
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Software Requirements Classification Using Machine
Learning Algorithms

Bruno Cordeiro Mendes

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Orientador
Prof.a Dr.a Edna Dias Canedo

Brasília
2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital de Monografias

https://core.ac.uk/display/428373809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

CC794s
Cordeiro Mendes, Bruno
 Software Requirements Classification Using Machine
Learning Algorithms / Bruno Cordeiro Mendes; orientador
Edna Dias Canedo. -- Brasília, 2020.
 21 p.

 Monografia (Graduação - Ciência da Computação) --
Universidade de Brasília, 2020.

 1. Software Requiriments. 2. Machine Learning. 3.
Natural Language Processing. 4. Functional Requirements .
5. Non-functional Requirements. I. Dias Canedo, Edna,
orient. II. Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Software Requirements Classification Using Machine
Learning Algorithms

Bruno Cordeiro Mendes

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Prof.a Dr.a Edna Dias Canedo (Orientador)
CIC/UnB

Prof.a Dr.a Angelica Toffano Seidel Calazans Prof. Msc. Roberto Ávila Paldes
Centro Universitário Uniceub Centro Universitário Uniceub e CIC/UnB

Prof. Dr. Marcelo Mandelli
Coordenadora do Bacharelado em Ciência da Computação

Brasília, 24 de novembro de 2020

Dedicatória

Dedico esse trabalho a todos aqueles que fizeram parte da minha jornada ao longo desses
anos. Principalmente a minha namorada Larissa C. Alves, que sempre esteve ao meu lado
mesmo antes de ingressar na UnB, e por todo incentivo dado por ela durante esses anos.
Sem ela essa graduação não seria possível. Gostaria de dedicar este trabalho também para
a minha irmã e minhas três sobrinhas maravilhosas. Obrigado por todo amor que vocês
me deram. E por fim, dedico esse trabalho a minha mãe Márcia, a pessoa que sempre me
incentivou a estudar e buscar conhecimento.

iii

Agradecimentos

Agradeço principalmente a Prof.a Dr.a Edna Dias Canedo por ter aceitado me orientar e
por ter despertado minha fascinação pela ciência. Também gostaria de agradecer à todos
os professores do departamento de Ciência da Computação da Universidade de Brasília,
em especial alguns nomes: Alba Cristina, Marcelo Marotta, Maristela Holanda, Mauricio
Ayala e Rodrigo Bonifácio.

iv

Resumo

A classificação correta de requisitos tornou-se uma tarefa essencial dentro da engenharia
de software. Este estudo mostra uma comparação entre as técnicas de extração de fea-
tures para textos, e entre algoritmos de aprendizado de máquina para o problema de
classificação de requisitos de software para responder as duas questões principais “Qual a
melhor técnica (Bag of Words (BoW) vs. Term Frequency – Inverse DocumentFrequency
(TF-IDF) vs. Chi Squared (CHI2))) para classificar Requisitos de Software em Requisi-
tos Funcionais (FR) e Requisitos Não Funcionais (NF), e as subclasses de Requisitos Não
Funcionais? ” e “Qual Algoritmo de Aprendizado de Máquina fornece o melhor desem-
penho para a tarefa de classificação de requisitos?”. O dataset utilizado para realizar a
pesquisa foi o PROMISE_exp, um conjunto de dados criado recentemente que expande
o já conhecido repositório PROMISE, um repositório que contém requisitos de software
rotulados. Todos os documentos do banco de dados foram limpos com um conjunto de
etapas de normalização e as duas técnicas de feature extraction, e a técnica de feature
selection usadas foram BoW, TF-IDF e CHI2 respectivamente. Os algoritmos utiliza-
dos para classificação foram Regressão Logística (LR), Support Vector Machine (SVM),
Multinomial Naive Bayes (MNB) e k-vizinhos mais próximos (kNN). O diferencial do
nosso trabalho se encontra nos dados utilizados para a realização do experimento, no de-
talhamento das etapas utilizadas para reproduzir a classificação e na comparação entre
BoW, TF-IDF e CHI2 para este repositório, que até o presente momento não foi abordada
por outros estudos. Este trabalho servirá de referência para a comunidade de engenharia
de software e ajudará outros pesquisadores a entenderem o processo de classificação de
requisitos. Notamos que o uso de TF-IDF seguido do uso de LR teve um melhor resultado
de classificação para diferenciar os requisitos, com um F1-score de 0,91 na classificação
binária (vinculada com SVM nesse caso), 0,74 na classificação de NF e 0,78 em uma clas-
sificação geral. Como trabalhos futuros, pretendemos comparar mais algoritmos e novas
formas de melhorar a precisão de nossos modelos.

Palavras-chave: Requisitos Funcionais; Requisitos não Funcionais; Normalização de
Texto; Extração de Features; Aprendizado de Máquina; Support Vector Machines

v

Abstract

The correct classification of requirements has become an essential task within software
engineering. This study shows a comparison among the text feature extraction tech-
niques, and machine learning algorithms to the problem of requirements engineer classi-
fication. Our aim is to answer two major questions “Which works best (Bag of Words
(BoW) vs. Term Frequency–Inverse Document Frequency (TF-IDF) vs. Chi Squared
(CHI2)) for classifying Software Requirements into Functional Requirements (FR) and
Non-Functional Requirements (NF), and the sub-classes of Non-Functional Requirements?”
and “Which Machine Learning Algorithm provides the best performance for the require-
ments classification task?”. The data used to perform the research was the PROMISE_exp,
a recently made dataset that expands the already known PROMISE repository, a repos-
itory that contains labeled software requirements. All the documents from the database
were cleaned with a set of normalization steps and the two feature extractions, and the
feature selection techniques used were BoW, TF-IDF and CHI2 respectively. The al-
gorithms used for classification were Logist Regression (LR), Support Vector Machine
(SVM), Multinomial Naive Bayes (MNB) and k-Nearest Neighbors (kNN). The novelty
of our work is the data used to perform the experiment, the details of the steps used to
reproduce the classification, and the comparison between BoW, TF-IDF and CHI2 for this
repository not having been covered by other studies. This work will serve as a reference
for the software engineering community and will help other researchers to understand the
requirement classification process. We noticed that the use of TF-IDF followed by the use
of LR had a better classification result to differentiate requirements, with an F-measure
of 0.91 in binary classification (tying with SVM in that case), 0.74 in NF classification
and 0.78 in general classification. As future work we intend to compare more algorithms
and new forms to improve the precision of our models.

