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ABSTRACT 

 

This dissertation overviews novel methods related to breed and release of parrots for 

conservation.  Broadly, the document discusses research about the maintenance of 

captive breeding parrots, and the preparation of their offspring for release into the wild. 

A  conclusion chapter identifies conflicts common to this type of conservation work and 

discusses ways to create research projects that avoid them. The maintenance chapter, 

focuses on reducing the fear and chronic stress in captivity through the development and 

use of novel automated, computer tablet-based technology. The release preparation 

chapter, overviews a method training  parrots to fly safely in wild areas that is derived 

from the parrot free-flight hobby community, using systematic exposure to outdoor 

environments. The conclusion  is a reflection of lessons learned. The interdisciplinary 

nature of this work, bridging captivity, wild, and human dimensions, creates 

complications for the researcher who must bridge these disparate worlds.  
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1. INTRODUCTION: DEFINING THE CAPTIVE-WILD INTERFACE

 Reintroduction is an important tool 

As species becomes extinct due to human activities, tools to preserve and restore 

biodiversity are increasingly important. These tools can be passive where the ecosystem 

if left alone, such as  preservation of intact habitats and stopping human of  impacted 

habitats so species can re-populate.  These tools can also be active, where the ecosystem 

is intensively managed for recovery, such as replanting schemes, or the addition of 

animals. Reintroduction is the reinforcement of waning populations or total re-creation 

of extirpated populations of animals (Seddon 2010; Ewen, Armstrong, Parker, & 

Seddon, 2012.) When the total number of animals are low, there are not enough wild 

individuals available for reintroduction activities, where wild animals are translocated.  

In such a situation, reintroduction is only possible from captive bred stocks. 

 Many species are in need of captive breeding and release 

Established in 1964 The International Union for Conservation of Natures Red List of 

Threatened Species (IUCN, 2020) has become the most complete database of species’ 

conservation needs. While only a partial list, as many species are data-deficient, this 

database identifies species that  need f captive breeding for conservation. Currently, the 

list identifies 13,843 species in need of captive breeding. Of these, 2,652 are animals, 

256 are birds, and 49 are parrots. Within the parrots, 28% face extinction based on a 
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study of 398 species (Olah et al, 2016), with the neotropical parrots bearing a larger 

proportion of extinction risk, 38% of 95 species (Berkunsky et al, 2017). 

 Reintroduction is a complex, multidisciplinary science 

The tools to artificially repopulate diminished, or extinct populations are reintroduction 

and translocation (Seddon, 2010).  Projects where humans release animals are often 

unsuccessful. In some species, survival rates when humans release wild animals can be 

as low at 3%, reflecting a lack of adequate technique and knowledge (Teixeira, De 

Azevedo, Mendl, Cipreste, & Young, 2007). Related to parrot reintroductions, multiple 

domains of knowledge have been identified as poorly explored and needing research 

(White et al, 2021). Participants in reintroduction projects can include scientists from 

multiple relevant backgrounds, land managers, government officials, commercial animal 

breeders, and veterinarians. Increasingly, academia is recognizing that the stakeholders 

of successful reintroduction projects and research may include  non-scientific actors 

(Lebov et al, 2017). 

 Captive breeding and reintroduction is a young science 

Those concerned about imperiled species have taken action to save the species they care 

for prior to the 1960s. Early projects were not part of a formalized science. For example, 

the captive Goodnight bison herd (Bos bison) in the 1800s was a major contributor to the 

recovery of the species. However, early intentional hybridization with domestic cattle 

has left lingering cattle genetics in conservation bison herds (Hedrick, 2009). Multiple 
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early attempts to reproduce the NeNe goose in the first half of the 1900s failed (Smith, 

1952). In contrast to early programs, formalized modern conservation activities involved 

more rigorous research into best practices and long-term plans for diversity and species 

survival. These modern programs began in the 1960s. The NeNe goose (Branta 

sandvicensis) releases began in 1960 (Kear & Berger, 2010), the first peregrine falcon 

(Falco peregrinus) conference occurred in 1965 leading to subsequent breed and release 

efforts (Cade, 1988). The first whooping crane (Grus americana) captive hatch occurred 

in 1967 (Erickson & Derrickson, 1981). The newness of reintroduction as a science, 

combined with the wide variety of species that require immediate action to conserve, 

causes researchers to struggle with drawing conclusions from limited data (Seiler, 

Angelstam, & Bergmann, 2000; White et al., 2012).  New data and techniques are 

needed to improve reintroduction and captive breeding. 

 Reintroduction process 

The captive breeding and release cycle can be thought of as having four steps 

(Figure1.1). Adults are maintained in captivity, then bred to produce genetically diverse 

and disease-free offspring. The offspring are placed in the correct conditions to prepare 

them for release or to prepare them for continued captive care. Rearing strategies are 

important, as behavior of young captive birds can be considered “plastic” and their end 

behavioral outcomes depend on early life experiences (Mason et al 2013). The fates of 

the young animals diverge, some going on to release and others creating a sustainable 

captive population. 
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Figure 1.1 A captive breeding cycle relevant to birds, consisting of four steps. 

Captive birds are bred in a sustainable manner to ensure a viable captive 

population. Differential preparation of offspring prepares them to stay captive or 

to be wild.  Appropriately reared birds are released and others are held back. 

 

This dissertation will focus on two of these four steps. First, the maintenance of adults in 

captivity. The research asks if automated training can cause birds to be calmer in the 

presence of new staff.  The work is related to Applied Animal Behavior and Animal 

Welfare. Due to the need for human labor in the care of animals, there are also 

consideration of economics. Conservation funding does not keep pace with growing 

needs (Echols, Front & Cummins, 2019). The broader implications of the experiment 

examine how much cost-savings could be associated with automated animal behavior 
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modification. The results suggest an effect of the automation technology on one of four 

target behaviors, as well as a 97% reduction in costs. 

 

The second chapter focuses on preparation of individual birds to create wildland survival 

behaviors, examining a method that has previously entered the literature. This study is in 

the area of Conservation Biology. The method is utilized by a subset of pet parrot 

enthusiasts who fly their birds in wildlands, using a particular method to increase 

survival of their birds when faced with predators.  The paper examines the outcomes of 

37 parrots under the training of Mr. Chris Biro, who  created the studied method. The 

outcomes appear relevant to parrot reintroduction, based on  areas identified as needing 

improvement (White et al, 2021). 

 

The final chapter examines the difficulties and conflict inherent in my research which 

crosses multiple disciplines while working with non-scientists and commercial groups. 

The concluding chapter examines lessons learned and identifies solutions to conflict and 

ways to move forward. The appendix matter reflects my broader work including a paper 

on the issues of sustaining ecotourism in a system that protects reintroduced birds, as 

well a short report on validation of  the automated training system. 
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2. AUTOMATED TRAINING AS A MECHANISM TO REDUCE NEOPHOBIC 

RESPONSES IN CAPTIVE ANIMALS 

 

 Introduction 

2.1.1. Neophobia causes chronic stress in captive animals 

Neophobia is fear caused by new experiences (Mettke‐Hofmann, Winkler, & Leisler, 

2002). Neophobia in birds can be induced through human proximity (Seferta, Guay, 

Marzinotto, & Lefebvre, 2001). High staff turnover, seasonal workers, and semester 

internships at animal facilities can cause animals to repeatedly contend with unfamiliar 

humans. Due to their neophobic nature, birds will be wary of unfamiliar people, leading 

to undesirable behavioral change (Seferta, Guay, Marzinotto, & Lefebvre, 2001).  

 

Animal fear and predator escape have long been the model for studying stress in captive 

animals, with a focus on models of sustained psychological stress, a chronic stress 

similar to post-traumatic stress disorder in humans (Clinchy, Sheriff, & Zanette, 2013). 

The long-term negative effects of stress on animals, and risk of stress biasing 

experiments, is well-understood.  Animal stress can cause disease pathologies (Moberg, 

2000) such as immune system dysfunction, (Maxwell, 1993; Martin, 2009) or disrupted 

brain and behavioral development, (Mason, 2010), even in short-term handling and 

restraint of birds (Berzins, Tilman-Schindel & Burnes, 2008). Within animal 

laboratories, husbandry related stress has consequences on research quality, creating 
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confounded data and contradictions across study results (Balcombe, Barnard, & 

Sandusky, 2004; Reinhardt, 2004; Strekalova, Spanagel, Dolgov, & Bartsch, 2005). 

 

If an unfamiliar human is a cause of stress, a negative first-time experience for an animal 

can permanently create fear and avoidance (Grandin, 2000). Due to neophobia, it is 

unlikely that a neophobic has an experience other than a fear response to a new person.  

If the human regularly interacts with the animal, then the animal will be subjected to 

chronic stress through repeated need to actively fight, flee, or passively flee and hide 

(Gray & McNaughton, 2000; Rupia, Binning, Roche, & Lu, 2016) in response to the 

human stressor. The problem of chronic stress caused by neophobia is compounded as 

fight, flight, or hiding is not possible when the animal is in a cage. 

 

2.1.2. How caged animals cope with fear 

Fear interrupts animals’ behavior. When animals chronically cannot express their natural 

behaviors, undesirable changes in behavior often emerge as coping mechanisms. 

Animals that have their internal drives activated and thwarted (Bastock, Morris, & 

Moynihan, 1953) are believed to express behaviors that are undesirable in captivity for 

multiple reasons: (1) to reduce stress and allow the animal to better function, (2) to 

express an aggressive state more safely, (3) express the aggression when the object of 

aggression in unobtainable, as summarized by Waas, Innes, & Morgan (2007).  
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One type of response to thwarting includes displaced aggression (Miller & Pollock, 

2007), a concept originating in human psychology. The animals’ physiological systems 

that lead to fighting are aroused but the target is out of reach, so the nearest available 

animal is attacked instead. Another hypothesis is redirected aggression (e.g., Chapman & 

Voith 1990), a veterinary medicine concept where a drive unrelated to attacking is 

aroused but due to an inability to act on the drive the animal expresses a behavior 

seemingly not appropriate to its internal state.  In the redirected aggression case, if the 

cage set up does not allow the animal to successfully escape from the approaching 

human, the bird may switch to mate attacking through redirected aggression. 

 

For captive wild birds, intraspecific mate aggression is common. Historically, captive 

cagemate killing and mate aggression is a welfare issue (Fox, 1923; Evans, 1953).  Some 

birds respond poorly to the presence of caregivers, attacking mates, killing young, and 

destroying eggs (AZA, 2010).  

 

2.1.3. Captive care techniques and neophobia 

A veterinary recommendation to reduce the undesirable fear-associated behaviors in 

parrots is to minimize the environmental stressors, such as minimizing caregiver 

presence (Frey, 1998), which may not be possible during required minimum care. When 

it is not possible to remove the caregiver, it may be possible to train the birds to accept 

specific individuals. Animals respond differently to unfamiliar verses familiar human 

beings. Captive apes will modify their behavior based on how familiar they are with a 
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given human being (Pedersen, Sorensen, lupo & Marx, 2019).  Similarly, birds can 

discriminate between familiar and unfamiliar people (Belguermi et al., 2011; Cibulski, 

Wascher, Weiß, & Kotrschal, 2014; Cornell, Marzluff, & Pecoraro, 2012) and can  

identify if someone is familiar or unfamiliar when looking at a digital image on a 

computer screen (Stephan, Wilkinson, & Huber, 2012).  In a flock setting, an 

individual’s behavior is changed by observing group members responses. For example, 

crows used “horizontal social learning” to gain information about fear of humans from 

their  social group (Cornell, Marzluff & Pecoraro., 2012). Familiarity may be a 

component in reducing the high intensity responses of the fight or flight system. Captive 

storks discriminated between humans and acted aggressively in the presence of an 

unfamiliar person (Shannon, 1987). 

 

Multiple behavior modification strategies exist to transform a fear or aggression 

response to  a neutral response, or even modify the animal’s behavior such that the 

animal desires the previously fear-inducing stimulus (Ramirez, 1999, pp 137). Counter-

conditioning is commonly used to reduce fear responses by activating a conflicting 

appetitive response that eventually replaces the fear response to the presented stimuli 

(Keller, Hennings, Dunsmoor, 2020). Unfortunately, the time involved in husbandry 

may be too intensive to regularly carry out, requiring unaffordable hours of labor. For 

example, Grandin’s medical husbandry training for a voluntary antelope blood draw 

took 118 days (Grandin, 2000). 
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The parrot species make up 50 of the 250 bird species in need of captive breeding 

(IUCN 2020). Studying stress reduction in parrots has utility for creating captive 

conservation tools. Self-harm associated with fear and stress is common in the taxon 

(Costa et al, 2016). Parrots’ displaced aggression in response to a human is frequently 

encountered (Welle & Luescher, 2006; Romagnano, 2006). For example, the Philippine 

cockatoo is critically endangered and subject to ex situ captive conservation breeding 

(BirdLife International, 2017),  it has been identified as a species especially prone to 

mate killing in captivity (Romagnano, 2006; Frey, 1998). 

 

We used a digital enrichment system that paired video with a reward, to associate the 

image on the video with a desired experience. We hypothesized that using video training 

to become familiar with a face prior to interacting with a new person would lead to 

reduced neophobic responses.  

 

 Methods 

2.2.1. Study species 

Our study included 66 Rose-ringed parakeets (Psittacula krameri), housed in 33 

opposite-sex pairs. The parakeets were mature individuals two years old or older, 

displaying a variety of color mutations. Birds with red-eyed albinism were not utilized 

because albino birds often have vision issues that may confound results (Balkema & 

Dräger, 1991). 
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2.2.2. Justification for animal model 

Within human-animal relationship research, there is a need for more research on non-

domesticated animals due to research bias toward domesticated animals (Hosey, 2008). 

Rose-ringed parakeets are common, allowing for experimental access and replication. 

They are both popular pets worldwide and have become cosmopolitan through 

naturalized populations in 51 countries and islands (Desmet et al, 2020). 

 

Aggression across Rose-ringed parakeets’ sexes are more comparable than in other 

species. Uncommonly for parrots, both the male and female of the species will similarly 

engage in mate aggression in captivity (Romagnano, 2006) reducing the need to study 

male and female responses separately. 

 

Rose-ringed parakeets behave similarly to several closely related endangered species, 

making them a useful model species for both pet and conservation breeding programs. 

Two congeners of Rose-ringed parakeets are threatened with extinction (echo parakeet, 

(Psittacula eques), and long-tailed parakeet, (Psittacula longicauda) and six other 

congeners are near-threatened. Several members of the genus are subject to ex situ 

conservation breeding (BirdLife International  2018, BirdLife International 2019). 

Information derived from rose-ringed parakeets can likely be directly applied to captive 

conservation management of its near relatives. 
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2.2.3. Study site and husbandry 

The study was conducted from June 1, 2016 to July 28, 2016 at a commercial bird 

breeding aviary located outside of Austin, TX. The facility breeds birds as part of 

commercial and conservation activities. All birds were property of the aviary. The 66 

experimental birds were part of a larger colony of ~500 birds held in a wire-mesh sided 

pole-barn building. The male-female pairs of rose-ringed parakeets were in a total of 33 

flight cages arranged among six aisles. Each pair’s cage was 0.6m wide by 1.2m tall by 

1.2 meters deep. Birds in the experiment were randomly selected and scattered 

throughout the barn. To ensure that the birds in experimental cages could not see other 

birds in the experiment, experimental cages were either > 6 cages apart or separated by a 

corrugated, opaque plastic divider, hand cut to extend more than 15 centimeters beyond 

the cage wire on each side. 

 

Birds were fed daily a “chop” diet with a sprouted seed, diced vegetables, and 

commercial pellet base. The diet was provided in a deep dish to encourage digging and 

searching as environmental enrichment. Birds were given clean water daily. Birds 

received novel items in the diet as a form of edible enrichment, i.e., fruit slices, or celery 

leaves. The birds had access to nest boxes that they used for breeding earlier in the year. 

JV and CJW began daily care of birds one month prior to the experiment so researcher 

presence would not affect the animals. 
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2.2.4. Training Technology 

The technology consisted of a tablet, connected to a dispenser, both running on batteries 

(figure 2.1). The tablet was mounted in bird-proof housing inside the cage while the 

dispenser was mounted outside the cage. Chopped peanuts reached the birds through a 

clear plastic funnel, hung from the dispenser. The tablet software was set to play a video 

and dispense items at set times. Each cage was assigned to one of three treatment groups, 

containing 11 cages each.. Treatments were a one-minute portrait video of novel person 

“A” waving and moving, novel person “B” waving and moving in the same sequence, or 

a camera pan and zoom around a novel pink plastic tray. 
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Figure 2.1 Tablet and delivery system equipment setup in caging. 

Rose-ringed parakeets at a commercial aviary near Austin, Texas. Birds are 

visually separated with an opaque barrier between cages. The black tablets, 

mounted inside the cage in bird-proof boxes, connect to the maroon colored 

delivery device. A plastic funnel (pulled out for photograph, rightmost cage), 

delivers items from the tablet system into the food dish. The birds’ nest boxes are 

visible on the front of the caging. 

 

 

 

2.2.5. Experimental procedure 

The procedure involved recording an initial mock inspection of each cage by A and B, 

followed by hardware installation and 21 days of video training treatment, and then 

follow up inspections by A and B. 
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Birds were randomly assigned to one of three treatments and given a dedicated tablet for 

their cage. Video assignment per cage was hidden from JV to facilitate a double-blind 

study. The tablets were removed and charged during daily feeding for use the next 

morning. Tablets were turned on by JV or CW at 9:00 a.m. The caretaker then left and 

did not return until 12:30pm. From 10:00 a.m. to 12:00 p.m., once every 15 minutes, the 

tablet system played the one-minute video and halfway through the video dispensed a 

small portion of chopped peanuts (~2 grams of peanuts). Eeach cage displayed  fourteen 

video sessions per day. 

 

This training was repeated daily for 21 days (study days 4 to 24). On day 24, tablets 

were removed after 12:00 p.m. The morning of day 25, person “B” repeated the one-

minute cage visits to each cage following the protocol outlined above. On the morning of 

day 26 person “A” repeated the one-minute cage visits to each cage following the 

protocol outlined above.  

  

2.2.5.1. Inspections 

On day one, person “B” walked up and stood in front of each of the 33 experimental 

cages for one minute. During these cage visits the person was instructed to hold still, 

show a neutral facial expression, and look at the back of the cage simulating a cage 

inspection. A known caregiver (author JV) followed quietly behind person B and 

recorded video. On day two, person “A” conducted cage visits following the same 

procedure. Both sets of cage visits occurred during the mid-morning between 9am and 
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11:30am. Both person A and B wore similar clothing to each other in their videos and 

during both walkthroughs. JV wore the same clothes each day. No notable events, such 

as weather change, grounds maintenance, or differences in care occurred during these 

two days that would lead to a behavior change. 

 

2.2.5.2. Initial installation 

On day three, the technology was attached to all 33 cages by JV and CJW. To check if 

equipment presence affected birds, a peanut was placed in the normal food bowl under 

the tablet holder immediately after technology installation. After two hours, all peanuts 

had been consumed, indicating that birds were willing to visit their feeding 

stations. During the duration of the study, the birds were carefully observed during their 

daily care by JV to check that the experimental birds and the birds not included in the 

study showed similar behaviors. 

 

2.2.6. Video analysis  

Videos of the two pre-treatment cage visits and two post-visit cage visits by person A 

and B were scored for behavior (Table 2.1) by JV, AR and a student assistant, playing 

the videos at half-speed using the VLC player (videolan.org). Scorers were blind to the 

treatment assignments of the cages. 
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Table 2.1 Ethogram for behaviors recorded in this study 

 

Behavior Description 

Alarm call A single shrill vocalization, counted in events. 

Flight Both feet leave perch or wire while wings are flapping, 

counted in events. 

Mate attack Open-mouthed lunge that contacts the cagemate, counted in 

events. 

Wire cling Still, both feet grasping the cage wire, counted in seconds. 

 

To check for accuracy of scoring, CJW re-scored 14% of all data, which included all the 

mate aggression data.  To determine agreement levels between scorers, we calculated the 

intraclass correlation coefficient (Shrout & Fleiss, 1971), using the IRR function in the 

Pysch package for R (Revelle, 2019). The ICC3 test type, two-way mixed-effects model, 

compared pooled student rater scores (n=72) compared to CJW scores (n=72) across 

four categories. ICC scores for each behavior category of 18 samples were mate 

attack=1; flights=1; alarm calls= 0.99; wire cling=0.71. Alarm call, flights, and mate 

attack scores showed excellent agreement (ICC >0.90) while wire cling showed 

moderate agreement (ICC between 0.50 and 0.75, scoring criteria from Koo & Mi 2016). 
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2.2.7. Statistical analysis 

2.2.7.1. Software 

In order to understand what data were comparable and whether effects of the treatment 

could be detected, analyses were conducted in R, version 3.6.10 (R Core Team, 2020). 

For examining treatment effects, we utilized mixed linear models, the lmer function 

from the LME4 package (Bates et al., 2013).  Behavior correlations used the Spearman 

method of the rcorr function of the Hmisc package, version 4.4-0 (Harrell, 

2020).  Spearman’s method is appropriate for non-normal data. 

 

2.2.7.2. Effects of social caging 

To determine if birds in social housing could be considered independent of each other, or 

needed to be grouped by cage, we combined the random effects of cage and bird ID into 

one model. Whichever random effect came first explained all the variance between cages 

or birds.  There was no effect of cage over and above the effect of the bird’s individual 

ID.  While it would be expected that cage would have some kind of effect, with only two 

birds per cage, if effects were present they were too small to detect. Based on this, birds 

were treated as independent individuals. Any time a treatment effect was significant we 

re-ran the data at the cage level as a biologically and statistically conservative approach 

as it lowered the degrees of freedom, even though the explorations of the data suggested 

that there was no additional variability at the level of the cage. 
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2.2.7.3. Comparability of data, sexes, and treatment groups 

Visual review of histograms of the data showed non-normal distribution of behavior 

data. A count of zero behavior, made up approximately 30% of alarm data, 40% of cling 

data, 50% of flight data, and 90% of attack data. Percents of zeros were similar between 

time 1 and time 2, within 5 % for each category. When considering initial comparisons 

of means, the zeros in flight and attacks and flights made the Mann-Whitney U non-

parametric t-test equivalent a less appropriate model as it is particularly sensitive to zero 

inflation (McElduff, Cortina-Borja, Chan, & Wade,  2010), and multiple samples per 

animal violated regression model assumptions. For simplicity, t-tests were utilized.  For 

comparing bird responses between person A and B at time 1, paired t-test of initial 

behaviors was utilized (table 3.2). For comparisons between male and female birds, 

Welch’s t-test was utilized as it is more robust against unequal variances than student’s 

t-test (table 3.3). Time 1 behavior data was similar both between sexes and  people. 
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Table 2.2, Paired t-test for differential response to humans A and B in pre-

treatment behavior. 

