Upper Decay Estimates for Non-Degenerate Kirchhoff Type Dissipative Wave Equations

By
Kosuke Ono
Department of Mathematical Sciences, Tokushima University, Tokushima 770-8502, JAPAN
e-mail : k.ono@tokushima-u.ac.jp

(Received September 30, 2019)

Abstract

We study on the Cauchy problem for non-degenerate Kirchhoff type dissipative wave equations $\rho u^{\prime \prime}+a\left(\left\|A^{1 / 2} u(t)\right\|^{2}\right) A u+u^{\prime}=0$ and $\left(u(0), u^{\prime}(0)\right)=\left(u_{0}, u_{1}\right)$, where $u_{0} \neq 0$ and the nonlocal nonlinear term $a(M)=1+M^{\gamma}$ with $\gamma>0$. Under the suitably smallness condition, we derive the upper decay estimates of the solution $u(t)$ for the case of $0<\gamma<1$ in addition to $\gamma \geq 1$.

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$.
In this paper we investigate on the upper decay estimates of the solution $u(t)$ for the non-degenerate Kirchhoff type dissipative wave equations :

$$
\left\{\begin{array}{l}
\rho u^{\prime \prime}+a\left(\left\|A^{1 / 2} u(t)\right\|^{2}\right) A u+u^{\prime}=0, \quad t \geq 0 \tag{1.1}\\
\left(u(0), u^{\prime}(0)\right)=\left(u_{0}, u_{1}\right) \in \mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right),
\end{array}\right.
$$

where $u=u(t)$ is an unknown real value function, ρ is a positive constant, ${ }^{\prime}=d / d t, A$ is a linear operator on H with dense domain $\mathcal{D}(A)$.

We assume that the operator A is self-adjoint and nonnegative such that $(A v, v) \geq 0$ for $v \in \mathcal{D}(A)$. The α-th power of A with dense domain $\mathcal{D}\left(A^{\alpha}\right)$ is denoted by A^{α} for $\alpha>0$, and the graph-norm of A^{α} is denoted by $\|v\|_{\alpha}=$ $\left(\|v\|^{2}+\left\|A^{\alpha} v\right\|^{2}\right)^{\frac{1}{2}}$ for $v \in \mathcal{D}\left(A^{\alpha}\right)$. We use that $\left\|A^{1 / 2} v\right\|^{2}=(A v, v)$ for $v \in$ $\mathcal{D}\left(A^{1 / 2}\right)$.

For the non-local nonlinear term $a(M) \in C^{0}([0, \infty)) \cap C^{2}((0, \infty))$, we assume that as follows :

Hyp. $1 \quad K_{1} \leq a(M) \leq K_{2}+K_{3} M^{\gamma} \quad$ for $M \geq 0$
Hyp. $2 \quad 0 \leq a^{\prime}(M) M \leq K_{4} a(M) \quad$ for $M>0$
Hyp. $3 \quad a^{\prime}(M) M+\left|a^{\prime \prime}(M)\right| M^{2} \leq K_{5} M^{\gamma} \quad$ for $M>0$
with $\gamma>0$ and $K_{j}>0(j=1,2,3,4,5)$.
From Hyp.1, we see that

$$
\begin{equation*}
K_{1} M \leq \int_{0}^{M} a(\mu) d \mu \leq\left(K_{2}+\frac{K_{3}}{\gamma+1} M^{\gamma}\right) M . \tag{1.2}
\end{equation*}
$$

For typical examples, we have that

$$
a(M)=1+M^{\gamma} \quad \text { with } \quad \gamma>0 .
$$

When the dimension is one, (1.1) describes small amplitude vibrations of an elastic string (see [3], [6]).

We denote the energy $E(t)$ for (1.1) by

$$
\begin{equation*}
E(t)=\rho\left\|u^{\prime}(t)\right\|^{2}+\int_{0}^{M(t)} a(\mu) d \mu \quad \text { with } \quad M(t)=\left\|A^{1 / 2} u(t)\right\|^{2} . \tag{1.3}
\end{equation*}
$$

By fundamental calculation, we have the energy identity

$$
\begin{equation*}
\frac{d}{d t} E(t)+2\left\|u^{\prime}(t)\right\|^{2}=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E(t)+2 \int_{0}^{t}\left\|u^{\prime}(s)\right\|^{2} d s=E(0) \tag{1.5}
\end{equation*}
$$

with

$$
E(0)=\rho\left\|u_{1}\right\|^{2}+2 \int_{0}^{\left\|A^{1 / 2} u_{0}\right\|^{2}} a(\mu) d \mu
$$

