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1. Introduction

The classical invariant theory [1–3] investigates polynomial invariants of linear actions of a Lie
group G on a vector space V, i.e., describes the algebra (S V∗)G. For instance, the case of binary forms
corresponds to G = SL(2,C) and V = C2; equivalently for G = GL(2,C) one studies instead the
algebra of relative invariants. The covariants correspond to invariants in the tensor product V ⊗W for
another representation W. Changing to the Cartesian product V ×W leads to joint invariants of G.

In this paper, we discuss joint invariants corresponding to the (diagonal) action of G on the
iterated Cartesian product V×m for increasing number of copies m ∈ N. We will focus on the case
G = Sp(2n,R), V = R2n and discuss the conformal G = CSp(2n,R) = Sp(2n,R)×R+ and affine
G = ASp(2n,R) = Sp(2n,R)nR2n versions later.

This corresponds to invariants of m-tuples of points in V, i.e., finite ordered subsets. By the
Hilbert-Mumford [1] and Rosenlicht [4] theorems, the algebra of polynomial invariants (for the
semi-simple G) or the field of rational invariants (in all other cases considered) can be interpreted as
the space of functions on the quotient space V×m/G.

For G = Sp(2n,C) the algebra of invariants is known [5]. Generators and relations (syzygies) are
described in the first and the second fundamental theorems, respectively. We review this in Theorem 1
(real version), and complement by explicit examples of free resolutions of the algebra. In addition,
we describe the field of rational invariants.

We also discuss invariants with respect to the group G = Sp(2n,R) × Sm, in which case
considerably less is known. Another generalization we consider is the field of invariants for the
conformal symplectic Lie group G = CSp(2n,R) on the contact space.

When approaching invariants of infinite sets, like curves or domains with smooth boundary,
the theory of joint invariants is not directly applicable and the equivalence problem is solved via
differential invariants [6]. In the case of a group G and a space V as above this problem was solved
in [7]. We claim that the differential invariants from this reference can be obtained in a proper limit of
joint invariants, i.e., via a certain discretization and quasiclassical limit, and demonstrate it explicitly
in several cases.

In this paper, we focus on discussion of various interrelations of joint invariants. In particular,
at the conclusion we note that joint invariants can be applied to the equivalence problem of binary
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forms. Since these have been studied also via differential invariants [2,8] a further link to the above
symplectic discretization is possible.

The relation to binary forms mentioned above is based on the Sylvester theorem [9], which in
turn can be extended to more general Waring decompositions, important in algebraic geometry [10].
Our computations should carry over to the general case. This note is partially based on the results
of [11], generalized and elaborated in several respects.

2. Recollection: Invariants

We briefly recall the basics of invariant theory, referring to [3,12] for more details.
Let G be a Lie group acting on a manifold V. A point x ∈ V is regular if a neighborhood of the

orbit G · x is fibred by G-orbits. A point x ∈ V is weakly regular, if its (not necessary G-invariant)
neighborhood is foliated by the orbits of the Lie algebra g = Lie(G). In general, the action can lack
regular points, but a generic point is weakly regular. For algebraic actions a Zariski open set of points
is regular.

2.1. Smooth Invariants

If G and V are only smooth (and non-compact), there is little one can do to guarantee regularity a
priori. An alternative is to look for local invariants, i.e., functions I = I(x) in a neighborhood U ⊂ V
such that I(x) = I(g · x) as long as x ∈ U and g ∈ G satisfy g · x ∈ U.

The standard method to search for such I is by elimination of group parameters, namely by
computing quasi-transversals [3] or using normalization and moving frame [2]. Another way is to
solve the linear PDE system Lξ(I) = 0 for ξ ∈ g = Lie(G).

Given the space of invariants {I} one can extend U ⊂ V and address regularity. In our case the
invariants are easy to compute and we do not rely on any of these methods; however instead we
describe the algebra and the field of invariants depending on specification of the type of functions I.

2.2. Polynomial Invariants

If G is semi-simple and V is linear, then by the Hilbert-Mumford theorem generic orbits can
be separated by polynomial invariants I ∈ (S V∗)G, where S V∗ = ⊕∞

k=0SkV∗ is the algebra of
homogeneous polynomials on V. With a choice of linear coordinates x = (x1, ..., xn) on V we identify
S V∗ = R[x].

Moreover, by the Hilbert basis theorem, the algebra of polynomial invariants AG = (S V∗)G is
Noetherian, i.e., finitely generated by some a = (a1, . . . , as), aj = aj(x) ∈ AG.

Denote byR = R[a] the free commutative R-algebra generated by a. It forms a free module F0

over itself. AG is also anR-module with surjectiveR-homomorphism φ0 : F0 → AG, φ0(aj) = aj(x).
The first syzygy module S1 = Ker(φ0) fits the exact sequence

0→ S1 → F0 → AG → 0.

