (ii) ;<. W2(5) —
0. The bandwidth m = m(n) satisfies the condition m/n — 0 as m,n — co. We use the following

three spectral window functions:

« (The Daniell Window) W (j) = 5 J] < m.

« (The Bartlett Window) W (j) = 1 — %, il < m.

* (The Hann Window) I/IN/(]) = %[1 — Cos(”(jrzm))],

jl < m.

and normalize using W (j) = W(j)/ZUKm W (5).

In this section, we only focus on estimating the spectral density of model (M2). We smooth the
various periodogram using the three window functions described above. For each simulation, we
calculate the IMSE and IBIAS (analogous to (3.7) and (3.8)). The bandwidth selection is also very
important. One can extend the cross-validation developed for smoothing the regular periodogram
(see Hurvich (1985), Beltrao and Bloomfield (1987) and Ombao et al. (2001)) to the complete
periodogram and this may be an avenue of future research. In this dissertation, we simply use the
bandwidth m ~ n'/® (in terms of order this corresponds to the optimal MSE).

The results are summarized in Table 3.3. We observe that smoothing with the tapered peri-
odogram and the two different complete periodograms have a smaller IMSE and IBIAS as com-
pared to the smooth regular periodogram. This is uniformly true for all the models, sample sizes,
and window functions. When the sample size is small (n = 20 and 50), the smooth complete and

tapered complete periodogram has a uniformly smaller IMSE and IBIAS than the smooth tapered
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periodogram for all window functions. For the large sample size (n = 300), smoothing with the
tapered periodogram and tapered complete periodogram gave similar results, whereas smoothing

using the complete periodogram gives a slightly worse bias and MSE.

n | m Window Metric | Regular  Tapered Complete Tapered complete

No smoothing IMSE | 457.717  136.830 26.998 4.836
IBIAS | 157.749 58.717 4.660 0.421
Daniell IMSE | 1775.789 1399.366  1008.590 943.855
20 IBIAS | 882.576  780.363  444.727 408.325
> Bartlett IMSE | 538477  203.217 43.347 17.489
IBIAS | 203.010  100.178 13.270 6.391
Hann IMSE | 538.477  203.217 43.347 17.489
IBIAS | 203.010  100.178 13.270 6.391
No smoothing IMSE 81.822 3.368 3.853 1.357
IBIAS 26.701 0.692 0.288 0.002
Daniell IMSE 87.485 7.227 5.138 3.308
50 IBIAS 33.327 3.947 1.954 1.346
> Bartlett IMSE 78.939 2.797 2.479 0.796
IBIAS 27.883 1.106 0.425 0.074
Hann IMSE 78.939 2.797 2.479 0.796
IBIAS 27.883 1.106 0.425 0.074
No smoothing IMSE 4.376 1.015 1.274 1.049
IBIAS 0.787 0 0.003 0
Daniell IMSE 2.514 0.176 0.210 0.173
300 IBIAS 0.812 0.006 0.008 0.005
3 Bartlett IMSE 2.685 0.257 0.312 0.256
IBIAS 0.795 0.002 0.004 0.001
Hann IMSE 2.717 0.272 0.330 0.272
IBIAS 0.794 0.001 0.004 0.001

Table 3.3: IMSE and IBIAS of the smoothed periodogram for (M2).

It is intriguing to note that the smooth complete tapered periodogram gives one the smallest
IBIAS and IMSE as compared with all the other methods. These results suggest that spectral
smoothing using the tapered complete periodogram may be very useful for studying the spectral
density of short time series. Such data sets can arise in many situations, which as the analyses of

nonstationary time series, where the local periodograms are often used.
3.5 Data analysis

In this section, we present two data analysis using the (tapered) complete periodogram.
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3.5.1 Analysis of ball bearing data

Vibration analysis, which is the tracking and predicting faults in engineering devices is an
important problem in mechanical signal processing. Sensitive fault diagnostic tools can prevent
significant financial and health risks for a business. A primary interest is to detect the frequency
and amplitude of evolving faults in different component parts of a machine, see Randall and Antoni
(2011) for further details.

The Bearing Data Center of the Case Western Reserve University (CWRU; https://csegroups.
case.edu/bearingdatacenter/pages/download-data-file) maintains a reposi-
tory of times series sampled from simulated experiments that were conducted to test the robustness
of components of ball bearings. The aim of this study is not to detect when a fault has occurred
(but this will be the ultimate aim), but to understand the ‘“signature” of the fault. In order to classify
(a) no fault, fault and the type of fault, our aim is to detect the features of different fault signals in
ball bearings, where the damage occurs in (b) inner race, (b) outer race, and (d) ball spin. Please
refer to Figure 3.7 for a schematic diagram of a typical ball bearing and locations where faults can
occur. The ball bearing either with no fault or the three different faults described above were part
of drive end of test rig motor. Vibration signals were sampled over the course of 10 seconds at

12,000 per second (12 kHz) using an accelerometer.

Inner race

Spinning balls

Figure 3.7: A schematic diagram of a ball bearing and the location of the three faults ((b) inner
race, (c) outer race, and (d) ball spin).

A commonly used analytic tool in vibration analysis is the envelope spectrum. This is where a
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smoothing filter is applied to the regular periodogram to extract the dominant frequencies. Using
the envelope spectrum, Randall and Antoni (2011) and Smith and Randall (2015), have shown that
a normal ball bearing has power distributed in the relatively lower frequency bandwidth of 60— 150
Hz (0.05—0.1, radian). Whereas, faults in the ball bearings lead to deviation from the usual spectral
distribution with significant power in the 300 — 500 Hz (0.18 — 0.26, radian) bandwidth, depending
on the location of the fault. Note that the following are equally important in a vibration analysis,
frequencies where the power is greatest but also the amplitude of the power at these frequencies.

The time series in the repository are extremely long, of the order 10°. But as the ultimate
aim is to devise an online detection scheme based on shorter time series, we focus on shorter
segments of the time series (n = 609, approximately 0.05 seconds). A plot of the four different
time series is given in Figure 3.8. In this study, we estimate the spectral density of the four time
series signals by smoothing the different periodograms; regular, tapered, complete, and tapered
complete periodogram. Our aim is to highlight the differences in the dominant frequencies in the
spectral distribution of the normal ball bearing signal with three faulty signals. For the tapered
and the tapered complete periodogram, we use the Tukey taper defined in (3.2) with 10% tapering
(which corresponds to d = n/10). For all the periodograms we smooth using the Bartlett window.
For the time series (length 609) we used m = 16 (where m is defined in Section 3.4.3).

A plot of the estimated spectral densities is given in Figure 3.9. We observe that all the four
spectral density estimators (based on the different periodograms) are very similar. Further, for the
normal ball bearing the main power is in the frequency range 0.05 — 0.1(60 — 175 Hz). Inter-
estingly, the spectral density estimator based on the tapered complete periodogram gives a larger
amplitude at the principal frequency. Suggesting that the“normal signal” has greater power at that
main frequency than is suggested by the other estimation methods. In contrast, for the faulty ball
bearings, the power spectrum is very different from the normal signal. Most of the dominant fre-
quencies are in the range 0.21 — 0.26(375 — 490 Hz). There appears to be differences between the
power spectrum of the three different faults, but the difference is not as striking as the difference

between no fault and fault. Whether the differences between the faults are statistically significant
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Figure 3.8: Panels in the figure show time series plots of signals recorded from a) Normal ball
bearing b) Time series of bearing with fault in inner race, c) Time series of bearing with fault in
outer race and, d) Time series of bearing with fault in ball spin. Each time series is of length 609
(0.05 seconds).
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Figure 3.9: Plots show that smoothed periodograms of the four time series signals based on sample
size n = 609. Top left: Normal, Top Right: Inner Race, Bottom Left: Outer Race and Bottom
Right: Ball spin. The top axis shows frequencies in Hertz(Hz).

will be an avenue of future investigation. These observations corroborate the findings of the pre-
vious analysis of similar data, see for example Smith and Randall (2015). Despite the similarities
in the different estimators the smooth tapered complete periodogram appears to better capture the
dominant frequencies in the normal ball bearing. This is reassuring as one objective in vibration

analysis is the estimation of power of the vibration at the dominant frequencies.
3.5.2 Analysis of sunspot data

We conclude by returning to the sunspot data which first motivated Schuster to define the

periodogram 120 years ago.
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Sunspots are visibly darker areas that are apparent on the surface of the Sun that are captured
from satellite imagery or man-made orbiting telescopes. The darker appearance of these areas is
due to their relatively cooler temperatures compared to other parts of the Sun that are attributed to
the relatively stronger magnetic fields.

There is a rich history of analysis of the sunspot data and probably Schuster (1897, 1906) is the
first one who analyzed this data in a frequency domain. Schuster developed the “periodogram” to
study periodicities in sunspot activity. As mentioned in the introduction the Sunspot data has since
served as a benchmark for developing several theories and methodologies and theories related to
spectral analysis of time series. A broader account of these analyses can be found in Chapter 6—8
of Bloomfield (2004) and references therein.

In this section we implement the four comparator periodograms in Section 3.4 to estimate and
corroborate the spectrum of the sunspot data. The dataset we have used is a subset of the data avail-
able at the World Data Center Sunspot Index and Long-term Solar Observations (WDC-SILSO),
Royal Observatory of Belgium, Brussels (http://sidc.be/silso/). We use length n=3168
total monthly count of sunspots from Jan 1749 to Dec 2013. All periodograms are computed af-
ter removing the sample mean from the data. Figure 3.10 shows the time series plot (right), four
different periodograms (middle) and smoothed periodograms (right). We smooth the periodogram

using the Bartlett window function from Section 3.4.3 with the bandwidth m = 5 (~ n'/?).
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Figure 3.10: Right: Monthly Sunspot time series plot of length 3168 (264 years) starting from Jan
1749. Middle: Trajectories of the four different periodograms; regular, regular tapered, complete
and tapered complete periodogram. left: Smoothed periodograms using Bartlett window.
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From the middle panel of Figure 3.10, we observe that all the periodograms detect the peak
corresponding to maximum sunspot activity at the 11-year cycle. The peak at the 11-year cycle
(frequency 0.046) for the complete periodogram (orange) is the largest, at about 7.1 x 10°, the
regular (black) and complete tapered(green) periodogram is slightly lower at about 6.98 x 10°.
Whereas, the tapered periodogram (blue) is the lowest at about 6.25 x 10°. Looking at in the
neighborhood of the main peak, we observe that there is very little difference between all the
periodograms. This suggests that these “side peaks” in the neighborhood of 0.046 are not an artifact
of the periodogram but a feature of the data. Which further suggests that the sunspot data does not
contain a fixed period but a quasi-dominant period in the frequencies range 0.042 — 0.058 (9.1 —
12.6 years). The effect is clearer after smoothing the periodogram (right panel of Figure 3.10).
Smoothing the complete and tapered complete periodogram yields a more dominant peak at 0.046
(11 years), but the quasi-frequency band remains. Further, a secondary dominate frequency is seen
in the very low frequency around 0.006 (88 years) which is more pronounced when the smoothing
is done using the (regular) tapered periodogram and tapered complete periodogam. In summary,
due to the large sample size all the different periodograms exhibit very similar behaviour. However,
even within the large sample setting (where theoretically all the periodograms are asymptotically

equivalent) the complete periodograms appear to better capture the amplitude of the peak.
3.6 Proofs

In this section, we give a proof of Sections 2.2, 2.3, and 3.
3.6.1 Proof of Section 2.2

PROOF of Theorem 2.2.1 We recall that Theorem entails obtaining a transform U,, X, where

covy (U, X, FrnX,) = Ay(f). Pre and post multiplying this covariance with F* and F), gives

Freovy (UpnX,,, FoX,) F = cove (FAUX,,, X)) = FXAL(f)F, = Co(f).

Thus our objective is to find the transform Y, = F*U,X, such that covs(Y,,X,) = C.(f).

Then, the vector F,Y,, = U,X, will be biorthogonal to F,, X, , as required. We observe that the
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entries of the circulant matrix C,,(f) are

(Cul o =171 Y flwr) exp(=iu = v)wyn) = Y ep(u— v+ fn),

e

where the second equality is due to the Poisson summation. The random vector Y, = {Y,, ,}I_; is
such that cov ¢ (Y, n, Xy) = Dy ¢f(u—v+€n) and Y, € sp(X,,). Since cov ¢ (Xyim, Xy) = cp(u—
v+{n), atleast “formally” cov (D ,c; Xuten, Xo) = Dopey ¢r(u—v+£n). However, >, Xy 1S
neither a well defined random variable nor does not it belong to sp(X,,). We replace each element
in the sum »,,, X, 1, with an element that belongs to sp(.X,,) and gives the same covariance. To
do this we use the following well known result. Let Z and X denote a random variable and vector
respectively. Let Py (Z) denote the projection of Z onto sp(X), i.e., the best linear predictor of Z
given X, then cov(Z, X) = covs(Px(Z),X). Let )?T,n denote best linear predictor of X, given
X, = (Xy,...,X,) (as defined in (2.1)). )A(m retains the pertinent properties of X, in the sense

that covf()?m, Xi¢) = cp(r—t)forall 7 € Z and 1 < ¢t < n. Define

Yu,n = Z )?u-i-fn,n = Z (Z ¢s,n(u + gna f)) Xs € Sp(zn)a

e, s=1 \/leZ

where we note that Y, ,, a well defined random variable, since by using Lemma A.1.1 it can be
shown that sup, >+, 32 |¢sn(u + ¢n; f)] < co. Thus by definition of Y,,,, the following
holds

covy (Yom, Xo) = > cp(t = v+ €n) = (Co(f)),0 (3.10)

LeZ

and Y, = F}U,X,, gives the desired transformation of the time series. Thus, based on this

construction, F,,Y = U,X, and F, X, are biorthogonal transforms, with entries (£, X, )r =
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Jn (W) and

XDk = (BY, ) = 0723 Ry peieton

(e u=1

—1/2 v iTwy
n /ZXT,ne m

TEL

= 0Ty IXe ) dualTs fleTR (3.11)
t=1

TEZ

The entries of the matrix U,, are (U, ); = =2y ¢rn(7; f)e™ n. To show that U, “embeds”
the regular DFT, we observe that for 1 < 7 < n, qﬁm(T; f) = .+, furthermore, due to second
order stationarity the coefficients ¢, ,,(7; f) are reflective i.e. the predictors of X, (for m > n) and

Xn+1-m share the same set of prediction coefficients (just reflected) such that

¢t7n(m; f) = ns1-tnn+1—m; f) form > n.

Using these two observations we can decompose (U, ) as

(Un)k,t = n U2 <6ith,n + Z d)t,n(T; f)e”wk’" + Z ¢t,n(7'§ f)eiTw’“”)

7<0 T=n+1

_ n—1/2€itwk’n + n—1/2 Z (¢t,n(T; f)€ika’” + ¢n+l—t,n(7—; f)e—i(T—l—n)Wk,n) .

7<0

It immediately follows from the above decomposition that U, = F,, + D, (f) where D, (f) is
defined in (2.3). Thus proving (2.2).

To prove (2.4), we first observe that (2.2) implies

COV¢ (((Fn + Dn(f))Xn)kl, (Fan>k2) = f(wkl,n)(skl:kZ'
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It is clear that (F,,X,,)r = J,(wk,») and from the representation of F,,Y’, given in (3.11) we have

n
(F.Y )i = n—1/2ZXT€imk,n FESYE Z X, e
=1 ¢{1,...,n}

= Jn(wk,n) + jn(wk,n; f)

This immediately proves (2.4). ]

PROQOF of Theorem 2.2.2 To prove Theorem 2.2.2 we study the predictive DFT for autoregressive

processes. We start by obtaining an explicit expression for J,(w; fg) where fy(w) = o2|1 —
| pue” ™| 72 (the spectral density corresponding to an AR(p) process). It is straightforward to

show that predictive DFT predictor based on the AR(1) model is

0 o0
Jn(w;fe) _ n—1/2 Z ¢—7’+1X16i7w+n—1/2 Z ¢T+1—aneiTw
T=—00 T=n+1
n—1/2¢ n—1/2¢

o T oW

Xn ei(nJrl)w

Y

where ¢ (w) = 1—¢e™. In order to prove Theorem 2.2.2, which generalizes the above expression

to AR(p) processes, we partition T (w; fp) into the predictions involving the past and future terms

Tn(w; fo) = me(w; fo) + jn,R(W§ fo)
where

0 0
Jn,L(w; f@) = n_1/2 Z X‘r,neiﬂd and Jn,R(w; f@) = n_l/2 Z XT,neiTw'

T=—00 T=n+1

We now obtain expressions for fn (w; fy) and fn r(w; fo) separately, in the case the predictors are
based on the AR (p) parameters where fy(w) = o?[1 — >V, ¢;e”*|~? and the {¢;}/_, correspond

to the causal AR (p) representation. To do so, we define the p-dimension vector ¢’ = (¢4, ..., ¢,)
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and the matrix A,(¢) as

o1 P2 o Pp1 Pp
1 0 0 0
A@=1 o0 1 ... 0 o0 [ (3.12)
0 0
0 0 1 0

Therefore, for 7 < 0, since Xm = [Ap()H X, ]( " where X, = (X3, ..., X,), we can write

Jop(wifo) =n= 31 [A,(0)TTX, ] €™ (3.13)

p p—L
[AP<¢ |T|+1X Z Z ¢Z+sw\7|—s
/=1 s=0

Therefore, using (3.13) and the change of variables 7 «— —7

P p—?
—1/2 —isw —i(T—s)w
= n /ZX€2¢Z+86 wa s€ )
/=1 s=0

N P p—{ o) '
Top(wi fo) = n7PY XY Gres Y e
=1 s=0

P p—¢

—1/2 —isw —i(T—8)w

= n /ZXZZ¢€+56 Z¢7‘ s€ )
/=1 s=0

Let 3.7 s = th(w) = ¢,(w) ", and substitute this into the above to give

n-12 2 p—t ‘
; X se 3.14
(ws fo) o0 () ;1 e;)¢e+ e (3.14)

Thus we obtain an expression for the left hand side of the predictive DFT. Using the similar tech-



nique, it can be shown that the right hand side predictive DFT JAn, r(w; fy) has the representation

n-12 2

i(s+1)w
Z Xn+l ¢ Z ¢f+s€

j r(w; fo) = ™

Thus proving equation (2.8). ]
3.6.2 Proof of Section 2.3

PROOF of Theorem 2.3.1 We recall that

0

0
jn(w;f) _ n*1/2 Z )’(\'ﬂneiﬂ'w_i_nfl/Q Z )?Tmeifw

T=—00 T=n+1

= _l/zZXt Z G (T fe Tt P (T3 f)e i n)w])

7<0

Using the above we write J, (w; f) as an inner product. Let

Din(F) =072 ) [T D)™ + fr (s fe 07 174].

7<0

Next, define the vectors

Q;’L = n71/2<€7w7 ey eimw) and Qn(f), = (Dl,n(f)v ey Dn,n(f))?

note that e, and D, (f) are both functions of w, but we have suppressed this dependence in our

notation. Then, .J,,(w) and jn(w; f) can be represented as the inner products

Jo(w) = e X, and J,(w; f) = X' D, (f)

—n—m"
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where » denotes the Hermitian of a matrix. In the same vein we write .J,, ,(w; f) as an inner

product. Let

D) = w723 [T D)E™ + buinalrs e 1)

7<0

Don(f) = (Di(f), . Dulf)),

n? Y XX (Do (f) = Do) e

where 4;(w) = (D, ,(f) — D,(f)) €, an (n x n) matrix. For the remainder of this proof we

Zoomn

drop the dependence of A;(w) on w. However, if we integrate over w this dependence does become

important. Using this notation, we have

>

E|(Jemlwif) = Julwi f)) Tu@)| = ELX,AX,]

var[<foo,n(w; £) = To(w; f)) Jn(w)] — var[X\ A X

By simple algebra

E[X, A X,] = tr(AiRy)

var[ X/, A1 X, ] = 2tr(AR,AIR) + Y (Ar)s(Ar)uweum (X, Xo, X, X,) 5 (3.15)

s, tu,v=1
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where R,, = var[X, ] (noting that R,, is a Toeplitz matrix). To bound the expectation

ELCAX] = [tr(ARy)] < 072 Y (Do nlf) = Dal)oe™"™ (Ra)es

s,t=1

2 3 Di(f) = Den( et - 5)

s,t=1

n" 23 D) = Dia(f)] (Z |c<r>|> . (316)

reZ

N

To bound the above, we observe that the sum over ¢ is

_1/2 Z |D Dtn )|
g (bt’n(T; f))eiﬂ‘" (¢”+1 t( f) ¢n+1 tn(T f)) —i(r=1-njw
Z (15 f) — ¢t,n(T; Il +ZZ |Onr1-4(75 f) _¢n+1—t,n(7;f)|

t=17<0
=on! 2 Z |¢t(7'§ f) - th,n(T; f)|
t=17<0

To bound the above, we use the generalized Baxter’s inequality in Lemma A.1.1. Using (A.1) with

K = 0 the we have

S S o f) = benlmi N < oSS Juiri )

t=17<0 7<0t=n+1
< CfOZ Z ZI@HIWT il < Cro )l Z Z\fbml
7=01= n+lj 0 e, t=n+175=0
CfO c K
SN Z ugu] < =25 bl D] [uF |
el u=n+1 LeZ u=n+1

To bound the above we use Assumption 2.3.1. By using Lemma 2.1 of Kreiss et al. (2011), under

Assumption 2.3.1, we have Y |[u*¢,| < co. Therefore,

DT f) = Gunlrs )l = O(n™FFY),

t=17<0
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which gives

n

n Y YDUf) = Do)l <207 Y3 du(73 f) = drn(s £)| = O(n7F). (3.17)
t=1

t=171<0

Substituting the above bound into (3.16) gives

E[X/ A1 X,] = tr(A1R,) ‘1/QZ|D Dt,n(f)|<2|c(r)l>=O(n‘K). (3.18)

reZ
Next we consider the variance. The first term in the variance (3.15) is bounded with

n

(AR, AR, < n7h Y [(Ds(f) = Do P)(Dif) = Do(f))e ™™ (Ro) s u( Rt

s,t,u,v=1

n

= 0" Y D) DanHIDS) — Do f)llels — w)lle(t — )]

s,t,u,v=1

<n1/QZ!Dt(f) —Dt,n(f)!> (Z\C(T)I) = 0(n™*"),

where the last line follows from (3.17). The second term in (3.15) is bounded by

VAN

n

D (A sa(Aupeum (X, Xo, X, X,) |

s, t,u,v=1
=07t Y IDUf) = DealDIIDu(f) = Do f)lra (t = 5,0 — 5,0 — 5)|
s, tyu,v=1
w3 IDU) = DeaHIIDW(S) (S [ha = su—s.0—s),
t,v=1 s,u=1
w3 D) = DenlH)IID(S) IDNICER
tov=1 i,J,kEL
2
_ ( —1/2Z|D — Dy (f )|> 2 |k (i, 5, k) | = O (n™25)
i,j,k€Z

where the above follows from (3.17) and Assumption 2.3.2. Altogether this gives var[ X/ A, X ] =

O(n~2K). This proves theorem. O
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PROOF of Theorem 2.3.2 To prove the theorem, we use the following observation. In the special

case that f = f, corresponds to the AR(p) model, the best finite linear predictor (given p observa-
tions) and the best infinite predictor are the same in this case, D,,(f,) = D, ,(f,). Therefore, we

have

(Fuwi fy) = Tonlwi ) Talw) = n'” Z X Xi(Der () = Dalfy)ine ™

s,t=1

= X, A (w)X, (3.19)
where As(w) = (Do, (fp) — Dy(f)) €, Again we drop the dependence of A, on w, but it
will play a role in the proof of Theorem 3.2.1. To bound the mean and variance of X/ A, X we
use similar expressions to (3.15). Thus by using the same method described above leads to our

requiring bounds for

[E[X, 42X, ]| < n‘l/QZ [Di(fp) = Di(f)] <Z |C(7“)|>

reZ

[tr(As R, As Ry | < (an 1Di(f) = Dt(f)\> (Z !CW)\)

Z ’(AZ)s,t(A2)u,vcum (XsaXtaXuaXv) |

s, tyu,v=1

<(n”2ilDt<fp>—Dt<f)!> D3 ka5, k) . (3.20)

i,5,kEZ

The above three bounds require a bound for » " | |D:(f,) — D:(f)|. To obtain such a bound we

use the Lemma D.2.1 (as p — o0) that

i f) = Z G4V P75 fp) = 2 PetjpUirl i

J=0 J=0

where {¢,}32 1, {Pspto_i> {15172 and {1;,}52 are the AR(0), AR(p) and MA(0) coefficients
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corresponding to the spectral density f and f, respectively. Taking differences gives

e Sinin - nis) = zzom i)

[0 0]
Z Z Aot pri—j — Derjp¥iri—sp]
< :
[0 0]

¢t+j - ¢t+j,p‘ ‘w|7'|—j‘

n
B 2 Z Z WW—J’ - wITI—j,p‘ |t4jpl = 11 + L.
t=17<0j=0

We consider first term /;. Reordering the summands gives

L = 2n7! Z Z Pivj — Pesjpl Z |Vjr|—5]

t*lj 0 7<0

< Z|¢K|ZZ|¢HJ Girjpl  (etu=t+j)

t= 1j 0

< on7t Z |9 Z U |y — Pupl -
(= u=0

By applying the Baxter’s inequality to the above we have

L < 2(1+CO)n Zwr Z ugu| = O (%)

u=p+1

To bound I, we use a similar method

*ZZWT e ]p|2|¢t+]p\

T>0] 0

< o Z |1, 2 ulthy = Yugl -
t=1 u=0

By using the inequality on page 2126 of Kreiss et al. (2011), for a large enough n, we have
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Do Wty = Yyl < C X0, 1 [udu| = O(p~"*'). Substituting this into the above gives

Cn*2|¢tp| S Jusa| =0 (i)

u=p+1

where we note that sup, >, _, |¢:,| = O(1). Altogether this gives

n/z D) -2 = 0 (i)

Substituting the above bound into (3.20) and using a similar proof to Theorem 2.3.1, we get desired

results. ]

PROOF of (2.12) We note that

Tn(w; £) (W) = <jn(w§ £) = Joom(w; f)) T (@) + Joon(w; ) Tn(w).

The mean and variance of the first term on the right hand side of the above was evaluated in
Theorem 2.3.1 and has a lower order. Now we focus on the second term. Using the same methods

as those given in (3.16) we have

A~

Bl (s )| < 07 3 (Do D)y (B

s,t=1

= Y Dl - 5)

s,t=1

< 22D (2 rc<r>\)
< S Tt (o) o

~

Following a similar argument for the variance we have var[J ,(w; f)J,(w)] = O(n™?) and this

proves the equation (2.12) |
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PROOF of Theorem 2.3.3. Consider the expansion

The main idea of the proof is to decompose F, (w) into terms whose expectation (and variance)
can be evaluated plus an additional error whose expectation cannot be evaluated (since it involves
ratios of random variables), but whose probabilistic bound is less than the expectation. We will
make a Taylor expansion of the estimated parameters about the true parameters. The order of
the Taylor expansion used will be determined by the order of summability of the cumulants in
Assumption 2.3.2. For a given even m, the order of the Taylor expansion will be (m/2 — 1). The
reason for this will be clear in the proof, but roughly speaking we need to evaluate the mean and
variance of the terms in the Taylor expansion. The higher the order of the expansion we make,
the higher the cumulant asssumptions we require. To simplify the proof, we prove the result in the
specific case that Assumption 2.3.2 holds for m = 8 (summability of all cumulants up to the 16th
order). This, we will show, corresponds to making a third order Taylor expansion of the sample
autocovariance function about the true autocovariance function. Note that the third order expansion
requires summability of the 16th-order cumulants.

We now make the above discussion precise. By using equation (2.8) and (2.18) we have

- V2 & : w17 IS i(s+1)
Jn(w; fp) = Xo ) opse ™ + e Xps1-0 ) | pyse’TH
s mPIEDY o 2
_ L Zp]XE afp(w> n pi(n+1)w Zp: X1 s afp(w)
n\;o 1 —app(w) - 1 —app(w)
and
" 1 [& g p(w) . - g p(w)
In ; = = X, /I\) + ity X1 £ )
(w fp) \/ﬁ <£Zl 51 - aop(w> € ;;- +1—¢ . aop(w)

where for ¢ > 0



and Gy (w) is defined similarly but with the estimated Yule-Walker coefficients. Therefore

Ta(w; ) = Tu(w; f,) = Ba(w)

where

1 | A
= ﬁ Z Z XgXteltw [g&p(w,gp’n) — g&p(wygp)]

+€Z(n+1 Z Z Xn+1 gXte |:g£ p( —p n) gﬁ,p(w7gp):|

where ¢, = (c(0),¢(1),...,¢(p)). €, = (€(0),60(1), ..., Ca(p)),

agp(w) - agp(w)
— = ) 21
gﬁ p( _p n) 1 _ a07p (CL)) and gf,p (w7 gp,n) 1 o /a\07p (w> (3 )

For the notational convenience, we denote by {c;} and {¢;} the autocovariances and sample auto-

covariances of the time series respectively.