Moreover, we introduce the quantities $G(0)$ and $B(0)$ on the initial data $\left(u_{0}, u_{1}\right)$:

$$
G(0)=\frac{\left\|A u_{0}\right\|^{2}}{\left\|A^{1 / 2} u_{0}\right\|^{2}}+\rho \frac{\left\|A^{1 / 2} u_{0}\right\|^{2}\left\|A^{1 / 2} u_{1}\right\|^{2}-\left|\left(A^{1 / 2} u_{0}, A^{1 / 2} u_{1}\right)\right|}{a\left(\left\|A^{1 / 2} u_{0}\right\|^{2}\right)\left\|A^{1 / 2} u_{0}\right\|^{4}}
$$

and

$$
B(0)=\max \left\{\frac{\left\|u_{1}\right\|^{2}}{\left\|A^{1 / 2} u_{0}\right\|^{2}}, \frac{1+K_{4}}{K_{4}}\left(K_{2}+K_{3}\left(K_{1}^{-1} E(0)\right)^{\gamma}\right)^{2} G(0)\right\} .
$$

In the previous paper [12], we have proved the following the global existence theorem (see [1], [2], [9], [13] for local solutions).

Theorem 1.1 Suppose that Hyp. 1 and Hyp.2 are fulfilled. If the initial data $\left(u_{0}, u_{1}\right)$ belong to $\mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right)$ and $u_{0} \neq 0$, and moreover, the coefficient ρ and the initial data $\left(u_{0}, u_{1}\right)$ satisfy

$$
2 \rho G(0)^{\frac{1}{2}} B(0)^{\frac{1}{2}}<\frac{1}{K_{4}+1}
$$

then the problem (1.1) admits a unique global solution $u(t)$ in the class

$$
C^{0}([0, \infty) ; \mathcal{D}(A)) \cap C^{1}\left([0, \infty) ; \mathcal{D}\left(A^{1 / 2}\right)\right) \cap C^{2}([0, \infty) ; H)
$$

and the solution $u(t)$ satisfies

$$
\begin{align*}
& \|u(t)\|^{2} \leq C\left(\left\|u_{0}\right\|^{2}+E(0)\right) \tag{1.6}\\
& K_{1} M(t) \leq E(t) \leq E(0) \tag{1.7}\\
& \rho \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq \frac{1}{K_{4}+1}, \tag{1.8}\\
& \frac{\|A u(t)\|^{2}}{M(t)} \leq G(0), \quad \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \leq B(0), \tag{1.9}
\end{align*}
$$

and $M(t) \geq C e^{-\alpha t}$ with some $\alpha>0$ for $t \geq 0$.
We do not need the assumption that $\gamma \geq 1$ in our argument (see [4] for $\gamma \geq 1$ that is, $a(\cdot) \in C^{1}\left([0, \infty)\right.$), and $a^{\prime}(M) \geq K_{0}>0$ for $\gamma>0$ (see [11] for $a(M)=(1+M)^{\gamma}$ with $\left.\gamma>0\right)$.

The purpose of this paper to derive upper decay estimates of the solution $u(t)$ of (1.1) for the case of $0<\gamma<1$ in addition to $\gamma \geq 1$, under Hyp.1, Hyp.2, Hyp.3.

Our main result is as follows.
Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp. 3 are fulfilled. Then, the solution $u(t)$ of (1.1) satisfies

$$
\begin{aligned}
& \left\|A^{1 / 2} u(t)\right\|^{2} \leq C(1+t)^{-1}, \\
& \left\|u^{\prime}(t)\right\|^{2}+\|A u(t)\|^{2} \leq \begin{cases}C(1+t)^{-(1+2 \gamma)} & \text { if } 0<\gamma<\frac{1}{2} \\
C(1+t)^{-2} & \text { if } \gamma \geq \frac{1}{2},\end{cases} \\
& \left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\left\|u^{\prime \prime}(t)\right\|^{2} \leq \begin{cases}C(1+t)^{-(1+\gamma)(1+2 \gamma)} & \text { if } 0<\gamma<\frac{1}{2} \\
C(1+t)^{-3} & \text { if } \gamma \geq \frac{1}{2}\end{cases}
\end{aligned}
$$

for $t \geq 0$.
The proof of Theorem 1.2 will be given by Propositions 2.2-2.5 in the next section.