Behaviors recorded in n=66 rose-ringed parakeets in n=33 male-female caged pairs. 

Birds responded with two novel humans, each present for a one-minute duration. 

Mean (x̄) and standard deviation (σ) are described for each behavior. P-value is for 

the paired t-test, comparing behavior responses to two humans. Zeros in flight and 

mate attack data may have biased test results. Birds responded similarly to both 

person A and B. 

 

 Flight Alarm Mate attacks Cling 

Person A x̄ 2.83 21.76 0.46 22.12 

Person A σ 4.94 4.38 1.46 25.90 

Person B x̄ 3.03 19.88 0.27 22.55 

t-statistic -0.33 0.58 1.22 -0.10 

p-value 0.74 0.56 0.23 0.92 

Table 2.3 Welch's t-test tests for sex-based differences in pre-treatment behavior. 

Descriptions of behaviors recorded in n=66 rose-ringed parakeets in n=33 male-

female caged pairs checking if female and male behavior was comparable.  Birds 

were challenged with two novel humans, for two minutes of behavior recording per 

bird. Mean (x̄) and standard deviation (σ) are described for each behavior. 

  
Flights Alarm calls Wire cling Mate attacks 

Behavior count 387 2748 2948 48 

Female x̄ 2.88 21.17 22.36 0.23 

Female σ 5.246 38.723 25.183 0.86 

Male x̄ 2.985 20.788 22.303 0.50 

Male σ 4.773 26.422 25.29 2.10 

T- statistic -0.12 0.07 0.014 0.16 

P-value 0.90 0.95 0.99 0.33 
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2.2.7.4. Correlations of behavior 

To understand if all four behaviors were equal in their intensity, the four categories of 

behaviors of each bird were correlated for time 1, time 2, and amount of change (time 2 

minus time 1). The amount of relatedness of each behavior could show if the birds’ have 

equal increase or decrease in the fear-associated behaviors. 

 

2.2.7.5. Effects of treatment factor, face versus object 

To understand if training on video of faces versus an object had an effect, mixed linear 

models to were used.  Birds trained on a human face video (two treatment groups, n=44 

birds in n=22 cages) and birds trained on an inanimate object video (one treatment 

group, n=22 birds in n=11 cages) were examined. This model ignored if the birds saw a 

familiar or unfamiliar person during the time two inspections.  Models for this set were 

in the form of Time 2 behavior ~ face or object video + sex of bird + time 1 behavior + 

(bird ID). There are repeated measures of the same bird so the bird’s ID is treated as a 

random effect. Histograms of residuals for all models were visually normal, suggesting 

the mixed linear model type was a good fit for the data. 

 

2.2.7.6. Modelling familiarity as a predictor of behavior 

To examine if any factor predicted change in behavior, a mixed linear model examined 

birds trained to be familiar with a person (n=44 birds in n=22 cages). Models were run 

for each of the four measured behaviors, in the form of time 1 behavior ~ time 2 

behavior + sex of bird + familiarity + (bird ID). There are repeated measures of the same 
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bird so the bird’s ID is treated as a random effect. Histograms of residuals for all mixed 

linear model models were visually normal, suggesting the mixed linear model type was a 

good fit for the data.  

 

 Results 

2.3.1. Behavior outcomes 

We recorded a total of 6,526 behavior events (flights, alarms, and mate attacks 

combined) and 5,690 seconds of birds clinging to the cage wires. Time 1 had 49% of 

events and 52% of seconds. Time 2 had 51% events and 48% of seconds. The behaviors 

displayed by individual birds was variable. Scores from cage inspections varied, 

individual bird’s score scores ranged from zeros in all categories, to a very active bird 

that alarm called 112 times, flew nine times, clung to the wire for 14 seconds, and 

attacked her mate 4 times.  The vast majority of birds displayed fear-associated 

behaviors. During time 1 and 2, most walkthroughs featured more than one category of 

behavior (time 1, zero behaviors n=10, one behavior n=38, two behaviors n=44, three 

behaviors n=38, four behaviors n=2; time 2, zero behaviors n=14, one behavior n=34, 

two behaviors n=51, three behaviors n=29, four behaviors n=4). 

 

2.3.2. Treatment effects 

Time 1 behavior and familiarity significantly influenced the model outcomes, while 

birds’ sex had no impact. For all four behavior categories, time 2 behaviors were 

significantly predicted by time 1 behavior (p>0.2), presented in Table 2.4.  For three of 
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the categories of behaviors (alarm, flight and cling) the treatment did not significantly 

influence the post treatment behavior of the birds. 

 

The only behavior that showed statistically significant change related to the treatment 

was mate attack (p=0.015). In the model, mate attack decreased for those birds that 

became familiar through video training, with the person who inspected their cage.  No 

other behavior was predicted by familiarity. Thirteen of 66 birds (20%) engaged in mate 

attacks and these attacks occurred in 8 of 33 cages (24%). Mate attacks occurred as 

reciprocal during 5 cage inspections and 6 cage inspections were one-way events.  Of the 

birds who attacked their mates, 6 were female and 7 were male.  
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Table 2.4 Linear models to explain behavior change 

All fear-associated behaviors during time 2 were strongly predicted by behavior 

during time 1. Familiarity with a face was predicted to reduce mate attack, the only 

significant treatment effect.  (β) are the estimates of the fixed effects and (SE) is the 

standard error of mean. All models are controlling for individual as a random 

effect due to multiple samples per individual. 

 

 

Response variable Explanatory variable β ± SE t(df) p 

Time 2 alarm Time 1 alarm 0.80 ± 0.047 16.99(95) <0.0001 

 Familiarity 0.23 ± 2.93 0.078(94)       0.94 

 Sex 1.78 ± 3.19 0.56(63)    0.58 

Time 2 flight Time 1 flight 0.36 ± 0.043 8.25(128) <0.0001 

 Familiarity -0.29 ± 0.46 -0.64 (128)    0.52 

 Sex 0.40 ± 0.43 2.53(128) 0.35 

Time 2 wire cling Time 1 wire cling 0.42 ± 0.074 5.72 (123) <0.0001 

 Familiarity -4.77 ± 3.63   -1.31 (82) 0.19 

 Sex 0.33 ± 4.16   0.079(60) 0.94 

Time 2 mate attacks Time 1 mate attacks 0.38 ± 0.036 10.71(128) <0.0001 

 Familiarity -0.30 ± 0.12 -2.46(128) 0.015 

 

Sex -0.01 ± 0.11 -0.12(128)    0.90 
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2.3.3. Effects of face video training without familiarity 

The effects of face-based video training versus object did not predict change in behavior 

(Table 2.5). The p-value for face versus object training explaining mate attack was close 

to one (p=0.76), suggesting that training on a human face, in general, did not have an 

affect upon fear-associated behavior. Similar to the previous analysis, time 1 behaviors 

were significant in influencing time 2, while sex of the bird had no significant effect on 

the model. 
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Table 2.5 Training type, face or object, as a predictor. 

All behaviors during time 2 were strongly predicted by behavior during time 1. 

Training on either face video versus the object video did not influence the 

model.  (β) are the estimates of the fixed effects and (SE) is the standard error of 

the mean. All models are controlling for the individual as a random effect due to 

multiple samples per individual. 

 

Response variable Explanatory variable β ± SE t(df) p 

    

Time 2 alarm Time 1 alarm 0.80  ±  0.047 16.88(95) <0.0001 

 Training type -0.34 ± 3.41 -0.099(62)    0.9213 

 Sex 1.78 ± 3.21 0.554(62) 0.5818     

Time 2 flight Time 1 flights 0.36  ±  0.04 8.19(128) <0.0001 

 Training type 0.14 ± 0.46 0.31(128) 0.75     

 Sex 0.40 ± 0.43 0.93(128) 0.35     

Time 2 wire cling Time 1 wire cling 0.40  ±  0.075 5.40 (120) <0.0001 

 Training type 7.49 ±  4.61  1.63(67) 0.11     

 Sex 0.33 ± 4.16 0.079(60)    0.94     

Time 2 mate attacks Time 1 mate attacks 0.38 ± 0.037 8.19(128) <0.0001 

 Training type 0.038  ± 0.12 0.31(128) 0.76 

 . Sex -0.012 ± 0.12 0.93(128) 0.92 
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2.3.4. Familiarity as a predictor of mate attack 

The treatment of becoming familiar with a person from watching a video was predicted 

to significantly reduce mate attack. Outcomes remained significant when data was 

combined at the cage level with the cage as the random effect (linear mixed model: t= -

2.06 df=63 p=0.043). Mate attacks clustered in treatment group A, with fewer 

observations in other groups (Table 2.6), went from 24 to zero mate attacks after 

training. Birds from treatment group A that were not familiar with person B showed a 

similar frequency of attack and attacking individuals across time. Non-familiarity, 

having become familiar with a different person than that present, did not appear to 

increase mate attack. The time 2 cessation of mate attacks in treatment group A birds 

trained on person A, drove the decrease of mate attack in the linear model (Table 2.4).  
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Table 2.6 Mate attack totals 

Each treatment group contained n=22 birds in n=11 cages. During time 1, each 

birdcage was inspected by person A and person B, and the birds’ behavior 

recorded during the inspection.  The birds were randomly split into three groups 

and given a video-based learning treatment for 21 days that featured person A, 

person B, or a plastic tray object, then inspected again by person A and person B. 

By chance, most mate attacks occurred in the treatment A grouping. Noted in bold 

is the cessation of all mate attacks in treatment A in response to person A. The mate 

attacks in response to person B, who was not on screen in the A video treatment 

group, remained similar between time 1 and 2.  

 

  

Pre 

 

Post 

 
Treatment Person Mate attacks Attackers Mate attacks Attackers 

A video A 24 6 0 0 

  B 16 3 15 3 

B video A 2 1 0 0 

 

B 0 0 1 1 

Object A 4 1 0 0 

  B 2 1 4 3 

 

 

2.3.5. Correlation of behavior 

Correlation of the four behavior categories  revealed a significant positive correlation of 

alarm calls and flights per bird pre and post-treatment (Pre-treatment: r=0.30 p= 0.0004. 

Post-treatment r=0.33 p<0.0001). No other behavior correlated as strongly nor met the 

0.05 p-value significance threshold. The change in behaviors, time 1 minus time 2, 

showed no significant correlations between categories. 
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2.3.6. Behavior similarity across the sexes 

When preliminarily comparing male and female data at time 1, no behaviors showed a 

significant difference between the sexes (table 3.2), suggesting that male and female 

birds showed similar stress-associated behavior frequencies. 

 

 Discussion 

2.4.1. Study outcomes 

This study aimed to assess if video training featuring novel humans could reduce 

neophobic behaviors. The study examined the influence of video training upon birds that 

were visited by novel humans. The training system installation did not appear to increase 

any fear-associated behaviors and the birds’ behavior was largely similar pre and post 

treatment. The strong prediction of time 1 behavior upon time 2 suggests that the birds 

displayed similar, non-random behavior across time, allowing for a meaningful analysis. 

 

Seeing a human face during training, as opposed to a plastic tray, was not predictive of 

any change. However, seeing a specific human face, that of the human that would visit 

the bird, was associated with a significant decrease in mate attacking behavior. The other 

recorded behaviors of alarm calls, clinging to the cage wire, and flights, did not appear 

to be influenced by the treatment. The alarm calls and flights were significantly 

positively correlated, suggesting they are part of the same sequence of escape behaviors, 

while bar clinging and mate attack did not correlate with other behaviors.  The study 
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suggests that the video face training influenced the mate attack behavior but did not 

affect  escape behavior or  bar clinging behavior. 

 

The training only involved the appearance of a small version of a face low in the cage. 

This experience was very different than training to accept a whole person standing above 

them. It may be that familiarity with a face was not similar enough to training for 

extended, close approach to influence the predator escape sequence behaviors of alarm 

calling and flying. Potentially, mate attack is a defensive response where the birds stand 

their ground and displace aggression upon one another, while flying and alarm calling 

are a predator escape sequence.  Familiarity with a face may have a greater effect on 

defensive behavior though both would appear to be motivated by neophobia. 

 

Being trained on any human face was not enough to predict mate attack reduction 

compared to being trained on a video of an object. It appears that identity learning, not 

just exposure to human faces, is important to reducing mate attacks. Identity of the face 

from training matching the human present appeared important. This finding is in keeping 

with the literature about birds’ abilities in recognizing individual humans (Belguermi et 

al., 2011; Cibulski, Wascher, Weiß, & Kotrschal, 2014; Cornell, Marzluff, & Pecoraro, 

2012). 

 

An unexpected result was that mate attacks appeared different from other fear behaviors 

as that they did not correlate with the flight and alarm call behaviors nor the wire 
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clinging behavior. Aligned with the fight, flight, freeze concept of response to fear (Gray 

& McNaughton, 2000, pp. 40), mate attack could be considered as a displacement of 

fight, alarm calling and flying as flight, and wire clinging as passive freezing or hiding. 

It may be that this training was most effective on the fight response. Further study might 

focus on fight responses, such as testing if the birds lunge at a human finger. 

 

Alternately, the training may have been faulty and had an overall low affect. If the birds 

did not associate their food reward with the image of the human on the video, such as 

not retrieving dispensed food items during the video presentation, the repeated viewing 

of the video could cause habituation to the face of the novel people, a more neutral 

response training that is not as effective as actual counter-conditioning (Keller, 

Hennings, Dunsmoor, 2020). Future work should track when the birds consume the 

reward. 

 

2.4.2. Limitations 

The study had several issues. Due to the layout of the building, it was not possible to 

randomly introduce the birds to A or B first, as a new person walking up and down the 

rows repeatedly caused an uproar of alarm calls in the birds at the start of a row that 

were subjected to repeated walkthroughs. Controlling for time and order of seeing a 

novel person could improve the study design, such as splitting the study birds between 

two buildings to create a block design. 
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The small total number of mate attacks makes it the poorest behavior for analysis. Future 

work will require inclusion of only those birds that demonstrate mate attack to better 

detect treatment effects versus random change. Due to random assignment of birds into 

treatment groups, there was a clustering of the majority of mate attack events in 

treatment group A. This cluster meant that treatment groups B and C had little to offer a 

predictive model. Respective to mate attacks, effectively these models represent a single 

treatment group.  A benefit of having two groups with low total mate attack rates was 

showing that mate attack was not increased by the presence of the training system for 

those groups with already low mate attack rates. For future study inclusion only of 

animals that mate attack could offer a stronger case. 

 

The moderate inter-rater agreement for bar clinging might make data based on wire 

clinging less useful. Raters’ started their stopwatches at different moments, such as when 

the bird landed on the wire versus when the bird became fully still, which could create 

several seconds’ discrepancy over the course of an observation period. Future work will 

require more precisely defining when clinging begins and stops. 

 

2.4.3. Correlation of behaviors 

The positive correlation between flights and alarm has a small p-value. This indicates 

that these may be related behaviors that are part of the same behavioral sequence. It 

appears that alarm calls and fleeing flights are related, even when escape is thwarted. 

Alarm calls and escape flights are co-occurring behaviors for wild flocking birds that are 
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fleeing predation (Fallow, Pitcher, Magrath, 2013).  Gray & McNaughton (2000) note 

that some fear behavior models make freezing and hiding an alternative tactic to escape, 

with freezing and hiding occurring when escape is not possible.  A correlation of wire 

clinging when thwarted escape flights occurred was not observed. In this case, wire 

clinging does clearly not fit as with the thwarted escape model. Hyperactivity related to 

anxiety has confounded other experiments (Strekalova, Spanagel, Dolgov & Bartsch, 

2005) and the captive situation may interrupt normal patterns of escape and hiding. 

The comparisons between male and female parakeet behavior under stress (table 3.2) 

support the subjective interpretation of similar cagemate aggression between male and 

female rose-ringed parakeet (Romagnano, 2006). It appears that the other fear-associated 

behaviors of alarm calling, flight, and wire clinging are also similar between the sexes.  

 

2.4.4. Conclusions 

A tablet-based automated video training system did not increase fear-associated 

behaviors in rose-ringed parakeets, a neophobic species. Familiarity with a person from 

video training was associated with a significant decrease in mate attack behaviors. 

Identity of the face used in training, not just any human face, mattered for mate attack 

decrease. Male and female birds showed similar fear-associated behaviors in the 

presence of novel humans. 
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2.4.5. Implications for practice 

Labor costs for automated training versus human habituation are strikingly different. 

Assuming animal staff costs of $9.50.hr USD, automating would cost $366 in labor, 

while a traditional program would cost $8,681. 

 

Due to the lack of electricity in the pole barn location, without access to a road, this 

study required a laborious set up to charge and hang up the tablets. The automation took 

110 minutes a day on average to charge, hand carry, and hang up tablets, refill 

dispensers, and take down tablets. The location was not optimal for automation, creating 

38.5 hours of work over 21 days.  

 

To habituate or counter-condition birds to a worker, that worker has to be paid to be 

present during the training, and a professional will need to visit the site and teach the 

workers what to do. At 14 minutes a day of habituation per cage, for 33 cages, for 21 

days, that is 808.5 hours of work. There is an additional labor cost of bringing in a 

behavioral specialist to a remote site to teach the staff how to habituate and counter-

condition animals, estimated at $1,000.  

 

There are three areas of practice where this technology may have application. First, 

commercial facilities such as breeders, zoos, and research facilities that have high staff 

turnover and seasonal staff. Second, conservation breeding where any loss of an animal 

or failure of a pair bond affects critically needed reproduction. Third, pet owners who 
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want to habituate their pet to a veterinarian, pet sitter, or another caregiver, where 

repeated in-person habituation is unfeasible. 

 

 Ethical considerations 

This work described in this article was approved by the Texas A&M University 

Institutional Animal Care and Use Committee as well as the Clinical Research Review 

Committee. The procedures were non-invasive and the experimental treatments of video 

training were non-stressful. The one-minute inspections by novel people were brief and 

non-invasive. 
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3. PARROT FREE-FLIGHT TRAINING AS A CONSERVATION TOOL 

 

 Introduction 

Inventive approaches to release or relocate animals can be a necessary conservation 

strategy in the face of rapid environmental change (Seddon, 2010). However, the 

successful release of captive-raised parrots has been limited due to predation, loss of fear 

of humans, inadequate foraging skills, and inappropriate socialization (Snyder et al., 

1996; White et al., 2012). In terms of best practices, it is known that released parrots do 

better when added to established flocks (Seddon, 2010; Snyder et al., 1996; White et al., 

2012). However, there are not always appropriate flocks available and creating a wild 

parrot flock de novo from captive-reared birds is a challenge. 

 

A limited number of pre-release preparation regimes have been investigated (White Jr, 

Collazo, & Vilella, 2005; White et al., 2012), but many variables remain uninvestigated. 

Bird release projects struggle with identifying factors for success, doing their best to pull 

limited information from meta-studies (Seiler, Angelstam, & Bergmann, 2000; White et 

al., 2012). According to Griffin, “instinctive” skills needed by conservation-release 

animals are not automatic but emerge as a product of animals’ experiences during their 

development (Griffin, Blumstein, & Evans, 2000). The interaction of environment and 

animals over time creates a huge number of variables to test. Variables may be at 

different scales such as immediate versus long term effects and span a huge number of 

factors which continues to grow. More obvious immediate effects include hand-rearing 
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causing a lack of human wariness (Valutis & Marzluff, 1999). Multi-generational effects 

can be hard to anticipate, such as a captive-reared ancestor that failed to develop a full 

set of survival skills producing multiple generations of skill-deficient wild animals 

(Stoinski & Beck, 2004). Newer considerations are emerging, such as levels of social 

functionality in released animals (Goldenberg et al., 2019). There are so many variables 

that fully comprehensive evaluations of methodologies are not possible. 

 

During raptor conservation activities, these  considerations were greatly reduced. 

Conservation releases utilized established practices of falconry (Bolton, 1997), including 

captive breeding, rearing, physical conditioning, and release methods, arguably speeding 

recovery success through the use of pre-developed, field-proven methods. For raptors, 

release success can be impressive. For example, captive-reared kestrels have shown 

equal long-term survival when compared to wild bred individuals, through falconry 

techniques and falconer staff participation (Nicoll, Jones, & Norris, 2004). Falconry 

methods applied to conservation have performed better than techniques (Kenward, 2009; 

Weaver & Cade, 1991). 

 

Similar to falconry, there is a system of practice for flying parrots outdoors, called free-

flight (Moser, 2004). Free-flight can consist of sport flying of pet parrots, outdoor 

educational bird shows, and parrot keeping where parrots fly in and out of a window 

similar to an indoor-outdoor pet door.  Free-flight tends to utilize internet groups, 

classes, and in-person seminars to disseminate this practice (Biro, 2000; Moser, 2004). 
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Aspects of parrot free-flight involve intensive human-bird interaction. The free-flight 

practitioner will have a social bond with their birds. Through these bonds, the birds 

follow their trainers into selected landscapes and are trained to function and survive in 

the selected places. In the wild, behavioral flexibility allows wild parrots to adapt to 

human-altered environments (Renton, Salinas-Melgoza, De Labra-Hernández, & de la 

Parra-Martínez, Sylvia Margarita, 2015; Salinas-Melgoza, Salinas-Melgoza, & Wright, 

2013). When carefully planned hand-rearing has the potential to magnify the ability of a 

parrot to adapt to its environment. When animals are raised by human caregivers, their 

behavioral repertoire may increase, through the introduction to novel food types, 

foraging behaviors, and habitats unused by their ancestors (Dinets, 2015). 