Let (Ry)s: = c(s —t), (r,)r = c(k), (ﬁp)st = Cy(s —t) and (T,)r = ¢, (k). Then since Since

~

a, = R;'r,and @, = R, |7, . an explicit expression for g, (w, ¢,) and gyp(w, C, ,,) is
ry Ry e (w) " %Wa¢q<>
gfp(w (& ) 1 —7” R 160( ) and gﬁ,p(wygpm) = R 1, ( )7 (322)
pn pn
where ¢,(w) are p-dimension vectors, with
e(w) =(0,...,0,e7™ ... e 0% for ) < £ < p. (3.23)
——
{—zeros
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Since E,, 1(w) and E,, p(w) are near identical expressions, we will only study E, 1.(w), noting the
same analysis and bounds also apply to E,, p(w). We observe that the random functions ay,(w)
form the main part of E,, ;(w). @p(w) are rather complex and directly evaluating their mean and
variance is extremely difficult if not impossible. However, on careful examination we observe that
they are functions of the autocovariance function whose sampling properties are well known. For
this reason, we make a third order Taylor expansion of g, ,(w

) about gy, (w, c,):

) p/n,

P a P 0?
g@,p 1 / gf,p(wag )
gl,p( _p n) gZ,p Z CJ _l 2 le 031 CJQ B ng) ale (9cj2p
7=0 1,J2
1 P a gﬁp( n)
to @ — i) (@ — 1) (@5, — ¢) 20 Cpn)
3 Jis ;]3—0 " " " ” ” ” acﬁ acjz ac]:&

where ¢, , is a convex combination of ¢, and ¢, ,. Such an expansion draws the sample autoco-
variance function out of the sum, allowing us to evaluate the mean and variance for the first and

second term. Substituting the third order expansion into £, 1, (w) gives the sum

E,r(lw) = ?11(60) + Fio(w) + Fo(w) + Egg(w2 + ?31 (w) + Egg(wz,

=A;L(w) ~Ri(w)
where
1 n itw I~ ag@, (W7Q )
Bulw) = 352~ (XeXe ~E[XeXi]) ™ (@ — o) =5
7=0/¢=1 n t=1 Cj
]_ " itw (A~ age, (W,Q )
Epw) = ), )= D E[XiXi]e™ (& — ¢;) — 2=
imo=1 i o
1 & &1 o . 0*gep(w, )
EQl(W) = 5 Z EEZ(Xth_E[Xth])et (le _le) (cjz _CjQ) &cp oc: :
jrga=06=1"" =1 e

0*gep(w, c,)

S
acjl 0Cj,

1 p p 1 n it N
En(w) = 3 Z ZEZE[XﬁXt]Gt (€ — ¢) (€ — c5)

76



and

1 p p 1 n o R R a 9. ( ’ n)

By (w) = 3 ]Z— Z E; (XeXi — E[X, X)) ™ (6, — ¢j1) (Cj, — ¢5) (G — ¢js) W
Pl ~ . 0 gep(w, C,)
Egp(w) = Z ; - Z [XeXe]e™ (Ciim — 1) (€ — ¢32) (€5 — ¢55) m

]1]

Our aim is to evaluate the expectation and variance of Ey1(w), Fia(w), F21(w) and Ess(w). This
will give the asymptotic bias of [, (w, fp) in the sense of Bartlett (1953). Further we show that
FEs51(w), E32(w) are both of lower order in probabilistic sense. To do so, we define some additional

notations. Let
Jie(w i (X: X, — E[X: X(])e"™ and & =Cj, — E[Cn]-
For I = {iy,...,3,} and J = {j, ..., js}, define the joint cumulant of an order (r + s)
cum (79, 8%") = cum (i, (w), . . -, Jii, (W), Gy - -+, G5, -

Note that in the proofs below we often suppress the notation w in /i,(w) to make the notation less

cumbersome. To further reduce notation define the “half” spectral density

frn(w) = Y E[X, X ]e™.

We note that since E[X; X,| = ¢(t — ¢) and by assumption of absolute summability of the autoco-

variance function we have the bound

sup | < ) le(r)] < . (3.24)

re’l
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Using the notation above we can write F11(w), Fa;(w) and F3;(w) as

LA A 09ep(w,c,)
En(w) = ZZM€<Cj_Cj)%’
; J

7=0/¢=1
I & v @ *gep(w,c,)
By (w) = 5 jz:: ; fie (€5, — ¢j,) (i — ¢12) aciacjf
P p o3
~ A ggp( —p n)
Esi(w) = Lo (€5, — ¢j,) (i, — €jy) (Cjs — Cj3) ————— (3.25)
31( ) 2 Z n ]1) ( J2 Jz) ( J3 J3> 5Cj1 8032(90]3

Using Lemma D.1.3, We summarize the pertinent bounds from the above. The first order

expansion yields the bounds

BlEu)] = 0(5). lbu)-o(%).
Blpal)] = (%) Bl -0 (%)

Blea)] = (%) wilEal-0(5%),
BlEa)] = 0(%). wilmat) -0 (%)

All together, the third order expansion yields the probabilistic bounds

E5(w) =0, <i—z> Ep(w) = O, (%) :

The above are bounds hold for the expansion of F,, 1 (w). A similar set of bounds also apply to

E, r(w). Then we have
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On the other hand

nio) - 0,(2)

This proves the result for m = 8. The proof for m = 6 and all even m > 8 is similar, just the order

of the Taylor expansion needs to be adjusted accordingly. ]
3.6.3 Proof of Section 3

PROQOF of Theorem 3.1.1 The proof is almost identical with the proof of Theorems 2.3.1—-2.3.3,

thus we only give a brief outline. As with Theorems 2.3.1—2.3.3 we can show that

(o) + Ton(@i ) Tonl@) = Innlews £) + A @)
Lin@i f;) = (Ja@) + Ton(@: ) Tun(@] + AL (@)

Lin(@i f,) = Inu(wi fo) + AP (W) + Rpa(w).

Since sup, h;,, < C for some constant, it is easy to verify that ]Ag)n (w)| < ClA;n(w)| for i =
0,1,2 and |Rp»(w)| < C|R,(w)|, where where Ag ,(w), A1 p(w), Asp(w) and R, (w) are the error
terms from Theorems 2.3.1—2.3.3. Thus by using the bounds in Theorems 2.3.1—-2.3.3 we have

proved the result. []

PROOF of Theorem 3.2.1 To simplify notation we focus on the case that the regular DFT is not

tapered and consider the case that A, ,(g; f) is a sum (and not an integral). We will use the
sequence of approximations in Theorems 2.3.1—2.3.3. We will obtain bounds between the “ideal”

criterion Ag,,(g; f) and the intermediate terms. Define the infinite predictor integrated sum as

1 n
AOOSngf _EZ wkn oonwkmf)'
k=1
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We use the sequence of differences to prove the result:

Asn(g: o) — Asn(0: ) = (Asn(9: Fo) = Asn(9; 1)) + (Asin(9; fo) = Awsin(g; £))

+(Aw,s5n(9; f) — Asnlg; f))- (3.26)

We start with the third term A, 5,,(g; f) — Asn(g; f)

‘AS,n(g; f) - OO Sn g, % Z Wk,n)| ‘(jn(wk,n; f) - joom(wk,n; f)) Jn(wk’,n)

= sup
w

<jn(w;f) an(w f> ‘ %i (Wkn)| = Ro.

Using Theorem 2.3.1, we have that E[Ry] = O(n%) and var[Ry] = O(n~2K). Using a similar

method we can show that the second term of above

| A5 (g: fp) — Asn(g: f)| < sup

w

(Tenless ) = Tulws ) T - Z\gwknr—Rl

where E[R,] = O(n~'p~5*') and var[R,] = O(n=2p 2K+2).
To bound the first term Ag ,(g; J?p) — Asn(g; f,) alittle more care is required. We use the expansion

and notation from the proof of Theorem 2.3.3;

Asn(g: Fo) — Asn(g: f,) = UL + Ug

where

1 n
—Z wkn EnL(wkn) and UR =

3
3IH

n
Z wkn nR wkn)
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We further decompose Uy, into

1 n
— Z (Win) [B111 (Wn) + Eria(win) + Eri2(Wen) + Eor(Win) + Eaz(wikn)
1

3

+Esy (win) + E32(wk,n)] =Uip+Usp + Usp,

where

1 n
Ul,n = E Z g(wkm)Elll(wk,n)
=1
1 n
Usp = - Z (W) [Eri2(wen) + Er2(Win) + Eor(wen) + Eoo(win)]
k=1
1 n
Usy = - Z 9(Win) [Es1(win) + Esz(Wrn)] -

ke
I
—

We note that a similar decomposition applies to the right hand decomposition, Ug. Thus the bounds
we obtain for Uy, can also be applied to Ug. To bound U; ,, for ¢ = 1,2, 3, we will treat the terms

differently. Since

§I)—‘

Uzn| < SUP(’Em( )|+ [Erz(w)] + [Ear (W) + [Eoa(w Z (W)

we can use the bounds in the Lemma D.1.3 in Appendix to show that E[U,,] = O(p*n2) and
var[Us,,] = O(p®n=%). Similarly we can show that Us,, = O,(p™/?n~"/*). However, directly
applying the bounds for Fy;;(w) to bound Uy, leads to a suboptimal bound for the variance (of
order p*/n?). By applying a more subtle approach, we utilize the sum over k. By using Lemma

D.1.3 in Appendix, we can show that E[U;,] = O(p*n~?). To obtain the variance we expand
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var[Uy ;]

1 n
Var[Ul,n] B ﬁ Z g(wkl’n)g(ka’n)Cov[Elll(wk’l,n)7E111<wk2,n)]
k1,ko=1
1 n
= = 2 9Wha)9(Wia) X
k1,ka=1

0ty p(Why Qp) 0Ges p (Wi s <)
&le 803’2

p p
Z 2 cov (ﬁfl (wkhn)\c/jl ) ﬁb (wkz,n)\c/h))

£1,82=1 j1,j2=0
= T1 + T2 + T3

where

p p

h = — DD D By @k Whon ) €OV [figy (why ) ity (Whoin)] cOV (65, 8, ]
p p

L = — DU D i @k W)V (i, (Why ), G ] OV [Jigy (W ), 4]

k1,ka=1/¢1,5=1 j1,j2=0

n p p
L = 5 DT D gy @k Wy ) e [fig, (Wi, ) Fiey (Whon) G G

k1,ke=1£1,£2=1 j1,j2=0

and Ny j, (Wt s Whain) = 9(Wk1,0) 9 (Whoin) * OGey,p(Wha ins €5)/0Ch Oy p(Why iy )/ Oy . Then, by

Lemma D.1.2, we have

sup  sup |hj, j, (w1, w2)| < C < 0.
0<j1,j2<p wi,w2

To bound above three terms, we first consider 75. We directly apply Lemma D.1.1 and this gives

cov [fie, (Wkyn)s Gy | - €OV [Jiry (Whyn)s &y | = O(n™*) and thus Ty, = O(p*n™*).
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To bound T3, we expand cov [ fig, (Wiy n)s fory (Whyn) ]

n

oV [fie, (Why )5 fity (Wio )] = % > (C(tl — ta)c(ly — L2) + c(ty — ba)c(ta — 41)

t1,t2=1

+rg(ly —tr,ty — 1y, by — tl)) g1k m 2

1 & , »
= 5D Cunlin )t tasn
t1,t2=1
Substituting the above into 77
1 n
1 Why n—itow n
Z Z cov 691’032 Z Cfl 5] t17t2) Z hjl ]2(wk1 ns Wkan )6 1k 2%ka,
51732 171,52=0 t1,t2=1 k1,k2=1

Since by assumption the function g(-) and its derivative are continuous on the torus [0, 27| and
hj, i,(-,-) and its partial derivatives are continuous of [0, 27]|?, then by the Poisson summation

formula

1 & . . o
— Z hj1,j2 (wk1,n7 wk%n)eztwh,n ioWhy m _ 2 a(J1J2)(t1 + s1n, —ty + 32n)
k1,ko=1 51,5267

where al772) (|, 1) are the (1, 72 )th Fourier coefficients of h;, ;, (-, -) and are absolutely summable.

Substituting the above into 7} and by Lemma D.1.2,

1 & & A
|T1| < ) Z Z |COV Cirs CJ2 Z 2 |O€1 No tlv t2)‘ | (Jlm)(tl + s1n, —to + S2n)|
n 21,52:1 j1,j2 0 t1,ta=1 s1,82€7Z

N

—3 Z Z Z Z (71.52) (t1 + s1n, —ta + son)|

L1 02=1 j1,j2=0t1,t2=1 s1,52€Z

_ Cp i S a9 (g, )| = O < )

]1,]2 =0 T1,T2€Z

Therefore, Ty = O(p*n~?). Finally, we consider T3. We use the expansions for cum iz, (Wi, 1) fies (Why.n)s Ciy s G|
given in the proof of Lemma D.1.1 together with the same proof used to bound 7;. This once again

gives the bound T3 = O(p*n~2). Putting these bounds together gives
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(i) E[U;,] = O(p*n~?) and var[U, ,] = O(p*n3).
(i) E[Us,] = O(p*n~2) and var|Us,,] = O(pn~2)
(iii) Usy = Op(p™/n=m/1).

The above covers Uy,. The same set of bounds apply to Ug. Thus altogether we have that

Asn(g; o) — Asn(g; fo) = U + Ug = Ry + €,

where Rj is the term whose mean and variance can be evaluated and is E[Ry] = O(p*n~2) and
var[Ry] = O(p®n~%) and & is the term which has probabilistic bound & = O, (p™/?n~"/*). Finally,

placing all the bounds into (3.26) we have
Asu(g: o) — Asul(g; f) = Ro+ Ry + Ry + € = Alg) + €,

where E[A(g)] = O(n~tp~ K+ 4p?n=2), var[A(g)] = O(n=2p~K=2+4pn=3) and £ = O, (p™/?n~"/*)

thus yielding the desired result. []

PROOF of Corollary 3.2.1. We prove the result for Ay, (g; ]/L;), noting that a similar result holds

for As . (g; fp) We recall

~ 1 (2 ~
Ara(g:fp) = 5| 9@ un(ws fo)dw

1 O27r 1 2 ~ ~ ~ —_—

= 5o | 9@ @) Tan @) + o= | gw) (Tl F) = Tulw: £)) Tnn(@)de
T Jo T Jo

27

L 9(W) T (w; f) T (@) dew (3.27)
2 Jo

m/2 1 3
_op<p + +p).

nm/A T ppE—1 T p3/2

0
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For the third term, we use similar technique to prove equation (2.12), we have jn (w; f)dpn(w) =
O,(n™'). Therefore, integrability of g gives that the third term in (3.27) is O,(n™"). Combining

above results, for m > 6 where m from Assumption 4.2.1

1 27( ~ ~
Py (W) Jn(w; fp) Ipn(w)dw
2 Jo
27 . R N 1 o ~
“ 5 ) 9(w) (Jn(w;fp) - Jn<w;f)) Tnn(W)dw + o L 9(w)In(w; f) Iy (w)dew
1 pm/Q 1 p3 1 p3
= P (E =+ nm/4 + npK*1 + n3/2 = Op E + W . (328)

Thus we focus on the first term of (3.27), which we define as

From (3.28) if

H, /1 :
1’2<_+%)_)0
AT

as p,n — oo, then (Hlvn/Héf)Abm(g) is the dominating term in (Hl,n/Héﬁ)AI,n(g; fp) More-
over, by Cauchy-Schwarz inequality, we have H, ,,/H. 21/712 < n'/2, thus we can omit the first term of
the above condition and get condition (3.6).

Finally, by applying the techniques in Dahlhaus (1983) to (H; ,,/H. 21/,3 )Ap 1 (g) we can show that

H?
L var[Apa(9)] = (Vi + Va + V3) + o(1).
2n
Since (HLn/HQl’/i)ALn(g; fp) = (Hl,n/H;f)A@,n(g) + 0,(1), this proves the result. O
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4. THE GAUSSIAN LIKELIHOOD IN THE FREQUENCY DOMAIN *

In this section, we discuss greater detail of the frequency domain representation of the Gaussian

likelihood in Section 2.4.
4.1 New frequency domain quasi-likelihoods

In this section, we apply the approximations from Section 2.4.1 to define two new spectral
divergence criteria.

To motivate the criteria, we recall from Theorem 2.4.1 that the Gaussian likelihood can be
written as a contrast between J, (w; fy)J,,(w) and fy(w). The resulting estimator is based on si-
multaneously predicting and fitting the spectral density. In the case that the model is correctly

specified, in the sense there exists a f € © where f = f, (and f is the true spectral density). Then

Ey, [Jn(w; fo) Tu(w)] = fo(w)

and the Gaussian criterion has a clear interpretation. However, if the model is misspecified (which
for real data is likely), E s[.J,, (w; f9)J,(w)] has no clear interpretation. Instead, to understand what
the Gaussian likelihood is estimating, we use that E f[ (w3 fo) Jn(w)] = O(n~"), which leads to
the approximation . ;[.J,, (w; fo)J,(w)] = f(w) + O(n~"). From this, we observe that the expected

negative log Gaussian likelihood is

n X (fe) T X, ] + T og [Tu(fo)l = I(f, fo) + O(n™"),

where

L.(f; fo) = %ZZ: (fe >) + logfe(wm)) . 4.1)

Since 1,,(f; fo) is the spectral divergence between the true spectral f density and parametric spec-

“Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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tral density fy, asymptotically the misspecified Gaussian likelihood estimator has a meaningful in-
terpretation. However, there is still a finite sample bias in the Gaussian likelihood of order O(n™!).
This can have a knock-on effect, by increasing the finite sample bias in the resulting Gaussian
likelihood estimator. To remedy this, in the following section, we obtain a frequency domain cri-
terion which approximates the spectral divergence I,,(f; fy) to a greater degree of accuracy. This
may lead to estimators which may give a more accurate fit of the underlying spectral density. We
should emphasis at this point, that reducing the bias in the likelihood, does not necessarily translate

to a provable reduction in the bias of the resulting estimators. It is worth noting that, strictly, the

spectral divergence is defined as n™' >}, < ;; ((Z ’:")) log fe((z k, ”)) - 1). It is zero when fy = f

and positive for other values of fy. But since — log f — 1 does not depend on € we ignore this term.
4.1.1 The boundary corrected Whittle likelihood

In order to address some of the issues raised above, we recall from Theorem 2.2.1 that
Ef[jn(w; £)Jn()] = f(w). In other words, by predicting over the boundary using the (unob-
served) spectral density which generates the data, the “complete periodogram” T (w; f )m is
an inconsistent but unbiased of the true spectral density f. This motivates the (infeasible) boundary

corrected Whittle likelihood

_l = j(wknaf) wkn l =
Wa(0) = — ;;1 o) + - g 0g folwin)- 4.2)

Thus, if {X;} is a second order stationary time series with spectral density f, then we have
E[Wa(0)] = L(f; fo).

Of course f and thus jn(wk,n; f) are unknown. However, using steps of approximation in Sec-
tion 2.3.2, we show that the predictive DFT (and thus the complete DFT) can be well approximated
with relatively small error. The first step is to replacing f in jn (wWk.n; f) with the spectral density
function corresponding to the best fitting AR(p) process J,, (Wkn; fp), where an analytic form is
given in (2.8). Since we have replaced f with f,, the “periodogram” I (Wk.n; fp)m does

have a bias, but it is considerably smaller than the bias of the usual periodogram. In particular, it
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follows from Theorems 2.3.1 and 2.3.2 that

Es [T (@on: f) Ta(or)] = F(@rn) + O ( L ) .

TLpK 1

The above result leads to an approximation of the boundary corrected Whittle likelihood

1\ Jn(Wins fp) In(wien) 1 S
Wyan(8) = = > : - E 4.
pn(0) n & Folwrn) n 2 log fo(wkn)- (4.3)

In the following lemma, we obtain a bound between the “ideal” boundary corrected Whittle likeli-

hood W,,(#) and W, ,,(9).

Lemma 4.1.1. Suppose f satisfies Assumption 2.3.1, fq is bounded away from zero and || fg|o < 0.
Let {aj(p)} denote the coefficients of the best fitting AR(p) model corresponding to the spectral

density f and define fy(w) = |1 — >0, a;(p)e™"*|> Suppose 1 < p < n, then we have

[E: () (Dalf) = DalF)],

< poic (A (f. fo) (w;;iﬁ b, (Cfpl“) 4l

) . 4.4)

Further, if {X,} is a time series where sup, | Xy||g,2q = | X |2 < o0 (for some q > 1), then

(Wi (0) = Wypn(O)leq < pox(f)Ax(Sf, fo) x
((Of,l +1)  2Cra + 1)?
np*—t np*

C
970l + f°) X2 (45)

PROOF. See Section 4.7.2. ]

Remark 4.1.1. We briefly discuss what the above bounds mean for different types of spectral

densities f.

(i) Suppose f is the spectral density of a finite order AR(py). If p = po, then
|Ex AL (f3 1) (Du(f) = Da( )|, = 0 and |[W,,(8) = Wpn(6) |54 = 0. On the other hand, if

88



p < po we replace the p* and p® ! terms in Lemma 4.1.1 with 201 |oiland 3302 156

respectively, where {¢;}._, are the AR(p) coefficients corresponding to f.

(ii) If the autocovariances corresponding to [ decay geometrically fast to zero (for example an

ARMA processes), then for some 0 < p < 1 we have

W, (0) — Wy (0)] g = O (pp ; pn) . 4.6)

n

iii) Ifthe autocovariances corresponding to f decay to zero at a polynomial rate with rEe(r)] <
y4 g y poly r

oo, then

|Wn<9>—wp,n<e>|E,q=o( ! ) 47

npK—l

Roughly speaking, the faster the rate of decay of the autocovariance function, the “closer”

Wy,.n(0) will be to W,,(8) for a given p.
It follows from the lemma above that if 1 < p < n, E;[W,,(0)] = L.(f; fo) + O((np™~')~') and

W, a(6) = Wa(6) + O, (#) |

TLpK_l

Thus if p — o0 as n — oo, then W, ,,(6) yields a better approximation to the “ideal” ,,(#) than
both the Whittle and the Gaussian likelihood.

Since f is unknown, f, is also unknown. The second step is to estimate f, from the data. We
use the Yule-Walker estimator to fit an AR(p) process to the observed time series, where we select
the order p using the AIC. This leads a feasible estimator J,, (w; fp) = Jo(w) + Jn(w; fp), where
Jn(w; f,) is defined as in (2.18).

This estimator allows us to replace jn(wk,n; fp) in W, ,(0) with jn(wk,n; fp) to give the “ob-
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served” boundary corrected Whittle likelihood

= 1g T (@i fp) T (@on) l c
Won(0) = ~ ,; o - 2_] 08 fo(Wkn)- (4.8)

We use as an estimator of 0, §n = arg min W), , (). It is worth bearing in mind that

j(wkmfp) (wkn) —ImJ (Wn k:nafp) (Wn k:n)

e o) Folomn)

thus Wp () is real for all §. However, due to rounding errors it is prudent to use Re I//I\/pvn(ﬁ) in
the minimization algorithm. Sometimes Re T (Wk.n; fp)m can be negative, when this arises
we threshold it to be positive (the method we use is given in Section 4.6).

In this dissertation, we focus on estimating fn (Wk.n; fp) using the Yule-Walker estimator. How-
ever, other estimators could be used. These may, in certain situations, give better results. For exam-
ple, in the case that f has a more peaked spectral density (corresponding to AR parameters close to
the unit circle) it may be better to replace the Yule-Walker estimator with the tapered Yule-Walker
estimator (as described in Dahlhaus (1988) and Zhang (1992)) or the Burg estimator. We show in
Section 4.6.4, that using the tapered Yule-Walker estimator tends to give better results for peaked
spectral density functions. Alternatively one could directly estimate jooyn(wk,n; f), where we use a
non-parametric spectral density estimator of f. This is described in greater detail in Section 4.6.4

together with the results of some simulations.
4.1.2 The hybrid Whittle likelihood

The simulations in Section 4.6 suggest that the boundary corrected Whittle likelihood estimator
(defined in (4.8)) yields an estimator with a smaller bias than the regular Whittle likelihood. How-
ever, the bias of the tapered Whittle likelihood (and often the Gaussian likelihood) is in some cases
lower. The tapered Whittle likelihood (first proposed in Dahlhaus (1988)) gives a better resolution
at the peaks in the spectral density. It also “softens” the observed domain of observation. With this

in mind, we propose the hybrid Whittle likelihood which incorporates the notion of tapering.
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Suppose h = {h,}}, is a data taper, where the weights {h, ,, } are non-negative and > ;" | hy,, =
n. Then, using results in Section 3.1, the tapered complete periodogram I, ,(w; f) = (w £ Inn(w)
where J, (W) = n~ Y2 Y0 by, Xe™ is an unbiased estimator of f(w).

Based on the above result we define the infeasible hybrid Whittle likelihood

1 = j (wk nyf)Jhn(wk n) 1 =
H,(0) = — = : — 1 n 49
( ) n 1;1 fe(wkm) + n ];1 0og f@ (wk, ) ( )

and E¢[H,(0)] = L.(f; fs). Thus H,(6) is an unbiased estimator of I,(f; fs). Clearly, it is not
possible to estimate § using the (unobserved) criterion H,,(6). Instead we replace jn(wk,n; f) with

its estimator jn (Wk fp) and define

>

1 & Tl wkmfp nn, (Wen) 1 ¢
S — > log folwkn)- (4.10)
nZ:: Fo@rn) nkz::l g fo(wk,n)
We then use as an estimator of 6, §,, = arg min ﬁpvn(H). An illustration which visualises and com-
pares the boundary corrected Whittle likelihood and hybrid Whittle likelihood is given in Figure
4.1.

X, Xp Xz e Xoo Xo X, X, Xy Xy o e Xp o Xoy X
+ +
O - ———
| ‘ ] " MY
X X, P A Xno2 Xn1 Xa X X, X3 e Xn-2 Xn-1 Xn

Figure 4.1: Left: The estimated complete DFT and the regular DFT which yields the boundary
corrected Whittle likelihood. Right: The estimated complete DFT and the tapered DFT which
forms the hybrid Whittle likelihood.

91



4.2 Assumptions

In this section, we make sets of assumptions that are used to study the sampling properties of
the boundary corrected and hybrid Whittle likelihood. Our focus will be on the hybrid Whittle
likelihood as it includes the boundary corrected likelihood as a special case, when h;,, = 1. In
Section 3.2, we study the sampling properties of the estimated integrated complete periodogram,
which is a weighted sum of jn(w; fp)m Using these results and the results in Section B, we
obtain the bias and variance of the boundary corrected and hybrid Whittle likelihood.

Suppose we fit the spectral density fy(w) (where € is an unknown d-dimension parameter vec-
tor) to the stationary time series { X}, whose true spectral density is f. The best fitting spectral
density is fp,, where ,, = argmin I,,(f; fy). Let én = (@Ln, . ,gd,n) be its estimator, where
f, = arg min ﬁp,n(ﬁ).

To derive the sampling properties of én we assume the data taper has the following form
ht,n = Cnh'n (t/n)v (411)

where h, : [0,1] — R is a sequence of positive functions that satisfy the taper assumptions
in Section 5, Dahlhaus (1988) and ¢, = n/Hy, with H,,, = >;" | h,(t/n)?. We will assume
sup; ,, hen < 00, using this it is straightforward to show H,,/H}, = O(n~"). Under this con-
dition, the hybrid Whittle is n'/?~consistency and the equivalence result in Theorem 4.3.1 holds.
This assumption is used in Dahlhaus (1983) and in practice one often assumes that a fixed percent-
age of the data is tapered. A relaxation of the condition H,,,/H7, = O(n™") will lead to a change

of rate in Theorem 4.3.1.

Assumption 4.2.1 (Assumptions on the parameter space). (i) The parameter space © < R is

compact, 0 < infgeg inf,, fo(w) < supyee sup,, fo(w) < oo and 0, lies in the interior of ©.

(ii) The one-step ahead prediction error o* = exp((2m)~! S(Z)Tr log fo(w)dw) is not a function of

the parameter 6.
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(iii) Let {¢;(fo)} and {1;(fg)} denote the AR(c0) and MA(x) coefficients corresponding to the
spectral density fg respectively. Then for all 0 € © and 0 < s < k (for some Kk = 4), we

have
o0

(a)sup > 1155 Vio;(fo)l < o0 (B)sup ) 155 Vi (fa)la < o0,
0cO j=1 0cO j=1

where K > 3/2, V3q(fy) is the ath order partial derivative of g with respect to 0, and

IVég(fo)|1 denotes the absolute sum of all the partial derivatives in Vig( fy).

bias of the new-frequency domain likelihood estimators would contain some additional terms. As-

sumption 4.2.1(iii-b) is used to bound the sth derivative of the spectral density.

Assumption 4.2.2 (Assumptions on the time series). (i) {X;} is a stationary time series. Let
Ke(t1, ..., te—1) denote the joint cumulant caom(Xo, Xy, , ..., Xy, ).
Thenforalll < j < (<12,

D+ ty) ket - temr)| < o0,

t1,ete—1

(ii) The spectral density of {X,} is such that the spectral density f is bounded away from zero

and for some K > 1, the autocovariance function satisfies Y, _, |r*cs(r)| < oo.

(iii) 1(6,) is invertible where

16) = —5- | IV3e) ) (@) @.12)

We require Assumption 4.2.2(i), when ¢ = 4 and 6 to obtain a bound for the expectation of
the terms in the bias expansions and ¢ = 12 to show equivalence between the feasible estimator

based on flpm(H) and its infeasible counterparts H,,(6). Under Assumption 4.2.2(i,ii), we show in
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Theorem 3.2.1 that

~ p? 1
Hy,,(0) = H,(0) + O, meToi :

npK—l

Under Assumption 4.2.1(1,1ii) the above error is uniform over the parameter space. If the model is

an AR(po) and py < p, then the term O((np®~1)~!) in the above disappears.

4.3 Rates of convergence of the new likelihood estimators

4.3.1 The criteria

To begin with, we state the assumptions required to obtain rates of convergence of the new
criteria and asymptotic equivalence to the infeasible criteria. These results will be used to derive
the asymptotic sampling properties of the new likelihood estimators, including their asymptotic
bias (in a later section). To do this, we start by defining the criteria we will be considering.

We assume that { X} is a stationary time series with spectral density f, where f is bounded
away from zero (and bounded above). We fit the model with spectral density fj to the observed
time series. We do not necessarily assume that there exists a §, € © where f = fy,. Since we

allow the misspecified case, for a given n, it seems natural that the “ideal” best fitting parameter is
0, = argmein[n(fv f9) (4.13)

where I,(f, fo) is defined in (4.1). Note that in the case the spectral density is correctly specified,
then 0,, = 0, for all n where f = fy,.

Whittle, boundary corrected Whittle and hybrid Whittle likelihoods. To show why this is true, we
obtain the Fourier expansion of log fy(w) = >, a,(fg)e™, where ao(fp) = log a2, in terms of

the corresponding MA (o) coefficients. We use the well known Szegd’s identity

log fy(-) = log o®|1(+; fo)|> = log o® + log1(:; fo) + log1(:; fo)
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where ¢(w; fy) = 2720 1;(fo)e 7 with 4ho(fy) = 1 and the roots of the MA transfer function
Z;O:O ¥i(fp)7? lie outside the unit circle (minimum phased). Comparing

log fo(w) = Y., cp ar(fo)e™ with the positive half of the above expansion gives
0 0 )
log Z (f)2?) = Z i(fo)z? for|z| <1,

and since log fp is real and symmetric about 7, a_;(fy) = «;(fs) € R. This allows us to obtain
coefficients {c;(fy)} in terms of the MA(co) coefficients (it is interesting to note that Pourahmadi
(2001) gives a recursion for a;(fp) in terms of the MA(co) coefficient). The result is given in
Lemma D.2.2, but we summarize it below. Under Assumption 4.2.1(iii) we have for 0 < s < &

(for some « = 4)

21 Vias(fo)lly < .

j=1
Using this result, we bound n=* " , log fy(wk ). Applying the Poisson summation formula to

this sum we have

% Z log fo(wkn) = Zoém(fe) = aolfo) + Z arn(fo)
k=1

reZ reZ\{0}

= log(c?) + Z an(fo)- (4.14)

reZ\{0}

The sth-order derivative (s > 1) with respect to 6 (and using Assumption 4.2.1(ii) that o does not

depend on 6) we have

% Z Vilog fo(win) = D, Viam(/

reZ)\{0}

By using Lemma D.2.2 for 0 < s < k we have

| >, Viam(fo)l <2, |Via;(fo)lh = O(n™™). (4.15)

reZ\{0} j=n
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Substituting the bound in (4.15) (for s = 0) into (4.14) gives

1 n
EZ log fo(wkn) —logo®| = O(n™").
Using (4.15) for 1 < s < k we have
H Zva log fo(wkn)| =O0(n™™).
k=1 1

Therefore if K > 1, the log determinant term in the Whittle, boundary corrected, and hybrid
Whittle likelihood is negligible as compared with O(n~!) (which we show is the leading order in
the bias).