Keywords: Functional Requirements; Non-functional Requirements; Text Normaliza-
tion; Feature Extraction; Machine Learning; Support Vector Machines

vi

Contents

1 Introduction 1

2 Background 3
2.1 Requirements Elicitation . 3

2.1.1 Functional Requirements . 4
2.1.2 Non-Functional Requirements . 4

2.2 Machine Learning in Software Engineering 5
2.3 Text Normalization . 6
2.4 Vectorization of Text . 7

2.4.1 Bag of Words . 7
2.4.2 Term Frequency—Inverse Document Frequency (TF-IDF) 7

2.5 Feature Selection . 8
2.5.1 Chi Squared . 8

2.6 Machine Learning Algorithms . 9
2.7 Performance Measures . 10

3 Related Work 12

4 Methodology 14
4.1 Research Questions . 14
4.2 Requirements Classification Phases . 14

4.2.1 Normalization Phase . 17
4.2.2 Feature Extraction Phase . 19
4.2.3 Feature Selection Phase . 19
4.2.4 Classification Phase . 20
4.2.5 Performance Measure Phase . 21

5 Results 23
5.1 Binary Classification . 23
5.2 Multiclass Classification . 24

vii

5.3 Classification of 11 classes . 24
5.4 Classification of 12 classes . 24
5.5 Discussion . 27

6 Threats to Validity 28

7 Conclusions 29

References 31

viii

List of Figures

4.1 Phases of requirements classification pipeline. 15
4.2 Distribution of requirement classes on dataset. 16

5.1 Comparison between the F-measure and proportion of each type in the dataset. 26

ix

List of Tables

2.1 Descriptions of each type of Non-Functional Requirement (NFR) [1]. 5

4.1 Number of requirements per label. 16
4.2 Corpus before the text cleaning. 17
4.3 Corpus after the text cleaning. 18
4.4 Top 10 most important features. 21

5.1 Results of Bag of Words (BoW), Term Frequency–Inverse Document Fre-
quency (TF-IDF) and Chi Squared binary classification with Support Vec-
tor Machine (SVM), Multinomial Naive Bayes (MNB), k-Nearest Neighbors
(kNN) and Logist Regression (LR). 24

5.2 Results of BoW, TF-IDF and Chi Squared classification with SVM, MNB,
kNN and LR with 11 granularities (Non-Functional Requirements). 25

5.3 Results of BoW, TF-IDF and Chi Squared classification with SVM, MNB,
kNN and LR with 12 granularities (Functional Requirements and Non-
Functional Requirements). 25

5.4 Results of TF-IDF with SVM classifications (12 granularities—Functional
Requirements and Non-Functional Requirements). 26

x

Acronyms

A Availability.

BoW Bag of Words.

FR Functional Requirement.

FT Fault Tolerance.

kNN k-Nearest Neighbors.

L Legal and Licensing.

LF Look and Feel.

LR Logistic Regression.

ML Machine Learning.

MN Maintainability.

MNB Multinomial Naive Bayes.

NFR Non Functional Requirement.

NLP Natural language Processing.

O Operability.

PE Performance.

PO Portability.

SC Scalability.

SE Software Engineering.

xi

SR Software Requirement.

SRC Software Requirement Classification.

SVM Support Vector Machine.

TF-IDF Term Frequency and Inverse Document Frequency.

US Usability.

xii

Chapter 1

Introduction

Text classification is the attempt to organize text documents into categories based on
properties and attributes belonging to each text. This task is widely seen as a supervised
learning task that is defined as the identification of categories of new documents based
on the probability suggested by a specified training corpus of already labelled (identified)
documents [2]. Text classification is used in several domains, including spam identification
and news categorization. The concept may seem simple and, with a small number of
documents, it is possible to analyze each document manually and get an idea of the
category in which the document belongs. Based on this knowledge, it is possible to group
similar documents into categories or classes. It is a more challenging activity when the
number of documents to be classified increases to several hundred thousand or millions.
It is in this context that vectorization techniques anc supervised or unsupervised learning
are useful. Document classification is a generic problem not limited to text alone but also
can be extended for other items like music, images, video, and other media [3].

The task of Software Requirement Classification (SRC), consists of specifying the
category to which a given Software Requirement (SR) belongs [4]. The categories of a
requirement are defined in two types: Functional Requirement (FR), which describe the
services, behavior or functions that a system provides, and Non Functional Requirement
(NFR), which include the attributes (such as quality, usability, security, privacy, etc.), or
restrictions in the application to be developed or in the software development process [5].

Even with the software requirements being well known and well described, the auto-
matic classification of requirements written in natural language into functional require-
ments and the subcategories of non-functional requirements is still a challenge. According
to Abad et al. [6], this is particularly due to the fact that stakeholders, as well as re-
quirements engineers, use different terminologies and sentence structures to describe the
same kind of requirement. The high inconsistency in requirements elicitation makes au-
tomated classification more error-prone, so the problem is to find optimal ways to realize

1

a good automated classification. Furthermore, such classification is needed because man-
ually classification of software requirements is a time-consuming task especially on large
projects with a huge number of requirements [7].

In this work, we will investigate how the classification of software requirements can
be improved, analyzing which is the best text vectorization technique to be used, using
the techniques known as Bag of Words (BoW), Term Frequency and Inverse Document
Frequency (TF-IDF) [8], and Chi Squared (CHI2) and what machine learning model [9]
has the best performance in the task of classifying requirements. We choose to include
Chi Squared because many research results show that feature selection can improve the
performance of text classification [10], and because CHI2 is reported by many studies
as one of the most effective algorithms [11]. There is no other article in the field of
requirements classification that evaluates the same database comparing the techniques
used in here. The results of this experiment can help developers that want to automatize
the software requirements classification choose the techniques and algorithms that will
most help them, and can help researches in this field as a reference or guideline for other
studies.

The main contributions of this work were: comparison between three important vector-
ization techniques, BoW, TF-IDF, and Chi Squared, and the comparison of the use of each
one of these techniques combined with four supervised classification algorithms - Support
Vector Machine (SVM), k-Nearest Neighbors (kNN), Multinomial Naive Bayes (MNB)
and Logistic Regression (LR). Through these comparisons we demonstrate which is the
best vectorization technique for software requirements (between BoW, TF-IDF and CHI2)
and which is the best algorithm (between SVM, kNN, MNB and LR) to classify Software
Requirements. This comparisons will serve as a reference for future works in the software
requirements community. The differential of our work is the use of PROMISE_exp to
perform the experiments, since there is no current studies performing this experiments
with the same level of the details for this repository.

This paper is organized as follows: In the Chapter 2 are presented the concepts re-
lated to the techniques of pre-processing and feature extraction of text, machine learning
algorithms, performance measures, and the related works.The Chapter 4 presents the re-
search method used in this study. The Chapter 5 describes the results that we found.
The threats to validity of the study are discussed in Chapter 6. Finally, the conclusions
and future work are presented in the Chapter 7.