 

Presented here is one version of free-flight training. To introduce this method to 

conservation scientists, a cohort of four sun parakeets was reared and documented under 

the instruction of Chris Biro, a professional bird trainer. The rearing process and short-

term outcomes for the cohort are reported here. To understand the long-term outcomes 

of this method we present a summary of information gleaned from the raising and flying 

of 37 parrots, ( 7 species and two hybrids), over a total period of 17 years. A special 

focus has been given to early rearing in the description of the method. Early 

development is believed by the free-flight community to have an important affect on bird 

success. The period of behavioral development prior to outdoor flying is a major stage in 

the method Biro uses (Biro & Woodman, 2009). 
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 Materials and methods  

The training process used in this study begins with unweaned, pre-fledge birds and trains 

them in a series of more and more complicated physical and ecological systems. The 

guiding principle of this process is that when placed in the appropriate environments, the 

birds’ behaviors are shaped by interaction with the environment and other animals (Biro 

& Woodman, 2009). The method relies on the birds’ natural responses to wild 

environments during juvenile development.  

 

 The method relies on the birds’ natural responses to wild environments during juvenile 

development, as opposed to behaviors being shaped one at a time through interactions 

with a human trainer. Through this process, normal parrot survival skills develop by 

mimicking what happens in the natural rearing process of parrots raised by in the wild by 

their parents. 
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The birds learn in six distinct environment levels (heretofore referred to as training 

levels, Figure 1. As the birds’ abilities improve, they progress from simple environments 

(level 0: indoors in a room) to highly complex environments (level 5: forests and 

landscapes with major elevation changes inhabited by dangerous avian and mammalian 

predators with potentially dangerous weather conditions). Dynamic factors of weather, 

wildlife presence, and seasonal landscape changes, were considered prior to and during 

each flying session to make sure the level did not possess temporary features of a higher 

level such as predators or weather. 

 

This method follows trainer Chris Biro’s approach. Biro was an early organizer of free-

flight enthusiasts online through an interest group in 1999 (Biro, 2000). In 2020, Biro 

taught his 400th student as part of his free-flight classes (pers. comm. Chris Biro). 
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Figure 3.1 Schematic diagram showing the physical and ecological complexity of 

sites used for training parrots in this study. 

Loss of line of sight and landscape feature complexity increases with level. Key level 

elements include presence of wild animals: harmless at level one; harassing to level 

two; casual predator investigations in level 3; occasional determined predator at 

level 4; and immediate predation threat at level 5. Each image in the sequence 

shows how landscape features influence the ease of retrieving birds by vehicle or by 

foot, from contained birds indoor at level zero; to retrieval not being possible at 

level five. Note the caged member of the social group (the “anchor bird”) in levels 1 

and 2 whose contact calls help keep other released birds near the training site. 
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3.2.1. Flock descriptions 

For this study, we report on the raising and training of 37 individual birds. These birds 

were flown in three flocks, a large-bodied mixed-species macaw flock, a small-bodied 

mixed-species parrot flock, and a sun parakeet flock. All birds were reared and trained 

similarly. 

 

The small-bodied flock included a total of 25 different birds. Sun Parakeets (Aratinga 

solstitialis) n=16, Mitred Parakeets (Psittacara mitratus) n=5, Senegal Parrots 

(Poicephalus senegalus) n=3, and a Burrowing Parakeet, (Cyanoliseus patagonus) n=1. 

This group was active for 16 years (1997‐2013). Not all birds were intended to be made 

fully independent, as Biro focused on a sub-group of show flyers and others were less 

intensively trained. 

 

The large-bodied flock included a total of eight different birds: Hybrid “Calico” macaws 

(Ara chloroptera x Ara militaris) n=3, Blue-Throated Macaws (Ara glaucogularis) n=2, 

a Scarlet Macaw (Ara macao) n=1, a Blue-and-Yellow Macaw (Ara ararauna) n=1, and 

a hybrid “Shamrock” Macaw (Ara macao x Ara militaris) n=1. This group was active 

over a 13-year period (2000-2013). This flock was trained to be maximally independent. 

The sun parakeet flock included a total of four birds, all sun parakeets n=4. This group 

was active for one year (2015-2016). This flock was raised and trained specifically to 

create documentation of the early rearing process and transition from indoor to outdoor 

flying. Training for this flock was only for lower level outdoor flying (levels 1-3). 
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When nesting attempts occurred in mature birds, the birds were not allowed to progress 

to wild reproduction to avoid creating naturalized populations. 

 

3.2.2. Locations 

The large and small-bodied flocks primarily flew in a rural area outside of Moab, Utah, 

USA. Average temperature during the study period was 14.2 C, with an extreme 

maximum of 43.9 C and an extreme minimum of -21.11 C. Average annual rainfall was 

233 mm (NOAA, 2020). 

 

The birds were also transported by Chris Biro and flown in multiple locations in the 

Western United States, including locations in Washington State, California, and Oregon. 

The sun parakeet flock was fledged in College Station and primarily flown outdoors in 

Dripping Springs, Texas, USA. Average temperature during the study period was 20.1 

C, with an extreme maximum of 39.4 C and an extreme minimum of -15.6 C. Average 

annual rainfall was 1189 mm (NOAA, 2020). 

 

The total number of training sites utilized was large and uncounted. Each group of birds 

added to the flocks had a different set of location experiences. Property access and site 

conditions required adaptive practices on the part of the free-flight trainer. 
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The sites utilized for level one, for example, comprised about 20 sites utilized across all 

three flocks. Some birds were trained in only one level one area, others were trained in 

multiple level one locations. For the two longer-term flocks, the small and large-bodied 

flocks, novel level two, three, and four flights were frequently identified and utilized, 

increasing the total number of sites for flight training. Site identification included casual 

recognition of a site while traveling, where birds might only be flown once with 

permission of a property owner. 

 

The three free-flight flocks varied in their range size based on training. The sun parakeet 

flock was not trained to travel between locations, while the two long term-flocks were. 

The large-bodied flock was encouraged to follow a vehicle over multi-kilometer trips, 

further than was done for the small-bodied flock. 
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Figure 3.2. Stages during free-flight training. 

(a) Sun parakeets flock at the time of acquisition, 33-40 days of age. Chicks show 

non-human socialization through gaping and swaying as well as cowering; (b, c) 

Playpen rearing area. 1. Feeding access door. 2. Wire cored rope climbing coil. 3. 

Brooder box with paper towel entry flap. 4. Overhang to prevent climbing out. 5. 

Carefresh brand bedding on the floor and in brooder box; (d) Level one area for 

small birds, an open area of about three hectares. Note the transport carrier and 

anchor bird’s cage; (e) Level one area large-bodied birds utilizing a much larger 

open area of about 16 hectares. Note the portable perch for back and forth flying; 

(f) Complex landscape navigation training (levels 3-5). Trainers on either side of a 

canyon and cliff complex recall the birds at the safest crossing points to train 

landscape navigation; (g) The large and small-bodied flock escape from a hawk 

(arrow) at the home base. 
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3.2.3. Data types and collection 

Data on the large-bodied and small-bodied flocks were drawn from Chris Biro’s 

personal archives and CJW’s photography and notes. The archives consisted of dated e-

mails, content and meta-data of digital photographs, content and meta-data from videos, 

and SMS text messages. This information was supplemented by direct interviews with 

Chris Biro. The data included each birds’ name, species, age at first outdoor training, 

date of each bird’s entry into their flock, duration of participation, the reason the bird left 

the flock, a maximum level reached, and total time spent flying outdoors. To record the 

sun parakeet flock rearing process, a video camera with a time-lapse recording function 

was mounted above the playpen to record the chicks and monitor how they utilized the 

space. Records for the sun parakeet flock consisted of content and meta-data from 

normal and time-lapse video, content and meta-data data from photographs, and 

contemporaneous notes taken by CJW.  

 

Total time flying in a natural environment was estimated based on 12 hours of daily 

flying when not working at seasonal educational shows. Hours flying were calculated 

per bird, meaning if a group of 10 birds flew for four hours, there would be 40 hours of 

flying time recorded. To understand how outdoor flight mortality outcomes compare to 

conservation outcomes of similar outdoor duration, a “flight months” metric was created. 

The hours of outdoor flying are converted to “flight months,” consisting of 30 counts of 

twelve hours outdoors. Mortality outcomes were analyzed using the Mayfield method 

(Mayfield, 1961), calculating the risk of death during one year. 
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3.2.4. Level zero 

3.2.4.1. Acquisition 

To record the general early rearing process for all flocks, four captive-bred, hand-reared, 

incubator hatched sun parakeets, from different clutches, were purchased from a 

commercial bird breeding facility. The sun parakeets were assembled into an aggregated 

group of young. The hatch dates of the birds were unknown but the developmental 

stages were roughly estimated as 33 days of age (n=1), and 40 days old (n=3). When 

acquired, the chicks were able to walk between locations, thermoregulate, and possessed 

adequate stamina and coordination to climb up and over Carefresh brand bedding 

(http://www.carefresh.com/) substrate and return to the nest box after play periods. At 

time of acquisition, the chicks were not yet human-socialized. Gaping, swaying, and 

cowering in the presence of human beings was observed.  

 

3.2.4.2. An enriched rearing environment 

For all three flocks, the rearing setup was intended to maximize opportunities for 

interaction with the environment. The environment, built as a playpen, was roughly 1m x 

1m with 0.5m high walls constructed of cardboard shipping boxes taped together (Figure 

3.2). The playpen had an overhang to prevent birds from scrambling to the top and 

falling out prior to fledging. An access flap for feeding was cut into one side and held 

closed with plastic coated wire twist ties. Colorful cotton rope, 4cm diameter with a wire 

core and a bell at the end, was bent to create multiple raised perch areas and taped to the 

base of the pen. The floor of the playpen was covered in six cm of soft and insulating 
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paper animal bedding, . A small box was turned on its side, and a paper towel flap 

attached from the top of the box’s opening to create a cavity. The box was routinely 

refilled with bedding. Various objects were placed on top of the bedding, including small 

wooden and plastic trinkets, a two-inch diameter red ball, colorful paper cutouts, a 

plastic dog dish, and a plush Prevue brand Cozy Corner bird cuddle and comfort object. 

A lamp on a timer was placed near the playpen to provide a 12hr day of direct lighting. 

The chicks were old enough to thermoregulate so they could be safely reared without a 

temperature-controlled brooder. This general setup was used because it allowed the 

chicks to move around the playpen and choose from a variety of activities. Similar 

configurations were utilized for raising the birds in the large and small-bodied flocks. 

The focus was on free-choice, where chicks could remain inside a dark box or leave the 

box and engage with the environment as part of the level goals (Table 3.1). 
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Table 3.1,  Level zero environmental characteristics and mastery criteria for parrot 

free-flight training. 

The birds in this study completed level zero criteria between the time of fledge and 

weaning, ~70 d for sun parakeets, ~100 d for macaws. 

 

Environmental features Mastery criteria 

• Handfeeding 

location. 

• Enclosed spaces 

such as a living 

room or outdoor 

aviary. 

• No wild species. 

 

 

• Trainer linked with consistent meeting of 

care needs through associative learning. 

• Accepts food and water from the trainer. 

• Accepts interaction from trainer 

including snuggles and toy play readily. 

• Steps up on the trainer. 

• Approaches trainer on foot or wing when 

separated. 

• Returns to trainer with recall cue. 

• Leaves perch with “get off of that” cue. 

• Lands on difficult perches. 

• Flies throughout the entire space. 

• Orients to other birds in flight (“tagging”, 

“chasing”). 

• Aerial maneuvers (i.e., “jinking” sudden 

turn in the air). 

 

 

 

3.2.4.3. Feeding and training 

All chicks in all three flocks were hand-fed using commercial parrot hand-feeding 

formula and offered a variety of solid foods throughout development. The objective of 

the selected feeding style was to enable normal growth while encouraging beak and 

tongue use. Daily, solid food including apple slices, breakfast cereals, and Zupreem 

parrot pellets (https://zupreem.com) were provided to enable a smooth transition to a 

fully solid diet during weaning and maximize options for chick activities. 
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Chicks were fed by mouth using a plastic syringe and commercial parrot hand-feeding 

formula Kaytee brand (https://www.kaytee.com). The total feedings broadly followed 

manufacturer’s recommendations and varied based on individuals’ ingested amount per 

feeding, digestion speed, and age. Observation of chicks’ body condition, a common 

veterinary technique, was utilized to monitor health (Burton, Newnham, Bailey, & 

Alexander, 2014). 

 

The introduction of a behavioral cue, the recall cue, was paired with feeding times. 

During feeding times, the chicks would run to the syringe and follow the human hand to 

different areas of the playpen, and the recall cue was presented. The cue was broken up 

into a general “here birds” or the bird’s specific name to train for individual recall versus 

full group. Over time the birds would come to the vocal cue whether or not the syringe 

was present. 

 

The sun parakeet chicks weaned at approximately 60 days of age. To check that the 

wean was complete, the birds were weighed at the time of cessation of hand feeding and 

one week later. Weight losses of 1-5% indicated birds were maintaining body condition. 

 

3.2.4.4. Handling 

To ensure that the chicks became comfortable interacting with the researchers, chicks 

were handled several times a day. Handling consisted of petting, holding, carrying, and 

interacting. When the chicks began to approach human hands spontaneously, about three 
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days after acquisition for the sun parakeets flock, they took 30 minutes trips to indoor or 

outdoor spaces away from the playpen. Outings occurred roughly every two days, 

sometimes with one chick and sometimes with all the chicks.  

 

3.2.4.5. Fledging 

Once chicks had well-developed wing feathers, approximately 50 days of age for the sun 

parakeets, they began spontaneously climbing to higher perches and intensely flapping 

their wings. By the time the chicks fledged they were already responsive to the recall 

cue, having run to the hand while being called during feedings. Running toward the 

trainer, chicks were encouraged to flap and climb on the trainer, paired with the recall 

cue. The running developed into short straight-line flights to the trainer, which was 

reinforced by feeding, or affectionate handling by the trainer. During outings away from 

the playpen, the birds were placed on surfaces outside of the playpen, provided with the 

recall cue, and encouraged to hop, while flapping. As the birds became proficient at 

hopping, the number of hops a day was increased from two to ten and then became short 

flights. The goal of this was to create a recall behavior of flying to the human hand when 

presented.. 

 

The playpen environment was modified for the fledge once the birds could hop to the 

hand. To create a landing pad, a second rope perch was added, with a loop extending 

above the playpen. A perch “tree” made of PVC pipe wrapped in sisal rope, was set up 

near the playpen for flight practice. By day 60 of age, the Sun Parakeets spontaneously 
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flew to the researcher and areas around the rearing area. The sun parakeets performed an 

estimated 100 flights a day. As weaning occurs after fledging, parakeets who flew to the 

researcher for food were fed first, creating a competitive situation that rewarded fast 

response to the recall cue. After weaning, birds were still eager to take a few drops of 

food from a syringe and this was used to reward coming to the recall cue. To create a 

“get off” behavior, birds were spoken to sharply, immediately upon landing in an unsafe 

location. The harsh volume and tone of voice resulting in them promptly flying off. 

When birds could fly as a group, engage in aerial acrobatics, be individually recalled, 

and responded to a “get off” cue, the chicks were ready to transition to a level one 

environment. The birds were called over for food, touch, or play, then shooed back to the 

perch, or placed on the perch. Then they were recalled again and given more attention. 

The flying away and back to the trainer repeatedly developed a habit of back and forth 

flying to nearby approved objects, called “A to B” flight. Non-approved landing sites 

were identified through the get off cue. The large and small bodied flocks were raised 

and fledged in a similar way.   

 

3.2.4.6.  Move to outdoor caging 

After confirming that weaning was complete, the sun parakeet flock was moved full-

time to an approximately 5m by 3.5m by 2.7m tall outdoor aviary in Dripping Springs, 

TX. The aviary allowed for nearly constant, unmonitored flying, and physiological 

adaptation to the mild early summer outdoor environment. The two longer-term flocks 

were split across multiple aviary buildings of roughly similar dimension when not out 
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flying. Back and forth flying was created from the food and comfort-seeking flights to 

the trainer. The newly fledged chicks would be shooed away or placed on a perch, then 

when they came back for more attention or food, were rewarded for having left andthen 

returned..  This informal routine was developed into a trained behavior in the outdoor 

aviary. Large, portable perches were introduced into the outdoor aviary and utilized for 

back and forth flying practice, which was performed multiple times a day for each bird.  

 

3.2.5. Level one 

3.2.5.1.  Landscape setting 

The landscape features of these sites were all similar and can be summarized as large, 

flat areas with few trees or shrubs, similar to prairie or savannah conditions. There were 

limited opportunities for biotic interactions, and only mild weather (Table 3.2, Figure 

3.1). The transport vehicle was parked adjacent to the flying area to train the birds to 

return to this easily discernable landmark.  

 

3.2.5.2. Goals 

The skills the birds gained at level one were foundational skills for flying in an outdoor 

space and returning to the trainer. Meeting all the criteria in Table 3.2 were needed for 

the bird to move to a level two environment, Table 3.3. 
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Table 3.2. Level one environmental characteristics and mastery criteria for parrot 

free-flight training. 

Training occurred as close to fledging as possible, older individuals were observed 

to be more likely to panic fly or not bond with the group. Birds in this study gained 

mastery within about three weeks of flying. All criteria must be mastered before 

moving to the next level environment. 

 

Environmental 

features 
Mastery criteria 

• Open field. 

• Light wind. 

• No 

precipitation. 

• Distant 

wildlife. 

• Simple 

retrieval by 

foot or vehicle. 

 

 

• All previous criteria. 

• Repeated practice flying at low and high 

altitudes. 

• Fly with and against the wind. 

• Demonstrate endurance through multi-

minute continuous flapping flight. 

• Introduced to flocking outdoors with others. 

• Fly low the majority of the time (high flight 

is associated with nervous behavior, 

indicating the bird is unready for more 

complexity). 

• Tend to stay near rally point vehicle between 

flights. 

• Develop complex movements initiated 

during aerial play. 

• Utter alarm and contact calls. 

• Respond appropriately to flockmate’s contact 

and alarm calls through increased wariness, 

reply calling, approaching calling flockmate. 

 

3.2.5.3. A to B flying  

Before the training sessions, portable perching stored in the rally vehicle was set up 

adjacent to the rally vehicle. The bird(s) were taken from the carrier by hand and placed 

onto a portable perch. The trainer walked a few meters away and began the “A to B” 

back and forth perch flight routine developed during level 0. This back and forth was 
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utilized as a way to acclimate the birds to the new conditions in level one through a 

familiar routine. During the first outdoor flights, one bird at a time practiced A to B. 

 

3.2.5.4. Rally vehicle anchor bird 

During initial training, not all birds were taken out to fly at once. Birds not being trained 

were placed in a cage upon the top of the rally vehicle, Figure 2. These caged bird(s) 

were able to contact call with the bird(s) being trained creating an “anchor.” During 

training sessions, the birds were reluctant to fly outside of the contact call range of these 

anchor birds to which they were socially bonded, which helped them remain near the 

rally vehicle. 

 

3.2.5.5. Recall cue  

The recall cue developed at level zero was put into practice at level one. Recall practice 

began with the back and forth flying routine and continued each time the bird flew off 

the perch and explored the area. When multiple trainers were available, birds could be 

recalled between trainers to practice distance flying and build stamina. The constant 

presence of the vehicle and anchor bird(s), Figure 2, during recall helped reinforce the 

vehicle as the return point. 
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3.2.5.6. Get off cue  

The get off cue, developed at level zero, was utilized at the level one outdoor location. 

Birds were cued to “get off” when they entered into dangerous situations such as 

approaching powerlines or landing on a vehicle that was not the rally vehicle. 

 

3.2.5.7. Human alarm call 

Using warning tones while speaking in a louder voice, the trainers could verbally 

increase the birds’ awareness. For example, if another vehicle approached, but the birds 

were oblivious, the trainer speaks in a louder, warning tone, and the birds would increase 

their attention to the environment and notice the oncoming car. Through practice, the 

birds learned that the warning tone signaled a need for increased vigilance. 

 

3.2.5.8.  Flying in a group 

Chicks initially flew one at a time. Other socially bonded birds were held back in a cage, 

set on top of the rally vehicle, or on the tailgate. As the birds explored, they were praised 

for exploratory flights and increasingly complex aerial maneuvers. Once each bird was 

competent in outdoor A to B flying, the birds would be placed as a group on the portable 

perches, flying A to B as a group until they became confident enough to explore the area 

and expand beyond A to B flights. 

 

Once two or more birds were familiar with the area and recalled reliably, multiple birds 

could fly at once. These could be from the same cohort of new flyers or a mix of the new 
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flyer(s) and more experienced birds. A socially bonded bird would still be held back in a 

cage until there was high confidence in level one flying skills and the birds showed no 

fear-associated behaviors when interacting with normal variations of the level one 

environment, such as wind, cloud movements and shadows, presence of distant wildlife, 

etc. Fear-associated behaviors included high flight, increased respiration, raised hackle 

feathers for moderate fear, completely smooth feathering for strong fear, dilated pupils, 

panting, tight gripping of the perch or arm, alarm vocalizations, or distress vocalizations 

(Luescher, 2008). 

 

3.2.5.9. Feeding on plants 

Feeding on plants was limited in level one except when birds were flown near lone trees 

or shrubs present in the landscape. Utilization of sparse trees of shrubs for practicing 

recall coming down from trees and flying up into them was observed. Upon contacting a 

tree or shrub the parrot inevitably began chewing on buds, seeds, shoots, and leaves. The 

“get off” cue was utilized to discourage chewing on a plant that might be toxic. 

 

3.2.5.10. Situations special to level one 

The trainer avoided flying apparently overwhelmed birds until they calmed. When 

appearing fearful, birds were placed back in their carrier or the anchor birdcage to 

continue to acclimate and watch their socially bonded fellows fly. 
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When startled, some birds occasionally flew up very high (> 40 m). The anchor bird 

created back and forth contact calls. The high flying bird would circle the anchor bird 

and the trainer, eventually tiring and circling and gliding back to the anchor bird and 

trainer at the rally vehicle. The recall cue was utilized during the high flying to 

encourage the bird to return. 

 

Uncontrolled flights associated with strong fear states were called panic flights. In a 

panic flight there was no response to the recall cue. Panic flights tended to be rare. A 

prolonged panic flight was observed on a single occasion in 2014. A straight-line panic 

flight away from the rally vehicle was observed by CJW when Biro was flying a macaw. 