However, for the Gaussian likelihood, the log determinant cannot be ignored. Specifically, by
applying the strong Szego’s theorem (see e.g., Theorem 10.29 of Bottcher and Silbermann (2013))

to I',,(fy) we have
1 2 1 -1
- log T(fo)| = logo™ + EE(Q) +o(n™)

where E(0) = 3,7, ax(fy)?. Therefore, unlike the other three quasi-likelihoods, the error in

log |T',,(fo)| is of order O(n~'), which is of the same order as the bias. In Section B.2, we show
that the inclusion and exclusion of n=!log |T',,(fy)| leads to Gaussian likelihood estimators with
substantial differences in their bias. Further, there is no clear rule whether the inclusion of the
n~1log [T, (fe)| in the Gaussian likelihood improves the bias or makes it worse. In the case that
n~1log |T,,(fe)| is included in the Gaussian likelihood, then the expression for the bias will include
the derivatives of £(6). Except for a few simple models (such as the AR(1) model) the expression
for the derivatives of F/(6) will be extremely unwieldy.

Based on the above, to make the derivations cleaner, we define all the quasi-likelihoods without
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the log term and let

n (wk,n; fH) Jn (wk,n)
-1 fo(wn)

_ 1 & T (W fo) T (@)
Wyn(0) = -
pan(0) n]; fo(wi.n)
_ 1 Ta(kns Fo) T, (@)
Hy.n(0) n kz_:l Jo(Wrn) ' 1o

In the case of the hybrid Whittle likelihood, we make the assumption the data taper {h; ,} is such
that h,, = c¢,h,(t/n) where ¢, = n/H,,, and h,, : [0,1] — R is a sequence of taper functions
which satisfy the taper conditions in Section 5, Dahlhaus (1988).

We define the parameter estimators as

57(16') = argmin £,(6), §§f<> = arg min K,,(0),
57(1”/) = argmin I//I\/pm(ﬁ), and @(LH) = argmin E’p,n(e) (4.17)

4.3.2 Asymptotic equivalence to the infeasible criteria

In this section we analyze the feasible estimators 0" and 6 and show itis asymptotic equiv-
alence to the corresponding infeasible criteria which replace fp with f, the true spectral density.

Before that, we discuss the condition on data taper such that Hy,,/H}, = O(n~"). This has
some benefits. The first is that the rates for the hybrid Whittle and the boundary corrected Whittle

are the same. In particular, by using Theorems 2.3.4 and 3.2.1 (under Assumption 4.2.2) we have

n

A~ ~ ~ - 2 3
[ ) = Tl D, @1 = 0, (24 255 @19
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and

N 3 |
H,.,,(0) = H,(0) + O, (% + ) . (4.19)

npK—l

Using this, we show below that the Hybrid Whittle estimator has the classical n'/?>-rate. If we were
to relax the rate on Hy ,,/H7,, = O(n™"), then the n'/>~rate and the rates in (4.18) and (4.19) would
change. This will make the proofs more technical. Thus for ease of notation and presentation we
will assume that Hy,,/H?,, = O(n™").

We start by obtaining a “crude” bound for V;me(é) — VW, (6).

Lemma 4.3.1. Suppose that Assumptions 4.2.1(i,iii) and 4.2.2(i,ii) hold. Then for 0 < s < k (for

some k = 4) we have

s [¥3T,i0) ~ w0, =0, (1)

and
sup | Vil (6) = ViHA(0)| = O, <—) .
0e© 1 n
PROOF. See Section 4.7.2. ]

Lemma 4.3.2. Suppose that Assumptions 4.2.1(i,iii) and 4.2.2(i,ii) hold. Then
0 6, B0 and |9 — 6, Do
with p*/n — 0 as p,n — 0.

PROOF. See Section 4.7.2. O]

For the simplicity, we assume 6 is univariate and state the following lemma. It can be easily

generalized to the multivariate case.
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Lemma 4.3.3. Suppose Assumptions 4.2.1(i,iii) and 4.2.2 hold. Then for i = 1,2 we have

diW,..(6) AW, (0) P 1
o 0= g om0+ Op (i (4.20)
and
Wy (0) W, (0) P\ | G
d93 J9=§n - d93 J9=9n = OP E + |9n - 9n|0p(]-)7 (421)

where 0,, is a convex combination of o) and 0,.. This gives rise to the first order and second

expansions

(§<W)0n)=[ﬂz[w”1w+op<l+ ro, 1 ) 4.22)

" do? o, no nd2 " ppk-l
and
Wl + @ 0,) T, L g2 Ty
_o, (5/’2 + npfl“) (4.23)
PROOF. See Section 4.7.2. [

The second order expansion (4.23) is instrumental in proving the equivalence result Theorem
4.3.1. By following a similar set of arguments to those in Lemma 4.3.3 for the multivariate param-

eter @ = (6y,...,0,), the feasible estimator satisfies the expansion

d 2
oW, (6) +Z(9gp—es,n)aagv—gé9)

d
~ ~ W, (0) p? 1
w w n
5 Z (08) = 0s,n) (0) — 952,n)mb=en = (W + W) . (4.24)

s1,52=1

By using the same set of arguments we can obtain a first and second order expansion for the hybrid
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Whittle estimator

(§<H>—0n)=—lE{MH1M+Op<l+ ro, 1 ) (4.25)

n 62 do,, n | n¥2 ppk-l

and

dH, (6) L 2H,(0) LB HL ()
70 loo, + (OT") — 9n)wJ9:9n + 5(97(1 ) —6,) a5 lo=6,
3
P 1
_ (W + npKl) | (4.26)

Using the assumptions above we obtain a bound between the feasible and infeasible estimators.

Theorem 4.3.1 (Equivalence of feasible and infeasible estimators). Suppose Assumptions 4.2.1
and 4.2.2 hold. Define the feasible and infeasible estimators as @L = argmin H,(0) and é\n =
arg min ﬁp,n(G) respectively. Then for p > 1 we have

3
~ ~ P 1
b -0 =0,(L + =),
’ n n’l P (77,3/2 npK_l)

where |a|; = Z?:1 \aj|. For the case p = 0, 0, is the parameter estimator based on the Whittle
likelihood using the one-sided tapered periodogram J,(win)Jnn (Wen) rather than the regular

0, — 0,1 =0,(n").

tapered periodogram. In this case,
Note if the true spectral density of the time series is that of an AR(po) where py < p, then the

O((np®=1)71) term is zero.
PROOF. See Section 4.7.2. [J

The implication of the equivalence result is if p3/n'/2 — 0 as p — oo and n — oo, then n|d, —
§n|1 — () and asymptotically the properties of the infeasible estimator (such as bias and variance)

transfer to the feasible estimator.
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4.4 The bias and variance of the hybrid Whittle likelihood

The expressions in this section are derived under Assumptions 4.2.1 and 4.2.2. To obtain an

expression for the mean and variance of §n = (51,,1, cee édm) we require the following quantities.
Let
2 27 ,
Vig:h) = 5o | 9@)h(w)f(w)de
0
1 2w 2w
+(27T)2 JO L g(wl)h(WQ)f4(wl7 _w17w2)dw1dw2
1 27
and J(g) = o g(w) f(w)dw, 427)
0

where f, denotes the fourth order cumulant density of the time series { X;}. We denote the (s, r)th

element of 1(6,,)~! (where I(6,,) is defined in (4.12)) as I¢*>™), and define

d -1 2 p—1
5159 ofy " 0°f,
Gi(o) = > I )V(aei;aeslgaer)

81,82=1

d

1 (7‘](-—1 af—l a3f—1
il J(s1,83) [(52,54) 0 9 S — 4.2
t3 X Y\ 0.z, )" \Gocoe0, ) 42Y

$1,52,83,54=1
4.4.1 The bias

We show in Appendix B.3, that the asymptotic bias for 0, = (HALn, ceey gd,n) is

~

E[0jn — 0n] =

n N 7l §a
H12 Z_: I J Gr(en) + O (n3/2 + npKfl 1 < 7 < d7 (429)

where 1U7) and G, (6,,) is defined in (4.28). We note that if no tapering were used then Hy ,,/H3 , =
n~!. The Gaussian and Whittle likelihood have a bias which includes the above term (where
H,,,/H?, = n~") plus an additional term of the form >}¢_ IUIE[V,L,(6,)], where L, (-) is the
Gaussian or Whittle likelihood (see Appendix B.3 for the details).

Theoretically, it is unclear which criteria has the smallest bias (since the inclusion of additional
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terms does not necessarily increase the bias). However, for the hybrid Whittle likelihood estimator,
a straightforward “Bartlett correction” can be made to estimate the bias in (4.29). We briefly outline
how this can be done. We observe that the bias is built of /(-), J(-) and V' (-, ). Both I(-) and J(-)
can easily be estimated with their sample means. The term V'(-, -) can also be estimated by using
an adaption of orthogonal samples (see Subba Rao (2018)), which we now describe. Define the

random variable

3I>—‘

Z wkn j wk+rn7f)<]n(wk,n> for r = 17

where ¢ is a continuous and bounded function. Suppose g; and g, are continuous and bounded
functions. If r # nZ, then E¢[h.(g;; f)] = 0 (for j = 1 and 2). But interestingly, if » << n, then

ncovy(he(g1; f), he(go; )] = nE¢[hr(91; )i (925 f)] = V (g1, 92) + O(r/n). Using these results,

we estimate V' (g1, g2) by replacing h,.(g;; f) with h,.(g;; fp) and defining the “sample covariance”

M -
V 91792 = Z glafp g?afp)

where M << n. Thus, XA/M (g1, go) is an estimator of V' (g1, g»). Based on this construction,

~ 0 .4 0? 1 ~ 0 L4
Vi <6952 f@n ' 205,00, f@n > and Vy, ( Gn @9 8,

are estimators of V' (?;"92 , ;9 Jo 90 TN ) and V <af £ 1, ZJ;“) ) respectively. This estimation scheme yields
a consistent estimate of the bias even when the model is misspecified. In contrast, it is unclear how
a bias correction would work for the Gaussian and Whittle likelihood under misspecification, as
they also involve the term E¢[VyL,,(6,)]. In the case of misspecification, E¢[VyL,(6,)] # 0 and
is of order O(n=1).

It is worth mentioning that the asymptotic expansion in (4.29) does not fully depict what we

observe in the simulations in Section 4.6. A theoretical comparison of the biases of both new

likelihoods show that for the boundary corrected Whittle likelihood, the bias is asymptotically
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nt3¢_ 109G, (6,), whereas when tapering is used the bias is (Ha,,/HZ,,) 30_ I01G,.(6,) =
n~t ¢ 101G, (0,). This would suggest that the hybrid Whittle likelihood should have a larger
bias than the boundary corrected Whittle likelihood. But the simulations (see Section 4.6) suggest

this 1s not necessarily true and the hybrid likelihood tends to have a smaller bias.
4.4.2 The variance

We show in Section 3.2.1 that the inclusion of the prediction DFT in the hybrid Whittle like-
lihood has a variance which asymptotically is small as compared with the main Whittle term if
p’/n — 0as p,n — oo (under the condition Hs, /H7, = O(n~')) Using this observation, stan-

dard Taylor expansion methods give the asymptotic variance of §n is

HZ, -
H;’ var(fn) = 1(0,) 'V (Vofy ' Vafy ) oo, 1(62) " + 0(1),

where V(+) is defined in (4.27).
4.5 Order selection and computational cost
4.5.1 The role of order estimation on the rates

Note that the order in the AR(p) approximation is selected using the AIC. We assume that the
underlying time series is a linear, stationary time series with an AR(c0) that satisfies Assumption
K.1—-K.4 in Ing and Wei (2005). Then, using the same augument in the end of Section 2.3.2,
we show that the AIC order p = O,(nY125)). Thus, if K > 5/2, then 7°/n'/> 5 0 and
D £ o asn — oo. These rates ensure that the difference between the feasible and infeasible
estimator is |§n - §n|1 = 0,(n~'). Thus the feasible estimator, constructed using the AIC, and
the infeasible estimator are equivalent and the bias and variance derived above are valid for this

infeasible estimator.
4.5.2 The computational cost of the estimators

The Durbin-Levinson algorithm is often used to maximize the Gaussian likelihood. If this is

employed, then the computational cost of the algorithm is O(n?). On the other hand, by using the
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FFT, the computational cost of the Whittle likelihood is O(n logn).

For the boundary corrected Whittle and hybrid Whittle likelihood algorithm, there is an addi-
tional cost over the Whittle likelihood due to the estimation of { jn(wk,n; fp) }2_1. We recall that fp
is constructed using the Yule-Walker estimator %p = (ggl,p, e $p7p)’ where p is selected with the
AIC. We now calculate the complexity of calculating {jn(wk,n; fp)}gzl.

The sample autocovariances, {C,,(r)}"—; (which are required in the Yule-Walker estimator) can
be calculated in O(n logn) operations. Let K, denote the maximum order used for the evaluation
of the AIC. If we implement the Durbin-Levinson algorithm, then evaluating @p forl <p< K,
requires in total O(K?) arithmetic operations.

Suppose that the AR coefficients %ﬁ are given and compute the predictive DFT { jn(wk,n; fp) |35

Recall from (2.8),

Tn(@km; )

n—1/2 i Z—: n—1/2 i If (ss1)
Grise T b ==Y K10 ), Pryse’ T
¢p wen) = 5 Opl(wrn) (S s=0
where f,(-) = [¢,(-)[* and @p(wrn) = 1 — 3 ¢je~mn. We focus on the first term of

Jn(wkn; fp) since the second term is almost identical. Interchange the summation, the first term is

n-12 2

1SWh n
2 XZ 2 ¢€+se ko
Wkn s—=0

—1/2 Pl

C —iSWk.n _ n —1SWk n
) (2 Xms) = IS

s=0

where Y, = Y] Xy s for 0 < s < p — 1. Note that Y can be viewed as a convolution
between (X1, ..., X,) and (0,0,...,0,¢1,...,$,,0,...,0). Based on this observation, the FFT can
be utilized to evaluate {Y; : 0 < s < p — 1} in O(plog p) operations.

By direct calculation {¢,(wy,) : 0 < k < n — 1} and {3P_ Yie ™kn : 0 < k < n —
1} has O(np) complexity. An alternative method of calculation is based on the observation that

both ¢, (wy.,) and Y7~} Ve ™k can be viewed as the kth component of the DFT of length n
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sequences (1, —¢1, ..., —¢,,0,...,0) and (Yp, ..., Y,_1,0,..,0) respectively. Thus the FFT can be
used to evaluate both {¢,(wrn) : 0 < k < n — 1} and {3P_) YVie ™#n 1 0 < k < n — 1} in
O(nlogn) operations. Therefore, since either method can be used to evaluate these terms the total
number of operations for evaluation of {¢,(wy,) : 0 < k < n — 1} and {372} Yie ™hn : 0 <
k < n— 1} is O(min(nlogn, np)).

Therefore, the overall computational cost of implementing both the boundary corrected Whittle
and hybrid Whittle likelihood algorithms is O(nlogn + K?2). Using Ing and Wei (2005) Example

2, for consistent order selection K, should be such that K,, ~ n/GK+1)+e

for some £ > 0 (where
K is defined in Assumption 2.3.1). Therefore, we conclude that the computational cost of the new

likelihoods is of the same order as the Whittle likelihood.
4.6 Simulations

To substantiate our theoretical results, we conduct some simulations (further simulations can be
found in Appendix C). To compare different methods, we evaluate six different quasi-likelihoods:
the Gaussian likelihood (equation (1.1)), the Whittle likelihood (equation (2.23)), the boundary
corrected Whittle likelihood (equation (4.8)), the hybrid Whittle likelihood (equation (4.10)), the
tapered Whittle likelihood (p.810 of Dahlhaus (1988)) and the debiased Whittle likelihood (equa-
tion (7) in Sykulski et al. (2019)).

The tapered and hybrid Whittle likelihoods require the use of data tapers. We use a Tukey
taper defined as in (3.2). We set the proportion of tapering at each end of the time series is 0.1, i.e.
d = n/10.

When evaluating the boundary corrected Whittle likelihood and hybrid Whittle likelihood, the
order p is selected with the AIC and ﬁ, is estimated using the Yule-Walker estimator.

Unlike the Whittle, the tapered Whittle and debiased Whittle likelihood, Re .J,, (Wk.n; fp)m
and Re jn(wkvn; fp)m can be negative. To avoid negative values, we apply the threshold-
ing function f(t) = max(t,107%) to Re J;, (wp.n; ﬁ,)m and Re J, (wyn: ﬁ,)m over
all the frequencies. Thresholding induces an additional (small) bias to the new criteria. The propor-

tion of times that Re J~n (Wh ]/‘;)Jn (W) drops below the threshold increases for spectral density
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functions with large peaks and when the spectral density is close to zero. However, at least for the
models that we studied in the simulations, the bias due to the thresholding is negligible.

All simulations are conducted over 1000 replications with sample sizes n = 20, 50, and 300.
In all the tables below and Appendix, the bias of the estimates are reported in the table and the
standard deviation are in parenthesis. The ordering of the performance of the estimators is colour

coded and is based on their squared root of the mean squared error (RMSE).
4.6.1 Estimation with correctly specified models

We first study the AR(1) and MA(1) parameter estimates when the models are correctly speci-
fied. We generate two types of time series models X, and Y, which satisfy the following recur-

sions

AR(1): X, =0X, 1 +e; o¢x(w)=1—0e™

MA(1):  Yi=e +0e1; ¢y(w)=(1+0e7),

where |0| < 1, {e;} are independent, identically distributed Gaussian random variables with mean 0
and variance 1. Note that the Gaussianity of the innovations is not required to obtain the theoretical
properties of the estimations. In Appendix C.1, we include simulations when the innovations
follow a standardized chi-squared distribution with two degrees of freedom. The results are similar
to those with Gaussian innovations. We generate the AR(1) and MA(1) models with parameters
6 = 0.1,0.3,0.5,0.7 and 0.9. For the time series generated by an AR(1) process, we fit an AR(1)
model, similarly, for the time series generated by a MA(1) process we fit a MA(1) model.

For each simulation, we evaluate the six different parameter estimators. The empirical bias
and standard deviation are calculated. Figures 4.2 gives the bias (first row) and the RMSE (second
row) of each estimated parameter 6 for both AR(1) and MA(1) models. We focus on positive 6,

similar results are obtained for negative 6. The results are also summarized in Table 4.1.
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AR(1) model

BIAS: AR(1), Gaussian error, n=20 BIAS: AR(1), Gaussian error, n=50 BIAS: AR(1), Gaussian error, n=300
0.002
0.01 4 4
0.00 - 0.000
~0.01 -7~ ~0.002
2 2
270027 0.004 -
-0.03
~0.10 |~® Gaussian == Hybrid —0.006
7 |-e— whittle Tapered =0.04
—0.12 |~ Boundary - Debiased ~0.05 4 ~0.008 -
T T T T T : T T T T T
0.1 0.3 oés 0.7 0.9 0.1 0.3 095 0.7 0.9 0.1 0.3 065 0.7 0.9

RMSE: AR(1), Gaussian error, n=20

0.22
0.21 0.14 0.06
0.13
0.20
% 0.19 - w 0127 7 %1
E ' E 0.11 - E
0.18 0.10 4 0.04 1
0.17 0.09 -
0.16 0.08 4 0.03
MA (1) model
BIAS: MA(1), Gaussian error, n=20 BIAS: MA(1), Gaussian error, n=50 BIAS: MA(1), Gaussian error, n=300
0.010 +
0.00 0.005 +
" m0.000 b
—0.05
< < i
Z Z0.005

-0.010 4

-0.10 1
—8— Gaussian =x- Hybrid
—e— Whittle Tapered -0.015 1
—i i
_015 l T Bound\ary_v_ D\eblaSEd T T T T T T T _0020 L T T T T T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
0 0 0
RMSE: MA(1), Gaussian error, n=20 RMSE: MA(1), Gaussian error, n=50 RMSE: MA(1), Gaussian error, n=300

X
a1

0.1 0.3 065 0.7 0.9 0.1 0.3 095 0.7 0.9 0.1 0.3 095 0.7 0.9

Figure 4.2: Bias (first row) and the RMSE (second row) of the parameter estimates for the Gaussian
AR(1) models and Gaussian MA(1) models. Length of the time series n = 20(left), 50(middle),
and 300(right).
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0

0.1 0.3 05 0.7 09 | 0.1 03 05 0.7 0.9

AR(D), {e:] ~ N(0,1),n = 20 MA(1), {e:} ~ N(0,1), n = 20
Gaussian | -0.012(022) -0.028(0.21) -0.043(0.19) _-0.066(0.18)  -0.072(0.14) | 0.010(0.28) _ 0.016(0.28) _ 0.025(0.24) _ 0.012(021) _ 0.029(0.17)
Whittle | -0.015(021)  -0.041(0.20)  -0.063(0.19)  -0.095(0.18)  -0.124(0.15) | 0.005(0.29)  0.002(0.28) -0.004(0.24) -0.052(0.23)  -0.152(0.21)
Boundary | -0.015(0.22) -0.037(0.21) -0.054(0.19) -0.079(0.18)  -0.103(0.14) | 0.007(0.30)  0.009(0.29)  0.009(0.24)  -0.022(0.24)  -0.111(0.20)
Hybrid | -0.012(022) -0.030(0.21) -0.049(0.19) -0.072(0.18) -0.095(0.14) | 0.011(0.30)  0.021(0.29)  0.026(0.25) -0.007(0.22)  -0.074(0.17)
Tapered | -0.014(0.22) -0.036(0.21)  -0.063(0.19)  -0.090(0.18) -0.117(0.14) | 0.004(0.29)  0.004(0.28)  -0.006(0.24)  -0.043(0.21)  -0.122(0.18)
Debiased | -0.013(0.22)  -0.033(0.21)  -0.049(0.19)  -0.069(0.19) -0.085(0.16) | 0.005(0.29)  0.013(0.28)  0.021(0.25) -0.005(0.24)  -0.088(0.21)

AR(D), {e:} ~ N(0,1), n = 50 MA(1), {e} ~ N(0,1), n = 50
Gaussian | -0.006(0.14) -0.011(0.14) -0.013(0.12) -0.033(0.11)  -0.030(0.07) | -0.002(0.16) _ 0.008(0.15)  0.017(0.14) _ 0.018(0.12)  0.014(0.08)
Whittle | -0.008(0.14)  -0.016(0.14)  -0.023(0.12)  -0.045(0.11)  -0.049(0.08) | -0.004(0.15)  0.001(0.15)  0.001(0.14)  -0.020(0.13)  -0.067(0.11)
Boundary | -0.007(0.14) -0.012(0.14)  -0.015(0.12)  -0.034(0.11)  -0.036(0.07) | -0.003(0.16) ~ 0.006(0.16) ~ 0.013(0.14)  0.005(0.13)  -0.026(0.09)
Hybrid | -0.005(0.14) -0.011(0.14) -0.015(0.13) -0.033(0.11)  -0.035(0.07) | -0.001(0.16) ~ 0.010(0.16) ~ 0.015(0.14)  0.014(0.12)  -0.010(0.07)

Likelihoods

Tapered | -0.005(0.14) -0.013(0.14) -0.018(0.13)  -0.038(0.11)  -0.039(0.08) 0(0.16)  0.008(0.16)  0.010(0.14)  0.003(0.12)  -0.023(0.08)
Debiased | -0.006(0.14)  -0.011(0.14)  -0.015(0.12)  -0.035(0.11) ~ -0.032(0.08) | -0.002(0.16) ~ 0.009(0.16)  0.019(0.15)  0.017(0.15)  -0.011(0.11)
AR(D), {e:} ~ N(0,1), n = 300 MA(1), {e:} ~ N(0,1), n = 300
Gaussian 0(0.06) -0.002(0.06) -0.001(0.05) -0.004(0.04) _-0.005(0.03) | 0.002(0.06) 0(0.06) _ 0.003(0.05) 0(0.04) _ 0.004(0.03)
Whittle 0(0.06)  -0.003(0.06) -0.003(0.05) -0.007(0.04) -0.008(0.03) | 0.001(0.06) -0.001(0.06) 0(0.05)  -0.007(0.04)  -0.020(0.04)
Boundary 0(0.06)  -0.002(0.06) -0.001(0.05) -0.004(0.04) -0.006(0.03) | 0.002(0.06) 0(0.06)  0.003(0.05) 0(0.04)  -0.002(0.03)
Hybrid 0(0.06)  -0.002(0.06) -0.001(0.05) -0.005(0.04) -0.006(0.03) | 0.002(0.06) 0(0.06)  0.004(0.05)  0.001(0.05)  0.003(0.03)
Tapered 0(0.06)  -0.002(0.06) -0.001(0.05) -0.005(0.05) -0.006(0.03) | 0.002(0.06) 0(0.06)  0.004(0.05)  0.001(0.05)  0.003(0.03)
Debiased 0(0.06)  -0.002(0.06) -0.001(0.05) -0.004(0.04) -0.006(0.03) | 0.002(0.06) 0(0.06)  0.003(0.05) 0(0.05)  0.009(0.05)

Table 4.1: Bias and the standard deviation (in the parentheses) of six different quasi-likelihoods for an AR(1) (left) and MA(1) (right)
model for the standard normal innovations. Length of the time series n = 20, 50, and 300. We use red text to denote the smallest RMSE
and blue text to denote the second smallest RMSE.



For both AR(1) and MA(1) models, we observe a stark difference between the bias of the
Whittle likelihood estimator (blue line) and the other five other methods, which in most cases have
a lower bias. The Gaussian likelihood performs uniformly well for both models and all sample
sizes. Whereas, the tapered Whittle estimator performs very well for the MA(1) model but not
quite as well for the AR(1) model. The debiased Whittle likelihood performs quite well for both
models, especially when the parameter values are small (e.g. & = 0.1,0.3, and 0.5).

The simulations suggest that the boundary corrected and hybrid Whittle likelihoods (referred
from now on as the new likelihoods) are competitive with the benchmark Gaussian likelihood for
both AR(1) and MA (1) models. For the AR(1) model the new likelihoods tend to have the smallest
or second smallest RMSE (over all sample sizes and more so when ¢ is large). A caveat is that
for the AR(1) model the bias of the new likelihoods tends to be a little larger than the bias of
the Gaussian likelihood (especially for the smaller sample sizes). This is interesting, because in
Appendix B.2 we show that if the AR(1) model is correctly specified, the first order bias of the
boundary corrected Whittle likelihood and the Gaussian likelihood are the same (both are —26/n).
The bias of the hybrid Whittle likelihood is slightly large, due to the data taper. However, there are
differences in the second order expansions. Specifically, for the Gaussian likelihood, it is O(n*?’/ 2),
whereas, for the new likelihoods it is O(p®n~%/2). Indeed, the O(p*n~*2) term arises because of
the parameter estimation in the predictive DFT. This term is likely to dominate the O(n~/?2) in
the Gaussian likelihood. Therefore, for small sample sizes, the second order terms can impact the
bias. It is this second order term that may be causing the larger bias seen in the boundary corrected
Whittle likelihood as compared with the Gaussian likelihood.

On the other hand, the bias for the MA (1) model tends to be smaller for the new likelihoods,
including the benchmark Gaussian likelihood. Surprisingly, there appears to be examples where
the new likelihood does better (in terms of RMSE) than the Gaussian likelihood. This happens
when n € {50,300} for 6 = 0.9.

In summary, the new likelihoods perform well compared with the standard methods, including

the benchmark Gaussian likelihood. As expected, for large sample sizes the performance of all the
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estimators improves considerably.
4.6.2 Estimation under misspecification

Next, we turn into our attention to the case that the model is misspecified (which is more real-
istic for real data). As we mentioned above, the estimation of the AR parameters in the predictive
DFT of the new likelihoods leads to an additional error of order O(p*n~3/?). The more complex
the model, the larger p will be, leading to a larger O(p*n~=%/2). To understand the effect this may
have for small sample sizes, in this section we fit a simple model to a relatively complex process.

For the “true” data generating process we use an ARMA (3, 2) Gaussian time series with spec-

tral density fz(w) = |[tz(e™™)[*/|dz(e~*)|?, where AR and MA characteristic polynomials are

¢7(2) = (1 —0.72)(1 — 0.9¢"2)(1 — 0.9¢"2) and z(z) = (1 + 0.5z + 0.5z%).

This spectral density has some interesting characteristics: a pronounced peak, a large amount of
power at the low frequencies, and a sudden drop in power at the higher frequencies. We con-
sider sample sizes n = 20,50 and 300, and fit a model with fewer parameters. Specifically, we
fit two different ARMA models with the same number of unknown parameters. The first is the

ARMA(1,1) model with spectral density

folw) = 1+ ve ™ PIL— g™ 0= (4,9).

The second is the AR(2) model with spectral density

folw) = |1 — ¢re™™ — goe |72 0 = (o1, p2).

Figure 4.3 shows the logarithm of the theoretical ARMA(3,2) spectral density (solid line, f) and
the corresponding log spectral densities of the best fitting ARMA(1,1) (dashed line) and AR(2)
(dotted line) processes for n = 20. The best fitting models are obtained by minimizing the spectral

divergence §7°! = arg mingee I,,(f; fs), where I,,(f, f5) is defined in (4.1) and © is the parameter
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space. The best fitting models for n = 50 and 300 are similar. We observe that neither of the mis-
specified models capture all of the features of the true spectral density. The best fitting ARMA(1,1)
model has a large amount of power at the low frequencies and the power declines for the higher
frequencies. The best fitting AR(2) model peaks around frequency 0.8, but the power at the low
frequencies is small. Overall, the spectral divergence between the true and the best fitting AR(2)

model is smaller than the spectral divergence between the true and the best ARMA(1,1) model.