The notations we use in the paper are standard. Positive constants will be denoted by C and will change from line to line.

2 Decay Rates

The following generalized Nakao type inequality is useful to derive decay estimates of energies (see [5], [7], [8], [10] for the proof).

Lemma 2.1 Let $\phi(t)$ be a non-negative function on $[0, \infty)$ and satisfy

$$
\sup _{t \leq s \leq t+1} \phi(s)^{1+\alpha} \leq\left(k_{0} \phi(t)^{\alpha}+k_{1}(1+t)^{-\beta}\right)(\phi(t)-\phi(t+1))+k_{2}(1+t)^{-\gamma}
$$

with certain constants $k_{0}, k_{1}, k_{2} \geq 0, \alpha>0, \beta>-1$, and $\gamma>0$. Then, the function $\phi(t)$ satisfies

$$
\phi(t) \leq C_{0}(1+t)^{-\theta}, \quad \theta=\min \left\{\frac{1+\beta}{\alpha}, \frac{\gamma}{1+\alpha}\right\}
$$

for $t \geq 0$ with some constant C_{0} depending on $\phi(0)$.
Using Lemma 2.1, we obtain the following energy decay for the energy $E(t)$.
Proposition 2.2 Under the assumption of Theorem 1.1, the energy $E(t)$ satisfies

$$
\begin{equation*}
E(t)=\rho\left\|u^{\prime}(t)\right\|^{2}+\int_{0}^{M(t)} a(\mu) d \mu \leq C(1+t)^{-1} \tag{2.1}
\end{equation*}
$$

and the solution $u(t)$ satisfies

$$
\begin{equation*}
\left\|A^{1 / 2} u(t)\right\|^{2}+\|A u(t)\|^{2}+\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\left\|u^{\prime \prime}(t)\right\|^{2} \leq C(1+t)^{-1} \tag{2.2}
\end{equation*}
$$

for $t \geq 0$.
Proof. Integrating (1.4) over $[t, t+1]$, we have

$$
\begin{equation*}
2 \int_{t}^{t+1}\left\|u^{\prime}(s)\right\|^{2} d s=E(t)-E(t+1) \quad\left(\equiv 2 D(t)^{2}\right) \tag{2.3}
\end{equation*}
$$

Then there exist two numbers $t_{1} \in[t, t+1 / 4]$ and $t_{2} \in[t+3 / 4, t+1]$ such that

$$
\begin{equation*}
\left\|u^{\prime}\left(t_{j}\right)\right\|^{2} \leq 4 D(t)^{2} \quad \text { for } \quad j=1,2 \tag{2.4}
\end{equation*}
$$

On the other hand, taking the inner product of (1.1) with $u(t)$, we have

$$
\begin{equation*}
a(M(t)) M(t)=\rho\left(\left\|u^{\prime}(t)\right\|^{2}-\frac{d}{d t}\left(u^{\prime}(t), u(t)\right)\right)-\left(u^{\prime}(t), u(t)\right) . \tag{2.5}
\end{equation*}
$$

Integrating (2.5) over $\left[t_{1}, t_{2}\right]$, we have that

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} a(M(s)) M(s) d s \\
& \quad \leq \rho \int_{t}^{t+1}\left\|u^{\prime}(s)\right\|^{2} d s+\rho \sum_{j=1}^{2}\left\|u^{\prime}\left(t_{j}\right)\right\|\left\|u\left(t_{j}\right)\right\|+\int_{t}^{t+1}\left\|u^{\prime}(s)\right\|\|u(s)\| d s
\end{aligned}
$$

and from (2.3), (2.4), and Hyp. 1 that

$$
\begin{equation*}
K_{1} \int_{t_{1}}^{t_{2}} M(s) d s \leq \rho D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s) \quad \text { with } \quad g(t)^{2}=\|u(t)\|^{2} \tag{2.6}
\end{equation*}
$$

and from (1.2), (1.3), (1.7), (2.3), (2.6) that

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} E(s) d s & \leq \rho \int_{t}^{t+1}\left\|u^{\prime}(s)\right\|^{2} d s+\int_{t_{1}}^{t_{2}}\left(K_{2}+\frac{K_{3}}{\gamma+1} M(s)^{\gamma}\right) M(s) d s \\
& \leq C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s) . \tag{2.7}
\end{align*}
$$

