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ABSTRACT 

 

Thermal conductivity is one of the most important physical properties of materials. It plays a 

significant role in operation, performance and efficiency of the nuclear reactors. This study 

introduces a novel model for the effective thermal conductivity of polycrystalline solids based on 

the thin-interface description of grain boundaries (GBs). In contrast to existing models, the new 

model treats a GB as an autonomous “phase” with its own thermal conductivity. The Kapitza 

resistance/conductance of a thin interface is then derived in terms of the interface thermal 

conductivity and width. The predictions of the new model deviate from the corresponding ones 

from existing models by 1-100% as the grain size approaches the GB width. The development and 

implementation of two quantitative mesoscale models for the effective thermal conductivity of two 

important types of nuclear fuels are undertaken. These models account for the effects of 

temperature, underlying microstructure, and interface thermal resistance for calculating the 

effective thermal conductivity. High-fidelity finite-element simulations were conducted to validate 

the predictions of the developed models. These simulations proved the higher accuracy of the 

developed models. Lastly, to reduce the required computational power, advanced machine learning 

algorithms were integrated with the validated mesoscale models. This approach is novel and 

significantly saved the running time and computational cost. The advantages and limitations of the 

developed models are summarized, and some future directions are highlighted. 

 

 

  

 

 

 

 

 



 

iii 

 

DEDICATION 

 

This document is dedicated to my family, especially my father, who passed away while I was at 

the beginning of the path to start this study. 

 

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

I would like to express my great gratitude for the inspiring and patient instructions from Prof. 

Karim Ahmed. It would be impossible for me to carry out this research without his guidance and 

support. Many thanks to Prof. Sean M. McDeavitt and his group for their cooperation.  

I would like to thank my other committee members, Prof. Sean M. McDeavitt, Prof. Lin Shao, 

Prof. Pavel V. Tsvetkov, and Prof. Bobak Motazavi, for their guidance and support throughout the 

course of this research. 

I would like to thank my colleagues in our research group for their kind help and sweet company 

during these years. 

I acknowledge support from the U.S. Department of Energy, Office of Nuclear Energy through 

the Nuclear Energy University Program, and also acknowledge the computing resources from 

INL.  

Finally, thanks to my mother, brothers, and sisters for their encouragement. My wife, Sarah 

Abdellatief, and my children (Salma, Omar, and Ali) for their patience and support. 

 

  



 

v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors  

This work was supervised by a thesis committee consisting of Professor Karim Ahmed [advisor], 

Professor Sean M. McDeavitt, Professor Lin Shao, and Professor Pavel V. Tsvetkov of the 

Department of Nuclear Engineering, Texas A&M University, and Professor Bobak Motazavi of 

the Department of Computer Science & Engineering, Texas A&M University. 

Funding Sources  

The authors for this work would like to acknowledge the support from the Department of Energy 

Office of Nuclear Energy (DE- NE0008764). Portions of this research were conducted with the 

advanced computing resources provided by Texas A&M high-performance research computing 

and the computing resources from INL.  

 

  



 

vi 

 

NOMENCLATURE 

 

UO2 Uranium dioxide 

BeO Beryllium oxide    

U-Zr Uranium Zirconium 

Dep_U.                       Depleted Uranium    

T                                 Temperature 

GBs.                           Grain-Boundaries   

𝑅!                               Kapitza Resistance 

𝐺!                               Kapitza Conductance 

𝐾"#$                             Interface Thermal Conductivity 

𝐾%                               bulk Thermal Conductivity 

𝑙	                                 Interface thickness 

𝐷&                               Fractional difference 

𝐾'(                             Thermal conductivity based on 2D simulations 

𝐾)(                             Thermal conductivity based on 3D simulations   

RMSE                        Root-mean-square error  

 r                                 Pearson's correlation coefficient 

ML                             Machine learning  

DL                              Deep Learning   

 

 



 

vii 

 

TABLE OF CONTENTS 

 

                     Page 

ABSTRACT .................................................................................................................................... ii 

DEDICATION ............................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

CONTRIBUTORS AND FUNDING SOURCES .......................................................................... v 

NOMENCLATURE ...................................................................................................................... vi 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ....................................................................................................................... xiii 

CHAPTER I  INTRODUCTION .................................................................................................... 1 

1.1. Background and Motivation ........................................................................................... 1 
1.2. Significance of work ....................................................................................................... 2 
1.3. Objectives ....................................................................................................................... 3 
1.4. Thesis Layout .................................................................................................................. 4 

CHAPTER II  A NEW MODEL FOR THE EFFECTIVE THERMAL CONDUCTIVITY OF 
POLYCRYSTALLINE SOLIDS1 .................................................................................................. 5 

2.1 Modeling and Methodology ............................................................................................ 5 
2.1.1 A new model of the effective thermal conductivity of heterogeneous solids ......... 5 
2.1.2 General formula for the effective Kapitza resistance of a thin interface .............. 11 
2.1.3 Calculating the effective thermal conductivity of polycrystalline solids .............. 13 

2.2 Results and Discussion ................................................................................................. 14 
2.2.1 Validation of the Kapitza resistance/conductance formula for a thin GB ............ 14 
2.2.2 Effect of the spatial profile of the GB conductivity on the overall thermal 
conductivity ........................................................................................................................... 22 
2.2.3 Comparison the predictions of the sharp interface and thin interface models ...... 24 
2.2.4 Comparison of the predictions of the analytical models based on data from 
simulations and experiments ................................................................................................. 27 
2.2.5 Simulations of the effective thermal conductivity of polycrystalline solids ......... 32 
2.2.6 Derivation of a scaling scheme to accelerate mesoscale phase-field simulations 35 



 

viii 

 

CHAPTER III  AN EXPERIMENTALLY VALIDATED MESOSCALE MODEL OF 
THERMAL CONDUCTIVITY OF A UO2 AND BEO COMPOSITE NUCLEAR FUEL1 ....... 37 

3.1 Introduction ................................................................................................................... 37 
3.2 Experimental Approach ................................................................................................ 39 

3.2.1 Sample Preparation ............................................................................................... 39 
3.2.2 Thermal Analysis .................................................................................................. 40 

3.3 Mesoscale model formulation ....................................................................................... 41 
3.3.1 Thermal Modeling of Composites ........................................................................ 41 
3.3.2 Effect of Dimensionality on Thermal Conductivity ............................................. 41 
3.3.3 Microstructure Representation .............................................................................. 42 

3.4 Results and Discussion ................................................................................................. 47 
3.4.1 Dispersed Microstructure ...................................................................................... 49 
3.4.2 Continuous Microstructure ................................................................................... 51 

CHAPTER IV  AN EXPERIMENTAL VALIDATED MESOSCALE MODEL OF THE 
EFFECTIVE THERMAL CONDUCTIVITY OF U-ZR METALLIC NUCLEAR FUEL ......... 53 

4.1 Introduction ................................................................................................................... 53 
4.2 Materials and Methods .................................................................................................. 55 
4.3 Mesoscale model Formulation ...................................................................................... 56 

4.3.1 Thermal model ...................................................................................................... 56 
4.3.2 Microstructure Representation .............................................................................. 58 

4.4 Results and Discussion ................................................................................................. 62 
4.4.1 Mesoscale model of depleted uranium ................................................................. 63 
4.4.2 Mesoscale model of U-10Zr ................................................................................. 66 

CHAPTER V  A HYBRID ML– MESOSCALE SIMULATION-BASED APPROACH TO 
THERMAL CONDUCTIVITY MODELING .............................................................................. 70 

5.1 Introduction ................................................................................................................... 70 
5.2 A hybrid ML-Mesoscale Model of Thermal Conductivity ........................................... 70 
5.3 Results and Discussion ................................................................................................. 78 

5.3.1 A hybrid Physics-Based and Data-Driven approach for predicting the Effective 
Thermal Conductivity of UO2 and BeO Composite Nuclear Fuel ....................................... 78 
5.3.2 A hybrid Physics-Based and Data-Driven approach for predicting the Effective 
Thermal Conductivity of U-10Zr metallic Nuclear Fuel ...................................................... 82 

CHAPTER VI  SUMMARY AND CONCLUDING REMARKS ............................................... 86 

REFERENCES ............................................................................................................................. 89 

APPENDIX A ZR PRECIPITATES MODEL ............................................................................. 96 

 



 

ix 

 

LIST OF FIGURES 

                        Page 

Figure 1. A schematic representation of the sharp- (left, based on) and thin-interface 
description of temperature drop across grain boundaries in solids. Dashed lines 
represent grain boundaries. ............................................................................................. 7 

Figure 2. A schematic representation of a bicrystal as a layered composite of two phases, e.g., 
the grain “phase” (1) and the grain boundary “phase” (2) .............................................. 8 

Figure 3. A Schematic representation of a hetero-interface in two-phase systems as a tri-layer 
composite. ..................................................................................................................... 11 

Figure 4. A schematic illustration of the simulation domain used to calculate the effective 
thermal conductivity. ..................................................................................................... 14 

Figure 5. (a), (b), and (c) show constant, linear, and parabolic variation of thermal 
conductivity, respectively inside the grain boundary thickness with lower values 
than the bulk thermal conductivity- Kapitza Resistance. .............................................. 18 

Figure 6. (a), (b), and (c) show constant, linear, and parabolic variation of thermal 
conductivity, respectively inside the grain boundary thickness with higher values 
than the bulk thermal conductivity- Kapitza Conductance. .......................................... 21 

Figure 7. Change of the effective thermal conductivity of a bicrystal with grain size: from 10 
nm to 100 nm (left), and from 100 nm to 500 nm (right) for different spatial profiles 
for the thermal conductivity of the highly-conducting grain boundary. ....................... 22 

Figure 8. Change of the effective thermal conductivity of a bi-crystal with grain size for 
different spatial profiles of the thermal conductivity of the lowly-conducting grain 
boundary. ....................................................................................................................... 23 

Figure 9. Finite-element simulations of the effect of GB thickness on the effective thermal 
conductivity of a bicrystal with different grain sizes. ................................................... 25 

Figure 10. Comparison of the predictions of the new and Yang et al. models for the effective 
thermal conductivity of a nanometer-sized bi-crystal. The effect of the Kapitza 
resistance (left) and the effect of grain size (right). ...................................................... 26 

Figure 11. Comparison of the predictions of the new and Yang et al. models for the effective 
thermal conductivity of a nanometer-sized bi-crystal. The effect of the Kapitza 
resistance and grain size (left) and the effect of GB width (right). The difference 
increases ........................................................................................................................ 27 

Figure 12. Comparison between the predictions of our new model, Yang et al. model, and 
FEM simulations for a bicrystal with grain sizes of 200 nm (left) and 20 nm (right). . 28 



 

x 

 

Figure 13. Fitting of the results of molecular dynamics simulations for the effective thermal 
conductivity of solid argon at 30 K. The solid line is the best fit to the new model 
(Eq. (2.15)). ................................................................................................................... 29 

Figure 14. Fitting of the experimental data for the effective thermal conductivity of platinum. 
The solid line is the best fit to the new model (Eq. (2.15)). .......................................... 31 

Figure 15. Effective thermal conductivity of a polycrystalline solid with hexagonal grains: 
(left) a snapshot of the microstructure, (right) the quantitative change of the 
effective thermal conductivity with grain size. ............................................................. 33 

Figure 16. Variation of the thermal conductivity of a polycrystalline solid during grain 
growth. (a) Snapshots of the microstructure evolution, and the corresponding change 
of the effective thermal conductivity with (b) grain size and (c) time. ......................... 34 

Figure 17. A visual representation of the difference between 3D and 2D thermal 
conductivities of a two phase material (a and b) at different volume fractions of 
second phase (shown in red). The particle thermal conductivity is BeO thermal 
conductivity, and the matrix thermal conductivity is UO2 thermal conductivity. The 
calculated effective thermal conductivity values for the 2D and 3D simulations are 
shown in (c) with the difference/ error between the 2D and 3D simulations 
presented in (d). ............................................................................................................. 43 

Figure 18. An illustration of the spatial dependence of the thermal conductivity across the 
interface. The reduced interfacial thermal conductivity approximates the interface 
(Kapitza) resistance. ...................................................................................................... 45 

Figure 19. Experimental (left) and simulated (right) images for the dispersed microstructure. 
In the experimental micrograph, the high conducting phase (BeO) is shown in black 
and the low conducting phase (UO2) is shown in gray. In the simulation image, BeO 
is shown in red and UO2 is shown in blue. .................................................................... 45 

Figure 20. Experimental (left) and simulated (right) images for the continuous microstructure. 
In the experimental micrograph, the high conducting phase (BeO) is shown in dark 
gray and the low conducting phase (UO2) is shown in light gray. In the simulation 
image, BeO appears brown and UO2 is shown in white. In the magnified image, the 
interface region between the UO2 phase and BeO is shown in red. ............................. 47 

Figure 21. The experimental measurements of the thermal conductivity of UO2-BeO 
composites of varying concentration with a dispersed (a) microstructure, presented 
here, and continuous (b) microstructure from Garcia et al. [66]. .................................. 48 

Figure 22. A comparison of the experimental and MOOSE results for 5 vol.% (left) and 10 
vol.% (right) composites with a dispersed microstrcture. Accounting for the 
interface resistance improved the model predictions. ................................................... 50 



 

xi 

 

Figure 23. A comparison of the experimental and MOOSE results for 10 vol.% composites. 
The agreement improves when we consider the interface (Kapitza) resistance and 
the dimensionality factor. .............................................................................................. 51 

Figure 24. Comparisons between the model predictions and the experimental results from 
Garcia et al. for 6 vol.% (left) and 10 vol.%. (right) composites with a continuous 
microstructure [66]. The interface thermal resistance was considered in the 
simulations. ................................................................................................................... 52 

Figure 25. A configuration of three dimensional (3D) thermal modeling approach. ................... 57 

Figure 26. BSE of Dep_U (left) sample. The light gray corresponds to uranium and black to 
pores. Simulated (right) image for Dep_U microstructure. pores are shown in red 
and Dep_U is shown in blue. ........................................................................................ 59 

Figure 27. The effective thermal conductivity of argon gas (left), and the effective thermal 
conductivity of depleted uranium (right)-based on Kim model. ................................... 60 

Figure 28. BSE of U-10Zr (left) sample. The light gray corresponds to U-10Zr, dark gray to 
zirconium and black to pores. Simulated (right) image for U-10Zr microstructure. 
pores are shown in light blue, Zr precipitates are shown in peach, and U-10Zr is 
shown in blue. ............................................................................................................... 61 

Figure 29. 3D configuration of the effective thermal conductivity of U-Zr (left) as function in 
temperature and zirconium weigh percent. 2D configuration of the effective thermal 
conductivity of depleted uranium, uranium zirconium and zirconium (right)-based 
on Kim model. ............................................................................................................... 62 

Figure 30. Effective Kapitza resistance versus temperature for various theoretical densities of 
depleted uranium. .......................................................................................................... 64 

Figure 31. The effective Kapitza resistance (left) and the normalized interface thermal 
conductivity and the normalized effective Kapitza resistance (right) versus 
temperature of depleted uranium/Argon interface. ....................................................... 65 

Figure 32. The effective Kapitza resistance based on Maxwell model and experimental 
measurements versus temperature for various theoretical densities of U-10Zr. ........... 66 

Figure 33. The effective Kapitza resistance versus temperature for various theoretical 
densities of U-10Zr with considering the precipitates effect. ....................................... 68 

Figure 34. Thermal conduction reduction due to Kapitza effect (left) the effective Kapitza 
resistance versus temperature (right) and for all various theoretical densities of U-
10Zr. .............................................................................................................................. 69 

Figure 35. A schematic illustration of conventional ML approach. ............................................. 71 



 

xii 

 

Figure 36. A schematic illustration of a hybrid ML approach & mesoscale modeling approach. 72 

Figure 37. Random forest inference for a simple classification example with just three trees .... 75 

Figure 38. Training stage for various ML algorithms against the experimental thermal 
conductivity data at different BeO volume fractions 5%, 10%, and 15% UO2-BeO 
nuclear fuel .................................................................................................................... 79 

Figure 39. ML testing stage against the mesoscale model, at 7.5 and 12.5 % dispersed volume 
fraction of BeO based on random forest regressor algorithm ....................................... 80 

Figure 40. ML testing stage against the mesoscale model, at 7.5 and 12.5 % dispersed volume 
fraction of BeO based on random multiple polynomial algorithm ............................... 80 

Figure 41. The prediction results from the proposed ML Algorithm for the thermal 
conductivity evolution of the UO2-BeO nuclear fuel at 8,12,16 and 20% dispersed 
volume fractions and 25-400 ℃ temperature range. ..................................................... 81 

Figure 42. Training stage for various ML algorithms against the experimental thermal 
conductivity data at different theoretical densities 73.8%, 76.1%, 79.6%, 83.5% and 
83.8% of U-10Zr nuclear fuel. ...................................................................................... 83 

Figure 43. Testing stage against the mesoscale thermal conductivity data at different 
theoretical densities 75% and 80% of U-10Zr nuclear fuel based on random forest 
algorithm. ...................................................................................................................... 84 

Figure 44. Testing stage against the mesoscale thermal conductivity data at different 
theoretical densities 75% and 80% of U-10Zr nuclear fuel based on multiple 
polynomials algorithm. .................................................................................................. 84 

Figure 45. Prediction at different theoretical densities 74%, 78%, 82% and 84% of U-10Zr 
nuclear fuel based on multiple polynomials algorithm. ................................................ 85 

Figure 46. Plotting of Zr atom percent vs Zr wight percent of U-Zr fuel. .................................... 97 

Figure 47. Plotting of precipitation fraction vs, the weight percent of zirconium atoms in U-Zr 
fuel. ................................................................................................................................ 99 

Figure 48. Total volume of Zr precipitates vs Zr weight percent in U-Zr fuel matrix. .............. 100 

 
 
 
 
 
 
 



 

xiii 

 

LIST OF TABLES 

                         Page 
 
 
Table 1 analytical and numerical Kapitza resistance results for lowly-conducting grain 

boundary where, 𝒍 = 𝟐. 𝟓	𝒏𝒎 , and 𝒌𝒃 = 𝟏	𝑾/𝒎.𝑲 .................................................. 17 

Table 2. analytical and numerical Kapitza conductance results for highly-conducting grain 
boundary where, 𝒍 = 𝟐. 𝟓	𝒏𝒎, and 𝒌𝒃 = 𝟏	𝑾/𝒎.𝑲 ................................................... 20 

Table 3. The Kapitza resistance predicted by the different analytical models. ............................ 30 

Table 4. The Kapitza resistance predicted by the different analytical models. ............................ 31 

Table 5. Errors in the values of the Kapitza resistance obtained from the analytical models ...... 33 

Table 6. Validation of the scaling approach for enabling large scale simulations. ...................... 36 

Table 7. Total precipitates volume and volume fractions. ............................................................ 61 

 
 
 

 

 

 

 

 

 



1 

CHAPTER I  

INTRODUCTION 

1.1. Background and Motivation 

Thermal conductivity is one of the most important physical properties of materials. It is the main 

attribute that determines the material of choice in several industrial and technological applications. 

For instance, materials used in thermal barrier coatings and thermoelectric materials should have 

low thermal conductivity, while common materials suited for electronic devices and nuclear fuel 

fabrication must exhibit high thermal conductivity.  