— True
> 47 - - - Best ARMA(L,1)
‘® Best AR(2)
5 <
S 2 S
© T
g 0
o
i
221 g
-
_4_ T T T T T T \I
00 05 10 15 20 25 3.0

Frequency

Figure 4.3: Plot of log f7(w) and log fyses: (w); Theoretical ARMA(3,2) spectral density (solid),
best fitting ARMA(1,1) spectral density (dashed), and best fitting AR(2) spectral density (dotted)
for n = 20.

For each simulation, we calculate the six different parameter estimators and the spectral diver-
gence. The result of the estimators using the six different quasi-likelihoods is given in Table 4.2
(for ARMAC(1,1)) and Table 4.3 (for AR(2)).

We first discuss the parameter estimates. Comparing the asymptotic bias of the Gaussian likeli-
hood with the boundary corrected Whittle likelihood (see Appendix B.3), the Gaussian likelihood
has an additional bias term of form Zle I (j”’)E[%ﬁTf]Jgn. But there is no guarantee that the inclu-

sion of this term increases or decreases the bias. This is borne out in the simulations, where we
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n  Parameter ‘ Gaussian Whittle Boundary Hybrid Tapered Debiased

¢ 0.031(0.1) -0.095(0.16) -0.023(0.12) -0.006(0.1) -0.080(0.13) 0.187(0.11)
20 ¥ 0.069(0.08) -0.172(0.18)  -0.026(0.14)  0.028(0.1)  -0.068(0.12)  0.093(0.06)
)
)

)

L.(f: fo) | 1.653(0.81) 1.199(1.57)  0.945(0.84) 1.024(0.89) 0.644(0.61) 2.727(0.73

& 0.012(0.07) -0.054(0.09) -0.006(0.07) 0.004(0.07)
50 WP 0.029(0.06) -0.116(0.12) -0.008(0.08) 0.009(0.07)  0.011(0.06)  0.093(0)
L.(f: fo) | 0.354(0.34) 0.457(0.46)  0.292(0.3)  0.235(0.28)  0.225(0.26)  1.202(0.34)

(0.03) (0.03)

(0.03) (0.03)

(0.04)

-0.005(0.07) 0.154(0.11

o 0.002(0.03) -0.014(0.03) 0(0.03) 0.001(0.03 0(0.03) 0.093(0.08)
300 P 0.005(0.03) -0.033(0.05) 0.001(0.03) 0.003(0.03) 0.003(0.03) 0.092(0.01)
L(f; fo) | 0.027(0.05)  0.064(0.09)  0.029(0.05)  0.026(0.04)  0.027(0.05)  0.752(0.22)
Best fitting ARMA(1, 1) coefficients § = (¢, 1)) and spectral divergence:
— 620 = (0.693,0.845), 59 = (0.694,0.857), O3990 = (0.696,0.857).
- Igo(f; fg) = 3773, I50(f; fg) = 3415, I300(f; fg) = 3.388.

Table 4.2: The bias of estimated coefficients for six different estimation methods for the Gaussian
ARMA (3, 2) misspecified case fitting ARMA(1, 1) model. Standard deviations are in the paren-
theses. We use red text to denote the smallest RMSE and blue text to denote the second smallest
RMSE.

observe that overall the Gaussian likelihood or the new likelihoods tend to have a smaller param-
eter bias (there is no clear winner). The tapered likelihood is a close contender, performing very
well for the moderate sample sizes n = 50. Similarly, in terms of the RMSE, again there is no
clear winner between the Gaussian and the new likelihoods.

We next turn our attention to the estimated spectral divergence I,,( f, f5). For the fitted ARMA(1, 1)
model, the estimated spectral divergence of the new likelihood estimators tends to be the smallest
or second smallest in terms of the RMSE (its nearest competitor is the tapered likelihood). On the
other hand, for the AR(2) model the spectral divergence of Gaussian likelihood has the smallest
RMSE for all the sample sizes. The new likelihood comes in second for sample sizes n = 20 and
300.

In the simulations above we select p using the AIC. As mention at the start of the section, this
leads to an additional error of O(p*n~3/2) in the new likelihoods. Thus, if a large p is selected
the error O(p®n~3/?) will be large. In order to understand the impact p has on the estimator, in
Appendix 4.6.3 we compare the the likelihoods constructed using the predictive DFT based on the
AIC with the likelihoods constructed using the predictive DFT based on the best fitting estimated

AR(1) model. We simulate from the ARMA (3, 2) model described above and fit an ARMA(1, 1)
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n Parameter ‘ Gaussian Whittle Boundary Hybrid Tapered Debiased
01 0.028(0.14)  -0.162(0.22) -0.032(0.16) 0.003(0.14) -0.123(0.16)  0.069(0.15)
20 P2 -0.004(0.09)  0.169(0.18)  0.052(0.14)  0.025(0.12)  0.132(0.12) -0.034(0.11)
I.(f; fo) | 0.679(0.72) 1.203(1.46)  0.751(0.85) 0.684(0.8) 0.862(0.97)  0.686(0.81)
01 0.019(0.09)  -0.077(0.12) -0.009(0.09) 0.003(0.09) -0.017(0.09)  0.156(0.15)
50 P2 -0.024(0.06) 0.066(0.1) 0.006(0.07)  -0.003(0.06)  0.013(0.06) -0.121(0.06)
I.(f; fo) | 0.275(0.33)  0.382(0.45)  0.283(0.37)  0.283(0.37)  0.283(0.36) 0.65(0.7)
01 0.004(0.04)  -0.013(0.04) 0(0.04) 0.001(0.04)  0.001(0.04)  0.014(0.04)
300 P2 -0.005(0.02)  0.011(0.03) -0.001(0.02) -0.001(0.03) -0.001(0.03) 0.016(0.04)
I,(f; fo) | 0.049(0.07)  0.053(0.07)  0.049(0.07)  0.053(0.07)  0.054(0.08)  0.058(0.08)

Best fitting AR(2) coefficients 6 = (¢1, ¢2) and spectral divergence:
— 60 = (1.367,—0.841), 050 = (1.364, —0.803), O300 = (1.365, —0.802).
— Izo(f; fo) = 2.902, I5o(f; fo) = 2.937, I300(f; fo) = 2.916.

Table 4.3: The bias of estimated coefficients for six different estimation methods for the Gaussian
ARMA (3, 2) misspecified case fitting AR(2) model. Standard deviations are in the parentheses.
We use red text to denote the smallest RMSE and blue text to denote the second smallest RMSE.

and AR(2) model. As is expected, the bias tends to be a little larger when the order is fixed to
p = 1. But even when fixing p = 1, we do observe an improvement over the Whittle likelihood (in

some cases an improvement over the Gaussian likelihood).

4.6.3 Comparing the new likelihoods constructed with the predictive DFT with AR(1) co-

efficients and AIC order selected AR(p) coefficients

In this section we compare the performance of new likelihoods where the order of the AR
model used in the predictive DFT is determined using the AIC with a fixed choice of order with
the AR model (set to p = 1). We use ARMA(3, 2) model considered in Section 4.6.2 and fit the the
ARMA(1, 1) and AR(2) to the data. We compare the new likelihoods with the Gaussian likelihood

and the Whittle likelihood. The results are given in Tables 4.4 and 4.5.
4.6.4 Alternative methods for estimating the predictive DFT

As pointed out by the referees, using the Yule-Walker estimator to estimate the prediction
coefficients in the predictive DFT may in certain situations be problematic. We discuss the issues
and potential solutions below.

The first issue is that Yule-Walker estimator suffers a finite sample bias, especially when the

spectral density has a root close to the unit circle (see, e.g., Tjgstheim and Paulsen (1983)). One
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¢ Y In(f; /o)

Best 0.694 0.857 3.415
Gaussian 0.01200.077  0.02900.06)  0.354(0.34)
Whittle -0.0540.090 -0.116(0.12) 0.457(0.46)

Boundary(AIC) | -0.0060.079 -0.008(0.08)  0.292(0.3)
Boundary(p=1) | -0.020¢0.08) -0.045(0.09) 0.299(0.29)
Hybrid(AIC) 0.0040.077  0.00900.07)  0.235(0.28)
Hybrid(p=1) 0.0030.077  0.01000.07  0.261(0.3)

Bias

Table 4.4: Best fitting (top row) and the bias of estimated coefficients for six different methods for
the Gaussian ARMA (3, 2) misspecified case fitting ARMA(1, 1) model. Length of the time series
n=50. Standard deviations are in the parentheses. (AIC): an order p is chosen using AIC; (p=1):
an order p is set to 1.

o1 ®2 In(f§ f@)

Best 1.364 -0.803 2.937
Gaussian 0.01900.09y  -0.024(0.06) 0.275(0.33)
Whittle -0.0770.120  0.066¢0.1)  0.382(0.45)

Boundary(AIC) | -0.00900.09 0.0060.07 0.283(0.37)
Boundary(p=1) | -0.0300.1)  0.0320.07 0.295(0.35)
Hybrid(AIC) 0.003¢0.09y -0.006¢0.07) 0.283(0.37)
Hybrid(p=1) -0.0030.09)  0.003¢0.06) 0.276(0.35)

Bias

Table 4.5: Best fitting (top row) and the bias of estimated coefficients for six different methods for
the Gaussian ARMA (3, 2) misspecified case fitting AR(2) model. Length of the time series n=50.
Standard deviations are in the parentheses. (AIC): an order p is chosen using AIC; (p=1): an order
pissetto 1.

remedy to reduce the bias is via data tapering (Dahlhaus (1988) and Zhang (1992)). Therefore,
we define the boundary corrected Whittle likelihood using tapered Yule-Walker (BC-tY W) replace
fp with fp in (4.2) where f;, is a spectral density of AR(p) process where the AR coefficients are
estimated using Yule-Walker with tapered time series. In the simulations we use the Tukey taper
with d = n/10 and select the order p using the AIC.

The second issue is if the underlying time series is complicated in the sense that the underlying
AR representation has multiple roots. Then fitting a large order AR(p) model may result in a loss
of efficiency. As an alternative, we consider a fully nonparametric estimator of jn(w; f) based

on the estimated spectral density function. To do so, we recall from Section 2.4.1 the first order
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approximation of jn(w; f)is joo’n(w; f) where

j ' B n-12z o — n-l2
wn(w; f) = &(w; f) ; 197 (w; f) +e ) ; n1—tPf (W f)
= w(w; f> i Xt Z ¢s+t<f)eilsw + 6 it n+1—t Z ¢s+t sta

where ¢(w; f) = Z;OZO ¥;(f)e" be an MA transfer function. Our goal is to estimate ¢ (w; f)
and {¢;(f)} based on the observed time series. We use the method proposed in Section 2.2. of

Krampe et al. (2018). We first start from the well known Szegd’s identity

log f(-) = log o?[Y(; f)? = log 0? + logp(-; f) + log ¥(:; f).

Next, let o, (f) be the k-th Fourier coefficient of log f, i.e., aj(f) = (2m)~' {7 _log f(A)e **dA.

Then, since log f is real, a_(f) = ax(f). Plug in the expansion of log f to the above identity

gives
w .
log Y (w; f) = E )e e,

Using above identity, we estimator (+; f). let f be a spectral density estimator and let &, be the

estimated k-th Fourier coefficient of log J? Then define

(w; f) = exp (Z @je_”“>

for some large enough M. To estimate the AR(c0) coefficients we use the recursive formula in

equation (2.7) in Krampe et al. (2018),

k .
¢k+1 = = Z (1 - ﬁ) ak+1—j¢j k= 0, 1, ...,M —1

7=0
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where ¢y = —1. Based on this a nonparametric estimator of jn(w; f)is

7 A {b\ f SH ks " —zsw zn+1 w f "
Jn(w; Z Z ¢ Z Xn+1 t Z ¢s+t€

where n A M = min(n, M). In the simulations we estimate f using iospecden function in R
(smoothing with infinite order Flat-top kernel) and set M/=30.

By replacing fn(w; f) with its nonparametric estimator Tn(w; f) in (4.2) leads us to define a
new feasible criterion which we call the boundary corrected Whittle likelihood using nonparamet-
ric estimation (BC-NP).

To access the performance of all the different likelihoods (with different estimates of the pre-

dictive DFT), we generate the AR(8) model

Uy = ¢u(B)es

where {¢;} are i.i.d. normal random variables,

::]%

(1 —rje’ X 2) (1—rje" i 2) —1—2(;5]23 (4.30)
j=1 j=1

r o= (ry,ry,r3,74) = (0.95,0.95,0.95,0.95) and A = (A1, A2, A3, Ay) = (0.5,1,2,2.5). We ob-

serve that corresponding spectral density fy(w) = |dy(e™™)|~2 has pronounced peaks at w =

0.5, 1, 1.5 and 2. For all the simulations below we use n = 100.

For each simulation, we fit AR(8) model, evaluate six likelihoods from the previous sections
plus two likelihoods (BC-tYW and BC-NP), and calculate the parameter estimators. Table 4.6
summarizes the bias and standard derivation of the estimators and the last row is an average /-
distance between the true and estimator scaled with n. The Gaussian likelihood has the smallest
bias and the smallest RMSE. As mentioned in Section 4.6.1, our methods still need to estimate
AR coefficients which has an additional error of order O(p*n~—?/?) and it could potentially increase

the bias compared to the Gaussian likelihood. The boundary corrected Whittle and hybrid Whittle
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have smaller bias than the Whittle, tapered, and debiased Whittle. Especially, the hybrid Whittle

usually has the second smallest RMSE.

Bias

Par. Gaussian Whittle Boundary Hybrid Tapered Debiased BC-tYW BC-NP
$1(0.381) | -0.008(0.08) -0.025(0.09) -0.009(0.08) -0.006(0.09) -0.012(0.09) -0.008(0.09) -0.008(0.08) -0.005(0.12)
$2(-0.294) | 0.002(0.09) 0.024(0.1) 0.005(0.09) 0.002(0.09) 0.010(0.09) 0.003(0.1) 0.003(0.09) 0.002(0.13)
¢3(0.315) | -0.009(0.08) -0.038(0.09) -0.011(0.09) -0.009(0.09) -0.023(0.09) -0.010(0.09) -0.009(0.09) -0.010(0.12)
$4(-0.963) | 0.031(0.09) 0.108(0.1) 0.042(0.09) 0.034(0.09) 0.075(0.09) 0.043(0.1) 0.037(0.09) 0.076(0.12)
¢5(0.285) | -0.015(0.08) -0.049(0.09) -0.020(0.09) -0.016(0.08) -0.029(0.08) -0.017(0.1) -0.018(0.09)  -0.022(0.12)
¢6(-0.240) | 0.010(0.08) 0.040(0.09) 0.014(0.09) 0.010(0.09) 0.024(0.08) 0.012(0.1) 0.011(0.09) 0.022(0.11)
¢7(0.280) | -0.017(0.08) -0.053(0.09) -0.021(0.09) -0.020(0.09) -0.039(0.08)  -0.022(0.09) -0.020(0.09) -0.027(0.1)
¢3(-0.663) | 0.049(0.08) 0.116(0.08) 0.059(0.08) 0.055(0.08) 0.096(0.08) 0.061(0.09) 0.056(0.08) 0.101(0.1)
nll¢ — (%”2 6.466 18.607 8.029 7.085 13.611 8.164 7.470 13.280

Table 4.6: Bias and the standard deviation (in the parenthesis) of eight different quasi-likelihoods
for the Gaussian AR(8) model. Length of time series n=100. True AR coefficients are in the
parenthesis of the first column.

Bear in mind that neither of the two new criteria uses a hybrid method (tapering on the actual
DFT), the BC-tYW significantly reduces the bias than the boundary corrected Whittle and it is
comparable with the hybrid Whittle. This gives some credence to the referee’s claim that the
bias due to the Yule-Walker estimation can be alleviated using tapered Yule-Walker estimation.
Whereas, BC-NP reduces the bias for the first few coefficients but overall, has a larger bias than
the boundary corrected Whittle. Also, the standard deviation of BC-NP is quite large than other
methods. We suspect that the nonparametric estimator J (w; f ) is sensitive to the choice of the
tuning parameters (e.g. bandwidth, kernel function, etc). Moreover, since the true model follows
a finite autoregressive process, other methods (boundary corrected Whittle, BC-tYW, and hybrid
Whittle) have an advantage over the nonparametric method. Therefore, by choosing appropriate
tuning parameters under certain underlying process (e.g., seasonal ARMA model) can improve the

estimators, and this will be investigated in future research.
4.7 Proofs

In this section, we give a proof of Sections 2.4 and 4.
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4.7.1 Proof of Section 2.4

PROOF of Theorem 2.4.2 We use the same notation in the proof of Theorem 2.2.2 in Section 3.6.1.

To prove (2.33) we use that

(j (wl nuf«‘)) A (wnnuft‘))) = Dn(fO)K

Now by using (2.8) together with the above we immediately obtain (2.33).
Finally, we prove (2.34). We use the result n=* Y} ¢p(wi.n) exp(iswg,) = (ES mod n Where

Pp(w) = Zf:_ol ¢re " and ¢, = 0 forp+ 1 < r < n. For 1 <t < p we use have

(F A (£ Du(fo))er = 2%“”“" exp(—isti)

f9 wkn
p—t

o2 -7 . .
= Z Gp(Whyn) Z G4t exp(—ilwy, ) exp(—iswy, )
k=1 =0
p_t 1 n
= ¢ 2 Z gbgﬁﬁ Z Op(Win) exp(—i(€ + $)wg.n)
=0 k=1
—t
2 3 v
o Z ¢Z+t¢(€+s) mod n+
=0

Similarly, for 1 <t < p,

(F2 A ([ )Du( o)) amorir = 2 ﬁﬁ;ﬁ" exp(i(L = 8)n)
_2 n p—t
= T X o) Dbuscexplitin) i1 — )
=0

— o2 Z brvi Z dp(Win) exp(i(0 + 1 — 8)wp.n)
= iz

p—t
-9 e
g Z ¢E+t¢(2+l—s) mod n-
(=0
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PROOF of (2.35) We use that mfg(w)*l = 0 2¢,(w). This gives

Lo(p)—Kp(p)=1+11

where
L3 T )
I = X ¢ € 1SWk
nS/QI;IfQ(wk {% (Wrn) Z Z; 0+ }
0'72 " n p—~t ' |
T n32 2 In(Wh,n) Op(Wh,n) Z Z Qs Ry, ek
TS (=1 5=0
o2& -
— T Z Z s+k 1/2 2 J Wk n)(zsp(wk n) 1kan
=1 s=0 k=1
and
_2 n
- Xn s 7’S+1 wk n. 4.31
n3/22 fa o) Z 41— z2¢e+€ 431)

We first consider 1. Using that ¢, (wyn) = 1 — 337, ;€<% and nTVEIT T (Whn) ek =

Xs mod n» giVeS

I = ——ZXeZZ¢g¢s+e 1/22J Wy )e TR (set gy = —1)

5=05=0
= — 2 Xy Z Z jPs+0X _(s—j) mod n-
5=03=0
The proof of /1 is similar. Altogether this proves the result. ]
PROOF of (2.37) Since
(Do (fo))ks =172 (0e(7)E™5m 4 g1 (7)™ 7 Hkn) (4.32)
7<0

we replace ¢;(7) in the above with the coefficients of the MA and AR infinity expansions; ¢;(7) =
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Yl o Gt+s¥yr|—s. Substituting this into the first term in (4.32) gives

n 2 Z Gr(r)e T = T Z i Drrsthr g€ Tk

7<0 7<0 5=0

0

—1/2 —1sw i(—T—s)w

= n /Z¢t+ knzw‘rse ko
s=0

7<0

0
n_l/Qw(wkm) Z gbt-&-se_w‘%’n

s=0

0”2 d(whn) T L (Whn),

which gives the first term in (2.37). The second term follows similarly. Thus giving the identity in

equation (2.37). O

PROOF of Theorem 2.4.3. We note that the entries of F*A,,(f; ) Do (f) are

(FrAn(fy ") Do ()
= Y [0e(7; F)Grn(s,75 fo) + bni14(73 [)Gan(s, 73 fo)], (4.33)

7<0

where (1 ,, and Gy, are defined as in (2.32). Thus

(Frda(fy ) [Dalf) = D)),
= D [{bun(T5 f) = &1(75 £)} Grn(s. 75 fo)

7<0

+{¢n+1 tn( f) ¢n+1 t(T f)}G2n(3 T, f@)] (434)

To prove Theorem 2.4.3 we bound the above terms.

To simplify notation we only emphasis the coefficients associated with fy and not the coeffi-

cients associated with f. Le. we set ¢ ,,(7; ) = ¢s.,(7), ¢5(7; f) = ¢5(7), ¢5 = ¢ and 5 = 1.
The proof of (2.39) simply follows from the definitions of D,,(f) and D, ,,(f).
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Next we prove (2.40). By using (4.34) we have

HF:An(fa_l)Dn(f) F*A f9 OOn Hl Tl,n+T2,n7

where

0
Z |Gn(T) = Gs(T)|Grn(t, 75 fo)

17=

s
3

|
1=

»
=~
I

M=
RIL

TZ,n = |¢n+1—s,n(7-) - ¢n+1—s(7)||G2,n(t7 T f9)|

sit=11=—00

We focus on 77 ,,, noting that the method for bounding 75 ,, is similar. Exchanging the summands

we have

0 n
Tl,n < Z E‘Gln t T f@ ’Z‘stn ¢s(7—)|

T=—00t=1
To bound >, |¢s.(T) — ¢s(7)| we require the generalized Baxter’s inequality stated in Lemma
A.1.1. Substituting the bound in Lemma A.1.1 into the above (and for a sufficiently large n) we

have

0 n 0
Tl,n<Cf,0 Z Z|G1,n(t77—;f9)’ Z |¢S<T)

T=—00 t=1 s=n-+1

Using that G, (t, 7) = X K1 (T — t + an) we have the bound

Tin < Cjo Z ZZ|K (t — 7 + an)| Z s (T

T=—0w0t=1a€eZ s=n+1
0 0
= KA Y Y e
reZ T=—00 s=n-+1
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Therefore,

Tiw < Cro) [Kpa(n)] D) D) 16s(7)

reZ T=—00 s=n+1

< Cro ) [K ()] Z Z Zmﬂw 5| (use (7 Zm,ﬂwm ;)
rez T=—00 §= n+1j 0

= CﬁoE |Kf 7| 2 s 2 2 | P55 (change limits of 2)
rez s=n+1j=0 T

< Oﬁoz |Kf |Z [ty Z lup,| (change of variables u = s + 7).

reZ u=n+1

Next we use Assumption 2.3.1(1) to give

Tin < Cro ) K |Z|¢z| Z . EalyY

rel s— n+1
C
S fo Z|K ’ZWM 2 |55 g
rels s=n+1
Cfo
< oD ol X 1K (r)
reZ
We note that the inverse covariance K = So fe ”’“’dw _ So | bee |2 iro g, —
UfeQZ ®;(fo)@j+r(fo). Therefore
o0
r=—00

Substituting this into the above yields the bound

Cro
Tiy < ﬁf[(lpnl(( Olelolos,51¢] x-
fo

The same bound holds for 75 ,,. Together the bounds for 77 ,, and 15 ,, give

2C
|E 8y YD) = F2 g VDo), < = s pnac (Dol 316

%]
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Replacing [[4¢fo =[]0 and ||k =[]« this proves (2.40).

To prove (2.41) we recall

1/2 1/2
[XeXuleq = (BIXX|9)Y < (BIX ) (BIX ) < X3,

Therefore,
X FE A7) (Dalf) = Do) X,
<7t D [(Fr A ) (Dalh) = Derin(9), | 1o
s,t=1
nH | Er AL (o) (Dalf) = Do (F))]} 1X .2
2CfO 2 2
< 5w P (D)Yrlolos ol o] x| X i 20,
fo
where the last line follows from the inequality in (2.40). This proves (2.41). O

PROOF of Theorem 2.4.4 For notational simplicity, we omit the parameter dependence on fy. We

first prove (2.43). We observe that

|EX AL () Do fo)], < Z Z (165 (T)Grn(ts )| + |dns1—s ()| Gon(t, 7))

sit=11=—00

= Sin+ Son.

As in the proof of Theorem 2.4.3, we bound each term separately. Using a similar set of bounds to

those used in the proof of Theorem 2.4.3 we have

DK ZIWZZ 651

TEL 5= 1] 0
D () D ] Z |s¢s| < 0—2wagHo\|¢f9|!8|!¢foH1,
reZ V4 s=1 fo

where the bound ), _, | K s (r)] < a;qub 1,|I2 follows from (4.35). Using a similar method we
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obtain the bound S, ,, Jfva,bfe loll®s, 3] ¢1, 1. Altogether the bounds for S ,, and S, ,, give

N _ 2
| Ex A (f5 ) Do (fo) |, < 0—2||¢ngoH¢f9H3H¢fg I,
fo

this proves (2.43).

The proof of (2.44) uses the triangle inequality

ITu(fo)™ = Culfs D], = |Fida(fe ) Dulfo),
| FrA(f3 1) (Du(fo) = Daon(fo))|,

+ HF;L"An(fe_l)Doo,n(f9>H1 )

N

Substituting the bound Theorem 2.4.3 (equation (2.40)) and (2.43) into the above gives (2.44).
The proof of (2.45) uses the bound in (2.44) together with similar arguments to those in the

proof of Theorem 2.4.3, we omit the details. O
4.7.2 Proof of Section 4

PROOQOF of Lemma 4.1.1 The proof is similar to the proof of Theorem 2.4.3, but with some subtle

differences. Rather than bounding the best finite predictors with the best infinite predictors, we
bound the best infinite predictors with the plug-in estimators based on the best fitting AR(p) pa-
rameters. For example, the bounds use the regular Baxter’s inequality rather than the generalized
Baxter’s inequality.

We first prove (4.4). By using the triangular inequality we have

[E: A0 (1) (D f) — Dn(fp»H1

< [ ErA(f ) (Da(f) Iy + 1EXA(fy ) (Dooin(f) = Du(£o))]

M k(fs o) + [FE00 () (Doon( ) = Dulf))]

(4.36)

1’

where the first term of the right hand side of the above follows from (2.40). Now we bound the
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second term on the right hand side of the above. We observe that since the AR(p) process only
uses the first and last p observations for the predictions that D,,(f,) = Don(f,), thus we can write

the second term as

An(fe_l) (Doo,n(f) - Dn(fp)) = F:An(fe_l) (Doo,n(f) - Doo,n(fp)) .

Recall that {a;(p)}’_, are the best fitting AR(p) parameters based on the autocovariance func-

tion associated with the spectral density f. Let ap(w) = 1 — Y7, as(p)e ™, af,(w) = 1 —
Py (p)e™ and a,(w) ™' = Y,(w) = >0 ¥ipe” ™. By using the expression for D . (f)

given in (2.37) we have
[F2 AW (Do) = Decf))],, = UTL+ UL

where

gt (wk,n) . a’fp(wk,n)
ULn - Z f@ wkn ( (b(wk,n) ap(wk,n> >

U;t _ Z i(t—1)wk,n ¢%O+1—j(wk7”) B a;‘f+1_j7p(wk7n) ‘
i f9 wkn QS(Wk,n)

ap (wkm)

We focus on Uf n» and partition it into two terms Uy, Mt = Uy i na T Uf n.2> Where

7ztwk n

Z L p(wrn) fo(wrn)

gt _
U1,n,1 =

(0% (wim) — a5 (wWrn))

and

n

) 1 ek n g (wkn) _ _
Uf::LQ = EZ I (¢(wk,n) l_ap(wk,n) 1)

k=1 fe(wk n)
B l n e—ztu}k na_]p(wk n) B
B n b} fG(Wk,n) (77Z)<wk,n> ibp(wk’n)) .
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We first consider U7, ;. We observe ¢(wyn) ™t = ¥(wpn) = Doy Yee “rn. Substituting this

. it .
into U7, | gives

efi(t+s)wk7n

(wk n>f9(wk n)

n
-1 —z (t+L+s)w
2 Wk n ) k,n

M8

Jit _
U1,n,1 =

(¢j+s - aj+s(p>>

»
Il
o

10
.
e

[
s

(¢j+s - aj+s

@
Il
o

I
RgE

(¢j+s - aj+s

||M ||M S
i 8|\M3

Z —1(t+ 0+ s+rn),
rez

®
Il
o

where K ;-1 (r) = §7r fo(w)te™ dw. Therefore, the absolute sum of the above gives

n 0
Z!Ufm! < 2 20 —auslp !ZW@IZ!K (t + 0+ s+7n)|

j=1 jt—ls—O reZ
_ ZZWW aj.s(p |Z]W\ZZ\K (t+ 0+ s+rn)
j=1s=0 t=1reZ
< (Zz gbj—&-s aj+s )) |‘77Z)fHOZ|Kf;1(T)
=15=0 TEL
< (23\@ as( 1) sl 3 1+ (7)
=1 TEZ

By using (4.35) we have ), _, |ng1 (1)] < g}j(qung |2. Further, by using the regular Baxter in-

equality we have

Do slés —as@)l < (1+Cra) X slosl < (14 Cr)p™ e ()65l
s=1 s=p+1

Substituting these two bounds into > 7,_, |Uf na| yields

- 1+C
> gl < S o)l Lilololon

git=1 fo

Next we consider the second term Uf:fw. Using that ¢(wg,) = Do ¥se” ™ and 1, (wg,) =
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Do Yspe " we have

U.]?t — l 2P
1n2
n

5=0 k=1
0 i 1 i —i(t+s+0)wg n

= (¢s - ¢s, ) a e(p)— —_—
sz=0 g =0 o n k=1 fe(wk,n)
0 o0

= Z (Vs — Vs p) Z ajie(p) ng—l(t + s+ 0+ rn).
5=0 £=0 reZ

Taking the absolute sum of the above gives

2 |Ufn2| < ZZ ws,p|2‘aj+£ |Z|K (t+ s+ L+ rn)
Jt=1 Jit=1s5=0 £=0 reZ
= Z — sl Z Z |aj1e(p)] Z |K;-1(r)|  (apply the bound (4.35))
s=0 7=14=0 r€Z
< ofGQHbea”o (Z s — @/)sp|> Z lua, (p
s=0
< O-f@2H¢f9|| ”ale Z W}s ¢sp|

Next we bound |a, |, and 3377 [ths — Y| Let dp(w) = 1= 3F_, ¢;e7 (the truncated AR(c0)

process). Then by applying Baxter’s inequality, it is straightforward to show that
laply < dplls + lap = dpll < (Cra + 1)1 (4.37)

To bound Y7 [ts — 15,,| we use the inequality in Kreiss et al. (2011), page 2126

< 012 21165 — a4,
2,19 =¥l <
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Applying Baxter’s inequality to the numerator of the above gives

[4513(Cro + Dopurc(Hlslx 138
Z'% Yool < TLRA— 05Ty - lap — 9l) 39

Substituting the bound in (4.37) and (4.38) into 37 ,_, |Uf”;72| gives

ZWJ < o+ 1 [slilonhilosliclonlimts)
= Ve 1= [¢slofla, — 6o

Altogether, for sufficiently large p, where |[1¢o - [|a, — ¢]o < 1/2 we have

+C
it < G clorlelvlolions

t,j=1 fo
2(C 1
2 o Rt ions )
C 2(1+C
e onDlolslonlierto (1+ 252 1w olo

The same bound holds for >/, |U§:fl\, thus using (4.36) and p,, k (f) < pp.x(f) gives

|3 An(f5) (Doonf) = Dulfo))],

< ppic(D A, ) ((C;j;i D At U rwmm) |

Substituting the above into (4.36) gives (4.4).

