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ABSTRACT

The “Memory Wall” [1], is the gap in performance between the processor and the main

memory. Over the last 30 years computer architects have added multiple levels of cache

to fill this gap, cache levels that are closer to the processors are smaller and faster. On

the other hand, the levels that are far from the processors are bigger and slower. However

the processors are still exposed to the latency of DRAM on misses. Therefore, speculative

memory management techniques such as prefetching are used in modern microprocessors to

bridge this gap in performance.

First, we propose Synchronization-aware Hardware Prefetching for Chip Multiprocessors,

a novel hardware data prefetching scheme designed for prefetching shared-memory, multi-

threaded workloads. This is the first work we are aware of to characterize the causes of

poor prefetching performance in shared- memory multi-threaded applications. These are the

inability to prefetch beyond synchronization points and tendency to prefetch shared data

before it has been written. SB-Fetch, a low-complexity, low-overhead prefetcher design that

addresses both issues.

Second, we propose a new prefetching algorithm, Set-Level Adaptive Prefetching for Com-

pressed Caches (SLAP-CC), which seeks to address this problem by varying the prefetching

aggressiveness based on how much effective capacity is available in each set. The ontribu-

tions of this work is characterize the increase and per-set variability of cache efficiency which

typical cache compression schemes create, and propose a new prefetching scheme, SLAP-CC,

designed to leverage this cache efficiency variability.

Third, we propose a new scheduling mechanism that predicts hard-to-prefetch loads at

issue time and preemptively schedule them for execution as soon as they are ready, to allow

the cache hierarchy to start the mishandling mechanism sooner. Such scheduling mechanism

reduces the miss penalty on the dependent instructions after a hard-to-prefetch loads.
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1. INTRODUCTION

Big Data has revolutionized many areas of scientific research, science and technology.

For the last decade, computer scientists developed tools to mine, structure, and visualize

data in ways never before possible. As we move to the future to welcome the “Insight

Era.”, where machine learning and artificial intelligence are refined to facilitate data-driven

decision-making. Our ability to perform computation on massive data sets is expected to

increase.

Data-intensive computation forms significant challenges for computer architects. In par-

ticular, the volume and movement of large data sets generate significant stress on the memory

hierarchy, leading to performance bottleneck.

1.1 Speculative Techniques for Memory Hierarchy

The memory hierarchy has been a determining factor of overall system performance.

Access to off-chip memory costs many cycles and consumes more energy. Therefore, designing

efficient memory hierarchy requires low access latencies and maximizes the hit rates.

Figure 1.1 outlines a typical cache hierarchy in a modern system. The “Memory Wall” [1],

is the gap in performance between the processor and the main memory. Over the last 30

years computer architects have added multiple levels of cache to fill this gap, cache levels

that are closer to the processors are smaller and faster. On the other hand, the levels

that are far from the processors are bigger and slower. The goal of the this hierarchy is

to improve average memory access time by frequently handling the demand requests at the

cache, and avoiding the long access latency of DRAM. Despite this hierarchy the processors

are still exposed to the latency of DRAM on misses. Cache size is a key design parameter

that impacts performance, die area, and power consumption. With the end of Dennard

scaling [2], growing cache size comes at an increasingly high cost in terms of power and

energy consumption.
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Figure 1.1: Memory access latency.

To hide memory access latency, computer architects have focused on speculative memory

management techniques such as data prefetching; cache replacement policies; and reuse

prediction.

Data prefetching in particular gained a lot of interest in the computer architect com-

munity and has been deeply studied. In addition to that, hardware prefetchers have been

deployed in modern microprocessor design. Prefetching is predicting a subsequent memory

access and fetching the required values ahead of the memory access to hide any potential

long memory latency. To be effective, prefetching must be timely, accurate and introduce

low hardware overhead. Ideally, a perfect prefetcher could make all memory accesses hit in

the level one cache. However, in practice prefetchers may not be timely or accurate. Despite

the fact that hardware prefetchers have an impressive impact on instructions per cycle by

reducing the number of cache misses, the processor is still exposed to the memory wall on a

cache miss due to Hard-to-Prefetch loads.

Another cache optimization technique that interacts positively with data prefetching is

cache compression. Cache compression has the potential to increase the effective capacity
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of the cache with extra area overhead. Compressed caches can achieve the benefits of larger

caches without making the cache physically larger by fitting more cache blocks in the same

cache space. Building a compressed cache centered around two main components: a com-

pression algorithm that maps the data to a compressed format with fewer bits, and cache

layout to fit compressed blocks in the cache [3]. To be effective, cache compression must be

fast, simple, and effective in saving storage space. Therefore, the compression ratio should

be large and the hardware complexity of implementing the scheme should be low in terms

of area and power. The biggest challenge to build a compressed cache in modern micropro-

cessors is the decompression latency. Unlike compression latency, which can take place off

the critical path, decompression is on the critical path and increases the cache access time.

1.2 Dissertation Statement

In this dissertation, we aim to develop a new set of speculative techniques for modern

memory hierarchies, resulting in performance improvements and attractive to be imple-

mented in future systems.

To this end, we first characterize the causes of poor prefetching performance in shared-

memory multi-threaded applications. These are the inability to prefetch beyond synchro-

nization points and tendency to prefetch shared data before it has been written. Building

upon this characterization, we propose SB-Fetch, a low-complexity, low-overhead prefetcher

design that addresses both issues.

Second, we propose a new prefetching algorithm, Set-Level Adaptive Prefetching for Com-

pressed Caches (SLAP-CC), which seeks to address this problem by varying the prefetching

aggressiveness based on how much effective capacity is available in each set. The contribu-

tions of this work is characterize the increase and per-set variability of cache efficiency which

typical cache compression schemes create, and propose a new prefetching scheme, SLAP-CC,

designed to leverage this cache efficiency variability.

Third, we propose a new scheduling mechanism that predicts hard-to-prefetch loads at

issue time and preemptively schedule them for execution as soon as they are ready, to allow
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the cache hierarchy to start the mishandling mechanism sooner. Such scheduling mechanism

reduces the miss penalty on the dependent instructions after a hard-to-prefetch loads.

Each speculative technique is designed to have low hardware complexity so that it can

be easily implemented in future systems.

1.3 Dissertation Organization

In the following chapters, each speculative technique is first introduced with the main

research motivations that lead up to this work, followed by detailed design implementation,

then followed by evaluation methodology and results obtained. To put our work into per-

spective, Chapter 2 introduces a background and some of the most relevant related work.

Chapter 3 discusses the synchronization-aware hardware prefetching for chip multiprocessors.

Chapter 4 introduces set-level adaptive prefetching for compressed caches. In Chapter 5 we

present our new scheduling mechanism for hard to prefetch loads. Finally, Chapter 6 con-

cludes this dissertation.
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2. BACKGROUND AND RELATED WORK

Our work builds on the contributions of many other researchers to the field. To place our

work in the context of other research, we now review some of the most recent related work.

2.1 Data Prefetching

Data prefetching is a well known technique in which the cache is pre-filled with useful

data ahead of an actual demand load request coming from the processor. Several hardware

prefetchers with diverse prefetching strategies have been proposed in the literature.

History-based prefetching is the most commonly used among hardware prefetching strate-

gies, where a prefetch engine uses the history of memory references to predict future refer-

ences and generate prefetch requests. Spatial Memory Streaming (SMS) prefetcher is one

of the current top-performing, light-weight, history based prefetchers [4, 5]. SMS predicts

the future access pattern within a spatial region around a miss, based on a history of access

patterns initiated by that missing instruction [4]. SMS uses the concept of a spatial region

which begins with the first demand miss to a region and ends with the eviction or invalida-

tion of any block from that region [4]. Spatial prefetchers are ineffective for pointer-based

data structures with arbitrary memory layouts and have shown limited effectiveness for some

workloads with many pointer-chasing access patterns [4, 6, 7, 5].

Runahead-based prefetching uses the execution core to pre-execute a set of instructions

speculatively instead of stalling the resources on a long latency cache miss that goes all the

way to memory [8, 9, 10]. Run-ahead was originally proposed in the context of in-order cores

by Dundas and Mudge [11]. Mutlu et al. proposed an implementation to support runahead

execution in out-of-order processors [8], in the implementation, when a memory operation

misses in the second-level cache, the processor enters runahead mode and speculatively pre-

executed future instructions to initiate prefetching. The drawback with using runahead

prefetchers, there is a large overhead to recover from the runahead mode and restart normal
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execution. Also, because of this overhead, the effectiveness of this mechanism to handle

shorter latencies like the first-level cache miss latencies is reduced [12, 13, 6, 5, 8, 9, 10].

Branch-predictor-directed prefetchers reuse existing branch predictors to explore future

control flow. These techniques use the branch predictor to recursively make future predic-

tions to find instruction-block addresses for prefetch. Because branch predictors are decou-

pled from the rest of the pipeline, predictors can theoretically advance ahead of execution

to an arbitrary extent to predict future control flow. Liu at el. [14, 12, 13, 6, 5] proposed

branch-based data prefetching, which associated the history of data references to the previ-

ous branch instructions in the Branch Target Buffer (BTB). The BTB is then used to issue

prefetches for load instructions following the branch instruction in the program flow. Pinter

at el. proposed Tango prefetcher for superscalar implementations, to further improve the

quality of stride-based reference prediction table approach proposed by Chen at el. [15]. Some

prefetchers, such as B-Fetch [12, 13, 6, 5], are triggered by the fetch of a branch instruction

by the processor, making them more suitable for prefetching beyond synchronization points

as we will discuss. B-Fetch is a data cache prefetcher that employs two speculative compo-

nents. It speculates on the expected path through future basic blocks, using a lookahead

mechanism that relies on branch prediction to predict that execution path, and a scheme

to predict the effective addresses of load instructions along that path based on the register

file transformations per-basic block [12, 13, 6, 5]. B-Fetch records the variation of register

contents at earlier branch instructions and uses this knowledge to predict the effective ad-

dress. B-Fetch is a light-weight and very accurate prefetcher, but it requires a very complex

hardware and a lot of hooks to the microarchitecture [12, 13, 6, 5].

Sequential Pattern Prefetchers are limited to waiting until a cache miss occurs, and

then reading either a set of lines sequentially following the current miss [16], a set of lines

following a strided pattern with respect to the current miss [17], or a set of blocks spatially

around the miss [4, 5]. More recent prefetchers attempt to predict complex, irregular access

patterns [4, 18, 19, 20, 21, 22, 6]. While these methods show significant benefit, they are
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inherently reactive, waiting until a cache miss occurs before they initiate prefetches down

the speculated path.

Some recent prior work has examined the case of prefetching in specialized multi-threaded

environments. In particular Lee et al examine prefetching mechanisms for GPGPUs [23] and

Izraelevitz et al discuss how a policy of “always-abort” can improve performance for hardware

transactional memory [24]. While these a works have a similar intent to the work presented

here the specialized domains of GPUs and HTM respectively make their solutions hard to

generalize to traditional shared memory CPUs.

2.2 Cache Compression

Cache compression has the potential to increase the effective capacity of the cache with

extra area overhead [25]. Compressed caches can achieve the benefits of larger caches without

making the cache physically larger by keeping more cache lines in the same cache space.

Designing a compressed cache includes a compression algorithm and compressed cache layout.

The compression algorithm represents a cache block with fewer bits, while a compaction

mechanism determines how to read/write a compressed cache block to the cache [26, 27, 28,

29, 30].

Zero-value algorithms are limited to zero cache lines with low latency. Zero-Content Aug-

mented cache design uses auxiliary cache to represent zero cache lines [31]. Frequent Value

Compression (FVC) encodes frequent values present in cache lines with fewer bits [29, 28].

The downside of FVC, it only compress frequent values and cannot exploit other commonly

found patterns [29, 28, 26]. Pattern-Based Compression [32, 33, 3] exploits the fact that many

values are narrow (e.g., small integers) and can be represented using a small number (e.g.,

4-8) of bits, but are normally stored in full 32-bit or 64-bit words. Base-Delta-Immediate

(BDI) compression exploits spatial value locality, i.e., the observation that values that are

spatially close in memory also tend to have small differences in their values [26]. BDI rep-

resents a block using one or more base values and an array of differences from the base

values [26].
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Typical cache stores one tag address to track a fixed-size cache block. The corresponding

tag is used to perform hit detect for the cache block. In order to track more blocks, com-

pressed caches are required to store more tags, which result in more area, power. Simple

cache design double the number of tags (i.e., 2x Block Tags), allowing them to track up

to twice as many cache blocks in the cache [32]. Decoupled Compressed Cache (DCC) [21,

22] and Skewed Compressed Cache (SCC) [25, 34] use more complex designs to reduce the

number of extra tags, by exploiting spatial locality and use super-block tags to track more

blocks and reduce the extra tag overhead.

2.3 Load Criticality

Cache optimization techniques such as data prefetching and cache compression cache have

an impressive impact on performance and effectively minimize the impact of the performance

gap between the execution core and memory subsystem. Even though the processor is still

exposed to the memory wall on a cache miss due to hard to prefetch loads. Modern Out-of-

Order microprocessors employ large instruction queue to exploit instruction-level parallelism.

Program criticality can be described using a data-dependency graph; there exists one or more

paths through the graph with a maximum length; such a path is called a critical path [35].