Similar to most physical properties of solids, thermal conductivity is sensitive to the underlying 

microstructure[1-11]. The main reason for this dependency is the effect of interfaces in 

heterogeneous materials on the overall heat transfer. Interfaces usually act as obstacles for heat 

conduction by scattering heat carriers. For example, polycrystalline solids generally show lower 

thermal conductivity than the corresponding bulk single crystals. More reduction can be seen as 

grain size decreases. Nonetheless, interfaces can also be engineered to improve the overall 

conductivity of heterogeneous materials by precipitating out a highly conducting phase, adding 

highly conductive intermediate layers, or doping[12, 13].  

Attempting to understand the interaction between heat carriers and interfaces is a very active area 

of research[8-37]. An in-depth comprehension of this process is still not fully achieved[32, 35, 

37]. For most purposes, however, it is the effective/overall thermal conductivity of the 

inhomogeneous material that is of interest. Nonetheless, accurate predictions of the effective 

thermal conductivity require a precise description of the interfacial heat transport.  

Several models and simulation techniques were developed for predicting the conductivity of 

polycrystals [8-10, 12-37]. They can be classified into two main categories, continuum and 

atomistic/particulate models. The acoustic mismatch model, diffuse mismatch model[38], and 

molecular dynamics simulations preserve the underlying particulate nature of heat carriers [12, 13, 

32, 35, 37]. Continuum models and finite element simulations, on the other hand, utilize specific 

constitutive laws and interfacial boundary conditions that coarse grain the atomistic details [8-11, 

15-22, 39, 40]. The advantages of continuum models are the simplicity of implementation and 

usage, ease of interpretation of results, and capability of verification and validation using relatively 
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simple experiments. In these models, the most crucial parameter that accounts for interfacial 

transport is the thermal boundary (Kapitza) resistance/conductance. This parameter, however, can 

be determined only from atomistic models or advanced experiments. Several studies have shown 

that its value depends on grain boundary (GB) energy, GB misorientation angle, GB excess 

volume, and strain energy[30-35].  

Moreover, similar to heterojunctions in semiconductors [12, 13], segregation and interface 

structure/phase transition are expected to affect the value of the Kapitza resistance as well. Yet, all 

these factors are not taken into consideration in the analytical and continuum models[8-10] 

commonly used in literature[10, 14-29]. Since these models are based on the sharp-interface 

description of GBs, their predictions for nano-sized polycrystalline solids are questionable. 

Moreover, experimental data of many materials are limited due to the high cost and technical 

challenges of conducting these experiments. 

This study aims to investigate, examine, and quantify the effect of microstructure 

heterogeneity/interfaces on effective thermal conductivity. First, this study will focus on the 

impact of GBs on the effective thermal conductivity of polycrystalline solids. Second, the primary 

treatment and concepts will be adapted to other types of interfaces and/or heterogeneous solids, 

namely a composite uranium dioxide-beryllium oxide (UO2-BeO) and uranium - zirconium (U-

10Zr) nuclear fuels. One of the significant contributions of this work is that a joint experimental 

and modeling approach is used to quantify the Kapitza resistance between the fuel components. 

Then, the obtained Kapitza resistance is utilized to improve the accuracy of predictions for the 

effective thermal conductivity of heterogeneous fuel. Lastly, we will modify and incorporate novel 

machine learning (ML) methods to resolve the experimental and computational challenges [32, 

41-47]. 

1.2. Significance of work 

Thermal conductivity is one of the most important physical properties of materials. It is the main 

attribute that determines which material can be used in several industrial and technological 

applications. This study focuses on the effect of the microstructure heterogeneity on the effective 

thermal conductivity.  This is a crucial step to develop materials with specific thermal properties 

such as thermoelectric materials and nuclear fuels. Unlike previous work in the literature, the 
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current study introduces a new continuum model that alleviates the shortcomings of the existing 

models mentioned above. The proposed model is based on the thin-interface description of 

GBs/interfaces. This description is common in the thermodynamic theory of heterogeneous 

materials, which treats GBs and interfaces as autonomous “phases” [41]. In deriving the model, 

the current study introduces an expression for the effective/average Kapitza 

resistance/conductance of a thin interface. This model then can account for the changes in thermal 

resistance/conductance of an interface due to, but not limited to, segregation/doping, localized 

phase transition, or confined irradiation or mechanical damage. Furthermore, this study introduces 

the development and implementation of two quantitative mesoscale models for the effective 

thermal conductivity of two important types of nuclear fuels. These models account for the effects 

of temperature, underlying microstructure, and interface thermal resistance for calculating the 

effective thermal conductivity. Additionally, this work uses a joint experimental and modeling 

approach to quantify the Kapitza resistance between the fuel components; this is an unpreceded 

achievement, and it is important to understand the effect of fuel microstructure on the effective 

thermal conductivity, then on the reactor’s operation, performance and safety.  In order to resolve 

the encountered challenges with experimental work (such as technical difficulties) and 

computational work (e.g., computational power), the current study presents a new approach, which 

is a combination of suitable machine learning (ML) algorithms and validated mesoscale models. 

This approach is novel and significantly saves running time and computational cost. 

 

1.3. Objectives 

The main objective of this study is to investigate, examine and quantify the effect of 

microstructure on the effective thermal conductivity through:  

• Developing a novel model for the effective thermal conductivity of heterogeneous 

solids based on the thin-interface description of interfaces. 

• Developing a general formula for the effective Kapitza resistance of a thin interface. 
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• Developing an experimentally validated mesoscale model of thermal conductivity of 

composite UO2 and BeO and metallic U-Zr nuclear fuels.  

• Developing a hybrid ML–Mesoscale Simulation-based approach to thermal 

conductivity modeling. 

1.4. Thesis Layout 

The structure of this dissertation was generally shaped by published and submitted journal papers, 

and is organized as follows. Chapter II gives an overview of a new model of effective thermal 

conductivity and develops a new general expression for the Kapitza resistance. This chapter is 

based on the paper entitled "A new model for the effective thermal conductivity of polycrystalline 

solids" published in AIP Adv, volume 10, issue 10 in year 202, and reprinted with permission from 

AIP.  Chapter III presents an experimentally validated mesoscale model of the effective thermal 

conductivity of a UO2 and BeO composite nuclear fuel. Through this chapter, two types of fuel 

microstructures (dispersed and continuous) were investigated. This chapter is based on the paper 

entitled "An Experimentally Validated Mesoscale Model of Thermal Conductivity of a UO2 and 

BeO Composite Nuclear Fuel" published in journal of materials, volume 71, issue 12 in year 2019, 

and reprinted with permission from Springer. Chapter IV describes experimentally validated 

mesoscale models of the effective thermal conductivity for dep_U and U-Zr. Chapter V develops 

a hybrid ML– Mesoscale simulation-based approach to thermal conductivity modeling. Finally, 

chapter VI outlines the summary and the concluding remarks 
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CHAPTER II  

A NEW MODEL FOR THE EFFECTIVE THERMAL CONDUCTIVITY OF 

POLYCRYSTALLINE SOLIDS1 

This study proposed a new analytical Kapitza resistance formula based on based on the Fourier 

law.  This expression was verified against a finite element simulation for various spatial 

dependence functions of grain boundary thermal conductivity.  Additionally, a new model for 

effective thermal conductivity of the polycrystals has been developed by taking into consideration 

the effect of interface/grain boundary thickness; the new model verified against the finite element 

simulations and its results are matching well and better than previous models. Both new models 

are applied to bi-crystal and polycrystal microstructures specifically hexagonal and Voronoi 

microstructures with steady state and transient calculations that have been done. In all cases that 

are investigate the new models produced better results than the previous models. 

2.1 Modeling and Methodology  

2.1.1 A new model of the effective thermal conductivity of heterogeneous solids 

Before introducing our new model of the effective thermal conductivity of heterogeneous solids 

based on a thin interface, we briefly review the classical models that use sharp-interface 

description. In 1998, using the averaging grain theory [42], Nan and Birringer proposed an 

analytical model to study the effect of grain size on the effective thermal conductivity of 

polycrystals. By incorporating the concept of the Kapitza resistance into an effective medium 

approach, the model describes the effective thermal conductivity for common polycrystals with 

isotropic, equisized spherical crystallites [1, 9].  

 
𝑘 =

𝑘%

1 + 2𝑘%𝑅!𝑑

 
(2.1) 

Where, 𝑘%is the single crystal thermal conductivity 9 *
+.-

:, 𝑅! is the Kapitza thermal resistance 

from grain boundaries 9+
!-
*
:, and 𝑑 is grain size (𝑛𝑚).  

1 Reprinted with permission from “Fergany Badry and Karim Ahmed, AIP Advances 10, 105021 (2020); licensed 
under a Creative Commons Attribution (CC BY) license." [43] 
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This model has been revised by Yang et al. in 2002 by noting that each grain boundary region is 

shared by two grains[1, 8]. Therefore, instead of Eq. (2.1), the effective thermal conductivity is 

given by [8] 

 
𝑘 =

𝑘%

1 + 𝑘%𝑅!𝑑

 
(2.2) 

More recently, Palla and Giordano [11] generalized the above models to anisotropic materials and 

considered both the high- and low-conductive interfaces. While this generalization made a salient 

contribution to the earlier work, the dependence of the effective thermal conductivity on grain size 

remained unchanged.  The classical models summarized above are based on a sharp-interface 

description of the interface. In such description, it is assumed that, while the heat flux is 

continuous, there is a discontinuity in the temperature field across the GB.   

Nonetheless, as mentioned before, at small scale, the thin-interface description provides more 

natural and accurate treatment of the interfacial region. Moreover, it accounts in a straightforward 

manner for the possibility of drastic physical property change in this region due to doping, 

segregation, and/or interface phase transition. Therefore, it is important to develop the thin-

interface model of heat transfer across grain boundaries in solids.  

The description of the sharp- and thin- interface treatments are schematically illustrated in Figure. 

1. In contrast to the sharp-interface description, the thin-interface description treats the interfacial 

region as autonomous with its own thermodynamic properties (e.g. a surface phase). In its simplest 

form, which will be considered here, the thin interface implies the continuity of both heat flux and 

temperature across the boundaries; effectively transforming an imperfect interface into two perfect 

interfaces separated by a distance equal to the interface width (as shown in Figure. 1). Firstly, in 

order to derive an equation for the effective thermal conductivity, we generalize here the procedure 

carried out by Yang et al [8]for the sharp-interface case to the thin-interface case.  

The average temperature drop across a grain is 𝑇.. 𝑇/% is the temperature drop across a GB due to 

its thermal (Kapitza) resistance. Similar to the procedure in [1], [8], we examine the temperature 

profile across a polycrystalline system in response to an applied heat flux q. The heat flux is 

assumed to follow the classical Fourier’s law,  



 

 

 

7 

 

 

 

 

 

 

 
𝑞 = −𝑘

𝑑𝑇
𝑑𝑥 

 

(2.3) 

As evident from Figure. 1, the total temperature drop across the grain and its boundary is 

𝑇$.$ = 𝑇. + 𝑇/%             (2.4) 

By substituting Eq. (2.4) into Eq. (2.3) and rearranging, we obtain  

 𝑘 =
−𝑞(𝑑 + 𝑙)
𝑇. + 𝑇/%

 

 

(2.5) 

Where 0"10#$
(314)

 is equivalent to 30
36

 , and  𝑙 is the interface thickness (𝑛𝑚). 

Similarly, by applying Fourier’s law inside the grain, one has 

𝑇. =
−𝑞𝑑
𝑘%

 

 

(2.6) 
 

By definition, the Kapitza resistance is the ratio between the temperature drop across the 

interface to the heat flux passing through it[44], e.g.,  

𝑅! = −
𝑇/%
𝑞  

 

 

(2.7) 

Hence, 

𝑇/% = −𝑞𝑅! (2.8) 

Figure 1. A schematic representation of the sharp- (left, based on) and thin-interface description 
of temperature drop across grain boundaries in solids. Dashed lines represent grain boundaries. 
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By combining Eqs. (2.5), (2.6), and (2.8), we arrive at 

𝑘 =
−𝑞(𝑑 + 𝑙)
−𝑞𝑑
𝑘%

− 𝑞𝑅!
 

 

 

(2.9) 

Or equivalently,  

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘%
	+ 	𝑅!

		 

 

 

      (2.10) 

As expected, in the limit where the interface width vanishes, Eq. (2.10) reduces to Eq. (2.2) and 

we recover Yang et. al. model. It is also worth noting that one can arrive at an equation similar to 

Eq. (2.10) based on the harmonic-average formula of layered composites [45]. This can be 

achieved by treating both the grains and grain boundaries as “phases” with their own thermal 

conductivities, as shown in Figure. 2.  

 

Figure 2. A schematic representation of a bicrystal as a layered composite of two phases, e.g., the grain 
“phase” (1) and the grain boundary “phase” (2) 

In such case, the average thermal conductivity is simply given by,  

 𝑘 = (
∅7
𝑘7
+
∅'
𝑘'
)87 (2.11) 

Where, ∅7, and ∅' represent bulk volume fraction, and grain boundary volume fraction, 

respectively, i.e., 𝑘7 = 𝑘9, and 𝑘' = 𝑘:9.  

The first phase (grain) volume fraction is given by 

 ∅7 = 𝑑/(𝑑 + 𝑙) 
 

(2.12) 
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The second phase (grain boundary) volume fraction is  
 ∅' = 𝑙/(𝑑 + 𝑙) 

 

(2.13) 

By substitution of Eqs. (2.12) and (2.13) in Eq. (2.11), we have 
 

𝑘 =
1

𝑑/(𝑑 + 𝑙)
𝑘%

+ 𝑙/(𝑑 + 𝑙)𝑘/%

 

 

 

(2.14) 

Or equivalently,  

 
𝑘 =

(𝑑 + 𝑙)
𝑑
𝑘%
+ 𝑙
𝑘/%

 

 

 

(2.15) 

The similarity between equations (2.10) and (2.15) is obvious. By comparing Eqs. 2.10 and 2.15, 

one can relate the interface/Kapitza resistance of the sharp interface to the thermal conductivity of 

the thin interface as 

 𝑅! =
𝑙
𝑘/%

 (2.16) 

Such expression, however, is valid only for the case of constant thermal conductivity of the grains 

and their boundaries. The generalization of this expression to variable GB conductivity will be 

considered in the next subsection.  

So far, we have shown using two different approaches how to derive the effective thermal 

conductivity of a polycrystalline solid based on the thin-interface analysis. In such description, the 

effective thermal conductivity was shown to be  

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘%
+ 𝑅!

 

 

 

(2.17) 
 

 

 

 

 

 In contrast to the classical sharp-interface-based models of the effective conductivity, here there 

is a dependence on both the grain size and the grain boundary width. It is interesting to note that 

the thin-interface-based model always predicts a higher value of the effective thermal conductivity 

than its sharp-interface-based counterpart. By comparing the new model prediction (Eq. 2.17) with 

Yang et al model prediction (Eq. 2.2), one can quantify the difference as 

 𝐷& =
𝑙
𝑑 (2.18) 
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where 𝐷& is the fractional difference between both analytical models, e.g.,   
!%&'	)"*&+8!,-%#	&.	-+	)"*&+

!,-%#	&.	-+	)"*&+
. As one might expect, the difference increases as the ratio between the 

grain boundary thickness and grain size increases, with a maximum fractional difference of 100% 

when the ratio equals one. The predictions of this new model will be validated using finite-element 

simulations in the next section.  

The above thin-interface-based analysis can also be applied to a hetero-interface (interphase 

interface) between two phases with different bulk conductivities. For such system, in addition to 

the interfacial parameters, the conductivity, fraction, size and morphology of each phase will affect 

the effective value. Thus, we generalize the analysis given above for the thermal resistance of grain 

boundaries to hetero interfaces between different phases. A schematic of this configuration is 

displayed in Figure. 3. We start again by assuming the validity of Fourier’s law of conduction (Eq. 

2.3), as shown in Figure.3, the total temperature drop across the two-phase domain is 

	 𝑇$.$ = 𝑇7 + 𝑇78' + 𝑇'	 (2.19)	

By substituting Eq. (2.19) into Eq. (2.3) and rearranging  

 𝑘 =
−𝑞(𝑑7 + 𝑑78' + 𝑑')
𝑇7 + 𝑇78' + 𝑇'

 (2.20) 

Where 𝑑7  : First phase region thicknes, 𝑑78' : Hetero-interface thickness, 𝑑' :  Second phase 

region thickness, 𝑇7  : Temperature drop through the first phase region, 𝑇78' : Temperature drop 

across the interface,  𝑇'  :  Temperature drop through the second phase region 

Where 0/10/0!10!
(3/13/0!13!)

 is equivalent to 30
36

 . 

For the case of steady-state heat conduction and by the assumption of the continuity of heat flux, 

Fourier’s law holds in each region. Hence, we have the following relations: for the first phase 

region, 

 𝑇7 =
−𝑞𝑑7
𝑘7

 (2.21) 

       For the interfacial region (the Kapitza interfacial boundary condition), 

 𝑇78' = −𝑞𝑅! (2.22) 
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       For the second phase region 

 𝑇' =
−𝑞𝑑'
𝑘'

 (2.23) 

       By combining Eqs. (2.20-2.23), we obtain 

 
𝑘 =

(𝑑7 + 𝑑78' + 𝑑')
𝑑7
𝑘7
+ 𝑅! +

𝑑'
𝑘'

 
(2.24) 

Clearly, the above analysis was derived based on a specific microstructure, e.g., alternating layers 

of phases. This simplified the analysis significantly since only 1D treatment is required. 

Nonetheless, similar to the case of polycrystalline materials considered earlier, the current analysis 

should apply equally well to configurations with continuous distribution of second phase in 

isotropic materials.  

2.1.2 General formula for the effective Kapitza resistance of a thin interface 

As we have shown above, an expression for the effective conductivity of a polycrystalline solid 

can be derived based on sharp- or thin- interface description of the grain boundary. To shed light 

into the connection between these two different treatments of interfaces, one must relate the 

Kapitza/interface thermal resistance of a sharp-interface to both the thin-interface thermal 

conductivity and width. We derive here such a general formula for the effective thermal resistance 

of a thin interface.   