A syzygy is an element of S1, i.e., a relation r = r(a) between the generators of AG of the form
∑k

p=1 rip ajp = 0, rip ∈ R.
The module S1 is Noetherian, i.e., finitely generated by some b = (b1, . . . , bt). Denote the

free R-module generated by b by F1 = R[b]. The natural homomorphism φ1 : F1 → S1 ⊂ F0,
φ1(bj) = bj(a), defines the second syzygy module S2 = Ker(φ1), and we can continue obtaining
S2 ⊂ F2 = R[c], etc. This yields the exact sequence ofR-modules:

. . .
φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ AG → 0.

The Hilbert syzygy theorem states that q-th module of syzygies Sq is free for q ≥ s = #a.
In particular, the minimal free resolution exists and has length ≤ s, see [13].
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To emphasize the generating sets, we depict free resolutions as follows:

R[x] ⊃ AG ← R[a]← R[b]← R[c]← · · · ← 0.

2.3. Rational Invariants

If G is algebraic, in particular reductive, then by the Rosenlicht theorem [4] generic orbits can
be separated by rational invariants I ∈ FG. Here R(x) is the field of rational functions on V and
FG = R(x)G.

Let d be the transcendence degree of FG. This means that there exist (a1, . . . , ad) = ā, aj ∈ FG,
such that FG is an algebraic extension of R(ā). Then either FG = R(a) for a = ā or FG is generated
by a set a ⊃ ā, which by the primitive element theorem can be assumed of cardinality s = #a = d + 1,
i.e., a = (a1, . . . , ad, ad+1). In the latter case there is one algebraic relation on a. Please note that d ≤ n
because R(ā) ⊂ R(x).

We adopt the following convention for depicting this:

R(x) ⊃ FG
alg
⊃ R(ā)

d
⊃ R.

2.4. Our Setup

If the Lie group G acts effectively on V, then for some q it acts freely on V×q, and hence on all
V×m for m ≥ q. The number of rational invariants separating a generic orbit in V×m is equal to the
codimension of the orbit.

It turns out that knowing all those invariants I on V×q is enough to generate the invariants on V×m

for m > q. Indeed, let πi1,...,iq : V×m → V×q be the projection to the factors (i1, . . . , iq). Then the union
of π∗i1,...,iq I for I from the field FG(V×q) gives the generating set of the field FG(V×m), and similarly
for the algebra of invariants.

Below we denote Am
G = AG(V×m) and Fm

G = FG(V×m).

2.5. The Equivalence Problem

For a semi-simple Lie group G the field FG is obtained from the ring AG by localization
(field of fractions): FG = F(AG). Hence we discuss a solution to the equivalence problem through
rational invariants.

Let I1, . . . , Is be a generating set of invariants of the action of G on V×q. If s = d + 1, this set of
generators is subject to an algebraic condition, which constrains the generators to an algebraic set
Σ ⊂ Rs. If s = d then Σ = Rd. This Σ is the signature space, cf. [14].

Now the q-tuple of points X = (x1, . . . , xq) is mapped to I1(X), . . . , Is(X) ∈ Σ. Denote this map
by Ψ. Two generic configurations of points X′, X′′ ∈ V×q are G-equivalent iff their signatures coincide
Ψ(X′) = Ψ(X′′).

3. Invariants on Symplectic Vector Spaces

Let V = R2n(x1, . . . , xn, y1, . . . , yn) be equipped with the standard symplectic form
ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. The group G = Sp(2n,R) acts almost transitively on V, preserving

the origin O. Thus, there are no continuous invariants of the action, F 1
G = R. The first invariant occurs

already for two copies of V. Namely for a pair of points Ai, Aj ∈ V the double symplectic area of the
triangle OAi Aj is

aij = ω(OAi, OAj) = xiyj − xjyi =
n

∑
k=1

xk
i yk

j − xk
j yk

i .
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3.1. The Case n = 1

Consider at first the case of dimension 2, where V = R2(x, y), ω = dx ∧ dy. The invariant
a12 = x1y2 − x2y1 on V × V generates pairwise invariants aij on V×m for m ≥ 2 induced through
the pull-back of the projection πi,j : V×m → V ×V to the corresponding factors. Below we describe
minimal free resolutions of Am

G for m ≥ 2.

3.1.1. V ×V

Here the algebra is generated by one element, whence the resolution:

R[x1, x2, y1, y2] ⊃ A2
G ← R[a12]← 0

In other words, A2
G ' R := R[a12]. Please note that F 2

G = R(a12).

3.1.2. V× 3 = V ×V ×V

Here the action is free on the level of m = 3 copies of V and we get 3 = dim V×3 − dim G
independent invariants a12, a13, a23. They generate the entire algebra, and we get the following
minimal free resolution:

R[x1, x2, x3, y1, y2, y3] ⊃ A3
G ← R[a12, a13, a23]← 0

Once again, A3
G ' R := R[a12, a13, a23]. Also F 3

G = R(a12, a13, a23).

3.1.3. V× 4

Here dim V×4 = 8, dim G = 3 and we have 6 invariants a = {aij : 1 ≤ i < j ≤ 4}. To obtain
a relation, we try eliminating the variables x1, x2, x3, x4, y1, y2, y3, y4, but this fails with the standard
MAPLE command. Yet, using the transitivity of the G-action we fix A1 at (1, 0) and A2 at (0, a12),
and then obtain the only relation

b1234 := a12a34 − a13a24 + a14a23 = 0

that we identify as the Plücker relation. Thus, the first syzygy is a module over R := R[a] with one
generator, hence the minimal free resolution is:

R[x, y] ⊃ A4
G ← R[a12, a13, a14, a23, a24, a34]← R[b1234]← 0.