The proof of (4.5) is similar to the proof of Theorem 2.4.3, we omit the details. O

PROOF of Lemma 4.3.1 We first prove the result in the case that s = 0 and for an() In this

case
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Thus

sup |I//[\/p7n(9) — WL(0)] < sup fo(w
) 0.0

§I>—‘

i‘[j wkn:fp jn(“k,n?f)] Jn(wk,n) .

By using Theorem 2.3.4 (under Assumption 4.2.2) we have

[jn(uﬁ f;) - jn(WQ f)] Jn( ) A( ) + O ( 2;?;2)

where A(w) is defined in Theorem 2.3.4, O, (p®n~%?) bound is uniform all frequencies, sup,, E[A(w)] =

O((np®™=1)~ + p*/n?) and sup,, var[A(w)] = O(p*/n?). Thus using this we have

. 7P
sup |[W,n(0) — W, (0)| = seupfg( - ><—2|A Wen)| + Op ( 3/2)

6e©

2 3 - 2
p p p
- OP(Z+W>:OP<Z)'

This proves the result for s = 0. A similar argument applies for the derivatives of I//[\/pm(ﬁ) (together

with Assumption 4.2.1(iii)) and H,,(6), we omit the details. ]

PROOF of Lemma 4.3.2 We start with the infeasible criterion W,,(0). Let E[W,,(0)] = W,(0).

We first show the uniformly convergence of W,,(0), i.e.,

sup | W, (6) = W, (8)] 5 0. (4.39)
0e®

Using Das et al. (2021), Theorem A.1 and the classical result var[ K, (8)] = O(n™!) we have

var[W,(0)] = Var< 12‘]" W f nn)( n))

k=1

Z var[J, (wr.n; f )Jn(wk,n)]/fe(wk,n)Q

k=1

n?) =0(n"").

2
< 2var —i— —
n
O

< 2var[K,(0)] +
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Therefore, by Markov’s inequality, W, () = W,.(0) for each § € ©. To show a uniform con-
vergence, since © is compact, it is enough to show that {I/,,(0);6 € ©} is equicontinuous in

probability. For arbitrary 6,6, € O,

W (1) = W(ba) = Zfel Wem) = Fa @hn)) T Wk ) T (k)

(log fo, (Wkn) — log fo,(wikn)) = 11(01,02) + I5(01, 02).

+

3

I
EMﬁ i

To (uniformly) bound I, (6;, f2), we use the mean value theorem

I(01,60) = n~ Z o (@en) = fo, (W) Jo(@rni )T (i)
nt >V,

Fo M@k ly_g, (01 = 02) T (Wi )T (@)

K (B (6, — )

where K, (6) = n=' S0 T (Wkn ) In(wkn)Vofy  (wWen)ly_g, and 1, ..., 0, are convex combi-

nations of ¢, and 6. It is clear that

n

~n(wk,n; f)Jn(wk,n) = Kn

e, @)l < sup Vol )

k=1

Thus

|I,(01,60s)| < K,|01 — 021. (4.40)

We need to show that K,, = O,(1) (it is enough to show that sup,, E[K,,| < o). To show this, we
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use the classical results on DFT

E JNn(wk,n; f)Jn(wk,n) < E|Jn(wk,n)|2 + E j\n(wk,n; f)(]n(wk,n)
< fwrn) + var(Jy (Wi )Y 2var(J, (win)) 2

< flwrn)(1+0(n™).
Using above and Assumption 4.2.1(iii-a) gives

1 n
supE[K,] < s@up IVofy ()]l - sup - Z fwrn)(1+0(n™)) < 0.
n W n b1

Therefore, K, = O,(1) and from (4.40), I;(6,, >) is equicontinuous in probability. Using similar
argument, we can show that I5(61, 61) is equicontinous in probability and thus, {IV,,(0);6 € O}
is equicontinous in probability. This imples supgeg |Wa(60) — W,(8)| > 0, thus we have shown

(4.39).

Next, let o) — arg mingeg W, (0). Since 6,, = arg mingeg W, (0) we have
Wi (0) = Wi (68) < W (08)) = Wa(6) < Wa(8,) — Wa(6,).
Thus
Wa(607) = Wa(62)] < sup [Wn(0) = Wa(0)] 5 0.

If 0,, uniquely minimises 7,(f, fy), then by using the above we have that |§7(1W) — O0u)1 .
However, W,,(0) is an infeasible criterion. To show consistency we need to obtain a uniform

bound on the feasible criterion W, , (6). That is

sup | W, (6) — Wi (6)] 5 0. (4.41)
0
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Now by using the triangular inequality, together with (4.39) and Lemma 4.3.1, (4.41) immediately
follows. Therefore, by using the same arguments those given above we have \@(lw) — Onl1 5o,
which is the desired result.

By the same set of arguments we have |0 -0, |1 — 0. O

PROOF of Lemma 4.3.3 By using Theorem 3.2.1 we have for : = 1 and 2

AW, (6) AW, (0) P 1
g e g et O Gt e )

this immediately gives (4.20). Let 0,, denote a convex combination of 6,, and é\,(lw) (note that §,SW)

dBW,.(0)

Ja5~ at the (consistent) estimator 0, a slightly

is a consistent estimator of 8,,). To evaluate

different approach is required (due to the additional random parameter 6,,). By using triangular

inequality and Lemma 4.3.1 we have

BW,..(0) AW, (6)
R e e
BW, (0 BW,, (0
< dg:g( )Jezén d93< )J9:§n
1 | & . . Al AT
+E}; % [fgn(wk,n) - f9n<wk,n) ] n(wk,naf) n(wk,n)
:O(pj)+lzn:d_3[f(k)_ — fon (Wrn) ] (Wi [)In(Win)
A= W & "

For the second term in the above, we apply the mean value theorem to Cg% fy ! to give

dS

%(fgf — fo)] <

note that to bound the fourth derivation we require Assumption 4.2.1(iii) for k = 4. Substituting
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this into the previous inequality gives

BW,..(0) dBW,(6)

deg J9=§n - WJ9=07L
[ /5, (@) ™" = fo (W) ']

SO
-0, (L) + 10 - 0,0,00).

Nn (wk,n; f) Jn (wk,n)

The above proves (4.21).
Using (4.20) and (4.21) we now obtain the first and second order expansions in (4.22) and

(4.23). In order to prove (4.22), we will show that

~W 1 p?

~w

AWy, (6:)
f Mool D) ahout 6, and assuming that 6,

)
T lies

if p?/n — 0 we make a second order expansion o

inside the parameter space we have

0 AW, (08) _ AWy a(60) L™ g )d2Wp,n(9n) 1~ @ g )2d3wp7n(§n)
o) do, " " de? 2 " do?

where 0,, is a convex combination of 6,, and éﬁW) . Now by using (4.20) and (4.21) we can replace

in the above V/[Zw (0,,) and its derivatives with W,,(6,,) and its derivatives. Therefore,

dW,(6,)
o,

p3 1 ~ N p2
- 0, (W + npK1> + (0 —6,)%0, (Z) + 100 — 0,P0,(1).  (4.42)

N 2
L@ — gy TWVnlO)

1 W, (6,,)
62 2

W) _ 0,)>

133



Rearranging the above gives

6 —6,)?

-6 - -|

p? 1 S ) »? ) ,
+0p nin TR + (037 =00, ( = ) + 100" = 0u°0p(1)4.43)

PWo(0) ] dWa(0n) L[ dPWa(0,)] " EWa(6,)
d6? a9, 2| de2 63

Next we obtain a bound for dmfi” () (to substitute into the above). Since ]E[dW”—(G”)] = O(n~ %)

D] = 0,(n~') we have 2llel — O, (n=1/2). Substituting

(from equation (4.15)) and var| B

this into (4.43) gives

de?

n

(9£LW) _ gn) — 1 ld Wn(en)] d Wn(‘gn) (Q(W) _ 9n>2

~, 2 ~,
+0,(n"2) + 0, < po, ) + (0 —0,)%0, (p—> + 10 — 9, PO,(1).
n

32 1 ppk-1

-1
Using that [dQVZgEEQ”)] dgvggéen) = O,(1) and substituting this into the above gives

3

-0 = 0, (s Lt ) £ @ = 0,70, (£ 41) 007 - 0,00,
n n D n P n n n p :

nl/2 " p32 T ppkK-1

(4.44)

Thus, from the above and the consistency result in Lemma 4.3.2 (\@(LW) — 0] = 0,(1)) we have

aw gy o, (L 2 4.45
(00 = 0) =Op | 5+ 55 |- (4.45)

We use the above bound to obtain an exact expression for the dominating rate O, (n~/2). Returning

to equation (4.43) and substituting this bound into the quadratic term in (4.43) gives

~ BPEW,(0,) ] dW,(6,) 1 P 1
(W) . — n\n n\n - o
(6), 6,) { 12 ] a0, + O, (n + st npKl) :
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Using that %2(") =E <%) + O,(n~Y2) and under Assumption 4.2.2(iii) we have

@W)—Gn)=—lE[wH_ldW”—(9”)+Op<%+£+ ! )

do? db, n3?  ppK-1

This proves (4.22).

To prove (4.23) we return to (4.42). By substituting (4.45) into (4.42) we have

dW,.(9) ~W d*W,,(0) L, ~w o AW, (6) P’ 1
ap oo+ O =)= oo O = 0u) g o0, = O \ S+ )
This proves (4.23). L]

PROOF of Theorem 4.3.1 We first prove the result for the one parameter case when p > 1. By

using (4.23) for the feasible estimator g(nw)

= arg min Wpﬁn(ﬁ) we have

N0 0 T L g, T, o, (2

w) _ g _ o
oo, + (677 = On) =gz Jo=o. + 567 = 00)"—55 n3/2+npK—1>‘

(W)

Whereas for the infeasible estimator ¢,,” © = arg min ﬁ\/pm(@) we have

AW, (0)
df

1
9 n
Tgp 100, + 5007 = 0n) =00, = Op (W) :

lo—o, + (B —0,)

Taking differences for the two expansions above we have

~ d*W,.(0) 1 ~ ~ ~ ~ d*W,.(0)
W) _ gw 2wy _ gw) [ ") 0y + (W) _ g, ] @ Walb),
(0, W ——= 77 Jo=0, + 50 w0 )| (O )+ (0, )| lo=6,,
3
p 1
=0y ( 3z T npK—l) :
Now replacing d2W"(0)J9:9n with its expectation and using that |§§LW) — 0, = 0,(1) and \0 W) _

do?

.| = 0,(1) we have

N 2 ~ ~ 3
O = 80 (S, ) + 0@ -0 = 0, (54 ).

162 n32 " ppK-1
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Since E (T(mjgzgn) is greater than 0, the above implies

@~y — 0 o1
n n - Yp n3/2 npK—l :

Now we prove the result for the case p = 0. If p = 0, then me(e) = K,(0) (the Whittle
likelihood). Let
0'%) — argmin K,,(f) and g,gw) = arg min W,,(6).

n

Our aim is to show that \@(LK) - gflw)\ = O,(n1). Note that W,,(0) = K,,(0) + C,,(), where

lij Wkn)
n k=1 f9 wkn) .

Using a Taylor expansion, similar to the above, we have

dKn(e)nggn + (GT(IK) _ en)dK—Tl(e)JG:Hn + 1(67(11() _ en)Qd Kn(Q)JHZGn _ Op (L)

do db? 2 do3 n3/2
and
AW, (6) N P, (6) 1~ W, (6) 1
a5 do=on T (65" — On) 2 lo-0. + 5(9,(1% = 0n)' 5 lo=0. = Op | =75 ) -

Taking differences of the two expansions

an(e) K Nw dZKn(Q) (W dQC (9)
de J9 On + (82 ) - 01(1 )) d02 J9:9n (9 ) - 0 ) d02 J9:9n
Ly s[4 ~ K, (9)
—(pE) _ g(W) (K) _ w) _ n
5O =0 | B = 0,) + B = 00) | =2 1o,
1 ~ a3C,(0 1
—5 @0 = 0,22, - 0, <n—/) | (340
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To bound the above we use that
09 —,| = O0,(n~"?) and |§V) — 6,,| = O,(n""/?).

In addition by using a proof analogous to the proves of Theorem 2.4.4, equation (2.45) we have

S

fo(wrn)t=0,(n"") for 0<s<3.

d*Ch( 1 & —d
d@s = ﬁ g Wk n7 Wk n) dos

Substituting the above bounds into (4.46) gives

2K, (0) 1~

d6? Jo=s. + 5 (04 =

puE) _ gw)

n

D

G0, (n~1/?) = —dC”(e)Jeze +0, (L) .

Since [%nggn]_l = O,(1) we have

thus giving the desired rate.

For the multiparameter case we use (4.24) and the same argument to give

O3W,(6) |
00,,00,,00,"°=""

S1,n

1 & oo . _
5 20 O = BN @) = 0u0) + (O = TN @) = 0,,.0) | <

. 2 . . . .
Replacing aaygée)nggn with its expectation gives

3
— . ~ p 1
(O — 0NYVE [VaWo(0)]o=a, | + |63 — 0] 10,(1) = O, (ng/z + ) '

npK—l
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Thus under the assumption that E [V2W,,(0)|¢—, | is invertible we have

V) W, = 0 ﬁJr Ly
n n p n3/2 npK—l

By a similar argument we have

~ ~ 3 1
B -8 = 0, (L4 )

n32 " ppK-1

The case when p = 0 is analogous to the uniparameter case and we omit the details. This concludes

the proof. ]
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5. CONCLUDING REMARKS AND DISCUSSION *

In this dissertation, we have proposed a new approach to overcome the notorious bias issue
of spectral analysis. The key idea behind the method is to obtaining a linear transform, denotes
jn(-; f), that is biorthogonal to the regular DFT. We named it the complete DFT. The complete
DFT is an extension of the regular DFT by predicting the time series in the unobserved domain on
the top of the original (observed) time series. Unlike other existing methods, the complete DFT,
together with the regular DFT, fully decorrelates the second order stationary time series (equation
(2.4)). Therefore, we obtain an unbiased estimator of the spectral density I,,(-; f) = Jn(-; £)Ju(-)
, so called the complete periodogram. For finite order autoregressive models, the complete pe-
riodogram has a finite term analytic expression in terms of the corresponding autoregressive co-
efficients. This observation shows that estimating the complete periodogram of the finite order
autoregressive models boils down to estimate the autoregressive coefficients. In general processes,
we have provided steps of approximation to estimate the complete periodogram using data. Both
theoretically and empirically, the estimated complete DFT outperforms the ordinary periodogram.
It is interesting to note that in simulations, the complete periodogram tends to have a better local
and global performance than the tapered periodogram especially when the spectral density has a
large peak.

Using the notion of the complete DFT, we have derived an exact expression for the differences
L, (fo) ™t = Cu(f, ') and L,,(0) — K,,(0). These expressions are simple, with an intuitive interpre-
tation, in terms of predicting outside the boundary of observation. We have used these expansions
and approximations to define two new spectral divergence criteria (in the frequency domain). Our
simulations show that both new estimators (termed the boundary corrected and hybrid Whittle)
tend to outperform the Whittle likelihood. Intriguingly, the hybrid Whittle likelihood tends to out-

perform the boundary corrected Whittle likelihood. Currently, we have no theoretical justification

“Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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for this and one future aim is to investigate these differences.

We believe that it is possible to use a similar construction to obtain expressions for the complete
DFT and the difference between the Gaussian likelihood and the Whittle likelihood of a multivari-
ate time series. The construction we use in this dissertation (for an univariate case) relies on the
Wold-type AR(o0) and MA(c0) representation of a time series and makes heavy use of the com-
mutativity property of these expansions. In the multivariate situation, we lose the commutativity
property. So the expressions in the past and future predictions are asymmetric. To prove analogous
results to those in this dissertation, we will require the Baxter-type inequalities for the multivariate
framework. The bounds derived in Cheng and Pourahmadi (1993) and Inoue et al. (2018) may be
useful in this context.

An issue in the spatial grid framework is more complicated. This is because the edge effects are
accumulated as the dimension increases. Guyon (1982) Section 3.3, showed that the bias caused by
using the classical periodogram in the Whittle likelihood is not asymptotically negligible. There-
fore, some preprocessors on the time series are necessary. Examples are Guyon (1982) (edge-
correction) and Dahlhaus and Kiinsch (1987) (data taper). Moreover, the AR(p) approximations
for spatial random fields and corresponding Baxter’s inequality described in Meyer et al. (2017)
may be useful to obtain the bound between the feasible and infeasible estimator (if possible).

Lastly, the emphasis of this dissertation is on short memory time series. But we conclude by
briefly discussing extensions to long memory time series. The fundamental feature (in the time
domain) that distinguishes a short memory time series from a long memory time series is that the
autocovariance function of a long memory time series is not absolutely summable. Proof of results
heavily replies on interchanging the order of summation which is guaranteed by the absolutely
summable autocovariances when the time series has a short memory. Therefore, for long memory
time series, a more careful argument on the interchangeability of summation is required. Series
expansion of finite predictor coefficients and Baxter’s inequality for long memory time series in
Inoue and Kasahara (2006) may be a useful tool to tackle this problem. Moreover, in the frequency

domain, the spectral density of a long memory time series is not bounded on the origin. Therefore,
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the frequency domain representation of the Gaussian likelihood in Theorem 2.4.1 is not well-
defined at £ = n. However, in our unpublished manuscript Subba Rao and Yang (2021b), we
show that the complete DFT is well-defined in a much larger class of second order stationary time
series which includes the long memory time series in certain setting. Also, in Subba Rao and Yang
(2021a) Appendix A.1, we showed a version of Theorem 2.4.1 for a long memory time series. We
state the result without proof. Suppose that X gf) =X, — X1,, where X = n! Zle X;is a

demeaned time series. Then,

1 = > 1l 7O o T (o)
_iéc)lrn(fe)fligc) _ - |Jn(wk7n)| 4+ = Z J (wk?, ) fG)Jn(Wk, )
n

n n = folwin) Pt fo(wrn) 7

where J\” (+; fa) denotes the predictive DFT of the demeaned time series X gf). The results are not
conclusive, but they do suggest that the new likelihoods, in some settings, can be used to reduce
the bias for long memory parameter estimators.

In summary, a new spectral method using the complete DFT may be of value in future research.
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APPENDIX A

THE BAXTER’S INEQUALITY *

A.1 An extension of Baxter’s inequality

Let {X,} be a second order stationary time series with absolutely summable autocovariance

and spectral density f. We can represent f as f(w) = ¥(w)Y(w) = 1/ <gb(w)m> where

pw)=1- Z pse” " and Y(w) = 1 + Z Pee
s=1 s=1

Note that {¢s} and {1} are the corresponding AR(c0) and MA(o0) coefficients respectively and
(w) = ¢(w)~t. To simplify notation we have ignored the variance of the innovation.
Many of the results in this disseration hinge on a generalization of Baxter’s inequality which

we summarize below.

Lemma A.1.1 (Extended Baxter’s inequality). Suppose f(-) is a spectral density function which
satisfies Assumption 2.3.1. Let ¢(-) and ¢(-) AR and MA characteristic function respectively.
Let ¢y (w) = Z;D:p-i-l pse” . Further, let {¢s,(T)} denote the coefficients in the best linear
predictor of X, given X, = {X;}_, and {¢(7)} the corresponding the coefficients in the best

linear predictor of X, given X, = {X;};2,, where 7 < 0. Suppose p is large enough such that

”Cb;cHK HinK < € < 1. Then for all n > p we have

2,25+ 55) [gon(r) = 6T < Cric Y, (25 +55) |ou(7)], (A.D)
s=1 s=n+1

where C'y jc = % Hng?( Hzﬂ”i and ¢s(7) = 377 bsi iU (we set Yo = Land 1p; = 0 for j < 0).

Before we give a proof, we define an appropriate norm on the subspace of L5 [0, 27].

“Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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Definition A.1.1 (Norm on the subspace of L [0, 27]). Suppose the sequence of positive weights
{v(k)}rez satisfies 2 conditions: (1) v(n) is even, i.e., v(—n) = v(n) foralln = 0; (2) v(n+m) <
v(n)v(m) for all n,m € Z.

Given {v(k)} satisfies 2 conditions above, define a subspace A, of Ly|0, 27| by

Ay = {f € Lo[0,27] - X" (k)| fi] < o0}

keZ

where, () = S,y fue'™. We define anorm | f| on A, by |f] = Yy vk fi

to check this is a valid norm.

, then it is easy

Remark A.1.1 (Properties of || - |). Suppose the sequence {v(k)} ez satisfies 2 conditions in Defi-

nition A.1.1, and define the norm | - | with respect to {v(k)}. Then, beside the triangle inequality,

fl=1f

for all norms but is an important component of the (extended) Baxter’s proof), i.e., (Ay, | - |) is a

this norm also satisfies ||1| = v(0) < 1, ,and ||fg| < | fllllg| (which does not hold

Banach algebra with involution operator. The proof for the multiplicative inequality follows from

the fact that (fg)r, = Y., fr9k—r, where fi, and gy, are kth Fourier coefficient of f and g. Thus

gl < o) Y fgs

keZ reZ
< Dok =r) Y, frger| < D v(r)otk =) fillge—r] = [ £llg]-
keZ reZ k,reZ

Examples of weights include v(r) = (29 + |r|?) or v(r) = (1 + |r|)? for some ¢ = 0. In these
two examples, when q = K, under Assumption 2.3.1, (w), ¢(w) € A, where Y(w) = 1 +
Z;O:l Yie™ 9 and p(w) = 1 — Z;Ozl pje” (see Kreiss et al. (2011)).

PROOF. The proof below follows closely the proof Baxter (1962, 1963). Let {¢,,(7)}._, denote

the the coefficients of the best linear predictor of X; . (for 7 > 0) given {Xs}iill,

p
E [(Xt+T = ¢57p(¢)Xt_s) Xt_k] =0fork=1,...,p. (A.2)

s=1
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and {¢4(7)} denote the coefficients of the best linear predictor of X;,, given the infinite past

{(XJls
E [(Xt+T = ¢S(T)Xt_s> Xt_k] =0fork=1,2,... (A.3)
s=1

We use the same proof as Baxter, which is based on rewriting the normal equations in (A.2)

within the frequency domain to yield

1 ([ P . ,
o (e”w - Z qﬁsvp(T)e_lsw) fw)e ™ dw =0, fork=1,...,p
T Jo

s=1

Similarly, using the infinite past to do prediction yields the normal equations

1 (% .
o | ( Z bs(T —W> flw)e ™ dw =0, fork > 1
v

Thus taking differences of the above two equations for £ = 1, ..., p gives

W(Z [600(7) — 65(7)] € ) Fw)e

< D, (T ‘“‘“) flwe™dw 1<k<p. (A.4)

s=p+1

These p-equations give rise to Baxter’s Weiner-Hopf equations and allow one to find a bound

for 337, |fsp(7) — ¢s(7)| in terms of 317 |¢(7)|. Interpreting the above, we have two dif-

ferent functions (3.7_, [¢s,(7) — ¢s(7)] e7**“) f(w) and (ZS o1 Ps(T)e ﬂsw) f(w) whose first p

Fourier coefficients are the same.

Define the polynomials

p
= Y [6ap(T) = ds(r)] e and  gy(w ngpe (A.5)

s=1

where

Gp = (27T)_lf ' ( 2 ng(T)e_iS“) flw)e ™ dw. (A.6)

0 s=p+1
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For the general norm | - | defined in Definition A.1.1, will show that for a sufficiently large p,
|hy| < Cfl gy, where the constant C is a function of the spectral density (that we will derive).

The Fourier expansion of h,, f is

a0
~ ikw
25 Gt

k=—00

where gi, = (27) 7! o o hp(w) f(w)e~*dw. Then, by (A.4) for 1 < k < p, Grp = grp (Where g,
is defined in (A.6)). Thus

hp(W) f(w) = G (W) + gp(w) + G2 (W) (A7)
where
O .
Z Jrpe™  and G (w Z T pe™
k=—0 s=p+1

Dividing by f~! = ¢¢ and taking the || - |-norm we have

Il < 7 G2] + 17 gl + 17 Gl
|7 G+ 1 gl + 7GRl

[S116G2ol + 17 gl + 6] [6G5 - (A8)

First we obtain bounds for |¢G° || and |¢G, | in terms of |g,|. We will show that for a suffi-

p+1

ciently large p

H¢G ooH H(bH ng” +e€ “¢Gp+1“
[eGral <[4l gl + e 0G| -

The bound for these terms hinges on the Fourier coefficients of a function being unique, which

allows us to compare coefficients across functions. Some comments are in order that will help in
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the bounding of the above. We recall that f(w)™' = ¢(w)¢(w), where

w):1_2¢86—i5w m=1—2¢36i8w.
s=1 s=1

Thus ¢(w)G? ,(w) and ¢(w)GY, (w) have Fourier expansions with only less than the first and
greater than the pth frequencies respectively. This observation gives the important insight into the

proof. Suppose b(w) = >\~ _, bje”, we will make the use of the notation {b(w)} = 32, b

ji=—00

and {b(w)}_ = 7, b, thus b(w) = {b(w)}- + {b(w)}.-
We now return to (A.7) using that f = ¢(w)t(w) we multiply (A.7) by ) (w) ™' = ¢(w) to give

hp(wW)(w) = H(W)GL (W) + P(w)gp(w) + d(w) Gy (W). (A.9)

Rearranging the above gives

—0(W)GL (W) = —hy(W)P(w) + d(w)g,(w) + S(w)Griy ().

We recall that h,(w)t)(w) only contain positive frequencies, whereas ¢(w)G°  (w) only contains

non-positive frequencies. Based on these observations we have

—p(w)G? (W)
= {-0(W)G, (W)} = {¢(w)gp(w)}_ + {D(w)Gry (W)} _. (A.10)

We further observe that G, ; only contains non-zero coefficients for positive frequencies of p+1
and greater, thus only the coefficients of ¢(w) with frequencies less or equal to —(p + 1) will give

non-positive frequencies when multiplied with G, ;. Therefore

—p(w)G (W) = {p(w)gp(w)}_ + {& (WGP (W)},

where ¢}, | (w) = Zf:p L1 s, Evaluating the norm of the above (using both the triangle and
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the multiplicative inequality) we have

HgbGOOOH [l ngll + Hqs;OHG;OHH

< ol lgpl + [épia| [0] [¢Grea]  since v(w)o(v) = 1.

This gives a bound for |¢G° | in terms of ||g, || and HgbG ’.1|- Next we obtain a similar bound for

|6G2 | in terms of | g,| and |¢G°

o -

Again using (A.7), f(w) = ¥(w)1(w), but this time multiplying (A.7) by w(w)_1 = p(w), we

have

hy (@) (w) = G(W) G (W) + d(w)gp(w) + S(W) G ().

Rearranging the above gives

P(W)Gr (W) = hy(W)p(w) — G(W) G (w) — G(w)gp(w).

We observe that ¢(w)G)’,,(w) contains frequencies greater than p whereas h,(w)y)(w) only con-
tains frequencies less or equal to the order p (since h, is a polynomial up to order p). Therefore

multiply e~%”* on both side and take {}, gives

e P H(w)G (W)
. {e_iprG(loo(w)}+ - {e_iprgp(w)}Jr , (A.11)

By the similar technique from the previous, it is easy to show

{ePWIG W)} = { ™o w)] - (A12)
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Multiplying e and evaluating the | - |-norm of the above yields the inequality

[9G7al < (gl + 951G |

< [ lgsll + [ G5l 101 |G -

We note that [¢,, | = [¢%,,|. For ¢ € A, (see Definition A.1.1 and Remark A.1.1), [¢,] =

> (s)|¢s| — 0as p — oo, for a large enough p,

s=pt1 ¥ V(W) - [¢5y1] < 1. Suppose that p is such

that ||¢%,, (w)|| |#(w)| < € < 1, then we have the desired bounds

p+1

[6G%[ < 19l lgsll + € 0G|

[oG7al < ol gl + e oG]

The above implies that | ¢G% | + ¢G5, | < 2(1—¢)7" @] |g,]. Substituting the above in (A.8),
and using that |¢| > 1 (since ¢ =1 — >, pse™, |¢|| = ||1| = v(0) = 1) we have

281 lgol | ;-
i P I

< (M=o 2lel + Q=) 9]°) gl <

Ihl <

3—¢
1_

Thus based on the above we have

3—

€
hy| <
Il < 2=

. (A.13)

Finally, we obtain a bound for |g,| in terms of Zf:p +1105(7)|. We define an extended version of
the function g,(w). Let ,(w) = >, ., gk pe™ where g;, is as in (A.5). By definition, g,(w) =
(Zzozp 1 Ps (T)e*"s“> f(w) and the Fourier coefficients of g, (w) are contained within g,(w), which
implies

9 < 1G] = 6531 (M) f]| < |pia (DL < (05 ] 112 (A.14)
where ¢, (7)(w) = 27,1 @s(T)e”**“. Finally, substituting (A.14) into (A.13), implies that if p
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is large enough such that ng5p+1H || < e <1, then

72 <

p (7]

Thus, if the weights in the norm are v(m) = (25 + m®) (it is well-defined weights, see Remark

A.1.1) we have

D125+ 5") sy (1) — 04(7)]

s=1
0

(25 45 |g(r)] . (A.15)

s=p+1

A.2 Baxter’s inequality on the derivatives of the coefficients

Our aim is to obtain a Baxter-type inequality for the derivatives of the linear predictors. These
bounds will be used when obtaining expression for the bias of the Gaussian and Whittlelikelihoods.
However, they may also be of independent interest. It is interesting to note that the following
result can be used to show that the Gaussian and Whittle likelihood estimators are asymptotically
equivalent in the sense that \/n|0\" — 0], 5 0asn — .

The proof of the result is based on the novel proof strategy developed in Theorem 3.2 of Meyer
et al. (2017) (for spatial processes). We require the following definitions. Define the two n-

dimension vectors

e (1:f0) = (P1alT5 fo)s -, nn(Ts fo))"  (best linear finite future predictor) (A.16)

& (Tifo) = (01(75 o), .. On(T; fo))"  (truncated best linear infinite future predictor).