2

Chapter 2

Background

This chapter describes the theoretical foundation that will be necessary to understand
the work. Section 2.1 describes the concepts about Requirements Elicitation. Section
2.2 introduces the state of the art of ML in SE. Section 2.3 and Section 2.4 explains
what is Text Normalization and Vectorization of Text, respectively. Section 2.5 gives a
introduction about Feature Selection. Section 2.6 describe the ML algorithms used in this
work. And Section 2.7 shows the performance measures used to compare the algorithms.

2.1 Requirements Elicitation

A requirement it’s a need, functionality or characteristic of a system. Three are mainly
three definitions for requirements [12]:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents.

3. A documented representation of a condition or capability as in (1) or (2).

During the development process, requirements engineering must elicit the stakeholder’s
requirements, document the requirements in a suitable manner, validate and verify the
requirements, and manage the requirements over the course of the entire life cycle of
the system [13]. Requirements elicitation is a critical activity that forms part of the
requirements engineering process because it has to discover what the software must do
through a solid understanding of the wishes and needs of the various stakeholders and to
transform them into software requirements [14, 15].

Pohl et al. [13] said that a core activity of requirements engineering is the elicitation
of requirements for the system to be developed. The basis for requirements elicitation is

3

the knowledge that has been gained during requirements engineering about the system
context of the system to be developed, which comprises the requirements sources that
are to be analyzed and queried [13]. To make a good documentation of the requirements,
they are divided into categories, the main ones being: Functional Requirements and Non-
Functional Requirements. These two types are explained in the Sections 2.1.1 and 2.1.2.

2.1.1 Functional Requirements

A definition from Pohl et al. [13] is that: A functional requirement is a requirement
concerning a result of behavior that shall be provided by a function of the system. Ac-
cording to IEEE et al. [12], FRs are requirements that specifies a function that a system
or system component must be able to perform. Fernandes et al. [16] said that a functional
requirement describes a functionality to be made available to the users of the system, char-
acterizing partially its behavior as an answer to the stimulus that it is subject to. This
type of requirement should not mention any technological issue, that is, ideally functional
requirements must be independent of design and implementation aspects [16].

2.1.2 Non-Functional Requirements

Non-Functional requirements define desired qualities of the system to be developed and
often influence the system architecture more than functional requirements do [13]. An-
other definition, according to Fernandes et al. [16], is that: A non-functional requirement
corresponds to a set of restrictions imposed on the system to be developed, establishing,
for instance, how attractive, useful, fast, or reliable it is. Anton et al. [17] defined NFRs as
something that describes the non-behavioral aspects of a system, capturing the properties
and constraints under which a system must operate and, according to Davis et al. [18],
this category of requirement is a set of required overall attributes of the system, includ-
ing portability, reliability, efficiency, human engineering, testability, understandability,
and modifiability. NFRs can be divided into subcategories and sometimes are classified
as product requirements, organizational or process-related requirements and external re-
quirements [19, 20]. The difference between non-functional and functional requirements,
in Software Engineering, should hinge on “how” and “what” systems perform or offer
as resources [19]. The repository PROMISE considers 11 subcategories for this type of
requirement. The type and description of each subcategory is explained in Table 2.1 [1]:

4

Type Description
Availability (A) Describes how likely the system is accessible for a user at a

given point in time.
Fault Tolerance (FT) Degree to which a system, product or component operates as

intended despite the presence of hardware or software faults.
Legal and Licensing (L) Certificates or licenses that the system must have.
Look and Feel (LF)) Describe the style of the product’s appearance.
Maintainability (MN) Degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers.
Operability (O) Degree to which a product or system has attributes that make

it easy to operate and control.
Performance (PE) Performance relative to the amount of resources used under

stated conditions.
Portability (PO) Degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware,
software or other operational or usage environment to an-
other.

Scalability (SC) Degree to which a product or system can effectively and effi-
ciently be adapted for different or evolving hardware, software
or other operational or usage environments.

Software Engineering (SE) Degree to which a product or system protects information and
data, so that persons or other products or systems have the
degree of data access appropriate to their types and levels of
authorization.

Usability (US) Degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use.

Table 2.1: Descriptions of each type of Non-Functional Requirement (NFR) [1].

2.2 Machine Learning in Software Engineering

Machine Learning is the science (and art) of programming computers so they can learn
from data.Fundamentally, machine learning involves building mathematical models to
help understand data [21]. Currently, machine learning has been used in several contexts,
such as: Analyzing images of products on a production line to automatically classify

5

them [22], detecting tumors in brain scans [23], automatically classifying news articles
[24], detecting credit card fraud [25], creating a chatbot or a personal assistant [26], and
others.

Recently the use of Machine Learning (ML) within software engineering has been
studied for both management and software development [4]. To carry out these studies,
data repositories originating from the software development process, such as forum dis-
cussions, maintenance history, user feedback and comments from users on social networks
have become a rich source of data for ML use, combined with text analysis to extract
useful information that can be used in the future. Iqbal et al. [27] have collected a great
amount of research related to the link between software engineering and machine learning.
The authors found that ML impacts the activities of elicitation, analysis, validation and
requirements management.

In this work, we will use text normalization, feature extraction techniques and ma-
chine learning algorithms to create software requirements classification models, using the
PROMISE_exp [4] database. Unlike previous work, we will investigate which feature
extraction technique and which algorithm has the best performance on requirements clas-
sification using the PROMISE_exp database.

2.3 Text Normalization

Text normalization is defined as a process that consists of a series of steps that should
be followed to wrangle, clean, and standardize textual data into a form that could be
consumed by other Natural language Processing (NLP) and analytics systems and appli-
cations as input [3]. One of these steps is tokenization, which consists of dividing a text
into a list of tokens, and these tokens can be sentences or individual words, depending
on the researcher’s choice. Often, the tokenization itself is also part of the normalization
of the text. Besides tokenization, several other techniques are part of the normalization
process, such as: case conversion, spelling correction, removal of irrelevant words and
other unnecessary terms, such as articles and pronouns, stemming and lemmatization.

In this work, the database containing the software requirements went through the
normalization process where the documents in the corpus were tokenized, the texts were
all converted to lower case, irrelevant words were removed, and the conjugated words in
verb tenses were converted to their original forms using lemmatization.

6

2.4 Vectorization of Text

Machine learning algorithms operate on a numeric feature space, expecting input as a
two-dimensional array where rows are instances and columns are features [8]. In order to
perform machine learning on text, we need to transform our instances, documents, into
vector representations such that we can apply numeric machine learning. The process
of encoding documents in a numeric feature space is called feature extraction or more
simply, vectorization and is an essential first step towards language aware analysis [8].