Integrating (2.3) over $\left[t, t_{2}\right]$, we have (2.3) and (2.7) that

$$
\begin{aligned}
E(t) & =E\left(t_{2}\right)+2 \int_{t}^{t_{2}}\left\|u^{\prime}(s)\right\|^{2} d s \\
& \leq 2 \int_{t_{1}}^{t_{2}} E(s) d s+\int_{t}^{t+1}\left\|u^{\prime}(s)\right\|^{2} d s \\
& \leq C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s) .
\end{aligned}
$$

Since it holds that $2 D(t)^{2}=E(t)-E(t+1) \leq E(t)$ by (2.3), we observe

$$
\begin{align*}
E(t)^{2} & \leq C\left(D(t)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) D(t)^{2} \\
& \leq C\left(E(t)+\sup _{t \leq s \leq t+1} g(s)^{2}\right)(E(t)-E(t+1)) . \tag{2.8}
\end{align*}
$$

Thus, using $E(t) \leq E(0)$ and $g(t)=\|u(t)\|^{2} \leq C$ by (1.6) and (1.7), we have

$$
\begin{equation*}
E(t)^{2} \leq C(E(t)-E(t+1)) \tag{2.9}
\end{equation*}
$$

and hence, applying Lemma 2.1 to (2.9), we obtain (2.1).
Moreover, we obtain that $M(t) \leq K_{1}^{-1} E(t) \leq C(1+t)^{-1}$ by $(1.7),\|A u(t)\|^{2}+$ $\left\|u^{\prime}(t)\right\|^{2} \leq C M(t) \leq C(1+t)^{-1}$ by (2.4), and furthermore, $\left\|u^{\prime \prime}(t)\right\|^{2} \leq C(1+$ $t)^{-1}$ by (1.1), that is, the desired estimate (2.2) holds true.

Proposition 2.3 Under the assumption of Theorem 1.2, it holds that

$$
\begin{equation*}
F(t) \equiv \rho\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+a(M(t))\|A u(t)\|^{2} \leq C(1+t)^{-\omega} \quad \text { for } \quad t \geq 0 \tag{2.10}
\end{equation*}
$$

with $\omega=\min \{2,1+2 \gamma\}$.
Proof. Taking the inner product of (1.1) with $2 A u^{\prime}(t)$, we have that

$$
\begin{align*}
\frac{d}{d t} F(t)+2\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2} & =a^{\prime}(M(t)) M^{\prime}(t)\|A u(t)\|^{2} \tag{2.11}\\
& \leq C M(t)^{\gamma+\frac{1}{2}} \frac{\|A u(t)\|^{2}}{M(t)}\left\|A^{1 / 2} u^{\prime}(t)\right\|
\end{align*}
$$

and from the Young inequality that

$$
\begin{equation*}
\frac{d}{d t} F(t)+\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2} \leq C f(t)^{2} \quad \text { with } \quad f(t)^{2}=M(t)^{2 \gamma+1} \frac{\|A u(t)\|^{4}}{M(t)^{2}} \tag{2.12}
\end{equation*}
$$

Integrating (2.12) over $[t, t+1]$, we have

$$
\begin{equation*}
\int_{t}^{t+1}\left\|A^{1 / 2} u^{\prime}(s)\right\|^{2} d s=F(t)-F(t+1)+C \sup _{t \leq s \leq t+1} f(s)^{2} \quad\left(\equiv D(t)^{2}\right) \tag{2.13}
\end{equation*}
$$

Then, there exist two numbers $t_{1} \in[t, t+1 / 4]$ and $t_{2} \in[t+3 / 4, t+1]$ such that

$$
\begin{equation*}
\left\|A^{1 / 2} u^{\prime}\left(t_{j}\right)\right\|^{2} \leq 4 D(t)^{2} \quad \text { for } \quad j=1,2 \tag{2.14}
\end{equation*}
$$

On the other hand, taking the inner product of (1.1) with $A u(t)$, we have

$$
a(M(t))\|A u(t)\|^{2}=\rho\left(\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}-\frac{d}{d t}\left(A^{1 / 2} u^{\prime}, A^{1 / 2} u\right)\right)-\left(A^{1 / 2} u^{\prime}, A^{1 / 2} u\right)
$$

and hence

$$
\begin{equation*}
F(t)=2 \rho\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}-\rho \frac{d}{d t}\left(A^{1 / 2} u^{\prime}, A^{1 / 2} u\right)-\left(A^{1 / 2} u^{\prime}, A^{1 / 2} u\right) . \tag{2.15}
\end{equation*}
$$