Figure 3. A Schematic representation of a hetero-interface in two-phase systems as a tri-layer composite. 
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For the case of steady-state heat conduction, and taking x to be the direction normal to the grain 

boundary, on has, from Fourier’s law, 

 𝑞 = −𝑘(𝑥)
𝑑𝑇
𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡 (2.25) 

 𝑑𝑇 = −
𝑞

𝑘(𝑥) 𝑑𝑥 (2.26) 

For the sake of generality, we assume the thermal conductivity to be spatially dependent. By 

integrating this equation across the grain boundary/interface, e.g.,  

 I 𝑑𝑇
0#$

;
= I

𝑞
	𝑘(𝑥)/%

𝑑𝑥
4

;

, (2.27) 

where 𝑙 , and 𝑇/% are the grain boundary width, and the temperature drop through the grain 

boundary, respectively. For steady-state conditions, we then have  

 
𝑇/%
𝑞 = I

𝑑𝑥
	𝑘(𝑥)/%

4

;

 (2.28) 

Based on the definition of the Kapitza resistance (recall Eq. (2.7)), one arrives at 

 𝑅! = I
𝑑𝑥

	𝑘(𝑥)/%

4

;

 (2.29) 

Thus, the Kapitza conductance is  

𝐺! =
1

∫ 𝑑𝑥
	𝑘(𝑥)/%
4
;

 

 

(2.30) 

The validation of these formulas of the effective Kapitza resistance and conductance for lowly- 

and highly conductive thin interfaces with variable conductivities will be verified using finite-

element simulations in the next section.   
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2.1.3 Calculating the effective thermal conductivity of polycrystalline solids 

In order to verify the expressions derived above for the thin interface resistance/conductance and 

the effective thermal conductivity, we utilize a computational approach that combine finite-

element and phase-field methods [15, 18, 20, 22, 46-51]. In such approach, constant temperatures 

𝑇< 	&	𝑇4 are applied on the right and left sides, respectively. The top and bottom boundaries (y-

direction) are taken as adiabatic. Consequently, the thermal gradient points in the 𝑥 -direction. This 

configuration is schematically shown in Figure. 4.  The heat flux, 𝑞, profile in the system is 

obtained by solving the steady-state conduction equation, e.g.,  

∇. (𝑘	∇𝑇) = 0                                                         (2.31) 

where k is the thermal conductivity, which varies spatially throughout the domain to account for 

the underlying microstructure. For the simple case of a bicrystal, which is considered first to 

validate the model, the location of the grain boundary is known a priori, and Eq. (2.31) can be 

solved directly. However, for the case of complex grain structures in polycrystalline solids that 

may undergo grain growth, we use the phase-field method to represent the microstructure. 

Specifically, the phase-field model of grain growth [52-56] is utilized to distinguish between grains 

and grain boundaries, and to track the microstructure evolution during grain growth. In that model, 

phase-field variables 𝜂" are assigned such that their values indicate the type of region (e.g., gains, 

or GBs).  The thermal conductivity is then assigned based on these values. Lastly, the overall 

effective thermal conductivity can be calculated from:   

𝐾=&& =
>	@
0180+

 , (2.32) 

where 𝑞 is the average heat flux, 𝑇< 	&	𝑇4  are the temperatures at right and left boundaries 

respectively, and 𝐿 is the width of the simulation domain (see Figure. 4). The Kapitza resistance 

(𝑅!) is defined as 

𝑅! =
∆𝑇
𝑞  

 

(2.33) 

where ∆𝑇 is the temperature drop through the interface between the two phases and 𝑞 is the average 

heat flux. 

  



 

 

 

14 

                  

 

 

 

 

 

 

 

 

     

 

2.2 Results and Discussion  

2.2.1 Validation of the Kapitza resistance/conductance formula for a thin GB  

While in most cases interfaces impede heat transport, the concepts of interface engineering can be 

utilized to optimize the thermal conductivity of the interface [57]. For instance, it was recently 

shown that mass-graded interlayers enhance the thermal transport through solid-solid 

interfaces[13]. Moreover, in some situations, the interface conductivity might be higher than the 

bulk conductivity due to doping and segregation of high thermal conductivity elements in multi-

component systems, occurrence of an interface phase transition, or the presence of high density of 

point and/or line defects in the bulk phases because of irradiation or severe mechanical 

deformation. We demonstrate here that the derived expressions of Eqs. (2.29) and (2.30) are 

capable of describing accurately these two scenarios. Namely, Eq. (2.29) gives the Kapitza 

resistance of a lowly-conducting interface and Eq. (2.30) gives the Kapitza conductance of a highly 

conducting interface. Furthermore, these relations are also valid even if the interface conductivity 

changes with position inside the interfacial region. In the coming subsections, we validate both 

	𝑇
4 

	𝑇
< 

Adiabatic 

Adiabatic 

Figure 4. A schematic illustration of the simulation domain used to calculate the effective 
thermal conductivity. 
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analytically and numerically the above-mentioned relations for different spatial profiles of the 

interface thermal conductivity.  

2.2.1.1 Kapitza resistance of the lowly-conducting GB  

We consider three different interfacial profiles for the thermal conductivity of the GB in a bicrystal 

configuration as shown in Figure 5 below. For each case, we derive analytically the effective 

Kapitza resistance of the thin GB using Eq. (2.29). We then verify the results using finite-element 

simulations.   

   

2.2.1.1.1 Constant profile 

	𝑘(𝑥)/% = 𝑘/%        0 ≤ 𝑥 ≤ 𝑙 (2.34) 

𝑘/% is the constant GB thermal conductivity and its value was fixed at 0.1 of the bulk thermal 

conductivity value (𝑘%), which is taken to be 1	𝑊/𝑚.𝐾 . By substituting Eq. (2.34) into Eq. 

(2.29), we obtain 

𝑅! = I
𝑑𝑥
𝑘/%

=
4

;

𝑙
𝑘/%

 

 

 

(2.35) 

2.2.1.1.2 Linear profile 

𝑘(𝑥) = Z
𝑘%(𝑎 + 𝑏	𝑥), 0 ≤ 𝑥 ≤

𝑙
2

𝑘%(𝑐 + e	𝑥),
𝑙
2
≤ 𝑥 ≤ 𝑙

 

 

(2.36) 

Where 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑	𝑒 are constants. The interface thermal conductivity value reaches 0.1 of the bulk 

thermal conductivity at the middle of the GB. Again, by substituting Eq. (2.36) into Eq. (2.29) we 

obtain,   

𝑅! = I
𝑑𝑥

𝑘%(𝑎 + 𝑏	𝑥)

4
'

;

+I
𝑑𝑥

𝑘%(𝑐 + e	𝑥)

4

4
'

 

 

 

(2.37) 

Which upon integration gives,   
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𝑅! =
𝑙
𝑘%
_
1
𝑏 ln b𝑎 +

𝑏	𝑙
2 c −

1
𝑏 ln

(𝑎) +
1
e ln

(𝑐 + e𝑙) −
1
e ln b𝑐 +

e	𝑙
2 cd 

 

 

(2.38) 
 

The constants and Kapitza resistance value are listed in Table. 1 

2.2.1.1.3 Parabolic profile 

𝑘(𝑥) = 𝑘%(𝑎 + 𝑏𝑥') 																				−
𝑙
2 ≤ 𝑥 ≤

𝑙
2 

 

(2.39) 

Where 𝑎	𝑎𝑛𝑑	𝑏 are constants which are taking specific values to set the interface thermal 

conductivity as 0.1 of the bulk thermal conductivity at the middle of the GB.  By substituting Eq. 

(2.39) into the new formula Eq. (2.29). 
  

𝑅! = I
𝑑𝑥

𝑘%(𝑎 + 𝑏𝑥')

4
'

84'

 

 

(2.40) 

Direct integration yields,   

𝑅! =
2

𝑘%√𝑎𝑏
ftan87(

𝑙
2
g𝑏
𝑎)h 

 

(2.41) 

The constants and Kapitza resistance value are also listed in Table. 1 

To verify the above results, we perform finite-element simulations of the bicrystal configurations 

shown in Figure. 5. In these simulations, the grain size was 10	𝑛𝑚 , the grain boundary width was 

2.5	𝑛𝑚, and the bulk conductivity was 1	𝑊/𝑚.𝐾. From the simulations, we calculate the Kapitza 

resistance directly from the flux and thermal gradient across the grain boundary as given by Eq. 

(2.7). The analytical and numerical values of the Kapitza resistance are included in Table 1 below.  
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Table 1 analytical and numerical Kapitza resistance results for lowly-conducting grain boundary where, 𝒍 = 𝟐. 𝟓	𝒏𝒎 
, and 𝒌𝒃 = 𝟏	𝑾/𝒎.𝑲 

Spatial 
dependence profile 

Constants 
Kapitza resistance (𝑚!. 𝑘)/W 

New formula 
FEM 

a b c e ∆x = 0.5 nm ∆x = 0.025 nm 

Constant N/A N/A N/A N/A 2.5× 10"# 2.5× 10"# 2.5× 10"# 

Linear 1 -1.8/𝑙 -0.8 1.8/𝑙 6.396× 10"$ 6.3132× 10"$ 6.3960× 10"$ 

Parabolic 0.1 3.6/𝑙! N/A N/A 1.0409× 10"# 1.0362× 10"# 1.0409× 10"# 

 

As evident from Table 1, the FEM numerical results agree well with the newly derived Kapitza 

resistance formula (Eq. (2.29)) and are in close agreement for all spatial profiles of the GB thermal 

conductivity. This agreement improves with a decrease in element size (or equivalently increasing 

the number of elements inside the GB). It is worthy to note that the spatial profile of the thermal 

conductivity of the GB affects the Kapitza resistance, with the constant profile leading to the 

highest value and the linear profile resulting in the lowest value.  

2.2.1.2 Kapitza conductance of the highly conducting GB  

Again, we consider three different interfacial profiles for the thermal conductivity of the grain 

boundary in a bicrystal configuration as shown in Figure 6 below. For each case, we derive 

analytically the effective Kapitza conductance of the thin GB using Eq. (2.30). We then verify the 

results using finite-element simulations.     
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    (a) 

    (b) 

    (c) 

	𝑘(𝑥)!" 

	𝑘" 	𝑘" 

	𝑘(𝑥)!" 

	𝑘" 	𝑘" 

	𝑘" 	𝑘" 

	𝑘(𝑥)!" 

Figure 5. (a), (b), and (c) show constant, linear, and parabolic variation of thermal conductivity, respectively 
inside the grain boundary thickness with lower values than the bulk thermal conductivity- Kapitza Resistance. 
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2.2.1.2.1 Constant profile 

To represent the highly conductive interface, the GB thermal conductivity was fixed to be 10 

times the bulk thermal conductivity value (see Figure 6-a). By combining Eqs. (2.30) and (2.34), 

we obtain 

𝐺! =
1

∫ 𝑑𝑥
𝑘/%
4
;

 (2.42) 

which immediately gives,  

𝐺! =
𝑘/%
𝑙  

 

 

(2.43) 
 

2.2.1.2.2 Linear profile 

With specific values of 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑	𝑒 constants (recall Eq. (2.36)), the GB thermal conductivity 

was fixed to be 10 times the bulk thermal conductivity value at the middle of the GB (see Figure. 

6-b) . By combining Eqs. (2.30) and (2.36) we obtain 

𝐺! =
1

∫ 𝑑𝑥
𝑘%(𝑎 + 𝑏	𝑥)

4
'
; + ∫ 𝑑𝑥

𝑘%(𝑐 + e	𝑥)
4
4
'

 

 
 

(2.44) 
 

By direct integration, we arrive at 

𝐺! =
𝑘%

𝑙 i1𝑏 ln 9𝑎 +
𝑏	𝑙
2 : −

1
𝑏 ln(𝑎) +

1
e ln(𝑐 + e𝑙) −

1
e ln 9𝑐 +

e	𝑙
2 :j

 

 

 

(2.45) 
 

The constants and Kapitza conductance values are listed in Table. 2. 

2.2.1.2.3 Parabolic profile 

𝑘(𝑥) = 𝑘%(𝑎 − 𝑏𝑥') 																				−
𝑙
2 ≤ 𝑥 ≤

𝑙
2 

 

(2.46) 

where 𝑎	𝑎𝑛𝑑	𝑏 are constants that take specific values to set the interface thermal conductivity to 

be10 times higher than the bulk thermal conductivity value at the middle of the GB (see Figure. 

6-c). By combining Eqs (2.30) and (2.46) we get  
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𝐺! =
1

∫ 𝑑𝑥
𝑘%(𝑎 − 𝑏𝑥')

4
'
84'

 

 

 

 

 (2.47) 
 

which after integration results in  

𝐺! =
𝑘%√𝑎𝑏

kln l𝑙2m
𝑏
𝑎 − 1l − ln l

𝑙
2m

𝑏
𝑎 + 1l − ln l−

𝑙
2m

𝑏
𝑎 − 1l + ln l−

𝑙
2m

𝑏
𝑎 + 1ln

 

 

 

 

 (2.48) 
 

The constants and Kapitza conductance values are shown in Table. 2 

Table 2. analytical and numerical Kapitza conductance results for highly-conducting grain boundary 
where, 𝒍 = 𝟐. 𝟓	𝒏𝒎, and 𝒌𝒃 = 𝟏	𝑾/𝒎.𝑲 

Spatial profile 
Constants 

 Kapitza conductance W / (𝑚!. 𝑘) 

New formula 
FEM 

a b c e  ∆x = 0.5 nm ∆x = 0.025 nm 

Constant N/A N/A N/A N/A 4.0 × 10$ 4.0 × 10$ 4.0 × 10$ 

Linear 1 18/𝑙 -18 19/𝑙 1.5634× 10$ 1.5839× 10$ 1.5634× 10$ 

Parabolic 10 36/𝑙! N/A N/A 2.0868× 10$ 2.1429× 10$ 2.0868× 10$ 

 

As evident from Table 2, the FEM numerical results agree well with the newly derived Kapitza 

conductance formula (Eq. (2.30)) and are in close agreement for all spatial profiles of the GB 

thermal conductivity. This agreement improves with a decrease in element size (or equivalently 

increasing the number of elements inside the GB). Again, it is worthy to note that the spatial profile 

of the thermal conductivity of the GB affects the Kapitza conductance, with the constant profile 

leading to the highest value and the linear profile resulting in the lowest value. This agrees with 

the interface engineering method proposed in[13], where the enhancement of thermal conductance 

was shown to depend on the spatial profile of the mass-graded interlayers. 
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Figure 6. (a), (b), and (c) show constant, linear, and parabolic variation of thermal conductivity, respectively 
inside the grain boundary thickness with higher values than the bulk thermal conductivity- Kapitza Conductance. 



 

 

 

22 

2.2.2 Effect of the spatial profile of the GB conductivity on the overall thermal conductivity 

In the previous subsection we validated the formulae of the effective Kapitza resistance and 

conductance of a thin interface. It was shown that these values are affected by how the thermal 

conductivity of the GB changes with position. Hence, here we study the effect of this change on 

the overall thermal conductivity. We utilize again the simple configuration of a bicrystal. We run 

finite-element simulations for the three spatial profiles discussed in the preceding subsection for 

different grain sizes, with an assumed GB width of 2.5 nm. For both the highly-conducting and 

lowly-conducting cases, we determine the overall/effective thermal conductivity of the bicrystal 

using Eq. (2.32) as discussed in section 2.1.3.    

For the case of highly conducting GB, Figure. 7 summarizes the general trend. As obvious from 

the figure, the effective thermal conductivity decreases with the increase of grain size for all spatial 

profiles of the GB thermal conductivity. This is because in this scenario the GB is the highly 

conductive ‘phase’. This behavior is more pronounced for grain sizes below 100 nm. For instance, 

as the grain size increases from 10 nm to 100 nm, the effective thermal conductivity decreases by 

26.1 %, 22.9%, and 20.5% for the constant, parabolic, and linear spatial profiles, respectively.  
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On the other hand, as the grain size increases from 100 nm to 500 nm, the effective thermal 

conductivity decreases by 1.84 %, 1.66%, and 1.52% for the constant, parabolic, and linear spatial 
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Figure 7. Change of the effective thermal conductivity of a bicrystal with grain size: from 10 nm to 
100 nm (left), and from 100 nm to 500 nm (right) for different spatial profiles for the thermal 

conductivity of the highly-conducting grain boundary. 
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profiles, respectively. Additionally, Figure. 7 also shows that for the same grain size the spatial 

profile leads to different values of the effective thermal conductivity, where the highest value is 

attained by the constant profile and the lowest value is attained by the linear profile. This is because 

these profiles have the strongest and weakest Kapitza conductance, respectively (see Table. 2). 

This variation between the results increases as the grain size decreases. For example, the difference 

between the effective thermal conductivity produced by the constant and linear spatial dependence 

functions is 5%, 0.4%, and 0.07% at grain size 10 nm, 100 nm, and 500 nm, respectively.  

For the case of lowly-conducting GB, the general trend is depicted in Figure. 8.  It shows that, in 

contrast to the highly conducting boundary, the effective thermal conductivity increases as the 

grains size increases for all spatial profiles of grain boundary thermal conductivity. This is due to 

the fact that the grain boundary acts as an obstacle for heat transport, which is commonly the case. 

Similar to the case of highly conducting boundary, this behavior is more apparent in grain sizes 

below 100 nm. For instance, as the grain size increases from 10 nm to 100 nm, the effective thermal 

conductivity increases by 164 %, 65%, and 32.5% for the constant, parabolic, and linear spatial 

profiles of the GB thermal conductivity, respectively. However, as the grain size increases from 

100 nm to 500 nm, the effective thermal conductivity increases by 17.6 %, 6.3%, and 3.2% for the 

constant, parabolic, and linear spatial profiles, respectively.  

 
Figure 8. Change of the effective thermal conductivity of a bi-crystal with grain size for different spatial 

profiles of the thermal conductivity of the lowly-conducting grain boundary. 
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Thus, different from the case of highly conducting GB, the effective thermal conductivity is still 

sensitive to variations in the grain size up to 500 nm 

It is worth noting that Figure. 8 also demonstrates that for the same grain size, the distinct spatial 

profiles lead to different values of the effective thermal conductivity, where the lowest value is 

attained by the constant profile and the highest value is attained by the linear profile. This is in 

agreement with the predictions listed in Table 1, where the strongest and weakest Kapitza 

resistances are obtained for the constant and the linear profiles, respectively. Again, similar to the 

case of highly conducting boundary, the variation of the effective conductivity with the spatial 

profiles decreases as the grain size increases. For example, the difference between the effective 

thermal conductivity attained by the constant and linear profiles is 135%, 18.2%, and 3.7% at grain 

size 10 nm, 100 nm, and 500 nm, respectively. Therefore, in general, for all cases, the sensitivity 

of the effective thermal conductivity to the GB thermal conductivity reduces with increasing grain 

size due to the decrease of GB area per unit volume. 

2.2.3 Comparison the predictions of the sharp interface and thin interface models  

In this subsection, we compare the predictions of the effective thermal conductivity models based 

on the sharp-interface (Eq. (2.2)) and the thin-interface (Eq. (2.15)) descriptions. We utilize again 

the simple bicrystal configuration and study the effects of grain size, GB width, and Kapitza 

resistance. Clearly, the effect of GB width can appear only in the thin interface-based model. 

Hence, first, to investigate this effect, we run finite-element simulations of the bicrystal 

configuration with different GB width and grain size.  In these simulations, the bulk thermal 

conductivity was 1.0 W/m.K and the GB thermal conductivity was 0.35 W/m.K. 

The results of these simulations are shown in Figure. 9. Generally speaking, the effective thermal 

conductivity decreases as the GB thickness increases regardless of grain size. While the physical 

width of a typical GB is usually less than a few nanometers, we expand the results for tens of 

nanometers to account for scenarios as segregation or grain boundary phase formation that may 

occur.  The dependence of the effective thermal conductivity on the GB width is nonlinear as 

evident from Figure. 9 and predicted from Eq. (2.15). Since thermal conductivity of the GB is 

taken as 
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a constant, the Kapitza resistance can be obtained from Eq. (2.35). Hence, the interfacial resistance 

is directly proportional to the GB thickness. Clearly, for the same interface width/Kapitza 

resistance, grains with larger sizes attain higher effective thermal conductivities.  Moreover, the 

sensitivity of the effective thermal conductivity to the grain boundary thickness is inversely 

proportional to grain size. 