For the field of rational invariants one of the generators is superfluous, for instance we can resolve the
relation b1234 = 0 for a34 = (a13a24 − a14a23)/a12, and get

R(x1, x2, x3, x4, y1, y2, y3, y4) ⊃ F 4
G ' R(a12, a13, a14, a23, a24)

5
⊃ R

3.1.4. V× 5

The algebra of invariants A5
G is generated by a = {aij : 1 ≤ i < j ≤ 5}. This time the number of

generators is 10, while codimension of the orbit is 10− 3 = 7. Using the same method we obtain that
the first syzygy module is generated by the Plücker relations

bijkl := aijakl − aikajl + ailajk = 0.

We have 5 of those: b = {bijkl : 1 ≤ i < j < k < l ≤ 5}. Thus, there should be relations among
relations, or equivalently second syzygies. If F0 = R[a] =: R and F1 = R[b] then this module is
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S2 = Ker(φ1 : F1 → S1 ⊂ F0). Using elimination of parameters, we find that S2 is generated by
c = {ci : 1 ≤ i ≤ 5} with

ci :=
5

∑
j=1

(−1)jaijb1... ̌...5.

For instance, c1 = a12b1345 − a13b1245 + a14b1235 − a15b1234. Then we look for relations between the
generators c of S2, defining the third syzygy module S3. It is generated by one element

d := (a23a45 − a24a35 + a25a34)c1 + (−a13a45 + a14a35 − a15a34)c2

+ (a12a45 − a14a25 + a15a24)c3 + (−a12a35 + a13a25 − a15a23)c4

+ (a12a34 − a13a24 + a14a23)c5 = 0.

Thus, the minimal free resolution of A5
G is (note that here, as well as in our other examples, the length

of the resolution is smaller than what the Hilbert theorem predicts):

R[x, y] ⊃ A5
G ← R[a]← R[b]← R[c]← R[d]← 0.

As before, to generate the field of rational invariants, we express superfluous generators in
terms of the others using the first syzygies. Specifically, we express a34, a35, a45 from the relations
b1234, b1235, b1245; the other 2 syzygies follow from the higher syzygies. Removing these generators,
we obtain a set of 7 independent generators ā = a \ {a34, a35, a45} whence

R(x, y) ⊃ F 5
G ' R(ā)

7
⊃ R.

3.1.5. General V× m

The previous arguments generalize straightforwardly to conclude that Am
G is generated

by a = {aij : 1 ≤ i < j ≤ m}. The first syzygy module is generated by the Plücker relations
b = {bijkl : 1 ≤ i < j < k < l ≤ m}. In other words we have:

Am
G = 〈a | b〉.

Similarly, the field of rational invariants is generated by a, yet all of them except for
a1j, a2j can be expressed (rationally) through the rest via the Plücker relations b12kl . Denote
ā := {a12, a13, . . . , a1m, a23, . . . , a2m}, #ā = 2m− 3. Then we get for m ≥ 2:

R(x, p) ⊃ Fm
G ' R(ā)

2m−3
⊃ R.

3.2. The General Case: Algebra of Polynomial Invariants

Minimal free resolutions can be computed in many examples for n ≥ 1. However, in what follows
we restrict our attention to describing generators/relations of Am

G .
Let us count the number of local smooth invariants. The action of G on V is almost

transitive, so the stabilizer of a nonzero point A1 has dim GA1 = (2n+1
2 ) − 2n = (2n

2 ). For a
generic A2 there is only one invariant a12 (the orbit has codimension 1) and the stabilizer of
A2 in GA1 has dim GA1,A2 = (2n

2 )− (2n− 1) = (2n−1
2 ). For a generic A3 there are two more new

invariants a13, a23 (the orbit has codimension 2 + 1 = 3) and the stabilizer of A3 in GA1,A2 has
dim GA1,A2,A3 = (2n−1

2 )− (2n− 2) = (2n−2
2 ). By the same reason for k ≤ 2n the stabilizer of a generic

k-tuple of points A1, . . . , Ak has dim GA1,...,Ak = (2n−k+1
2 ). Finally, for k = 2n the stabilizer of generic

A1, . . . , A2n is trivial.
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Thus, we get the expected number of invariants aij. For m ≤ 2n + 1 there are no relations between
them, and the first comes at m = 2n + 2. These can be obtained by successively studying cases of
increasing n resulting in the Pfaffian relation:

bi1i2 ...i2n+1i2n+2 := Pf(aipiq)1≤p,q≤2n+2 = 0.

Recall that the Pfaffian of a skew-symmetric operator S on V with respect to ω is
Pf(S) = volω(Se1, . . . , Se2n) for any symplectic basis ei of V. The properties of the Pfaffian are:
Pf(S)2 = det(S), Pf(TSTt) = det(T)Pf(S). For n = 1 we get

b1234 = Pf


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 = a12a34 − a13a24 + a14a23.