Instruction along that path called criticality instructions. A critical load is a load instruction

that is on the critical path. Due to variable latency when executing load instruction based

on the cache level that is responsible to source the target data, non critical load instructions

have a big impact on the execution time when cache misses take place. In a system with data

prefetcher, these loads expose the processor to long latency because they hard-to-prefetch.
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3. SYNCHRONIZATION-AWARE HARDWARE PREFETCHING FOR CHIP

MULTIPROCESSORS ∗

Shared-memory, multi-threaded applications often require programmers to insert thread

synchronization primitives (i.e. locks, barriers, and condition variables) in critical sections

to synchronize data access between processes. Scaling performance requires balanced per-

thread workloads with little time spent in critical sections. In practice, however, threads

often waste time waiting to acquire locks/barriers, leading to thread imbalance and poor

performance scaling. Moreover, critical sections often stall data prefetchers that mitigate

the effects of waiting by ensuring data is preloaded in core caches when the critical section

is done.

This chapter introduces a pure hardware technique to enable safe data prefetching beyond

synchronization points in chip multiprocessors (CMPs). We show that successful prefetch-

ing beyond synchronization points requires overcoming two significant challenges in existing

techniques. First, typical prefetchers are designed to trigger prefetches based on current

misses. Unlike cores in single-threaded applications, a multi-threaded core stall on a syn-

chronization point does not produce new references to trigger a prefetcher. Second, even if a

prefetch were correctly directed to read beyond a synchronization point, it will likely prefetch

shared data from another core before this data has been written. This prefetch would be con-

sidered “accurate” but highly undesirable because it would lead to three extra “ping-pong”

movements due to coherence, costing more latency and energy than without prefetching.

We develop a new data prefetcher, Synchronization-aware B-Fetch (SB-Fetch), built as an

extension to a previous single-threaded data prefetcher. SB-Fetch addresses both issues for

shared memory multi-threaded workloads. The novelty in SB-Fetch is that it explicitly issues

prefetches for data beyond synchronization points and it distinguishes between data likely
∗Reprinted with permission from “SB-Fetch: Synchronization aware hardware prefetching for chip mul-

tiprocessors” by L. M. AlBarakat, P. V. Gratz, and D. A. Jimenez 2020. Proceedings of the 34th ACM
International Conference on Supercomputing, Copyright 2020 by Association for Computing Machinery.
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and unlikely to incur cache coherence overhead. These two features are directly synergistic

since blindly prefetching beyond synchronization is likely to incur coherence penalties. No

prior work includes both features.

SB-Fetch is evaluated using a representative set of benchmarks from Parsec [36], Ro-

dinia [37], and Parboil [38]. SB-Fetch improves execution time by 12.3% over baseline and

4% over best of class prefetching.

3.1 Introduction

The scaling of computer systems through the final CMOS process technology genera-

tions poses a grand challenge for the computing industry. Despite increasing transistor

density, performance and power gains that traditionally accompanied process scaling have

largely ceased. This trend has manifested in the current proliferation of chip-multiprocessors

(CMPs) replacing single core processors as the dominant processor design, due to their lower

power consumption for similar performance, however, blithely scaling core counts with future

process technologies will quickly lead to diminishing returns, particularly for shared-memory,

multi-threaded applications. In these applications, core and thread-count scaling often leads

to performance destroying workload imbalances [39, 40]. One of the major causes of these

thread-level workload imbalances, as well as degrading performance in general, is memory

latency.

Prefetching is a well-studied technique to reduce the impact of memory latency. Prior

work has shown that prefetching produces substantial performance gains on typical single-

threaded and multi-application workloads [4, 41, 13, 22]. Unfortunately, multi-threaded

applications typically see little to no performance benefit from existing prefetching schemes.

Figure 3.1 shows the speedup of multi-threaded applications under a previously proposed

prefetching scheme [12, 13]. The figure shows that, at best, the performance improvement

of the previous scheme is marginally positive, and at worst performance is significantly

degraded despite evidence that several are memory bound [40, 36]2. There are two main
2On single-threaded, multi-programmed workloads, B-Fetch sees an average gain of 31%[13].
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Figure 3.1: Speedup of Parsec [36], Rodinia [37], and Parboil [38] workloads with B-Fetch [12,
13], normalized against a no-prefetching baseline.

reasons for the poor performance of traditional prefetching techniques on these workloads:

First, most prefetchers only issue a prefetch when a cache miss occurs in that core. In multi-

threaded applications, the ideal time to pre-load the cache is while a given thread is waiting

on thread synchronization. This represents a significant wasted opportunity because thread

synchronization primitives contain no (relevant) cache misses.

Second, for those few prefetchers that issue prefetches without a triggering miss (e.g.

B-Fetch [12, 13]), prefetching shared data, even with perfect accuracy, might incur excess

invalidations in the event that the prefetched data is read before it is written in the producing

core. This is the primary cause of B-Fetch’s performance loss in the figure. No prior work we

are aware of has identified and addressed these two issues in prefetching for multi-threaded

applications.

Here, we present Synchronization-aware B-Fetch (SB-Fetch), a data prefetching scheme

designed for prefetching shared-memory, multi-threaded workloads. This work makes the

following contributions:

• This is the first work we are aware of to characterize the causes of poor prefetching

performance in shared-memory multi-threaded applications. These are the inability to

prefetch beyond synchronization points and tendency to prefetch shared data before it
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has been written.

• Building upon this characterization, we propose SB-Fetch, a low-complexity, low-

overhead prefetcher design that addresses both issues.

• We show that SB-Fetch provides a speedup of 12.3% over baseline and 4% over best

of class prefetching [4, 21].

3.2 Motivation and Background

3.2.1 Data Prefetching

Data prefetching is a well known technique in which the cache is pre-filled with useful data

ahead of an actual demand load request coming from the processor. Typically, the prefetching

opportunity is limited to waiting until a cache miss occurs, and then reading either a set of

lines sequentially following the current miss [16], a set of lines following a strided pattern

with respect to the current miss [17], or a set of blocks spatially around the miss [4]. More

recent prefetchers attempt to predict complex, irregular access patterns [4, 18, 19, 20, 21, 22].

While these methods show significant benefit, they are inherently reactive, waiting until a

cache miss occurs before they initiate prefetches down the speculated path.

Some prefetchers, such as B-Fetch [12, 13], are triggered by the fetch of a branch instruc-

tion by the processor, making them more suitable for prefetching beyond synchronization

points as we will discuss. B-Fetch is a data cache prefetcher that employs two speculative

components. It speculates on the expected path through future basic blocks, using a looka-

head mechanism that relies on branch prediction to predict that execution path, and a scheme

to predict the effective addresses of load instructions along that path based on the register

file transformations per-basic block. B-Fetch records the variation of register contents at

earlier branch instructions and uses this knowledge to predict the effective address.

Some recent prior work has examined the case of prefetching in specialized multi-threaded

environments. In particular Lee et al examine prefetching mechanisms for GPGPUs [23] and

Izraelevitz et al discuss how a policy of “always-abort” can improve performance for hardware
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transactional memory [24]. While these a works have a similar intent to the work presented

here the specialized domains of GPUs and HTM respectively make their solutions hard to

generalize to traditional shared memory CPUs.

3.2.1.1 B-Fetch Microarchitecture

Since B-Fetch is one of the few prefetchers that explicitly speculates down a future path of

execution and that does not wait for a memory reference to miss before it starts prefetching,

we will use it as a basis for the work in this chapter. Thus we here present a recap of the

B-Fetch microarchitecture as originally published [13, 12].

Program construction can be mapped into a control flow graph as shown in Figure 3.2.

As shown in the figure, the outcome of each branch determines which basic blocks will

ultimately be executed. In the figure, there are three possible such paths, highlighted as

A , B and C . In each case, which loads are issued is directly dependent upon the path

taken through the code as shown. Further, the particular effective addresses themselves are

dependent upon the path taken through the code, as each basic block causes transformations

to the data in the register file as execution continues.

Assembly Code

A

beq r5, #1, LOC1

LOC1: xor r8, r8, r8
load r2, 4(r7)
add r2, r3, r2
addi r4, r2, 0x64

beq r1, #2, LOC2

LOC2: addi r9, r5, 0x64
    
    load r6, 20(r7)
    addi r9, r8, 0xC8

END: load r2, 4(r9)
add r5, r4, r2

    
    load r3, 20(r7)
    sub r5, r6, 0xC8

B

beq r5, #1, LOC1

load r3, 20(r7)

sub r5, r6, 0xC8

beq r1, #2, LOC2

load r6, 20(r7)

addi r9, r8, 0xC8

jmp END

 LOC1: xor r8, r8, r8

load r2, 4(r7)

add r2, r3, r2

addi r4, r2, 0x64

jmp END

 LOC2: addi r9, r5, 0x64

 END: load r2, 4(r9)

add r5, r4, r2

Not
Taken Taken

Not
Taken Taken

Control Flow Graph

C

Figure 3.2: Data Access and Control Flow.
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B-Fetch uses a lookahead mechanism that predicts the likely path of execution starting

from the current non-speculative branch and issues prefetches for the memory references

down that path. B-Fetch relies on the idea that register values at the time of effective

address generation are correlated in a predictable way from their corresponding values at a

time when their preceding branch instructions were executed and the transformations that

occur to them over the course of the blocks to that point. Figure 3.3 shows the overall system

architecture of a B-Fetch together with an out-of-order processor core. It shows the main

core execution pipeline and the auxiliary hardware for B-Fetch preftecher.

I-buffer

D-cache

L1

I-cache I-L1

Issue Q

FU FU FU FU

Branch Prediction

Fetch

Branch

redirect

Decode

Dispatch

B-Fetch Out-of-Order Core         

EXE EXE

Register 

Lookup

Branch

Lookahead

Prefetch 

Calculate

Branch Trace Cache

Path Confidence 

Estimator 

Alternate Register File

Memory History Table

Pre-Load Filter

Complete/Retire

Functional Units

Decoded Branch 

Register 

Update

Figure 3.3: B-Fetch microarchitecture.

B-Fetch is composed of a 3-stage pipeline that runs parallel to the core pipeline. The
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Decoded Branch Register (DBR) connects B-Fetch to the cores’s Fetch stage. When a branch

instruction is decoded in the main execution pipeline, the PC of the branch instruction is

added to the DBR. This branch PC and target address starts the prediction of the future

execution path, memory instructions, and their effective addresses.

Here we describe each of the major microarchitectural components of B-Fetch and their

purpose.

Branch Lookahead Stage: This stage is similar to the fetch stage in the main pipeline.

The duty of this stage is to generate the speculative exception path from the currently

decoded branch. This stage includes two main components. First, the Branch Trace Cache

that traces the branch instructions in the dynamic instruction stream. This is used to create

set of pointers in the program control flow marked by branch instructions, allowing the

prefetcher to skip the branch instructions in between. By doing so, the branch trace cache

help guide the lookahead stage forward and the branch predictor and target buffer to help

maneuver it in the right direction. The second component is Path Confidence Estimator

that is used to throttle speculation in the event that the cumulative branch predictions to

this point are not confident. This component prevents the issuing of useless prefetches and

cache pollution.

Register Lookup Stage: This stage retains information about the registers which produce

loads in each basic block to generate effective addresses for the given block. This stage

includes two main components. First, the Alternate Register File (ARF) maintains a copy

of the register file contents for use in generating predicted prefetch effective addresses. To

ensure timely updates to the ARF, a copy of execution stage generated register values is

used to perform updates. The second component is the Memory History Table (MHT)

that maintains source register indices, current register values, and offset values to calculate

effective addresses for prefetch candidates.

Prefetch Calculate Stage: This stage is responsible for generating the prefetch addresses

that are issued to the prefetch queue. It synthesizes the data from the MHT and ARF to
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produce a stream of predicted future memory references. This stream is then passed through

the pre-load filter that keeps track of the issued but useless prefetches on a per-load basis.

Loads found to typically produce useless prefetches are prohibited from producing a prefetch.

We note that it is beyond the scope of the current work to discuss the full details of the

previously published B-Fetch microarchitecture, for that we point the reader towards the

prior work [13, 12]. That said, we would like to point out that B-Fetch requires relatively

little state (∼12KB) and relatively low hardware complexity (a handful of tables and some

adders) to achieve accurate and high coverage on traditional workloads. Importantly, unlike

other prefetching techniques, B-Fetch provides a direct mechanism for speculating upon the

future path of the program and leveraging that speculation to issue prefetches, without the

overhead of running the full core ahead, as in runahead execution [9]. Thus, we feel that

B-Fetch makes an ideal starting point for attempting to efficiently issue prefetches beyond

synchronization points.

3.2.2 The Shared Memory Model

With growing core counts, fully exploiting the underlying microarchitecture and achieving

scaling performance of single applications requires dividing that application into independent

threads that can run simultaneously across the cores within a system and take advantage

of thread-level parallelism (TLP). The dominant programming model for this form of TLP

is shared memory multi-threading. In this programming model, an application is broken

into independent threads that share a single, coherent view of memory. Typically, these

independent threads share some data to complete the task. In this model, programmers

insert explicit thread synchronization primitives (i.e. locks, barriers, and condition variables)

to coordinate data sharing between threads, ensuring that data produced by one thread is

not read by a consuming thread before it is written and so forth.
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3.2.2.1 Shared Memory Synchronization

Synchronization is a central operation in parallel applications. The two major forms of

explicit synchronization operations in shared memory multiprocessors are barriers and locks.