Lemma A.2.1. Let 0 be a d-dimension vector. Let {cy(r)}, {¢;(fo)} and {1;(fo)} denote the

autocovariances, AR(o0), and MA(0) coefficients corresponding to the spectral density fy. For all
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0 € © and for 0 < 1 < Kk we assume
Z 155V (fo)ll1 < oo 2 |55 Vs (fo)ll < oo, (A.17)
j=1

where K > 1. Let ¢ (7; fo) and ¢ (7; fo), be defined as in (A.16). We assume that T < 0. Then

forall 0 <1 < K, we have

‘ﬁ[gn(ﬂfe)—?n(ﬂfe)] < fO(Z(J( ))v 2,73 )~ 6, o)l
b; ZCbl( )i HV?@(T;fe)Hl),

where fo = (inf, fo(w)) "t and C, =Y, |Vico(r)|1

g with respectto § = (01,....,04) and |V59(fo)|, denotes the {,—norm of the matrix with elements

a9(fo) is the ath order partial derivative of

containing all the partial derivatives in Vig( fy).

PROOF. To prove the result, we define the n-dimension vector

c,.=(c(r—1),¢(r—2),...,c(r —n))" (covariances from lag 7 — 1 to lag 7 — n).

—-Nn,T

To simplify notation we drop the fy notation from the prediction coefficients ¢; ,,(7; fy) and ¢;(7; fo).

Proof for the case 7 = 0 This is the regular Baxter inequality but with the ¢5-norm rather than /-

norm. We recall that for 7 < 0 we have the best linear predictors

=Y 0in(1X; and X, =) ¢,(1)X
j=1 Jj=1

Thus by evaluating the covariance of the above with X, for all 1 < r < n gives the sequence of r

normal equation, which can be written in matrix form

Tu(fo)e,(T) = ¢, and T Z &5 (r

j=n+1

157



Taking differences of the above gives

D] =Y e,

Jj=n+1

Tu(fo) |,(1) - ¢

= o.M -0,0] = Tl Y 6i(re, (A18)

j=n+1

The /5-norm of the above gives

2, () = 6,0, < ITafo) Mapee D 16571 iz

n
j=n+1

To bound the above we use the well known result [T, (fo) ! spee < 1/inf, f(w) = fo and

e ill2 < 25ez lco(r)| = Co. This gives the bound

Proof for the case i = 1. As our aim is to bound the derivative of the difference ¢ (1) — ¢ (1),

6=, < fiCo 3 1500

Jj=n+1

we evaluate the partial derivative of (A.18) with respective to 0, and isolate o[¢ (1) —¢ (7)]/00,.

Differentiating both sides of (A.18) with respect to 0, gives

2,(7) = 0,0)] + Tulfo) - [i,7) — 0,7

n

arn(ﬁ” [
26,
0 a ) a )
- [—‘Zggﬂgmﬁ@(ﬂ%} (A-19)

j=n+1

Isolating d[¢ (7) — ¢ (7)]/00, gives

e -20,0] - —rn<fe>—laF§§f9> EXOEENC]
Y e O B
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Evaluating the ¢, norm of the above and using |ABz |2 < | Al|spec| B spec|z]2 gives the bound

aaer EXGREAC]

2

0T,
< rn<fe>—1spec( i W)gnm 9,0,
0 P nj
D M el [ G )
j=n+1 j=n+1 2
<n(|%52 Jen- @anQ
Y] @ (2%@ |2) 3 |¢j<7>\)
j=n+1 reZ Jj=n+1
<n(|5 e m-g@) 00 X [ ve Y el @
spec j=n+1 j=n+1

where the last line in the above uses the bound Y ., [Vico(r)|2 < X7 [Vico(r)|1 = C, (for
a = 0 and 1). We require a bound for ||0',,(f)/00;||spec. Since I',(fp) is a symmetric Toeplitz
matrix, then oI',,(fy)/00, is also a symmetric Toeplitz matrix (though not necessarily positive

definite) with entries

[al“n(fa)] _ % 270 fo(w) expli(s — 1))

00, 00,

Oc(s—tifg) _ Oc(t=sifo)

We mention that the symmetry is clear, since =57 = —45-

. Since the matrix is symmetric

the spectral norm is the spectral radius. This gives

L'y (fo) t fo) J 20 )
xsxt sup |— | e dw
' 00 e elan StZl  Jalemt |27 Z
2
O fo(w) 1 (7 9fe( )
< sup|——— — el dw = )
w &GT |z]2=1 2 0 pr w 59
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By using the same argument one can show that the ath derivative is

6“]@(@0
06,, ... 00,,

0%c(r; fo)

H aal—‘n (fO)
00, ... 00,

20, ... 06,,

< sup

w

)

reZ

<C,. (A.22)

spec

This general bound will be useful when evaluating the higher order derivatives below. Substituting

(A.22) into (A.21) gives

<h(@fen -], w0 3 el 3 wnol, )

=n+1 j=n+1

aZT 2.0 -0,0)]

2

This proves the result for 7 = 1.

Proof for the case « = 2 We differentiate both sides of (A.19) with respect to 6,., to give the second

derivative

(g}m{;g@) [ ] aem aeﬁ [fn(” _?n(”} -
)
alz%fe) aei [—n ]+ 1 (aejaem 2.7 _?n(T)D
Tl - 3 [Gie agéf) o ]
(A.23)
Rearranging the above to isolate 75— [gn(r) - @n(r)] gives
e [0 - 6,0)]
Lu(fo)™ < 629“ aew ) [£.() = 6,0)] = Tutfo) ™ arane(,fg) aeam EXORENG)
Eulfo)™ aem aem [ ]
3 [ aé’;ff EAR R E s |

Jj=n+1
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Taking the {5-norm of =22 [gp (1) — ¢ (T)] and using (A.22) gives
1 79 —n —n

e e 0,0

< fi (02 e, (1) =6, +20:[ Vol () - o

2

T

()|

2

£ Y Vi), +200 Y IVl + G Y |¢j<f>|).

j=n+1 j=n+1 Jj=n+1

This proves the result for 7 = 2. The proof for : > 2 follows using a similar argument (we omit the

details). O

The above result gives an ¢,-bound between the derivatives of the finite and infinite predictors.

However, for our purposes an ¢;-bound is more useful. Thus we use the Cauchy-Schwarz inequal-

ity and norm inequality | - || < | - |; to give the ¢;-bound
o
'm [En(ﬂ fo) —Qn(ﬂfe)] 1
i a
< n1/2f0< 3 (al)oal Virle, (r:fo) — 6, (7 )| +
ai;izfl
i [ee}
> (b >0b1 X1 Ve ), ) (A.24)
b1+ba=i 1 Jj=n+1

this incurs an additional n'/? term. Next, considering all the partial derivatives with respect to 6 of

order 7 and using (A.16) we have

D IValben(T; fo) = duls fo)llh

<din1/2f0< 3 (Z)cal
a1

Vitle, (73 fo) = 0,7 fo)] |+

a1+a2§i
a2 #1
S () 3 vk, ) #29
by+by=i N L j=n+1
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where d is the dimension of the vector §. The above gives a bound in terms of the infinite predictors.
We now obtain a bound in terms of the corresponding AR (o0) and MA(o0) coefficients. To do this,
we recall that for 7 < 0, ¢;(7; fo) = Doary Ps+i(fo)Uyr—j(fo). Thus the partial derivatives of
®;(7; fo) give the bound

0

D IVedi(7i fo)l, < Z 2 (Ioir—5 (fo)l - [ Vadsrs(fo)ln + |dssi(fo)l - | Vothir—s (fo)1) -

j=n+1

Substituting the above bound into (A.25) and using Lemma A.1.1 for the case i = 1 gives

Z HVG[QSS,TL(T; f@) - ¢S<T; fQ)]Hl

< nl/zdfo{01(00+1) i fo)l +
j=n+1
Co Y, Dy (sl - [Vodsrs(f)l1 + s (fo)l - [Vatbir—5(fo) 1) } (A.26)
s=0j=n+1

The above results are used to obtain bounds between the derivatives of the Whittle and Gaussian
likelihood in Appendix A.3. Similar bounds can also be obtained for the higher order derivatives
S Vol @s.n(T5 fo) — ¢s(T; fo)]]l, in terms of the derivatives of the MA(c0) and AR(c0) coeffi-

cients.
A.3 The difference between the derivatives of the Gaussian and Whittle likelihoods

We now obtain an expression for the difference between the derivatives of the Gaussian likeli-
hood and the Whittle likelihood using the variant of Baxter’s inequality. These expression will be
used later for obtaining the bias of the Gaussian likelihood (as compared with the Whittle likeli-
hood).

For the Gaussian likelihood, we have shown in Theorem 2.4.1 that

XoTn(0) X, = XL FrAa(fy DX, + X FTA(fy ) Dalfo) X
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where the first term is the Whittle likelihood and the second term the additional term due to the

Gaussian likelihood. Clearly the derivative with respect to ' = (6,,...,0,) is

X Vol ()1 X, = XL FrVeAa(fy )X, + X FrV[An(fy ) Du(fo)l X,

The first term on the right hand side is the derivative of the Whittle likelihood with respect to 6,
the second term is the additional term due to the Gaussian likelihood.

For the simplicity, assume @ is univariate. Our objective in the next few lemmas is to show that

An(fe_l)Dn(fG)Xn

=0(1),

1

dz’
X FFf—

which is a result analogous to Theorem 2.4.4, but for the derivatives. We will use this result
to prove Theorem B.1.1, in particular to show the derivatives of the Whittle likelihood and the
Gaussian likelihood (after normalization by n~') differ by O(n™!).

Just as in the proof of Theorem 2.4.4, the derivative of this term with respect to 6 does not
(usually) have a simple analytic form. Therefore, analogous to Theorem 2.4.3 it is easier to replace
the derivatives of D, ( fy) with the derivatives of D, ,,( fy), and show that the replacement error is

“small”.

Lemma A.3.1. Suppose Assumption 4.2.1(i),(iii) holds and g is a bounded function. Then for

1 <7< 3 we have

di
(F280l0) 5 (D) = D] = Ol 59), (A27)
1
and
e (ANEAL(fy ') A Donlfo)|
F? ;) (k) o g = 0(1). (A.28)

PROOF. To bound (A.27), we use the expression for F*A,,(¢71) (D, (fo) — Deo.n(fs)) given in
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(4.34)

(FrAu(g ) [Dalfo) = Doon(f)]),, = D Uoua(Ts fo) = &u(7s fo)} Grals, T3 9)
+ {gbn—&-l—t,n(T; f@) - ¢n+1—t(7; fG)} GQ,n(Sa 75 g)]

Differentiating the above with respect to 6 gives

| F20,(0) 5 (D) = Do)

s,t

= 2| Gl G 00nr) = e + G5, 7) g B a(7) = i)

7<0

= L1 + Ts,t,?-

We recall that equation (A.26) gives the bound

)

< ”1/2f0{ (Cro+1) Z |6;(73 fo)| +

j=n+1

d
COZ Z (’wh —j f9 ’ 9¢s+j(f9)

s=0j=n+1

d
d_ ¢sn gbs(T f@)]’

d
A S

)}

Substituting this into 7} ; ; gives the bound

d,
¢S+] ¢|T| —J ¢S+] w‘ | !

T,.1| < Cnl/zzc;l,n(s,r)< D bsrsl gl + >0 DS

<0 j=n+1s=0 s=0j=n+1

Using the same techniques used to prove Theorem 2.4.3 yields

S [Tooa] = O (n20751) = O(n~5+502),

s,t=1
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Similarly, we can show that 337, | |Tss2| = O (n'?n= 1) = O(n="*3/2). Altogether this gives

|Ex Au(9) (Da(fo) = Doon(fo))l; = O(n~*+%2).

This proves (A.27) for the case 7« = 1. The proof for the cases ¢ = 2, 3 is similar.

To prove (A.28) we use the same method used to prove Theorem 2.4.3, equation (2.40). But

with dgi replacing fp in A, (-) and dek (T3 fo) = % o G501~ replacing ¢;(7; fo) =
Z;D:o GstjWpr|—; in Dy (fp). We omit the details. ]

We now apply the above results to quadratic forms of random variables.

Corollary A.3.1. Suppose Assumptions 4.2.1 (i),(iii) hold and g is a bounded function. Further, if

{X.} is a time series where sup, | X¢|g2q = | X |r 24 < o0 (for some q > 1), then

1 d’
X P80 g (Du) = Dol | K| = OG0, (a9
E,q
and
1 LN A, (Y diD,
N R B (A30)
=0 E,q
fori=1,2and 3.
PROOF. To prove (A.29), we observe that
Ly | pea din Don(fo)) | X
X0 | i An(9) =5 (Dalfo) = Doon(fo)) | X
1 & d
< 2 3 || E20) 3 (Dul) ~ D) {1,k
s,t=1 s,t
~ Lo xii2 i [F*A()‘”( ()= Dl
nog M do' D
di
= HXHM FiAw(9) <5 (Du(fo) = Dacn(fo))| = O(n 12
1
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where the above follows from Lemma A.3.1, equation (A.27). This proves (A.29).

To prove (A.30) we use the the bound in (A.28) together with a similar proof to that described

above. This immediately proves (A.30). |

We now apply the above result to the difference in the derivatives of the Gaussian and Whittle

likelihood. It is straightforward to show that

K;F:%Anwlwn(fe)xn (A31)
[ ()
X _; @ de,Zl e(l;f@l) dﬂ—ifl?e%(fe)] X,
(=0
LXE (ZE) (Z) dKA:;g(éfel) [df—;é);gfe) B dé—z‘dpeo;,yz(fe)]) X,. (A32)

First we study the second term on the right hand side of the above. By applying Corollary A.3.1

(and under Assumption 4.2.1) for 1 < ¢ < 3 we have

X (U DA~ D)) X,

do’ E1
LB (f; ) [d7Dulfe)  d' T Dol fi)
— xS nJo) 2 SO0 X
o Sntn ; (e o 67 i | =
=0 E,1
— O(n K12, (A.33)
On the other hand, the first term on the right hand side of (A.31) has the bound
di
n—lggngQi [AL(fyD)Dn(fo)] X, =0n™). (A.34)
E,1

166



APPENDIX B

THE BIAS OF THE DIFFERENT CRITERIA *

In this section, we derive the approximate bias of the Gaussian, Whittle, boundary corrected
and hybrid Whittle likelihoods under quite general assumptions on the underlying time series { X;}.
The bias we evaluate will be in the sense of Bartlett (1953) and will be based on the second order
expansion of the loss function. We mention that for certain specific models (such as the speci-
fied AR, or certain MA or ARMA) the bias of the least squares, Whittle likelihood or maximum

likeihood estimators are given in Taniguchi (1983); Tanaka (1984); Shaman and Stine (1988).
B.1 Bias for the estimator of one unknown parameter

In order to derive the limiting bias, we require the following definitions

- [ (B |

“or ), 70 >f(w)dw and J(g) = —J 7rg(uJ)f(W)dw-

2m Jo

For real functions g, h € L*[0, 27| we define

Vig,h) = % L ' g(w)h(w) f(w)?dw

1 2w 27
+ (2r)2 J f g(wr)h(wa) fa(wr, —wr, wa)dwdw,, (B.1)
o Jo

where f; denotes the fourth order cumulant density of the time series { X;}. Further, we define

n

Ban(0) = Re% Z c(s — t)% 2 Gisw’“’"d% [¢(wk,n; Jo) 7 (Wi fe)]

s,t=1 k=1
1 « dfg(wp )t
Brnld) = L3 fofen Toln) -
k=1

“Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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where f,(wy) = { F,(w — X) f(A\)dX and F,(-) is the Fejér kernel of order n.

Theorem B.1.1. Suppose that the parametric spectral densities { fy;0 € ©} satisfy Assumptions
4.2.1. Suppose the underlying time series {X,} is a stationary time series with spectral density f
and satisfies Assumption 4.2.2. Let 09, 0 and 0%, and O be defined as in (4.17). Then the
asymptotic bias is

Ee[é\(G) —0,] = ](0)_1 (Brn(0n) + Ban(0n)) + n_len) + O(n_3/2)

n

Eo[0) —6,] = I(0)"'Bg,(6,) +n'G(6,) + O(n~?)

Eo[0) — 6,] = n'G(6,)+O (PPn %2 + n7lp K

and B[00 —6,] = 5EG(0,) + 0 (P 40 pT i)

where H,,, = > | hy(t/n)7,

G(6) = 1(6)2V (dfe_l de@_l) +27(0) Y (dfe_l dfe_l) J (dgf"_l) ,

do ' do? o ' do a3
and V (g, h) is defined in (B.1).

PROOQOF. In Theorem 4.3.1 we showed that

3

S 1 S ’ 1
B 1= 0, (b ) ana @ -0 - 0, (B ).

n32 " ppK-1 n32 " ppK-1

where 6" = arg min W\p,n(ﬁ), o) = arg min W,.(6), O = argmin ﬁp,n (#), and

0" = argmin H,(0). We will show that the asymptotic bias of 0" and 04" (under certain
conditions on the taper) are of order O(n~"), thus if p>n="/2 — 0 as n, p — oo, then the infeasible
estimators and feasible estimators share the same asymptotic bias. Therefore in the proof we obtain

the bias of the infeasible estimators.

Now we obtain a general expansion (analogous to the Bartlett correction). Let L, (-) denote the
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general minimization criterion (it can be £,,(6), K,,(0), W, (), or H,(0)) and f = argmin Ly, (9).

For all the criteria, it is easily shown that

where U (6) = —E[d;é"] and

AL(0)  5_ Q)dQLn(Q) L L gedLa(0)

1
20— 02— 0 (072,
dQQ 2( ) d03 Op(n )

Ignoring the probabilistic error, the first and second order expansions are

~ _,dL,(0)
(6-6)~U@O) ==, (B.2)
and
dL,(0) ~ dZLn(Q) 1 ~ 2d?’Ln(G)
10 +(6—6)—d92 +§(9—9) 10 ~ (.

The method described below follows the Bartlett correction described in Bartlett (1953) and Cox

and Snell (1968). Taking expectation of the above we have

. dLn(Q)} K l(g_e)dan(Q)] .\ %E [(5_9>2d3Ln(9)]
0

63
AL, (0) AL, (0) ]

_E ldLge( +E[@-0)|E [W] + cov [(5— 0), —
JE[0-07]E [dgLn(e)] + scov [(5— 0)2, dSL"(e)] .

a3

Substituting (5 —-0)~U («9)_1”@#(9) into the last three terms on the right hand side of the above
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2 (L) — v @@-0) + U0) oo (Lo, ELal0))
(5
(452 £ o
Using the above to solve for E(6 — ) gives
11,0) £L0)

E(6-6) = U®B)'E (deLQ(Q)) U(ﬁ)Qcov< a0

N
o (e) B <dLCZ9(9))2E <d sgg(e)) +271U(6) cov ((dLC;Q(@))Q | d?’sg:f@))

_ U E (dL£;0)> +U(0) 2cov <dLC;Q(9)7 d2§§z(9>>

12 U(0) [m <dLn0(0)) . {E[d%@(@)]ﬂ . (d3§g§9))

d
+271U(0) 3 cov <(chZ9(9)> , d 253(9)) .

+271U(6 E(
ov

+271U (6

Thus

E(@—0) = Iy+L+L+1I+1 (B.3)
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where

Iy = UW®O)'E (%ﬁ)

I, = U(f) 2cov (dLge(e), d 552(9))

Lo~ 2 (e) <dL£6(6))E (d?’sgg(e))
L e {E (dLC;Q(Q)) }21[-3 (d?’sgg(@))

I, = 27'U(H)3cov ((d%ﬁ@)) ,d 553(9>> :

Note that the term [E (dL"(9)> will be different for the four quasi-likelihoods (and will be of order

O(n~1)). However the remaining terms are asymptotically the same for three quasi-likelihoods
and will be slightly different for the hybrid Whittle likelihood.

dLy,(6)

The first derivative We first obtain expressions for [E ( -

) for the four quasi-likelihoods:

dK,(0) 1 ¢ 0y d
E <T) = ;;E[Jn(wl@n)‘ ]@]{b wkn = - Z fn kn f9 wkn) BK,n(e)a
where f,(w) = { F,(w — \)f(A)dX and F), is the Fejér kernel of order n.

To obtain the expected derivative of £,,(¢) we recall that

B[ 560 = E| 50| 4B [ m Ga DL
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Now by replacing D, ( fy) with D, ,(fg) and using (A.31) we have

B[ 60| = E| 50| B[ K A D

4B [0 LR A (17" (Dalf) — D) X,

n

d 1 & d
= E|l=K -1 E _ _E: —iswy,n .
[d9 n(e):| +n C(S t)n k=le degpt,n(wk,nafb)

s,t=1

d

+n—1E[ng; () (D) - oo,n<fe>>gn]

where ¢, ,(w; fo) = o072 [¢(w; f0)0 (w; fo) + €“d(w; fo)dL, 4 (w; fg)]. The first term on the
RHS of the above is B ,(f). Using the change of variables ¢ = n + 1 — ¢, the second term in

RHS above can be written as

—15Wi n

d
@@t,n (wk,n; fe)

M:

lics—t%

s,t=1

=nt Z c(s—1)

s,t=1 k=1

—n' Y e(s—t) Z et 0w J) 7 (@i fo)

s,t=1

TT

1

d
d

SRS

[efiswk,nmqsfo (Whons fo) + e DR (e f0) DLy (Whons [, 9)]

>

3

SIH

- 671(571)Wk’"@¢(wk,n; fo)oF (win; fo) (et t'=n+1-1)

\Mg
S |-
M:

c(s—=n—1+1)
s} k

n n d
(s —t) Z ’ka”d— (Wem; £0) 07 (Whm; fo) = Ban(0).

s,t=1

Il
fu

8

3IM
3I>—‘

Finally, by using Corollary A.3.1 we have

—1

_ O(n_K+1/2).

E,1

X;F:EA (fo ") [Dn(fo) — Daou(fo)] X,

Thus the derivative of the Gaussian likelihood is

E (dﬁge(e)> = Bgn(0) + Bon(0) + O(n K12,
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Next we consider the boundary corrected Whittle likelihood. By using that

E[ T (ki ) In(@rn)] = f(whn)

we have

3

5 (T ) = w2 Bk D g o)

—_

= _Z wkn d9f9 wkn) !

3

Finally, the analysis of H,(0) is identical to the analysis of W,,(#) and we obtain

dH,, (0 1 « - d 1
E(%) = —Z:: n(Wens f Jhwn(wk,n)]@fG(wk,n)

§

1 n
= _Z wkn f9 wkn) !

n

In summary, evaluating the above at the best fitting parameter 6,, and by Assumption 4.2.1(ii) gives

2% o = met

E (M)Jg_gn = Brgn(0,) + Ban(0,) + O(nK+1/2)

do
dW, (¢ dH,(0
and E ( V[;; ))Jggn = E ( d@( >>J99n = 0. (B4)

It can be shown that By ,,(6,) = O(n™') and B ,(6,) = O(n™"). These terms could be negative
or positive so there is no clear cut answer as to whether By ,,(6,,) or By ,,(6,,) + B (0,) is larger

(our simulations results suggest that often By ,,(6,,) tends to be larger).

The second and third order derivatives The analysis of all the higher order terms will require com-

parisons between the derivatives of £,,(0), K,,(6), W,,(0) and H,,(0). We first represent the deriva-
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tives of the Gaussian likelihood in terms of the Whittle likelihood

dz’

d'La(0) _ d'Kn(0) +IE[ CXLE n<f9‘1>Dn(fe>Kn}

o do

By using (A.34), for 1 < ¢ < 3 we have

=O(n™1). (B.5)

E,1

an P ALY DaX

dW,(0)  dK,(9)

d = ap O
diH,(6) &K, (0)
T a T

where K, (6) =t S, “a0) ang

_ LN 4 D@ @) L e

A0 fo(wrn) et
L & Tu(@ini )T, @kn) 1
D, = — 4 ’ e~ = X HLFEA W)X,
’ n ,;1 dg* Jo(wrn) n=" (dezfe IDn(NX,
where H,, = diag(hy s, ..., h,,). In the analysis of the first order derivative obtaining an exact

bound between each “likelihood” and the Whittle likelihood was important. However, for the
higher order derivatives we simply require a moment bound on the difference. To bound C; ,,, we

use that

fe ) Du(f)

( do

1

Fy A 1 D) Do )]

< ‘

We use a similar method to the proof of Theorem 2.4.3, equation (2.40) and Theorem 2.4.4, equa-

+F;A(

1 ‘

fe ") Doon(f)

do’

1
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tion (2.43) with An(d% fyh) and Dy, ,,(f) replacing A, (f, ') and Dy, ,,(fs) respectively together

with Assumption 4.2.1 and 4.2.2. By using the proof of Theorem 2.4.3, equation (2.40), we have

HF;’:An(j;i FoODu(f) = Doon(f)]|1 = O(n~%+1). Similarly, by using the proof of Theorem

2.4.4, equation (2.43) we have HF;“AR(%fg_l)DOO’n(f)Hl = O(1). Altogether this gives

(E|C;..[H)Y? =nt = O(n™Y). (B.6)

E,2

! dl —

For the hybrid likelihood, we use that sup; ,, || < o0, this gives

&
g

a

H,F*A ;
H ntn n( dgz

fo ) Da(f)llx < (sup fien) X |Fr An( = fo ) Da(f) L = O(1).

Therefore, under the condition that {A;,} is a bounded sequence

(E|D;,,|>)"? =n! =0 (n ). (B.7)

E,2

Ln

! E3 dl —
H,X' F? An(wfg "D, ()X

Thus the expectations of the derivatives are

E (diﬁ”(9)> = E (diK”@) +0(n™")

do’ do’
E (divggi(e)> - E (digg}g)) +0(n™")

E <di§g§9>> = E (diggi(9)> +0 (n71).

This gives the expectation of the second and third derivatives of all likelihoods in terms of ()

and J(%):

o (£20) 10+ 00, a2 (*540) - 525 o

Bounds for the covariances between the derivatives The terms I, I5 and I, all contain the covari-

ance between various likelihoods and its derivatives. Thus to obtain expression and bounds for
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these terms we use that

d' B _1
var (ﬁKn(Q)) =0(n), (B.8)

where the above can be proved using Brillinger (1981), Theorem 4.3.2. Further, if the data taper
{h¢n} is such that hy,, = ¢, h,(t/n) where ¢,, = n/H,, and h,, : [0,1] — R is a sequence of taper

functions which satisfy the taper conditions in Section 5, Dahlhaus (1988), then

d s,
var <%Knyhn(0)) =0 (an) : (B.9)

By using (B.5), (B.6), and (B.8) we have

g’ dp?

. (dﬁn(e) d%(@)) (

. (de(e) d?Wn(e)) . (dKn(0)7d2Kn(9)> S
(
(

o’ de?

. dl,(0)\ .
var 7 = var

ar (d%(e)> —

For the hybrid Whittle likelihood, by using (B.7) and (B.9)

o ((H(0) PH 0N (dEa, (0) K p, (0) L0 Hy
do 7 dp? B a0 do? nH ,

AH,(0)\ _ (K, (0) Hy,
Var( 7 ) = V&Y(T +0 i )

Using that H,,,/H;, = O(n™"), we show that the above error terms O(H;’f/(nHLn)) (for the

hybrid Whittle likelihood) is the same as the other likelihoods. Next, having reduced the above
covariances to those of the derivatives of K,,(f) and K, (). We first focus on K, (). By using

the expressions for cumulants of DFTs given in Brillinger (1981), Theorem 4.3.2 and well-known
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cumulant arguments we can show that

o (250 O e (451 BT o

g ’  do? dg = do?
dK.(0)\ o (dfst dfy! .
andvar< ¥, > = n V( 0 dd + O(n™7).

To obtain expressions for the covariance involving K, , (#), we apply similar techniques as those

developed in Dahlhaus (1983), Lemma 6 together with cumulant arguments. This gives

dK, ,» (0) d>K,, (0 . o o n
COV( o )’ Ao )) _ I, V(dfe d*fy )+O(H2’ )

de do? H 12n o’ do? nH 12n
and var (—dKn(;;" (0)> = ZTQ:V (df;el, d](;@el) + O (;;%:) )
These results yield expressions for /; and /5 (we obtain these below).
Expression for /; and a bound for /3. Using the results above we have
* The Gaussian likelihood
Iy = 1(0,) " [Brn(0n) + Beu(6,)] + O(n™?) (B.10)

¢ The Whittle likelihood

Iy = I(6,) "B (6,) + O(n™?)

* The boundary corrected Whittle and hybrid Whittle likelihood

I():O

However, since for all the likelihoods E[?22\) |,_, | = O(n""), this implies that for all the likeli-
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hoods the term I3 is
- ~ dL,()\° . [ d®L,(0) _
_ 1 3 _ 2
Iy = 27°U(0) {E( 10 )} E (—d03 O(n™2).

Expression for /; and /5. For the Gaussian, Whittle, and boundary corrected Whittle likelihoods

we have

-1 2 p—1
L= ',V <—d{;9 ,—ddgi )+0(n3/2)

—1 —1 3 r—1
Lo e (G e ) o (S ) ot

For the hybrid Whittle likelihood we obtain a similar expression

H —1 2 r—1
]1 _ 2,71[(9”)—2‘/ (ﬁ d f@ > + O (n—3/2>

HZ, do ' de?

Hy, _3 dfgl df(;l dgf(;l —3/2
I, = no-ly 'l ).
2 = g2 10 V( i ag ) \Tagr ) O

A bound for 7, We now show that I, has a lower order term than the dominating terms [y, /; and

I5. We recall that

I, = 27'U#)3cov ((d%@)) ,d 553(9))-

2
To bound the above we focus on cov <<dL;9(9)> : dgjga(e)

). By using indecomposable partitions
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we have

. <<dL£0(9))2 | d3§;§9)> . (dLge(e)’ d3§g§6)) . <%9<9) )
+eum <dLn(6) | dL,(0) d® Ln(e))
do do de3

(5] = (55")

We use (B.8), (B.5) and (B.6) to replace L, (#) with K,(0) or K} ,(6). Finally by using the

expressions for cumulants of DFTs given in Brillinger (1981), Theorem 4.3.2 we have that for the

non-hybrid likelihoods

and for the hybrid Whittle likelihood

H2n
I, =0 : .
! <nHin>

Thus, altogether for all the estimators we have that

O, —0,) =Io+ 1) + I, + O(n?),

where for the Gaussian, Whittle and boundary corrected Whittle likelihoods

df;b 2t df=l qft Bl
o (520 (5 5) ()

= n'G(6,) + O(n™*?)