Integrating (2.15) over $\left[t_{1}, t_{2}\right]$, we have from (2.13) and (2.14) that

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} F(s) d s \\
& \quad \leq 2 \rho \int_{t}^{t+1}\left\|A^{1 / 2} u^{\prime}(s)\right\|^{2} d s+\rho \sum_{j=1}^{2}\left\|A^{1 / 2} u^{\prime}\left(t_{j}\right)\right\|\left\|A^{1 / 2} u\left(t_{j}\right)\right\| \\
& \quad+\int_{t}^{t+1}\left\|A^{1 / 2} u^{\prime}(s)\right\|\left\|A^{1 / 2} u(s)\right\| d s \\
& \leq \tag{2.16}\\
& \quad C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s) \quad \text { with } \quad g(t)^{2}=M(t) .
\end{align*}
$$

Moreover, there exists $t_{*} \in\left[t_{1}, t_{2}\right]$ such that

$$
\begin{equation*}
F\left(t_{*}\right) \leq 2 \int_{t_{1}}^{t_{2}} F(s) d s \tag{2.17}
\end{equation*}
$$

For $\tau \in[t, t+1]$, integrating (2.11) over $\left[\tau, t_{*}\right]$ (or $\left[t_{*}, \tau\right]$), we have from (2.12) and (2.17) that

$$
\begin{aligned}
F(\tau) & =F\left(t_{*}\right)+\int_{\tau}^{t_{*}}\left(2\left\|A^{1 / 2} u^{\prime}(s)\right\|^{2}-a^{\prime}(M(s)) M^{\prime}(s)\|A u(s)\|^{2}\right) d s \\
& \leq 2 \int_{t_{1}}^{t_{2}} F(s) d s+C \int_{t}^{t+1}\left\|A^{1 / 2} u^{\prime}(s)\right\|^{2} d s+C \int_{t}^{t+1} f(s)^{2} d s \\
& \leq C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s)+C \sup _{t \leq s \leq t+1} f(s)^{2} .
\end{aligned}
$$

Since it holds that

$$
D(t)^{2}=F(t)-F(t+1)+C \sup _{t \leq s \leq t+1} f(s)^{2} \leq F(t)+\sup _{t \leq s \leq t+1} f(s)^{2}
$$

by (2.13), we observe

$$
\begin{aligned}
& \sup _{t \leq s \leq t+1} F(s)^{2} \\
& \leq C\left(D(t)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) D(t)^{2}+C \sup _{t \leq s \leq t+1} f(s)^{4} \\
& \leq C\left(F(t)+\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right)(F(t)-F(t+1)) \\
&+C F(t) \sup _{t \leq s \leq t+1} f(s)^{2}+C\left(\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) \sup _{t \leq s \leq t+1} f(s)^{2}
\end{aligned}
$$

and hence

$$
\begin{align*}
& \sup _{t \leq s \leq t+1} F(s)^{2} \\
& \leq C\left(F(t)+\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right)(F(t)-F(t+1)) \\
&+C\left(\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) \sup _{t \leq s \leq t+1} f(s)^{2} . \tag{2.18}
\end{align*}
$$

Since it holds that

$$
f(t)^{2}=\left\{\begin{array}{l}
M(t)^{2 \gamma+1} \frac{\|A u(t)\|^{4}}{M(t)^{2}} \leq C M(t)^{2 \gamma+1} \leq C(1+t)^{-(1+2 \gamma)} \\
M(t)^{2 \gamma} \frac{\|A u(t)\|^{2}}{M(t)}\|A u(t)\|^{2} \leq C M(t)^{2 \gamma}\|A u(t)\|^{2} \leq C(1+t)^{-2 \gamma} F(t)
\end{array}\right.
$$

and $g(t)^{2}=M(t) \leq C(1+t)^{-1}$, we have

$$
\begin{aligned}
\sup _{t \leq s \leq t+1} F(s)^{2} \leq & C\left(F(t)+(1+t)^{-1}\right)(F(t)-F(t+1)) \\
& +C(1+t)^{-(1+2 \gamma)} \sup _{t \leq s \leq t+1} F(s)
\end{aligned}
$$

and hence

$$
\begin{align*}
\sup _{t \leq s \leq t+1} F(s)^{2} \leq & C\left(F(t)+(1+t)^{-1}\right)(F(t)-F(t+1)) \\
& +C(1+t)^{-2(1+2 \gamma)} \tag{2.19}
\end{align*}
$$