A barrier used to ensure no process within a group cooperating processes can move beyond

a certain point in the execution before all processes have reached the barrier. Barriers are

commonly used to enforce such waiting.

Figure 3.4a illustrates how a barrier works. A task executes its code until it reaches

a barrier. Then it waits until all other tasks have reached that barrier before proceeding.

Ideally, all tasks start at the same time and reach the barrier at the same time, then start

new phase of execution.
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(b) Critical threads.

Figure 3.4: Ideal barrier synchronizes and critical threads in the execution phases.

A thread is critical if its progress determines the progress of the whole application and
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forces other threads to wait for it. Due to load imbalance between threads, different threads

can be critical during execution. As Figure 3.4b shows other threads need to wait untill the

critical thread get to the barrier before resume execution. A synchronization barrier can lead

to performance degradation. The slowest thread prevents forward progress of other threads

and forces other threads to wait on the barrier. The performance of synchronization barriers

in shared memory is often unpredictable and a performance bottleneck.

3.2.2.2 Architectural Support for Shared Memory Synchronization

To facilitate the construction of synchronization primitives, most architectures provide

some form of read-modify-write instructions that are capable of updating (i.e., reading and

writing) a memory location as an atomic operation. For example, RISC style ISAs, such

as Arm and ALPHA, support Load Linked (LL) and Store Conditional (SC) instructions

to implement synchronization primitives [42, 43]. In this scheme, the LL instruction loads

a block of data into the cache and marks this cache line for tracking. The following SC

instruction attempts to write a new value to the same block. This write succeeds only if the

block has not been referenced since the preceding LL. Any memory reference to the block

from another processor between the LL and SC pair causes the SC to fail. Upon failure,

the locking thread will typically retry the full LL/SC pair until atomic read/modify/write

success is achieved.

For a thread to acquire the lock, it needs to load the lock and check if no other thread

is holding the lock. After that it needs to own the lock. If the thread fails to acquire the

lock, it will stay in a spin loop until it successfully acquires it. Once a thread acquires the

lock it is safe to execute the critical section. Upon entering the critical section, only then is

it “safe” to write or update data shared between threads because only one thread may enter

the critical section to modify that data at any given time. Once this shared data is written,

the thread then releases the lock to allow other threads to execute the critical section, and

modify the shared data as well. Acquiring and releasing a lock involves executing primitive

instructions.
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We note that CISC ISAs typically employ single read/modify/write atomic instructions

that produce similar behavior in implementing shared memory synchronization semantics.

For the purpose of discussion we focus on the LL/SC but our approach can be easily applied

to CISC ISAs. In Section 3.3.2 we briefly discus the changes required to support CISC ISAs.

3.2.3 Cache Coherence

Cache coherence is the hardware mechanism by which shared data in different cores’

private caches are kept coherent. Many coherence schemes have been proposed [44, 45, 46,

47, 48, 49]. One commonly used approach is a directory based cache coherence scheme. In

this scheme, a directory, typically co-located with the shared, last-level cache, maintains the

sharing state of all the cache lines in the individual cores’ private caches. In such a scheme,

when a core issues a request to acquire or change the state of a cache line in its private cache

it must send a message to the directory. The directory then may need to send messages to

the other cores’ private caches, waiting for their acknowledgment before finally replying back

to the requesting core. This transaction incurs a significant latency [50, 51, 52, 53].

Figure 3.5a illustrates the typical case for the sharing of data in a cache coherent shared

memory system. The figure shows two threads communicating through shared data, syn-

chronized by a lock. In the figure, core 1 first enters its critical section ( 1 ). In this case

the cache line containing the shared data with the lock variable happens to be in the local

private cache and the critical section finishes quickly. Note that, at 2 and beyond, the

cache line containing the lock variable will remain in the private cache of core 1, while core

2 executes, prior to its critical section. Here, at 3 , core 2 is spinning, waiting for the write

of this shared data. Once core 1 has completed its critical section, core 2 is free to enter the

critical section and access the data in question. Since this data is on a cache line in core 1’s

private cache, a request is made to the directory for a shared copy, 4 . At 5 , this request

leads to a writeback request to core 1. At 6 , core 1’s private cache issues a writeback to

the LLC of the line containing the shared data. Finally, at 7 , this line is then forwarded

to core 2 and core 2’s critical section can proceed ( 8 ). All of this back and forth between
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the caches, directory and LLC, can incur hundreds of cycles of overhead at exactly the most

critical time in the execution of a multi-threaded application.
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(a) No-prefetching case.
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(c) Aggressive prefetching of
data while avoiding prema-
ture prefetches.

Figure 3.5: Cache coherence and prefetching.
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3.2.3.1 Prefetching in Multithreaded Workloads

Multithreaded applications are just as likely to experience lost performance due to long-

latency memory accesses as traditional, single threaded applications. Thus, prefetching

should be a good way to improve performance. As discussed in the previous section, prefetch-

ing for multi-threaded applications produces unique challenges, in that threads waiting on

synchronization typically do not induce prefetches for data beyond those synchronization

points. Moreover, reckless prefetching of data beyond synchronization points could hurt

performance due to premature prefetching of shared data before it has been written.

In the first case, where prefetching does not occur past synchronization points, there is

a great lost opportunity for performance gain. As we see in Figure 3.5a, at point 3 , core 2

is effectively idle waiting for core 1 to finish its critical section. If prefetching of data that

core 2 will need after this synchronization point could be performed, it would be a great

opportunity to leverage available, unused memory bandwidth in core 2. However, if core 2

is overly aggressive and prefetches shared data before it is written, the performance impact

could be greater than the benefit of correct, on-time prefetches.

Figure 3.5b illustrates the danger of overly aggressive prefetching in this case. Here again,

at the beginning of execution, the cache line containing shared data to be written by core 1

is currently residing in core 1’s private cache, along with several other cache blocks that core

2 will need, but will not be written in core 1’s critical section. At the beginning of the trace,

while core 2 is idling, the prefetcher in core 2’s private caches issues three prefetches, 9 - 11 .

While two of these prefetches, 9 and 10 , are to data that ultimately will not be re-written

in core 1, one prefetch, 11 , has not yet seen its final write in core 1. Later, core 1 enters

its critical section to write shared data to one of the cache line that was already prefetched

(at 11 ), inducing another coherence transaction at 12 to retrieve ownership of the shared

cache line core 2 just prefetched. Once the cache line has been retrieved from core 2, core 1

can safely write the new data and release its lock, at which point core 2 can enter the critical

section, 13 , and attempt to read the shared data core 1 just wrote. This incurs yet another
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coherence transaction pulling this data back to core 2 again. As the figure illustrates, here

prefetching actually incurs a large negative performance impact versus a baseline case where

prefetching does not occur.

This resultant cache block transitioning back and forth between the cores due to overly

aggressive prefetching has a much worse impact on multi-threaded applications than tradi-

tional single-threaded applications. In particular, while the impact of a bad prefetch on a

single threaded application implies some wasted bandwidth, energy and some cache pollu-

tion; in multi-threaded applications, this extra latency often occurs exactly when the threads

in question are literally “critical” to performance, in that they are the only threads execut-

ing during a mutex in their critical sections. Slowing down these critical sections has a

significantly outsized influence on application performance. We empirically determined that

these extra writebacks and invalidations account for the performance loss shown for several

benchmarks using B-Fetch in Figure 3.1.

As shown in Figure 3.5c, ideally, one would like the idle cores to aggressively prefetch

data while spinning on a lock, leveraging the available time and bandwidth, and yet avoid

prefetching specifically only that data that will eventually be written by other cores. In the

figure we see that the two useful prefetches, 14 and 15 are allowed to proceed while prefetch

16 is squashed before issuing because 16 is predicted to be invalidated by a future write

in core 1. As we see, accurate prefetching beyond synchronization primatives can lead to

significant performance increases while preventing performance regression due to premature

prefetching. This is the goal of SB-Fetch.

Prior works address prefetching for multi-threaded workloads. Jerger et al., [54] presents

a taxonomy that classifies the effects of multiprocessor prefetches. While this work suggests

invalidation filtering schemes could improve performance, it provides no practical mechanism

for such a scheme, nor does it discuss explicitly prefetching beyond synchronization points

as SB-Fetch does. They show that, without explicitly prefetching beyond synchronization

points, the benefit of invalidation filtering is marginal. Liu et al., [55] and Panda et al., [56]
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both present schemes that attempt to tune prefetch aggressiveness depending upon the criti-

cality of the thread (among other things). This interesting approach is somewhat orthogonal

to SB-Fetch and likely could be used in combination with SB-Fetch. Preliminary work by

Panda et.al, [57] proposes a hardware prefetching framework that studies and classifies L1

misses across all threads to generate L2 cache prefetches. In our preliminary work [58], we

initially examined the feasibility of prefetching for multithreaded workloads. Here we expand

upon this prior work.

3.3 Proposed Design

SB-Fetch addresses the two issues with prefetching for multi-threaded workloads. It must

continue prefetching beyond the synchronization semantic while the thread itself is busy

waiting. It must also avoid issuing prefetches for shared data before it has been written.

The insight behind SB-Fetch is to use the decode stage in the actual processor pipeline to

dynamically track the synchronization primitives and identify when a thread is spinning on

a lock. For a thread to acquire a lock, it must load the lock and check that no other thread

is currently holding the lock. Then it must own the lock. If the thread fails in acquiring the

lock, it will stay in a spin loop until it successfully acquires it. Once a thread acquires the

lock it is safe to execute the critical section. The thread needs to release the lock to allow

other threads to execute the critical section as well. Acquiring and releasing a lock involves

executing the synchronization primitive instructions LL and SC described in Section 4.1.

3.3.1 Overview

SB-Fetch is an extension to the prior work B-Fetch prefetcher described in Section 3.2. To

address prefetching beyond synchronization points, we must detect when a thread is trying to

acquire and release a lock in the instruction stream, then feed the first branch instruction after

releasing the lock to the B-Fetch engine to start prefetching. To this end, SB-Fetch monitors

the synchronization primitive instructions, LL/SC, in the dynamic instruction stream. The

prefetcher identifies when a thread is spin waiting by the decoding of LL instructions. It
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then learns the backward branches following the LL instruction that are part of the spin once

the LL/SC pair are successful and records these. Later, when this synchronization point is

encountered again, the prefetcher will ignore the “correct” backward branch prediction to

skip ahead of the synchronization point, allowing prefetch to continue in the region beyond

the critical section.

To solve the second issue, prefetch invalidation due to premature prefetching, SB-Fetch

keeps track of prefetches that are invalidated via the cache coherence mechanism prior to

their use. This information is used to filter these “unsafe” prefetches, prohibiting them from

being prefetched in the future.

Figure 3.6 illustrates the overall system architecture of a system incorporating B-Fetch

together with the additional components needed to implement SB-Fetch. The figure shows

the main CPU execution pipeline and the additional hardware for the B-Fetch prefetcher.

We note that, in code that does not have synchronization, SB-Fetch will perform identically

to B-Fetch, already one of the top performing prefetchers for single-threaded code [13, 12].

3.3.2 System Components

As previously described, Figure 3.6 shows the SB-Fetch microarchitecture. In particular

two components, the Synchronization Primitives Trace Cache (SPTC) and Invalidation Filter

are added to the original B-Fetch microarchitecture. Here we describe each.

Synchronization Primitives Trace Cache (SPTC): The SPTC dynamically cap-

tures the atomic primitives that were used to implement synchronization semantics. Each

entry acts as a state machine to indicate the beginning and ending of each critical section

encountered. Here, an LL instruction followed by a SC to the same effective address, indi-

cates the beginning of a critical section. Once a second SC is detected, it indicates the end

of a critical section. In SB-Fetch, the SPTC receives information from the decode stage in

the Out-of-Order pipeline. Figure 3.7 shows an entry in SPTC. Each entry in the SPTC

includes the lower 32 bits of the effective address and 2 state bits. An entry is installed in

SPTC on the beginning of a critical section, then the entry becomes valid once a second SC is
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Figure 3.6: SB-Fetch microarchitecture. Additional components beyond B-Fetch highlighted
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detected, which indicates the end of the critical section. Then the first branch address after

the critical section will be passed to branch lookahead component of the B-Fetch pipeline, so

B-Fetch can predict the execution path starting from the current branch in order to prefetch

data in the next basic block after the end of the synchronization semantic. The structures

in B-Fetch/SB-Fetch pipeline are squashed and updated on commits.

SIMD EXE     slice 2Load Address
(32-bit)

State
(1-bit)

Valid
(1-bit)

Figure 3.7: Single Synchronization Primitives Trace Cache (SPTC) entry.

We note, as the SPTC is a multi-entry cache, it is possible to track many synchronization

primitives at once, thus complex, multi-lock synchronization structures can be easily handled

by this structure. We also note that while the above discussion revolves around the semantics
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of LL/SC based synchronization, it would be actually somewhat easier to adapt the proposed

mechanism to CISC ISAs that contain atomic read/modify/write mechanisms. In particular,

instead of requiring monitoring for the sequence of an LL instruction followed by an SC, SB-

Fetch would only need to monitor for the single atomic read/modify/write instruction itself.