Il+]2

and for the hybrid Whittle likelihood

Hs,, .
Litly = 25G(0,) +0(n*7).
1,n
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The terms for [, are given in (B.10). This proves the result. O

Remark B.1.1. In the case that the model is linear, then fi(wi, —wi,ws) = (ka/0?)f(w1)f(ws)
where 0% and k4 is the 2nd and 4th order cumulant of the innovation in the model.

Furthermore, in the case the model is correct specification and linear, we can show that As-

tion 4.2.1(ii) implies that fourth ord lant term in V (Y- L5\ gpa v (Yol Yo
sumption 4.2.1(ii) implies that fourth order cumulant term in o, —— ) an o

is zero. This results in the fourth order cumulant term in G(-) being zero.
B.2 The bias for the AR(1) model

In general, it is difficult to obtain a simple expression for the bias defined in Theorem B.1.1, but
in the special case a model AR(1) is fitted to the data the bias can be found. In the calculation below
let 6 denote the AR(1) coefficient for the best fitting AR(1) parameter. We assume Gaussianity,
which avoids dealing with the fourth order spectral density.

If the true model is a Gaussian AR(1) the bias for the various criteria is

The Gaussian likelihood

B[F — 0] = 6+ O(n™"")

n

The Whittle likelihood

~ 1
E[0X — 0] = g Ly O(n=3/?)

n n

The boundary corrected Whittle likelihood

2
BB — 0] = =~0+ O(p*n~*" + (np"~)7")

* The hybrid Whittle likelihood
H g1 _ Hs,, 3, —3/2 K—1\—1
E[0, — 0] = 2_H2 0+ O(p°n + (np™ 7))
1,n



Moreover, if the Gaussian likelihood included the determinant term in the Gaussian likelihood, i.e.

05 = argming[£,(6) + ™" log|',(fy)]]. then

n

E@C—m:—%e+0m3®.

We observe for the AR(1) model (when the true time series is Gaussian with an AR(1) represen-
tation) that the “true” Gaussian likelihood with the log-determinant term has a larger bias than the
Gaussian likelihood without the Gaussian determinant term.

The above bounds show that the Gaussian likelihood with the log-determinant term and the
boundary corrected Whittle likelihood have the same asymptotic bias. This is substantiated in
the simulations. However, in the simulations in Section 4.6.1, we do observe that the bias of the
Gaussian likelihood is a little less than the boundary corrected Whittle. The difference between
two likelihoods is likely due to differences in the higher order terms which are of order O(n~3/2)
(for the Gaussian likelihood) and O(p*n~%2) (for the boundary corrected Whittle likelihood, due

to additional estimation of the predictive DFT).

PROOF. The inverse of the spectral density function and autocovariance function is

a2l

fow) ™t =072 (1 +62—-920 cos(w)) and c¢(r) = TRr
Thus

if (w)—l _ 20'_2(9 _ COSM) and f ( ) _ 0_—2

dg”’ d(,? oW :
This gives

_ T fy(w) ™!

](9) = _% . 62 f( dw = —WJ‘ f C(O). (B.ll)
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Next we calculate B, since ¢p(w) = 1 — fe~™ it is is easy to show

¢ (w) =0 and ¢ (w)=0forj=>2.

Therefore,

2 e dr—
Ban(f) = Re= ) c(t—j)= > e Wk’"@ [¢(wkn,f9)¢ (kafe)]
"= i
20_2 C 1 —twg. n d Wk n
- = ;c(t—nﬁ;e v [(1 = et
_92 n n
_ 20 Z C(t B 1)1 Z (e_itw""" _ 296—1‘(16—1)4%,”)
N "=
2072 1 & 20 &
— Ct—l - eztwk’n__ i(t— lwkn
I R

The second summation (over k) is O unless ¢t € {1, n}. Therefore,

2072 40720
? cn—1)— 7
n n

BG,n(e) =

c(0).
To calculate By ,, we have

Bi(t) = %mek,n)%

_2n

= 2 fn wkn - COS(Wk,n))

n

_ 90 lec(m _ (” - 1) e(1) — Ze(1 - n)]

n n
2072

= [c(1) —c¢(n —1)].

n
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Altogether this gives

2

I(0) ™ (Bgn(0) + Ban(0)) = _QnUC(O) (20_2 [c(1) — c¢(n — 1)] + 20 %c(n — 1) — 40_200(0))
_ _ncl(O) (c(1) — 26¢(0)) — % (B.14)
and
1(6) Bien(6) — _ncl(O) (e(1) — e(n— 1)] = —%(9 ), (B.15)

Next, we calculate G/(6). Since the third derivative of f, ' with respect to ¢ is zero we have
c0) = 102y (Lt L
- dg"’ " do?"’

where

d . d&* _ 1 (> /20 -2 2
V(@f@ laﬁfe 1) = %Jo ( UEOS(W)) (;) f(w)2dw

_ 4 lj ' [0 — cos(w)] f(w)?dw

= 2 (Bea0) — 1)

where {cy(r)} is the autocovariance function associated with f(w)?, it is the convolution of ¢(r)

with itself;

ca(r) = Z c(l)c(l +r)

LT

Using this expansion we have

V(i i) = S D00 ot 1)

e

183



and

]E[Q,If —0] ~
]E[@n/v —0] ~
E[6T — 6] ~

0 9
n oy ) )
1(0) "By (0) + n'G(0)
1 _— 2
T ey e O e ),
2
ne(o? 720 = D)
2 H2n

o o0 — ).

(B.16)

It is not entirely clear how to access the above. So now we consider the case that the model is fully

specified. Under correct specification we have

d
V(@ﬁ’wﬂb)

= —40*—c(0) = —

- 2 [ pp )
STl

B _20_2 J‘27T df@( ) __2iiJ‘ f
T on ), de YT e o\

d 8040

df (1-62)2
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Thus 1()~2V (d%fe’l, C%;zfgl) = —20/n. Substituting this into the above we have

E[6\D — 0] = Lo 29, O(n=2%?) = Loy O(n=3/?),
n n n

~ 1 2 3.1
EOK) _g] = —~[o—o1]— 29 N xa =20+ ="+ O(n 2
[0, — 0] ol |=—0+on™) ~ =0+ 6"+ O(n™"?),
. 2
E[6W™) — 0] = —=6+40(n=3?),
n
~ H,,,
E[O() — 9] = —22270 4+ O(n~?).
Hl,n

This proves the main part of the assertion. To compare the above bias with the “true” Gaussian
likelihood, we consider the Gaussian likelihood with the log determinant term. First, consider the

correlation of AR(1) matrix (4,),; = 6/*~*|. Then,

A, B,
Ay = . Bn,=(0",..0).
B 1

Therefore, using block matrix determinant identity, | A, 1| = |A,|(1— B, A ' B,). Moreover, it is

easy to show A, R, = B, where R,, = (0, ...,0,6)". Thus
|An+1| = |An|(1 - B;Rn) = |An|(1 - 02)'

Using iteration, |A,| = (1 — 62)" 72| Ay| = (1 — 6#%)"~! and thus,

- <1i_292)n (1-6*"" = 1<0_2);.

0_2

1—92A”

el - |

Then, by simple calculus,

20 2072
(1-62) n

|

Q
—
—_
~—

d
g og L (fo)| =
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and thus,

E[69 — 6] %me(amwwfmm%+%wﬂ%wam0+n*ﬂw
1

which proves the results. |
B.3 Bias for estimators of multiple parameters

We now generalize the ideas above to multiple unknown parameters. Suppose we fit the spectral
density fp(w) to the time series {X;} where 6 = (0y,...,0,) are the unknown parameters in
0 < R L,(0), K, (0), Wpﬁn(ﬁ) and ﬁp,n(ﬁ) denote the Gaussian likelihood, Whittle likelihood,
boundary corrected Whittle and hybrid Whittle likelihood defined in (4.16). Let 67, 65", 1"
and @LH) be the corresponding estimators defined in (4.17) and 6,, = (61 ., ..., 0a.,) is the best fitting
parameter defined as in (4.13). Then under Assumption 4.2.1 and 4.2.2 we have the following
asymptotic bias:

* The Gaussian likelihood (excluding the term n~" log |T',,(6)])

d

E[@(? —0jn] = Z 167 [BT,K,n(Q) + B.gn(0) + n_lGr(Q)] +0 (n_3/2)

r=1

¢ The Whittle likelihood has bias

d
BA) 03] = D 197 [Bral®) + 17 Go(O)] + O (n72)

]7n
r=1

* The boundary corrected Whittle likelihood has bias

M=~

E[6") —6;,] =n"!

J

](jﬂ")GT(g) +0 (p3n_3/2 + (npK_l)_l) ‘

r=1
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* The hybrid Whittle likelihood has bias

E[g(H) O] =

]7”

Hyp <5 _ L
EIONG0) + O (P + (p™ T . (BUT)

1,7’L r=1

PROOF. Let L, (0) be the criterion and én = argmin L, (0) and 6, the best fitting parameter. We

use a similar technique used to prove Theorem B.1.1. The first order expansion is
0, — 0, = U(0,) VoL, (6,)

where U (6) is the d x d matrix

Thus entrywise we have

d
0 rsaLTL(e)
enn - er,n = Z U 0(95

s=1

where U(™*) denotes the (r, s)-entry of the d x d matrix U(6,,)~!. To obtain the “bias” we make
a second order expansion. For the simplicity, we omit the subscript n from ém and 6, ,. For

1 < r < d we evaluate the partial derivative

2

d
E )5, ae

d 3L
Z s1 81 52 - 082) ‘ (9) ~ 0.
it 005, 005,00,

l\DI»—t

Taking expectation of the above gives

L,(0)] &S [~ L, 0)] 1 ~ A 03 L, (0)
E l a@T i| + Z E l(es - 98) 5938& + 5 Z E (981 - 051)(632 - 082)69318052807"
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We now replace the product of random variables with their covariances

0] o[]S S

3L, (0) ]

o @51 01,0 - 032) B [aeslaesza&

5=
I
Q

L oa . *Ln(0)
+5 2, Elfa — 04]E[b,, —0.,]E [m]

81,82=1
o R . 0> Lo (0)
+§ Z CcOoVv l(@sl — 951)<632 - 082)7 m] ~ 0.

81,82=1

With the exception of ]E[gs — 0], we replace 55 — 0, in the above with their first order expansions

Z] IUS])aL" % This gives

d
OLn(0) 2L (6)
E 51,52) 0y n n
l ] Z{ ol Z 1U l 29,,  00,,00,
RN ( 0L, (0) 0L, (0) 3L (6)
- (s1,83) 7 7(s2,54) n n n
ty 2 Ueu COV( 20,, o6, )E[aeslaQSQaer]

81,52,83,84=1

1 OLn(6) 0L, (6) 3L, (0)
- (s1,83) 77 (52,54) n n n
ty 2 UkIU E[ N }E{ i ]Elé’esﬁ@@&@r}

$1,52,83,54=1

1 < OLn(0) 0L, (0) 3L, (0)
- (s1,83) 7 (52,54) n n n ~
t3 o UmU COV[ 20, 00, o0n00,00,|

51,52,83,84=1

where Uy, denotes the (s, 7)-entry of the d x d matrix U(6,,)
Now we consider concrete examples of likelihoods. Using the same arguments as those used

in the proof of Theorem B.1.1 we have the last two terms of the above are of order O(n~?) or

O(H,,/(nH7,,)) depending on the likelihood used. This implies that

d
0L, (0) 0°Ln(0)
s1, 52)
l ] ;{E GelUer + Z 1U l 26,, ' 06,00,
1 & 0L, (0) 0L, (0) 33 L (0)
- (s1,83) [ (s2,84) n n n ~
tz 2 UmwU COV( 20, o, )| 6. 00,00,

81,52,83,84=1
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Let

1 2w

2 Jy
1 2

16) = 5| (Vi) @)

and I, (and I*™)) corresponds to the (s,7)-th element of 1(6,,) (and I~1(6,,)). So far, we have
no specified the likelihood L, (#). But to write a second order expansion for all four likelihoods
we set Hy ,,/H fn = n~! for the Gaussian, Whittle, and boundary corrected Whittle likelihood and
using the notation a similar proof to Theorem B.1.1 we have

8Ln(9) d ~ afa_l ane—l
O N R, — (1.52) |

HZ” - (s1,83) 7(52,54) afgl afg 53f51

257 ndlID IR Al S 20, 20, )\ a0 000, ) =V

1”31825334 1

d d -1
A R 0L, (0)]  Hap s, (O %,
D LBl — 0] ~ ]El 0, ] lnsé]l] (a% o
Hyw N5 e ofy " afy ! >fy
51,53 1(52,34) [ [ _vJe )
tome 2 ! V0. 20, ) 7\ 36, 0,20,

1”51828354 1

In the final stage, to extract E[@S — 6] from the above we define the d-dimensional column vector
D' = (Dy,...,D,), where D, = 2% I, ,E[0, — 0,] = [I(6,,)(0, — 0,)],.. Substituting this in the
above gives

0La(0)] | Hom <o parsnyrs ((Ofo(w) ™! 02 fo(w) ™!
D= El 0, ] 1n51§1[ ( o0,, = 00,00,

d

Hyn ofyt ofyt >ft
J(s1:53) (s2,54) 0 0 0 .
tome 2 V0. 20, ) 7\ 36, 0.2,

1”51323354 1
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A~

Using that E[0,, — 6,,] ~ I(6,,)" D and substituting this into the above gives the bias for 5]

d d _ _
) j,T aLn(e) H N 51,82 afg(w) 1 (92f9(w) 1
E[0; — 6] ~ Z[(L)[]E[ =0 ] -|-Hj2 Z 61 )V( pr T
r=1 T M os1,80=1 ED) 1 0Ur
HQ’" : (s1,83) 7(s2,54) afe_l afe_l 63]00—1
tome o AUV G S ) T wae e ) (B1Y)

Ln s1,80,83,81=1

The above is a general result. We now obtain the bias for the different criteria. Let

Brgal®) = Re Y els— 1) D e [G o1o7 (wnni )]

n
1 & :
Br,K,n(e) = Ean(wk,n>T

k=1
d - p—
O fo(w)™" 0 fy(w) ™!
aIld G’I’(g) = [(Sl,sz)v ( :
51,822:1 a982 aeslaer

1 d af—l af—l agf_1
- (s1,83) 7(s2,84) 0 0 0
5o Aty ( 20., " 20, ) J (6051 aes2aer) '

$1,82,83,54=1

Then, using similar technique from the univariate case, we can show
* The Gaussian likelihood: E [0L,,(0)/00,] = B,.c.n(0) + B kn(0).
* The Whittle likelihood: E [0K,(0)/00,] = B, kn(0)

* The boundary corrected Whittle and hybrid Whittle likelihood:
E [0W,,(0)/00,] = E[0H,(8)/00,] = 0.

Substituting the above into (B.18) gives the four difference biases in (B.17). Thus we have proved

the result. ]
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APPENDIX C

ADDITIONAL SIMULTIONS *

C.1 Figures and Table of results for the AR(1) and MA(1) for a non-Gaussian time series

In this section, we provide figures and table of the results in Section 4.6.1 when the innovations
follow a standardized chi-squared distribution two degrees of freedom, i.e. & ~ (x%(2) — 2)/2
(this time the asymptotic bias will contain the fourth order cumulant term). The results are very

similar to the Gaussian innovations.

“Parts of this section have been modified with permission from [S. Subba Rao and J. Yang. Reconciling the
Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Annals of Statistics (To
appear), arXiv:2001.06966, 2021.]
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BIAS: AR(1), (x*(2) - 2)/2 error, n=20

AR(1) model

BIAS: AR(1), (x*(2) - 2)/2 error, n=50

BIAS: AR(1), (x*(2) - 2)/2 error, n=300
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Figure C.1: Bias (first row) and the RMSE (second row) of the parameter estimates for the AR(1)
and MA(1) models where the innovations follow the standardized chi-squared distribution with 2
degrees of freedom. Length of the time series n = 20(left), 50(middle), and 300(right).
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€61

Likelihoods 0

0.1 0.3 0.5 0.7 0.9 [ 0.1 0.3 0.5 0.7 0.9

AR, {er] ~ (x*(2) —2)/2,n =20 MAQ), {er} ~ (x*(2) —2)/2,n =20
Gaussian -0.007(0.21)  -0.007(0.20)  -0.029(0.19)  -0.053(0.17)  -0.069(0.13) | -0.001(0.28) 0.030(0.25) 0.020(0.23) 0.004(0.20) 0.056(0.17)
Whittle -0.009(0.21)  -0.016(0.20)  -0.043(0.20) -0.086(0.18)  -0.119(0.14) | -0.005(0.27) 0.018(0.26) 0(0.24)  -0.061(0.22)  -0.153(0.21)
Boundary -0.007(0.22)  -0.013(0.20) -0.035(0.20)  -0.068(0.18)  -0.097(0.13) | -0.002(0.28) 0.024(0.26) 0.009(0.25)  -0.030(0.23) -0.113(0.20)
Hybrid -0.002(0.22)  -0.005(0.20)  -0.026(0.20)  -0.058(0.18)  -0.088(0.13) 0.005(0.29) 0.035(0.26) 0.021(0.24) 0.004(0.20)  -0.074(0.17)

Tapered -0.003(0.21)  -0.011(0.20)  -0.037(0.20)  -0.077(0.18)  -0.109(0.13) 0.002(0.28) 0.023(0.25) 0.002(0.23)  -0.032(0.21)  -0.112(0.18)

Debiased -0.011(0.21)  -0.018(0.19)  -0.040(0.20)  -0.070(0.19)  -0.090(0.15) | -0.007(0.27) 0.021(0.25) 0.010(0.24)  -0.039(0.24)  -0.140(0.23)

ARQ), {ei} ~ (*(2) — 2)/2,n =50 MAQ), {et] ~ (x*(2) —2)/2.7 =50

Gaussian 0.004(0.13)  -0.011(0.13)  -0.012(0.11)  -0.031(0.10)  -0.029(0.07) 0.009(0.15) 0.003(0.15) 0.017(0.13) 0.014(0.12) 0.010(0.08)
Whittle 0.001(0.13)  -0.016(0.13)  -0.019(0.12)  -0.044(0.10)  -0.049(0.07) 0.005(0.14)  -0.004(0.14) 0.004(0.14)  -0.020(0.13)  -0.065(0.12)

Boundary 0.001(0.13)  -0.013(0.13)  -0.012(0.12)  -0.033(0.10)  -0.036(0.07) 0.006(0.15) 0.001(0.15) 0.015(0.14) 0.001(0.12)  -0.030(0.10)
Hybrid 0.003(0.13)  -0.009(0.14)  -0.010(0.12)  -0.032(0.11)  -0.034(0.07) 0.008(0.15) 0.005(0.15) 0.018(0.13) 0.010(0.12)  -0.014(0.09)

Tapered 0.003(0.13)  -0.011(0.14)  -0.013(0.12)  -0.036(0.11)  -0.038(0.07) | 0.007(0.15)  0.004(0.15)  0.014(0.13) 0(0.11)  -0.026(0.08)
Debiased 0.002(0.13)  -0.013(0.13)  -0.014(0.11) ~ -0.034(0.11) ~ -0.030(0.08) | 0.007(0.15)  0.001(0.15)  0.017(0.14)  0.015(0.14)  -0.027(0.13)
ARQ), {e:} ~ (x%(2) — 2)/2,n = 300 MA(1), {e:} ~ (x%(2) — 2)/2,n = 300
Gaussian 0(0.06) -0.005(0.05)  -0.004(0.05) -0.004(0.04)  -0.006(0.03) 0(0.06)  -0.002(0.05) 0(0.05)  0.003(0.04)  0.003(0.03)
Whittle -0.001(0.06)  -0.006(0.05)  -0.005(0.05)  -0.006(0.04)  -0.009(0.03) 0(0.06)  -0.003(0.05)  -0.003(0.05)  -0.004(0.04)  -0.018(0.04)
Boundary 0(0.06)  -0.005(0.05)  -0.004(0.05)  -0.004(0.04)  -0.007(0.03) 0(0.06)  -0.002(0.05) 0(0.05)  0.002(0.04)  -0.002(0.03)
Hybrid 0(0.06)  -0.006(0.06)  -0.004(0.05)  -0.004(0.04)  -0.007(0.03) | 0.001(0.06)  -0.002(0.06) 0(0.05)  0.003(0.04)  0.002(0.03)
Tapered 0(0.06)  -0.006(0.06)  -0.005(0.05)  -0.004(0.04)  -0.007(0.03) | 0.001(0.06)  -0.002(0.06) 0(0.05)  0.003(0.04)  0.001(0.03)
Debiased 0(0.06)  -0.005(0.05)  -0.004(0.05)  -0.004(0.04)  -0.006(0.03) 0(0.06)  -0.002(0.05) 0(0.05)  0.003(0.05)  0.013(0.05)

Table C.1: Bias and the standard deviation (in the parentheses) of six different quasi-likelihoods for an AR(1) (left) and MA(1) (right)
model for the standardized chi-squared innovations. Length of the time series n = 20, 50, and 300. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.



C.2 Misspecified model for a non-Gaussian time series

In this section, we provide figures and table of the results in Section 4.6.2 when the innovations
follow a standardized chi-squared distribution two degrees of freedom, i.e. &, ~ (x*(2) — 2)/2.

The results are given in Tables C.2 and C.3.

n Parameter ‘ Gaussian Whittle Boundary Hybrid Tapered Debiased
10) 0.029(0.1)  -0.102(0.16) -0.032(0.12) -0.001(0.1) -0.088(0.13) 0.170(0.12)
20 P 0.066(0.08) -0.184(0.20) -0.039(0.15) 0.030(0.09) -0.064(0.12) 0.086(0.09)
I.(f; fo) | 1.573(0.82) 1.377(3.11)  0.952(0.91) 1.006(0.84) 0.675(0.63) 2.618(0.84)
10) 0.014(0.07)  -0.051(0.10) -0.004(0.07) 0.007(0.07) -0.003(0.07) 0.143(0.11)
50 P 0.027(0.06) -0.118(0.13) -0.013(0.09) 0.008(0.07)  0.009(0.06)  0.090(0.03)
I.(f; fo) | 0.342(0.34) 0.478(0.53)  0.298(0.32)  0.230(0.27) 0.222(0.27) 1.158(0.37)
10) 0.001(0.03) -0.015(0.03) -0.002(0.03) 0(0.03) -0.001(0.03)  0.090(0.08)
300 P 0.006(0.03)  -0.033(0.05)  0.002(0.03)  0.003(0.03)  0.003(0.03) 0.091(0.02)
I,(f; fo) | 0.029(0.05) 0.067(0.10)  0.034(0.06) 0.027(0.04) 0.028(0.04)  0.747(0.23)

Best fitting ARMA(1, 1) coefficients § = (¢, 1) and spectral divergence:
— 620 = (0.693,0.845), 59 = (0.694,0.857), O3990 = (0.696,0.857).
— Ino(f; fo) = 3.773, Iso(f; fo) = 3.415, I300(f; fo) = 3.388.

Table C.2: Best fitting (bottom lines) and the bias of estimated coefficients for six different methods
for the ARMA (3, 2) misspecified case fitting ARMA(1, 1) model for the standardized chi-squared
innovations. Standard deviations are in the parentheses. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.

C.3 Alternative methods for estimating the predictive DFT results for a non-Gaussian time

series

This time we assess the different estimation schemes for non-Gaussian time series. We generate

the same AR(8) model in Section 4.6.4 but the innovations {¢;} are i.i.d. standardarized chi-square
(*(2) -

AR(8) model, evaluate six likelihoods from the previous sections plus two likelihoods (BC-tYW

random variables with two-degrees of freedom i.e. £, ~ 2)/2. For each simulation, we fit

and BC-NP), and calculate the parameter estimators. The results are summarized in Table C.4.
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n  Parameter \ Gaussian Whittle Boundary Hybrid Tapered Debiased

b1 0.017(0.13) -0.178(0.23) -0.047(0.17) -0.006(0.14) -0.134(0.15)  0.044(0.14)

20 b2 0.002(0.09)  0.176(0.2)  0.057(0.16)  0.023(0.12)  0.135(0.13)  -0.019(0.13)
L(f: fo) | 0.652(0.72) 1.3073(1.46) 0.788(0.85)  0.671(0.8)  0.887(0.97)  0.658(0.81)

b1 0.018(0.09) -0.079(0.12) -0.010(0.09)  0.002(0.09) -0.018(0.09)  0.140(0.15)
50 bo -0.018(0.06)  0.072(0.11)  0.012(0.07)  0.001(0.06)  0.016(0.06)  -0.1(0.09)
L.(f: fo) | 0.287(0.36)  0.406(0.52)  0.302(0.39)  0.298(0.39)  0.293(0.38)  0.631(0.7)

b1 0.002(0.04) -0.015(0.04) -0.002(0.04)  0(0.04)  -0.001(0.04) 0.012(0.04)

300 bo -0.005(0.02)  0.011(0.03)  -0.001(0.02) -0.001(0.02) -0.001(0.02) -0.016(0.04)

I.(f; fo) | 0.050(0.07)  0.056(0.07)  0.051(0.07)  0.052(0.07) 0.054(0.08)  0.061(0.08)
Best fitting AR(1) coefficients § = (¢1, ¢2) and spectral divergence:
— 020 = (1.367,—0.841), 059 = (1.364, —0.803), O399 = (1.365, —0.802).
— Iso(f5 fo) = 2.902, Iso(f; fo) = 2.937, I300(f; fo) = 2.916.

Table C.3: Best fitting (bottom lines) and the bias of estimated coefficients for six different meth-
ods for the ARMA(3, 2) misspecified case fitting AR(2) model for the standardized chi-squared
innovations. Standard deviations are in the parentheses. We use red text to denote the smallest
RMSE and blue text to denote the second smallest RMSE.

Bias

Par. Gaussian Whittle Boundary Hybrid Tapered Debiased BC-tYW BC-NP
¢1(0.381) 0.001(0.08)  -0.013(0.09) -0.002(0.09)  0.001(0.09) -0.003(0.09)  0.004(0.09) 0(0.09) 0.001(0.12)
¢2(-0.294) | -0.001(0.09) 0.014(0.1) -0.001(0.09)  -0.002(0.09)  0.006(0.09)  -0.008(0.11) -0.002(0.09) -0.010(0.13)
$3(0.315) | -0.004(0.09) -0.027(0.1) -0.005(0.09)  -0.003(0.09)  -0.015(0.09) 0(0.1) -0.003(0.09)  -0.005(0.12)
$4(-0.963) | 0.034(0.09) 0.097(0.09) 0.040(0.09) 0.034(0.09) 0.073(0.09) 0.038(0.11) 0.036(0.09) 0.068(0.12)
¢5(0.285) | -0.007(0.09) -0.032(0.09) -0.009(0.09) -0.005(0.09) -0.018(0.09) -0.004(0.1) -0.007(0.09)  -0.005(0.12)
¢6(-0.240) | 0.007(0.09) 0.029(0.09) 0.009(0.09) 0.006(0.09) 0.018(0.09) 0.003(0.1) 0.007(0.09) 0.006(0.12)
¢7(0.280) | -0.019(0.08)  -0.047(0.09) -0.021(0.09) -0.018(0.09) -0.034(0.09) -0.020(0.1) -0.019(0.09)  -0.026(0.11)
¢8(-0.663) | 0.058(0.08) 0.114(0.08) 0.062(0.09) 0.059(0.09) 0.098(0.08) 0.065(0.1) 0.060(0.08) 0.107(0.1)
nl¢ — (?)”2 7.006 16.607 7.728 7.107 13.054 7.889 7.319 13.001

Table C.4: Bias and the standard deviation (in the parenthesis) of eight different quasi-likelihoods
for the AR(8) model for the standardized chi-squared innovations. Length of time series n=100.
True AR coefficients are in the parenthesis of the first column. We use red text to denote the
smallest RMSE and blue text to denote the second smallest RMSE.
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APPENDIX D

TECHNICAL LEMMAS *

D.1 Technical lemmas in Sections 2.3 and 3

The purpose of this section is to prove the main two lemmas which are required to prove

Theorems 2.3.3 and 3.2.1.

Lemma D.1.1. Suppose Assumption 2.3.2 holds. Let
— Z (X X, — E[X, X/))e™ and T = ¢, —E[¢,],

where Cj,, = n~! Z?;ljl XiXiy(j. Then for any I and J of size r and s with r = 0,1,2 and

r+s=m=z=2

cum <u10,5?m> = O(n ™) r=0,mz>=>2 (D.1)
— O(n™m r=1,m=2
cum (ﬁ?l,c%? ) _ o (D.2)

cum (7i5",5"7") = (D.3)

The next result is a little different to the above and concerns the bias of ¢; ,,. Suppose Assumption

2.3.1 (ii) holds. Then,

sup [E[¢j,.] —¢j| = O(n™1). (D.4)

0<j<n

“Parts of this section have been modified with permission from [S. Das, S. Subba Rao, and J. Yang. Spectral meth-
ods for small sample time series: A complete periodogram approach. Journal of Time Series Analysis (To appear),
2021, https://doi.org/10.1111/jtsa.12584.] and [S. Subba Rao and J. Yang. Reconciling the Gaussian and Whittle like-
lihood with an application to estimation in the frequency domain. Annals of Statistics (To appear), arXiv:2001.06966,
2021.]
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PROOF. By assumption 2.3.1 (ii), supy <, n|E[¢;] — ¢;| = supy;<, |ic;| = O(1) as n — oo,
thus (D.4) holds.
Before we show (D.1)~(D.3), it is interesting to observe the differences in rates. We first

consider the very simple case and from this, we sketch how to generalize it. When m = 2,

n

"
lcum (73, &) | < s Z cov( X, X;e™ X, X))

=
n—

Z cov (X, Xy )eov( Xy, Xo )

m»—-

N

+COV(Xt, XTJrj)COV(Xi, XT) + Cum(Xt, Xi; XT, XT+])’

Under Assumption 2.3.2,

nﬂ*

ZZ (|ka(t — T)Ro(i — 7 + )| + |ka(t — 7 — kol — T)| + |kali — t,7 —t, 7 + j — 1)|) < o0
t=1 =1

for all n. Thus

cum (72, &) | = O(n™?).

This is in contrast to

n—|ji[ n—|je|
1

2 2 cov(XeXerj, XrXrsj,)

cum (\C/jl ) \C/j2)

n2
n t=1 7=1
n—|ji[ n—|je|
= n2 2 2 cov (X, Xr)cov(Xipjy, Xrigy) + cov(Xy, Xopj, )eov( Xy, Xr)
t=1 7=1

+Cum<Xt7 Xt+j1 ) X7'7 XTJrjz)]
n—|j1| n—|jo|

= 0t Y 3 [melt = m)kalt =7+ i — o) + ot =7 — )Rt =7 + i)
t=1 7=1

+r4(j1, T —t, T —1 +j2)].
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and

~ ~ 1 $ W ITW
cum (fi;,, fliy) = n_z X, X, ™, X, X;,e'™)

= n Z /{2 (t — T)Ra(i1 — i) + Ka(t — ig)Kka(T — 11)

+/i4<21 - t, T — t, iQ — t)]
Unlike cum (fi;, ¢;), there is a term that contains (¢ — 7) which cannot be separable. Thus
leum (G5, &) = O(n™"),  Jeum (i, fiiy)| = O(n7").