Thus, applying Lemma 2.1 to (2.19), we obtain

$$
F(t) \leq C(1+t)^{-\omega} \quad \text { with } \quad \omega=\min \{2,1+2 \gamma\}
$$

which implies the desired estimate (2.10).
Proposition 2.4 Under the assumption of Theorem 1.2, it holds that

$$
\begin{equation*}
\left\|u^{\prime}(t)\right\| \leq C(1+t)^{-\omega} \quad \text { for } \quad t \geq 0 \tag{2.20}
\end{equation*}
$$

with $\omega=\min \{2,1+2 \gamma\}$.
Proof. Taking the inner product of (1.1) with $2 u^{\prime}(t)$, we have

$$
\rho \frac{d}{d t}\left\|u^{\prime}(t)\right\|^{2}+2\left\|u^{\prime}(t)\right\|^{2}=-2 a(M(t))\left(A u(t), u^{\prime}(t)\right)
$$

and by the Young inequality we observe

$$
\rho \frac{d}{d t}\left\|u^{\prime}(t)\right\|^{2}+\left\|u^{\prime}(t)\right\|^{2} \leq a(M(t))^{2}\|A u(t)\|^{2} .
$$

Thus, from (1.7) and (2.10) we drive the desired estimate (2.20).
Proposition 2.5 Under the assumption of Theorem 1.2, it holds that

$$
\begin{align*}
L(t) & \equiv \rho\left\|u^{\prime \prime}(t)\right\|^{2}+a(M(t))\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\frac{a^{\prime}(M(t))}{2}\left|M^{\prime}(t)\right|^{2} \\
& \leq C(1+t)^{-\sigma} \quad \text { for } \quad t \geq 0 \tag{2.21}
\end{align*}
$$

with $\sigma=\min \{3,(1+\gamma)(1+2 \gamma)\}$.
Proof. Taking the inner product of (1.1) differentiated with respect to t with $2 u^{\prime \prime}(t)$, we have

$$
\begin{align*}
\frac{d}{d t} & L(t)+2\left\|u^{\prime \prime}(t)\right\|^{2} \\
& =3 a^{\prime}(M(t)) M^{\prime}(t)\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\frac{a^{\prime \prime}(M(t))}{2}\left(M^{\prime}(t)\right)^{3} \tag{2.22}\\
& \leq C f(t)^{2} \quad \text { with } \quad f(t)^{2}=M(t)^{\gamma} \frac{\left|M^{\prime}(t)\right|}{M(t)}\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2} . \tag{2.23}
\end{align*}
$$

Integrating (2.23) over $[t, t+1]$, we have

$$
\begin{equation*}
2 \int_{t}^{t+1}\left\|u^{\prime \prime}(s)\right\|^{2} d s \leq L(t)-L(t+1)+C \sup _{t \leq s \leq t+1} f(s)^{2} \quad\left(\equiv 2 D(t)^{2}\right) . \tag{2.24}
\end{equation*}
$$

Then, there exist two numbers $t_{1} \in[t, t+1 / 4]$ and $t_{2} \in[t+3 / 4, t+1]$ such that

$$
\begin{equation*}
\left\|u^{\prime \prime}\left(t_{j}\right)\right\|^{2} \leq 4 D(t)^{2} \quad \text { for } \quad j=1,2 . \tag{2.25}
\end{equation*}
$$

On the other hand, taking the inner product of (1.1) differentiated with respect to t with $u^{\prime}(t)$, we have

$$
\begin{aligned}
& a(M(t))\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\frac{a^{\prime}(M(t))}{2}\left|M^{\prime}(t)\right|^{2} \\
& \quad=\rho\left(\left\|u^{\prime \prime}(t)\right\|^{2}-\frac{d}{d t}\left(u^{\prime \prime}(t), u^{\prime}(t)\right)\right)-\left(u^{\prime \prime}(t), u^{\prime}(t)\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
L(t)=2 \rho\left\|u^{\prime \prime}(t)\right\|^{2}-\rho \frac{d}{d t}\left(u^{\prime \prime}(t), u^{\prime}(t)\right)-\left(u^{\prime \prime}(t), u^{\prime}(t)\right) . \tag{2.26}
\end{equation*}
$$