Invalidation Filter: To prevent useless prefetches wasting time, bandwidth and energy,

it is crucial to reduce the number of invalidations of data prefetched but never used in the

local core. The Invalidation Filter tracks data recently prefetched from another core’s private

caches. In the event that a cache line prefetched from another core is invalidated prior to its

use by the local core, the filter notes the associated load that caused the prefetch. Future

prefetches associated with that load in that basic block will be dropped before issuing under

the assumption that this load is likely to lead to a premature prefetch.

The invalidation filter consists of a table that keeps track of the prefetched cache block

that was invalidated by the coherence protocol. The invalidation filter is indexed by a 10-bit

hash of the load PC for the prefetch address. The invalidation filter has precedence over the

branch confidence and per-load filter. That is, regardless of current branch confidence and

per-load confidence, if a prefetch results in invalidation, we stop prefetching for the load PC

that prefetch is predicted for.

The Invalidation filter by default will never un-learn that a given location is unsafe

for prefetching. To allow for more adaptive behavior, we employ a simple, counter-based,

random clear mechanism. The counter counts cycles up to a definable maximum, Cm. When

this maximum is reached a single entry in the table is chosen to be cleared. Thus, the entire

table is cleared every Cm ∗ k cycles where k is the size of the table.

3.3.3 Hardware Cost

The additional hardware storage requirements for SB-Fetch, B-Fetch, BOP and SMS are

summarized in Table 3.1. Two additional components have been added to B-Fetch. In term

of hardware budget Synchronization Primitives Trace Cache (SPTC) is 0.53125KB and the

Invalidation Filter is 4.0KB. To optimize the performance of SMS, we used the configuration
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Table 3.1: Hardware storage overhead in KB

Prefetcher Component # Entries Size (KB)

B-Fetch

Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156
Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37

Prefetch Queue 100 0.51
Path Confidence Estimator 2048 2
TOTAL SIZE : 12.84

SB-Fetch

B-Fetch – 12.84
Primitives Trace Cache 128 0.53

Invalidation Filter 1024 4
TOTAL SIZE : 17.37

BOP
Recent Requests Table 256 6
Additional Cache bits - 4
BO prefetcher state - 0.8

TOTAL SIZE : 10.8

SMS
Active Generation Table 64 0.57
Pattern History Table 16k 36

TOTAL SIZE : 36.57

used by Somogyi, et al. [41] and 2KB spatial regions, a 64-entry accumulation table, and a

16K-entry pattern history table. Thus, SB-Fetch incurs a small, 4.53125KB overhead over

B-Fetch, which is still significantly less hardware state than SMS requires.

3.4 Evaluation

3.4.1 Methodology

We used gem5 [59], a cycle accurate simulator, to evaluate SB-Fetch. The baseline con-

figuration is summarized in Table 3.2. We used a set of nine multi-threaded programs from

PARSEC benchmark suite [60], four applications from the Rodinia benchmark suite [37],

and three benchmarks from the Parboil benchmark suite [38]. These benchmark applica-

tions represent widely used shared memory applications that use the P-threads library to

handle synchronization. The benchmark applications are cross-compiled for the ALPHA ISA

and run on gem5 configured with the O3CPU CPU model (Out-of-Order) and the detailed
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(classic) memory model. The benchmarks were run in Full System (FS) mode.

The baseline hardware is a 4-core CMP machine with three level cache hierarchy as spec-

ified in Table 3.2. Each core’s private cache is split into I-cache (32KB) and D-cache(32KB),

256KB second level cache and 1024KB per core third level shared cache.

Table 3.2: Target Microarchitecture Parameters

Simulator Gem5 Simulator, ALPHA ISA, Full System Simulation
Architecture O3 processor, 4-wide, 192-entry ROB
ICache / DCache 32KB, 8-way set-associative
L2Cache 256KB, 8-way set-associative
Shared L3Cache 1024KB per core, 16-way set-associative
Memory DDR3-1600 x64 channel, Micron MT41J512M8

SB-Fetch results are compared against four light-weight prefetcher designs: Stride, SMS,

BOP and the original B-Fetch. In the cases of SMS and BOP, the code for these prefetchers

as well as their configuration was directly adapted from their respective submissions to the

First [61], and Second [62] Data Prefetching Competitions. We note that BOP was the

winner of the Second Data Prefetching competition. The Stride prefetcher was configured

as in prior work [13].

3.4.2 Results

3.4.2.1 Performance

Figure 3.8 shows the performance of each of the five prefetcher designs as the speedup

compared to the baseline no-prefetching configuration. For all results, the execution time is

the time spent in the region of interest (ROI). In the figure we see that SB-Fetch provides a

significant performance increase across all benchmarks of 12.3% versus the baseline, beating

the performance of the closest competitor, BOP 8.1%. Moreover, where the original B-Fetch

showed performance regressions versus a non-prefetching baseline, SB-Fetch improves per-

formance for every benchmark. Interestingly, SB-Fetch sees some of its biggest performance
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gains for applications where the original B-Fetch saw significant performance losses. Given

the speedup and the cost of storage overhead together, SB-Fetch presents a better solution

for data prefetching in multi-threaded workloads. We also see that for each suite individ-

ually, SB-Fetch outperforms each of the competing techniques, largely by similar margins.

This highlights the robustness of SB-Fetch’s gains.
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Figure 3.8: Multi-threaded workload speedups.

Figure 3.9 decomposes the benefits provided by different components of the proposed SB-

Fetch. We observe that almost all benchmarks benefit to some degree from both techniques

lock bypassing and invalidate filtering. For example, in ferret ∼ 50% of the benefit comes

from lock bypassing and ∼ 50% from invalidate filtering. Meanwhile, x264 benchmark ∼ 21%

comes from lock bypassing and ∼ 79% from invalidate filtering. We also note that each of

the benchmarks that see significant performance losses for B-Fetch: dedup, streamcluster

and x264, are also the benchmarks for which the invalidation filter provides a significant

benefit. The matches the intuition that the cause of performance losses in these benchmarks

is due to the impact of invalidations on critical thread execution.
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Figure 3.9: SB-Fetch speedup breakdown by mechanism.

3.4.2.2 Coverage and Accuracy Analysis

Figure 3.10 shows the number of useful versus useless prefetches for each prefetcher.

Each bar is the arithmetic average across all benchmarks. The figure illustrates several

points about the behavior seen in the performance results (Figure 3.8). First we see that, for

the Stride prefetcher where very small performance gains are seen, generally few prefetches

are issued, thus the performance gains are minimal. Interestingly for SMS, which sees some

gains, there are actually fewer useful prefetches and more useless than even Stride. In this

case, the useless prefetches were not enough to pollute the caches significantly, while there

were more useful prefetches issued on the critical thread, thus more performance gains.

BOP, which slightly outperforms SMS, appears to have nearly identical useful vs. useless

prefetches. The original B-Fetch, while issuing slightly more useful prefetches than BOP,

also issues more than twice as many useless prefetches. The original B-Fetch, often will get

stuck in spin-lock loops, prefetching the lock cache line itself, which is not only useless but

can cause worse performance because the lock cache line will have to be invalidated back to

the core currently holding the lock. Further, for the occasions when B-Fetch does prefetch

beyond the critical section (when it predicts the lock will not spin), B-Fetch often prefetches

cache lines from other core’s private caches before the writing core has written the data,
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causing performance loss as the cache line ping pongs back and forth between the private

caches. In the figure, we see that SB-Fetch, by contrast, successfully converts the majority of

B-Fetch’s useless prefetches into useful prefetches, this is the dominant reason why SB-Fetch

outperforms the competition on these workloads.
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Figure 3.10: Useful and useless prefetches issued, averaged across all benchmarks for each
prefetcher.

Figure 3.11 shows the percentage of invalidated prefetches for each prefetcher. Generally,

we see that SB-Fetch has the lowest invalidation fraction, relative to the other prefetchers.

Interestingly, we see that the rates of invalidation are actually quite low. We found that in

part this is because the total number of prefetches issued can vary widely, with very few

prefetches issued for blackscholes for instance.

Finally, Figure 4.10 examines the coverage for all prefetchers across all benchmarks. Here

prefetching coverage is measured as the number of useful prefetches normalized to the number

of data misses in the baseline configuration without a prefetcher. As shown in the figure,

SB-Fetch achieves a geometric mean coverage of 35% which is the highest coverage across

all benchmarks compared to the other prefetchers such as BOP that achieved a geometric

mean of 23%.
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Figure 3.11: Invalidated prefetches for each prefetcher across all benchmarks.
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Figure 3.12: Coverage for each prefetcher across all benchmarks.

3.4.2.3 Sensitivity Analysis

This section provides a sensitivity analysis of SB-Fetch. We study the impact of different

parameters and structures on the performance.

3.4.2.3.1 Invalidation Filter Size Figure 3.13 examines the impact of invalidation filter

size on performance. This is the table that tracks cache lines which are invalidated due to

coherence traffic. Here we see that generally SB-Fetch is highly insensitive to invalidation
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filter size with only small gains seen as the filter grows.
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Figure 3.13: Invalidation Filter size sensitivity.

3.4.2.3.2 Synchronization Primitives Trace Cache Figure 3.14 examines the impact of in-

validation filter size on performance. This cache tracks the beginning and ending of synchro-

nization primatives so SB-Fetch can skip their branches. Similar to the Invalidation filter,

SB-Fetch is highly insensitive to SPTC size.
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Figure 3.14: Synchronization Primitives Trace Cache sensitivity.

3.4.2.3.3 Branch Confidence Figure 3.15 examines the impact of the B-Fetch branch con-

fidence threshold on performance. This confidence threshold throttles the aggressiveness of
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the underlying B-Fetch prefetcher. Here we see that the best performance is achieved at the

default .75 confidence. This value is the same as was default in the original B-Fetch.
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Figure 3.15: Branch confidence sensitivity.

3.4.2.3.4 Scalability Finally, figure 3.16 shows the performance scalbility for SB-Fetch

going from 4 cores to 8 cores. For this number of cores SB-Fetch scales well, with an average

performance increase from 12% to ∼ 16%.
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With increasing core-counts, shared memory multi-threading is becoming an ever more

critical programming paradigm. Shared memory multi-threaded applications are similarly

impacted by latency in the memory system as single-threaded applications, however, current

memory prefetchers are unable to produce much performance benefit in these workloads. In

this chapter we identify two primary causes for poor performance in existing prefetchers for

multi-threaded workloads: the inability to prefetch beyond synchronization semantics and

the premature prefetching of data before it has been written in the producing core when the

prefetcher is able to prefetch beyond those semantics. We then show a low overhead technique

which allows prefetching beyond synchronization semantics while avoiding prefetching of

data which has not yet been written by its producing thread. This scheme, SB-Fetch,

achieves a geometric mean speedup of 12.3% over baseline, more than twice the gains of

the nearest competitor light-weight prefetcher on these workloads. As a final note, none of

the proposed additions negatively impact the single thread performance gains seen in the

proposed prefetcher.
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4. SET-LEVEL ADAPTIVE PREFETCHING FOR COMPRESSED CACHES

Data prefetching and cache compression are well-studied techniques to reduce the im-

pact of memory latency. Data prefetching predicts future memory accesses and prefills

the cache with the corresponding memory blocks in advance of explicit demands. Cache

compression tries to increase the effective capacity of the cache with minimum area over-

head [63, 64, 26, 34, 65, 66, 67]. As we show, however, naïvely integrating the two techniques

does not yield additive gains. In particular, we show that the extra ways per set that cache

compression provides generally produce fewer hits than the ways in the baseline uncom-

pressed cache. Hence, prefetching more aggressively to those sets with added ways due to

compression and more conservatively to those sets with comparatively fewer ways can provide

substantial benefit. In this chapter we present set-level adaptive prefetching for compressed

caches (SLAP-CC), a compressibility aware prefetching technique that adapts prefetch ag-

gressiveness to the workload compressibility to maximize prefetch coverage. SLAP-CC dy-

namically adjusts the prefetch confidence threshold on a per-set basis, based on the number

of effective ways in a given cache set due to that set’s compression. SLAP-CC achieves a

geometric mean speedup of 18.0% over a baseline system with compressed cache and no

prefetching and outperforms the state of the art prefetchers, SPP [68] and Best Offset [69]

when combined with cache compression.

4.1 Introduction

High-performance processors include multiple levels of cache hierarchy within a single

chip. In current processors from AMD, IBM, Intel, ARM and other vendors, the cache

hierarchy makes up more than half of the die area of the processor [70, 71] and consumes a

significant fraction of the on-chip power [72, 73, 74, 75, 76, 77]. This is because, with the

large and growing latency differential between processor cores and DRAM, caches are critical

for overall system performance [1]. Thus, performance gains in the cache hierarchy strongly
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translate into system performance gains. Misses reduce caching benefits and have a strong

impact on the performance of modern workloads, thus reducing cache misses is important.

Increasing cache size can reduce cache misses by allowing data sets with greater footprints

be cached, but at the cost of latency, area and power overheads, thus bounding the size of

lower-level caches.

Two well-known techniques to reduce misses are cache compression and prefetching.