From the above examples, it is important to find the number of “free” parameters in each term
of the indecomposable partition. For example, in cum (i;, ¢;) there are 3 possible indecomposable

partitions, and for the first term, |k2(t — 7)k2(i — 7 + j)|, we can reparametrize
Z1 = t— T, Z9 =T

then by the assumption,

n n—|j|
=y 2 [a(t = T)ra(i — 7+ J) <% D [ka(z)kali 4+ § — 2)] < O,
t=1 =1

Z1,ZQ€Z

However, for the first term of cum (¢, , ¢j,), ko(t — T)r2(t — 7 + j1 — jo2), there is only one free
parameter which is (¢ — 7) and thus gives a lower order, O(n™!).

Lets consider the general order when m > 2. To show (D.1), it is equivalent to show the
number of “free” parameters in each indecomposable partition are at least m — 1, then, gives an
order at least O(n~™"!) which proves (D.1). To show this, we use a mathmatical induction for m.

We have shown above that (D.1) holds when m = 2. Next, assume that (D.1) holds for m, and
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consider

n—|jl n—|j|
cum (E?W,Ej) =n! Z cum (E?W,XtXHj) = p~(m+1) Z Z cum,, (E?m,XtXHj)

t=1 t=1 vel’

where [ is a set of all indecomposable partitions, and cum, is a product of joint cumulants char-
acterized by the partition v. Then, we can separate I' into 2 cases.

e The first case, I'y, is that the partition it still be an indecomposable partition for Ef?m after
removing {¢,t+j}. In this case, by the induction hypothesis, there are at least m—1 free parameters
in the partition, plus “t”, thus at least m free parameters.

e The second case, I's, is that the partition becomes a decomposable partition for E?m after
removing {t,¢ + j}. Then, it is easy to show that I'5\{t,¢ + j} = A U B where A and B are
indecomposable partitions with elements 2a and 2b respectively where a + b = m. Moreover,t and

t + j are in the different indecomposable partitions A and B. In this case,

n—|7| n—|jl ,

Q™ — = &
Z Z cumy, (CJ ,XtXt+j) = Z Z cuny,, (CJA,Xt) Z cui,, (CJB,Xt+j> .
t=1 wvel'g t=1 v1€A v1€B

In the first term (E?:, Xt) , there are at least a—1 free parameters plus “t”, and thus Zvl 4 CUNLy, (E?:, Xt) =

O(1), thus
= ) n—lji
n—mtl Z Z cumy, (E?:,Xt) Z cum,, <E§)B’Xt+j> < Op~m+1 Z 1=0(m™).
t=1 v1€A viEB t=1

Therefore, by induction (D.1) is true. For (D.2), when m > 2, it loses an order of one. For

example, when m = 3

1 n n—jin—ja

Z Z Z |Cum(Xt1Xi7Xt2Xt2+j17Xt3Xt3+j2)|'

t1=1ta=1 t3=1

|Cum(/\zi> \C/jlﬂ\c/j2)| < E
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Then, above contains an indecomposable partition (see left panel of Figure D.1)

n n—jin—jz

n_3 Z Z Z |Cum(Xt17Xt27Xt?""jl)cum(Xi;Xt3,Xt3+j2)|

t1=1ta=1 tz3=1

=n3 (Z 2 |ka(ty —ti,te —t1 + ]1)|> (Z |Ka(ts, ts + j2 — Z)|> =0(n™?).

t1=1ta=1 t3=1

Similarly, for (D.3), when m = 4, cum(f;,, fii,, ¢j,, C;,) contains an indecomposable partition

—————————— < . \ e mmmmmm e m e
" / \ P T~
A .tl .tz ‘\ :.t3 ! !/ P o O~ \\
N _ i s N [ ) ot 4 ot ot AN ot v
- 1 \ \
e \ [ \ Y 1! \ 2 3 % 4 1
RN ! P i T Vo [
1 ! ! 1 T e T hS ' !
ref ret, ! ety 1 5 Tt~ \ 1o ]
\ 1 21 [ 3, ’ \ 1 I '
1 \ # ] 1
! Sl . Lol ol ) etz ooty
N,  temamm=m=T a=" 7’
__________________ N \ \

___________

Figure D.1: Left: indecomposable partition of cum(/i;, ¢j,, ¢;,). Right: indecomposable partition
of Cum(/\zh ) l\ziw \C/jl ) \C/jz)

(see right panel of Figure D.1)

n* Z |Cum(Xt17 Xt47 Xt4+j2)cum<Xt27 Xt37 Xt3+j1)cum(Xi17 XZ2)|

t1,t2,t3,ta

<On—4< D Iks(ts —tits—t +j2)!) ( > ng(tg—tz,tg—terjl)I) =0(n?).

t1,t4=1 to,tz=1

thus loses an order of two. Proof for (D.2) and (D.3) in a general case uses a similar induction

argument from the above but we omit the proof.

[

We now need to prove that the derivative of the random function g(-) defined in Theorem 2.3.3,
equation (3.21) is bounded in probability. We recall these bounds are required to show that the

final term in the Taylor expansion of .J, (w; fp) — I (w3 f») with respect to {c;}%_ is bounded in

probability.
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To do so, we define the following notation. Let ¢, = (o, ¢1, - . ., )" be a random vector such

that ¢, is a convex combination of the true covariance vector ¢, = (co,...,c,)" and the sample
covariance vector ¢, = (Con;---,Cpn)’. Thus ¢, is also a sample covariance that inherits many

of the properties of the original sample covariance ¢;,,. Based on these definitions we define the
matrix and vector Ep,nand T, Where (épm)s,t = Cs—¢and (T,,,)s = C,. As our aim is to bound the

derivatives in the proof Theorem 2.3.3, using (3.21) and (3.22) we define the random function

- [ n}NT}Le (w) G (w
(W, Gpn) = — 5= f =1 _Zg( ()w) (D.5)
1-— TpRp n€ ( ) 0,p
where
aé,p Z Ap4sn€ isw’ ap = 07
a4y = Rp nlpn and e,(w) is defined in (3.23). In the following lemma we show that the derivatives

of g¢pp(w,¢,,) are uniformly bounded in probability.

Lemma D.1.2. Suppose Assumptions 2.3.1 and 2.3.2 hold with m = 2. For 1 < { < p, let
gg,p(w,Ep) be defined as in (D.5), where we recall Ep denote a convex combination of the true
covariances c, = (cy, . . ., ¢,)" and the sample autocovariances ¢, = (Con, - - -, Cpn)"-

Ifp**>n=Y% — 0 as p,n — o, then for k € N* we have

k ~
a gévp(wﬁgp)
sup sup  sup |—m—————<—
w 1<l<p0<ji,.ju<p | OCj, =+ OCj,

= Op(l)-

PROOF. First some simple preliminary comments are in order. We observe that G ,(w) is a linear

. ~ o~ ~ / ~ "’_1~
function of @, = (d1, ..., dp,) and @, = R 'T,. Therefore

~ _ Enan, e4(w) _ g p(w)
gf,il’(w7§ n) 1 R 1 - 1 . a/ (w)
- Tp p.n& ( ) 0.p

is an analytic function of ¢, thus for all k we can evaluate its k order partial derivative.
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Since gy p(w is a function of a, we require some consistency results on @,. By Lemma

) pn)

D.1.1 (here we use Assumptions 2.3.1(ii) and 2.3.2), it is easy to show sup, E[C,,, — ¢s]* =
O(n~Y2) and ¢, is a convex combination of &, ,, and c,, then sup, E[¢, — ¢,]*> = O(n~?). Thus
since @, = f%; '7, we have

Qp_gph

’

= O, (pn~?). (D.6)

where | - [, is an £,-norm. With this in hand, we can prove that the derivatives of g, ,(w,¢,) are
uniformly bounded in probability. We give the precise details below.

In order to prove the result, we first consider the first derivative of g, (w By the chain

W, Cp -

rule, we have

8gg D P é’gg P 8’&Tp
L = — = I: '7
0c; r2=1 da,, Oc; ©.7)

where basic algebra gives

—irw dgp(w r</{
agé,p _ e~ _ % (W) (D.8)
0dry (1= Gop(w)) eifw(l _ Zi ias’pe—zsw "> 0
and
6&1 D aapp ' a@ a _1,\, 6R 1 a:p
= ’ =L - __R = R! R1F D.9
( &) T e 5 | BT R A ©-)

Therefore to bound (D.7) we take its absolute. We will bound the left hand side of an inequality

below

o o i,
Ir) < sup |2 | Y | S (D.10)
0c; ws,l | Os p — 0c;

which will prove the result for the first derivative. Therefore, we bound each term:
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SUp,, 5 ¢ |09,/ 0ds | and (0a1,/0¢;, . . ., 0a,,/0C;).

A bound for sup,, , ;|0gs,,/0ds | Using (D.8) gives

iy p
0Gep(w, C) 1 & e , N ,
sup sup|——4———| < sup sup — . Z Asyrpe Y|+ |1 — Za pe
o aar’p x w l<t<p ‘1 _2521 as,pe_ww|2 S_0| s+£,p ‘ | ~ S,p |
1 p
< sup S 142> [a, - (D.11)
S P e A

We first bound the denominator of the above. It is clear that

P P P
inf[1— > G,,e ™| > inf <|1 = Y agpe ) = | Y (asp — a&p)e—“ﬂ)
© s=1 “ s=1 s=1
P p
> inf (]1 — Z aspe | — Z las, — Qs p ) .
“ s=1 s=1

By using (D.6), we have [a, — @,|; = O,(pn~"/?) thus for pn~"/? — 0, we have that >"_, |a,, —

asp| = 0,(1). Moreover, by Assumption 2.3.1(i) (and the Baxter’s inequality), the first term is
bounded away from 0 for large p. Therefore, we conclude that inf,, |1 —>7_ @ e **“| is bounded

away in probability from zero, thus giving

1

1= 2t Gspe™f?

— 0,(1) (D.12)

as n,p — oo and pn~/? — 0. This bounds the denominator of (D.11). Next to bound the
D p

numerator in (D.11) we use again (D.6)

p

p
P
s=1 s

p
|asp| + Z |Gs.p = asp| = Op(1 + pn_1/2). (D.13)
1 s=1

Therefore, by (D.12) and (D.13) we have

ag&p(w’ E/)

| 0,(1). (D.14)

sup sup sup
w 1<e<p1<k<p
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A bound for (0a, ,,/0¢;, . . ., day,,/0¢;) We use the expansion in (D.9):

<aa1,p aapm)/ _ oa,, _ iR—IT - R! <@> a. + R—l%
] = .

o ) ] A . —p p
oc; oc; oc; oc;

We observe that the structure of Toeplitz matrix of R, means that 0R,/0c; has ones on the lower
and upper jth diagonal and is zero elsewhere and T,/ dc; is one at the jth entry and zero elsewhere.

Using these properties we have

R,
—a

R 1 a—p
oc; ~*

oc;

sup
0<j<p

< IR

p
< 2 Z las,| and  sup
s=1

0<y<p

where | A, is an operator norm induced by the vector £,-norm. Therefore, using the above and the

inequality |Az|; < |A[1|z|: gives

das 1 O0R, . 10£p
sup =2 < |R? a
; 0c; P 80 4 Poe;
0<j<p s J 1 7

p p
< 20BN D [@spl + 1B < 1B L (22 s p| + 1) , (D.15)
s=1

s=1

where we note that in (D.13) we have shown that >.7_, |, ,| = O,(1 + pn~/?). Next we show

fo’}j 1 = O,(1). To do this we define the circulant matrix C,,(f~"') where

2mk 2rk
(Col ™ = 1" Z (2 e (<itu =) ") = SRt m)
reZ
with Kp-1(r) = (2m)~! 5” fHw)e " dw. By using Theorem 3.2 in SY20,

1B, < MG D + 1R, = Go(F D < IG(f 7Dk + A(F)

where A(f) is a finite constant that does not depend on p (the exact form is given in SY20).
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Furthermore we have

|Co(f~ ul—gagjw \1@3330;%% uwﬂpl—élf(f r)| < .
A ™

altogether this gives |R,"|; = O(1). To bound the random matrix ||§Ij Y, we use that
[2, e < IR+ 1R, = By < R+ VIR, — By

By using similar argument to Corollary 1 in McMurry and Politis (2015), we have HZ%I; 'Ry =
O(pn~Y2). Thus, if p*?n~Y2 — 0 as p and n — co, then H}N%;lﬂl = O,(1). Substituting this into
(D.15) gives

0lls p - p
su S < R [ 2Y A, 1] = 0,(1). D.16
Oéjgpszl acj H D Hl ( Sgl| ,p| ) p( ) ( )

¢ Bound for the first derivatives Substituting the two bounds above into (D.10), gives the bound

for the first derivative:

0gp.p(w, ¢ 0ge (W, ¢
su % < sup sup sup 00e(,5) IR, 2|“8p|+1 Op (1).
w ¢ w 1<t<pisk<p| Olpp

¢ Bound for the second derivatives To simplify notation, we drop the subscript p in a; ), (though

we should keep in mind it is a function of p). Using the chain rule we have

a2g€,p ag&p < agé,p aarl aaT’g
Z ) Z - ) .

—2.
oc;0cj da, 801(30] Rt a, o0a,, 0Oc; 0cj

Thus taking absolute of the above gives

oa,
oc;

aQQZ,p 692

-
8ciac]

gé,p
oa, 0ay,.,

+ sup

P P
z:: 661603 T w (Z

r=1

> : (D.17)
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We now bound the terms in (D.17). We first consider the term 0 g, ,,/day.da,, which by using (D.8)

is

(k+t) arp(w) k.t </
829417 e—i +t)w
— = ilw /-1 isw
ei€w<1 _ Zi;i ase—isw) k?,t > ¢

Therefore, using a similar argument as used to bound (D.14), we have

2 ~
sup sup A~ A~
w 1Lk t<p Oaday

= 0,(1) (D.18)

with pn=2 - 0asp — oo and n —

Next, we obtain a probabilistic bound for |0%a/d¢;0¢;|;. Note that by (D.9)

o%a, L (OR, ., (OR, R, 101
Geoe; (aci)Rp (W) o+ By (8c )RP dc;

oR, R, 1 (O 10y
o (ec )R (a—@) G+ 1 (a—cj) o e

OR,\ da 0R,\ Oa
_ -1 P =p -1 Yip =p
B Rp ( &ci ) aCj * Rp ( aCj > (302' ’

Our focus will be on the first term of right hand side of the above. By symmetry, bound for the

second term is the same. Using the submultiplicative of the operator norm we have

[ OR,\ Oa ‘R, oa R 6@
r (G %) <imt ()5 <) %) <o
Ci Gl Gl ocj |
Therefore by (D.16),
4, <4|R| @ _o (1) (D.19)
0Sitep | 05O, |, I A '

The bounds in (D.18) and (D.19) gives bounds for two of the terms in (D.17). The remaining two

terms in (D.17) involve only first derivatives and bounds for these terms are given in equations
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(D.14) and (D.16). Thus by using (D.17) and the four bounds described above we have

2

0 Gep ~
T (0,2,
Cj, OCjy

sup sup sup
w  1<l<p 0<j1,J2<p

= OP<1)7

which gives a bound for the second derivative.

¢ Bounds for the higher order derivatives The bounds for the higher order derivatives follows a

similar pattern. We bound the mth order derivatives

m moy
" Gep o"a,
—— =~ and ———< —,
dag, 0y, . .. 0ay,, 0¢;, 0¢;, ... 0C;,

using the methods described above. In particular, we can show that

ora

ale 8ch e 8ij

0" Gp
(’)th &Ltg Ce 8atm

= 0,(1) and

= Op(l)-

Since these bounds hold for 1 < m < k, by using the chain rule we have

akg&p ~ o O 1
sup sup sup e e (w, &) = Op(1).
w 1<I<p 0<j1,k<p | 0C1 OCjiy - - - OCjy
This proves the lemma. ]

Finally, we state the following lemma which is required to prove Theorem 2.3.3

Lemma D.1.3. Suppose the same set of Assumptions in Theorem 2.3.3 holds. Let E11(-), ..., E3a(+)
is defined as in (3.25). Then, the following error bounds hold:

The first order expansion yields the bounds

E[Fu(w)] = o(i), var[En<w>J=0(pi),

E[En(w)] = O (i—z) var[Epa(w)] = O (i—z)

207



The second order expansion yields the bounds

E[F(w)] = o(p—g), var[%(@]:o(pi),

BlEa)] = 0(5). wlba)-o0(L).

Altogether, the third order expansion yields the probablistic bounds

Bz (w) = O, (i—z) Es(w) = O, (inj2> :

PROOF. Bound for F;(w) and F1(w)

e Bound for F;(w): We partition £y (w) into the two terms

p p ! w, ¢
By (w) = Z INACEED) M = Ein(w) + Eiz(w)

E[Bu(w % D
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Next we consider the variance

- v ]290.0(w, ¢,) 0ge, p(w, c,)
var[Ey (w Z Z |cov (e, &y Fiey G, )| | =5 —————2——" .

71.72=0 6102 =1 0¢;, 0cjy

Splitting the covariance gives

COV(ﬁgl Ejl ) ﬁﬁz Ejz )

= COV(IE& ) IE&)COV(E]& ) \C/jz) + COV(ﬁgl, \C/jQ)COV(/“\ZEQ ) Ejl) + Cum(ﬁﬂz ) \C/ju /\Zfza E]é)'
By using Lemma D.1.1, the above is
‘Cov(ﬁfl\c/jwﬁb\éjz)‘ = O(n_2>7

thus by Lemma D.1.2

C & > 8951 P 0952 P(wv Qp) p4
VaI'[EHl = —2 Z » Z acjl acj2 = O (ﬁ) .

Next we consider Ey12(w):

P 0gpp(w,c,)

E[Er2(w)] E(fi] (E[¢j] — ¢]) —5—2 =

j; ;1 t,o_z aCj

and
. . 0oy p(W, ) OGe, p(W, €

var[E1a(w Z Z cov(fie,, fie,) (E[2;,] — ¢;,) (E[¢j.] — ¢5,) . - . p)-

J1da=1 b1 0a=1 0cjy 0¢j,

Again by using Lemma D.1.1 and D.1.2 (which gives |cov(fis, , fie,)| < C/n and [E[¢;,] — ¢;,] <
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C'/n), a bound for the above is

& agh P 8952 p( ) p4
var[Eng < =0 (—> .
31%] 161; 1 acﬂ ocy n’
Thus altogether we have
P’ p*
E[E11(w)] = O (E) , var[Ep(w)] =0 (ﬁ) ) (D.20)

P81 & o 0grp(w,c
Epw) = Z Z - Z E[X, X/]e"™ (¢; — ¢;) %
- j

1 S ~ agf,p(wa(_jp)
= ﬁ;);lf&n(w) @ j>a—cj
= Ein(w) + Eixn(w)
where
0
Ey(w) = lZng,n(w)vj gﬂpa(éd %)
7=0/¢=1
p p 0
Bin) = 203 fi @Bl - o) L)
7=0/¢=1 J

and

ag 1, ag 2, w, C
VaI‘[Elgl Z Z f€1 n ffz n )COV(C]N CJ2) - gC( p) z ;é p) )
J1 J2

Jl J2=01£1,2=1
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By using Lemma D.1.1 and D.1.2, and (3.24) we have

09, p(w; €p) Oz p(w; Cp) _
8031 oc;,

C P p
VaI‘[Elgg = —3 2 Z

Next we consider F195(w) (which is non-random), using (3.24) we have

25)-o(3)

C p
|E122 EZZ

Thus we have

2

E[E5(w)] = O <p—2) var(Ep(w)) = O (p—4> . (D.21)

n n3

This gives a bound for the first order expansion. The bound for the second order expansion given

below is similar.

Bound for Fs; (w) and Ea(w) The proof closely follows the bounds for Fi;(w) and Ej(w) but

requires higher order moment conditions.

e Bound for Fs;(w): We have

629&12 (w7 gp)

b (W) - acjl acjz

Z [jg (/C\ﬂ le) (EJQ - Cj2>

629&;0 (w7 Qp)

D e (5, (B[] = €3)) (8 + (BI2a] = €5)) —5 220
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where

1 0? Gep(w, )
Eon(w) = = 2 Zﬁ i1 Cis

2 J1,J2=0¢=1 ale ac]z

1 p p a gép(w ) 1 p p (,.) g£p<
Ena(w) = 3 Z Z fieCj, (B[S, ] = ¢35) +5 Z Z Lol (E[Cj ] — ¢5y) ’

2 j2=0 /=1 ac.]l aC,]2 2 j17j2=0 /=1 aCJI acj2

Comparing Fsi9(w) with E1q1(w), we observe that Eo5(w) is the same order as (p/n) Ey11(w), i.e.

3

E[E12(w)] = O <%) var[Eoa(w)] = O <£—i) :

Now we can evaluate the mean and variance of the “lead” term Es;;(w). To bound the mean and

variance, we use the following decompositions together with Lemma D.1.1
E[fic¢},&,] = cum(fig, &5, Ej,) = O(n™?)
and
cov[Jie, iy Gy e, iy Cia| = cOV(Jlgy , i, )cOV (Ejy , Gy )eov (G, jy) + (lower order) = O (n™%) .

Therefore, using Lemma D.1.2 we get E[Ey1(w)] = O(p*n~?) and var[Ey; (w)] = O(p®n=3).

Thus combining the bounds for Fy1(w) and Eg12(w) we have

E[Es (w)] = O (i) var[Ey (w)] = O (p—) . (D.22)
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e Bound for Fyy(w) Next we consider Fay(w)

Pgip(w,c,)

663'1 8Cj2

Enlw) = 2i D) fenl) @ - ) (@~ i)

1 & 0
= — Z Gy Gy Z fg,n(w)M + (lower order term).

By using Lemma D.1.1 we have

BlEa(] =0 (%) valba@] - 0 (%)

Probabilistic bounds for F3;(w), F32(w). Unlike the first four terms, evaluating the mean and

variance of Fsi(w) and E3s(w) is extremely difficult, due to the random third order derivative

*gep(w, ¢, ,)/0C;, 0¢;,0¢;,. Instead we obtain probabilistic rates.

S . o3
e Probabilistic bound for F3; (w): Using Lemma D.1.2, we have sup,, ; ;, J, J, | acge gcw ;C | = 0,(1)
7152, 1 jo J3

this allows us to take the term out of the summand:

0 gé,p —pn

E <
[ ()] o 0¢j,0¢;,0¢5,

w,,51,32,J2

Z Z’W Cjy — 1) (€ — ¢,) (Cjs — €55

]17J2»J3 =0/4=1

2 Z i (€5 = ¢i0) (€, = €5n) (€5 — €55)

J1,42,j3=04=1

Thus the analysis of the above hinges on obtaining a bound for E |1, (¢;, — ¢;,) (€, — ¢;,) (Cjs — ¢55)]s
whose leading term is E |[i,;, &}, 5, |. We use that E|A| < var[A]Y? + [E[A]| to bound this term
by deriving bounds for its mean and variance. By using Lemma D.1.1, expanding E [i,¢;, ¢;,¢5, |

in terms of covariances and cumulants gives

E [ﬁfzj15j25j3] = Z cov (fie, \C/ja)COV(\C/jb, Ejb) + cum [fi, Cjis \c/jz ) \C/js] = O(n_g)
{a,b,c}={1,2,3}
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and
e v w1 > - ~@F 2 _ —4
var|fi,¢;, ¢, ¢, | = var(fi) nvar(cjs) + ...+ cum <N1 ,C ) + cum(fig, ¢j,, Gy, Cjy ) = O(n™7).
s=1

This gives E |i, (¢j, — ¢j,) (Cj, — ¢j,) (€5 — ¢55)] = O(n™2), therefore

By(w) = O, (P_) .

e Probabilistic bound for F33(w): Again taking the third order derivaive out of the summand gives

6394 P( —pn

Eplw) < Sub 0C;. 0C,, 0C;
]1 ]2 ]3

w,l,j1,52,J2

Z Z|fen (@ = e) (€, — €52) (€5 — ¢55)

31J2J3 04=1

Z Z |(/c\j1 - le) (EJQ - Cjz) (/C\js - st)’ :

J1,J2,J3=0£=1

Using Lemma D.1.1 to evaluate the mean and variance of ¢;, ¢;,¢;, we have
v v v o —2 v v v . -3
E[¢,¢,¢5] = O(n™7) and  var[¢;,¢;,¢5] = O(n™),

thUS, EgQ(W) = Op (np5_‘j2> L]
D.2 Technical lemmas in Sections 2.4 and 4

In the case that the spectral density f corresponds to an AR(p) model, ¢;(7; f) = ’S’;g PjtsWyri—s
for 7 < 0. This result is well known (see Inoue and Kasahara (2006), page 980). However we

could not find the proof, thus for completeness we give the proof below.

Lemma D.2.1. Suppose fo(w) = 0|1 = 3, ¢je |72 = o?| 37 (e 7% where {¢;}5_,

correspond to the causal AR(p) representation. Let ¢;(T; f) be defined as in (2.1). Then ¢;(; f) =
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Zg;é ¢j+s¢\7|—s-

[Ap(éﬁ)wﬂip](l) = 2 Xo ) Gors¥ir|—s- (D.23)

where we set 1; = 0 for j < 0.

PROOF. To simplify notation let A = A,(¢). The proof is based on the observation that the jth

row of A™ (m > 1) is the (j — 1)th row of A™~! (due to the structure of A). Let (a1m, - -, apm)

denote the first row of A™. Using this notation we have

o1 P2 ... ¢p—1 ¢p

ai,m a2,m e Ap,m aim—1 @2m-1 --- Qpm—1
1 0 ... 0 0

a1,m—1 a2m-1 .- Apm-1 Q1m—2 A2m—-2 ... Qpm-2
=10 1 ... 0 0

a1m—p+1 A2m—p+1 -+ Apm—p+l 0 0 1 0 Gm—p A2m—p --- Apm—p

From the above we observe that ay ., satisfies the system of equations

Apm = Qelim—1 + Qpy1m—1 I<fi<p-1
apm = ¢pa1,m—1' (D.24)
.. . . . P . .
Our aim is to obtain an expression for ay,,, in terms of {¢, =1 and {1, 70 which we now define.

Since the roots of ¢(-) lies outside the unit circle the function (1—>37_, ¢;27)~" is well defined for
2| < 1 and has the power series expansion (1 — > | ¢;2) 71 = > ;2" for |2] < 1. We use the
well know result [A™], 1 = ay,, = ¥, (Which can be proved by induction). Using this we obtain

an expression for the coefficients {a,,;2 < ¢ < p} in terms of {¢;} and {¢);}. Solving the system
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of equations in (D.24), starting with a; ; = 11 and recursively solving for a,, ,,,, . . . , a2, we have

Qpr = gbp/l/)r—l m_pgrgm

Qe = Gea1p—1+ Qo1 I<l<p—-1, m—-p<r<m

This gives a, ., = ¢ptm—1, forl =p—1

Qp—1,m = ¢p—la1,m—l+ap,m—l

= ¢p71wmfl + wpwmfZ
Qp—2.m = ¢p—2a1,m—1 + Ap—1,m—1
= Opo¥m—1+ Op_1Vm—2 + Vpm_3
up to

Al = P101m—1 + A2 m—1

p—1
= Z ¢1+swm—1—s = (¢m>
s=0

This gives the general expression
s
Ap—rm = Z Pp—r+sVm—1-s 0<r<p-1
s=0

In the last line of the above we change variables with ¢/ = p — r to give form > 1

p—~L
Aym = Z ¢€+s¢m—l—s 1< l < D,
s=0
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where we set ¢y = 1 and for ¢t < 0, ¥y = 0. Therefore

) -
[ATHX T Z Z Pe+ 57| —s

Thus we obtain the desired result. ]

Lemma D.2.2. Let {¢;(fg)} and {1;(fy)} denote the AR(0), and MA(c0) coefficients correspond-
ing to the spectral density fy. Suppose the same set of Assumptions in Lemma A.2.1 holds. Let

{a;(fo)} denote the Fourier coefficients in the one-sided expansion
CD .
log Z (fo)?) = Z 9)z’  for|z| <1, (D.25)
Then for all 0 € © and for 0 < s < k we have

0
D15 Vi (fo)lr < 0,

J=1

PROOF. We first consider the case s = 0. The derivative of (D.25) with respect to z together with

(2 fo) 7 = dlz; fo) = 1 — 272, ¢i(fo) 2 gives

ijaj(fe)zj_l = (iﬂ/}j (fo)2'~ 1) <§:
= (Z J(fa)2 1) <i ) (D.26)

where 317 | Gi(fo)7 =1 — >y ¢i(fo)7?. Comparing the coefficients of 2/~ from both side of

above yields the identity

Jj—1 N
jai(fo) = D (G = Ot fo)du(fo)
=0
= 2 = Obi-i(fo)de(fo) for j=1. (D.27)
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Therefore, using the above and taking the absolute into the summand we have

0 o j—1 N
230l < 32557 = Ol fo)l19n( o)
Jj=1 j=1¢=0
= Z |~z(f9)| Z PG = O fo)] (exchange summation)
=1 Jj=0+1
= Z o(fo) Z s+ 05 sy (fo)] (change of variable s = j + ()
=1 s—1
< Y de(fo)l D s + OF [ fo) (s+0)7'<s™)
=1 s=1

Since K > 1, using inequality (a + )" < 25~1(a® + b™) for a,b > 0, we have

N

8+€ ) [ (fo)]

||M8

255 lay(fo)l 2l
j=1 (=1

< 2K‘1Z|5e(fe 2 K+ )]s fo)]

— (Z€K|¢e fo)l Z [Vs(fo)| + Z |6 fo)] 'ZSKWS(fH)\) < w0

=1

and this proves the lemma when s = 0.

To prove lemma for s = 1, we differentiate (D.27) with 6, then, by Assumption 4.2.1 (iii),

o0

Z IVoc; (fo)ln
o j—1 o j—1
<), Z 15576 = OV e(fo)Ge(Fo) L + D) D 155G = Oj—e(fo) Vodr(fa) n
J=10=0 j=14¢=0

Using similar technique to prove s = 0, we show >, 7% Vya;(fs)|1 < oo and the proof for

s = 2 is similar (we omit the detail). O
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