After 13 minutes of flight the bird tired, lost altitude, and landed. The bird was not 

observed to engage in another panic flight over subsequent weeks. As the bird was being 

flown in an appropriately wide, agricultural field complex, the bird never left the line of 

sight or entered a forested area. Nervous flying at unusually high altitudes was only 

observed at level one. 

 

As the birds habituated to the environment, the parrots would land on the rally vehicle, 

launch from the perch, and circle back to the perch, or other exploratory activities. 

Circling flights, increased speed, and increased distance away from the trainer occurred. 

Eventually, all birds engaged in sudden movements using their tail to maneuver, called 

“jinking”, recreating the aerial play patterns seen at level zero. This initial pattern of 

behavior was similar for all flocks. 
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3.2.6. Level two 

3.2.6.1.  Landscape setting 

Level two landscapes consisted of various shrubby fields, gentle hills, and sparsely treed 

areas (Table 3). Flying through trees introduced the birds to territorial songbirds, flying 

in the vicinity of bodies of water provided harassing, curious gulls. Level two landscapes 

did not contain dangerous predators except as aerial silhouettes on the horizon. Retrieval 

of birds was possible by off-road vehicle.  

The small and large-bodied flock had level two conditions surrounding their home 

aviary location. Being able to let the large and small-bodied flock out from their home 

aviaries during early training simplified training, reducing the need to travel. For the sun 

parakeet flock, the level two areas utilized peripheral areas around the level one field, 

containing small, spaced apart trees and large shrubs. 

3.2.6.2. Goals  

The primary goals of level two are to encourage brief, independent navigation when line 

of sight is broken, build strong flocking skills, introduce interaction with shrubs and 

trees, and allow interaction with wildlife to begin the development of anti-predation 

behaviors (Table 3.3).  
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Average time to master level two was three weeks. Mastery time could be extended 

depending on the exact location and wildlife presence. The frequency of wildlife 

interactions were a limiting factor. 

Environmental features Mastery criteria 

• Hills, shrubs, and small or

isolated trees.

• Breezy or gusting wind.

• Mist or drizzle.

• Non-dangerous wild

species that follow or

harass.

• Retrieval by foot or

vehicle relatively easy

• All previous criteria.

• Recalls to trainer from shrubs and

trees.

• Chooses perches for easy take-off.

• Startle response to strange

species.

• Joins flock in flight.

• Coordinated group escape from

curious or harassing wildlife

initiated by any flock member.

• Recalls after momentary loss of

sight of the trainer.

• Returns to and follows rally

vehicle over short distances.

3.2.6.3. Rally vehicle anchor bird  

During level two, typically one bird was an anchor bird while the others were flying. 

Compared to level one, level two anchor bird use reflected less need to orient birds to the 

outdoor environment. During level two, birds required less individual monitoring of 

mood and behavior as panic flights and confusion were less frequent than during level 

one. 

The rally vehicle, similar to level one, was parked close to the trainer, continuing to 

build an association of returning to the vehicle after periods of activity. The vehicle was 

often driven a short distance during training, changing the location of both the trainer 

Table 3.3. Level two environmental characteristics and mastery criteria for 
parrot free-flight training. 
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and the vehicle. These alterations in location began training the flock to follow the 

vehicle and orient to a changing rally point.  

 

3.2.6.4. A to B flying  

Similar to level one, back and forth flying was utilized to adapt the birds to the new 

environment until they became comfortable with exploring. Birds could be let out 

individually for training or as a group. 

 

3.2.6.5. Recall cue  

The recall was practiced throughout the one to six-hour sessions, with much focus on 

coming down from trees and shrubs. The birds followed the trainer through areas of trees 

and learned to follow and recall even when visibility was blocked by trees and hills. 

  

3.2.6.6. Get off cue  

Birds were cued to “get off” when they entered into potentially dangerous situations or 

attempted to consume unsafe items. Observed uses included interrupting perching on a 

stump near to the ground, landing on dangerous cacti, and landing on powerlines. 

 

The get off cue was utilized to direct the birds in safely utilizing perching in trees and 

shrubs. Members from all three flocks were not permitted to rest in dense tree cover or 

other locations where the birds could not see approaching predators. Inexperienced birds 

would initially perch close to the trunk of a tree and would be discouraged from doing so 
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using the get off cue. Using the get off cue created a habit of perching on outer branches 

where emergency take-offs were unobstructed by dense branches.  

 

3.2.6.7. Human alarm call 

The human alarm vocalizations initially developed in level one were utilized in 

subsequent levels. By increasing alertness in the flock, the trainer selectively sensitized 

the birds to dangerous situations. The level of volume and harshness of tone were 

commiserated with the danger. Birds were alerted to be wary at the approach of harassing 

wildlife. Bird wariness was increased selectively, such as for a dangerous hawk’s 

silhouette flying far away but intentionally not increased for a harmless vulture silhouette 

at the same distance, building recognition of predators before close encounters.  

 

3.2.6.8. Flying in a group 

Birds from the same cohort were permitted to fly together when each individual showed 

competence in recallfrom trees or shrubs and recall when there was a break in line of 

sight to the trainer. Birds were flown as individuals or in subgroups of the full flock to 

focus on skill development in specific members. 

 

When flying as a group, flocking behaviors appeared to be facilitated by wildlife 

interactions. Birds from all flocks tended to group together in response to the approach 

of harassing wild animals. When available, more experienced birds were added to level 

two birds in training once the newly flying birds showed competency in recalling from 
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trees and broken line of sight. When flying with more experienced birds from outside the 

study, the sun parakeet flock learned to respond to the alarm calls and escape flights of 

the macaws and cockatoos. Sometimes, the sun parakeet flock would follow and perch 

next to the larger birds Biro brought out to go flying, apparently gaining information 

about how to use the landscape from the more experienced flyers. Even across species of 

different body sizes, new members would follow the behavior of their more experienced 

social models. 

 

3.2.6.9. Feeding on plants 

The increased diversity of plant life encountered at level two required care to discourage 

landing on harmful plants, such as those with defensive spines, and to discourage the 

eating of unknown berries and seeds. Birds would almost always chew spontaneously on 

the nearest plant parts whenever they landed in foliage. 

 

3.2.6.10.  Situations special to level two 

Northern mockingbirds, (Mimus polyglottos), blue jays, (Cyanocitta cristata), and 

various gulls (genus Larus), were observed to chase and threaten the parrots. Interactions 

with aggressive, non-dangerous birds like these allowed the free flight flocks to practice 

grouping and responding to threats. The flocks spontaneously grouped up and fled or 

stood their ground in response to harassment. For example, the sun parakeet flock would 

occasionally group together and chatter or chase harassing wildlife, beginning the 

development of mobbing behavior.  
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Through repetition, the flocks learned what stimulus indicated real danger. Initial 

hypersensitivity to certain kinds of harmless events, such as a vulture high and far away 

on the horizon, became situationally appropriate after multiple repetitions. Eventually, 

the birds learned to accept a distant vulture while still reacting to approaching raptors.  

 

3.2.7.  Level three 

3.2.7.1. Landscape setting 

The level three landscapes used were open forest with hills, bluffs, and drainages 

creating elevation changes (Table 4). Biotic factors included non-dangerous native 

wildlife, predators that would approach but did not present immediate danger, and an 

increasing diversity of plant life, such as wetland plants, forest trees and upland shrubs. 

Non-dangerous predator interaction included juvenile red-tailed hawks (Buteo 

jamaicensis) that made low fly overs but were unable to catch the parrots in the open 

areas with little forest canopy. The sun parakeet flock’s home aviary was in level three 

conditions. 

 

It was not always possible to have all the desired level three complexity in one location. 

Utilizing environmental variations over time and traveling to different locations allowed  

the birds to have all the necessary experiences to develop level three behaviors. Bird 

retrieval in level three required driving to the edge of the nearest landscape feature then 

hiking the rest of the way.  
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3.2.7.2.  Goals  

The main goals of level three training were escape from low intensity predation 

attempts, increased independence from the trainer during breaks in line of sight, 

navigating weather, landforms, winds, and improved flocking (Table 3.4).  

 

Table 3.4. Level three environmental characteristics and mastery criteria for 

parrot free flight training. 

The time for new flocks to meet these mastery criteria ranged from about 2 to 6 

months. 

 

Environmental features Mastery criteria 

• Substantial 

elevation variation. 

• Open forest. 

• Small ponds/small 

streams. 

• Windy, light 

precipitation. 

• Investigative 

pursuit by aerial 

predators. 

• Retrieval by foot 

and off-road 

vehicle. 

 

• All previous criteria. 

• Birds demonstrate exploration and 

learning of landscape, such circling and 

exploration patterns.  

• Birds create consistent routes between 

features, and preferred perching areas. 

• Habituation to weather and precipitation, 

responds by sheltering as appropriate 

instead of anxiety behaviors. 

• Ability to fly during wind gusts. 

• Some mobbing of harassing wildlife. 

• Complex aerial escape maneuvers. 

• Recall after 2-3 minutes of loss of sight 

of the trainer.  

 

 

3.2.7.3. Rally vehicle anchor bird 

The rally vehicle was parked out in the open as much as was possible to keep the return 

point visible to the birds in the increasingly hilly and forested terrain. Anchor bird use 

was similar to level two, though mainly utilized during the initial visits to new sites. At 

some points an anchor bird was carried on the hand by the trainer to encourage other 
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birds to follow while on a hike. Hand carried anchor birds were also used to encourage 

reluctant birds to fly down from a tree or enter an area with novel features. When a 

particular bird showed decreased fidelity to the rally point or recall cue, its closest 

socially bonded flockmate would be kept as an anchor bird to improve fidelity and recall 

until the behaviors were again reliable.  

 

3.2.7.4. A to B flying  

Back and forth flying was seen less often at the start of level three training. The birds 

were often eager to immediately fly a high circle over a new landscape upon being let 

out into the area. Rather than being used to introduce the birds to a landscape, back and 

forth flying was instead utilized as a tool to direct the birds to engage with specific 

landscape features. One trainer might be at a high elevation, another at a low, and the 

birds called between them to learn about diving and wind shear. Figure 2 shows how two 

trainers use A to B flying to train canyon navigation. 

 

3.2.7.5. Recall cue  

The recall cue was practiced throughout the flying time. The trainers were careful to 

keep track of bird locations and distances, using the recall cue to keep birds within range 

of hearing contact calls. The birds were periodically brought back into the line of sight 

using recall cues, so birds would not become lost to the trainer among the trees or 

geologic features. The birds were allowed to have more independent time and longer 

breaks in the line of sight than in level two. 
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3.2.7.6.  Get off cue  

The get off cue was utilized to discourage birds from landing near the ground. When 

birds perched directly adjacent to tree boles, their behavior was modified using the get 

off cue. By using the get off cue, the birds developed habits of perching among outer 

branches to allow for immediate escape flights.  

 

3.2.7.7. Human alarm call 

Through repetition, the birds were trained to associate which circumstances required 

increased vigilance. Predator response specificity was developed. The human alarm call 

helped to sensitize birds to dangerous predators. Human alarm calls raised their wariness 

level, increasingscanning and the chance that the flock would fly. The human alarm call 

established at level two was utilized to help make the birds aware and wary of predator 

approaches, helping the birds to begin identifying novel danger sources. The use of 

binoculars before letting the birds loose and during flying helped the trainers spot danger 

and direct their gaze and posture toward a threat, while calling out to alert the birds, 

helping the birds to recognize the features of incoming predator approaches.  

 

3.2.7.8. Flying in a group 

Due to the increased predation threat and the fact that the trainer was unable to track 

individual birds among trees, birds were seldom flown as singletons at level 3. Instead, 

birds tended to be trained as a large group. Level three flocking extended defensive 
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flocking and mobbing behaviors developed in level two, specifically in response to 

predators. These skills were practiced in increased landscape complexity, with periods of 

independent responses out of view of the trainer. 

 

3.2.7.9. Feeding on plants 

Feeding on plants continued. Frequent observation and use of the get off cue by the 

trainer reduced the chances that birds would consume dangerous plant materials. 

However, as birds had longer periods where they were not in the line of sight, many 

plant interactions went unobserved. 

 

3.2.7.10.  Situations special to level three 

Curious predators that were unlikely to harm the birds were permitted to approach the 

flocks. Care was taken not to fly the birds in areas with local, determined bird predators, 

such as Accipiter hawks (genus Accipiter), peregrine falcons, (Falco peregrinus), 

bobcats, (Lynx rufus), and great horned owls (Bubo virginianus). 

 

In the large-bodied flock, flying alone at a level three location was utilized to develop 

specific landscape skills in a skills intensive training setup, where a bird with a poor 

recall from high elevations would be worked specifically with high elevation change, 

with an anchor bird present. 
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To mix experience levels, the novice level three flyers could be intermingled with more 

experienced birds they had flown with at level two or one locations. Social modeling 

could speed learning as well as increase safety through the sociobiological benefits of a 

larger flock. 

 

3.2.8.  Level four 

3.2.8.1.  Landscape setting 

Level four conditions were defined by the landscape, predator activity, or weather (Table 

5). Weather conditions like rain, fog, or snow caused a loss of sight  for the trainer as 

well as the birds. Precipitation, as a hypothermia risk, made sheltered perching selection 

imperative. Care was taken to closely observe birds in poor visibility weather and recall 

them to the shelter of the rally vehicle well before the onset of hypothermia. Sheltering 

wet or cold birds allowed the birds to learn from mistakes rather than become ill. 

 

The small and large-bodied flocks were let out and recalled near the edges of valleys or 

steep inclines, to experience intense updrafts. Flying during multiple times of day 

exposed the birds to daily anabatic and katabatic cycles of wind, wind interaction with 

landforms, and the conditions associated with strong winds. 

 

3.2.8.2. Goals  

The goals of level four (Table 5) include mastery of advanced escape and flocking skills 

in the face of serious predation risk, including mobbing; strong-flying and safe choices 



 

78 

related to weather, landforms, and wind; and independent function during extended loss 

of line-of-sight with the trainer. As the birds function more independently, they are 

expected to engage in “intelligent disobedience”, a concept most often encountered in 

service dog training (Eames, Eames, & Gingold, 1986). The animal should be aware 

enough of the environment to refuse cues that increase risk until the risk passes. 

Table 3.5. Level four environmental characteristics and mastery criteria for parrot 

free-flight training. 

The time for new flocks to meet the mastery criteria ranged from about 2 to 6 

months. Most birds in this study mastered level four before one year of age. 

 

Environmental features Mastery criteria 

• Water basins or major 

streams. 

• Windy, heavy 

precipitation. 

• Chance of pursuit by a 

determined aerial predator. 

• Retrieval possible only by 

foot or specialty vehicle 

due to limited vehicle 

access. 

• All previous criteria. 

• Fly up and down cliffs. 

• Complex diving and escape 

maneuvers. 

• Habituation to heavy 

precipitation. 

• Strong flight negotiating wind 

gusts. 

• Strong flock mobbing, escape, 

and predator confusion 

behaviors. 

• Recall readily after 5-10 minutes 

out of sight of the trainer. 

• Intelligent disobedience, 

refusing to respond to human 

cues if there are hazards present. 

 

3.2.8.3. Rally vehicle and anchor bird 

An anchor bird was occasionally held at the rally vehicle as a location beacon in 

complex terrain with many visual barriers. The use of an anchor bird was based on the 

individuals in a flock. Birds less willing to recall had their favorite flock mate kept back 

as an anchor bird. The favorite flock mate would ride on the trainer through a problem 
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location. The less willing bird would follow its flockmate and become practiced in how 

to navigate the landscape features. 

 

Birds were recalled while the rally vehicle was in motion. The vehicle drove along 

access roads between sites, guiding the birds to fly between sites for the small and large-

bodied flocks.  

 

3.2.8.4. A to B flying  

 Back and forth flying practice was utilized to train the birds where and how to interact 

with complex landscape features (Figure 2). A second trainer was often present to recall 

the birds to a location where the birds were unlikely to fly alone. Examples include 

canyon navigation, selection of safest crossing points over or across landscape features, 

and selection of cliff diving sites to develop diving escape behaviors at appropriate 

landscape features.  

 

3.2.8.5.  Recall cue  

The birds were periodically brought back into the line of sight using recall cues, with 

increasing periods of independence, at a 10-minute maximum. If the birds were wary 

and did not recall, they were not pressured until the trainers were sure the birds were 

safe. Whether failure to recall was a behavioral deficient or a beneficial choice not to fly 

in a dangerous situation was evaluated for each bird. A pattern of refusal that was not 
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related to danger resulted in use of anchor birds or demotion to practice at lower level 

landscapes to build the behavior until the target bird again met the needed criteria. 

 

Recall occurred while the trainer(s) were hiking through the landscape or when the rally 

vehicle was driving. Using recall cues, one or more trainers caused birds to engage with 

a specific route. The birds learned routes within the landscape back to the rally point as 

well as between rally point locations. Recalling during developing inclement weather 

conditions appeared to train the birds to associate coming weather events with sheltering. 

 

3.2.8.6. Get off cue  

The get off cue was seldom utilized at this level as the birds had learned to perch in safe 

places that offered easy observation of surroundings and fast escape. The cue was 

primarily used if the birds behaved inappropriately during a novel situation, such as 

landing on a stranger’s car. 

 

3.2.8.7.  Human alarm call 

The human alarm call was utilized loudly and emphatically if the flocks had not yet 

noticed danger approaching. This occurred rarely, as the birds regularly detected risks 

before the trainer did by this point in skill development. For small-bodied birds, that 

bore more predation risk, there was high human vigilance and frequent observation of 

the birds. 
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3.2.8.8. Flying in a group 

In observations of the small and large-bodied flocks, mixing novice and more 

experienced birds was done whenever possible to increase the safety of the novice birds. 

It was observed that behavior acquisition of the first few birds to master level four took 

months. However, when new birds were added to a group that was already competent at 

level four, some new birds developed mastery in just a few weeks. Having a flock of 

similarly sized, socially banded birds, allowed the juvenile birds to quickly learn 

information about how to react to the environment. Quick mastery also  

required repeated predator interactions in a short time, which was not always possible. 

 

3.2.8.9. Feeding on plants 

Occasionally birds would fly by with berry mash on their beaks, partially full crops, or 

other evidence of unseen plant consumption. Care was taken that the level four 

landscape did not provide novel, dangerous plants that had not been trained upon in the 

level three landscape. Having the ability to follow up on the get off cue by physically 

reaching a bird improved the frequency of the bird responding to the get off cue and that 

ability was reduced in level four locations. 

 

3.2.8.10.  Situations special to level four 

Level four predator interactions were both planned and unplanned, making fundamental 

level three skills important when flying the birds in a new location that was not 

thoroughly scouted. For example, during what was supposed to be a low-risk visit to the 
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heavily developed Texas A&M University Campus for a demonstration flight, the sun 

parakeet flock faced an immediate surprise pursuit before they were oriented to the new 

landscape. Two accipiter hawks pursued the sun parakeet flock, hunting as a pair. The 

hawks were unsuccessful and left the area. Practice in level two and three conditions 

prepared the birds to successfully evade novel predators in a novel location. 

 

The large-bodied and small-bodied flocks were observed successfully avoiding stooping 

attacks by falcons, extremely close, high speed chasing by hawks, and approach by 

ground predators. Early mobbing behaviors, of agitated chatter and approach of 

predators by the flock, observed in earlier levels, in rare circumstances grew to be 

aggressive, unrelenting mobbing in level four conditions.  

 

3.2.9. Level five 

3.2.9.1. Landscape setting 

An important difference from level four to level five is the impossibility of emergency 

retrieval of the birds by a trainer, meaning mistakes made by the birds have a greater 

chance of being fatal. Landscape features that prevent access include islands surrounded 

by swift rivers, canyons with no foot trails and steep walls, or dense forest too vast to be 

searched on foot (Table 6). For example, a level four area may have a body of water with 

a boat dock and immediate access to a motorboat, while a level five area lake would 

have no water vehicle access. Non-access was often defined by more extreme landforms, 

such as deep canyons, or non-traversable mountainous areas. Biotic factors include 
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immediate, serious predator threats, and dense closed canopy forest that obscures active 

predators. 

 

3.2.9.2. Goals  

The goal of level five flying is to train birds to function fully independently of human 

guidance in situations where retrieval by the trainer is not possible. The criteria and 

environmental features of the level indicate independent flight (Table 3.6).  

Table 3.6. Level five environmental characteristics and mastery criteria for parrot 

free-flight training. 

Some birds were observed to reach five mastery within six total months after 

fledging but outcomes were highly individual. Level five, if reached, was normally 

reached before two years of age.  

 

Environmental features Mastery criteria 

• Extreme elevation changes and 

landforms. 

• Low visibility due to 

precipitation. 

• Large bodies of water or swift-

moving water. 

• Immediate predation threat from 

determined predators.  

• Retrieval not possible due to 

landscape or lack of specialty 

vehicles. 

• All previous criteria. 

• Function completely 

independently between 

recall cues. 

• Safely negotiate 

immediate and serious 

predator threats. 

• Intelligent disobedience, 

refusing to respond to 

human cues if there are 

hazards present. 

 

 

3.2.9.3. Rally vehicle and anchor bird 

Anchor birds were not typically utilized at level five locations as the landforms and 

distances involved meant calls between birds were inaudible. To help with fidelity to the 

rally point, the rally vehicle was typically placed on top of a rim, hill, or in the middle of 



 

84 

a valley where the vehicle was readily seen and located again by the birds. A moving 

vehicle was the most visible way to communicate when vocal recall cues went unheard, 

and was occasionally used to communicate that the flock was going to head back to 

home base.  

 

3.2.9.4. A to B flying  

A to B flying was occasionally used where the pre-planned placement of humans in 

different areas allowed birds to fly back and forth in the landscape to desired locations. 

Otherwise, inaccessibility prevented placing portable perches or other trainers around the 

area. 

 

3.2.9.5. Recall cue 

 The recall cue was conditional. If the birds did not feel safe recalling, the trainer 

was patient and waited until the birds felt safe to return. This might mean being out at 

the rally point for hours beyond a planned schedule should predator conditions keep the 

birds defensively perched rather than flying. When birds left contact call distance, 

trainers waved and visually signaled their locations to the birds to get the birds’ attention 

and encourage the birds to return to audible range. 
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3.2.9.6. Get off cue  

The get off cue was effectively useless due to distance and inability to reinforce the cue. 