Cache compression reduces misses by increasing the effective capacity of the cache with-

out increasing the actual area/power of the cache [63, 64, 26, 34, 65, 66, 67]. We show,

however, that cache compression can decrease cache efficiency (i.e. the amount of time a

block remains live in the cache [78, 79, 80]), as the added ways in a given set are less likely

to see hits over time than the ways that were there in the baseline cache. Further, cache

compression incurs some extra latency on both miss fills for compression and hits for de-

compression. On the other hand, prefetching reduces misses by preemptively fetching data

into the cache ahead of its use [17, 18, 20, 69, 68, 7, 81, 82]. However, inaccurate prefetches

can push out useful data with prefetched data that will not be used. While prior work has

shown that cache compression and prefetching can work well together [32, 33], we are aware

of no work that has attempted to co-design the prefetching algorithm to better leverage the

extra capacity cache compression provides. In this chapter, we propose Set-level Adaptive

Prefetching for Cache Compression (SLAP-CC) with that goal in mind.

Cache compression is an optimization technique that has the potential to increase the

effective capacity of the cache while reducing the area, power and timing overhead [26, 83,

84, 31, 34, 25]. The goal of cache compression is to reduce capacity misses by achieving a

higher effective capacity. Thus, cache compression reduces costly off-chip accesses, translat-

ing into performance improvements [85]. The design of a compressed cache has two main

components: a compression algorithm that leverages redundancies in the data values stored

in each cache line to represent the data in compact form, and a compaction mechanism to

store compressed blocks in the cache. While the extra capacity is beneficial, the benefit

37



does not scale linearly with capacity. Moreover, the goal of reducing the latency of com-

pression/decompression limits the scope of compression possible, with many practical cache

compression proposals limiting capacity increases to at most 2x [26, 32]. As compression

increases the effective capacity of the cache, the efficiency of cache decreases with capacity.

Due to the phenomenon of compression locality, neighboring blocks often have similar com-

pressibility [83]. Thus, cache compression varies greatly from one set to the next. Some sets

can be heavily compressed while others cannot.

Data prefetching is a well-known technique in which the cache is pre-filled with useful

data ahead of an actual demand load request from the processor. Many different prefetching

techniques have been proposed over the years, leveraging various mechanisms to speculate

on future patterns, ranging from a set of lines sequentially following the current miss [16], a

set of lines following a strided pattern with respect to the current miss [17], or a set of blocks

spatially around the miss [86]. While these methods show significant benefit, by their nature

they can have variable aggressiveness in their speculation. A highly aggressive prefetcher is

one which prefetches many cache lines in the hopes that some of them will be used, while a

more conservative prefetcher might only prefetch those lines which it is certain will be useful

in the future. While a more aggressive prefetcher has the potential to cover more of the

misses of the machine, if the prefetching is too aggressive, it can lead to pushing out more

useful data in the cache. More recent prefetchers [68, 7, 87] attempt to directly estimate

how good their prefetches are explicitly via confidence and use that confidence to explicitly

choose the right aggressiveness. However that confidence threshold is typically statically set

at design time and is not adapted at runtime.

To examine the impact of compression on cache efficiency and per-way hit rates, Fig-

ure 4.1 shows the average L2 hitrate per way, sorted into an LRU stack for an uncompressed

and an ideally compressed cache, where ideal compression provides double the capacity and

number of ways per set. As the figure shows, the extra ways added by compression (i.e.

ways 9-16) in the ideal case have a very low individual probability of receiving hits, relative
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(a) Hitrate per way/LRU position in baseline, 256KB L2 8-way cache.
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(b) Hitrate per way/LRU position in “perfectly compressed”, 512KB L2 16-way cache.

Figure 4.1: Mean L2 hitrate per way under SPEC CPU2017 benchmarks, sorted into an
LRU stack for a 256KB L2 cache of 8-ways - representing baseline; and a 512KB L2 cache
of 16-ways - representing perfect compression.

the existening ways 1-8 in the LRU stack. Thus, we argue, given the low utility of the

extra ways, more aggressive prefetching is warranted than in the baseline, uncompressed

case. This is because, to achieve performance improvement, the utility (likelihood of use) of

a given prefetch must be higher than the utility of the data it replaces in the cache. As the
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Figure 4.2: SPEC CPU 2017 Single-Core IPC Speedup with and without B∆I [26] cache com-
pression (CC), the SPP [68] prefetcher and Best Offeset (BO) [69] prefetcher all normalized
against no prefetching/no CC in the L2 cache.

compressed cache has data with less utility in the added ways, it will see higher benefit with

aggressive prefetching than the baseline case. Our key observation, however, is that because

real (non-ideal) cache compression tends to vary greatly from set to set, the exact aggressive-

ness needed to achieve performance gains must also be varied on a per-set basis. Although

some prior work has studied how cache compression and prefetching interact [33, 88], we

are aware of no prior work that attempts to vary prefetch aggressiveness on a per-set basis

under cache compression.

Figure 4.2 illustrates the issue. In the figure we show the speedup of B∆I [26] cache

compression alone, SPP [68] prefetching alone, Best Offset [69] prefetching + B∆I cache

compression and SPP prefetching + B∆I cache compression (all in the L2 cache1), all nor-

malized against a non-compressed, no-prefetching baseline system. The figure shows first

that while cache compression provides some benefit versus baseline, the extra access latency

keeps the gains from cache compression relatively modest at 5%. By contrast, standalone

SPP prefetching improves performance significantly more than cache compression at 13%.

Interestingly, combining both prefetching and cache compression actually significantly de-

grades performance on average versus prefetching alone. In most cases the prefetcher is not
1See Section 4.5.1 for full details of the methodology
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able to effectively leverage the extra capacity enough to overcome the added latency of cache

compression. Here we attempt to address problem by codesiging the prefetching algorithm

to fit the cache compression scheme.

In this chapter we propose a new prefetching algorithm, Set-Level Adaptive Prefetching

for Compressed Caches (SLAP-CC), which seeks to address this problem by individually

confidence filtering prefetches based on how much effective capacity is available in the set

the prefetch is destined towards. The individual contributions of this chapter are as follows:

• We characterize the increase and per-set variability of cache efficiency which typical

cache compression schemes create.

• We propose a new prefetching scheme, SLAP-CC, designed to leverage this cache

efficiency variability.

• SLAP-CC leverages different prefetching confidence thresholds based on the compres-

sion level of the set that the prefetch is destined towards, to determine if a prefetch

should be placed in that set or not.

In simulation on SPEC CPU 2017 workloads we show that SLAP-CC with cache com-

pression improves performance over a compressed cache baseline of 18%, outperforming

non-codesigned prefetching schemes on the same compressed cache by more than 5%.

The remaining sections are organized as follows. Section 4.2 discusses the motivation and

background for set-level adaptive prefetching. The design of SLAP-CC prefetching scheme is

presented in Section 4.3. Section 4.4 describes the hardware implementation cost of SLAP-

CC. A detailed performance evaluation is presented in Section 4.5. Finally, we conclude the

chapter in Section 4.6.

4.2 Background and Motivation

In this section, we discuss related work to our proposed technique. We use this prior

work to motivate the case for prefetching-compression co-design.
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4.2.1 Cache Compression

Cache compression presents the potential to increase the effective capacity of the cache

while minimizing the area, power and timing overheads. Typical compressed cache designs

include a compression algorithm and compressed cache layout. The goal of the compression

algorithm [26, 27, 28, 29, 30] is to represent a cache block with fewer bits, while cache layout

determines how to read/write a compressed cache block to the cache. Cache efficiency for a

given cache is defined as the fraction of time that the cache holds a live cache line, i.e., the

number of clock cycles that a cache line contains data that will be referenced again divided

by the total number of clock cycles the cache line contains valid data [79]. Cache efficiency

determines what fraction of the cache lines holds useful data, while the remaining fraction

holds data that will not be referenced before eviction, therefore it can be replaced with useful

data [80].

B∆I is a state-of-the-art low-overhead technique for compressing data in caches [26]. It

takes advantage of the fact that data values stored within a cache block have a low dynamic

range, i.e., the fact that values that are in a cache line tend to have small differences in their

values [26]. B∆I represents a cache block using one or more base values and an array of

differences from the base values [26]. B∆I, exploits the low dynamic range of integers that do

not require the full space allocated for them, i.e., small integer values are sign-extended into

32-bit or 64-bit blocks, while all the information is contained in the least-significant bits [26].

Figure 4.3 shows an example of B∆I compression using a single base value. Having multiple

base values can improve the effectiveness of B∆I compression. A typical implementation

uses two base values: zero and the first non-zero value in the input cache line.

To perform compression using B∆I [26], each cache line is viewed as a set of fixed-size

values i.e., 8 8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line. Then, it decides

if the set of values can be represented in a more compact form as a base value with a set of

differences from the base value [26]. On the other hand, to perform decompression operation

B∆I takes the base value and an array of differences generate the corresponding set of values
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Figure 4.3: B∆I compression using one base value.

using a SIMD-style vector adder [26]. Therefore, the decompressed operation costs the same

amount of time as an integer vector addition, using a set of simple adders. In practice, this

implies 1-2 cycles added for compression and decompression.

4.2.2 Compressed Cache Layout

Compressed cache layout determines how to store and track more compressed cache

blocks in the cache. To track more blocks in the cache, a compressed cache needs extra

tags and metadata. A typical cache stores one tag for each fixed-size data block to detect

hits. A compressed cache, where additional data blocks are stored in the data array, requires

increasing the tag array. Alameldeen et al. [32], propose a simple cache design that doubles

the number of tags, i.e., 2X block tags, allowing to track up to twice as many cache blocks

in the cache. Decoupled Compressed Cache (DCC) [63, 64] and Skewed Compressed Cache

(SCC) exploit spatial locality and compression locality to pack neighboring blocks with

similar compressibility in the same data entry, tracking them with one sparse super-block

tag [34].

DCC [63, 64] has three main data structures: a Tag Array, a Sub-Blocked Back Pointer

Array, and a Sub-Blocked Data Array. All three structures are indexed using the super-block

address bits, so all blocks of the same super-block are mapped to the same data set [63, 64].

Decoupling sub-blocks from the address tag to eliminate expensive re-compaction when a
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block’s size changes [63, 64]. SCC [34] compacts blocks into a variable number of sub-blocks

to reduce internal fragmentation, but retains direct tag-data mapping to find blocks quickly

and eliminate extra metadata.

4.2.3 Dead Block Prediction and Replacement

Another way to improve the miss rate is to increase the number of live blocks in the

cache through an improved replacement policy based on dead block prediction [89]. A cache

block is live if it will be referenced again before its eviction. From the last reference until the

block is evicted the block is dead [78]. Dead blocks contribute to poor cache efficiency when

a cache block stays in the cache for long time after the last access and before it is picked by

the replacemt policy for eviction [80, 79]. In case of least-recently-used (LRU) replacement

policy and highly associative cache, a cache block has to move from the most-recently-used

(MRU) position to the LRU position and then it is evicted [89]. Cache compression has the

potential to increase the number of effective ways in a cache set [63]. Thus, the time for a

cache line to move to LRU from MRU will increase, resulting in more dead blocks in the

cache. In this case aggressive prefetching is a technique that increases the number of live

blocks by prefetching less accurate prefetches to the cache. Recent work has significantly

improved prediction for cache replacement [90, 91, 92], and taken into account prefetching

along with prediction [93, 94]. Dead block prediction is orgthogonal to our proposal and are

beyond the scope of this work.

4.2.4 Data Prefetching

Data prefetching is a speculative technique that prefills caches with useful data in advance

of expected demand. Typically, prefetching techniques are activated on a cache miss. The

prefetcher issues a prefetch request to a set of lines sequentially following the current miss [95],

a set of lines following a strided pattern with respect to the current miss [15], or a set of blocks

spatially around the miss [82]. Offset prefetchers such as Best-Offset (BO) prefetcher [69],

the winner of the second Data Prefetching Competition [62], find the offset from the current
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access or miss that maximizes useful prefetches. Best-Offset continues to perform prefetching

with a selected offset till a new offset performs better than the current offset [69].

Some recently proposed prefetching techniques such as B-Fetch [7], SB-Fetch [81], SPP [68]

and PPF [87] have confidence based self-throttling mechanisms. These self-throttling tech-

niques avoid prefetching useless data by preventing lookahead down a wrong speculative

path [7, 81, 68, 87]. These prefetch control mechanism keeps track of the confidence value of

the path as a whole and when this confidence falls below a predetermined threshold value,

the prefetcher is stopped. Usually, the magnitude of the threshold value is statistically pre-

determined and applies to all prefetches regardless of the workload, target set and oblivious

to the current cache efficiency.

Here we aim to leverage the confidence value produced by the prefetcher in a fine-tuned,

per-set, placement based filter. For the sake of simplicity we will use SPP [68] as the basis

for our proposed technique as it already generates a path confidence that we can modify and

use to achieve our goal. Nevertheless, any prefetcher that generates some form of prefetch

using probability or locality measure could be modified to be used here. As we will focus on

SPP, we present SPP in more detail next.