As discussed above, the effects of GB width and thermal resistance are more pronounced for 

smaller grain sizes. Hence, we now compare the difference in the predictions of the effective 

thermal conductivity between Yang et al. model (Eq. (2.2)) and our new model (Eq. (2.15)) for the 

case of a nanometer-sized bicrystal. As before, the bulk thermal conductivity was taken to be 1 

(W/m.k). The effective conductivity is then calculated based on the above-mentioned equations as 

function of Kapiza resistance and grain size. In our model, the GB width was set to 2 nm.  The 

results are summarized in Figure. 10. First, the effective thermal conductivity is plotted against the 

Kapitza resistance, where the grain size was fixed at 20 nm. For both models, the effective thermal 

conductivity decreases as the Kapitza resistance increases. Moreover, it is clear that the new model 

predicts higher values of the effective thermal conductivity than Yang et al. model, where the 

difference in values is directly proportional to the Kapitza resistance. For example, the difference 

increased from 0% to 10% across the range of Kapitza resistance studied. Second, the effective 

thermal conductivity is plotted against the grain size in the range 2-20 nm, where the Kapitza 
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Figure 9. Finite-element simulations of the effect of GB thickness on the 
effective thermal conductivity of a bicrystal with different grain sizes. 
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resistance was fixed at 20 × 10"$	𝑚2. 𝑘𝑊. For both models, the effective thermal conductivity 

increases as the grain size increases. Again, the new model always predicts higher values of the 

effective thermal conductivity than Yang et al. model for all grain sizes.  The difference in the 

values is inversely proportional to the grain size. For instance, the difference increased from 10% 

to 100% as the grain size decreased from 20 nm to 2 nm. The reason is that, in contrast to the new 

model, Yang et al. model neglects the effect of GB thickness, which becomes more apparent as 

the value of the grain size approaches the value of the GB width. 

 

The plots in Figure. 10 were combined into 3D figures to better illustrate the behavior of the two 

models against variations in both grain size and Kapitza resistance concurrently. These 3D plots 

are presented in Figure. 11. Both models show qualitatively similar trends. The effective thermal 

conductivity decreases as the Kapitza resistance increases. For the same Kapitza resistance, the 

effective thermal conductivity increases with grain size. Moreover, the sensitivity of the effective 

thermal conductivity to grain size variation is directly proportional to the Kapitza resistance. For 

instance, for the new model, as the grain size increased from 2 nm to 20 nm, the effective thermal 

conductivity increased by 36.7% and 205.5% for the Kapitza resistance values of 1× 10"$ and 20 

× 10"$	𝑚2. 𝑘𝑊, respectively.  
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Figure 10. Comparison of the predictions of the new and Yang et al. models for the effective 
thermal conductivity of a nanometer-sized bi-crystal. The effect of the Kapitza resistance (left) and 
the effect of grain size (right). 
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On the other hand, the sensitivity of effective thermal conductivity to variation in the Kapitza 

resistance is inversely proportional to grain size. For example, for the new model, as the Kapitza 

resistance value increased from 0 to  20 × 108D	𝑚'. !
*

, the effective thermal conductivity was 

decreased by 74 % and 425.5% for the grain size values of 20 and 2 nm, respectively.   

While the two models agree qualitatively, there is a notable quantitative difference in their 

predictions. The new models always predict higher values of the effective conductivity than Yang 

et al. model. The deviation between the models increases with decreasing grain size. This is also 

illustrated in Figure. 11 (right subplot). When the grain size becomes equal to the grain boundary 

width, a maximum fractional difference of 100% is realized (recall Eq. 2.18). 

2.2.4 Comparison of the predictions of the analytical models based on data from simulations 

and experiments 

To further investigate the differences between the analytical models, we compare their predictions 

using new finite-element simulations and existing results from molecular dynamics simulations 
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Figure 11. Comparison of the predictions of the new and Yang et al. models for the effective thermal 
conductivity of a nanometer-sized bi-crystal. The effect of the Kapitza resistance and grain size (left) and 

the effect of GB width (right). The difference increases 
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and experiments. Note that similar to Yang et al. model, our model can predict either the effective 

thermal conductivity given the Kapitza resistance or the Kapitza resistance given the effective 

thermal conductivity. We will utilize those two indicators in comparing the models. 

 

2.2.4.1 Comparison of models using FEM simulations of a bicrystal 

We compare here the predictions of the analytical models for the effective thermal conductivity 

value as function of Kapitza resistance for specific grain sizes. Two different grain sizes of 200 

𝑛𝑚 and 20	𝑛𝑚 were considered. Finite-element simulations of a bicrystal with different values of 

the Kapitza resistance were performed. The bulk thermal conductivity and GB width were taken 

as 1 W/m.k and 2𝑛𝑚, respectively. Figure. 12 summarizes the results of the analytical models and 

the finite-element simulations. As evident from the figure, the new model is always closer to the 

results from the numerical simulations than Yang et al. model for all values of grain size and 

Kapitza resistance. The deviation becomes more apparent for smaller grain sizes. The difference 

between both analytical models is 1% for the 200 nm grain size and 20% for the 20 nm grain size. 

Moreover, Figure. 12 also shows that, for the same effective conductivity, the new model always 

predicts higher values for the Kapitza resistance for all grain sizes. 
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Figure 12. Comparison between the predictions of our new model, Yang et al. model, and FEM 
simulations for a bicrystal with grain sizes of 200 nm (left) and 20 nm (right). 
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2.2.4.2 Comparison of models using molecular dynamics simulations of solid argon 

Here, we compare the models with the molecular dynamics simulations (MD) of nanocrystalline 

argon reported in [28]. To keep argon in solid state, where it assumes an FCC crystal structure, the 

temperature was set to 30 K [28]. Based on the literature, the GB width is about 1-2 nm for similar 

materials [58-60]. Hence, the Kapitza resistance will be determined for that range. To achieve that 

goal, for a specific GB width, we fit our model (Eq. (2.15)) to the effective thermal conductivity 

calculations from the MD simulations. An example of this fitting procedure is shown in Figure. 

13.  The two-sharp interface-based models (Eq. (2.1) and Eq. (2.2)) were also fitted against the 

MD results. The predicted values of the Kapitza resistance for the three analytical models are 

summarized in Table 3. Based on the results listed in Table 3, the Kapitza resistance predicted by 

our new model is higher than the value from Yang et al. model by 44.3 % for a 1 nm boundary 

width and by 88% for 2 nm boundary width.  

 

Figure 13. Fitting of the results of molecular dynamics simulations for the effective thermal conductivity 
of solid argon at 30 K. The solid line is the best fit to the new model (Eq. (2.15)). 
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                        Table 3. The Kapitza resistance predicted by the different analytical models. 
Fitted model 𝑙	(𝑛𝑚) 𝑅# (m2 K/W) 

	

Nan and 

Birringer 

𝑘 =
𝑘"

1 + 2𝑅#𝑘"/𝑑
 

 

N/A 4.096× 10"$ 

 

Yang et al. 

 

𝑘 =
𝑘"

1 + 𝑅#𝑘"/𝑑
 

 

N/A 8.192 × 10"$ 

 

 

 

New 

model 

 

 

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘"
+ 𝑅#

 

 

1 11.82 × 10"$ 

1.5 13.62 × 10"$ 

2 15.41 × 10"$ 

 

2.2.4.3 Comparison of models using experimental data of platinum  

Here, we compare the predictions of the models using experimental data for in-plane thermal 

conductivity of polycrystalline platinum nanofilms, reported in [61] . The thickness of the 

nanofilms ranges from 15.0 to 63.0 nm and the mean grain size measured by x-ray diffraction 

varies between 9.5 and 26.4 nm [61]. To determine the Kapitza resistance, the three analytical 

models (Eqs. (2.1), (2.2), and (2.15)) were fitted against the experimental data of platinum. An 

example of this fitting procedure is shown in Figure. 14. The predicted values of the Kapitza 

resistance for the three analytical models are listed in Table 4. The Kapitza resistance predicted by 

our new model is higher than the value from Yang et al. model by 10.8% for a 1 nm boundary 

width and by 21.5% for a 2 nm boundary width. A final comment on the differences between the 

analytical models is now in order. As we mentioned before, the first model proposed by Nan and 

Birringer misses the fact that a GB is shared by two grains [9]. Therefore, that model 

underestimates the Kapitza resistance by a factor of two as was shown by Yang et al. [8]. Our new 

model takes another step forward by taking into consideration the effect of the GB width, which 

makes it more suitable to model nanocrystalline solids.    
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Figure 14. Fitting of the experimental data for the effective thermal conductivity of platinum. The solid 

line is the best fit to the new model (Eq. (2.15)). 
 

                Table 4. The Kapitza resistance predicted by the different analytical models. 
Fitted model 𝑙	(𝑛𝑚) 𝑅3 (m2 K/W) 

 

Nan and 

Birringer 

 

𝑘 =
𝑘4

1 + 2𝑅3𝑘4/𝑑
 

 

N/A 

 

0.1662 × 10"$ 

 

 

Yang et 

al. 

 

𝑘 =
𝑘4

1 + 𝑅3𝑘4/𝑑
 

 

 

N/A 

 

0.3324 × 10"$ 

 

 

New 

model 

 

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘4
+ 𝑅3

 

 

1 0.3682 × 10"$ 

1.5 0.3861 × 10"$ 

2 0.4039 × 10"$ 
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2.2.5 Simulations of the effective thermal conductivity of polycrystalline solids   

Here we validate our new model for the case of polycrystalline solids using representative 

microstructures. To that end, we use the phase-field method to generate and evolve these 

microstructures. Specifically, we utilize the phase-field model of grain growth that is implemented 

in the open-source MOOSE framework[62]. We investigate two microstructures: (1) a static 

microstructure with hexagonal grains, (2) a dynamic microstructure with equiaxed grains. 

2.2.5.1 Effective thermal conductivity of static hexagonal grains  

We investigate first the effective thermal conductivity of a static microstructure with hexagonal 

grains. Since hexagonal grains have straight sides, curvature-driven grain growth cannot take 

place. Thus, steady state calculations were performed using a bulk conductivity of 1 W/mK, GB 

conductivity of 0.1 W/mK, and a GB width of 2 nm. The results of the finite-element simulations 

and the analytical models are compared in Figure. 15. As can be seen from the figure, the effective 

thermal conductivity increases with grain size because of the reduction in the total GB area as the 

grain size increase. It is also clear from the figure that the predictions of the new model agree more 

closely with the FEM results than the model of Yang et al. For instance, the difference between 

the results of Yang et al. model and FEM varied from 2.73 % to 11.48 % across the grain size 

range studied.  On the other hand, the difference between the results of the new model and FEM 

varied from 0.03 % to 0.24 % across the same grain size range.  

As we discussed before, another way to evaluate the models is to compare their predictions of the 

Kapitza resistance instead of the effective conductivity, similar to the work presented in subsection 

2.2.3. From the FEM simulations, the Kapitza resistance can be calculated directly from the flux 

and temperature gradient across the grain boundary as given by Eq. (2.7). For the analytical 

models, the Kapitza resistance can be obtained by fitting the equations of the models given the 

grain size and effective conductivity data from the finite-element simulations. The value of the 

Kapitza resistance obtained directly form the FEM simulation was  20 × 108D	𝑚'. !
*

 . The 

predictions of the analytical models are listed in Table 5. As evident from the table, the new model 

displays better agreement with the numerical value.  
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Table 5. Errors in the values of the Kapitza resistance obtained from the analytical models 
Fitted Model 𝑅3	(𝑚5.

𝑘
𝑊) 

Error 

Yang et al Model 𝑘 =
𝑘4

1 + 𝑅3𝑘4/𝑑
 16.67× 10"$ 

 

16.65 % 

 

	

New model 

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘4
+ 𝑅3

 
 

19.94× 10"$ 

 

0.3 % 

 

2.2.5.2 Effective thermal conductivity of evolving equiaxed grains  

Here, we study the changes of the effective thermal conductivity in polycrystalline solids 

undergoing grain growth. Voronoi tessellation is utilized to approximate the shapes of random 

equiaxed grains. Since the effective conductivity is sensitive to the grain size, its value is expected 
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Figure 15. Effective thermal conductivity of a polycrystalline solid with hexagonal grains: (left) a snapshot 
of the microstructure, (right) the quantitative change of the effective thermal conductivity with grain size. 
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to vary during grain growth. To capture this variation, we solve the steady-state heat conduction 

equation along with the phase-field kinetic equations of grain growth[63]. 

The grain growth model parameters are the same as in[63], and the parameters for the steady-state 

heat conduction calculations are as follows: 1 W/mK for the bulk conductivity, 0.1 W/m.K  for the 

GB conductivity, and 2 nm for the GB width.   

During grain growth, to reduce the interfacial energy of the system, the number of grains decreases 

and the mean grain size increases. As a result, the effective thermal conductivity increases as the 

process continues. This is captured in Figure. 16 that shows both the microstructure evolution and 

the change in the thermal conductivity. Again, the results show the effective thermal conductivity 
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Figure 16. Variation of the thermal conductivity of a polycrystalline solid during grain growth. (a) 
Snapshots of the microstructure evolution, and the corresponding change of the effective thermal 

conductivity with (b) grain size and (c) time. 
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predicted by the new model agrees more closely with FEM than Yang et al. model. For instance, 

the difference between the results of Yang et al. model and FEM varied from 5% to 6 % across the 

grain size/evolution time range studied.  On the other hand, the difference between the results from 

our new model and FEM varied only from 0.4 % to 1.3 % across the same range studied.  

2.2.6 Derivation of a scaling scheme to accelerate mesoscale phase-field simulations 

As we have seen in the previous subsection, one can utilize the phase-field method to track both 

the evolution of microstructure and thermal conductivity of solids. However, running simulations 

for microstructures with large grain sizes becomes unfeasible if the physical width of GB is used. 

Nonetheless, based on the derivations we presented above, one can devise an approach to scale up 

the numerical value of the interface width without changing the effective conductivity. This can 

be accomplished as follows. Based on the new Kapitza formula (Eq. 2.29), by assuming constant 

GB thermal conductivity, the new model (Eq. 2.15) gives the effective conductivity as,  

𝑘 =
(𝑑 + 𝑙)
𝑑
𝑘%
+ 𝑙
𝑘/%

 
 

(2.49) 

Therefore, one can first calculate the effective conductivity based on the actual value of the GB 

width and its corresponding GB conductivity (for a given value of the Kapitza resistance). Then, 

we utilize the same relation (Eq. (2.49) to calculate a new scaled value for the GB conductivity 

that corresponds to the new value of GB width, which we are free to pick for numerical 

convenience.  

 

As an example for implementing this procedure, We pick the following physical values for the 

parameters in eq. (2.49): 𝑑	= 1.25 𝜇𝑚 , and l = 1 nm, 𝑘%𝑎𝑛𝑑	𝑘/% equal to 4.5 W/m. K, and 0.35 

W/m. K, respectively. By substitution of these values into Eq. (2.49), we obtain 𝑘 =4.45786 W/m. 

K. We then perform FEM simulation with the same values of the parameters. From the simulation, 

the effective thermal conductivity was found to be 𝑘 =4.457862 W/m. K. Now, the same result 

can be obtained with a much larger GB width and appropriately scaled GB conductivity. By 

rearranging Eq. (2.49), we obtain  
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𝑘/% =
𝑙

(𝑑 + 𝑙)
𝑘 − 𝑑

𝑘%

 
 

(2.50) 

Hence, if we choose a GB width of 50 nm instead of 1 nm, Eq. (2.50) can be used to calculate the 

corresponding GB conductivity that will result in the same effective conductivity. In this specific 

example, this value is 𝑘/% = 3.612243	𝑊/𝑚. 𝑘. To validate this approach, the FEM simulation 

was repeated again with the scaled values of the GB conductivity and width. The results of the 

FEM simulations are listed in Table 6. As evident from the table, the scaled values give rise to the 

same effective conductivity calculated based on the original values, and hence it proves the validity 

of the scaling approach proposed here.    

 
Table 6. Validation of the scaling approach for enabling large scale simulations. 
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CHAPTER III  

AN EXPERIMENTALLY VALIDATED MESOSCALE MODEL OF THERMAL 

CONDUCTIVITY OF A UO2 AND BEO COMPOSITE NUCLEAR FUEL1 

An experimentally validated mesoscale model was developed to simulate the effective thermal 

conductivity of UO2–BeO nuclear fuel with different microstructural features. The effects of the 

second phase (BeO) fraction and morphology, temperature, and interface thermal resistance were 

investigated. The model predicts that the continuous second phase configuration has a higher 

effective thermal conductivity than the dispersed second phase configuration for the same volume 

fraction and temperature. Companion experiments were conducted to validate the model 

predictions. It was demonstrated that accounting for the interface (Kapitza) thermal resistance is 

necessary to improve the model predictions. The largest difference between the model calculations 

and experimental results was about 5%, which is within the precision of the experimental 

measurements.  

3.1 Introduction 

The Fukushima Daiichi accident renewed interest in the development of next generation nuclear 

fuels for current light water reactors. This work models the effective thermal conductivity of a 

composite uranium dioxide-beryllium oxide (UO2–BeO) nuclear fuel with applications as a next 

generation fuel. Previous work on this fuel form has deter- mined the achievable improvement in 

thermal conductivity associated with an embedded, inter- connected BeO network and investigated 

FEM modeling of the microstructure.[64, 65] This work uses a joint experimental and modeling 

approach to quantify the Kapitza resistance between the UO2 and BeO components and employs 

the Kaptiza resistance to improve the accuracy of predictions of the thermal conductivity of the 

composite. Ishimoto first demonstrated the improvement achievable with an embedded, 

interconnected BeO network within the UO2 fuel by processing above the eutectic temperature 

(above 2200°C).[66] The thermal conductivity of the fuel was increased by approximately 60% at 

1 Reprinted with permission from “An Experimentally Validated Mesoscale Model of Thermal Conductivity of a UO2 and BeO 

Composite Nuclear Fuel” by FERGANY BADRY, RYAN BRITO, M. GOMAA ABDOELATEF, SEAN MCDEAVITT and 

KARIM AHMED. 2019. JOM, Copyright [2019] by The Minerals, Metals & Materials Society (JOM).  
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room temperature with a 4.2 vol.% continuous BeO matrix. In contrast, a dispersed BeO 

microstructure only increased the thermal conductivity around 10%. [66]At reduced temperatures 

aligned with current manufacturing procedures, Sarma et al. showed similar improvements could 

be made by co-sintering UO2 granules coated in BeO at 1700°C.[64] The work compared a green 

granule and slug bisque manufacturing procedure to fabricate pellets from 5 vol.% to 20 vol.% 

BeO, both achieving pellet densities > 90% of the theoretical density (%TD). The UO2 was also 

dis- solved in nitric acid to show the BeO was a mechanically robust, continuous network.[64] 

Garcia et al. produced UO2-x BeO samples (x = 2.5 vol.%, 5 vol.%, 7.5 vol.%, 10 vol.%) to enable 

an evaluation of the enhancement achievable by a BeO matrix using samples manufactured from 

the same source materials and using identical processing parameters. The results indicated that the 

thermal conductivity of UO2 improved approximately 10% for each 1 vol.% of BeO added.[67] 

The experimental work of Ishimoto, Sarma, and Garcia provided a detailed experimental 

development of the fuel design that provides a comparative basis for computational results. 