The Vector Space Model is a concept and model that is very useful in case we are
dealing with textual data. According to Bengfort et al. [3], VSM is very popular in in-
formation retrieval and document ranking. VSM is an algebraic and mathematical model
to represent texts as numerical vectors. Some of these models used in research involving
text analysis are: Bag of Words [28], TF-IDF [29], and Averaged Word Vectors [30]. In
this work, we use BoW, TF-IDF and CHI2. We only use this three techniques because of
it’s simplicity and because the dataset used is small and context is domain specific.

2.4.1 Bag of Words

The BoW model is perhaps one of the simplest yet most powerful techniques to extract
features from text documents [3]. The essence of this model is to convert text documents
into vectors such that each document is converted into a vector that represents the fre-
quency of all the distinct words that are present in the document vector space for that
specific document [3]. In summary, using BoW, a requirement “j” is expressed by a vector
Xj = (x1,j . . . xi,j . . . xn,j), in which xi,j denotes the weight of feature “i” calculated
by the frequency of term “i” in requirement “j” and “n” denotes the number of terms in
the dictionary [11]. After that, the manually classified requirements which are expressed
by vectors act as input of supervised machine learning algorithms, and consequently are
used to train classifiers [11].

2.4.2 Term Frequency—Inverse Document Frequency (TF-IDF)

TF-IDF is a model that combines two metrics: (1) The raw frequency value of a term in a
particular document; and (2) the inverse of the document frequency for each term, which
is computed by dividing the total number of documents in our corpus by the document
frequency for each term and then applying logarithmic scaling on the result. The inverse
of the document frequency can be represented mathematically by the following formula:

idfi = log total_requirements

total_requirements_with_term_i

7

Combining the two metrics, the TF-IDF feature vector can be mathematically defined
as:

TF-IDF(termi,j) = tfi,j × idfi

where tf represents the frequency of the term and idf the inverse of the frequency of the
document, for term i and document j.

2.5 Feature Selection

The text vectoring process in some cases generates weak informative features for the
classification process, which may not help, or harm, the performance of ML algorithms. To
solve this problem feature selection can be used as a new step in the process of representing
text documents to reduce the native space without sacrificing categorization accuracy.
A definition from Geron et al. [9] says that it’s a preparation data process where we
drop the attributes that provide no useful information for the task. Feature selection
is necessary to make large problems computationally efficient-conserving computation,
storage and network resources for the training phase and for every future use of the
classifier [31]. In our work, feature selection follows the principle that words that exist
in more classes contain less class information, and consequently are less important for
requirement classification.

2.5.1 Chi Squared

Chi Squared (CHI2), also known as X2, is the common statistical test that measures
divergence from the distribution expected if one assumes the feature occurrence is actually
independent of the class value [31]. It measures the lack of independence between a term
t and a class c. Yang et al. [10] defines the measure by the formula:

X2(t, c) = N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
where N is the total number of documents, A is the number of times t and c co-occur, B

is the number of times the t occurs without c, C is the number of times c occurs without
t and D is the number of times neither c nor t occurs.

8

2.6 Machine Learning Algorithms

Machine Learning (ML) has four main categories, namely: (1) supervised learning; (2) un-
supervised learning; (3) semi-supervised learning; and (4) reinforcement learning [9].
In supervised learning, the training set used to feed the algorithm includes the desired
solutions, called labels. On the other hand, in unsupervised learning the training data are
unlabeled and the algorithm must learn without prior assistance. The semi-supervised
algorithms use partially labeled bases, and in learning by reinforcement, the system can
observe the environment, select and perform actions, and receive rewards in return. The
learning system, called an agent in this context, can observe the environment, select and
perform actions, and get rewards in return (or penalties) [9]. In this work, we use the
supervised learning category.

The supervised learning algorithms used in this research were:

1. kNN (k-Nearest Neighbor). Is based on the principle that the instances within a
dataset will generally exist in close proximity to other instances that have similar
properties [32]. The algorithm classifies a new data by calculating the distance of
this data with the already existing instances inside the data base, then it selects the
closest k instances and calculates their average, for regression problems, or gets the
mode.

2. Support Vector Machine (SVM). Support Vector Machines are a particularly pow-
erful and flexible class of supervised algorithms for classification and regression [21].
SVM is a powerful and versatile machine learning model, capable of performing
linear or non-linear classification, regression and even outliers detection. The al-
gorithm makes the classification creating a linear hyperplane of maximum margin
that separates two classes. This margin makes there are few possibilities of separat-
ing the data from the sample, and thus, there is little chance of misclassifying new
instances.

3. Logistic Regression (LR). Logistic regression is commonly used to estimate the prob-
ability of an instance belonging to a specific class (for example, what is the proba-
bility that this email is a spam?) [9]. Abdul et al. [28] defined Logistic Regression
as a regression class in which an independent variable is used to forecast the depen-
dent variable. It is called binary logistic regression when the dependent variable has
two classifications. It is called multinomial logistic regression when the dependent
variable has more than two classes. In this work, we use binary logistic regression
to classify the requirements between Functional Requirements and Non-Functional
Requirements, and multinomial logistic regression to the other classifications.

9

4. Multinomial Naive Bayes (MNB). A generative model estimates the conditional
probability of a class given input data. In particular, Naive Bayes assumes the
input features are independent each other (conditional independence). Multinomial
Naive Bayes is a specialized version of Naive Bayes mostly used for document and
text classification [33].

2.7 Performance Measures

Evaluation metrics are primarily used to evaluate the performance of a classifier. The
performance is verified through mathematical formulas that will compare the predictions
obtained by a model with the actual values in the database.

Precision measures the percentage between the quantity of correctly classified samples
in relation to the total of samples. Precision is calculated using the ratio of the total of
correct classifications to the total of classifications performed. This calculation can also
be seen as the ratio of the quantity of true positives (TP) to the quantity of positives
(TP+FP):

Precision = TP

TP + FP
(2.1)

A precision equals to 1 indicates a percentage of 100% of the classifier and that all the
instances were classified correctly.

Recall is a proportion of positive instances that are detected correctly by the classifier.
It is calculated through the number of times that a class was correctly predicted (TP),
divided by the number of times that the class appears in the test data (FN).

Recall = TP

TP + FN
(2.2)

It is often convenient to combine precision and recall into a single metric called the
F1-score (also known as F-measure), in particular if you need a simple way to compare
two classifiers [9]. The F1-score is the harmonic mean of precision and recall. Whereas
the regular mean treats all values equally, the harmonic mean gives much more weight
to low values. As a result, the classifier will only get a high F1 score if both recall and
precision are high [9].