4.2.4.1 Signature Pattern Prefetcher (SPP)

SPP [68] is a state-of-the-art confidence-based multi-target prefetcher. It creates a signa-

ture associated with a page address by compressing the history of accesses [68]. The signature

consists of up to four recent consecutive address deltas observed in a 4KB page [68]. Delta

in this context refers to the arithmetic difference in effective address between two subse-

quent accesses to the same page. Each signature stores up to four memory access patterns

in a compressed format, and a prefetch confidence value corresponds to each prefetch can-

didate [68, 87, 96]. To generate a new prefetch candidate, each prefetch candidate delta is

XOed with a shifted version of the candidate delta’s signature [68, 87, 96]. The new signa-

ture is used to re-index the signature table to generate a new prefetch candidate. When the

candidate of the prefetch candidate above a predefined threshold value, a prefetch request
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is issued to that cache hierarchy. While the basic idea of set-level adaptive prefetching is

applicable to any confidence-based prefetcher, we develop a practical implementation of our

proposed prefetcher using SPP as our underlying mechanism. Here we describe the basic

architecture of SPP.

Signature Table
Page
Tag

Last
Offset

Signature

1 4 0xD
(+1,+4,+5)

2 1 0x44

3 2 0xA

4
(+1)(+1,+5)

Pattern Table

Index Delta C
delta

C
sig

0x0

+2 0

0

+3 0

0x1

0 3

+5
4→5

2→5 0x1→0xD

Access to
Page 4
Offset 5

6→7

Figure 4.4: SPP Data-path Flow.

Pattern Table

Index Delta C
delta

C
sig

0xD
-2 1

5
+3 4

0xE

-1 3

3
+3 2

(0xD << 3) XOR (+3) = 0x6B

Signature: 0xD

Td > Tp 
Prefetch

Confidence = C
delta 

 / C
sig

 = 0.8

Lookahead

Figure 4.5: SPP lookahead prefetching.

Signature Table:Figure 4.4 shows the Signature Table that keeps track of 256 most

recently accessed pages [68]. Upon a cache miss the Signature Table is indexed using the

page number. Each entry in the Signature Table stores a “last block offset” and an “old

signature” [68, 87]. The Last block offset corresponds to the block offset of the last memory

access of that given page [68, 87]. The block offset is calculated with respect to the page
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boundary. The signature is a 12-bit compressed representation of the past few memory

accesses for that page [68, 87]. The signature is calculated as:

NewSignature = OldSignature << 3bits XOR Delta

Delta is the numerical difference between the block offset of the current and the previous

memory access [68, 87]. In case a matching page entry is found, the stored signature is

retrieved and used to index into the Pattern Table [68, 87]. This process is illustrated in

Figure 4.4.

Pattern Table: As shown in Figure 4.4 the Pattern Table is indexed by the signature

generated from the Signature Table [68, 87]. Pattern Table holds predicted delta patterns

and their confidence estimates [68, 87]. Each entry indexed by the signature holds up to 4

unique delta predictions [68, 87].

Lookahead Prefetching: SPP performs recursive lookahead to generate prefetch can-

didates on the speculative path. On a cache miss SPP use the current prefetch as starting

point to re-index the Pattern Table to generate prefetch candidates [68, 87]. As illustrated

in Figure 4.5, SPP re-index the Pattern Table and updates the signature based on highest

confidence prefetch from the last iteration. The prefetch ‘depth’ is the number of iterations

on which SPP manages to predict prefetch candidates in the lookahead manner [68, 87].

While doing so, SPP also keeps compounding the confidence ineach depth [68, 87]. Thus, as

depth increases, overall confidence keeps decreasing [68, 87].

Confidence Tracking: As shown in Figure 4.5, the Pattern Table keeps track of two

counters for each delta value, Csig which is the number of occurrences of each signature and

Cdelta which is the number of occurrences for a given delta per signature [68, 87]. To calculate

the confidence for a given delta is approximated through Cd = Cdelta/Csig.

Pd = α.Cd.Pd−1
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Figure 4.6: Cache efficiency.

SPP uses a global accuracy scaling factor α, which is the ratio of the number of prefetches

which led to a demand hit to the number of prefetches recommended in total [68]. The scaling

factor is used to throttle down or increase the aggressiveness of the lookahead process [68, 87].

The range of α is [0,1] [68, 87]. The lookahead depth is represented by d [68, 87]. The path

confidence Pd is thresholded against prefetch threshold (Tp) to reject the low confidence

suggestions and then against a numerically bigger fill threshold (Tf ) to decide whether to

send the prefetch to L2 Cache (high confidence prefetch) or Last Level Cache (low confidence

prefetch) [68, 87].

4.2.5 Compression and Prefetching Interactions

Some prior work has studied the how cache compression and prefetching interacts. Alameldeen

and Wood [33] showed that compression and prefetching can interact in strongly positive

ways. They propose an adaptive prefetching mechanism that enables prefetching for the

whole cache whenever beneficial. They use extra tags already provided for fitting more

compressed blocks to also detect useless and harmful prefetches. In their compressed cache,

they double the number of tags to potentially track twice the number of compressed blocks.

However, in many cases, not all the blocks are compressible, so there are extra tags not

being used. They leverage these tags to track recently evicted blocks and to find whether
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prefetched blocks were evicting useful ones. They use a saturating counter that they incre-

mented on useful prefetches, and decremented on useless or harmful prefetches. Using this

counter, they disable prefetching when it does not help. Overall, they show that by lever-

aging the interaction between compression and prefetching, they can significantly improve

performance.

Patel et. al [88], propose a synergistic cache compression and prefetching technique. The

goal of this technique is to use the cache space saved by cache compression to implement

the storage arrays required by data prefetching engine [88]. Charmchi, et al. [97] proposed

Compressed cache Layout Aware Prefetching to builds on top sector-based compressed cache

layouts to create a synergy between compressed cache and prefetching, by prefetching con-

tiguous cache lines that can be compressed and co-allocated together with the missing cache

line [97]. Building on a key observation that most workloads manifest spatial locality where

neighboring blocks tend to simultaneously reside in the cache, and compression locality where

neighboring blocks often have similar compressibility [83]. Thus different cache sets exhibit

different compressibility. Highly compressed sets allocate a large number of compressed

blocks.

In LRU managed compressed caches a highly compressed set exhibits less efficiency due

to the increase in the time it takes a block to move from the MRU position to the LRU

before being evicted. A confidence based prefetcher can take advantage of this observation

by dynamically adjusting the magnitude of the threshold to issue less accurate prefetch

candidates. Such a prefetcher will improve performance by increasing the coverage since

part of the prefetch candidates turn to be useful prefetches and satisfy demand requests.

Moreover, it improves the set efficiency by reducing the overall dead time of a cache line as

dead blocks are more quickly moved out of the cache.

Figure 4.6 shows that cache blocks in an uncompressed cache are dead on average 41%

of the time, for the benchmarks used for this study. When using compressed cache the ratio

worsens, cache blocks are dead on average 52% of the time. Cache compression hurts cache
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efficiency by increasing the fraction of time a block is dead. Replacing dead blocks with live

blocks soon after a block becomes dead improves cache efficiency. Aggressive prefetching to

a cache set that includes dead blocks or a highly compressed set can reduce the fraction of

time a block is dead by speeding up the time to evict it. Having more live blocks in a set

improves the hit rate which translates to performance improvement.

To the best of our knowledge, no previous work has tried to explicitly co-design a

prefetcher for a compressed cache. Cache compression provides more capacity, so it is logical

that this extra capacity could be used to hold more speculative prefetches. Traditional cache

compression techniques, however, leave each set with a variable effective capacity increase

per set. Thus, the correct degree of prefetching aggressiveness that can be sustained without

performance loss in compressed caches actually depends on the degree of compression in that

set.

4.3 Design

To improve on prior approaches to prefetching and with compressed caches outlined in

Section 4.2, we propose the Set-level Adaptive Prefetching for Compressed Caches (SLAP-

CC), a novel, low-overhead and accurate lookahead prefetcher designed specifically for the

variability in ways available per set in compressed caches. Here we first give a basic de-

sign overview, followed by a detailed breakdown of the cache compression and prefetching

technique.

4.3.1 Design Overview

Figure 4.7 shows the general structure and overview of the proposed SLAP-CC system.

The major components of SLAP-CC are a cache compression system in the L2 cache and

the SLAP-CC cache compression aware prefetcher. Here we focus on compression in the L2

cache, though SLAP-CC could be easily extended for L1 or LLC compression. We would

argue that the L2 cache is the sweet spot for compression. Unlike the L1 which is highly

timing sensitive, the L2 hit time is slow enough that added latency for decompression has
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Figure 4.7: SLAP-CC Design Overview.

little impact. Unlike the LLC where capacities of tens of MB are common and working sets

plus speculative prefetches often fit well, the L2 is still relatively capacity constrained so the

added capacity has some impact. Thus, as shown in the figure, we implement a baseline

cache compression policy, based off of the prior work B∆I [26], in the L2.

As shown in the figure, SLAP-CC implements prefetching in the L2 as well. As discussed

previously the goal of the SLAP-CC design is to adapt prefetch aggressiveness on a per

destination set basis. To this end, unlike prior prefetching techniques, SLAP-CC introduces

an adaptive confidence threshold mechanism to filter individual prefetches depending upon

which set those prefetches are destined towards, allowing it to be more aggressive where the

cache is less efficient due to greater compressiblity and less aggressive where less space is

available and the cache is more efficient due to low compressiblity.

4.3.2 SLAP-CC Cache Compression

The goal of SLAP-CC is not to create a new, aggressive cache compression algorithm.

Rather, we seek to show that our per-compressed set prefetch filtering mechanism can work
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with even a light-weight, low complexity and conservative cache compression scheme. To

that end, our baseline L2 cache is compressed cache using the prior work B∆I algorithm [26]

for cache line compression. The details of this compression algorithm were laid out previously

in Section 4.2.1.

In keeping with our strategy to show our technique works with even a conservative cache

compression algorithm, here we allow only two compression options for each cache line, either

64-bytes for uncompressed lines or 32-bytes for compressed lines. Thus, if a cache line can be

compressed to 32-bytes or less it will only consume one-half of a normal line’s space. Cache

lines which cannot be compressed to less than 32-bytes are not compressed.

Here we assume that the baseline L2 cache is an 8-way set associative cache. To track the

added blocks in the compressed cache, we doubled the size of the tag array and metadata.

Given that each individual line may be compressed up to 2X, the maximum overall cache

compression ratio that can be achieved by this design is 2X. Thus, the number of ways in

each cache set can be anywhere from 8-way to 16-way depending on the compressibility of

cache lines that map to that set.

As with most typical cache compression schemes, upon a miss’s insertion into the cache,

the SLAP-CC compression algorithm compresses the cache line. If the line cannot be com-

pressed to less than 32-bytes it is inserted as a full, 64-byte cache line. If the cache line can

be compressed to less than 32-bytes it is inserted, occupying only one half of line’s space al-

lowing two lines to be stored in that location. As mentioned above the SLAP-CC prefetcher

must know the number of ways in a set in order to determine how aggressively to prefetch

into that set. Accessing the tag array to determine the set’s way count for every prefetch

would be overly costly, thus SLAP-CC maintains a per-set active way count (PSAWC) in

the SLAP-CC prefetch filter, as shown in Figure 4.8. Whenever a cache line is inserted, the

new way count for that set is updated in the PSAWC at the same time.
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4.3.3 SLAP-CC Prefetcher

The goal of SLAP-CC is to implement a per-set prefetch aggressiveness filtering based

on the compressibilty of that set. To that end we will need to leverage prefetch confidence

(i.e. estimated use probability). To date, existing prior work prefetching techniques which

implement some form of confidence [7, 81, 68, 87] all use this confidence mechanism to throttle

further prefetches down a given path. This is because they operate under the assumption

that if a prefetch generated along a given speculative path has a confidence indicating that

fetching it would be too aggressive, any further prefetches down that path will be even

more speculative and aggressive and thus non-useful. Here this assumption is broken, as we

wish to modulate our prefetching aggressiveness threshold depending on the number of ways

available in the given set. Thus, it will likely be the case that while generating prefetches in

sequence along a path with decreasing confidence some earlier, higher probability prefetches

might be dropped (e.g. if the set they are destined for has fewer ways) while later, lower

confidence prefetches down that path might be allowed to fetch (e.g. if the sets they are

destined for has more effective ways.

The high level design of the SLAP-CC is illustrated in Figure 4.8. As we need a prefetcher

which can generate a per-prefetch confidence, SLAP-CC will leverage and modify the path

confidence of the prior work SPP [68] prefetcher, implemented as described in Section 4.2.4.1.

The largest change being that SLAP-CC implements an adaptive, per-set compression level

threshold. This allows SLAP-CC to modulate its aggressiveness on a per set basis. To this

end, SPP is modified to remove its normal threshold based throttling function.

Instead for each prefetch that SPP would normally generate, the prefetch’s set is looked

up in the PSAWC to determine how many effective ways there are in that set, as shown in

Figure 4.8. As described previously, this may be anywhere from 8 ways (e.g. if no ways

are compressed) to 16 ways (e.g. if all the ways are compressed). As shown in Figure 4.8,

this way counter is used to index into the Magnitude Threshold Table (MTT). Then the

corresponding magnitude threshold is read. The confidence of the prefetch candidate is
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Figure 4.8: Dynamic Magnitude Threshold.

compared against the magnitude threshold to adaptively determine if the prefetch should

issue or be dropped.