Similarly, for n = 2 we get

b123456 =a12a34a56 − a12a35a46 + a12a36a45 − a13a24a56 + a13a25a46 − a13a26a45+

a14a23a56 − a14a25a36 + a14a26a35 − a15a23a46 + a15a24a36 − a15a26a34+

a16a23a45 − a16a24a35 + a16a25a34 = 0.

Denote b = {bi1i2 ...i2n+1i2n+2 : 1 ≤ i1 < i2 < · · · < i2n+1 < i2n+2 ≤ m}.

Theorem 1. The algebra of G-invariants is generated by a with syzygies b:

Am
G = 〈a | b〉.

Proof. Let us first prove that the invariants aij generate the field Fm
G of rational invariants for m = 2n.

We use the symplectic analog of Gram-Schmidt normalization: given points A1, . . . , A2n in general
position, we normalize them using G = Sp(2n,R) as follows.

Let e1, . . . , e2n be a symplectic basis of V, i.e., ω(e2k−1, e2k) = 1 and ω(ei, ej) = 0 else. At first
A1 can be mapped to the vector e1. The point A2 can be mapped to the line Re2, and because of
ω(OA1, OA2) = a12 it is mapped to the vector a12e2. Next in mapping A3 we have two constraints
ω(OA1, OA3) = a13, ω(OA2, OA3) = a23, and the point can be mapped to the space spanned by
e1, e2, e3 satisfying those constraints. Continuing like this, we arrive to the following matrix with
columns OAi: 

1 0 − a23
a12

− a24
a12

. . . − a2,2n−1
a12

− a2,2n
a12

0 a12 a13 a14 . . . a1,2n−1 a1,2n
0 0 1 0 . . . ∗ ∗

0 0 0 b1234
a12

... ∗ ∗
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 a2n−1,2n


where b1234 = a12a34 − a13a24 + a14a23 (this does not vanish in general if n > 1) and by ∗ we denote
some rational expressions in aij that do not fit the table.

If m < 2n then only the first m columns of this matrix have to be kept. If m > 2n then the remaining
points A2n+1, . . . , Am have all their coordinates invariant as the stabilizer of the first 2n points is trivial.
Thus, the invariants are expressed rationally in aij.

To obtain polynomial invariants one clears the denominators in these rational expressions, and so
Am

G is generated by a as well.
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Now the Pfaffian of the skew-symmetric matrix (aij)2k×2k is the square root of the determinant of
the Gram matrix of the vectors OAi, 1 ≤ i ≤ k, with respect to ω. If we take k = n + 1 then the vectors
are linearly dependent and therefore the Pfaffian vanishes. Thus, b are syzygies among the generators
a. That they form a complete set follows from the same normalization procedure as above.

Remark 1. Theorem 1 is basically known: H. Weyl described the generators a as the first fundamental theorem;
his second fundamental theorem gives not only the syzygy denoted above by b, but also several different Pfaffians
of larger sizes. Namely he lists in ([5], VI.1) the syzygies bi1 ...i2n+2k := Pf(aipiq)1≤p,q≤2n+2k = 0, 1 ≤ k ≤ n.
Those however are abundant. For instance, in the simplest case n = 2

b12345678 = a12b345678 − a13b245678 + a14b235678 − a15b234678 + a16b234578 − a17b234568 + a18b234567.

In general, the larger Pfaffians can be expressed via the smallest through the expansion by minors [15] (this fact
was also noticed in [16]). Here is the corresponding Pfaffian identity (below we denote S2n+1 = {σ ∈ S2n+2 :
σ(1) = 1})

bi1i2 ...i2n+1i2n+2 =
1
n! ∑

σ∈S2n+1

(−1)sgn(σ)ai1iσ(2)biσ(3) ...iσ(2n+2)
.

In ([3], §9.5) another set of syzygies was added: qi1 ...i4n+2 = det(ais ,it+2n+1)
2n+1
s,t=1 = 0. These are also

abundant, and should be excluded. For instance, for n = 1 we get

q123456 = a12b3456 − a34b1256 + a35b1246 − a36b1245.

3.3. The General Case: Field of Rational Invariants

Since G is simple, the field of rational invariants is the field of fractions of the algebra of polynomial
invariants: Fm

G = F(Am
G). To obtain its basis one can use the syzygies bi1 ...i2n+2 = 0 to express all

invariants through ā = {aij : 1 ≤ i ≤ 2n; i < j ≤ m}.
This can be done rationally (with b1...2n 6≡ 0 in the denominator), for instance for n = 2 we can

express a56 from the syzygy b123456 = 0 as follows:

a56 = (a12a35a46 − a12a36a45 − a13a25a46 + a13a26a45 + a14a25a36 − a14a26a35 + a15a23a46

− a15a24a36 + a15a26a34 − a16a23a45 + a16a24a35 − a16a25a34)/(a12a34 − a13a24 + a14a23).