Integrating (2.26) over $\left[t_{1}, t_{2}\right]$, we observe from (2.24) and (2.25) that

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} L(s) d s \\
& \quad \leq 2 \rho \int_{t}^{t+1}\left\|u^{\prime \prime}(s)\right\|^{2} d s+\rho \sum_{j=1}^{2}\left\|u^{\prime \prime}\left(t_{j}\right)\right\|\left\|u^{\prime}\left(t_{j}\right)\right\|+\int_{t}^{t+1}\left\|u^{\prime \prime}(s)\right\|\left\|u^{\prime}(s)\right\| d s \\
& \quad \leq C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s) \quad \text { with } \quad g(t)^{2}=\left\|u^{\prime}(t)\right\|^{2} . \tag{2.27}
\end{align*}
$$

Moreover, there exists $t_{*} \in\left[t_{1}, t_{2}\right]$ such that

$$
\begin{equation*}
L\left(t_{*}\right) \leq 2 \int_{t_{1}}^{t_{2}} L(s) d s \tag{2.28}
\end{equation*}
$$

For $\tau \in[t, t+1]$, integrating (2.22) over $\left[\tau, t_{*}\right]$ (or $\left[t_{*}, \tau\right]$), we have from (2.23) and (2.28) that

$$
\begin{aligned}
& L(\tau)=L\left(t_{*}\right) \\
& +\int_{\tau}^{t_{*}}\left(2 \rho\left\|u^{\prime \prime}(s)\right\|^{2}-3 a^{\prime}(M(t)) M^{\prime}(s)\left\|A^{1 / 2} u^{\prime}(s)\right\|^{2}+\frac{a(M(s))}{2}\left(M^{\prime}(s)\right)^{3}\right) d s \\
& \leq 2 \int_{t_{1}}^{t_{2}} L(s) d s+C \int_{t}^{t+1}\left\|u^{\prime \prime}(s)\right\|^{2} d s+C \int_{t}^{t+1} f(s)^{2} d s \\
& \leq C D(t)^{2}+C D(t) \sup _{t \leq s \leq t+1} g(s)+C \sup _{t \leq s \leq t+1} f(s)^{2} .
\end{aligned}
$$

Since it holds that

$$
D(t)^{2}=L(t)-L(t+1)+C \sup _{t \leq s \leq t+1} f(s)^{2} \leq L(t)+\sup _{t \leq s \leq t+1} f(s)^{2}
$$

by (2.24), we observe

$$
\begin{aligned}
& \sup _{t \leq s \leq t+1} L(s)^{2} \\
& \leq C\left(D(t)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) D(t)^{2}+C \sup _{t \leq s \leq t+1} f(s)^{4} \\
& \leq C\left(L(t)+\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right)(L(t)-L(t+1)) \\
& +C L(t) \sup _{t \leq s \leq t+1} f(s)^{2}+C\left(\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) \sup _{t \leq s \leq t+1} f(s)^{2}
\end{aligned}
$$

and hence

$$
\begin{align*}
& \sup _{t \leq s \leq t+1} L(s)^{2} \\
& \leq C\left(L(t)+\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right)(L(t)-L(t+1)) \\
&+C\left(\sup _{t \leq s \leq t+1} f(s)^{2}+\sup _{t \leq s \leq t+1} g(s)^{2}\right) \sup _{t \leq s \leq t+1} f(s)^{2} . \tag{2.29}
\end{align*}
$$

(i) When $0<\gamma<\frac{1}{2}$, we put $\omega=1+2 \gamma$. Since it holds that

$$
\begin{aligned}
f(t)^{2} & \leq 2 \frac{\|A u(t)\|}{M(t)^{\frac{1}{2}}} \frac{\left\|u^{\prime}(t)\right\|^{1-2 \gamma}}{M(t)^{\frac{1}{2}}}\left\|u^{\prime}(t)\right\|^{2 \gamma}\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2} \\
& \leq C\left\|u^{\prime}(t)\right\|^{2 \gamma}\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2} \leq\left\{\begin{array}{l}
C(1+t)^{-(1+\gamma) \omega} \\
C(1+t)^{-\gamma \omega} L(t)
\end{array}\right.
\end{aligned}
$$