Unlike SPP that completely stops prefetching when it hits a predefined threshold mag-

nitude, SLAP-CC stops when it hits the lowest threshold magnitude of any of the possible

cache sets (i.e. the threshold set for a maximally compressed set, 16-ways in this case). De-

pending upon the target set of each individual prefetch candidate that determines whether

the prefetch issue or not.

4.4 SLAP-CC Implementation

The additional hardware storage requirements for SLAP-CC are summarized in Table

4.1. As described in Section 4.3, SLAP-CC’s prefetcher is based on the prior work SPP

design with an overhead of 5.37KB in the L2. Our baseline underlying cache compression

algorithm, B∆I, requires that we double the number of tags in the L2 to track the maximum

blocks that might be in a given set, thus it requires an additional 8.5KB. To account for

the extra latency of the increased tag set, as well as compression/decompression latency, 2

cycles are added to the L2 for hit access and miss insertion.

SLAP-CC requires two main new components beyond the typical prefetch engine and

cache compression hardware, the Per-Set Active Way Count (PSAWC) table, and the Mag-

nitude Threshold Table (MTT). In terms of hardware budget Per-Set Active Way Count is
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Table 4.1: Hardware storage overhead in KB

Component # Entries Size (KB)

SLAP-CC

Prefetcher – 5.37
Compressed Cache – 8.5

PSAWC 512 0.31
MTT 16 0.020

TOTAL SIZE : 14.20

0.31KB, and the Magnitude Threshold Table is 0.020KB. Thus, while the total combined

size of SLAP-CC, including the prefetcher and cache compression component is 14.2KB, the

overhead above a standalone prefetcher and cache compression scheme is only 0.33KB.

Note that, while our compression scheme doubles the number of tags maintained in the

L2 cache, as we will show, typically only 1/2 of those ways are in use at any given time. These

extra unused tag ways could be power gated to reduce power or used to store prefetcher or

replacement policy meta data. In our future work we will explore mechanisms to leverage

this space more effectively.

4.5 Evaluation

In this section, we evaluate the SLAP-CC system. First, we present the evaluation

methodology, followed by performance. Finally, we present in-depth analysis on prefetching

coverage and the impact of SLAP-CC on cache efficiency.

4.5.1 Methodology

We built our simulation infrastructure from ChampSim [98], a trace driven simulator

used in the Second and Third Data Prefetching Championship (DPC2, DPC3) [62, 99], the

Second Cache Replacement Competition (CRC2) [100] and the First Instruction Prefetching

Championship(IPC1) [101]. We note that the standard version of ChampSim does not retain

memory data values nor do its traces, and thus can not be used in cache compression studies.

To address this issue, we modified the ChampSim tracer to retain data values along with

addresses of memory accesses and regenerated all benchmark traces. We modeled a single-
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Table 4.2: Simulation Parameters.

CPU Core 1 Cores, 4 GHz
256 entry ROB, 4-wide

Private L1 DCache 32 KB, 8-way, 4 cycles
8 MSHRs, LRU

Private L2 Cache 256 KB, 8-way
8/10 cycles (uncompressed/compressed)
16 MSHRs, LRU, Non-inclusive

Shared LLC 2MB/core, 16-way, 12 cycles
32 MSHRs, LRU, Non-inclusive

DRAM 4 GB 1-Channel (single-core)
64-bit channel, 1600MT/s

core, out-of-order machine 2. The details of the configuration parameters are summarized in

Table 4.2.

The uncompressed cache block size is fixed at 64 bytes. The compression granularity size

is fixed at 32 bytes. In the event that a cache line is compressible but cannot be compressed

to 32-bytes the uncompressed line is stored instead. To provide the additional tags and

metadata we doubled the tag array. Prefetching is only activated upon L2 cache demand

misses and could be directed to the L2 or last-level cache based on the prefetch confidence

. There is no data prefetcher on L1 cache. The LRU replacement policy is used on all

levels of cache hierarchies. Branch prediction is done using the hashed perceptron branch

predictor [102]. The page size is 4KB. ChampSim operates all the prefetchers strictly in the

physical address space.

We use all 20 workloads available in the SPEC CPU 2017 suite [103]. We use the

SimPoint [104] methodology to reduce simulation times for these workloads. For performance

evaluation, we warm up each core for 200M instructions and collect results over an additional

1B instructions. We compare SLAP-CC against SPP, SPP+B∆I, and BOP+B∆I. The
2Note: because SLAP-CC’s focus is on the private L2 caches we expect that the results should carry

over to multi-processor systems (if not provide even larger benefits as the L2 capacity increase can lead to
less reliance on the shared LLC). In the future we plan to examine LLC cache compression and prefetching
where multi-program workloads would have a bigger impact.
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Figure 4.9: SPEC CPU 2017 Single-Core IPC Speedup, normalized against a system with a
B∆I compressed L2 and no prefetching.

baseline uses a compressed cache with B∆I compression [26].

4.5.2 Performance Analysis

In this section we discuss results of our experiments. Here we first examine the per-

formance of SLAP-CC against a B∆I baseline without prefetching and against prior work

prefetching techniques together with B∆I compression. Next we analyze the impact of

SLAP-CC on prefetching coverage and cache efficiency. Finally we examine the compression

ratio achieved by B∆I on our workloads to understand the impact of compression in the L2

generally.

Speedup: The ultimate goal of this work is to reduce cache misses and thereby induce a

performance gain in our workloads. Figure 4.9 shows the IPC speedup of SLAP-CC and two

prior work prefetching techniques (SPP [68] and BOP [21]) together with B∆I, normalized

against a baseline with L2 cache compression (B∆I) and no prefetching. We also show results

for a non-compressed cache normalized against the baseline compressed cache to illustrate

how much performance is gained by compressed caches without prefetching.

Overall, SLAP-CC outperforms or matches the prior work prefetching techniques on

every benchmark. The geometric mean speedup for SLAP-CC is 18.0%, compared with

11.0% for SPP. Overall, we note that SLAP-CC’s improvement over SPP+CC is more than
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Figure 4.10: Prefetching coverage.
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Figure 4.11: Cache efficiency.

the performance differential between no prefetching no cache compression and stand alone

cache compression shown in Figure 4.2. Thus, we have accomplished our goal of making

prefetching and cache compression performance additive.

Interestingly, we see that for several benchmarks (e.g. mcf), the prior work prefetch-

ing techniques plus compressed cache actually significantly reduce performance versus a

compressed cache baseline. In those workloads, cache compression allows the retention of
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Figure 4.12: Compression Ratio.
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Figure 4.13: Speedups for a baseline system with a faster LLC access time.

important parts of the working set of the application, whereas overly aggressive prefetching

knocks those useful components back out. This highlights how essential it is to co-design the

prefetcher for the cache compression scheme so that they do not fight against each other.

SLAP-CC in all cases improves performance to be greater than cache compression alone.

For some workloads, SLAP-CC works particularly well. For example, cactuBSSN in

particular, yields remarkable speedups of 75% over the baseline and 25% more than SPP.

Similarly mcf and xalancbmk show substantial gains versus the prior work prefetchers. We

will now examine these results with more detailed analysis.

Coverage: The performance gain from SLAP-CC compared to other prefetchers is a
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direct result of SLAP-CC’s increase in coverage. Here we will focus on a comparison with

SPP, since both SLAP-CC and SPP use similar mechanisms to generate prefetches. Fig-

ure 4.10 shows the prefetching coverage for each benchmark. As the figure shows, SLAP-CC

prefetcher increases the coverage across all benchmarks compared to SPP. We see that cov-

erage increases are among the largest for mcf , cactusBSSN and xalancbmk, matching the

highest performance increases on the speedup graphs above. xalancbmk in particular shows a

dramatic improvement in coverage; this benchmark’s primary working set is somewhat larger

than the L2 cache capacity and has a highly variable per-set compression ratio. Thus, cache

compression benefits the benchmark well. Blindly, aggressively prefetching, however, can

upset the locality of the less compressed sets, making it almost a perfect case for SLAP-CC.

Interestingly, there are several benchmarks (e.g. perlbench and leela) where there are large

improvements in coverage that do not translate into significant performance gains. In these

workloads there are not sufficient L2 misses for SLAP-CC or other prefetching techniques to

have an impact.

Cache Efficiency: As discussed in section 4.2, cache compression leads to worse cache

efficiency compared to uncompressed caches. Figure 4.11 shows the improvement of cache

efficiency for every benchmark with baseline uncompressed, baseline compressed and SLAP-

CC. In the figure, we see that SLAP-CC achieves an average efficiency improvement of ≈

4.0% over baseline compressed. Thus SLAP-CC covers close to half the difference between

the uncompressed and baseline compressed cache. This shows that SLAP-CC is able make

better use of the extra capacity that cache compression creates than without a codesigned

prefetching scheme.

Cache Compression Ratio: Figure 4.12 shows the results of effective compression

ratio using B∆I as described in Section 4.2.1. In the figure we see that on average B∆I

achieves a compression ratio of ≈1.50X across all benchmarks. We see that the compression

ratio varies significantly from benchmark to benchmark, with some benchmarks seeing little

compression (e.g. deepsjeng) while others achieving a nearly perfect 2X ratio (e.g. gcc).
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Sensitivity Analysis: Here we examine the impact of changing the last level cache

latency. In particular, Figure 4.13 shows the speedup of all benchmarks when LLC access

time is 35 cycles, instead of the baseline 50 cycles. In general, the figure shows that with

faster LLC access all prefetchers lose 1-2%. Nevertheless, SLAP-CC maintains a significant

performance differential with the best performing alternative SPP w/o cache compression.

These results reinforce the intuition that, since the system compresses and prefetches into

the L2 cache, the LLC configuration has little impact on the results we obtain.

4.6 Conclusion

Data compression and prefetching are promising techniques to bridge the gap in perfor-

mance between the processor and memory subsystem. That said, blithely putting both tech-

niques together without coordination of co-design can actually reduce the benefit of either

one. In this chapter propose a new prefetching algorithm designed for compressed caches. In

particular, SLAP-CC leverages the variability in compressibilty that typical cache compres-

sion algorithms see. SLAP-CC seeks to address this variability by individually confidence

filtering prefetches based on how much effective capacity is available in the set the prefetch is

destined towards. SLAP-CC is low overhead versus baseline cache compression and prefetch-

ing techniques and achieves a geometric mean speedup of 18.0% over baseline, outperforming

prior work prefetching techniques when implemented with cache compression.
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5. SCHEDULING MECHANISM FOR HARD TO PREFETCH LOADS

Modern data prefetchers prefetch the majority of cache lines ahead of explicit demand,

minimizing the impact of the memory wall on the out-of-order execution core and thus im-

proving performance. Despite the fact that hardware prefetchers have an impressive impact

on instructions per cycle (IPC) by reducing the number of cache misses, the processor is

still exposed to the memory wall on a cache miss due to hard to prefetch loads. Hard-Load

is defined as the load instruction that misses in the cache despite the using a prefetcher

to prefetch the data into that cache. In this work we propose a speculative technique to

minimize the impact of hard-loads by scheduling hard-load instruction early to allow the

cache hierarchy to start the miss handling mechanism earlier and reducing the impact of the

cache miss on performance.

5.1 Introduction

Out-of-Order superscalar microprocessors exploit Instruction Level Parallelism (ILP) to

maximize performance by executing more than one instruction at same time. Instructions

may be executed in an order that is different from the program order. To sustain high

performance from the Out-of-Order execution mode, the instruction scheduler must keep

the instructions moving through the pipeline at the highest rate possible, while maintaining

data dependencies and hardware resource constraints [105].

As the pipeline width grows, instruction window size increases, and the high impact of

the distance between execution core and DRAM on the overall performance. It is crucial

to preemptively schedule hard-load instructions as soon as possible rather than wait for the

actual cycle at which they become the oldest in the instruction window.

Data prefetching is critical to the performance of modern superscalar processors and is

implemented in many commercial products. Typical hardware prefetchers are activated and

trained by cache misses sequence, then using models to predict future memory accesses and
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prefetch them ahead of demands. Modern data prefetchers prefetch the majority of cache

lines ahead of explicit demand, minimizing the impact of the memory wall on the out-of-order

execution core and thus improving performance. Despite the fact that hardware prefetchers

have an impressive impact on instructions per cycle (IPC) by minimizing the number of

cache misses, the processor is still exposed to the memory wall on a cache miss due to hard-

to-prefetch loads that go all the way to DRAM to source the requested data. Cache misses

that go all the way to DRAM delay subsequent instructions and stall instruction commit

leading to zero IPC.

Designing hardware prefetcher centers around prefetch coverage and accuracy. Prefetcher

coverage is defined as the number of cache misses avoided due prefetching divided by the

number of misses with no prefetching [87]. Prefetcher accuracy is defined as the fraction of

prefetched cache lines that end up being useful for the application [87].
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Figure 5.1: Prefetch Coverage of SPP.

For example, Figure 5.1 shows the prefetching coverage for the SPEC 2017 benchmarks

on execution core modeled in ChampSim simulator. Prefetching coverage is measured by

the number of useful prefetches divided by the number of cache misses without prefetch-

ing [68]. Figure 5.2 shows the speedup that might be achieved when using a perfect L2D-

cache prefetcher normalized against the same system without prefetching. We can see that
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there is substantial performance gain due to uncovered misses.