The thermal conductivity of the fuel microstructure has also been modeled using the FEM program 

ANSYS. Latta et al.[65] validated the model against the results from Ishimoto within the error of 

the experimental measurement without explicitly accounting for the Kapitza resistance. When 

applied to the co-sintered microstructure demonstrated by Sarma at 10 vol.%, the model resulted 

in 9–19% error, varying with temperature. The discrepancy was attributed to poor understanding 

of the inter- face region of the UO2 and BeO phases, suggesting further study was needed into the 

thermal boundary resistance and the thermal conductivity of the components in this application. 

Nevertheless, the fuel form was modeled in CAMPUS (CityU Advanced Multiphysics Nuclear 

Fuels Performance with User-defined Simulations) fuel performance code showing the fuel 

performed consistent with an accident-tolerant fuel.[68] 

The previous work demonstrated the feasibility of the development of a UO2–BeO fuel and began 

exploring the viability of using computational resources to model the improvement shown 

experimentally. There is, however, opportunity to improve the modeling of the fuel in complex 

microstructures, as noted by Latta. [65] This work further explores the relationship of 

microstructure and thermal conductivity and quantifies the impact of a thermal boundary resistance 

on the effective thermal conductivity. Experimental results of the thermal conductivity of a 

dispersed microstructure up to 10 vol.% are reported here, extending the volume fraction 
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previously studied by Ishimoto from 4.2 vol.%. [66] This work also broadens the volume fractions 

and microstructures modeled for this material system from a continuous 10 vol.% reported by Latta 

to multiple volume fractions of both dispersed and continuous microstructures. [65] The Kapitza 

resistance also has not been explicitly determined previously for this material system. These 

problems are well suited for the computational techniques employed in MOOSE (Multi- physics 

Object-Oriented Simulation Environment) developed at Idaho National Laboratory. MOOSE uses 

the finite-element method (FEM) for solving differential equations corresponding to a variety of 

physics problems and has several built-in capabilities to generate the microstructures required for 

this work.[62]  

 This study seeks to model the effective thermal conductivity of an ATF composite in MOOSE. A 

uranium dioxide and beryllium oxide composite was selected to provide an experimental 

comparison of the model results, as described in the background. For the experimental approach, 

samples with a dispersed BeO microstructure of varying volume fractions were fabricated to 

provide experimental data for comparison with MOOSE results and to quantify the Kaptiza 

resistance in this system. The model formulation and implementation in MOOSE consider the 

effect of dimensionality, methods to generate the distribution of the second phase, and application 

of the interface thermal (Kapitza) resistance. Various microstructures, concentrations, and 

distributions of the conductive additive are considered in the results and discussion as well as the 

impact of a Kaptiza resistance between the two components. This work concluded that the 

composite thermal conductivity could be well represented using the model introduced here.  

3.2 Experimental Approach  

3.2.1 Sample Preparation  

The experimental approach to fabricating and analyzing the composite uranium dioxide (UO2)- 

beryllium oxide (BeO) with a continuous BeO network was given by Garcia et al.[67] To produce 

a dispersed microstructure, the experimental samples were fabricated and analyzed using similar 

procedures. The uranium dioxide powder was sourced from International Bio-Analytical 

Industries Inc. and ball-milled on a rotary jar mill. The beryllium oxide powder was sourced from 

Acro Organics and jet-milled. The desired volume fraction of jet-milled BeO powder was 

introduced to the ball-milled UO2 powder and mixed. The powder mixture was pre- compacted at 
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680 MPa and reground in a mortar and pestle. The pre-compacted powder mixture was self-milled 

prior to final compaction at 230 MPa. The green compacts were sintered on alumina at 1690°C for 

18 h under an ultrahigh purity argon atmosphere using a 20 °C/min ramp rate. Samples of 5 and 

10 vol.% BeO were fabricated with a dispersed BeO microstructure. Five samples at each volume 

fraction were produced, but the final thermal property measurements were limited in some cases 

to three samples because of chipping during sample preparation.  

3.2.2 Thermal Analysis   

The thermal conductivity of the composite samples was calculated by the equation  

𝑘 = 𝜌𝑐E𝛼     (3.1) 

where k is the thermal conductivity, q is the density, cp is the specific heat, and a is the thermal 

diffusivity. The bulk densities were determined using the Archimedes immersion method with 

ethanol as the working fluid. The fraction of theoretical density was computed as the ratio of the 

bulk density to a volumetric weighted average of the component bulk densities.[69, 70] The 

specific heat was calculated by a volumetric weighted average of the component-specific heats, 

which has been shown to be an accurate approximation in this composite system.[67, 69, 70] The 

thermal diffusivity was experimentally measured by light flash analysis using a NETZSCH LFA 

447 NanoFlash instrument. Samples were polished within 0.0005 in parallel, as measured by a 

micrometer, and coated with a thin layer of graphite. Measurements were collected from 25°C to 

300°C at 25°C increments and interpreted using the Cowan model provided by Net- zsch.[71] The 

experimental samples exhibited varying porosity across samples and concentrations, which 

influenced the calculation of the composite thermal conductivity. The total porosity across all 

samples was within the range of 4.9–7.6% with no bias associated with the BeO volume fraction. 

The average of the total porosity for the 5 and 10 vol.% BeO was 6.0% and 6.8%, respectively. 

For comparative purposes, the thermal conductivity results at a given volume fraction were 

corrected to 100% theoretical density using a Maxwell–Garnett correction and averaged.[72, 73]  
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3.3 Mesoscale model formulation 

3.3.1 Thermal Modeling of Composites  

To study the effect of a second phase on the effective thermal conductivity, constant temperatures  

𝑇< 	&	𝑇4 are applied on the right and left side, respectively. The top and bottom boundaries (y-

direction) are taken as adiabatic. Consequently, the thermal gradient points in the x-direction. The 

dimension of the problem domain is given by 𝐿. The heat flux, 𝑞, profile in the system is obtained 

by solving the steady-state conduction equation given by  

∇. (𝐾	∇𝑇) = 0      (3.2) 

where k is the thermal conductivity that varies spatially throughout the domain according to the 

microstructure. Similar to pervious studies [15, 18, 20, 22, 39, 47-51], we utilize a combined phase 

field and finite-element approach to directly account for the effect of microstructure on the 

effective thermal conductivity of the composite. In order to distinguish between the matrix, second 

phase particles, and interfaces, the phase-field variables 𝜂" are assigned such that their values 

indicate the type of region (e.g., matrix, second phase particle, or interface).  The thermal 

conductivity is then assigned based on these values. Assigning a reduced thermal conductivity 

values at the interface is equivalent to assuming a specific interfacial thermal (Kapitza) resistance. 

The details of this procedure for the UO2-BeO composite are given in Section 3.3 below. Lastly, 

the overall effective thermal conductivity can be calculated from  

𝐾=&& =
>	@
0+801

      (3.3) 

where 𝑞 is the average heat flux, 𝑇< 	&	𝑇4  are the temperatures at right and left boundaries 

respectively, and 𝐿 is the width of the simulation domain [15, 18, 20, 22, 39, 47-51].  

3.3.2 Effect of Dimensionality on Thermal Conductivity  

While 3D calculations are favored to validate realistic models, they are often computationally 

expensive to perform. Bakker demonstrated the calculated, reduced 2D thermal conductivity can 

be related to the realistic 3D thermal conductivity (Eqs. 3.4 and 3.5).[74] In certain cases, as shown 

in Figure. 17, the extra degree of freedom of the flux in the 3D case compared with the 2D case 

causes the 3D conductivity to be larger than the 2D conductivity, irrespective of whether the 

conductivity of the dispersed phase is larger or smaller than that of the matrix material.[74] 
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Nonetheless, this difference can usually be ignored for small volume fractions of the second phase. 

To demonstrate this, 2D and 3D simulations of a single second phase particle embedded in a matrix 

representative of the dispersed microstructure were conducted. The matrix and second phase 

particle thermal conductivities were taken to be the thermal conductivity of UO2 and BeO, 

respectively. The solutions are presented in Figure. 17. As evident from the figure, the 3D 

calculated thermal conductivity is higher than the 2D counterpart at all fractions, supporting the 

conclusions of Bakker. [74] However, Teague et al. [51] found that the 2D calculated thermal 

conductivity could be higher than its 3D thermal conductivity depending on the microstructure 

heterogeneities. Thus, the dimensionality factor is applied only to the dispersed microstructure in 

this work. For the dispersed case, the difference between 3D and 2D thermal conductivities is< 

5% for volume fractions< 10 vol.%, as captured in Figure. 17.d. For experimental data obtained at 

lower volume fractions, 2D simulations are expected to be sufficient. Otherwise, the difference 

between the 2D and 3D conductivities can be quantified by  

                   𝐸=<< =
-678-!7

-67
      (3.4) 

Where: 𝐸=<<: the error/fractional difference between 2D and 3D simulations, 𝐾'(: thermal 

conductivity based on 2D simulations, and 𝐾)(: real thermal conductivity/ thermal conductivity 

based on 3D simulations. 

Moreover, based on Eq. (4), the real/3D thermal conductivity can be obtained from the reduced 

2D calculations through  

𝐾)( =
-!7

78F&11
      (3.5) 

In general, however, the difference will depend on the morphology and distribution of the second-

phase particles.  

3.3.3 Microstructure Representation  

3.3.3.1 Dispersed Microstructure  

The dispersed microstructure was obtained by utilizing a single order parameter, g, which takes a 

value of 1 inside the second phase particle, a value of 0 inside the matrix, and a value between 0 

and 1 through the interface region. For the dispersed configuration, the domain size was 500 nm 

by 500 nm with a particle radius of 12.6 nm for the 5 vol.% case and 17.84 nm for the 10 vol.%  
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case. For the FEM mesh, a quad element type with a size of 0.25 nm was used. The interface width 

is taken to be 1 nm.[59, 60] The thermal conductivity was assigned according to 

Figure 17. A visual representation of the difference between 3D and 2D thermal conductivities of a two 
phase material (a and b) at different volume fractions of second phase (shown in red). The particle 
thermal conductivity is BeO thermal conductivity, and the matrix thermal conductivity is UO2 thermal 
conductivity. The calculated effective thermal conductivity values for the 2D and 3D simulations are 
shown in (c) with the difference/ error between the 2D and 3D simulations presented in (d). 
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𝐾 =

⎩
⎨

⎧
𝐾GH! 																																																																														𝑖𝑓	𝜂 = 0

𝐾"#$(𝑇) = 𝑥 ∗ 𝐾GH!(𝑇) ∗ _
-89!I0

:J
-89!(0)

d
)
														if	0 < 𝜂 < 1					

𝐾K=H																																																																													𝑖𝑓	𝜂 = 1

   (3.6)  

Where 𝐾GH!(𝑇) : UO' bulk thermal conductivity at temperature  𝑇, 𝑇L: Reference temperature 

taken to be 200 C, 𝐾K=H(𝑇) : BeO	bulk thermal conductivity at temperature  𝑇, 𝐾"#$(𝑇)  : 

Interface thermal conductivity at 𝑇, and 𝑥  = 0.95: A fitting parameter.  

The fitting parameter was determined by fitting the proposed model against the experimental value 

of the effective thermal conductivity at T = 200°C for the 5 vol.% dispersed microstructures. Heat 

transport through these materials occurs largely by phonons. The interfaces in the composite act 

as phonon scattering sites and decrease the thermal conductivity in those regions. [2] In a 

continuum model, this effect can be accounted for via the incorporation of an interfacial Kapitza 

resistance.[4, 5] The Kapitza resistance (Rk) is defined as  

𝑅% =
∆𝑇
𝑞

 (3.7) 

where ∆𝑇 is the temperature drop across the interface between the two phases and q is the average 

heat flux. Here, the inclusion of the Kapitza resistance is realized by assigning reduced thermal 

conductivity values across the interfaces of UO2 and BeO, as demonstrated in Eq. 3.6 and depicted 

in Figure. 18. Different forms were tried to approximate the interfacial resistance, and Eq. 3.6 

proved to give the best results compared with the experimental data. While the specific form for 

the interface conductivity used here might not be unique, our simulations suggest that any such 

form must possess two features. First, it should give thermal conductivity values for the interfacial 

region that is lower than the bulk values of the phases. Second, according to the experimental data, 

since the thermal conductivities of BeO and UO2 vary with the temperature, one expects the 

interface thermal conductivity to be temperature dependent as well. We assume here that it is 

related to the temperature-dependent bulk thermal conductivity of the low conducting phase.  
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Figure 18. An illustration of the spatial dependence of the thermal conductivity across the interface. The reduced 
interfacial thermal conductivity approximates the interface (Kapitza) resistance. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Experimental (left) and simulated (right) images for the dispersed microstructure. In the experimental 

micrograph, the high conducting phase (BeO) is shown in black and the low conducting phase (UO2) is shown in 

gray. In the simulation image, BeO is shown in red and UO2 is shown in blue. 
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Equation 3.6 satisfies those conditions. Lastly, to compare with experiments, different volume 

fractions were simulated by changing the radius. An example of a dispersed microstructure is 

shown in Figure. 19.  

3.3.3.2 Continuous Microstructure  

The continuous microstructure was obtained by constructing Voronoi diagrams using multiple 

order parameters, as in the phase-field models of grain growth.[63] In contrast to the dispersed 

case, the UO2 is represented as the second phase particles (grains) and the BeO is represented as 

the matrix (in the sense that it is the continuous phase). An order parameter 𝜂" will take a value 1 

inside each grain 𝑖 (a UO2 phase particle 𝑖) and value 0 elsewhere in the domain. In the matrix 

(BeO), 𝜂"  takes a value between 0 and 1. The domain size for the continuous case was 450 nm by 

450 nm with a grain size (UO2 bulk areas) of 100.6 nm for the 10 vol.% case and 174 nm for the 

6 vol.% case. For the FEM mesh, a quad element type was used, sized at 0.25 nm, and based on 

the literature, the interface width is about 1 nm.[59, 60] An example of the continuous 

microstructure is shown in Figure. 20. The thermal conductivity is then described as  

𝐾 =

⎩
⎨

⎧
𝐾GH! 	 𝜂" = 1

𝐾"#$ = 𝑥 ∗ 𝐾GH!(𝑇) ∗ _
-89!(0

:)
-89!(0)

d
)

0 ≤ 𝜂" ≤ 0.1, 𝑎𝑛𝑑	0.9 ≤ 𝜂" ≤ 1

𝐾K=H 	0.1 ≤ 	𝜂" 	≤ 	0.9

 (3.8) 

Note the consistency between Eqs.3.6 and 3.8 in defining the interfacial thermal conductivity with 

the fitting parameter x also taken to be 0.95. The fitting parameter was determined by fitting the 

proposed model against the experimental value of the effective thermal conductivity at T = 200°C 

and volume fraction 6%. The volume fractions of BeO were also varied to compare the model 

predictions with the experimental results. The different volume fractions were selected by 

changing the number of dispersed UO2 particles.  
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3.4 Results and Discussion  

The dispersed experimental results presented here and the continuous experimental results from 

Garcia et al. are shown in Figure 21.[67] For the dispersed case, concentrations of 5 vol.% and 10 

vol.% BeO were considered and are shown with the thermal conductivity of UO2 from the 

literature, which has been corrected from 95%TD to 100%TD for comparative purposes across all 

samples.[70] For the dispersed 20 vol.% BeO sample, at temperatures< 100°C, the thermal 

conductivity of the composite was lower than that of UO2, a feature inconsistent with the trends  

Figure 20. Experimental (left) and simulated (right) images for the continuous microstructure. In the experimental 
micrograph, the high conducting phase (BeO) is shown in dark gray and the low conducting phase (UO2) is shown in 
light gray. In the simulation image, BeO appears brown and UO2 is shown in white. In the magnified image, the 
interface region between the UO2 phase and BeO is shown in red.  
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Figure 21. The experimental measurements of the thermal conductivity of UO2-BeO composites of varying 
concentration with a dispersed (a) microstructure, presented here, and continuous (b) microstructure from Garcia et 
al. [66]. 

seen in other samples of this work and in the literature. The deviation in these results compared 

with the trend impacted later accuracy of the modeled microstructure over this temperature range. 

For the continuous case from Garcia et al. concentrations of 6 vol.% and 10 vol.% BeO were 

considered and are shown with the thermal conductivity of UO2 from the literature.[67, 70] The 

results highlight the impact of the arrangement of the microstructure on the improvement of the 

thermal conductivity in the composite. The continuous case shows a much larger enhancement in 

the composite thermal conductivity compared with the dispersed case.  

Previous work by Ishimoto on dispersed UO2–BeO composites did not exceed 4.2 vol.% of 

BeO;[66] however, if the linear trend up to 4.2 vol.% is continued up to 10 vol.%, then comparison 

of this work and Ishimoto’s results can be made at 200°C where the two data sets intersect in 

temperature.[66] The dispersed samples from this study were 13–16% less thermally conductive 

than the trend shown in the work of Ishimoto.[66] With a similar approach, the continuous 

microstructure results reported by Garcia et al. can be compared with those reported by 

Ishimoto.[66, 67] The continuous samples reported by Garcia et al. were 12–17% less thermally 

conductive than the trend reported in the work of Ishimoto. [66, 67] The similar magnitude and 

consistent reduction in improvement in the thermal conductivity have been attributed to the 

difference in the processing temperature from 2200°C to 1600°C for the continuous case and 
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1800°C to 1690°C for the dispersed case. [66, 67] Additional comparisons of the continuous 

microstructure with past work are detailed in Garcia et al.[67]  

3.4.1 Dispersed Microstructure  

The dispersed microstructure was modeled in MOOSE with and without the Kapitza resistance 

implemented. As described previously (Figure.19), the microstructure was represented in two 

dimensions as a random dispersion of circular inclusions of BeO. The thermal conductivity takes 

values of the thermal conductivity of UO2 in the bulk and of BeO within the inclusions. Without 

the implementation of the Kaptiza resistance in the boundary region, the thermal conductivity takes 

values between the two as the order parameter changes. The initial prediction of the thermal 

conductivity was comparable to earlier attempts to model the composite properties which differed 

from the experimental results by 9–19%.[65] For the dispersed 5 vol.% case shown in Figure. 22, 

the difference between the experimental results and MOOSE model varied from 5% to 17% with 

temperature. Notably, MOOSE over- predicted the effective thermal conductivity by the most at 

lower temperatures where the experimental sample exhibited thermal conductivity less than that 

of UO2. It is suspected that additional experimental work at this concentration may improve the 

agreement with the MOOSE results. For the dispersed 10 vol.% case, the difference between the 

experimental results and MOOSE model varied from 3% to 11% with temperature.  

When the Kapitza resistance was introduced into the implementation of the thermal conductivity 

as discussed earlier, the composite thermal conductivity was reduced as expected. As shown in 

Figure. 22. for the dispersed 5 vol.% BeO case, the reduction in the composite thermal conductivity 

with the introduction of a Kaptiza resistance was 4–10% across the temperature range studied. For 

the dispersed 10 vol.% BeO case, the reduction was 6–14% for the same Kapitza resistance.  

The reason for the higher reduction compared with the corresponding reduction in 5 vol.% BeO 

case is the larger surface area of second phase particles in the 10 vol.% BeO case than in the 5 

vol.% BeO case, resulting in a larger effect when the Kapitza resistance is implemented. The agree- 

ment between the experimental work and MOOSE results improved as demonstrated in Figure. 