In general, we have #ā = 2nm− n(2n + 1) for m ≥ 2n, in summary:

R(x, y) ⊃ Fm
G ' R(ā)

d(m,n)
⊃ R,

where

d(m, n) =

{
2nm− n(2n + 1) for m ≥ 2n
(m

2 ) for m ≤ 2n.

4. Variation on the Group and Space

Let us consider inclusion of symmetrization, scaling and translations to the transformation group
G. We also discuss contactization of the action.
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4.1. Symmetric Joint Invariants

Invariants of the extended group Ĝ = Sp(2n,R)× Sm on V×m are equivalent to G-invariants
on configurations of unordered sets of points V×m/Sm (which is an orbifold). Denote the algebra of
polynomial Ĝ-invariants on V×m by Sm

G ⊂ Am
G . The projection π : Am

G → Sm
G is given by

π( f ) =
1

m! ∑
σ∈Sm

σ · f .

As a Noetherian algebra Sm
G is finitely generated, yet it is not easy to establish its generating set

explicitly. All linear terms average to zero, π(aij) = 0, but there are several invariant quadratic terms
in terms of the homogeneous decomposition Am

G = ⊕∞
k=0A

m
k .

For example, for n = 1, m = 4 we have A4
0 = R, A4

1 = R6 = 〈a12, a13, a14, a23, a24, a34〉, A4
2 = R20

(21 monomials aijakl modulo 1 Plücker relation), etc. Then π(A4
0) = R, π(A4

1) = 0, and π(A4
2) = R2

has generators

6π(a2
12) = a2

12 + a2
13 + a2

14 + a2
23 + a2

24 + a2
34,

12π(a12a13) = a12a13 + a12a14 + a13a14 − a12a23 − a12a24 + a23a24

+ a13a23 − a13a34 − a23a34 + a14a24 + a14a34 + a24a34.

Theorem 2. The field of symmetric rational invariants Fm
G = π(Fm

G ) is the field of fractions Fm
G = F(Sm

G ) and
its transcendence degree is d(m, n).

Proof. This follows from general theorems ([17], §2.5) and discussion in Section 2.

The last statement can be made more constructive: Let ` numerate indices (ij) of the basis ā of
Fm

G as in Section 3.3, 1 ≤ ` ≤ d = d(m, n). One can check that qk = π(∏`≤k a2
`) are algebraically

independent. Thus, denoting q = (q1, . . . , qd) we obtain the presentation

R(x, y) ⊃ Fm
G

alg
⊃ R(q)

d(m,n)
⊃ R.

Here is an algorithm to obtain generators of Sm
G .

Proposition 1. Fix an order on generators aij of Am
G , and induce the total lexicographic order on monomials

aσ ∈ R = R[a]. Let Σ be the Gröbner basis of the R-ideal generated by π(aσ). Then elements π(aσ),
contributing to Σ, generate Sm

G = π(Am
G).

Proof. Please note that the algorithm proceeds in total degree of aσ until the Gröbner basis stabilizes.
That the involved π(aσ) generate Sm

G as an algebra (initially they generate the idealR · π(Am
G) ⊂ Am

G)
follows from the same argument as in the proof of Hilbert’s theorem on invariants [1]. (The above π is
the Reynolds operator used there.)

Let us illustrate how this works in the first nontrivial case m = 3, for any n.
In this case, the graded components of S3

G = π(A3
G) have the following dimensions: dimS3

0 = 1,
dimS3

1 = 0, dimS3
2 = 2, dimS3

3 = 1, dimS3
4 = 4, dimS3

5 = 2, dimS3
6 = 7, etc., encoded into the

Poincaré series

P3
S (z) = 1 + 2z2 + z3 + 4z4 + 2z5 + 7z6 + 4z7 + 10z8 + 7z9 + . . . =

1 + z4

(1− z2)2(1− z3)
.
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For the monomial order a12 > a13 > a23 the invariants

I2a = 3π(a2
12) = a2

12 + a2
13 + a2

23, I2b = 3π(a12a13) = a12a13 − a12a23 + a13a23,

I3 = 6π(a2
12a13) = a2

12(a13 + a23)− a2
23(a12 + a13) + a2

13(a12 − a23),

I4 = 3π(a2
12a2

13) = a2
12a2

13 + a2
12a2

23 + a2
13a2

23

generate a Gröbner basis of the ideal R · π(Am
G) with the leading monomials of the corresponding

Gröbner basis equal: a2
12, a12a13, a3

13, a12a3
23, a2

13a2
23, a13a3

23, a4
23.

The Gröbner basis also gives the following syzygy R8:

(4I2
2a + 4I2a I2b + 3I2

2b)I2
2b − (8I2

2a + 4I2a I2b + 14I2
2b)I4 + 4(I2a − 2I2b)I2

3 + 27I2
4 = 0.

In other words, S3
G = 〈I2a, I2b, I3, I4 | R8〉. We also derive a presentation of the field of rational invariants

(2 : 1 means quadratic extension)

R(x, y) ⊃ F3
G

2:1
⊃ R(I2a, I2b, I3)

3
⊃ R.