F1-score = 2TP

2TP + FP + FN
(2.3)

Accuracy represents the fraction of correctly classified observations. It is a more
general measure because it calculates the number of right classifications on the whole. Is
a good measure when the target classes in the data are (nearly) balanced.

10

Accuracy = TP + TN

TP + FP + TN + FN
(2.4)

In this work, we will compare the performance of four machine learning algorithms,
that are SVM [34], kNN [35], MNB [33] and LR [36], combined with BoW [28] and TF-IDF
[29], separately, to classify the FRs and NFRs ((and its sub-classes) of PROMISE_exp
[4].

11

Chapter 3

Related Work

Kurtanovic et al. [1], used the SVM algorithm to classify requirements into Functional
Requirements, Non-Functional Requirements, and the subcategories of Non-functional
requirements. The authors used the PROMISE repository, which has the characteristic
of being unbalanced in terms of functional and non-functional requirements. To balance
the database, user comments made on Amazon products were integrated into the main
data set. The authors had a precision and recall up to 90% for automatically identifying
FRs and NFRs and for the identification of specific NFRs.

A problem currently encountered in searches that need to use public databases contain-
ing software requirements is that there are a limited number of such databases available
online. The most commonly used requirements database is the PROMISE repository
[27]. However, this repository is unbalanced and has only 625 classified (labeled) require-
ments written in natural language. In order to expand the PROMISE public database
for future research, Lima et al. [4] used Google search engines to search for Requirements
Engineering (RE) documents, which subsequently went through a validation phase, where
the consensus of some experts on the type of software requirement they determined was
measured. The data obtained was used to expand the PROMISE database, forming the
PROMISE_exp repository. The result of the expansion was evaluated, comparing clas-
sifications in both the original and the new base using SVM, Decision Tree, MNB and
kNN algorithms. The results showed that in most cases, PROMISE_exp has improved
the rankings.

The leading App distribution platforms like Apple, App Store, Google Play, Windows,
among others, have over 4 million applications [37]. Users can evaluate an App by giving a
rating with a text feedback after they download and use the App. These feedbacks contain
valuable information which may help developers to better understand user needs and
complaints during software maintenance and evolution. Taking this into consideration,
Lu et al. [11], automatically classified user ratings among four types of NFRs (reliability,

12

usability, portability and performance), RF and others. The authors combined the use
of four classification techniques: BoW, TF-IDF, CHI2 and AUR-BoW (proposed in the
study), combined with three machine learning algorithms: Naive Bayes, J48, and Bagging.
The authors concluded that the combination of the AUR-BoW technique with the Bagging
algorithm presented the best performance, with an accuracy of 71.4%, recall of 72.3%,
and F-measure of 71.8%.

Jindal et al. [38] performed an automated analysis of various software requirements
specifications from the PROMISE repository and introduced binary classification into dif-
ferent types of security requirements categories using a single machine learning algorithm
(the J48 decision tree). The authors used pre-processing techniques such as tokenization,
stemming and stop word removal, and performed vectorization using TF-IDF. The result
analysis indicated that all the four models have performed very well in predicting their
respective type of security requirement.

13

Chapter 4

Methodology

4.1 Research Questions

This work aims to answer the following research questions (RQ):

RQ1. Which feature extraction technique works best (BoW vs. TF-IDF vs. CHI2), for
classifying Software Requirements into Functional Requirements and Non-Functional
Requirements, and the sub-classes of Non-Functional Requirements?

RQ2. Which Machine Learning Algorithm provides the best performance for the require-
ments classification task?

To answer RQ.1, we performed the conversion of the requirements into numerical
vectors, each of these vectors was combined with the classification algorithms, and then
we looked at BoW, TF-IDF and Chi Squared to see which one was the best. To answer
RQ.2 we used the same results as the classifications obtained to answer RQ.1, but instead
of comparing BoW, TF-IDF and Chi Squared, we compared the results obtained by SVM,
kNN, MNB and LR, through performance measures, as presented in Section 2.7.

4.2 Requirements Classification Phases

We used four phases (steps) to perform the software requirements classification, as shown
in Figure 4.1. The steps used were:

1. Normalization. This is the first step where the data is cleaned. All irrelevant words
such as pronouns and articles are removed. Flexed verbs and nouns are converted
to their root form (Phase 1 Figure 4.1).

14

2. Vectorization. Known also as feature extraction. At this stage the software require-
ments corpus (normalized) are converted into numerical vectors that best represent
the information contained in those requirements. In this study, we use BoW and
TF-IDF to perform this conversion (Phase 2 Figure 4.1).

3. Feature Selection. In this phase some features are excluded based on some pre-
established criteria. In the TF-IDF vectorization, X2 was also used to filter the
features. (Phase 3 Figure 4.1).

4. Classification. In this step the vectors obtained in the Phase 2 are used to train
and predict the classification models of the four algorithms used in this work: SVM,
MNB, kNN and LR (Phase 4 Figure 4.1).

5. Evaluation. This is the final stage of classification where the results of the re-
quirement’s labels predictions and the true labels of these requirements are used to
calculate the performance measures, presented in Section 2.7.

Figure 4.1: Phases of requirements classification pipeline.

To perform the experiment, we used the programming language Python (https://
www.python.org/) and the database PROMISE_exp [4]. This repository it’s a expanded
version of the original PROMISE dataset, a public repository inspired by the UCI Machine
Learning Repository, and created to encourage repeatable, verifiable, refutable, and/or
improvable predictive models of software engineering [39]. The original repository consists
of a pre-labeled set of 255 FRs and 370 NFRs, the last one being sub-classified into
11 different types of NFRs. The expanded version of Lima et al. [4] consists of 969
requirements and its composition is presented in Table 4.1. The expansion occurred with
a focused web search for documents containing records of software requirements, where a
analysis was made on such documents, and software requirements used in the expansion
were identified and extracted. The entire process prioritized the compatibility and quality

15

https://www.python.org/
https://www.python.org/

of the expansion and the expansion result was evaluated through the use of ML algorithms
and its results were compared to the results of the original database when submitted to
the same algorithms [4]. Figure 4.2 shows visually how unbalanced the classes are. The
only case that classes are well distributed it’s when all sub-classes of NFRs are grouped in
one unique class of NFRs when analysing the binary classification, such separation data
results in 444 FRs and 525 NFRs.

Figure 4.2: Distribution of requirement classes on dataset.