and $g(t)^{2}=\left\|u^{\prime}(t)\right\|^{2} \leq C(1+t)^{-\omega}$, we have

$$
\begin{aligned}
\sup _{t \leq s \leq t+1} L(t)^{2} \leq & C\left(L(t)+(1+t)^{-\omega}\right)(L(t)-L(t+1)) \\
& +C(1+t)^{-(1+\gamma) \omega} \sup _{t \leq s \leq t+1} L(s)
\end{aligned}
$$

and hence

$$
\begin{align*}
\sup _{t \leq s \leq t+1} L(t)^{2} \leq & C\left(L(t)+(1+t)^{-\omega}\right)(L(t)-L(t+1)) \\
& +C(1+t)^{-2(1+\gamma) \omega} \tag{2.30}
\end{align*}
$$

Thus, applying Lemma 2.1 to (2.30), we obtain

$$
L(t) \leq C(1+t)^{-\sigma} \quad \text { with } \quad \sigma=\{\omega+1,(1+\gamma) \omega\}=(1+\gamma)(1+2 \gamma)
$$

which implies the desired estimate (2.21) for $0<\gamma<\frac{1}{2}$.
(ii) When $\gamma \geq \frac{1}{2}$, we put $\omega=2$. Since it holds that

$$
\begin{aligned}
f(t)^{2} & \leq 2 M(t)^{\gamma-\frac{1}{2}} \frac{\|A u(t)\|}{M(t)^{\frac{1}{2}}}\left\|u^{\prime}(t)\right\|\left\|A^{1 / 2} u^{\prime}(t)\right\| \\
& \leq C M(t)^{\gamma-\frac{1}{2}}\left\|u^{\prime}(t)\right\|\left\|A^{1 / 2} u^{\prime}(t)\right\| \leq\left\{\begin{array}{l}
C(1+t)^{-\left(\gamma+\frac{3 \omega-1}{2}\right)} \\
C(1+t)^{-\left(\gamma+\frac{\omega-1}{2}\right)} L(t)
\end{array}\right.
\end{aligned}
$$

and $g(t)^{2}=\left\|u^{\prime}(t)\right\|^{2} \leq C(1+t)^{-\omega}$, we have

$$
\begin{aligned}
\sup _{t \leq s \leq t+1} L(t)^{2} \leq & C\left(L(t)+(1+t)^{-\omega}\right)(L(t)-L(t+1)) \\
& +C(1+t)^{-\left(\gamma+\frac{3 \gamma-1}{2}\right)} \sup _{t \leq s \leq t+1} L(s)
\end{aligned}
$$

and hence

$$
\begin{align*}
\sup _{t \leq s \leq t+1} L(t)^{2} \leq & C\left(L(t)+(1+t)^{-\omega}\right)(L(t)-L(t+1)) \\
& +C(1+t)^{-2\left(\gamma+\frac{3 \gamma-1}{2}\right)} . \tag{2.31}
\end{align*}
$$

Thus, applying Lemma 2.1 to (2.31), we obtain

$$
L(t) \leq C(1+t)^{-\sigma} \quad \text { with } \quad \sigma=\left\{\omega+1, \gamma+\frac{3 \gamma-1}{2}\right\}=3
$$

which implies the desired estimate (2.21) for $\gamma \geq \frac{1}{2}$.
Proof of Theorem 1.2. Gathering Propositions 2.2-2.5, we conclude Theorem 1.2.

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (1991) 177-195.
[2] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996) 305-330.
[3] G.F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945) 157-165.
[4] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates, J. Differential Equations 245 (2008) 2979-3007.
[5] S. Kawashima, M. Nakao, and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan 47 (1995) 617-653.
[6] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.
[7] M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl. 60 (1977) 542-549.
[8] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z. 214 (1993) 325342.
[9] K. Ono, Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. 40 (1997) 255-270.
[10] K. Ono, On sharp decay estimates of solutions for mildly degenerate dissipative wave equations of Kirchhoff type, Math. Methods Appl. Sci. 34 (2011) 1339-1352.
[11] K. Ono, Asymptotic behavior of solutions for Kirchhoff type dissipative wave equations in unbounded domains J. Math. Tokushima Univ., 61 (2017) 37-54.
[12] K. Ono, Lower decay estimates for non-degenerate Kirchhoff type dissipative wave equations, J. Math. Tokushima Univ., 52 (2018) 39-52.
[13] W.A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, Vol.73, Amer. Math. Soc., Providence, RI, 1989.