4.2. Conformal and Affine Symplectic Groups

For the group G1 = CSp(2n,R) = Sp(2n,R)×R+ the scaling makes the invariants aij relative,
yet of the same weight, so their ratios [a12 : a13 : · · · : am−1,m] or simply the invariants Iij =

aij
a12

are
absolute invariants. These generate the field of invariants of transcendence degree d(m, n)− 1.

For the group G2 = ASp(2n,R) = Sp(2n,R)nR2n the translations do not preserve the origin O
and this makes aij non-invariant. However due to the formula 2ω(A1 A2 A3) = a12 + a23− a13 (or more
symmetrically: a12 + a23 + a31), with the proper orientation of the triangle A1 A2 A3, we easily recover
the absolute invariants aij + ajk + aki.

Alternatively, using the translational freedom, we can move the point A1 to the origin O. Then its
stabilizer in G2 is G = Sp(2n,R) and we compute the invariants of (m− 1) tuples of points A2, . . . , Am

as before. In particular they generate the field of invariants of transcendence degree d(m− 1, n).

4.3. Invariants in the Contact Space

Infinitesimal symmetries of the contact structure Π = Ker(α), α = du − y dx in the contact
space M = R2n+1(x, y, u), where x = (x1, . . . , xn), y = (y1, . . . , yn), are given by the contact vector
field XH with the generating function H = H(x, y, u). Taking quadratic functions H with weights
w(x) = 1, w(y) = 1, w(u) = 2 results in the conformally symplectic Lie algebra, which integrates
to the conformally symplectic group G1 = CSp(2n,R) (taking H of degree ≤ 2 results in the affine
extension of it by the Heisenberg group).

Alternatively, one considers the natural lift of the linear action of G = Sp(2n,R) on V = R2n to
the contactization M and makes a central extension of it. We will discuss the invariants of this action.
Please note that this action is no longer linear, so the invariants cannot be taken to be polynomial,
but can be assumed rational.

4.3.1. The Case n = 1

In the 3-dimensional case the group G1 = GL(2,R) acts on M = R3(x, y, u) as follows:

G1 3 g =

(
α β

γ δ

)
: (x, y, u) 7→ (αx + βy, γx + δy, f (x, y, u)),

where f (x, y, u) = (αδ− βγ)
(

u− xy
2

)
+

(αx + βy)(γx + δy)
2

.
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This action is almost transitive (no invariants); however there are singular orbits and a relative
invariant R = xy− 2u. Extending the action to multiple copies of M, i.e., considering the diagonal
action of G1 on M×m, results in m copies of this relative invariant, but also in the lifted invariants from
various V×2:

Rk = xkyk − 2uk (1 ≤ k ≤ m), Rij = xiyj − xjyi (1 ≤ i < j ≤ m).

These are all relative invariants of the same weight, therefore their ratios are absolute invariants:

Tk =
Rk
Rm

(1 ≤ k < m), Tij =
Rij

Rm
(1 ≤ i < j ≤ m).

Since uk enter only Rk there are no relations involving those, and the relations on Tij are the same as
for aij, namely they are Plücker relations (since those are homogeneous, they are satisfied by both
Rij and Tij). As previously, we can use them to eliminate all invariants except for T̄ = {Tk, T1i, T2i}:

Tkl =
T1kT2l − T1lT2k

T12
, 3 ≤ k < l ≤ m.

The field of rational invariants for m > 1 is then described as follows:

R(x, y, u) ⊃ Fm
G1
' R(T̄)

3m−4
⊃ R.

4.3.2. The General Case

In general, we also have no invariants on M and the following relative invariants on M×m

Rk = xkyk − 2uk (1 ≤ k ≤ m), Rij = xiyj − xjyi (1 ≤ i < j ≤ m)

resulting in absolute invariants Tk, Tij given by the same formulae. Again, using the Pfaffian relations
we can rationally eliminate superfluous generators, and denote the resulting set by T̄ = {Tk, Tij : 1 ≤
k < m, i < j ≤ m, 1 ≤ i ≤ 2n}. This set is independent and contains d̄(m, n) elements, where

d̄(m, n) =

{
(2n + 1)m− n(2n + 1)− 1 for m ≥ 2n
(m

2 ) + m− 1 = (m+1
2 )− 1 for m ≤ 2n.

This d̄(m, n) is thus the transcendence degree of the field of rational invariants:

R(x, y, u) ⊃ Fm
G1
' R(T̄)

d̄(m,n)
⊃ R.

5. From Joint to Differential Invariants

When we pass from finite to continuous objects the equivalence problem is solved through
differential invariants. In [7] this was done for submanifolds and functions with respect to our groups
G. After briefly recalling the results, we will demonstrate how to perform the discretization in several
different cases.

5.1. Jets of Curves in Symplectic Vector Spaces

Locally a curve in R2n is given as u = u(t) for t = x1 and u = (x2, . . . , xn, y1, . . . , yn) in the
canonical coordinates (x1, x2, . . . , xn, y1, . . . , yn), ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. The corresponding
jet-space J∞(V, 1) has coordinates t, u, ut, utt, . . . , and Jk is the truncation of it. For instance, J1(V, 1) =
R4n−1(t, u, ut). Please note that dim Jk(V, 1) = 2n + k(2n− 1).
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In the case of dimension 2n = 2, the jet-space is Jk(V, 1) = Rk+2(x, y, yx, . . . , yx..x). Here G =

Sp(2,R) has an open orbit in J1(V, 1), and the first differential invariant is of order 2:

I2 =
yxx

(xyx − y)3 .