Type of Requirement Number of Requirements
Functional Requirement (FR) 444
Availability (A) 31
Legal & Licensing (L) 15
Look & Feel (LF) 49
Maintainability (MN) 24
Operability (O) 77
Performance (PE) 67
Scalability (SC) 22
Security (SE) 125
Usability (US) 85
Fault Tolerance (FT) 18
Portability (PO) 12
Total 969

Table 4.1: Number of requirements per label.

16

4.2.1 Normalization Phase

All documents in the database have gone through a normalization process, this process
is represented in Phase 1 “Normalization” of Figure 4.1. Table 4.2 shows the database
requirements before the normalization process (cleaning of the text).

Text Class
1 The system shall refresh the display every 60 s. PE
2 The application shall match the color of the schema set forth by Department of Homeland

Security.
LF

3 If projected the data must be readable. On a 10 × 10 projection screen 90% of viewers
must be able to read Event/Activity data from a viewing distance of 30.

US

4 The product shall be available during normal business hours. As long as the user has
access to the client PC the system will be available 99% of the time during the first six
months of operation.

A

5 If projected the data must be understandable. On a 10 × 10 projection screen 90% of
viewers must be able to determine that Events or Activities are occurring in current time
from a viewing distance of 100.

US

.
965 The system should be portable to various operating environments. PO
966 Registered User must be able to maintain his/her session information for at least 60 min of

inactive session before the system prompts him to log out of the system. The registered
user must be provided with all the options of the E-store regardless of the time when
he/she logs in.

F

967 The entire website must be user-friendly and easily navigable. The website must be
provided with a site map for quick access to a particular link according to the requirement
specification. The user must be able to find what he/she wants from the site without any
difficulty. The website must adhere to branding schemes and the layout of the web pages
must be uniform throughout.

US

968 The system shall support up to 10,000 simultaneous users against the central database
at any given time and up to 5000 simultaneous users against the local servers at any one
time. The performance of the website must be optimal increase of huge loads and hence
appropriate load balancing must be done to achieve this. There can be any number of
mirror servers readily available in case of huge loads without the user getting any delay.

PE

969 The website must provide highest degree of security to the registered users. All the
transactions that are made must be secured. The sensitive information passed to and
from the website must be secured. Identity theft and other security related issues must
be solved. Unauthorized transmission of sensitive information of the user to third party
websites for reference must be avoided. On the basis of user agreement the information
must be processed. All the information about the registered user must be securely stored
in the central database.

SE

Table 4.2: Corpus before the text cleaning.

We used a library called NLTK (https://www.nltk.org/) in the normalization pro-
cess. This library is responsible for performing natural language processing. In this

17

https://www.nltk.org/

process, all words have been converted to lowercase letters, for example, Table 4.2 ID 1:
“The system shall refresh the display every 60 s” has been changed to: “System shall
refresh display every second”, as shown in ID 1 of Table 4.3. Then the words that had
little or no significance were removed from the documents. These words are called stop-
words and are usually the most common when we aggregate several documents. Words
like “the”, “a” and so on are considered irrelevant words (Table 4.3).

Text Class
1 System shall refresh display every second. PE
2 Application shall match color schema set forth department homeland security. LF
3 Project data must readable projection screen viewer must able read event activity data

view distance.
US

4 Product shall available normal business hour long user access client pc system available
time first six month operation.

A

5 Project data must understandable projection screen viewer must able determine event
activity occur current time view distance.

US

.
965 System portable various operate environment. PO
966 Register user must able maintain session information least minute inactive session system

prompt log system registered user must provide option regardless time log.
F

967 Entire website must easily navigable website must provide site map quick access particular
link accord requirement specification user must able find want site without difficulty
website must adhere brand scheme layout web page must uniform throughout.

US

968 System shall support simultaneous user central database give time simultaneous user local
server one time performance website must optimal in case huge load hence appropriate
load balancing must do achieve number mirror server readily available case huge load
without user get delay.

PE

969 Website must provide high degree security registered user transaction make must secure
sensitive information pass website must secure identity theft security relate issue must
solve unauthorized transmission sensitive information user third party website reference
must avoid basis user agreement information must process information registered user
must securely store central database.

SE

Table 4.3: Corpus after the text cleaning.

The last step in the normalization process was to transform the conjugated words into
their root form, for example, the word “users” was changed to “user” and “specified” was
changed to “specify”. The code used for this step is showed in Listing 4.1. Table 4.3 shows
the documents after the completion of the normalization step.

1 # Remove blank rows.
2 Corpus [’text ’]. dropna (inplace =True)
3 # Change all the text to lower case.
4 Corpus [’text ’] = [entry.lower () for entry in Corpus [’text ’]]
5 # Tokenization

18

6 Corpus [’text ’]= [word_tokenize (entry) for entry in Corpus [’text ’]]
7 # Remove Stop words , Non - Numeric and perfom Word Lemmenting .
8 tag_map = defaultdict (lambda : wn.NOUN)
9 tag_map [’J’] = wn.ADJ

10 tag_map [’V’] = wn.VERB
11 tag_map [’R’] = wn.ADV
12

13 for index ,entry in enumerate (Corpus [’text ’]):
14

15 Final_words = []
16 word_Lemmatized = WordNetLemmatizer ()
17 for word , tag in pos_tag (entry):
18 # Below condition is to check for Stop words and consider only
19 alphabets if word not in stopwords .words(’english ’)
20 and word. isalpha ():
21 word_Final = word_Lemmatized . lemmatize (word , tag_map [tag [0]])
22 Final_words . append (word_Final)
23 Final_words = ’ ’.join(Final_words)
24 Corpus .loc[index ,’text ’] = str(Final_words)

Listing 4.1: Corpus cleaning.

4.2.2 Feature Extraction Phase

After performing the normalization, all documents went through the vectorization process,
this phase is necessary so we can use the information extracted from the documents in
our machine learning models, according to Phase 2 “Feature Extraction” of Figure 4.1.
Thus, we use BoW and TF-IDF in the vectorization process.

The two forms of feature extraction (BoW and TF-IDF) were compared in the classi-
fication phase, where we can observe which of these techniques improved the performance
of the algorithms used. In order to evaluate which words were considered the most influ-
ential, we counted the sum of the lines of each matrix resulted from vectorization. Table
4.4 presents the 10 words with highest score for each technique. It is possible to observe in
the table that the words are the same, but from the 3th position the order of importance
changes from BoW to TF-IDF.

4.2.3 Feature Selection Phase

Phase 3 it’s a feature selection phase, where the features generated from feature extraction
go through a process of filtering, to remove some features that are not so important
according to some statistical approach (Chi Squared in our case). In BoW and TF-
IDF vectorizations, the features filter was reached with an argument used in both feature

19

extraction methods, max_df, that is used to ignore terms that have a document frequency
strictly higher than the given threshold. Another argument was min_df that ignore terms
that have a document frequency strictly lower than the given threshold. The value of this
two arguments were established with hyperparamenter optimization.