Physically approaching and shooing the birds was no longer feasible should the birds 

ignore the get off cue. 

 

3.2.9.7.  Human alarm call 

Level five involved the birds flying out of hearing range, so the trainer was not able to 

alert them to approaching threats and could not come to help them. Waving to signal a 

need for increased attention to the environment was utilized as an alternative. 

 

3.2.9.8. Flying in a group 

The small and large-bodied flock members that flew at level five conditions flew only in 

groups due to the imminent danger from predators. 

 

3.2.9.9.  Feeding on plants 

Feeding on plants was observed to occur fully independent of the trainer’s ability to 

intervene as the birds might be observed through binoculars, outside of hearing distance. 

 

3.2.9.10. Situations special to level five 

Not all parrots in the large and small-bodied flocks reached level five conditions, nor 

were all possible level five conditions appropriate for the birds. Biro chose not to fly all 

birds in inaccessible areas with extreme conditions. For example, the smallest birds were 
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not intentionally let out into strong wind shear on the side of a cliff, while macaws were. 

The greater mass of the macaw made navigating significant wind shear realistic and 

challenging as opposed to impossible. The macaws were observed to engage in play 

behaviors in the wind shear, such as hovering above a cliff edge. Matching birds to 

appropriate level five conditions for training was an individual and species-specific 

process. Level four conditions are frequently similar to level five, differing only  on 

landscape access for the trainer. The trainer’s ability to access  an injured or struggling 

bird was an important factor in choosing a level five location. At level five there was no 

ability for recovery or rescue, emphasizing the need for fully independently functioning 

birds. 

 

 Results 

A total of 37 parrots across three free-flight flocks logged a total of 501.2 flight months 

during this study. Total combined mortality during outdoor flying was 6 birds or 16%. 

The causes of outdoor flying mortality were human environmental hazards (pesticides 

n=2, powerline n=1, wind turbine n=1) and weather associated with flying birds in cold 

climates (n=2). Birds that did not suffer mortalities but became house pets were 

considered retired. 

 

The large-bodied flock was flown over a period of 13 years. For the eight members of 

the large-bodied flock, total flight months were 147.3, mean ± 3.2 standard deviation. 

The longest membership was 25.5 flight months over nine years for a scarlet macaw, 
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who was retired, the shortest membership was 15.3 flight months over seven years for a 

blue-throated macaw, who was also retired. 

  

The small-bodied flock was flown for 16 years. For the 25 members of the small-bodied 

flock, total flying months were 349.5, mean 15.2  ± 7.6. The longest membership in the 

small-bodied flock was 38.5 flight months over a 16-year span for a burrowing parrot, 

who was retired. The shortest membership was 0 flight months for a Senegal parrot and 

sun parakeet that were not  bonded to a human trainer, and who escaped prior to starting 

outdoor training, and were never recovered. These two bird’s zero values of outdoor 

training duration were omitted for the purposes of calculating means and standard 

deviations. 

 

The sun parakeet flock was flown for one year, total flight months were 4.4, mean 1.1 ± 

0. All birds from the sun parakeet flock were retired after one year, with no early exits 

from the flock. 
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Figure 3.3. Survival behaviors in free-flight trained parrots. 

(a) Large-bodied flock coordinated during an escape launch. (b) Blue-throat macaw 

and hybrid macaw evade a hawk. (c) Sun parakeet foraging on ocotillo (Fouquieria 

splendens) flowers. (d) Hybrid macaw foraging on juniper (Genus Juniperus) 

berries. (e) Scarlet and hybrid macaws forage alongside a wild turkey, Meleagris 

gallopavo. (f) Multispecies flocking in response to a predator. (g) Large-bodied 

flock engaging in long-distance navigation.  
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3.3.1.  Predation and mortality 

No birds were killed by predation even though they flew in predator-rich environments. 

Resident predators at the Moab, Utah location included observed accipiter hawks, buteo 

hawks, peregrine falcons, golden eagles, coyotes, foxes, and bobcats. The two long-term 

flocks, small-bodied and large-bodied, were primarily flown in a hawk migration area. 

The largest observed migration was a kettle of 197 hawks, counted by CJW from photos. 

The Dripping Springs, Texas location included various observed Buteo hawks, accipiter 

hawks, feral domesticated cats, foxes, and coyotes. Mortality (Table 7) was primarily 

due to husbandry issues. Of the 37 birds studied between 1997 and 2017, 11 died during 

this study period during captive management. These deaths occurred unrelated to 

outdoor training, such as dying naturally during sleep, or accidental escape of a young 

bird before any training began. The death during husbandry and training combined 

translates into a mortality rate of about 45%. 

 

To understand this mortality in terms of risk over time in outdoor environments, the 

Mayfield method (Mayfield, 1961) was utilized. For accuracy, the calculation did not 

include the two fledged chicks that escaped before the start of outdoor training. During 

birds’ first year of flight months, there was 100% annualized daily survival probability 

during outdoor training. During the first year, 6 birds were considered husbandry-related 

moralities, creating a 59% annualized daily survival probability related to handling and 

care. Post-first year, survival probability in training decreased to 77%. Post-first year 

captivity and husbandry survival probability was 60%. 
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3.3.2. Flocking and responses to predator threats 

Flocking skills were built incrementally during training stages. During level zero 

training, hand-fed chicks flew as a group to be fed when formula was presented, 

practicing the fundamentals of group flight. The birds also tended to follow one another 

around the human home while expanding their activity area from the playpen. Social 

play during flight consisted of chasing, following, and pouncing, such as landing by 

grabbing the tail of a flockmate. During level one, the groups became more cohesive, 

with birds increasingly seeking to remain with the group. During level two defensive 

flocking was developed through repeated interactions with harassing birds. Sometimes, 

coordination would be developed from a single, prolonged set of interactions with a 

particularly tenacious wild bird, such as a black vulture that hopped from tree to tree 

following the sun parakeet flock over the course of an hour. In other cases, interactions 

with multiple wild birds formed the basis of a predator response. After each iteration or 

harassment, flocking behavior became more cohesive, forming coordinated vigilance, 

escape, and mobbing behaviors as seen in wild birds. A gull or a jay that might initially 

scatter the birds during early interactions, would face a coordinated, alarm calling group 

during subsequent interactions. Once birds gained level two mastery, flocking behavior 

was highly developed and constant in all three flocks, with birds seldom leaving the line 

of sight of the group. Coordinated alarm calling and escape occurred at that time. Level 

three training created discrimination between non-dangerous wildlife and animals that 

posed a predation threat. 
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Interactions with predators were primarily avian predators. It is estimated that over 100 

aerial predation attempts were observed across the three flocks, primarily hunting 

attempts by bird-hunting Buteo species and Accipiter hawks. When a predator was 

observed, typically one bird would alarm call and launch into flight, immediately its 

fellows launched as well. All three flocks responded to predator observation with a 

pattern of identification, alarm call, launching and forming tight flying groups, predator 

avoidance, effective perching for escape, and exhibiting wariness. All three flocks 

utilized loud, continuous vocalizations in the presence of predators. If the birds were 

already airborne when a predator was observed, an initial bird would alarm call and the 

birds would form into a group while already in the air. 



Table 3.7. Outcomes for three free-flight parrot flocks from 1997-2016 flown in the continental United States. 

Of 37 birds, six died due to abiotic hazards in the environment, eleven died due to husbandry-related issues. LB is 

large-bodied flock, SB is small-bodied flock, S is sun parakeet flock. Flight months are defined as 30 twelve-hour days 

flying in wildland spaces. Age level 1 is the age, in months, when a bird began flying outside. The level attained is the 

highest level on the free-flight Biro system of 0-5 environmental complexity. 

Species 
Flock 

Age 

level 1 

Start 

level 1 
End training 

Membership 

months 

Flight 

months 

Level 

attained Fate 

Blue & Yellow 

Macaw 
LB 3 Apr-00 Apr-07 84 21 4 

Wind turbine mortality 

Scarlet Macaw LB 3 Oct-04 Mar-13 102 25.5 5 Retired 

macaw hybrid LB 3 Jul-06 Mar-13 78 19.5 5 Retired 

macaw hybrid LB 3 Jul-06 Jan-12 66 16.5 5 Aviary fight mortality 

Blue-Throated 

Macaw 
LB 3 Jul-06 Mar-13 66 16.5 5 

Retired 

Blue-Throated 

Macaw 
LB 3 Dec-06 Mar-13 61 15.25 5 

Retired 

macaw hybrid LB 12 Oct-07 Mar-13 66 16.5 5 Retired 

macaw hybrid LB 3 Oct-07 Mar-13 66 16.5 5 Retired 

Mean ± SD 4.1 ± 3.0 18. 4± 3.2  4.9 

Patagonian 

Parrot SB 3 Jun-97 Mar-13 154 38.5 5 Retired 

Mitred 

Parakeet SB 3 Jun-97 Aug-06 99 24.75 4 Electrical line mortality 

Mitred 

Parakeet SB 3 Jun-97 Aug-04 75 18.75 5 Pesticide mortality 

Mitred 

Parakeet SB 3 Jun-98 Jul-07 87 21.75 4 

Aviary fight 

mortality 

Mitred 

Parakeet SB 3 Jun-98 Aug-04 63 15.75 4 Pesticide mortality 

Sun Parakeet SB 3 Apr-99 Mar-07 94 23.5 4 Aviary fight mortality 

Sun Parakeet SB 3 Nov-04 Mar-13 101 25.25 5 Retired 

Sun Parakeet SB 3 Nov-04 Nov-06 24 6 4 Husbandry issue 

92
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Table 3.7. Continued 

Species 
Flock 

Age 

level 1 

Start 

level 1 
End training 

Membership 

months 

Flight 

months 

Level 

attained Fate 

Sun Parakeet SB 3 Nov-04 Nov-06 24 6 4 Husbandry issue 

Mitred 

Parakeet SB 4 Feb-08 Mar-13 61 15.25 5 Retired 

Sun Parakeet SB 3 Mar-08 Mar-13 60 15 4 Retired 

Sun Parakeet SB 3 Mar-08 Mar-13 60 15 4 Retired 

Sun Parakeet SB 3 Mar-08 Mar-13 60 15 4 Retired 

Sun Parakeet SB 3 Mar-08 Mar-13 60 15 4 Retired 

Sun Parakeet SB 3 Mar-08 Aug-10 30 7.5 4 Natural death 

Sun Parakeet SB 3 Mar-08 Feb-13 60 15 4 Weather mortality 

Sun Parakeet SB 3 Mar-08 Feb-13 60 15 4 Weather mortality 

Sun Parakeet SB 3 Mar-08 Mar-13 60 15 4 Husbandry issue 

Sun Parakeet SB 3 Nov-08 Nov-08 0.1 0 0 Husbandry issue 

Senegal Parrot SB 3 Mar-08 Mar-11 36 9 3 Husbandry issue 

Sun Parakeet SB 3 Mar-10 Mar-13 36 9 4 Retired 

Sun Parakeet SB 3 Mar-10 Mar-13 36 9 4 Retired 

Senegal Parrot SB 5 Mar-10 Mar-13 34 8.5 5 Retired 

Senegal Parrot SB 5 Mar-10 Mar-10 0.1 0 0 Husbandry issue 

Mean ± SD 3.8 ± 0.57 15.2 ± 7.6 4.2 

Sun Parakeet S 3 Jul-15 Jul-16 12 1.1 3 Retired 

Sun Parakeet S 3 Jul-15 Jul-16 12 1.1 3 Retired 

Sun Parakeet S 3 Jul-15 Jul-16 12 1.1 3 Retired 

Sun Parakeet S 3 Jul-15 Jul-16 12 1.1 3 Retired 

Mean ± SD 3.0 ± 0 1.1 ± 0 3.0 



The large and small-bodied flocks were observed in some cases mobbing predators and 

strange animals that approached the flock. Mobbing was a spectrum of behavior, ranging 

from tentatively approaching the target while the group alarm called to the extreme of 

chasing and biting. Typically, the flock's alarm called and stood their ground, facing the 

target as a group. CJW only observed one instance in the large-bodied flock and one 

instance in the small-bodied flock where flock members aggressively chased down a 

target. 

In one instance of extended mobbing, the large-bodied flock drove a golden eagle that 

approached the flock out of a valley and up over the cliff rim about 2km away for 

approximately 10 minutes before breaking off pursuit. The small-bodied flock showed 

high aggression when they chased a pet parrot that flew into their midst. The flock 

surrounded the bird in the air, physically pushed the offending bird to the ground and 

forced it to land, where a trainer broke up the skirmish. 

3.3.3. Behavioral outcomes 

The two long-term flocks were outdoors regularly for long durations. The large and 

small-bodied flocks would be  regularly free-flown in the area around the home base, 

ranging up to 2km normally. The two flocks occasionally flew further away when at the 

home base but excursions were difficult to verify due to a lack of telemetry. The 

conditions at the Utah home base ranged from level 2-4, based on predator presence and 

weather. The normal flying day was approximately 12 hours a day of flight time, varying 
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on seasonal day length.  Outdoor flight time for the small and large-bodied flocks 

involved periods of no supervision, estimated to be up to two hours, while trainers were 

in a nearby building. There were almost always more experienced birds present at the 

home base when new juvenile birds were let out to free-fly at the Moab, UT, home base. 

Occasionally, birds would not recall at the end of the day and would overnight outdoors 

but the frequency of these overnights was not recorded. The sun parakeet flock home 

base in Dripping Springs, TX, was adjacent to a forest area ranging from level three to 

four, requiring the development of level three skills prior to flying at the home base. 

Their free-flight sessions were up to six hours a day, with no overnights outdoors. 

Experienced birds were less often present at the home base when the sun parakeet flock 

was free-flown due to the difficulty of casual tracking of birds in among the dense trees. 

3.3.3.1. Landscape navigation 

All three flocks showed strong site fidelity to the home base. The behavioral control of 

the recall cue allowed the birds’ behavior to be shaped. No birds permanently left the 

home base site during training. Non-fidelity was seen in two fledged birds that escaped 

from the small-bodied flock prior to the start of formal outdoor training, a sun parakeet 

and a Senegal parrot, in Table 3, showing zero hours of outdoor training. 

Physical fitness was the pre-requisite for distance flying and was developed early in 

training, starting at level one. The birds in all three flocks made extended flights as a 

form of social or individual play. Play flying was indicated by non-aggressive aerial 
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dog-fighting and jinking. Aerial circling in response to novel situations or wildlife 

presence was common, with investigative flights greater than 10 minutes of length 

regularly observed. 

The free-flight training occurred in multiple spatially disparate landscapes. Through 

experience, the birds learned to navigate in novel landscapes. Through repetition, birds 

learned to travel between adjacent training locations. Travel involved repeating the route 

of the rally vehicle, the foot route of the trainer, or through aerial observation 

(developing novel direct aerial routes between landmarks). The large and small-bodied 

flock could return home or fly to the next location spontaneously. The large-bodied flock 

executed the longest spontaneous navigation, an 11km independent flight, to return to 

the home base after training rather than following the rally vehicle along the winding 

road. 

Practice within the landscape focuses on navigating cliffs, canyons, hills, trees, and other 

landscape features at each level, emphasizing staying up high and enabling maximum 

line of sight for the three flocks. Birds flew over and not through heavily treed areas 

when navigating between locations, stayed above narrow canyons, and perched at the 

highest point of landforms whenever possible. The only flock that did not go between 

identified training locations spontaneously was the sun parakeet flock, as they were in a 

semi-rural residential area, where it was not possible to fly between areas without 

disturbing property owners. These birds were trained to return to a bird carrier when 
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training was completed outside their home base, as opposed to following a rally vehicle 

to learn a route home. The birds mastered these features at each level of increasing 

complexity before moving forward. For example, macaws would dive off a localized 4m 

bluff with a hiking trail at a level three location until the usage of that landscape feature 

was mastered, while a trainer above and below uses A to B flying to encourage diving. 

For level four, those same macaws dove and rode the air currents down a landscape-size, 

steep cirque, where the trainer had less access and ability to interact. At level five 

macaws fully and independently navigated major canyons that took up all the visible 

geography and was not accessible to the trainer. 

3.3.3.2. Foraging on wild foods 

All three flocks were observed feeding on local plants (Figure 2). In all three flocks, all 

the birds routinely consumed the berries of junipers (Genus Juniperus), and specific 

individuals occasionally ate maple (genus Acer) seeds. The birds of all flocks daily 

chewed on leaf buds, seeds, and catkins of local trees but it was difficult to tell if birds 

were consuming items or only destroying them. The birds from the small and large-

bodied flocks were seen feeding on flower buds and fruits from a variety of trees, shrubs, 

cactus, and ornamental fruit trees. The two longer-term flocks were also regularly seen 

with red or purple staining on the beak suggesting they consumed a variety of berries of 

unknown species.  
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The three parrot flocks were daily joined by other wild birds that were nearby foraging 

on the ground, in adjacent trees, or the same tree as the parrots. These associations 

withwild birds appeared to create temporary foraging assemblages with other species, 

where the wild species could transmit information or model behaviors to the parrots. At 

least one time the large-bodied flock was observed dropping to the ground to search for 

food in the grass with a wild turkey, (Meleagris gallopavo), despite the flock’s training 

to stay off the ground (Figure 2). The turkey and macaws foraged safely within this 

novel multi-species complex, the macaws’ non-wary behavior suggested this event had 

previously occurred. When foraging wild birds, most often doves and songbirds, flushed 

or alarm called, the flocks being trained increased wariness or might, themselves launch 

into the air demonstrating learning of hetero-specific signals and behavioral cues. 

3.4. Discussion 

The free-flight training methods appear to have successfully developed necessary skills 

in flocking and predator evasion, navigation of complex landscapes, and wild food use in 

these hand-raised parrots. These successes align with the goals of parrot pre-release 

training (Brightsmith et al., 2005; White et al., 2012) and show a methodology that can 

avoid skill deficiency and aberrant behavior associated with hand-raised parrots (Snyder, 

Koenig, Koschmann, Snyder, & Johnson, 1994). This method of human-guided learning 

could have conservation applications. 
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3.4.1. Flocking, predation and mortality 

Captive-bred pet trade parrots may lack vital survival skills, such as being able to form a 

cohesive flock (Snyder et al., 1994) and are considered unsuitable for release due to 

inadequate behaviors that defend against predation. Predation is a major cause of failure 

in parrot releases. A review of 100 releases for 10 species showed that high predator 

presence was the main predictor of release program failure (White et al., 2012). Related 

to predator avoidance, the birds in the three flocks demonstrated appropriate behaviors 

including identification of predators; flocking behaviors that led to escape, increased 

vigilance, mobbing; and evasive landscape use by the group. There were zero predation 

events in the studied flocks despite multiple observed interactions with predators, a 

contrast to projects with drastic declines of released birds and failure to establish a 

second-generation due to predation (Snyder et al., 1994; Ziembicki, Raust, & 

Blanvillain, 2003) Flocking behavior is a key part of predator evasion.  

3.4.2.  Landscape use 

In the Yellow-shouldered amazon releases (Sanz & Grajal, 1998), birds that ranged 

farther had higher survival, indicating that there may be beneficial applications of 

training free-flight flocks to navigate between human-selected areas. Home base level 

appeared to effect range size in the free-flight flocks. The level three environment 

around the sun parakeet flock home base was a limitation. The sun parakeets could not 

be easily tracked in the dense trees so they were given more limited flying time at the 
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home base and recalled before going very far. By contrast, the small-bodied and large-

bodied flocks, had open level two surroundings at the home base and could be easily 

tracked. The long-term flocks spent more time expanding their home base area through 

exploration, in addition to taking specific training trips away from the home base. 

Ranging in the landscape is different than leaving the intended release area. The free-

flight trained flocks did not have issues leaving the intended flight areas. During thick-

billed parrot and scarlet macaw releases (Brightsmith et al., 2005; Snyder et al., 1994) 

birds permanently left the intended release area, reducing the success of the projects. 

There are animal behavior theories related to why released animals leave high-quality 

release sites, never to be seen again. Natal habitat imprinting (Davis & Stamps, 2004) 

has been studied in multiple bird species. The theory is that young animals develop a 

preference for habitat features from their early experience and will seek to find 

conditions that match their early experiences. Translocated or aviary held birds might 

not be able to find their preferred conditions after release. The free-flight flocks 

experienced landscapes during their early development. They may have been imprinted 

on the environments they encountered during their early development and been attracted 

to the features, assisting in site fidelity. The behavioral control through the socially 

bonded trainer combined with recognition of the landscape as an acceptable 

environment, were likely pressures that kept the birds local to the rally points and home 

base. 
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Human-directed landscape use in the free-flight flocks trained the two long-term flocks 

to find high-quality patches in a semi-arid and marginal landscape. The birds flown near 

springs and streams with fruiting trees and shrubs knew how to travel between these 

patches. White et al (White et al., 2012) identified habitat quality as an indicator of 

release success. Free-flight training to utilize distant, high-quality patches suggests a 

new way to improve habitat quality by training the birds to go between specific locations 

of high quality. 

Mixed species foraging assemblages have been theorized to have multiple benefits 

(Diamond, 1981) but these community-level interactions are not discussed in parrot 

release literature. Experimentally, multispecies bird flocks are more likely to 

successfully utilize a novel food source (Freeberg, Eppert, Sieving, & Lucas, 2017). 

Multi-species species flocking might help naïve released birds utilizes food sources and 

is an area in need of study. During foraging in the landscape, all three flocks free-flight 

flocks foraged alongside other prey species engaged in similar foraging behavior. When 

not physically near other groups of birds, the three flocks had increased wariness and 

scanning in response to alarm calls or flushing of other birds. Eavesdropping on the 

signals of other animals, when not participating in a multi-species flock, can also confer 

survival benefits. Inter-species information transfer between bird species (Fallow & 

Magrath, 2010) as well as information transfer between different taxonomic classes 

(Schmidt, Lee, Ostfeld, & Sieving, 2008)  is believed to improve predator avoidance. 
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3.4.3.  Similarity of free-flight training to previous methods 

The level of human effort for free-flight training is comparable to other intensive bird 

management schemes utilizing hand-rearing, wild nest management, cross-fostering, or  

utilization of an intensive soft release program. (Ewen, Armstrong, Parker, & Seddon, 

2012; Fund et al., 1983; Lloyd & Powlesland, 1994; White Jr et al., 2005). The echo 

parakeet methodology included a recall cue to bring birds to a home aviary, where 

supplemental food was provided (Woolaver et al., 2000). The echo parakeets had 

increasing exposure to the home base environment, through longer and longer outdoor 

periods between recall, until they were free-living. In the yellow-shouldered Amazon 

project, the conspecifics in an outdoor aviary appeared to function as anchor birds, as 

immediately after release birds perched on caging that still contained conspecifics. 