22. Without the implementation of the Kapitza resistance, the MOOSE results were strictly greater  

 



 

 

 

50 

 than the experimental results, and the Kapitza resistance strictly reduced the effective thermal 

conductivity, making the improved agreement unsurprising.  

As there are no published thermal resistance values for BeO–UO2 interfaces, this work presents 

new data for the value of the Kapitza resistance across these interfaces. The Kapitza resistance 

value was calculated from Eq.3.7 at T` = 200°C to be 1:55 × 1087; m2 K/W. Accounting for the 

Kapitza resistance, the differences between the model pre- dictions and experimental results were 

reduced appreciably. For the dispersed 5 vol.% BeO case, the agreement was improved from a 5–

17% difference to a 0.2–6% difference across the temperature range where the maximum 

difference was at the lowest temperature modeled (50°C) and the error decreased as temperature 

increased until reaching its minimum at the highest temperate (300°C). Again, at low temperatures 

the experimental  

samples exhibited uniquely low thermal conductivity values, so the agreement may be improved 

with additional experimental work. For the dispersed 10 vol.% BeO case, the agreement was 

improved from a 3–11% difference to 3.5–4% difference across the temperature range. Again, the 

maximum error occurred at the lowest temperature (50°C) and the minimum occurred at the 

highest temperature (300°C).  

Figure 22. A comparison of the experimental and MOOSE results for 5 vol.% (left) and 10 vol.% (right) 
composites with a dispersed microstrcture. Accounting for the interface resistance improved the model 
predictions. 
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It is noteworthy to mention that the simulation results for 10 vol.% are lower than the experimental 

results across the temperature range. This has been attributed to the dimensionality effect that 

increases with the volume fraction of second phase (Figure. 17). If we consider the effect of 

dimensionality (converting a 2D thermal conductivity to a 3D thermal conductivity), we see 

improved agreement between the experimental and MOOSE results, e.g., only a difference of 0.6–

1% across the temperature range as seen in Figure. 23. Thus, converting from a 2D thermal 

conductivity to a 3D thermal conductivity makes the comparison more consistent.  

3.4.2 Continuous Microstructure  

As evident from the results for the dispersed case, accounting for the Kapitza resistance is 

necessary to improve the model predictions. The continuous microstructure was represented in 

MOOSE as described earlier. As can be inferred from Eq. 3.8 and Figure. 20, the thermal 

conductivity takes values of the thermal conductivity of UO2 in the grains and of BeO at the spaces 

between those grains, with a reduced value at the interfaces. The Kapitza resistance value, 

determined from Eq. 3.7, was similar to the dispersed microstructure case. As Figure. 24 shows, 

accounting for the Kapitza resistance, the differences between the model predictions and 

experimental results were  

Figure 23. A comparison of the experimental and MOOSE results for 10 vol.% composites. The 
agreement improves when we consider the interface (Kapitza) resistance and the dimensionality factor. 
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 reduced significantly. For the continuous 6 vol.% BeO case, the agreement was improved from a 

6.75–15% difference to a 1.3– 4.5% difference for the range of temperature con- sidered with the 

maximum difference at the lowest temperature modeled (50°C). For the continuous 10 vol.% BeO 

case, the agreement was improved from a 9–31% difference to 0.5–4% difference for the range of 

temperature considered. It is clear that the Kapitza resistance has a larger impact on the continuous 

10 vol.% BeO case than on the continu- ous 6 vol.% BeO case because as the volume fraction of 

the second phase increases, the interface region’s surface increases. Similar to the dispersed case, 

those differences are within the accuracy of the experimental measurements.	 

 

Figure 24. Comparisons between the model predictions and the experimental results from Garcia et al. for 6 vol.% (left) 
and 10 vol.%. (right) composites with a continuous microstructure [66]. The interface thermal resistance was considered 
in the simulations. 
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CHAPTER IV  

AN EXPERIMENTAL VALIDATED MESOSCALE MODEL OF THE EFFECTIVE 

THERMAL CONDUCTIVITY OF U-ZR METALLIC NUCLEAR FUEL 

Two 3D experimentally validated mesoscale models are developed to simulate the effective 

thermal conductivity of U and U–Zr nuclear fuel with different microstructural features. The 

effects of the second phase fraction, temperature, and interface thermal resistance are investigated. 

Companion experiments were conducted to validate the model predictions. It was demonstrated 

that accounting for the interface (Kapitza) thermal resistance and Zr precipitation phenomenon are 

necessary to improve the model predictions.  The largest difference between the model calculations 

and experimental results was about 4.5%, which is within the precision of the experimental 

measurements.  

4.1 Introduction 

Uranium-Zirconium (U-Zr) fuels are the main candidate fuels for fast reactors [75-78]. One of the 

pronounced challenge for this type of fuel is swelling phenomena [79].To mitigate this challenge, 

manufacturing the fuel with a high initial porosity is preferable [75]. This could have a significant 

effect on the effective thermal conductivity due to fact that porosity particles have a thermal 

conductivity with few orders of magnitude less than that of U-Zr. At the same time, thermal 

conductivity is an important physical property for any nuclear reactor not only because its direct 

effects on the reactor’s operation, efficiency, and safety, but also due to its significant and direct 

effects on the fuel microstructure evolution. For instance, both Zr content redistribution and 

Lanthanides transport phenomenon are affected by the temperature gradients [76, 80, 81]. Thus, 

assessment and studying the effect of high initial porosity and heterogeneity microstructure on the 

effective thermal conductivity of U-Zr is needed. This is a crucial step to develop a new fuel with 

an initial microstructure that yield a higher fuel performance.  

A many of analytical expressions and empirical formulas have been developed to estimate and 

study the effects of microstructural inhomogeneity[82]. The first and most basic model was 

derived by Maxwell[83]. Based on effective medium approximations (EMA), Maxwell has 
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developed an expression of effective thermal conductivity for a continuous matrix with dispersed 

particles with uniform shape (spherical /circular). The effect of particle size, interaction between 

the dispersed particles, and generated interfacial thermal resistance between the second phase 

particles and the matrix were ignored. So, many models were developed later to include the effects 

that were ignored. For instance,  Hasselman and Johnson have modified the Maxwell model in 

order to include the Kapitza effect, and frequently the inclusion size was included also[84]. Other 

models were developed analytically based on one directional heat flux assumption for system with 

spherical and cubic particles[85-87]. Moreover, the Maxwell model was generalized by Bauer[88] 

to consider the distributions with multiple pore shapes, sizes. Despite all of the previous efforts, 

still there are some realistic features missing such as the interaction between the particles or the 

agglomeration effect. 

As a result of shortage abilities of the analytical models, many of numerical methods approaches 

were proposed to study the impact of microstructure heterogeneities on the effective thermal 

conductivity. For instance, a mesoscale model was developed to study the effect of grain size and 

porosity fraction variation on the effective thermal conductivity in polycrystalline microstructure 

[20, 22]. A finite element method (FEM) to study the effect of intergranular fission gas bubbles 

on the effective thermal conductivity in a polycrystalline material was proposed by P. C. Millett 

and M. Tonks [18]. Another further step was took by studying the effect of lenticular intergranular 

gas bubbles on grain boundary Kapitza resistance  in a bi-crystal [89]. This work was developed 

later for the effective Kapitza resistance of UO2 grain boundaries and based on 3D simulation 

[19]. By coupling of mesoscale modeling approaches with the conducted experimental work, 

Teague et al. [51] have evaluated the effect of microstructure components such as precipitates, 

pores, and fission product layer on effective thermal conductivity of high burn-up oxide fuel. 

Moreover, Hu et al. [16] used phase filed model to construct three dimensional structures with 

realistic features of irradiated U–Mo metallic fuels to assess various microstructural features such 

as grain size, inter- and intra- granular gas bubbles on the effective thermal conductivity. Similar 

work was done later [90] but for U-7Mo and based on two dimensional structures.   

In general, few researchers conduct modeling and simulation of microstructural inhomogeneity on 

the effective thermal conductivity of U-Zr. For mesoscale simulations, one of the most important 
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work was done by Di Yun et al. [91] The author has focused on the effect of porosity on the 

effective thermal conductivity and temperature distribution of U-Zr. This work considered 

different shapes of porosity particles, such as spheres and discs. Moreover, this work assigned 

pores with different sizes based different zones (outer, middle, or inner zones). In order to consider 

the random orientations effect, the thin disc pores in three different orientations respect to the radial 

direction of the thermal gradient were considered. Despite that, this work considered only the 

uniform arrangement of those particles in each zone. By other words, the interaction between the 

particles and the agglomeration effect was not considered. Additionally, the interfacial thermal 

resistance that take a significant place between the fuel components was not included by any of 

the aforementioned studies. 

 Here we develop and implement two quantitative mesoscale models for the effective thermal 

conductivity of depleted uranium (Dep_U) and uranium zirconium (U-Zr). These models account 

for the effects of temperature, underlying microstructure, and interface thermal resistance for 

calculating the effective thermal conductivity. Additionally, this work uses a joint experimental 

and modeling approach to quantify the Kapitza resistance between the fuel components and utilize 

it to improve the accuracy of predictions of the thermal conductivity of the Dep-U and U-10Zr. 

Companion experiments were conducted to validate the model predictions. It was demonstrated 

that accounting for the interface (Kapitza) thermal resistance and Zr precipitation phenomenon are 

necessary to improve the model predictions. The largest difference between the model calculations 

and experimental results was about 4.5%, which is within the precision of the experimental 

measurements. 

4.2 Materials and Methods 

The detailed description of sample preparation and thermal property determination in [75]. 

Samples were prepared inside an inert atmosphere glove box due to the pyrophoricity of the metal 

powders. The uranium powder was obtained by hydride de-hydride of depleted uranium metal. 

The metal was heated to 225°C under a argon 5% hydrogen cover gas to convert to the hydride 

form. This was followed by heating to 325°C and placed under vacuum to return the hydride to 

uranium metal. To prepare alloys the uranium was mixed with zirconium powder by tumbling for 

1-2 hours. The powders were pressed in steel dies at 67 MPa, 168 MPa, and 503 MPa held for 1 
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minute. The green pellets were sintered in vanadium crucibles held in alumina boats under a UHP 

argon cover gas. Temperatures from 850°C to 1100°C, and sintering times from one to twenty-

four hours were varied to obtain various densities.  

Thermal diffusivity measurements from 20°C to 300°C were carried out with a Netzsch Light 

Flash Analyzer (LFA) Model 447. While in the glove box samples were coated with graphite 

lubricant then placed in a sealed custom-built holder with sapphire windows. The LFA is not inside 

a glove box, so the holder was necessary to prevent oxidation of the samples during the 

measurements. 

The thermal diffusivity (α) was combined with the specific heat capacity (Cp) and density (ρ) to 

obtain the thermal conductivity (κ) according to the following: 

κ = α · Cp · ρ (4.1) 

The molar heat capacity for α-uranium was estimated by equation [92]: 

CnαU = 24.959 + 2.132 X 10-3T + 2.370 X 10-5T2 (203 ≤ T ≤ 873 K) (4.2) 

The molar heat capacity of U10Zr was estimated with equation [92]: 

CnU10Zr = 1.359 + 0.05812T + 1.086 X 106/T2 (203 ≤ T ≤ 873 K) (4.3) 

Where the molar heat capacity was in J/mol∙K and the temperature in K. The values for U5Zr were 

linearly interpolated between uranium and U10Zr. 

The sintered depleted uranium and zirconium-uranium alloy samples were mounted in epoxy for 

sectioning, polishing, and imaging in scanning electron microscope. Samples were coated in 

carbon and loaded in a JEOL JSM-6400 at 10-20 KeV with a working distance of 15mm for 

imaging. Densities were determined by geometric measurement and the immersion method with 

ethanol as the working fluid. 

4.3 Mesoscale model Formulation  

4.3.1 Thermal model 

A computational approach that combine finite-element and phase-field methods is utilized. In such 

approach, constant temperatures 𝑇< 	&	𝑇4 are applied on the right and left side (𝑥 direction), 

respectively. The other four boundaries (y and z directions) are taken as adiabatic. Consequently, 

the thermal gradient points in the x-direction. This 3D configuration is shown in Figure. 25.  The 

heat flux, 𝑞, profile in the system is obtained by solving the steady-state conduction equation, e.g.,  
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∇. (𝐾	∇𝑇) = 0 (4.4) 

where k is the thermal conductivity, which varies spatially throughout the domain to account for 

the underlying microstructure, as will be demonstrated in the next subsection (4.3.2). 

  

 

Figure 25. A configuration of three dimensional (3D) thermal modeling approach. 
 

Then, the overall effective thermal conductivity can be obtained from  

𝐾=&& =
𝑞	𝐿

𝑇< − 𝑇4
 

 

(4.5) 

where 𝑞 is the average heat flux, 𝑇< 	&	𝑇4  are the temperatures at right and left boundaries             

respectively, and 𝐿 is the width of the simulation domain (see Figure. 25). [15, 18, 20, 22, 39, 43, 

47-51, 93]. 

where the heat transports through materials by phonons and electrons movement. The interfaces 

in the composite act as energy carriers scattering sites and decrease the thermal conductivity in 

those regions[2, 4, 5]. The Kapitza resistance (𝑅!) is defined as  
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𝑅! =
∆𝑇
𝑞	  

 

(4.6) 

where ∆𝑇 is the temperature drop through the interface between the two phases and 𝑞 is the average 

heat flux.  

Besides, the effective thermal conductivity is also calculated also based on Maxwell 

approximation[94].  

 

𝐾=&& − 𝐾+
𝐾=&& + (𝑑 − 1)𝐾+

= 𝑉'E k
𝐾'E − 𝐾+

𝐾'E + (𝑑 − 1)𝐾+
n 

 

(4.7) 

 

Where 𝐾+ = is matrix thermal conductivity, 𝐾'E= second phase thermal conductivity, 𝑉'E is the 

volume fraction of the second phase and 𝑑 = dimensionality factor = 3 for 3D configurations.  

 

4.3.2 Microstructure Representation 

The phase-field method is used to represent the microstructure. The dispersed microstructure is 

obtained by utilizing order parameters which take a value of 1 inside the second phase particle, a 

value of 0 inside the matrix, and a value between 0 and 1 through the interface region. For the 

simulated 3D configuration, the domain size was 512 nm* 512 nm *512 nm with non-uniform 

inclusions sizes vary from 10 to 80 nm. Those particles were let to relax for few time steps[52-55].  

For the FEM mesh, a hexagonal element type with a size of 2 nm was used. The interface width is 

taken to be 3 nm and two levels of adaptivity are implemented through this region to reduce the 

element size to 0.5 nm to accurately representing the interfacial thermal resistance.  

4.3.2.1 Microstructure of depleted uranium (Dep_U) 

The Dep_U microstructure is obtained by utilizing a phase filed model by utilizing a single order 

parameter (see Figure. 26-right). In this model, the phase-field variable 	𝜂 is assigned such that its 

values indicate the type of region (pores, pore interface or bulk fuel). The thermal conductivity is 

then assigned based on these values according to Eq.4.8. An empirical model is developed for 

argon thermal conductivity against temperature (see Figure. 27-left) [95]. 
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Kim model is used to predict the thermal conductivity of fuel matrix component (see Figure. 27-

right). An empirical model is developed for the interface conductivity, this model is fitted against 

the experimental data to determine the fitting parameter 𝑥. Moreover, according to the 

experimental data, since the thermal conductivities of matrix and porosity particles vary with the 

temperature, one expects the interface thermal conductivity to be temperature dependent as well. 

We assumed here that it is related to the temperature-dependent bulk thermal conductivities of the 

Dep_U and argon (Ar) pores, as demonstrated in Eq. (4.8). 

Hence, the thermal conductivity is assigned according to 

𝐾(𝑇, 𝜂) =

⎩
⎨

⎧
𝐾!(𝑇). 																																																																																																																	𝜂 = 0

𝐾"#$(𝑇) = 	𝑥(
𝑘(𝑇)! − 𝑘(𝑇)%&

2 + 𝑘(𝑇)%&)(
𝑘(𝑇)! ∗ 𝑘(𝑇)%&
𝑘(𝑇')! ∗ 𝑘(𝑇')%&

)(							0 < 𝜂 < 1

𝐾)*(𝑇). 																																																																																																																	𝜂 = 1

							(4.8)											 

Where 𝐾G(𝑇) is Dep_U bulk thermal conductivity at temperature  𝑇, 𝐾MN(𝑇) :  Ar bulk thermal 

conductivity at temperature  𝑇, and 𝐾"#$(𝑇):  Interface thermal conductivity at 𝑇. 	𝑇L is the 

reference temperature = 290	℃, 			𝑇+O6 is the maximum temperature = 300	℃, 𝑇+"# is the 

minimum temperature T= 40 ℃ and the fitting parameter 𝑥 =0.15. This fitting parameter is 

determined by fitting the proposed empirical model against the experimental values of the effective 

thermal conductivity with the theoretical density 82.5%. 

  

Figure 26. BSE of Dep_U (left) sample. The light gray corresponds to uranium and black to pores. 
Simulated (right) image for Dep_U microstructure. pores are shown in red and Dep_U is shown in 
blue. 
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4.3.2.2 Microstructure U-10Zr 

By reviewing the BSE images of U-10Zr that showed in Fig 27-left, we found clearly that there is 

a third phase show up. So, the new phase is created due to Zr precipitation phenomenon. Based on 

the conservation of mass, creation the Zr precipitates lead to decrease the Zr wt% in the fuel matrix. 

Two main assumption were made, first, the composition of Zr precipitates are assumed as 100% 

Zr. Second, the Zr content will be reduced from 10% wt to 9% wt of Zr due to the precipitation 

phenomenon, and that content is uniformly distributed through the fuel matrix. Based on that, the 

total volume and the volume fractions of precipitates are calculated for all various theoretical 

densities by using Eqs. 4.9 and 4.10, respectively (see appendix A1), and presented in Table 7. 

𝑉+& = 9
𝑀,& 	
𝑀 ; 9

𝜌	
𝜌,&

; 𝑉	𝜌-.(𝛾/& − 𝛾,&0 ) (4.9) 

  

Then, the volume fraction of the precipitates can obtain by 
𝑉+& 	
𝑉 = 9

𝑀,& 	
𝑀 ; 9

𝜌	
𝜌,&

;	𝜌-.(𝛾/& − 𝛾,&0 ) (4.10) 
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Figure 27. The effective thermal conductivity of argon gas (left), and the effective thermal conductivity of 
depleted uranium (right)-based on Kim model. 
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Similar to the pervious case, the U-Zr microstructure is obtained by utilizing the phase-field model. 

But due to fact that this microstructure includes more than two phases, two order parameters are 

assigned (see Figure. 28-right). phase-field variables 𝜂" are assigned such that their values indicate 

the type of region (bulk U-Zr fuel, pores, pore interface or Zr-precipitates). 

Again, the thermal conductivity is then assigned based the indicated region. Kim model was used 

to produce the input data of thermal conductivity of U-Zr fuel matrix component (see Figure. 29). 

Table 7. Total precipitates volume and volume fractions. 
Theoretical density (%) Total precipitates volume(nm3) Precipitates volume fra (%) 

73.8 2.17× 10& 1.62 

76.1 2.24× 10& 1.67 

80.9 2.38× 10& 1.77 

83.8 2.46× 10& 1.84 

*The precipitates volume fractions were calculated respect to the total volume of the domain (512 
nm×512nm×512nm). 