In Chi Squared approach, we conducted a different filter for the features. We used
the CHI2 technique (Section 2.5.1) for filtering the features obtained by TF-IDF. In our
work, a function called SelectKBest was used. This function accepts two arguments,
score_func, that is the score function chose (CHI2) and k that is the k features with the
best CHI2 that will be considered. To find the k value, we used the same hyperparameter
optimization approach that finds the settings of BoW and TF-IDF.

4.2.4 Classification Phase

The normalized and vectorized corpus was used for training and performance testing
using four algorithms: kNN, SVM, MNB and LR (Phase 4 of Figure 4.1). These algo-
rithms were used to classify software requirements into three different types of granu-
larity: Functional Requirements and Non-Functional Requirements; sub-classes of Non-
Functional Requirements; Functional Requirements and sub-classes of Non-Functional
Requirements. In SVM, MNB and LR algorithms, a hyperparameter called class_weight
was used, this hyperparameter uses the values of class labels to automatically adjust
weights inversely proportional to class frequencies in the input data. All the hyperparam-
eters, both from vectorization and classification algorithms, were chosen using a function
called GridSearchCV. This function exhaustive search over specified parameter values for
an estimator and chooses the best combination based in some scoring parameter, in our
case was F-measure. In other words, this function test all the possible combinations be-
tween the parameters and returns the combination that achieved the best score. This
winning combination is the combination that is used in the vectorization/classification
process.

20

Position BoW TF-IDF
1o must must
2o information information
3o user sensitive
4o website website
5o security registered
6o registered security
7o secure secure
8o sensitive user
9o high third
10o agreement issue

Table 4.4: Top 10 most important features.

4.2.5 Performance Measure Phase

We calculated the performance of the four algorithms using cross-validation according
to the Phase 5 “Performance Measure” of the classification process, presented in Figure
4.1. Cross-validation creates a sequence of fits where each subset of the data is used both
as a training set and as a validation set [21], we choose this approach to deal with the
unbalanced characteristic of the data. In this experiment, the corpus was divided into ten
subsets (10-folds), of which 9 were used to train the algorithms—which corresponds to 90
percent of the base, and 1 was used to perform the tests, corresponding to 10 percent of the
database [4]. From the cross-validation, we calculate the precision, recall and F-measure
of the results. In the Listening 4.2 is the function created to perform the cross-validation,
in this function we pass as parameters our Corpus (data), the classification algorithm
(model), the object responsible for vectorizing the Corpus (vectorizer), and the number
of folds (in our case are 10). The function therefore extract the features, trains and tests
the data, printing at the end the performance measures obtained with the test.

1 def kfoldcv (data , classifier , vectorizer , k_best , k = 10):
2 kf = KFold(n_splits =k, shuffle = True , random_state = 60)
3 kf. get_n_splits (data)
4 report_test = pd. Series ()
5 report_prediction = pd. Series ()
6

7 for train_indices , test_indices in kf.split(data):
8 train_text = data.iloc[train_indices][’text ’]
9 train_class = data.iloc[train_indices][’class ’]

10

21

11 test_text = data.iloc[test_indices][’text ’]
12 test_class = data.iloc[test_indices][’class ’]
13

14 pipeline = Pipeline ([(’vect ’, vectorizer),
15 (’chi ’, SelectKBest (score_func =chi2 , k=kbest)),
16 (’clf ’, classifier)])
17

18 model = pipeline .fit(train_text , train_class)
19

20 predictions = model. predict (test_text)
21

22 report_test = np. concatenate ((report_test , test_class), axis =0)
23 report_prediction = np. concatenate ((report_prediction ,

predictions), axis =0)
24

25 print(metrics . classification_report (report_test , report_prediction ,
digits = 2))

Listing 4.2: Classification with cross-validation.

The Scikit-learn (https://scikit-learn.org/stable/) tool was used to support the
experiments. Scikit-learn is a Python module that integrates several machine learning
algorithms to work with supervised and unsupervised problems. This tool was chosen
because it contains the algorithms used in this study, as well as additional tools that
implement BoW, TF-IDF and cross-validation. It is worth mentioning that this work
differs from the work of [4] by including Logistic Regression in the list of classifiers to be
analyzed, and removing Decision Trees from that list. In addition, our work performs a
study on the differences of using BoW and TF-IDF in the classification of requirements
[40].

22

https://scikit-learn.org/stable/

Chapter 5

Results

In this section, we present the results of the experiment and discuss its implications. We
conducted three evaluations to determine the best combination of Machine Learning al-
gorithm and feature extraction technique to classify requirements: (1) Effectiveness in
binary classification of requirements; (2) effectiveness in multiclass classification of non-
functional requirements; and (3) effectiveness in multiclass classification of requirements,
including Non-Functional Requirements (NFRs) and Functional Requirements (FRs). In
the context of these three experiments, we used the Machine Learning (ML) algorithms
described in Section 2.6. The metrics used to evaluate the algorithms were: Precision
Equation (2.1), Recall Equation (2.2) and F-measure Equation (2.3).

5.1 Binary Classification

The performance evaluation of ML algorithms in binary classification of software re-
quirements was conducted in order to determine the quality of the distinction between
functional requirements and non-functional requirements. Table 5.1 presents the results
obtained for the binary classification. It is possible to notice that SVM and LR had the
best performance in the classification with its performance measures in the value of 0.91
using TF-IDF. SVM algorithm was also the algorithm that showed the least variation in
its performances, with a performance greater or equal to 0.90 in all measures.

The MNB algorithm also had a great performance with TF-IDF. However, with a
difference of 0.01, the F-measure of SVM and LR was higher. With this results, we can
conclude that SVM and LR algorithms were better in binary classification of software
requirements.

23

Binary Classification

BoW TF-IDF CHI2

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
SVM 0.90 0.90 0.90 0.91 0.91 0.91 0.90 0.90 0.90
MNB 0.91 0.91 0.91 0.91 0.91 0.90 0.89 0.89 0.89
kNN 0.82 0.82 0.82 0.87 0.87 0.87 0.84 0.84 0.84
LR 0.88 0.88 0.88 0.91 0.91 0.91 0.89 0.89 0.89

Table 5.1: Results of Bag of Words (BoW), Term Frequency–Inverse Document Frequency
(TF-IDF) and Chi Squared binary classification with Support Vector Machine (SVM),
Multinomial Naive Bayes (MNB), k-Nearest Neighbors (kNN) and Logist Regression (LR).