Released birds returned to the home aviary months after release. The fidelity to the home 

aviary site was greatest with younger birds (Sanz & Grajal, 1998). Non-lethal exposure 

to predators to learn they are dangerous is the state of the art in parrot release, as 

demonstrated by the Puerto Rican parrot project (White Jr et al., 2005). First the trainers 

passed a silhouette of a hawk over the cage while playing a hawk call. Then, a captive 

hawk attacked the aviary.  The next training event was passing a hawk silhouette over 

the bird cage then having the captive hawk attack an armored Hispaniola parrot 

(Amazona ventralis).  Whereas White et al utilized a captive raptor, free-flight training 

utilizes non-dangerous harassing birds present in the environment to build early group 

skills, then utilizes increasingly dangerous predator interactions in the field to train 
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aversion to specific species. Predator pre-exposure training has been identified as a 

predictor of increased first-year survival after release (White et al., 2012). 

3.4.4. Human-guided learning  

The free-flight training method of skill gain involves shaping a flock’s landscape use 

through human knowledge and intent. Effectively, the human is creating the landscape 

usage patterns the birds normally learn from their parents and conspecifics. 

Translocation of wild birds may be cited as a more useful tool than breed and release 

because adult wild birds possess a full complement of survival skills and knowledge 

(Silvy, 2012). 

The flexible, “plastic” development of young parrots is not spontaneous, developing 

from extended environmental and social interaction (Mason et al., 2013). While 

translocation appears to be a more straightforward solution, historically, bird 

translocation success rates are low (Wolf, Griffith, Reed, & Temple, 1996) and 

perversely, the stressful act of translocation negatively impacts the survival behaviors 

that make it a desirable option, such as reduction of the fight-or-flight response (Wolf et 

al., 1996). In some species, conservation under the small population paradigm (Dickens 

& Romero, 2009) means there are not enough wild individuals to draw upon for 

translocation, leaving captive-release as the only remaining option. 
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The intensive developmental process that parrots undergo allows them to adapt to widely 

varying circumstances. Naturalized populations of parrots can adapt to strikingly 

dissimilar environments to their ancestral range, such as Amazon parrots in Germany 

(Martens & Woog, 2017) and other locations throughout the world (Jones, 2021). In the 

wild, behavioral flexibility allows wild parrots to quickly adapt to human-altered 

environments (Renton et al., 2015; Salinas-Melgoza et al., 2013) and transmit behavior 

socially between individuals. 

Parrots are adaptable and develop survival skills special to their locations. The free-flight 

technique presented here appears to successfully utilize parrots’ adaptive abilities to 

customize the birds’ behavior to the locations and resources that the trainers want them 

to exploit. 

Animal learning and culture can be considered a fourth level of biodiversity in addition 

to the ecosystem, species, and genetic diversity (Laiolo & Tella, 2007). Free-flight 

training may be a way to create learned behaviors necessary for a self-sustaining 

population. 

3.4.5. Potential use of free-flight training in conservation  

The levels system of 0-5 is a useful comparison of animal survival skills to the 

complexity of the environment. Looking back at the thick-billed parrot releases (Snyder 

et al., 1994), in light of the level system, the release cohorts lacked coordinated flocking 
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responses to threats seen at level two. Based on the level system, where environmental 

predator presence was level 4 to 5, the thick-billed parrots would not be considered 

ready for release.  

A parrot flock, as seen through free-flight training, can be behaviorally adapted to 

specific release conditions, using human knowledge to shape how the animals use the 

landscape. Free-flight training provides an opportunity to adapt de novo populations to 

human-altered landscapes. The method itself could be adapted to release. Free-flight 

trained birds could serve as a kernel of a wild flock, either producing their own young at 

the release site or being supplemented with human-wary birds. Depending on project 

needs, eventually, the human-socialized kernel could be recalled and removed from the 

site so all birds present would be wary.  

Figure 3.4. Potential integration of free-flight training for conservation. 

(a) A kernel flock is created from captive-produced birds. (b) Having trained a

free-flying flock as a kernel, (c, d) human socialized birds are used to enculturate

human wary birds with limited human interaction to produce a truly wild

behaving, locally adapted, population. (e) Human socialized birds are recovered

and held in reserve for future work or breeding efforts. The process could create a

fully wild pioneer flock.
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Generally, free-flight training opens new avenues for use of captive-bred parrots, and an 

alternate method of intensive management for translocation. Further work can illuminate 

if this privately developed method of sport flying captive-bred parrots can help increase 

success in releases of imperiled parrots. 
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4. CONCLUSION: EXPLORING THE SOURCES OF DISCORD THAT

AFFECT CONSERVATION PROJECTS 

4.1. Introduction 

We face massive environmental change and species extinction (Dirzo et al 2014) 

described as an emerging crisis for humanity (Dominey-Howes 2018). A large number 

of new conservation problems are expected (McCarty 2001) and will correspondingly 

need solutions. Teams of people with different expertise and access to different 

jurisdictions of knowledge and different types of natural resources will need to work 

together. In the past, the success of scientific problem-solving depended on the scientific 

community developing and sharing the same view, or paradigm, of the what’s, how’s, 

and why’s that unite them. Shared paradigms are the basis for Normal Science (Kuhn 

1970).  

Today, conservation research exists in a Post-Normal Science (Funtowicz & Ravetz 

1990; Ravetz 1999), with wicked time-critical problems that do not interact well with the 

pacing of the scientific method of Normal Science (Laurance et al 2012). These types of 

problems demand flexible, novel approaches. Ecological catastrophe cannot wait for 

scientific community-level paradigm shifts and the formation of new disciplines. While 

we deal with non-traditional conservation problems, we remain scientists. “A strong 

commitment to the application of the scientific method, including hypothesis testing and 

careful consideration and development of basic concepts, is essential.” (Drew 1994). 
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This situation creates a dilemma for problem-solving researchers. There are questions 

about how conservation research teams should operate when problem-solving does not 

resemble Normal Science. How can team members interact if they do not share the value 

sets, language, and research approaches that make up each other’s paradigms? By 

understanding where and why conflicts occur and what research frameworks can 

sidestep those conflicts, we can design successful projects that minimize conflicts among 

team members. 

Early-career scientists can be confused and surprised by the conflicts they encounter and 

may not have the concepts or background in scientific philosophy to understand what is 

happening when disparate disciplines interact. Rather than taking conflict as a sign of 

personal failure, I suggest reflecting upon scientific identities, roles, team building, and 

scientific philosophy to put conflicts in context. By understanding the basis of conflicts, 

strategies to reduce or eliminate the conflicts can be deployed. When conflict stops 

conservation progress, the crises created by wicked problems that loom over us continue 

to escalate. 

4.2. Conservation research brings together different viewpoints 

Conservation occurs across communities that necessarily encompass differing paradigms 

and or identities. Understanding the distinction between single disciplinary, 

interdisciplinary, and cross-boundary work sets up the actors who engage in conflict. 
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Conservation research is frequently team-based and interdisciplinary (Green et al 2015) 

or cross-boundary. Interdisciplinary work uses the resources of two or more disciplines 

of study (National Academy of Sciences 2005) such as hydrologists and biologists 

working together to find a method to best define a protected area for salamanders. Cross-

boundary is different from interdisciplinary work. Cross-boundary is working across 

jurisdictions (Harris, Huntely, Mangle & Rana 2001). An example would be an 

ecosystem scientist from a university system working with a governing board of a 

protected land area to study what management strategies could apply to salamanders. 

Cross-boundary problem-solving is well-described in conservation. An example is the 

coproduction of actionable science by scientist and resource manager teams (ACCCNRS 

2015; Beier, Hansen, Helbrecht & Behar 2017). Conservation boundary organizations 

exist to bridge gaps between science and other areas, such as linking science to politics, 

policy, law, and resource management (Guston 2009). Conservation research is 

interdisciplinary and cross-boundary to such a degree as to be unusual to other 

disciplines. 

4.3. Examples of conflict fueled by different viewpoints and beliefs about identities 

Each academic discipline has its value systems, theory base, and research approaches, 

called domain specificity (MacLeod 2018), that form paradigms (Kuhn 1970) of normal 

operation. When people utilize different paradigms, their working together is 

complicated. The complications caused by disconnected disciplines, researchers, and 
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practitioners of conservation are silo effects (Halpern, Hodgson & Essington 2019). A 

given conservation project may be fraught with contrasting, discipline-based 

perspectives related to the salience, credibility, and legitimacy of information used by 

one discipline or the other (Cook et al 2013). For example, the intersection of the 

disciplines of conservation and behavioral ecology is limited even though they appear 

related. Both deal with organisms functioning in their environments. 

4.3.1. The trouble with disciplinary silos 

When research foci have dissimilar primary goals, such as preserving biodiversity or 

evaluating evolutionary theory, respectively, the gap has been described as a bridge too 

far (Caro 2007) for successful overlap. 

Silo effects can cause privileging of one discipline’s paradigm over another’s. In some 

cases, one discipline will overpower and subsume other forms of knowledge creation. 

The subsuming discipline will push to impose its discipline-specific practices, in place of 

existing strategies, as though colonizing the other discipline (Scott, Brown, Lunt & 

Thorne 2002).  

The author’s experience provides a concrete example. Imagine that young, captive-bred 

animals are being prepared for release into the wild as part of a study. The team’s 

ecologist believes that animal learning systems are each a unique, species-specific 

product of evolution. The team’s behavioral psychologist uses behavior modification 
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techniques, a part of Behaviorism, to prepare the animals for release. The behaviorist 

believes that animal learning systems follow a general theory across species and operate 

by similar sets of rules. Both approaches work successfully in the respective areas of 

study. The ecologist finds the general rules for learning defined by Behaviorism to be 

flawed and considers that Ecology’s methods offer the “true alternative” to “dethrone a 

dominant paradigm” of general learning theory (Johnston 1981). Trouble is brewing. 

The methods developed through psychology’s Behaviorism are widely and successfully 

used in animal management programs (Pryor & Ramirez 2014). Due to the ecologist’s 

perception that the basis for psychology’s Behaviorism is flawed, the ecologist believes 

that Behaviorism does not have a place in a scientifically informed endeavor. The 

behaviorist quotes from a memorable publication, Behaviorism isn’t Satanism (Barrett 

2012). The ecologist insists their paradigm, the better form of animal behavior study, 

should be driving both the animal colony management and behavior comparison 

activities. The conflict becomes personal. They can no longer work together. This is a 

functional example of siloed perspectives leading to disciplines trying to subsume one 

another. The ecologist’s opinion and the behaviorist’s defense stem from disciplinary 

privileging and silo effects. 

4.3.2. How a practitioner versus scientist dichotomy can cause conflict 

Implementation is different from discovery. We call implementation, the practical use of 

the knowledge, applied science. Discovery is called basic science. They are two of the 

three kinds of research and development (NCSES 2018). Discovery and implementation 
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interact to support each other. Research into a specific product or process is called 

experimental development, the third kind of research and development. 

Where practical applied work belongs relative to theory development in science is an old 

debate. Sir Robert Boyle, a founding influence in modern science, wrote about the value 

of integrating both theory and hands-on work in response to others who felt they should 

be separate. Boyle noted that a true scholar of nature “[. . .] does not only Know many 

things, which other men ignore, but can Performe many things that other men cannot 

Doe;” Boyle stated how far he was from “effeminate squeamishness” of the “nice” 

people who do not do hands-on work (Boyle, 1663). Today, trends in academic science 

show the continuing tension between application and theory, such as fieldwork 

publications becoming less prestigious and popular in academia (Ríos-Saldaña, Delibes-

Mateos & Ferreira 2018). 

When people try to separate applied and basic sciences, it is the presentation of a “false 

choice” (Powell 2017). Though they are different approaches, they are symbiotic to one 

another (Leibowitz 1996) and both are key to scientific progress. A pure application of 

scientific findings, without research, may be called practice. However, the spectrum of 

theory, research, and practice can be understood in many ways. 

Theory development, hands-on basic research, hands-on applied research, and technical 

practice differ, and academic programs integrate them differently into degree programs. 
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Doctoral degree programs exist where research and practice are strictly separate. 

Practitioner doctorates exist for areas such as education, business, and medicine (Lester 

2004). For example, the M.D. degree has high engagement with theory and practice but 

low engagement in basic research. Alternatively, there are increasing university 

communities of practice, formed around a shared topic and interest, where members 

view themselves as practitioners within the topic area (Wenger 1999; Etzkowitz, 

Webster, Gebhardt & Terra 2000; Buckley & Du Toit 2010) even though they may be 

researchers or theorists. For some disciplines, there are historic models where research 

and practical work co-exist. In psychology, there is a well-established scientist-

practitioner role, following the 1949 Boulder Model that blends research and practice 

(APA 2015).  

Different assumptions about the integration of theory, research, and practice cause 

difficulties for conservation scientists. Problems arise when conservation scientists work 

in partnership with siloed traditional academic environments. Conservation scientists’ 

work does not resemble their peers’ when there is an intensive practical component or a 

primary identification as a practitioner. In a study that involved characterization of 

conservationists’ identities as a scientist or a practitioner, participation in any practical 

conservation activity bestowed a practitioner identity (Meredith, Collen & Griffiths 

2018). Such simplistic rules may be useful for study statistics but troublesome for 

identity politics. When viewed from the perspective of a too simplistic practitioner 

versus scientist dichotomy, there may be an uncomfortable implication that by directly 
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engaging in conservation outcomes a practitioner identity wholly replaces a scientist 

identity. When the term practitioner is meant to imply non-scientist, of less scientific 

value, or separate from scientists despite engaging in research, important work may lose 

credibility. Such arbitrary hierarchies are detrimental to the overall goals of 

conservation.  

Failure to integrate practice into science interrupts the discovery and application cycle. 

One artifact of that disconnect is the science-practice gap. Two kinds of science-practice 

gaps render field activities uninformed by research. The first type occurs when those in 

the field do not use existing scientific knowledge often due to a lack of access or 

awareness (Knight et al 2008; Arlettaz  et al 2010; Esler et al 2010). Factors leading to 

the first kind of gap in conservation activities, including research, include lack of access 

to academic resources, such as articles and relevant experts. The second type of science-

practice gap occurs when requisite scientific knowledge does not yet exist. There may be 

a lack of research relevant to the problem or management decision at hand (Fazey & 

Lindenmayer, 2005; Braunisch et al 2012; Laurance et al 2012). In the first case, those 

carrying out practical activities are un-informed through lacking the typical resources 

available to members of academic faculty. In the second case, existing research does not 

speak to the problem, and stronger interaction between the practitioner and the larger 

research community could lead to better solutions. 
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4.3.3. How we value parts of the scientific method causes conflict 

How people value theory or practice can cause conflict as discussed above. Similarly, 

the enormous scope of modern science means one person may not be able to participate 

in all aspects of the scientific method. Scientists may engage with either the whole 

scientific method, primarily theory development, primarily testing, or primarily 

observation. Figure 1 outlines a relevant model of the scientific method. 

Working in a single area of the scientific method may be required to move science 

forward. There is a paucity of information related to many conservation areas 

(Hawksworth & Rossman 1997; Morais et al 2013; Tedesco et al 2014; Bland, Collen, 

Orme & Bielby 2015) requiring the gathering of empirical data. Empirical conservation 

data may take many years to acquire through work in remote locations. It is possible to 

spend a fruitful and necessary career in the observation portion of the cycle, becoming 

specialized in collecting observations that are the foundation of the scientific method. 

This work can be highly rewarding and affect immediate conservation actions, such as 

when observing a population of thought to be extinct “Lazarus species” (Ryan & Baker 

2016). 
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Figure 5.1 The scientific method, after Dodig-Crnkovic (2003). 

The first step of this process is an observation to create empirical evidence. 

Observation can take the form of immersive roles, ranging from intensive data-

collection field transects to participation in non-scientific activities to understand 

applicable methods or find knowledge gaps. Once there are observations, those 

observations can form hypotheses, and may act upon theory. If there is a paucity of 

observation, the theory will lack a rational basis and its utility is compromised. 

Especially in new, highly specific, non-generalizable conservation problems, theory 

development may be a secondary concern to creating the foundational body of 

observations. 
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Devaluing working in a single area of the scientific method can be traced back to long 

ago scientists. The philosopher Henri Poincare stated, “Science is built up of facts, as a 

house is built of stones; but an accumulation of facts is no more a science than a heap of 

stones is a house” (Poincaré 1905). This is an attitude that warns against observation 

without theory. Activities that lack the use of theory could be pure observation, sample 

collection, and cataloging. Those who perceive theory as intrinsic to science may 

devalue the individual who engages in observational activities, considering the 

individual as a non-scientist even if the larger body of science requires the observations 

to move forward. Philosopher Immanuel Kant advocated for balancing the extremes of 

only thought-driven knowledge creation versus only observation-driven knowledge 

creation, called pure rationalism and pure empiricism, by noting that each requires the 

other. His synthesis is popularly summarized that perception without conception is blind 

while conception without perception is empty (Kant, 1855). 

The fieldwork scientists who conduct on-the-ground testing of an intervention, or collect 

observations, may refer to the theoreticians who do little experimenting or fieldwork as 

armchair scientists. The term armchair scientist is sometimes derisive, meaning an 

amateur non-scientist consumer of others’ work (Zerbe 2007, pp 125). The related and 

non-offensive concept, working from the armchair, describes a non-experimental 

approach to developing scientific information that has been used across time and 

disciplines (Nadel 1956; Mandelbaum 2006). 
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Recognizing that theory and practice activities are complementary parts of the scientific 

method, and that observation is foundational for theory development, can help ground 

non-traditional activities and scientist roles as valid parts of the scientific method. 

4.4. Contexts that make conservation necessarily interdisciplinary, 

interjurisdictional, and different 

Unlike traditional basic science, which fits Kuhn’s Normal Science model, conservation 

science may fit the definition of Post-Normal Science. In Post-Normal Science, the 

stakes are high, facts are uncertain, values are in dispute, and decision-making needs are 

urgent (Funtowicz and Ravetz 1990; Ravetz 1999). Scientifically-driven problem-

solving in conservation has been called “use-based science”, “translational science”, and 

“actionable science” (Cook et al 2013). Time-critical and wicked problems that are hard 

to address with the scientific method may be those conservation problems most in need 

of scientific research (Laurance et al 2012). 

4.5. The context of super wicked problems 

The concept of wicked problems originated in the 1970s (Rittel & Webber 1973). A 

wicked problem has no stopping rule where the problem’s solution means that the work 

is over. There is no opportunity to learn through trial and error, no ability to immediately 

test the efficacy of proposed solutions, and being wrong is not an option.. The wicked 

problem concept has been extended for environmental problems that are super wicked 

(Levin, Cashore, Bernstein & Auld 2012). In super wicked problems, those who cause 
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the problem are creating the solution, needed central authority is weak or nonexistent, 

while time is running out. Just before addressing the problem, its severity is irrationally 

discounted, so direct action is pushed into the future. Climate change and biodiversity 

loss are examples of these wicked and super wicked problems. 

4.6. The conservation activities that don’t resemble traditional science 

Researching the efficacy of a conservation intervention may require the scientist to carry 

out the intervention. In conservation research, experimentally testing different 

conservation interventions is a requisite activity to preserve biodiversity (Drew 1994) 

and may cause the scientist to test a method in the field. Workers and supplies are often 

limited in the field, which could comprise situations ranging from a tundra field station 

to an open-sided two-person tarp shelter in the Amazon. Small teams, working in remote 

locations, necessitate that the scientist participates in implementing the intervention. 

This participation creates experts. Scientists who engage in interventions becomes 

competent to evaluate the efficacy of the intervention. Through participation, the 

feasibility and effects of an intervention are more apparent to conservation scientists.  

The innovation and discovery that occurs while implementing a conservation 

intervention do not typically resemble traditional laboratory research, nor should they, as 

implementation differs from reductive hypothesis testing. Field-based activities lack the 

physical trappings of scientific disciplinary identity (Trowler 2001, pp 45-47) such as 

working in a  building with other discipline-adherent individuals, working in an 
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environment decorated with discipline supportive artifacts on  desks or representations 

of shared idols such as a Darwin poster.. Fieldwork occurs without the physical 

identifiers of disciplinary science. 

The activities to carry out an experimental conservation intervention may be what some 

consider technician practice. Universities are hierarchical and create conditions where 

support staff often face devaluing and bullying by those in superior positions 

(Björkqvist, Österman & Hjelt‐Bäck 1994; Thomas 2005). Conservation researchers 

who do their own practical work may take the role of greenhouse manager, forester, 

zookeeper, animal breeder, behavior modification specialist, veterinary technician, or 

wildlife rehabilitator and may be placed lower on the academic hierarchy by those who 

devalue the practical and applied work as non-scientific. The theme of the invisible 

technician in science (Shapin 1989; Wilson 2012; Morus 2016) shows how extreme the 

disciplinary separation of carrying out work and conceptualizing work can become, 

where those who do the work may garner limited credibility as scientists even if they are 

contributing original innovations and methods.  

When questions regarding the scientific merit of practical work arise, objective measures 

can help communicate the value of the work. The United States Environmental 

Protection Agency outlines when technician activities are elevated to scientific activities, 

requiring recognition of authorship. If an individual is “adapting or developing new 

techniques or equipment”, working on the “development of new methods or significant 
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modification to existing methods essential to the research”, or  “analysis and 

interpretation of data” (Grifo, Russo & Otto 2016) then they should be authors on a 

paper. These guidelines illuminate the difference between creative, cerebral scientific 

activities that generate new knowledge, either basic or applied, versus carrying out 

repetitive technical tasks. Conservation scientists in this position may need to eloquently 

describe their practical activities as having scientific merit to establish or retain external 

validation of scientific identity.  