An empirical model is developed for the interface conductivity, this model is fitted against the 

experimental data to determine the fitting parameter 𝑥. thus, the thermal conductivity is assigned 

according to  

 

 

 

Figure 28. BSE of U-10Zr (left) sample. The light gray corresponds to U-10Zr, dark gray to zirconium and 
black to pores. Simulated (right) image for U-10Zr microstructure. pores are shown in light blue, Zr 
precipitates are shown in peach, and U-10Zr is shown in blue. 
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𝐾(𝑇, 𝜂$, 𝜂%) =

⎩
⎪
⎨

⎪
⎧
𝐾&'()																																																																																																																																		𝜂$ +	𝜂% 		= 0
𝐾*)																																																																																																																																			𝜂$ = 1, 𝜂% 		= 0

𝐾+,-(𝑇) = 9
𝑘(𝑇)&'() − 𝑘(𝑇)*)

2 + 𝑘(𝑇)*);91 + 𝑥
𝑇 − 𝑇.

𝑇/01 − 𝑇/+,
;
%

										0 < 𝜂$ < 1, 𝜂% = 0		

𝐾()																																																																																																																												0 ≤ 𝜂$ ≤ 1, 𝜂% = 1

 

 

 

(4.11) 

Where 𝐾G8P< 	 is U-Zr bulk thermal conductivity at temperature  𝑇, 𝐾P< 	 is Zr bulk thermal 

conductivity at temperature  𝑇, 	𝑇L is the reference temperature = 120	℃, 			𝑇+O6 is the maximum 

temperature = 300	℃, 𝑇+"# is the minimum temperature = 40	℃, and the fitting parameter 𝑥 = 

1.18. This fitting parameter was determined by fitting the proposed empirical model against the 

experimental values of the effective thermal conductivity with the theoretical density 76.1%. 

4.4 Results and Discussion 

The depleted uranium (Dep_U) and uranium zirconium (U-Zr) results are presented here through 

this section. All the simulations are conducted in 3D to be appropriate for validation and 

comparison with the conducted experimental data. As described previously (Figures 26 and 28), 

the microstructure is represented as random dispersion of non-uniform shape inclusions of second 

phase (Ar). The dispersed microstructure is modeled in MOOSE with and without with the Kapitza 

resistance implemented. For the Dep_U case, theoretical densities of 78.3%, 82.5%,86.9% and 

88.6% are considered and shown with the thermal conductivity of depleted uranium that conducted 
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Figure 29. 3D configuration of the effective thermal conductivity of U-Zr (left) as function in temperature and 
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experimentally. For the U-Zr case, theoretical densities of 73.8%, 76.1%, 80.9%, and 83.8% are 

considered and plotted with the experimental values of thermal conductivity of U-Zr. The results 

highlight the impact of the implementing of interface thermal conductivity between the fuel 

components and considering the Zr precipitation phenomenon on the improvement the thermal 

conductivity prediction in the nuclear fuel. 

4.4.1 Mesoscale model of depleted uranium  

This subsection presents the predictions of the developed mesoscale and the Maxwell models 

against the experimental data of the effective thermal conductivity of Dep_U. Figure. 30 shows 

the predicted and the measured effective thermal conductivity versus temperature for various 

theoretical densities of Dep_U. As obvious from the figure, the effective thermal conductivity 

increases with the increase of temperature for the experimental and the continuum models with 

almost linear trend.  

MOOSE has the ability to consider effect of many microstructure features such as particles size, 

shape and distribution. Some of these features has a positive effect on the effective thermal 

conductivity. For instance, reducing the inclusion size or increasing the curvature could motivate 

the heat diffusion and that render the MOOSE results are slightly higher than those produced by 

Maxwell model. 

The initial predictions of MOOSE (without implementing the Kapitza resistance) and Maxwell are 

higher than the experimental results and that due to fact that is implementing an interfacial thermal 

resistance between the fuel components reduces the effective thermal conductivity value. For the 

theoretical densities 78.3%, 82.5%, 86.9%, and 88.6% cases shown in Figure. 30, the difference 

between the experimental and MOOSE results varied from 22.5-26%, 18.6-25.4%, 9.5-15.6%, and 

9.4-14.3% with temperature, respectively. 

When the Kapitza resistance is introduced into the implementation of the thermal conductivity as 

discussed earlier, the effective thermal conductivity was reduced as expected. As shown in Figure. 

30 for theoretical densities 78.3%, 82.5%, 86.9%, and 88.6% cases, the reductions in the overall 

thermal conductivity with the introduction of the Kapitza resistance are 17.9-20.6%, 15.7-17.8%, 

13-14.5%, and 11.3-12.8% across the temperature range studied, respectively.  
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Notably, the reduction in the overall thermal conductivity due to Kapitza effect decreases as the 

theoretical density of the fuel increases. The reason behind that is increasing the theoretical density  

lead to decreasing the surface area of second phase particles, resulting in a smaller effect when the 

Kapitza resistance is implemented. The agreement between FEM and the experimental work 

results is improved as showed in Figure. 30. Without the implementation of the Kapitza effect, the 

FEM results were sternly greater than the experimental results, and the Kapitza resistance 

appreciably reduces the effective thermal conductivity, making the improved agreement 

unsurprising. For theoretical densities 78.3%, 82.5%, 86.9%, and 88.6% cases, the agreement is  

Figure 30. Effective Kapitza resistance versus temperature for various theoretical densities of depleted uranium. 
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improved from 22.5-26%, 18.6-25.4%, 9.5-15.6%, and 9.4-14.3% difference to 0.7-2.9%, 0-3.1%, 

1.3-4.2%, and 0.3-2.9% difference across the temperature range studied, respectively. 

 Figure.31. (left) shows the behavior of Kapitza resistance against temperature based on Eq. 4.6 

and the developed empirical model of the interface thermal conductivity (Eq. 4.8). The Kapitza 

resistance between the fuel matrix and second phase particles decreases as temperature increases 

and that due fact that both bulk thermal conductivities increase with temperature and the interface 

thermal conductivity as we mentioned above should be related to the thermal conductivity of one 

or two sides that surrounded the interface.  

Figure.31. (right) presents the trend of normalized Kapitza resistance and interface thermal 

conductivity versus a temperature. As obvious from the figure, the interface thermal conductivity 

increased few times when the temperature increased from 40 ℃ to 290 ℃. This is almost matching 

with the literature[30]. Where in [30] the interface thermal conductivity increased three times but 

here increased around four times and we think that might due to that the interface here is gas-solid 

not solid-solid like in [30]. Since the gas atoms are more sensitive to the temperature, so the atom 

configuration through the interface is changing significantly with increasing the temperature. 

Moreover, the interface thermal conductivity is sensitive to the atom structure inside GB[30-35], 

by generalizing this fact here to be for any interface that could explain the reason behind increasing 

the interface thermal conductivity few times.   
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4.4.2 Mesoscale model of U-10Zr 

This subsection presents the predictions of the developed mesoscale and the Maxwell models of 

the effective thermal conductivity of U-10Zr. Figure 32 shows the predictions of the Maxwell 

model against the experimental results of effective thermal conductivity of U-10Zr. The most 

striking result to emerge from the data shown in Figure 32 is that the effective thermal conductivity 

predicted based on Maxwell model lower than those measured experimentally for all various 

theoretical densities of U-10Zr (almost except 80.9% case with the range 40 ℃ to 200 ℃.  ) .  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. The effective Kapitza resistance based on Maxwell model and experimental measurements 
versus temperature for various theoretical densities of U-10Zr. 
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This is clearly in contrast to the result that is showed in the previous subsection. Moreover, this is 

unexpected due to fact that the Kapitza resistance is not considered in the Maxwell model and that 

should render its results higher than the experimental values.  

  Based on the aforementioned, we can infer that there is/are parameter/parameters other than the 

Kapitza resistance takes place and affects positively on the measured values and is/are not 

considered in the Maxwell model. Since this challenge showed only in U-Zr case, we can infer 

that Zr content has a direct connection to this unclear result. By reviewing the BSE images showed 

in Figure 28, we found clearly that there is a third phase show up in the U-10Zr while not in Dep_U. 

The new phase was created due to Zr precipitation phenomenon. Thus, the simulations are 

modified by adding a third phase (Zr-precipitates), the total volume of precipitates that are 

dispersed into few random particles based on the calculated values in table 7. The interface thermal 

resistance of the dispersed precipitates is ignored. This due to fact that its maximum volume 

fraction is less than 2%. Figure 33 shows that by adding the precipitates effect, in contrast to the 

Maxwell’s results showed in figure 32, the MOOSE results are higher than measured values and 

that can be explained by that creation the Zr precipitates lead to reducing the Zr content in the fuel,  

and according to the empirical models [96, 97] and the experimental data in the literature [98, 99], 

the effective thermal conductivity increases as the Zr content decreases.  

Additionally, Figure 33 shows that the initial predictions of MOOSE (without implementing the 

Kapitza resistance) are higher than the experimental results and that due to the absent of interfacial 

thermal resistance between the fuel matrix and second phase particles. For the theoretical densities 

73.8%, 76.1%, 80.9%, and 83.8% cases shown in Figure 33, the difference between MOOSE and 

the experimental results varied from 7-8%, 9-4%, 12.9-4.5%, and 9-0.25% with temperature, 

respectively.  

The agreement between FEM and the experimental work results is improved as showed in Figure 

33. Without the implementation of the Kapitza effect, the FEM results were sternly greater than 

the experimental results, and the Kapitza resistance appreciably reduces the effective thermal 

conductivity, making the improved agreement unsurprising. For theoretical densities 73.8%, 

76.1%, 80.9%, and 83.8% cases, the agreement was improved from 7-8%, 4-9%, 4.5-12.9%, and 

0.25-9% difference to 3.8-4.4%, 0.15-1.4%, 1.4-3.6%, and 1.4-2.4% difference across the 

temperature range studied, respectively. 
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Figure 34 (left) shows that when the Kapitza resistance is introduced into the implementation of 

the thermal conductivity as discussed earlier, the effective thermal conductivity is reduced as 

expected. As shown in Figure. 34 (left) for theoretical densities 73.8%, 76.1%, 80.9%, and 83.8% 

cases, the reduction in the overall thermal conductivity with the introduction of the Kapitza 

resistance was 4-14%, 3.85-13%, 3-10.25%, and 2.7-8.65% across the temperature range studied, 

respectively. Similar to the previous case, the reduction in the overall thermal conductivity due to 

Kapitza effect decreases as the theoretical density of the fuel increases. The reason behind that is 

increasing the theoretical density led to decreasing the surface area of second phase particles,   

Figure 33. The effective Kapitza resistance versus temperature for various theoretical densities of U-10Zr with 
considering the precipitates effect. 
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resulting in a smaller effect when the Kapitza resistance is implemented.  

Figure 34 (right) shows that the behavior of Kapitza resistance versus temperature. First, by 

comparison this figure with Figure 31(left), we can see that the interfacial resistance for U-Zr with 

second phase particles is less than those for dep_U. This might happen due to fact that Zr atoms 

are considering as light atoms respect to U and adding the light atoms to an interface could improve 

the interface thermal conductivity because the atoms bridging improving[30-35, 57]. Second, the 

trend hers is increasing with temperature up to some point and decreasing after that. Since We can 

infer that the Zr atoms are the main reason behind that behavior for two facts. First, this is not the 

trend of pure uranium in the previous case, where the trend was decreasing continuously with 

temperature. Second, the effective thermal conductivity of the pure Zr is decreasing with 

temperature to some point and then start increasing which is similar to the current behavior of the 

Kapitza resistance. 
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Figure 34. Thermal conduction reduction due to Kapitza effect (left) the effective Kapitza resistance versus 
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CHAPTER V  

A HYBRID ML– MESOSCALE SIMULATION-BASED APPROACH TO THERMAL 

CONDUCTIVITY MODELING  

5.1 Introduction 

Machine learning is an application that provides systems the ability to access data and use it to 

learn for themselves and improve from experience without human intervention. Typically, ML 

algorithms are divided into supervised, unsupervised, semi-supervised, and reinforcement 

learning. In supervised learning, the learning algorithm uses a set of input values and a 

corresponding set of output values to infare a suitable function to make accurate predictions of the 

output values that will be associated with new input values. By sufficient training, the developed 

model will be to provide targets for any further input. On the opposite, in unsupervised learning 

algorithms, the training data are not labeled. The algorithm does not predict the output, but it 

examines the input data to identify its patterns or describe its hidden structures[100]. In semi-

supervised learning, the learning algorithm uses both labeled and unlabeled data for training, so it 

can significantly enhance learning accuracy. Unlike supervised learning, Reinforcement machine 

learning algorithms do not use maps or labeled data. Instead, the reinforcement learning algorithm 

uses trial and error search and a delayed reward approach in the absence of training dataset. This 

approach provides software agents the capability to determine the best behavior without any 

external intervention within a specific context to maximize its performance[101]. 

5.2 A hybrid ML-Mesoscale Model of Thermal Conductivity  

In general, regression, classification, and anomaly detection methods are widely used in supervised 

learning algorithms. Where the main target here is to predict the effective thermal conductivity, 

this work is done based on supervised learning algorithms, more specifically regression 

algorithms. To build any ML model, five main steps should be implemented (schematically 

illustrated in Figure. 35): 
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A. Data collection. 

The input data can be obtained from various sources such as computational methods, the literature, 

or experimental studies; in the current work, most of the data used are taken from the experimental 

team of nuclear materials and fuel cycles at Nuclear Engineering Department, Texas A&M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

B. Data preparation 

Data preparation is an essential step in developing any ML model; careful data preparation leads 

to significant improvement in model predictions. For instance, sometimes the datasets include 

invalid values, or some data are missing. In the case of missing values, the algorithm will not be 

executed. Moreover, the invalid data will reduce the accuracy of the model.  

 

 

Model selection and implementation 

Data collection 

Data preparation 

80% training 20% testing 

Data splitting 

Model evaluation 

Figure 35. A schematic illustration of conventional ML approach. 
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C. Data splitting 

Usually, input data is randomly split into 80% and 20% for training and testing, respectively. 

However, in this work, all available experimental data from Step A is used entirely in the training 

stage (schematically illustrated in Figure. 36). The testing stage is performed based on the 

validated mesoscale models instead of 20% of the experimental data. 

 

 
Figure 36. A schematic illustration of a hybrid ML approach & mesoscale modeling approach. 
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D. Choosing the best ML algorithm.  

Various supervised learning algorithms are implemented in this study. Based on the testing stage, 

each algorithm's performance is evaluated, and the optimal model is determined. 

I. Bayesian ridge algorithm  

Ridge Regression is a classical regularization method broadly used in statistics and machine 

learning. The conventional least squares estimates are unbiased, but their prediction come with 

high variances. So, ridge is a simple technique to prevent over-fitting which may result from simple 

linear regression.  Basic principle for the ridge regression is a degree of bias to the regression 

estimates that could increase the biased for specific range but improve it on the overall range and 

prevent the overfitting.  

�(𝑦" − 𝑦�")' =	�(𝑦" −�𝑤Q

E

QR7

	× 	𝑥"Q)' + 𝜆
S

"R7

	�𝑤Q'
E

QR7

	
S

"R7

 (5.1) 

 

Where 𝜆 is the penalty parameter and 𝑤Q is fitting coefficients.   

By using the Bayesian method, the linear regression is using probability distributions rather than 

point estimates. The response, y, is not estimated as a specific value, but is expected to be drawn 

from a probability distribution[102]. Thus, the model for Bayesian Linear Regression with the 

response sampled from a normal distribution is: 

𝑦	~	𝑁	(𝛽0 	𝑋, 𝜎'	𝐼) (5.2) 

The goal of Bayesian Linear Regression is not to find the specific “best” value of the model 

parameters, but rather to determine the posterior distribution for the model parameters.  

𝑃(𝛽|𝑦, 𝑋) =
(𝑦|𝛽, 𝑋) ∗ 𝑃(𝛽|𝑋)

𝑃(𝑦|𝑋)  (5.3) 

Here, P(β|y, X) is the posterior probability distribution of the model parameters given the inputs 

and outputs. This is equal to the probability of the data, P(y|β, X), multiplied by the prior 

probability of the parameters and divided by a normalization constant[102]. 
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II. Random Forest Algorithm  

The random forest algorithm is a supervised regression and classification algorithm that creates 

the forest with a number of trees. Like in the nature, the forest looks like more robust with the more 

trees in the forest. In the similar way, in the random forest regressor, the higher the number of trees 

in the forest produces the high the accuracy results [103]. So, the basic principle for the random 

forest is to combine many decision trees into a single model. By this combination, the predictions 

will be closer to the mark on average. Moreover, the main difference between the random forest 

algorithm and the decision tree algorithm is that in Random Forest, the processes of selecting the 

root node and splitting the feature nodes is randomly. For instance, each time a split in a tree is 

considered, a random sample of m predictors is selected as split candidates from the full set of p 

predictors. The split is allowed to use only one of those m predictors [104]. 

before each split, select m ≤ 𝑃 of the input features at random as candidates for splitting 

Moreover, The random forest algorithm have many advantages such as  can be used for a variety 

of tasks including be used for both classification and regression tasks, very robust, [105]. 

Additionally, no overfitting problem show up with using the random forest algorithm in any 

classification problem [103]. 

To explain this more, let us assume there is a training set of N training examples, and for each 

example there are	𝑃 features, and a random forest will consist of 𝑁$<== decision trees [105] (see 

Figure 37). 

1. Bootstrap aggregating 

Subsets of the training data of size n will be sample repeatedly from the training set of N examples 

where n is less than N. Sampling will be done at random but with replacement. This process is 

called bootstrap aggregating. 
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Figure 37. Random forest inference for a simple classification example with just three trees 

2. Random subspace method 

As we mentioned above, with each training example has M features, a subset of them of 

size m < 𝑃 will be selected to train each tree. Thus, each tree will use only m features of n training 

examples. 

3. Training decision trees 

𝑁$<== decision trees are created and each one is trained on a different set of m features 

and 𝑛 training examples. The trees are not snipped, as they would be in the case of training a simple 

decision tree regressor. 
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4. Perform inference by aggregating predictions of decision trees 

To make a prediction for a new input data, the relevant features of this example is passed to each 

of the 𝑁$<== estimators. Then, the 𝑁$<== predictions are combined to produce the overall prediction 

of the random forest. It is noteworthy to mention here, that for the classification purpose, the 

majority voting will be used to decide on the predicted class, but in the case of regression, the mean 

value of the predictions is utilized of all the decision trees. 

III. Multi-polynomial Algorithm. 

The multiple-polynomial regression algorithm was implemented to predict the thermal conductivity 

of the selected nuclear fuels. This Algorithm is constructed to computes the relationship between 

the dependent variable (thermal conductivity) with one or more independent (temperature and 

composition) variables. Where the effective thermal conductivity of the selected nuclear fuels is 

not functioning only in the temperature but in the compositions also, so the multiple-polynomial 

regression algorithm was selected. The general formulation of the third order the multiple 

polynomial for two variables was derived and described as follow: 

 𝑦(𝑥1, 𝑥2) = 𝛽3 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽(𝑥1𝑥2 + 𝛽4𝑥12 + 𝛽5𝑥22 + 𝛽6𝑥1( + 𝛽7𝑥2( + 𝛽8𝑥1𝑥22 + 𝛽9𝑥2𝑥12 + 𝜀         (5.4) 

Where: 

𝛽;, 𝛽7, − − −, 𝛽T, 𝑎𝑛𝑑	𝛽D ≡ 𝑎𝑟𝑒	𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	coefficients. 