Due to uncertainty that the prefetcher has successfully prefetch the load data to L1/L2

cache ahead of the explicit demand, exposing the processor to long latency to source the data

from LLC or DRAM due to hard-to-prefetch (H2P) loads. To reduce the impact of hard-

to-prefetch loads, we we propose a scheduling mechanism that predicts the hard-to-prefetch

loads at issue time and preemptively schedule them for execution as soon as they are ready,

to allow the cache hierarchy to start the mishandling mechanism sooner. Such scheduling

mechanism reduces the miss penalty on the dependent instructions after a hard-to-prefetch

load.

In this chapter, we study the causes of hard-to-prefetch loads, and propose a speculative

scheduling mechanism based on predicting hard-to-prefetch loads at issue time to speedup

the miss handling mechanism and reduce the impact of hard-to-prefetch loads on dependent

instructions. We identify three primary issues: (1) systematically hard-to-prefetch loads; (2)

rare loads with low dynamic execution counts; and (3) multi-target load instructions. We

propose a new scheduling mechanism that learns and predicts hard-to-prefetch loads and

issue them to the execution units as soon as they are ready.
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Figure 5.2: Speedup with SPP and Perfect Prefetcher.
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The remainder of the chapter is organized as follows: Section 5.2 presents motivation

and summarizes related work while Section 5.3 describes the Hard-to-Prefetch Loads Pre-

dictor and the Hard-to-Prefetch Loads Scheduling in depth. Section 5.4 gives an overview

of the evaluation methodology and performance analysis. Finally, Section 5.5 provides some

concluding remarks.

5.2 Background and Motivation

Below, we review instruction criticality, latency prediction, and finally review the state

of the art in data prefetching.

5.2.1 Instruction Criticality

Data-dependency graph can be used to describe program criticality. one or more paths

with a maximum length is called a critical path [35]. Instruction along that path called

criticality instructions. A critical load is a load instruction that is on the critical path.

Figure 5.3 shows the dataflow for a set of instructions. If every instruction takes the same

number of cycles to execute, thus the longest path in the graph is the critical path and has a

length of four, starting from I1 to I4. Therefore, instructions I1 to I4 are critical instructions.

Due to the variable latency to execute load instruction based on the cache level that is

responsible to source the target data. A load instruction that is not on the critical path can

have a big impact on the execution time when cache misses take place. In a system with data

prefetcher, these loads expose the processor to long latency because they hard-to-prefetch.

Fields et al. [106, 107] proposed a method to identify the critical path of an application

using directed graphs. Typical scheduling mechanisms tend to favor the selection of instruc-

tion along the critical path. While this can be important to achieve forward progress, it does

not differentiate amongst memory accesses. Subramaniam et al. [35] proposed a criticality

predictor for load instructions based on the number of the consumers of the load’s data.

They add counters to the ROB to track direct dependencies only, which can be determined

when consumers enter the rename stage [35].
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Figure 5.3: Dataflow graph.

5.2.2 Latency Prediction

To achieve scaling performance with increasing transistor density Out-of-Order proces-

sors exploit Instruction Level Parallelism by fetching and executing multiple instructions per

cycle from a single instruction stream [40]. In order to exploit the ILP, Out-of-Order pro-

cessors include a large instruction window and scheduler that searches for ready-to-execute

instructions to issue them to the execution units. The performance of an Out-of-Order pro-

cessor is bound by the critical path and the latency of hard-to-preftch load instructions.

Hard-to-prefetch loads stall the ROB leading to zero IPC, which translates to performance

degradation. Hard-to-prefetch loads are LLC misses that go all the way to DRAM to source

the data. Identifying hard-to-prefetch loads and targeting them for early scheduling as soon

as they are ready allows the cache hierarchy to get ahead start on the miss handling mech-

anism. Which results in reducing the impact of hard loads on the overall performance.

Liu et al. [55] propose a dynamic instruction sorting mechanism based on predicting the

“waiting time” of all instructions. They used Latency History Table (LHT) to estimates

the waiting time of instructions, sorting structure, and a Pre-issue Buffer (PB), where in-
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structions are buffered before entering the issue queue [55]. The LHT is indexed using the

predicted address of the load instruction and takes into account current requests to the data

cache [55]. Also it can detect if a load aliases with an older load whose L1 miss is pending

service.

Memik et al. [108] proposes a precise instruction scheduler which predicts when an in-

struction can start its execution and schedules the instructions such that they will arrive at

the corresponding position in the pipeline at the exact cycle when the data will be available

to them.

Yoaz et al. [109] proposes a mechanism to to improve the scheduling of load dependent

instructions by employing a data cache Hit-Miss Predictor to predict the dynamic load

latencies, then delay dependent instructions until the data is fetched [109].

Finally, Ghose et al. [110] propose a processor-side load criticality predictor to improve

the memory controller scheduling by ranking load requests to the memory, using a commit

block predictor which tracks loads that previously blocked the ROB [110].

We propose a scheduling mechanism that predicts hard-loads at issue time and schedules

them early to allow the cache hierarchy to start the miss handling mechanism earlier, so it

reduces the impact of the cache miss on performance.

5.2.3 Data Prefetching

Data prefetching is a well known technique in which the cache is pre-filled with useful data

ahead of an actual demand load request coming from the processor. Typically, the prefetching

opportunity is limited to waiting until a cache miss occurs, and then reading either a set of

lines sequentially following the current miss [16], a set of lines following a strided pattern with

respect to the current miss [17], or a set of blocks spatially around the miss [86]. More recent

prefetchers attempt to predict complex, irregular access patterns [86, 18, 19, 20, 69, 68].

While these methods show significant benefit, they are inherently reactive, waiting until a

cache miss occurs to activate the prtefetcher to initiate prefetches down the speculated path.

Prefetcher coverage and accuracy are two important metrics used to evaluate the effec-
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tiveness of a prefetcher. Prefetcher coverage measures fraction of demand misses eliminated

by the prefetcher. Prefetcher accuracy measures to the fraction of prefetched cache lines

that end up being useful to the application.

Ideal prefetcher would accomplish both high accuracy and coverage. Since accuracy is

at variance with coverage, typical Prefetchers include a throttling mechanisms to trade-off

coverage for accuracy and vice versa. Improving prefetch coverage at the expense of accuracy

leads to cache pollution.

5.3 Hard-to-Prefetch Loads Scheduling

Hard-to-Prefetch loads are the loads that stall the head of the reorder buffer (ROB) and

account for a large percent of the execution time. These loads go all the way to the DRAM

exposing the Out-of-Order core to the memory wall. We propose a scheduling mechanism

that targets these loads for early scheduling by giving them higher priority over other ready-

to-execute instructions, allowing the cache subsystem to start the miss handling mechanism

earlier. Such a scheduling mechanism minimizes the impact of hard loads on the critical

path execution. Next, we will discuss the sequence of steps to implement this in the OOO

pipeline.

5.3.1 Identifying Hard Loads

Out-of-Order cores use a large instruction window to hide the latency of dependent

instruction by utilizing instruction level parallelism. To predict hard to prefetch loads at

scheduling time, first we need to identify the hard to prefetch loads in in a given instruction

window and then select the hardest and oldest to issue to the execution units. We propose

Hard to Prefetch Loads Predictor (HLP), which tracks loads which have previously stalled

the ROB. When a load instruction stalls the ROB head, we calculate the commit distance,

which is the number of instructions that are ready to commit but waiting on the load to be

ready to commit but waiting on the load instruction to commit. When a load instruction

stalls the ROB head, the predictor is accessed and the load instruction installed in the HLP
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Figure 5.4: HLS Design Overview.

table. When a load instruction in the instruction window with the same PC hits the HLP

table, the instruction scheduler will mark this load as a hard load and issue it to the execution

unit.

In order for a load instruction to be classified as Hard-to-Prefetch Load. First, The

control logic needs to identify that an instruction is a load instruction by recognizing the

opcode of the instruction. Second, the instruction must be waiting at the head of ROB.

Finally, the instructions that follow the load instruction are ready to commit but waiting on

the load. The instruction pointer and the number of stall cycles also recorder for each entry

in the HPL table.

To allow the HLT to un-learn that a given load is no longer a Hard-to-Prefetch Load,

we employ a simple, counter-based, random clear mechanism. The counter counts cycles up

to a definable maximum value. When this maximum is reached the content of the table is

cleared.
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5.3.2 Scheduler Design

Figure 5.4 shows the high-level microarchitecture of Hard-Prefetch-Loads Predictor and

how it interacts with the ROB and the instruction scheduler. Hard to prefetch loads are

identified by their ROB stall time and commit distance. When a load stalls the head of

ROB and followed by ready to commit instruction, we install a new entry in the HLT that

includes the Load-PC, Load-IP, effective address, number of stall cycles.

At the scheduling time the scheduler control logic looks up the HLT to predict if any of

the ready loads are hard to prefetch loads. If a load is predicted to be hard to prefetch then

that load is issued to the execution units immediately. In our evaluation we assume that the

prediction can be performed every cycle or every other cycle.

By scheduling hard to prefetch loads ahead of other load instructions, we prioritize the

mishandling for these loads. In the case of an L2 miss, the fetch address request goes to the

last level cache, then to DRAM in case LLC miss. No changes are required to the memory

controller or the arbiter, therefore we avoid starvation of non-hard load instruction

5.4 Evaluation

In this section, we evaluate the Hard-to-Prefetch load scheduling. First, we present the

evaluation methodology, followed by single core performance.

5.4.1 Methodology

We used the ChampSim [98], a trace driven simulator, to evaluate HLS against prior work

techniques. The ChampSim simulator used in ChampSim used in the Third Data Prefetch-

ing Championship (DPC3) [99], the Second Cache Replacement Competition (CRC2) [100]

and the First Instruction Prefetching Championship(IPC1) [101]. We extended ChamSim

capabilities to model a Hard-Prefetch-Loads Predictor and process benchmark traces that

include data values. We modeled a single-core out-of-order machine. The details of the

configuration parameters are summarized in Table 5.1.

We use all the 20 workloads available in the SPEC CPU 2017 suite [103]. Using the Sim-

70



CPU Core 1 Cores, 4 GHz
256 entry ROB, 4-wide

Private L1 DCache 32 KB, 8-way, 4 cycles
8 MSHRs, LRU

Private L2 Cache 256 KB, 8-way, 8 cycles
16 MSHRs, LRU, Non-inclusive

Shared LLC 2MB/core, 16-way, 12 cycles
32 MSHRs, LRU, Non-inclusive

DRAM 4 GB 1-Channel (single-core)
64-bit channel, 1600MT/s

Table 5.1: Simulation Parameters.

Point [104] methodology. For performance evaluation, we warm up each core for 200M in-

structions and collect results over an additional 1B instructions. We compare hard-prefetch-

loads scheduler against a baseline system with no hard-prefetch-loads scheduler.

5.4.2 Performance Analysis

In this section we discuss results of our experiments. Here we first examine the per-

formance of HLS against a baseline without prefetching. Next we analyze the impact of

instruction window size on HLS.

The ultimate goal of this work is to reduce the impact of cache misses by preemptively

scheduling hard-load instructions such that the dependent instructions do not see the whole

penalty. Figure 5.5 shows the IPC speedup of HLS normalized against a baseline with

no prefetching. Overall, HLS outperforms the prior work prefetching techniques on every

benchmark. The geometric mean speedup for HLS is 16.0%, compared with 13.0% for SPP.

5.5 Conclusion

In this chapter we present a scheduling mechanism to reduce the impact of Hard-to-

Prefetch loads by predicting Hard-to-Prefetch at issue time and preemptively schedule them

as soon as possible.
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6. CONCLUSION

The power and area constraints on microprocessor design make it impractical to naively

increase the size of cache structures to close the gap of performance between the processor

and the memory subsystem. Therefore, in modern microprocessors, speculative techniques

for memory hierarchy are an essential part of the design to achieve better performance.

In this dissertation, we discussed three speculative techniques that efficiently manage the

memory hierarchy. First, we introduce SB-Fetch: synchronization-aware hardware prefetch-

ing for chip multiprocessors to address the problems of prefetching for shared memory ap-

plications. Prefetching in shared memory workloads is different and harder than in single

threaded workloads due to locks and sharing conflicts. SB-Fetch explicitly issues prefetches

beyond synchronization points and reduces early-prefetch invalidations to achieve significant

performance impact.

Second, we present SLAP-CC: set-level adaptive prefetching for compressed caches. Where

we explicitly co-designed a prefetcher for a compressed cache. We also showed that putting

compression and prefetching together without coordination reduce the benefit of either

one. SLAP-CC adapts prefetch aggressiveness to the workload compressibility and adjusts

prefetching aggressiveness on a per-set basis. SLAP-CC is low overhead technique with

significant performance impact.

Third, we propose a scheduling mechanism for hard-to-prefetch loads which reduces the

impact of cache misses by preemptively scheduling hard-load instructions such that the

dependent instructions do not see the whole penalty.

The aforementioned speculative techniques for modern memory hierarchies, resulting in

performance improvements and attractive to be implemented in future systems.
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