The strong integration of practice and research is a successful approach to designing 

research interventions. An example is raptor conservation. The largest collection of 

successful techniques for working with raptors resides in the practice of falconry. 

Conservation has crossed jurisdictional boundaries to work with falconers. Falconry 

methods applied to conservation performed better than techniques developed from 

outside of falconry (Boyd & Schwartz 1991; Kenward 2009). Tom Cade, the founder of 

the Peregrine Fund (Anderson 2006), was a practicing falconer and had a Ph.D. (Cade & 

Blount 2018). The Mauritius kestrel project (Jones et al 1995), one of many falconry-

utilizing projects was borne of accepting knowledge from across jurisdictions and 

building that knowledge into applied conservation research. 
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4.7. Research approaches to reduce interdisciplinary conflict 

Funding a community of practice can deal with gaps such as the science-practice gap, 

and decreases the distances separating disciplinary silos or between jurisdictions. A 

funded community of practice covers the costs of bringing diverse individuals related to 

the topic. The individuals come together for regular communications that allow 

knowledge to be harnessed and shared. Watkins, Zavaleta, Wilson, and Francisco (2017) 

suggest forming funded communities of practice to manage information strategically, 

share experience, and share skills, among those who work within the shared topic. 

4.7.1. A funded community of practice 

They suggest that commitment and competence of individuals unified under the shared 

topic create a shared identity, which is probably a useful alternative to siloed identities. 

Benefits of a conservation community of practice introduce scientific findings into 

policy, unify vocabulary, and allow researchers who focus on knowledge gaps and 

practitioners who focus on implementation issues to share their needs with 

policymakers. 

4.7.2. Transdisciplinary frameworks 

Another method to work across disciplines is the transdisciplinary framework. The goal 

is to dissolve boundaries between traditional disciplines to focus on solving real-world 

problems, often in a research context. The setup acknowledges that the work done within 
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the framework will rely on knowledge from many disciplines but will not follow the 

boundaries and rules of any one discipline. Transdisciplinary frameworks are widely 

discussed as valuable to conservation work (Reyers et al 2010; Torkar, G. & McGregor 

2012). A review of transdisciplinary frameworks in conservation noted that relating to 

conservation research frameworks, there is a lack of a commonly shared framework, 

glossary, or communication platforms (Brandt et al 2013) so there is not a single best 

approach known for transdisciplinary conservation frameworks.  

It may be possible to use elements from developed transdisciplinary frameworks that are 

not conservation-focused when setting up research projects for conservation. Developed 

biomedical transdisciplinary frameworks include One Health,  Conservation Medicine, 

EcoHealth, and Global Health (Kaufman, Epstein, Paul-Murphy & Modrall 2008). One 

Health seeks to unify human, animal, and ecosystem health under the concept that health 

unites all species, creating shared ecosystem-level health (Zinsstag, Schelling, Waltner-

Toews & Tanner 2011; Kahn, Monath, Bokma & Gibbs & Aguirre 2012). A detailed, 

step-by-step One Health Framework, from identifying collaborators, to choosing 

methods of analysis, has been outlined by Lebov et al (2017). Lebov et al note that those 

who have on the ground knowledge needed for research development should be 

included.. Such individuals might include a SCUBA diver, wildfire fighter, or a plant 

worker. 
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4.7.3. Translational science 

Biomedical sciences offer a sophisticated problem-solving science model. The United 

States’ National Center for Advancing Translational Sciences (NCATS 2020), in the 

National Institutes of Health, focuses on interdisciplinary problem-solving science. 

Austin (2018) discusses that in the NCATS approach, the role of basic research is to 

understand and the role of translational science is to fix, in a complementary, mutually 

informing relationship. NCATS defines translational sciences as “the multi-step process 

of turning observations in the lab, clinic, and community into interventions.” Team 

members each have a domain of expertise and work together to apply their expertise to 

scientific problem-solving. 

The translational scientist’s skills are identified by NCATS as being a boundary crosser, 

team player, process innovator, domain expert, skilled communicator, rigorous 

researcher, and systems thinker (NCATS 2020). Major ethics inherent to the NCATS 

model of translational science include process transparency and data sharing (NCATS 

2020). The interdisciplinarity, systems thinking, and domain expertise overlap with foci 

for conservation communities of practice, as well as transdisciplinary frameworks. 

4.7.4. Growing past conflict to transform science 

As conservation scientists, we have varied approaches, identities, and wicked problems 

to work through. Post-Normal science requires us to do novel, unexpected things to 

ameliorate the biodiversity crisis while validating our actions through the scientific 
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method. How we manage the conflicts that arise is based on our ability to recognize 

where the problems come from and utilize frameworks that will reduce conflicts and 

maximize the success of our work. 

As we solve individual conservation research problems, we find new methods, develop 

technologies, and can more effectively preserve biodiversity. Through new approaches 

and innovation, science transforms itself. Transformational science results in 

revolutionizing existing fields, creating new subfields, causing paradigm shifts, 

supporting discovery, and leading to radically new technologies (National Science Board 

2007). With such new attitudes and integrated approaches, conservationists will be better 

equipped to solve the wicked problems of massive environmental change and species 

extinction, creating humanity’s most profound emerging crisis.  
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APPENDIX A 

WATER QUALITY FOR GUEST HEALTH AT REMOTE AMAZON ECOTOURISM 

LODGES* 

A.1. Introduction

Ecotourism can be a major income generator and support local economies (C. A. Kirkby 

et al., 2010) in one case offering nearly  double the income of existing opportunities 

(Hunt, Durham, Driscoll, & Honey, 2015). Conservation scientists note the positive 

effects of ecotourism beyond building local economic capacity. Ecotourism businesses 

can reduce threats to the environment such as logging and the hunting of local wildlife. 

In some instances, the continued survival of individual animals or species is contingent 

upon the presence of ecotourism (Buckley, Castley, de Vasconcellos Pegas, Mossaz, & 

Steven, 2012). In addition, eco-tourism can provide research stations and funding for 

scientific research that furthers conservation as a science (Brightsmith, 2004). However, 

remote tourism lodges may have relatively small profit margins and relatively high fixed 

expenses (C. A. Kirkby et al., 2011). This can make remote ecotourism lodges 

susceptible to income interruptions. 

* Reprinted with permission from “Water quality for guest health at remote amazon

ecotourism lodges” by Authors’ Woodman, C.W., Min-Vendetti, A., Woosnam, K.,

Brightsmith, D.,  2019. Journal of Tourism Management, 72(2019), 202-208, Copyright

2019 by Elsevier.
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Preventing remote rainforest ecotourism failure is increasingly important to local 

economies and ecosystems as the number of lodges increase. Remote rainforest tourism 

is a growing form of ecotourism. (Torres-Sovero, González, Martín-López, & Kirkby, 

2012). A simple search on TripAdvisor.com for “rainforest camp” returned the website’s 

maximum display of 1,020 locations. These accommodations typically involve a camp 

or lodge setting in intact forest located outside of traditional utility grids. Being “off-

grid” requires highly technical management to produce potable water for guests and 

managing use of local water bodies. Without careful management, diseases acquired by 

tourists from drinking, bathing, and swimming, can have direct effects on economic 

development (World Health Organization, 2013) and severely impact these remote 

lodges. A fundamental global practice to reduce disease in water is chlorination. When 

water is underchlorinated, disease microbes can exist and reproduce in the water (WHO, 

2011). Though many developed countries have water quality standards in place, many of 

the countries in the Global South are still lacking necessary support to chlorinate water 

(Bhalotra, Diaz-Cayeros, Miller, Miranda, & Venkataramani, 2017). 

 

The World Health Organization (WHO) considers small community-managed water 

sources, such as those utilized in remote ecotourism, especially prone to contamination 

(WHO/UNICEF Joint Water Supply & Sanitation Monitoring Programme, 2014). The 

most common illness acquired by tourists to the developing world is traveler's diarrhea 

(TD) (Connor & Riddle, 2013). Bacteria are thought to account for 80%–90% of TD 

cases (Connor & Riddle, 2013), which are often thought to be E. coli. When caused by 
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E. coli bacteria, TD will usually clear spontaneously but in some cases it can cause some 

serious or fatal diseases, including hemorrhagic colitis, hemolytic-uremic syndrome, and 

long term disease such as irritable bowel syndrome (Connor 2017; Nataro & Kaper, 

1998; Noris & Remuzzi, 2005). Some destinations can have illness rates up to 70% for 

tourists (Connor & Riddle, 2013). Tourists from the developed world may expect a 

greater than 50% chance of becoming ill. (May, 1989).  

 

In the context of ecotourism, guest health should be central to destination management 

to ensure the sustainability of tourism (WHO, 2011; Musa, Hall, & Higham, 2004). Ill 

guests can cause many difficulties for individual companies. When guests become sick 

they may change their itineraries, (May, 1989), and even brief bouts illness may lead to 

costly litigation such as in the case of a lodge’s settlement of $10,000 per guest (Pineiro-

Zucker, 2016). A severe disease outbreak can affect the industry through bad publicity 

and loss of revenue (Marti, 1995). In Mexico, an H1N1 flu outbreak in 2009 caused an 

estimated loss of 2.8 billion USD (Rassy & Smith, 2013). Tourists can return home 

carrying water-acquired diseases with them, causing international disease outbreaks, 

such as the case of hotels in the Canary Islands which shared an unsafe well. Guest of 

these hotels returned to four countries, bringing with them 15 cases of Vero cytotoxin-

producing E. coli O157. (Pebody et al., 1999).  

 

Overall, the tourism literature has limited discussions on tourist health. A “lack of 

research” connecting health and tourism was noted during the 1992 conference on Food 
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Protection and Tourism (Spivack, 1994). Over the last 25 years, arguably little 

advancement on the subject has occurred.  Our search of the leading tourism journals 

(Journal of Travel Research, Tourism Management, Journal of Sustainable Tourism, 

Annals of Tourism Research, and Journal of Ecotourism) using terms, “E. coli” and 

“traveler’s diarrhea” returned only 11 results. While papers mentioned E. coli in various 

contexts, there was no focus on tourist health despite this being an extremely common 

tourist ailment. 

 

The general water sanitation literature shows that relatively simple treatments remove 

the risk of waterborne disease (WHO, 2011). Typically, large particles are removed 

through settling if the water is not clear. Once visually clear, water is put through a 

nanopore filter to remove larger organisms, such as parasite eggs. Then, the water is 

chlorinated to inactivate bacteria and viruses. Enough chlorine is added so that after 

inactivating microorganisms there is still extra chlorine (“residual chlorine”) to prevent 

re-contamination of stored water by hands or utensils (Centers for Disease Control, 

2014). When combined with hygiene of hands, drinking cups, and used water bottles 

(Rufener, Mäusezahl, Mosler, & Weingartner, 2010) most sources of illness can be 

eliminated. 

 

When caused by water, as opposed to foods (TD is not always caused by the drinking 

supply), natural water bodies can  be a source of disease. The water ingested while 

swimming (Dufour, Evans, Behymer, & Cantu, 2006) or boating (S. Dorevitch et al., 
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2011) can cause illness. A study showed 1.5% of those who engaged in limited contact 

freshwater activities in natural water, such as kayaking or fishing, became ill afterwards 

(S. Dorevitch et al., 2012), whether or not the water body was directly impacted by 

sewage. 

 

The lodges in the Madre de Dios region of Peru are heavily studied, with over 700 

papers mentioning ecotourism in the region. The frequent publications make the region a 

model for remote rainforest ecotourism. We visited four lowland tourism lodges within 

Madre de Dios, to collect information concerning the utilization of chlorination, guest 

education, health tracking, and hygiene. (*combine this and the next paragraph) We 

tested drinking water, tap water, and rivers for fecal bacteria. We  interviewed lodge 

staff about water issues and investigated health issues through anecdotal tracking of our 

own group participants and online guest reviews. 

 

A.2. Methods 

The study was conducted in the watershed of the Madre de Dios River in the lowlands of 

southeastern Peru in the areas surrounding the city of Puerto Maldonado (12° 35.226' S, 

69° 11.820' W). Areas of forest are grouped into reserves and a park (SERNANP, 2018), 

most notably Manu National Park, (1 716 295 ha), Tambopata National Reserve 

(274,690 ha) and Bahuaja-Sonene National Park (1,091,416 ha). The region contains 

lowland tropical rainforest, with average annual rainfall up to 3,000 mm (Brightsmith, 

2004; Vuohelainen, Coad, Marthews, Malhi, & Killeen, 2012). Certain charismatic 
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megafauna can be reliably observed by visitors, including three large macaw species 

(genus Ara), giant river otters (Pteronura brasiliensis), five monkey species 

(suprafamily Ceboidea), and caiman species (subfamily Caimaninae). The region is also 

home to a form of strip mining along rivers to attain gold rich silt which encroaches 

upon protected lands (Gardner, 2012). The study area was visited during a 22-day period 

in May 2015. Three authors were present for the travel, CJW, AMV, DJB. CJW took 

and incubated samples, AMV interviewed Spanish-speaking lodge and protected area 

staff. DJB oversaw research activities and made introductions for interviews.  

 

A.2.1. Study area 

Four independently-owned lodges were included in this study. Each lodge required 

access via river boat and was off the traditional utility grids. As a result, all lodges 

provided their own electric, water, and sewage. Lodges could accommodate an 

approximate range of 10-50 guests per night. Per night stay cost between $40 and $160. 

To help ensure anonymity of the lodges who allowed us to test their water, the names 

and exact locations of lodges are withheld. Lodge A was a newly constructed primitive 

forest camp with an open, roofed dining and cooking area. Commercially bottled “water 

cooler” style bottles were hauled in by boat and not re-used. Wastewater treatment was a 

commercial biodigester. It was located at the intersection of a river and a tributary creek. 

The creek water was the source for the lodge’s washing water system. The creek was 

also used for swimming and occasional bathing. This was the only lodge with an open 

kitchen, all others had screening. 
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Lodge B was a high-end, resort-style lodge blending some features of a primitive camp 

with high-end vacationing, such as open-air structures with limited satellite internet, and 

an on-call masseuse. Local stream water was used for washing and showers. The stream 

water was filtered and ozonized and placed in reusable water cooler style dispensers for 

drinking water. Biodigesters processed wastewater. The lodge was adjacent to a major 

river, river swimming by guests was apparently possible, but discouraged by the 

company, and was not seen during the visit. This lodge was accredited through the 

Rainforest Alliance Certification Services for Tourism Businesses. 

 

Lodge C was a bed-and-breakfast style accommodation built on a lake inland from the 

river system with a totally enclosed kitchen. Lake water was used for washing and 

showering. The lake water was treated with chemical tablets, placed in reusable 

dispensers, and offered as drinking water. Wastewater treatment was through a series of 

connected cesspits. The lake was utilized for boating, wading, and swimming. 

 

Lodge D was a high-end lodge. Local creek water was used for washing and showers. 

The creek water was filtered and ozonized, placed in reusable water-cooler style 

dispensers, and offered as drinking water. Two biodigesters processed wastewater. The 

kitchen area was screened. The lodge was adjacent to a major river. River swimming 

occurred during the visit. This lodge was accredited through the Rainforest Alliance 

Certification Services for Tourism Businesses. 
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A.2.2. Sample collection 

With permission from the lodge management, samples were taken from lodge water 

sources and the river access near each lodge. Samples were also collected from the river 

near Puerto Maldonado. Due to portable incubator size limitations, a single measurement 

was taken for each category. For tap water collection, researchers ran the faucet for 30 

seconds then collected 50 ml water samples in sterile test tubes. Drinking water samples 

were collected in similar tubes directly from water coolers or water pitchers depending 

upon how they were offered at each lodge. River samples were obtained by boating to 

the center of the river, and dipping a sterile collection tube into the water, swirling the 

tube under water, and then capping the tube immediately. 

 

A.2.3. Indicator bacteria enumeration 

Water samples were chilled in a cooler on ice or refrigerated within four hours of 

collection to reduce bacterial die-off (Flint, 1987) and incubated within 30 hours of 

acquisition following US EPA guidelines for holding water test samples. (EPA 2013). 

pH of the samples was checked because the process depends on acidity of the sample.  

Utilizing 3M Petrifilm product instructions for sampling and incubating, 1 ml amounts 

were taken from each sample using a sterile-tipped micro-pipette and spread on 3M 

Petrifilm E. coli/Coliform Count Plates. All pipetting was done adjacent to a burning 

candle or large grilling lighter to draw in falling dust and prevent particles settling on the 

plate during pipetting. For incubation, a Jameson brand portable field incubator was used 

for 24 hours at 44.5 C, using 12-volt car batteries when electricity was not available. 
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Incubated plates were photographed, and counts carried out. The types of bacteria 

identified were fecal bacteria, E. coli, or non-fecal bacteria, based on their color and gas 

production. 

A.2.4. Anecdotal human health 

To understand if people were becoming sick with TD or other ailments associated with 

poor water quality, authors spoke with staff members at each lodge. Authors spoke with 

lodge owners, lodge managers, two trail guides, a research director, and a staff member 

that supervised special multi-week stays. The authors were traveling with a group of 18 

people and noted the health status of their own group throughout the trip.  

 

A.2.5. TripAdvisor methodology 

To determine the incidence of disease self-reported by tourists, the researchers read all 

relevant reviews on TripAdvisor.com from for each of the four study lodges. At the time 

of data collection, January 2015, this included 391 reviews from 2007 onward. For each 

review, any mention of illness, gastrointestinal issues, or drinking water quality was 

recorded. Lodge A was new and did not have a TripAdvisor profile at the time of data 

collection, so no reviews were available. 

 

A.2.6. Practice and beliefs 

To determine local knowledge and practice regarding water quality, AMV and CJW, 

spoke with six lodge tour guides, three field scientists, two lodge managers, two lodge 

owners, one park system guard, and one park system administrator. Discussions were 
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open-ended about water, guest health, and relevant laws and rules. Discussions lasted 

approximately fifteen minutes and were transcribed 

 

A.3. Results  

A.3.1 Drinking water 

Of the 11 lodge water samples tested, seven (64%) showed fecal coliform bacterial 

levels estimated to be in excess of 2000 per liter (Table 1). The treated drinking water 

offered by three lodges contained measurable levels of fecal coliform (mean 15000, 

standard deviation ±15811 fecal coliforms per liter, N = 3 samples). At lodges B and C, 

total coliform counts were zero in the untreated water from the tap but high in the treated 

drinking water (9000 and 44,000 respectively). In Lodge D fecal coliforms were high in 

the tap water (33,000) and lower in the treated water (2000 and 11000, Table 1). The 

only lodge where coliform bacteria were not discovered in the drinking water was Lodge 

A which provided commercially bottled water for drinking. 

 

A.3.2. Lodge practice 

No lodges provided treated showering or hand-washing water (N = 4), no lodges tested 

their water for microbes (N = 4), each lodge manager and owner was confident of high 

drinking water quality (N = 4), and one lodge (C) used water treatment tablets in their 

water. The high-end lodges (B and D) utilized nanopore and ozone treatment for 

drinking water. None of the lodges utilized residual chlorination, the global standard for 

water treatment (WHO, 2011). 
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No lodge used sanitizing soaks on their water storage containers. Lodge B was observed 

swishing a water storage jug with soapy water and rice, using the rice to “scrub” away 

contamination. 

 

Alimentary (eating and drinking) education was provided to new guests at all four 

lodges. Guests were instructed to drink only from water coolers and served drinking 

vessels, as the tap water was not treated and the lodge administrators considered it 

unsafe to drink. Guests were not provided with a way to wash their personal water 

bottles nor encouraged to do so (N = 4). No lodge offered a telemedicine solution or on-

site health worker to address guest illness. The two higher-end lodges (B and D) had 

small plaques in the showers reminding guests that the washing water was not treated. 

(N = 2) At lodge D an “edible sanitizing dip” was used after washing dishes. However, 

this dip made water and food distasteful which led to some staff rinsing off their 

dishware with untreated tap water to remove the flavor. 

 

A.3.3. Septic systems 

All lodges used bacteria to break down sewage, either using commercially-purchased 

biodigesters (N = 3), or a series of primitive cesspits connected by a buried pipe (N = 1). 

Managers at lodges with biodigesters were concerned that adding chlorine to the water 

could inactivate the bacteria in their septic systems. 
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A.3.4. Practice and beliefs 

Lodge staff, park and reserve staff, and scientists working under research permitsall 

indicated that the use of chlorine bleach was “banned” at the lodges (N = six individuals 

across the four lodges). This included the director of Bahuaja Sonene National Park, as 

well as a guard from the Tambopata National Reserve. Some suggested it was because 

the lodge owners forbid it due to the damage it could cause to the septic systems, some 

said it was banned by the ecotourism accreditation agency because of its potential 

damage to the environment, and others stated it was banned by Peruvian law because it 

was a chemical used in the making of illicit drugs. However, no one could offer precise 

clarity about the legal basis of the ban or what group enforced it.  

 

Further research by the authors after completion of field work identified some of the 

drivers behind these perceived prohibitions. The law behind the “bleach ban” is Peruvian 

Law Number 29037 for regulated chemicals and controlled substances. The law strictly 

regulates chemicals associated with the production of cocaine and heroin. As translated 

by the authors, the list included the active ingredient in household bleach, sodium 

hypochlorite, in “any amount, shape, or presentation” (Chapter 1, article 4.). The law 

requires registration, rigorous daily record keeping, and immediate reporting of quantity 

changes such as accidental spills. As multiple individuals in the lodge system avoided 

bleach to a widely known but vague “ban,” the law has appeared to have negative effects 

on the use of liquid chlorine bleach for sanitation in the remote lodges. 
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There may have been additional influence for not using chlorination based on a Global 

Sustainable Tourism Council (GSTC) accreditation criteria (“Criteria for Hotels”, 2012). 

These guidelines require that “the use of harmful substances,” including “swimming 

pool disinfectants, and cleaning materials, is minimized, and substituted when available, 

by innocuous products or processes.” A suggested companion performance indicator to 

the GSTC is that “There has been a review of each chemical used to identify available 

alternatives which are more environmentally innocuous.” The regional accrediting body 

uses a GSTC aligned criteria according to their website, and following such guidelines 

could logically lead to a reduction of chlorination. 