There is also an invariant derivation (Dx is the total derivative with respect to x)

∇ =
1

xyx − y
Dx.

By differentiation we get new differential invariants I3 = ∇I2, I4 = ∇2 I2, etc. The entire algebra of
differential invariants is free:

AG = 〈I2 ; ∇〉.

In the general case we denote the canonical coordinates on V = R2n by (t, x, y, z), where x and z
and (n− 1)-dimensional vectors. G = Sp(2n,R) acts on J∞(V, 1). The invariant derivation is equal to

∇ =
1

(tyt − y + xzt − xtz)
Dt.

and the first differential invariant of order 2 is

I2 =
xtztt − xttzt + ytt

(tyt − y + xzt − xtz)3 .

There is one invariant I3 of order 3 independent of I2,∇(I2), one invariant I4 of order 4 independent of
I2,∇(I2), I3,∇2(I2),∇(I3), and so on up to order 2n. Then the algebra of differential invariants of G is
freely generated ([7], §4) so:

AG = 〈I2, I3, . . . , I2n ; ∇〉.

5.2. Symplectic Discretization

Consider first the case n = 1 with coordinates (x, y) on V = R2. Let Ai = (xi, yi), i = 0, 1, 2,
be three close points lying on the curve y = y(x). We assume A1 is in between A0, A2 and omit indices
for its coordinates, i.e., A1 = (x, y).

Let x0 = x − δ and x2 = x + ε. Denote also y′ = y′(x), y′′ = y′′(x), etc. Then from the Taylor
formula we have:

y0 = y− δy′ + 1
2 δ2y′′ − 1

6 δ3y′′′ + o(δ3),

y2 = y + εy′ + 1
2 ε2y′′ + 1

6 ε3y′′′ + o(ε3).

Therefore, the symplectic invariants aij = xiyj − xjyi are:

a12 = ε(xy′ − y) + 1
2 ε2xy′′ + 1

6 ε3xy′′′ + o(ε3),

a01 = δ(xy′ − y)− 1
2 δ2xy′′ + 1

6 δ3xy′′′ + o(δ3),

a02 = (ε + δ)(xy′ − y) + 1
2 (ε

2 − δ2)xy′′

+ 1
6 (ε

3 + δ3)xy′′′ − 1
2 (ε + δ)εδy′′ + o((|δ|+ |ε|)3).

This implies:
a01 − a02 + a12

a01a02a12
=

1
2

y′′

(xy′ − y)3 + o(|δ|+ |ε|).
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Thus, we can extract the invariant exploiting no distance (like ε = δ) but only the topology (ε, δ→ 0)
and the symplectic area. This works in any dimension n, and using the coordinates from the previous
subsection we get

lim
A0,A2→A1

Areaω(A0 A1 A2)

Areaω(OA0 A1)Areaω(OA0 A2)Areaω(OA1 A2)
=

2(xtztt − xttzt + ytt)

(tyt − y + xzt − xtz)3 = 2I2.

Similarly, we obtain the invariant derivation (it uses only two points and hence is of the first order)

lim
A0→A1

−−−→
A0 A1

Areaω(OA0 A1)
=

2Dt

(tyt − y + xzt − xtz)
= 2∇.

The other generators I3, I4, . . . (important for n > 1) can be obtained by a higher order discretization,
but the formulae become more involved.

5.3. Contact Discretization

Now we use joint invariants to obtain differential invariants of curves in contact 3-space
W = R3(x, y, u) with respect to the group G = GL(2,R), acting as in §4.3. The curves will be
given as y = y(x), u = u(x) and their jet-space is Jk(W, 1) = R2k+3(x, y, u, yx, ux, . . . , yx..x, ux..x).
The differential invariants are generated in the Lie–Tresse sense ([7], §8.1) as

AG = 〈I1, I2 ; ∇〉.

where

I1 =
ux − y
xyx − y

, I2 =
(xy− 2u)2

(xyx − y)3 yxx , ∇ =
xy− 2u
xyx − y

Dx.

Instead of exploiting the absolute rational invariants Ti, Tij we will work with the relative
polynomial invariants Ri, Rij from Section 4.3. To get absolute invariants we will then have to pass to
weight zero combinations.

Consider three close points Âi = (xi, yi, ui), i = 0, 1, 2, lying on the curve. We again omit indices
for the middle point, so x0 = x− δ, x1 = x and x2 = x + ε. Using the Taylor decomposition as in the
preceding subsection, we obtain

R1 = xy− 2u, R0 − R1 = δ(2u′ − y− xy′) + o(δ),

R01 = δ(xy′ − y) + o(δ), R02 = (ε + δ)(xy′ − y) + o(|ε|+ |δ|),
R12 = ε(xy′ − y) + o(ε), R01 + R12 − R02 = 1

2 εδ(ε + δ)y′′ + o((|ε|+ |δ|)3)

as well as −−−→
A0 A1 = δ(∂x + y′∂y + u′∂y) + o(δ).