𝑥7 ≡ 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑥' ≡ temperature	in	C. 

𝜀 ≡ 𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

E. Model Evaluation 

Last and most important step is to evaluate performance and accuracy of the selected model. 

Through the current work, two metrics are used in parallel to check the efficiency of the 

developed model:  

 



 

 

 

77 

First, root-mean-square error (RMSE): 

Measure the difference between values predicted by the proposed model and observed values. 

RMSE can be expressed by [106], 

RMSE = g∑ (𝑦" − 𝑓¤(𝑥"))'U
"R7

𝑁  (5.5) 

Where: 𝑦" is the actual value, 𝑓¤(𝑥") is the prediction that gives 𝑓¤ for the ith observation and N 

is number of non-missing data points. The RMSE will be small if the predicted responses are 

very close to the actual values and will be large if the predicted and true responses differ 

significantly [106]. 

Second, Pearson’s correlation coefficient (r): 

 Measure of the associative strength between the predicted and the measured values. RMSE 

can be obtained by [107], 

r =
∑ (𝑥" − �̅�)(𝑦" − 𝑦¦)U
"R7

m∑ (𝑥" − �̅�)'U
"R7 	m∑ (𝑦" − 𝑦¦)'U

"R7

 (5.6) 

Where N is number of non-missing data points, 𝑥" and 𝑦" are the values of 𝑥 and 𝑦 for the ith 

individual, and �̅�, 𝑦¦	are the corresponding mean values, these values can be obtained by 

�̅� =
1
𝑁�𝑥"

U

"R7

 (5.7) 

𝑦¦ =
1
𝑁�𝑦"

U

"R7

 
(5.8) 

The r will close to the unity value if the predicted responses are almost having a linear relation 

with the actual values and will be far away from the unity if not. 
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5.3 Results and Discussion  

5.3.1 A hybrid Physics-Based and Data-Driven approach for predicting the Effective Thermal 

Conductivity of UO2 and BeO Composite Nuclear Fuel 

The training stage of the selected ML approaches: Bayesian ridge, random forest and multi-

polynomial algorithms is performed based on the whole available experimental data for UO2-BeO 

composite nuclear fuel. The data include three different compositions, within a temperature range 

from 25 to 300 ℃ with 25 ℃  increment [40]. The training results are shown in Figure 38. As can 

be seen from the figure, the multi-polynomial algorithm has the best accuracy.  

While the RMSE values for the Bayesian ridge and the random forest algorithms are 30% and 

7.5%, respectively, the RMSE value achieved by the multi-polynomial algorithm is only 1.6%. 

Based on the training results (shown in Figure.38), the random forest and multi-polynomial 

algorithms are selected to be used in the testing stage.  

The testing stage is usually done by using 20% of the experimental data. Nonetheless, part of the 

novelty presented in this work lies in utilizing the mesoscale model results in testing. In effect, this 

leaves 100% of the available experimental data for training only which improves the ML 

algorithm’s accuracy and does not limit the ML to costly experimental runs. The validated 

developed mesoscale model is used to produce new data set for the testing stage [40]. This is done 

for the same temperature range used to obtain the experimental data (25-300 ℃), and at 7.5 and 

12.5% BeO volume fractions. 

According to the results shown in Figure.39, the maximum error between the developed random 

forest model and the mesoscale model was about 74%.  That due to fact random forests have high 

performance for classification problems but have slightly less accuracy at regression problems 

[105]. While the maximum error between the developed multiple polynomials model and the 

mesoscale model is about 10% (see Figure. 40,). this means the multiple polynomials model is the 

best candidate to the prediction stage. Therefore, the multi-polynomial algorithm is chosen to 

predict the effective thermal conductivity for various compositions, and a broader temperature 

range of UO2-BeO composite nuclear fuel. 
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Figure 38. Training stage for various ML algorithms against the experimental thermal conductivity data 
at different BeO volume fractions 5%, 10%, and 15% UO2-BeO nuclear fuel 
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Figure 40. ML testing stage against the mesoscale model, at 7.5 and 12.5 % dispersed volume fraction of 

BeO based on random multiple polynomial algorithm 
 

Thus, the selected model is used to predict unknown data of thermal conductivity coevolution 

of the UO2-BeO nuclear fuel. Guided by the fact that ML is a predictive tool, we aim to apply 

it to estimate thermal conductivity values of systems outside the experimental range. As such, 

Figure 39. ML testing stage against the mesoscale model, at 7.5 and 12.5 % dispersed volume fraction of BeO based on 
random forest regressor algorithm 
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for a broader range of BeO volume fraction (8, 12, 16, and 20%) and temperatures (25 – 400 

℃), thermal conductivity is predicted using the ML algorithm. The prediction results are 

presented in Figure.41. The trend, as can be seen in this figure is physically appreciated in the 

sense that it matches well with experimental data trends [40].  

According to the predicted values, as volume fraction of the dispersed BeO increases, the 

sensitivity of the effective thermal conductivity increases. This is in good agreement with 

experimental data which are presented in Figure. 21-a.  

 

Figure 41. The prediction results from the proposed ML Algorithm for the thermal conductivity evolution 
of the UO2-BeO nuclear fuel at 8,12,16 and 20% dispersed volume fractions and 25-400 ℃ temperature 
range. 
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5.3.2 A hybrid Physics-Based and Data-Driven approach for predicting the Effective Thermal 

Conductivity of U-10Zr metallic Nuclear Fuel 

Similar to the previous case, the training stage of the selected ML algorithms Bayesian ridge 

algorithm, random forest algorithm and multi-polynomial algorithm is performed based on the 

whole available experimental data for U-10Zr metallic nuclear fuel with theoretical densities of 

73.8%, 76.1%, 79.6%, 83.5%and 83.8%, within a temperature range from 40 ℃ to 300 ℃ and with 

increment 10 ℃  [75]. The training results are presented in Figure 42.  

Based on the training stage, the produced RMSE values for the Bayesian ridge and the random 

forest algorithms are 39.5% and 6.7%, respectively. While, the corresponding RMSE value of the 

multi-polynomial algorithm is 6%. 

As we mentioned before, the testing stage is usually done by using 20% of the experimental data. 

As a novel approach, the mesoscale simulations are utilized to create the required data in the testing 

stage. In effect, this leaves the whole available experimental data for training only which improves 

the ML algorithm’s accuracy and does not limit the ML to costly experimental runs. Again, the 

developed validated mesoscale model is used to produce a new data set for the testing stage. This 

is done at the same range of temperature applied for the experimental data (40-300 ℃), and 

theoretical densities of 75% and 80%.  

Based on the training results shown in Figure. 42, the random forest and multi-polynomial 

algorithms are selected to be used in the testing stage. According to the results shown in Figure. 

43, the maximum error between the developed random forest model and the mesoscale model is 

about 33.8% and that is for the same reason mentioned above. Moreover, as obvious from Figure 

43, the produced error is less than the one created in Figure 39. The reason behind that is the 

amount of the training data used in U-Zr which is more than the one used in UO2-BeO.  Based on 

the results shown in Figure. 44, the maximum error between the developed multiple polynomials 

model and the mesoscale model is about 9%, that means the multiple polynomials model is the 

best candidate to the prediction stage.  
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Figure 42. Training stage for various ML algorithms against the experimental thermal conductivity data at 
different theoretical densities 73.8%, 76.1%, 79.6%, 83.5% and 83.8% of U-10Zr nuclear fuel. 
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 Figure 44. Testing stage against the mesoscale thermal conductivity data at different theoretical 
densities 75% and 80% of U-10Zr nuclear fuel based on multiple polynomials algorithm. 

Figure 43. Testing stage against the mesoscale thermal conductivity data at different theoretical 
densities 75% and 80% of U-10Zr nuclear fuel based on random forest algorithm. 
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Figure 45. Prediction at different theoretical densities 74%, 78%, 82% and 84% of U-10Zr nuclear fuel 
based on multiple polynomials algorithm. 

 

Lastly, the multiple polynomials model is used to predict unknown data of thermal conductivity 

of the U- 10Zr nuclear fuel. Guided by the fact that ML is a predictive tool, we aim to apply it in 

estimating thermal conductivity values for systems outside experimental range. As such, a broader 

range of theoretical density and temperatures (40 – 400 ℃) were predicted using the ML algorithm. 

The prediction results are presented in Figure.45. 

Similar to the pervious case, the predictions of thermal conductivity of U-Zr metallic nuclear fuels 

outside experimental range as shown in Figure 32 are consistent with experimental data. 
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CHAPTER VI  

SUMMARY AND CONCLUDING REMARKS  

A novel model for the effective thermal conductivity of polycrystalline solids was developed. In 

contrast to existing models, this model is based on the thin-interface description of boundaries. 

This treatment leads to two major advantages over the classical sharp-interface description. First, 

it enables the model to predict the thermal conductivity of nanocrystalline materials, where the 

grain size is comparable to the GB width. Second, it allows the model to simulate the enhancement 

or degradation of interfacial transport due to segregation, interface roughness, interface 

strengthening, or interface phase transition.  

In our derivation of the model, we introduced a general expression for the effective Kapitza 

resistance/conductance of a thin interface. This new expression was validated using finite-element 

simulations for different GB thermal conductivity profiles. This new continuum-based treatment 

of interfacial heat transport is expected to contribute to the understanding of optimizing heat 

transport via the different methods of interface engineering, which are usually only modeled using 

atomistic simulations [12, 13, 35, 37]. 

The predictions of the new model were compared with the existing analytical models. It was shown 

that the thin-interface based model predicts higher values for the effective thermal conductivity 

and Kapitza resistance than its sharp-interface counterparts. These predictions were verified using 

finite-element simulations. For nanograins, the new model predicts 10%-100% higher values of 

the effective thermal conductivity than Yang et al. model [8], as the grain size approaches the 

width of the grain boundary. Moreover, the new model was shown to be capable of describing the 

change of thermal conductivity with microstructure. By coupling the heat-conduction and phase-

field equations, finite-element simulations of the co-evolution of microstructure and thermal 

conductivity were performed for different grain structures. The predictions of the new models were 

closer to the results from the FEM simulations than those given by the model of Yang et al. [8]. 

While, we focused here on heat transport across grain boundaries in polycrystalline materials, we 

also discussed in the appendix how this new approach can be generalized to the case of hetero-

interfaces in multiphase materials. However, a complete treatment of this case is beyond the scope 

of this study and will be investigated in the future.   
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Additionally, as with any model, this new model has some limitations. Two main limitations can 

be recognized. First, the model ignores quantum effects that might alter the transmission and 

scattering probabilities of heat carries in the vicinity of interfaces. However, it is well known that 

these effects are of importance only in the low temperature regime. Second, the model assumes 

the validity of Fick’s law to describe heat conduction. While this is difficult to justify for 

nanocrystalline materials, several non-equilibrium molecular dynamics simulations demonstrated 

that it is a reasonable assumption[12, 13, 35, 37]. This assumption is also employed in most of 

existing analytical/continuum models and even experimental studies of heat transport in 

heterogenous solids[1, 8-11]. Nonetheless, our main approach can be adapted to other constitutive 

laws of interest. For instance, one can utilize the concepts of extended irreversible thermodynamics 

to derive more appropriate constitutive laws that account for non-local, non-linear, and ballistic 

effects on interfacial heat transport[108]. 

A quantitative mesoscale model of the effective thermal conductivity of UO2–BeO fuel composite 

nuclear fuel was developed. The model accounts for the effects of temperature, underlying 

microstructure, and interface thermal resistance on the effective thermal conductivity. The model 

predictions were validated against contemporary experiments, and excellent agreement was 

achieved. Specifically, the differences between the model predictions the experimental results 

were on average< 5% for most temperatures and volume fractions, which is within the level of 

precision of the experimental measurements. It was demonstrated that considering the interface 

thermal resistance in the model formulation is required to obtain better predictions. 

Both the model and experimental results confirmed that the effective thermal conductivity for a 

continuous microstructure is higher than its counterpart in the dispersed microstructure. This can 

be attributed to the fact that heat flows more easily in composites with a continuous conducting 

phase, which will also have a lower interfacial area and hence lower overall interface resistance. 

Therefore, it is recommended to produce UO2–BeO composites with a continuous microstructure 

for use as an accident-tolerant fuel (ATF).   

In this study also, development and implementation of two quantitative mesoscale models for the 

effective thermal conductivity of dep_U and U-Zr were undertaken. Similar to UO2–BeO 

composite fuel, these models account for the effects of temperature, underlying microstructure, 
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and interface thermal resistance on the effective thermal conductivity. Additionally, this work used 

a joint experimental and modeling approach to quantify the Kapitza resistance between the fuel 

components and utilized it to improve the accuracy of predictions of the thermal conductivity of 

the Dep-U and U-10Zr. Companion experiments were conducted to validate the model predictions. 

It was demonstrated that accounting for the interface (Kapitza) thermal resistance and Zr 

precipitation phenomenon are necessary to improve the model predictions. The largest difference 

between the model calculations and experimental results was about 4.5%, which is within the 

precision of the experimental measurements. 

A hybrid ML– mesoscale simulation-based approach to thermal conductivity modeling is 

developed through this study. This novel model is developed based on integrating the conducted 

experimental work, validated mesoscale models, and various ML algorithms. The main advantage 

of this new approach is overcoming the accompanying challenges of the experimental and 

computational work.  The developed combined model is implemented to predict the effective 

thermal conductivity of UO2- BeO Composite and U-Zr metallic nuclear fuels. Moreover, the 

advantage of using this hybrid phase-field and finite-element approach is that it can directly 

simulate the coevolution of the microstructure and physical properties of materials in both steady– 

steady state and transient situations and under different driving forces.[109, 110]  
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APPENDIX A 

ZR PRECIPITATES MODEL  

 

Precipitates of U-Zr fuel  

We develop here a model to calculate the total precipitates volume as function in Zr wt%.  

The atom density is the number of atoms per cm3, it could be obtained based on the atom percent 

𝛾Q,  

𝑁Q = 9
𝛾Q
100:b

𝜌	𝑁V
𝑀 c (A.1) 

or based on weight percent 𝑤", 

𝑁" = 9
𝑤"
100:b

𝜌	𝑁V
𝑀"

c (A.2) 

By equating Eqs (A.1) and (A.2) 

𝛾Q
𝑀 =

𝑤"
𝑀"

 (A.3) 

Since 

b
1
𝑀c = b

1
100c� b

𝑤"
𝑀"
c

"
 (A.4) 

 So,  

b
1
𝑀c = b

1
100c	b

𝑤P<
𝑀P<

+
𝑤G
𝑀G

c												 (A.5) 

Since 

𝑤P< +𝑤G = 100 (A.6) 

So, 

b
1
𝑀c = b

1
100c	b

𝑤P<
𝑀P<

+
100 − 𝑤P<

𝑀G
c		 (A.7) 

 



 

 

 

97 

By combining Eqs A.3 and A.7, we can obtain this relation 

𝛾P< = 𝑤P<
𝑀
𝑀P<

=		
𝑤P<

9𝑀P<
100:	9

𝑤P<
𝑀P<

+ 100 − 𝑤P<𝑀G
:
		 (A.8) 

 

Figure 46. Plotting of Zr atom percent vs Zr wight percent of U-Zr fuel. 

Now, let’s redefine the atom percent of zirconium 

𝛾P< =
𝑁P< 		

𝑁P< + 𝑁G
		 (A.9) 

Where 𝑁P<  and 𝑁G represent the zirconium and uranium atom density, respectively. 

Then, let’s define a new parameter 𝑥 called the precipitation fraction, which is the ratio of 

zirconium precipitated atoms to the total atoms of zirconium. 

𝑥 =
𝑛P<8E		
𝑛P<8$.$

		 (A.10) 

Where 𝑛P<8E  and 𝑛P<8$.$ represent the total precipitated zirconium atoms and total zirconium 

atoms, respectively. 

𝑛P<8$.$ = 𝑁P< 	𝑉	𝜌0(		 (A.11) 
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Where V and 𝜌0(  are the total volume and theoretical density of U-Zr fuel, respectively.   

Due to the precipitation phenomenon, and based on the conservation of mass principle, the initial 

Zr weight percent reduces in the fuel matrix as the volume of Zr precipitates increases and 

frequently the atom percent decreases. By using the precipitation fraction the modified atom 

percent 𝛾P<+ , can be governed by the following equation: 

𝛾P<+ =
𝑁P<(1 − 𝑥)		
𝑁P< + 𝑁G

		 (A.12) 

By rearranging, 

𝛾P<+ = 𝛾P<(1 − 𝑥)		 (A.13) 

So, the precipitation fraction based on the initial atom and modified atom percent is,  

𝑥 = 1 −
𝛾P<+

𝛾P<
		 (A.14) 

By recalling Eq.A.8 and modified it to be based on the modified weight (𝑤P<+ ) and atom percent, 

we obtain  

𝛾P<+ =		
𝑤P<+

9𝑀P<
100:	b

𝑤P<+
𝑀P<

+ 100 − 𝑤P<
+

𝑀G
c
		 (A.15) 

By substituting Eq. A.13 in A. 15, and rearranging, we obtain 

𝑥	 = 	1 −	
𝑤P<+/𝛾P<

9𝑀P<
100:	b

𝑤P<+
𝑀P<

+ 100 − 𝑤P<
+

𝑀G
c
		 (A.16) 

By combining Eq. A.14 and A. 10, and rearranging, we obtain 

𝑛P<8E = 𝑛P<8$.$(1 −
𝛾P<+

𝛾P<
) (A.17) 

By substituting Eq. A.11 in A. 17, and rearranging, we obtain 

𝑛P<8E = 𝑁P< 	𝑉	𝜌0((1 −
𝛾P<+

𝛾P<
) (A.18) 
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By substituting Eq. A.1 in A. 18, and rearranging, we obtain 

𝑛P<8E = b
𝜌	𝑁V
𝑀 c𝑉	𝜌0((𝛾W< − 𝛾P<+ ) (A.19) 

Now, the precipitated zirconium atoms can be calculated by Eq. A.19 

Since Zr precipitates are assumed as pure Zr, to get the volume of the Zr precipitates, the total 

amount of Zr precipitated atoms should be divided by the atom density of pure zirconium. 

First, the atom density of pure Zr atom can obtained by, 

𝑁P<8XY<= = b
𝜌P< 	𝑁V
𝑀P<

c (A.20) 

By dividing Eq. A.11 in A. 17, and rearranging, we obtain 

𝑉X< = b
𝑀P< 	
𝑀 c b

𝜌	
𝜌P<

c𝑉	𝜌0((𝛾W< − 𝛾P<+ ) (A.21) 

Now, the volume of zirconium precipitates can be calculated by Eq. A.21, and the volume 

fractions can be calculated by, 
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Figure 47. Plotting of precipitation fraction vs, the weight percent of zirconium atoms in U-Zr fuel. 
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Figure 48. Total volume of Zr precipitates vs Zr weight percent in U-Zr fuel matrix. 
 

𝑉X< = b
𝑀P< 	
𝑀 c b

𝜌	
𝜌P<

c	𝜌0((𝛾W< − 𝛾P<+ ) (A.22) 
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