 

A.3.5. River fecal bacteria 

The river water samples (N = 4) all contained E. coli counts (Average 633 standard 

deviation ±560 fecal coliforms per liter, N = 5 samples, Table 2) above the 100 per ml 

recreational water body limit set by the United States Environmental Protection Agency 

(EPA 2012). 

 

A.3.6.  Health anecdotes 

During the 18-day trip conducted by the researchers, six of the ten travelling companions 

self-reported having acquired a diarrheal illness. Some illness was debilitating, requiring 

bed rest. One of the authors required medical attention as the illness did not clear after 

10 days. The long-term guest supervisor reported that all the research assistants from the 

USA who stayed at lodge D for more than two weeks acquired some sort of diarrheal 
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illness during their stay. Staff reported that relatives visiting lodge employees also 

became ill. A trail guide at lodge B did not drink from the lodge water explaining it was 

not healthful. The guide instead drank from a small water source by a trail behind the 

lodge.  

 

A.3.7. TripAdvisor results  

Each lodge manager identified TripAdvisor.com as a major source of reviews and 

feedback regarding their facility (N = 4). The newly built primitive camp lodge did not 

yet have a TripAdvisor listing and were eager to create one. Of the 391 TripAdvisor 

reviews that were examined for the three lodges, only four posts mentioned illness 

associated with lodge stays (~1% of reviews). Only one was obviously related to a 

gastrointestinal issue, referring to a “stomach bug” picked up “somewhere in Amazonia” 

(~0.3%). By comparison, five posts mentioned water being clean and safe to drink. 
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Table A.1 Total fecal coliforms in lodge water samples from southeastern Peru. 

 

Measurement Total fecal 

coliform 

bacteria per 

1ml 

E. coli 

=per 1ml 

Source Total fecal 

coliform 

bacteria per 

1ml 

E. coli per 

1ml 

EPA Maximum 

Contaminant 

Level Goal per 

liter (EPA 

2013) 

0 0 Lodge A 

commercially 

bottled drinking 

water 

0 0 

Lodge A 

untreated tap 

water 

7 1 Lodge B 

ozonated and 

filtered drinking 

water cooler 

9 0 

Lodge B 

untreated tap 

water 

0 0 Lodge C tablet 

treated and 

filtered drinking 

water cooler 

44 6 

Lodge C 

untreated tap 

water 

0 0 Lodge D 

ozonized and 

filtered room 

pitcher 

2 0 

Lodge D 

untreated tap 

20 13 Lodge D 

ozonized and 

filtered drinking 

cup 

11 0 

Port city 

municipal tap 

0 0 Port city 

municipal 

source in a 

restaurant 

drinking cup 

with ice 

5 0 

Total fecal coliforms per liter were calculated as a count of the number of bacterial 

colonies that grew from 1 ml of water. The EPA goal of zero colony forming units 

per liter is provided for comparison. 
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Table A.2 Natural water body fecal bacteria counts, with scaled  EPA water quality 

criteria. 

 

Measurement E. coli Total Coliforms 

Scaled 2012 US EPA Recreational Water 

Quality Criteria for E. coli, and 1986 criteria 

for total coliforms. 

1 2  

Port city river center. 3 6 

Upriver of port city. 3 2 

River tributary in reserve. 3 1 

Upstream of river tributary in reserve. 13 9 

Most upstream tributary within reserve, 

farthest from port city. 

16 13 

The quality criteria is the geometric mean of E. coli colony forming units per 

100ml. This level cause 23 illnesses per 1000 people (EPA 2012). Scaled from 

“colony forming units” of 100 cfu/100ml to 1 cfu/1ml for comparison to the 1ml 

mobile water test size. Similarly, the 1986 total coliform criteria has been scaled 

from 200 cfu/ml to 2 cfu/ml. The 2012 criteria do not include total coliforms. 
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Figure A.1 Incubated samples from lodge C. 

Incubated samples from lodge C. 3M Petrifim dishes inoculated with 1ml of 

untreated tapwater (left) and chemically treated tap water from the water cooler 

(right) after 24 hours of incubation at 44.5 C. In the image on the right, blue 

colonies with gas indicate E. coli, red colonies with gas indicate coliform bacteria. 

The count was 44 total colony forming units, six being E. coli. 

A.4. Discussion

A.4.1.How guests are exposed to the bacteria that cause illness

Lodge water and river exposed guests to fecal bacteria, including E. coli. These levels 

were above the safety levels suggested by the EPA in the United States. Exposure to 

unsafe levels began during the boat ride to the lodge, where tourists were lightly and 

occasionally heavily sprayed with water from the bow splashes for up to seven hours. 

Upon reaching a lodge, the tourists could refill their personal bottle or cup and self-

contaminate due to the vessel being unclean (Rufener et al., 2010). When lodges 

processed water for guests, in a cooler or a jug in the room, there was more exposure to 
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bacteria. Hand washing before a meal or after use of the bathroom would put hands in 

contact with bacteria in the tap water. At meals, lodge processed drinking water provided 

further exposure, as would any items that were made with water but not cooked enough 

to kill bacteria, such as juice mix. During showering, untreated tap water would further 

expose guests. During any river baths, wading, or swimming, guests would again be 

exposed. The only drinking water free of fecal contamination was purchased bottled 

water in a non-reusable jug. 

A.4.2. Health anecdotes

Through conversations with staff, and observing travelling companions, it became 

apparent that guest illness was common. However, the majority of guests only stayed at 

each lodge for a short duration (2-4 days). As illnesses like traveler’s diarrhea can occur 

as much as 2 weeks after infection, guests might not develop an illness until days after 

leaving the lodge, making it difficult for tourism companies to know the full extent of 

the illness acquired at their lodges (Connor, 2017). 

Managers thought their purification systems worked. They responded with surprise when 

we shared the bacterial counts. Staff, researchers, and long-term guests seemed to expect 

illness during their extended stays but there was not an obvious understanding that this 

posed a danger, and that a more dangerous illness could be spread the same way TD was 

being spread. 
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A.4.3.TripAdvisor

The TripAdvisor reviews, which are heavily utilized by lodge managers, appear to 

provide an unreliable story with respect to guest health. The lack of discussion of illness 

in the reviews seem to provide an inaccurate recounting of guests’ experience. Months 

after our trip, our companions did not write about their experiences despite the majority 

becoming ill, not even the companion who was bedridden with violent vomiting for two 

days while at a lodge. We expect that other guests, like our companions, may choose not 

to report their illnesses. In this way, TripAdvisor may mask health problems as the 

platform is not designed to report guest health. 

Guest satisfaction may remain high despite illness. In a mountain adventure tourism 

study, where illness rates were known, 92.9% of the 448 people surveyed were satisfied 

with their experience. This was despite 89.4% of surveyed guests reporting illness 

(Musa, Hall, & Higham, 2004). High guest satisfaction and positive reviews do not 

indicate the guests are healthy. 

A.4.4.Natural water

All river samples tested during this study were above EPA guidelines for recreational 

water. Counts of 100 E. coli per 100 milliliters of water are associated with 32 illnesses 

per 1,000 people (EPA 2012). These E. coli guidelines are part of a number of factors 

used by the EPA to help U.S. state governments determine when and where to close 

beaches. 
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In our study, the highest E. coli count was from the sample taken the furthest upstream 

close to the mountains, flowing from a protected area which is basically uninhabited and 

off-limits to tourism. As samples from further up-river contained more, not less bacteria, 

there is a contrast with the purity narrative that water from a ‘virgin ecosystem’ far from 

polluting civilization is more healthful and desirable (Wilk, 2006). This purity narrative 

was echoed in the statements to the authors from experienced visitors who suggested that 

the authors engage in natural water baths while at the lodges. River bathing was 

conveyed as entirely positive, being “cleansing,” and “life changing,” as well as 

hygienic, by other guests. Authors did not encounter cautions against the realities of 

diarrhea or gastritis. Guests may be arriving at lodges with a cultural belief system that 

encourages contact with untreated water, without knowledge of the consequences. 

Frequent televised and internet-based marketing for bottled water has focused on the 

commodification of nature as a way to deliver purity. This is referred to as a “modern 

medicine show” (Gleick, 2010) due to the false claims associated with the purity 

narrative. 

A.4.5. Lodge practice and barriers to best practice

No lodge staff utilized residual chlorination techniques for water treatment. This seems 

to have been the product of a complex mix of beliefs, guidelines, regulations, and other 

cultural elements that are worthy of consideration here. 
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Lodge staff stated and believed that their current drinking water quality and handling 

was adequate and for that reason likely saw no reason to improve water treatment. This 

was reinforced by TripAdvisor which did not suggest gastrointestinal illness was 

common. The aforementioned purity narrative also supports the assumption that the 

rainforest environment is pure and healthful. 

Many of the lodge staff did not come from highly developed urban areas. For some 

employees, running water might not be present at home and many may have reduced 

access to best hygiene practices such as on-demand access to laundering with detergent, 

heat or chemical sanitizing of dishes, and unlimited soap, hot water, or alcohol sanitizer 

for handwashing. As a result, fecal contamination is common in rural Peruvian homes 

(Lanata, Ochoa, Lozada, Pineda, & Verastegui, 2014) and for many lodge employees, 

technical maintenance of sanitation and water treatment may not be well understood. It 

is likely that an interaction of beliefs and culture downplayed recognition of TD and 

other ailments and removed the perceived need for improving water treatments. 

Even if the lodge staff wanted to improve water treatment there were many factors that 

would work against them. Most lodge staff had the mistaken belief that drinking water 

chlorination would cause undue harm to the biodigesters (personal comm. with three 

U.S. based water treatment companies.) In addition, the use of chemicals was 

discouraged through the language of accreditation, which suggests finding “alternatives” 

to sanitary chemicals. This likely reinforced managers’ fears that chemicals would 
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inactivate the biodigestor systems or cause other unwanted harm. In addition, Peruvian 

law functionally banned all use of bleach at these remote sites, eliminating the easiest 

and most common water treatment method. Without training in water quality chemistry, 

the average person would not know how to substitute related chemicals associated with 

swimming pool maintenance nor could they do so safely. The combination of beliefs, 

guidelines and regulations probably had a cumulative effect, leading to a state of 

“chemonoia” (Ropeik, 2015). Chemonoia is a psychological and cultural phenomena 

where people reject the use of chemicals despite evidence that the chemicals are safe and 

improve quality of life. These factors, combined with the warm and humid rainforest 

setting, likely led to the high levels of contamination we found in this study and create a 

“perfect storm” that could lead to a major health crisis. 

A.4.6. Limitations

The situation surrounding water in remote rainforest lodges is complex and poorlyl 

characterized. Our study provides only single sample snapshots of a small area. 

Additional studies across a wider area and longer time frame are needed to better assess 

the extent, causes and potential consequences of the water quality problems we 

discovered here. 

A.4.7. Recommendations

We suggest that regional lodge associations, and the leading lodges, engage in water 

chlorination with residual chlorination. Those with the most resources can pave the way 
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for smaller lodges. For lowland Peru, the use of a legally acceptable alternative 

chemical, such as Calcium Hypochlorite, could avoid the “bleach ban.” Using such 

chemicals, the entire water system could be treated at the storage tower.  

Using plastic on the front of the boat to block spray from contacting guests and 

discouraging river baths or swimming are potential tools to avoid natural water body-

related health issues. Lodge managers might consider “closing” access to natural 

waterbodies if the waters consistently have high levels of indicator bacteria. Guest 

education about natural water related illness risks as part of the initial welcome 

education talk may be useful. The tourism community should rethink “green” 

accreditation or certification for remote sites. As part of an accreditation process, 

agencies should instruct staff on theory and practice of water quality, chlorination, 

hygiene, and water quality testing. Sustainability depends on healthy guests and staff. 

The agency could help each lodge create a plan to carry out water quality activities. 

During the inspection period, the accrediting agency could count bacteria in tap, 

drinking, and natural water bodies for lodges who may not be able to do so themselves. 
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APPENDIX B 

 

SOFTWARE TRACKING ACCURACY IN PRACTICAL CONDITIONS, A REPORT 

TO THE NATIONAL SCIENCE FOUNDATION 

 

B.1 Report summary 

The software developed during the AIR-TT process utilizes computer vision to track 

animals. In April, 2019 two tests were utilized to better understand tracker performance 

when compared to a trained human observer. The purpose of these tests was to validate 

how best to use the motion trackers for experimental data collection and when a human 

scorer would be appropriate to check tablet data outcomes. 

 

To validate the number of birds detected, two multi-hour recording sessions 

(approximately 5 hours total recording) were scored by a human observer for a total of 

106 motion events. This human detection was compared to tablet detection. Single bird 

tracking was adequately able to match a human observer’s perception of movement 80% 

of the time, while multi-tracking was less effective, agreeing with the observer for 72% 

of samples. 

 

To understanding how distance from the tablet to the subject changed movement 

recordings, two tablets at different distances were set up to record bird movement during 

a two hour recording session. A distance of 100cm or more away from the bird created 



 

170 

the fewest errors. At close distance, the center of mass created by the pixel detection 

method could jump enough to create 2000% more movement than at 100cm. These 

enormous % movement increases appeared to be driven by shifts in the pixel contrast 

shape  center of mass due to high detail edges in up-close videos that shifted rapidly 

during contrast detection, regardless of movement. The Center of mass change due to 

pixel detection shift was multiplied by true movement close to the tablet lens, which 

made a few centimeters of movement up close be recorded similar to a meter of 

movement at 100cm.  By reducing the complexity of shape geometry through detection 

from a distance, the tracker was less likely to have a shifting center of mass each time 

the computer vision software updated the pixel outline. A method to cut off close-up 

detection through the determination of pixel areas sizes is established. 

 

B.2. Validation test 1: Accuracy of movement detection in single and multi-tracking 

of long-tailed birds. 

B.2.1 Method for validation test 1 

A tablet and cellular phone equipped to record video were set up adjacent to a cage 

holding two client-owned juvenile parrots, Blue-throated Conures (Pyrrhura cruentata.) 

The species is a long-tailed parrot (Figure B1). 
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Figure B.1. Photo of client-owned conures 

 

The tablet was set to detect the birds’ motion. The tracking software can track up to four 

different moving bodies simultaneously. We set the software to track two moving bodies 

and recorded over two hours per day for two days, producing a total of approximately 

five hours of both video and tracking data. To determine how successful the software was 

at tracking the birds, we selected 106 six-second samples of video, which represented 

periods of alternating movement and stillness. We scored if zero, one, or two birds were 

moving in the cage during these six seconds.  For these same 106 six-second periods, we 

used the tracking software data to determine if zero, one, or two trackers recorded motion. 

The software was set to show the camera’s perception on-screen during bird motion 

recording, allowing for a detailed review of how false positives or negatives occurred 

(Figure B2). 

 

During movement recording, a human observer watched the data recording for one hour. 
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To better understand how the computer vision “saw” movement, a setting was enabled to 

see the live video analysis on the tablet. This was done to understand how the tablet 

might misinterpret motion.  

 

The laboratory utilized the Asus Zenpad 8.0 P001 tablet for experiments. As many 

animal enclosures do not have wireless network access, the tablet cannot check online to 

update its clock. The accuracy of the tablet’s internal clock is important to data validity 

as the data is timestamped. To check that this model of tablet can maintain its clock 

while running the software, the data timestamps were also evaluated. An accurate digital 

clock was placed so it was viewable on video. The tablet ran offline for the two day 

recording period, allowing adequate time to detect if the clock ran fast or slow. 

 

 

  

Figure B.2. Tablet view and video view of the cage set up, before the addition of 

birds and clock. 
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B.2.2. Data analysis for validation test 1 

For each of the 106 six-second periods, the human movement score was compared to the 

tablet software movement score to determine the percentage of time both human and 

tracking reported motion of zero, one, and two birds. The timestamped data from the 

tablet was checked against video of the clock to see if the tablet remained accurate over 

the recording period. 

 

The largest distance movement data were checked against the video to see if the 

recorded time for peak movement matched the time on the digital clock in the video, to 

see if peak movement was accurately recorded by the tablets when compared to human 

observation. 
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B.3. Results for validation test 1 

The single tracker was in agreement with the human scorer 80% of the time out of 106 

human detections of movement. The double tracker agreement with human 72%, for 9 

human detections of movement. Review of disagreements between the single tracker and 

human scorer mainly appeared to be smaller movement amounts, such as head and body 

swaying, which were marginal cases. Inaccurate detection by the tablet was primarily 

false negatives occurred, whereupon review the bird moved its center of mass several 

centimeters across the cage but the tracker did not report movement. 

 

The internal clock appeared accurate throughout the recording period, allowing us to 

confidently use the tablets’ internal clocks for data recording when wireless internet is 

not available.  

 

B.4. Discussion for validation test 1 

These long-tailed birds can incorrectly cause the tracker to record two birds are moving. 

The number of birds recorded by the multi-tracker was imperfect. Approximately 5% of 

all recordings were false-positive detections of two birds moving when only one bird 

was moving. The human observer noted that two trackers occasionally appeared, one in 

the center of the bird, and one in the center or end of the bird’s tail, which is equal to the 

length of the bird. 
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While pairs of long-tailed birds should be fine for consumer pet interaction, for early 

scientific studies, single, short-tailed birds are prescribed to increase the accuracy of the 

system. The single bird tracking scored a "B" grade and is acceptable for future use.  The 

movement tracker is accurate for the recording of “moving” or “not moving” to usefully 

shows animals’ activity change on a fine scale. 

 

B.5 Validation test 2: Distance and accuracy of movement detection for a single 

short-tailed bird. 

B.5.1. Method for validation test 2 

 

On the first day, tablet positions and recording data was taken from different distances to 

define the experimental setup, utilizing a client-owned Galah Cockatoo, Eolophus 

roseicapillus  shown in figure B3. On the second day, a different client-owned Galah 

Cockatoo was recorded in a cage, for approximately two hours. As shown in figure 4, 

recording utilized a tablet in the cage tracking motion, a tablet outside of the cage 

tracking motion, and a video recording capturing the entire cage.  
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Figure B.3. Photo of a short-tailed, client-owned cockatoo. 

 

The near tablet was 75 cm distant from the birds’ perch, mounted to the cage, and far 

tablet was 105 cm away from the bird, mounted a distance away from the cage. This 

allowed for two comparisons. The first comparison studied viewing angle and amount of 

movements captured. It was hypothesized that the limited viewing angle of the tablet  

internal tablet would miss movement when compared to the wide view of the far tablet. 

The second comparison was of distance affecting the amount of movement recorded The 

hypothesis for the second comparison was that distance would be magnified by the 

closer proximity tablet. 
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Figure B.4. Arrangement of two tablets and video recorder 

The leftmost arrow is the far tablet at 104cm from the perch. Center is the video 

recording tablet for validation. Rightmost arrow is the 75cm distance tablet. In the 

right image, there is a cockatoo on the perch. 

 

 

B.5.2. Data analysis for validation test 2 

The data from the two tablets for the same time period were compared. The percent 

different between the data was computed. The largest disagreements of data between the 

two tablets, video was reviewed. 

 

B.6 Results for validation test 2 

Distance away from the tablet had a major effect on the amount of motion detected. The 

tablet nearer to the birds recorded movement totals approximately 10-400%  greater than 

the farther away table, with a single extreme of 2000% more movement for one data 

point.  These differences were due to center of mass detection as well as the faster 

crossing of the field of view when the subject was close to the tablet. 
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At far distances the tablet recorded distance change in a more accurate and useful way. 

At close distance, center of mass change may be erroneously recorded moving from 

edge to edge of the field of view during changes in pixel geometry between frames.  The 

distance from the tablet at which small comfort movements (i.e., scratching, yawning) of 

a medium-sized pet bird no longer register as center of mass movements was >100 cm.  

 

Surprisingly, >90% movement detected by the far tablet was also detected by the near 

tablet, despite the near tablet having a limited field of view of the cage interior. This 

appeared to be because the highest perch is preferred by birds. By aiming the limited 

viewing angle toward the high perch, all movement along the length of the perch, upper 

cage walls, and ceiling were recorded. 

 

B.7. Discussion for validation test 2 

The software currently has a setting to eliminate close objects from the tracking. This is 

done by ignoring moving objects that are over a certain pixel area size. This can be used 

at short distances to eliminate a problem we found in previous versions of the exercise 

game, where birds got very close to the camera and bobbed back and forth to win the 

game, without effectively exercising. For a medium bird in a typical house cage, settings 

can be used to only reward movement when the bird is small compared to the field of 

view.  The 100 cm distance seems to be a useful minimum for a medium-sized parrot.  
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Video review showed that some activities, that did not result in a location change, such 

as wing stretching, registered as movement on the motion tracker for the close tablet, but 

not for the far tablet. As wing stretches and body feather puffing result in increased 

apparent body size, we believe we can remove those comfort motions from exercise 

detection by closely matching the size limit to the size of the bird at the minimum 

desired distance. We propose that for future experimental setups, recording movement 

will start by taking a video still from the tablet’s camera when the bird is at the desired 

distance, then counting the area of pixels using Adobe Photoshop’s selected pixel 

reporting, and setting the pixels detection area to be plus or minus 60% of the desired 

body size relative to the field of view. 

 

Small cage set ups (~95 cm3) with medium or large birds (>200gm) will require careful 

calibration of the “too close” cut off to prevent feather scratching, fluffing, wing 

stretches and other non-exercise movements from being interpreted as center of mass 

change. This will likely be a non-issue for small birds, such as those parrots weighing 

near 30 gm, as their caging is typically many times larger than their beak-tail length, so 

the bird will often be farther away from the camera. For small birds, the cut off size 

could be two or three times their body area when on the preferred perching, without 

causing issues.  

 

At this time we are confident in the software and are beginning to run experimental trials 

to show exercise can be encouraged through the technology. We predict exercise games 
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will not be as time-intensive as testing the habituation app. Training “neophobic” 

animals to accept something new can take many repetitions which required daily 

attention for 21 days.  The exercise game, in anecdotal single bird tests, has shown 

nearly immediate interaction with birds. It is hoped this will allow for faster testing per 

bird, similar to what was seen in our initial pilot data submitted for the grant, where a 

bird went from near zero accuracy to approximately 25% accuracy for a game within 

eight gameplay sessions (unpublished Data Woodman, Strange, & Brightsmith, 2016).   

 