Passing to jet-notations, we obtain the limit formulae for basic differential invariants:

I1 = lim
A0→A1

R0 − R1

2R01
+

1
2
= lim

A0→A1

T0 − 1 + T01

2T01
,

1
2

I2 = lim
A0,A2→A1

R2
1(R01 + R12 − R12)

R01R02R12
= lim

A0,A2→A1

T01 + T12 − T12

T01T02T12
,

∇ = lim
A0→A1

R1

R01

−−−→
A0 A1 = lim

A0→A1

−−−→
A0 A1

T01
.

These formulae straightforwardly generalize to invariants of jets of curves in contact manifolds
of dimension 2n + 1, n > 1, in which case there are also other generators obtained by higher
order discretizations.
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5.4. Functions and Other Examples

Let us discuss invariants of jets of functions on the symplectic plane. The action of
G = Sp(2,R) on J0V = V × R(u) ' R3(x, y, u), with I0 = u invariant, prolongs to J∞(V) =

R∞(x, y, u, ux, uy, uxx, uxy, uyy, . . . ). Please note that functions can be identified as surfaces in J0V
through their graphs.

For any finite set of points Âk = (xk, yk, uk) the values uk are invariant, and the other invariants
aij are obtained from the projections Ak = (xk, yk). In this way we get the basic first order invariant
(as before we omit indices x1 = x, y1 = y, u1 = y for the reference point A1 in the right-hand side)

I1 = lim
A0,A2→A1

a01(u1 − u2) + a12(u1 − u0)

a01 − a02 + a12
= xux + yuy

as well as two invariant derivations

∇1 =
−−→
OA1 = xDx + yDy, ∇2 = lim

A0→A1

I1

a01

−−−→
A0 A1 −

u1 − u0

a01

−−→
OA1 = uxDy − uyDx.

To obtain the second order invariant I2c = u2
xuyy − 2uxuyuxy + u2

yuxx let A0 belong to the line
through A1 in the direction ∇2 (this constraint reduces the second order formula to depend on only
two points), i.e., A0 = (x + εuy, y− εux), A1 = (x, y). Then u0 − u1 = ε2

2 I2c + o(ε2), a01 = εI1 and
letting ε→ 0 we obtain

lim
A0→A1

A0 A1‖∇2

u0 − u1

a2
01

=
I2c

2I2
1

.

In the same way we get I2a = x2uxx + 2xyuxy + y2uyy and I2b = xuyuxx − yuxuyy + (yuy − xux)uxy.
These however are not required as the algebra of differential invariants is generated as follows ([7],
§3.1) for some differential syzygiesRi:

AG = 〈I0, I2c ; ∇1,∇2 | R1,R2,R3〉.

Similarly, one can consider surfaces in the contact 3-space (with the same coordinates x, y, u but
different lift of Sp(2,R) extended to GL(2,R)) and higher-dimensional cases. The idea of discretization
of differential invariants applies to other problems treated in [7].

6. Relation to Binary and Higher Order Forms

According to the Sylvester theorem [9] a general binary form p ∈ C[x, y] of odd degree 2m− 1
with complex coefficients can be written as

p(x, y) =
m

∑
i=1

(αix + βiy)2m−1.

This decomposition is determined up to permutation of linear factors and independent multiplication
of each of them by a (2m− 1)-th root of unity.

In other words, we have the branched cover of order km = (2m− 1)mm!

×m(C2)→ S2m−1C2

and the deck group of this cover is Sm nZ×m
2m−1.

Please note that in the real case, due to uniqueness of the odd root of unity, the corresponding
cover over an open subset of the base

×m(R2)→ S2m−1R2
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has the deck group Sm.
With this approach the invariants of real binary forms are precisely the joint symmetric invariants

studied in this paper, and for complex forms one must additionally quotient by Z×m
2m−1, which is

equivalent to passing from aij to a2m−1
ij and other invariant combinations (example for m = 4:

a3
12a2

13a2
14a2

23a2
24a3

34) and subsequently averaging by the map π.
Other approaches to classification of binary forms, most importantly through differential

invariants [2,8], can be related to this via symplectic discretization.

Remark 2. Please note that the standard "root cover" C2m → S2m−1C2:

(a0, a1, . . . , a2m−1) 7→ (p0, p1, . . . , p2m−1),
2m−1

∑
i=0

pixiy2m−i−1 = a0

2m−1

∏
i=1

(x− aiy)

has order (2m− 1)! < km. Polynomial SL(2,C)-invariants of binary forms with this approach correspond to
functions on the orbifold C2m/S2m.

The above idea extends further to ternary and higher valence forms (see [18] for the differential
invariants approach and [19] for an approach using joint differential invariants) with the Waring
decompositions [10] as the cover, but here the group G is no longer symplectic. We expect all the ideas
of the present paper to generalize to the linear and affine actions of other reductive groups G.
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