5.2 Multiclass Classification

5.3 Classification of 11 classes

Table 5.2 presents the evaluation results of the ML algorithms used in the multiclass clas-
sification task of non-functional requirements. In this experiment, we evaluated the effec-
tiveness of classifying the non-functional requirements in 11 different classes, according to
labels originally defined in the PROMISE_exp database. In this classification, there was
a significant decrease in the number of instances, since the database has 444 functional re-
quirements, making the classification of the 11 classes of non-functional requirements have
only 525 instances in its favor (969 of the corpus minus the 444 functional requirements).

Compared to the other granularities, the classifiers had a higher difficulty in differen-
tiating functional requirements. The performance of the algorithms was worse compared
to other granularities, mainly by the kNN algorithm combined with Bow, with a recall
of 0.48. However, there was an improvement in the performance of the algorithms when
using TF-IDF. According to the results, it is possible to identify that LR combined with
TF-IDF was superior to SVM, MNB and kNN.

5.4 Classification of 12 classes

Table 5.3 presents an overview of the results of the experiment obtained by the three
feature extraction techniques BoW, TF-IDF and Chi Squared combined with four machine
learning algorithms SVM, MNB, kNN and LR, which show the weighted mean precision,
recall and F-measure of the results of the classification into 12 different granularities
(Functional Requirements and the 11 types of Non-Functional Requirements). In general,
the precision, recall and F-measure of all combinations is greater or equal to 0.60.

24

Non-Functional Requirements Classification

BoW TF-IDF CHI2

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
SVM 0.68 0.67 0.66 0.73 0.73 0.72 0.72 0.71 0.71
MNB 0.71 0.73 0.72 0.71 0.71 0.71 0.69 0.70 0.68
kNN 0.56 0.48 0.49 0.66 0.66 0.66 0.62 0.63 0.62
LR 0.71 0.71 0.70 0.75 0.75 0.74 0.70 0.71 0.70

Table 5.2: Results of BoW, TF-IDF and Chi Squared classification with SVM, MNB,
kNN and LR with 11 granularities (Non-Functional Requirements).

LR algorithm achieved the best performance classification with 0.79 in recall measure.
The most significant performance difference was in the kNN recall measure with an in-
crease of 21.67% from BoW to TF-IDF. In the third case of granularity LR was the best
algorithm.

Classification with 12 Granularities

BoW TF-IDF CHI2

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
SVM 0.73 0.73 0.72 0.78 0.78 0.78 0.77 0.77 0.76
MNB 0.77 0.77 0.77 0.76 0.77 0.76 0.74 0.74 0.73
kNN 0.63 0.60 0.60 0.72 0.73 0.72 0.67 0.69 0.68
LR 0.76 0.77 0.76 0.78 0.79 0.78 0.76 0.77 0.76

Table 5.3: Results of BoW, TF-IDF and Chi Squared classification with SVM, MNB,
kNN and LR with 12 granularities (Functional Requirements and Non-Functional Re-
quirements).

In order to evaluate the classification obtained by the combination of TF-IDF and
SVM, we analyzed the performance acquired by the algorithm for each of the labels in
our database, as presented in Table 5.4. We can note that F was the requirement with
the highest F-measure because of its large amount of observations.

It is also possible to observe a good classification of PE, with 0.82 in all measures, be-
ing the requirement with second largest F-measure even not being the class with the
second higher number of observations. The worst classification was of the portabil-
ity requirements, due to the smallest number of instances of those requirements in the
PROMISE_exp. Another relevant observation is the performance in the classification
of the security requirements, which despite of having a good amount of instances (125
instances), obtained a low precision in relation to its recall and F1-score. We believe that
this has happened due to the classification becoming dependent on the appearance of
keywords, such as “password” and “cookies”.

25

For a better visualization and comprehension, Figure 5.1 shows the relation between
the proportion of each type of requirement and the F-measure obtained. We can notice
that, there exists a relationship among these two measures, because the lines of them
have a similar shape. We can see that for low proportion values, a slight increase or a big
decrease in the number of examples, has a significant impact on the F-measure. Most of
the F-measure’s of the requirements increases when the proportion increases, but unlike
the other requirements the F-measure of PE increases compared with Operability (O)
when the number of examples decreases. Moreover, while the proportion differences of F
to PE and A to SE are very significant, the F-measures of these tuples are very similar.

SVM Classification Using TF-IDF (12 Granularities)

Precision Recall F1-score
Availability (A) 0.77 0.74 0.75

Functional Requirement (F) 0.87 0.92 0.89
Fault Tolerance (FT) 0.70 0.39 0.50
Legal & Licensing (L) 0.88 0.47 0.61
Look & Feel (LF) 0.78 0.65 0.71

Maintainability (MN) 0.52 0.50 0.51
Operability (O) 0.64 0.53 0.58

Performance (PE) 0.82 0.82 0.82
Portability (PO) 0.50 0.17 0.25
Scalability (SC) 0.57 0.55 0.56
Security (SE) 0.71 0.77 0.74
Usability (US) 0.66 0.72 0.69

Table 5.4: Results of TF-IDF with SVM classifications (12 granularities—Functional
Requirements and Non-Functional Requirements).

Figure 5.1: Comparison between the F-measure and proportion of each type in the dataset.

26

5.5 Discussion

By analyzing the classifications for the three types of vectorization (BoW, TF-IDF and
CHI2) to prepare the data for the 4 algorithms analyzed in this work (SVM, MNB, LR
and kNN), we can state that TF-IDF as feature extraction, without CHI2, is a better
vectorization technique than BoW and TF-IDF followed by CHI2, which responds to
RQ.1 defined in Section 4.1, by taking into account the number of times a given word
appears in all documents, unlike BoW which only takes into account the frequency of that
word in a document. In all cases, BoW proved to be better when combined with MNB,
but with some of the measures having a difference of only 0.01. In the other cases the
TF-IDF obtained an advantage. Moreover, LR proved to be the best algorithm when used
with TF-IDF in all classification of requirements, tying with SVM in binary classification.
In the classification with 11 granularities (non-functional requirements), the SVM proved
to be better than LR, when using CHI2, but not when BoW and TF-IDF were used,
but with equal performance measures or with a slight difference of 0.01 between them.
In some cases, MNB was better than SVM, LR and kNN when combined with BoW,
however, with the use of TF-IDF, LR was able to lead the classification, thus responding
to the RQ.2 defined in Section 4.1.

27

Chapter 6

Threats to Validity

In this section, we will discuss the limitations and threats to validity of this work, and
how these threats were partially mitigated during the conduct of this research.

1. Database unbalance. Due to the unbalance, the classification obtained by the algo-
rithms lost in performance, mainly in cases with 11 (Non-Functional Requirements)
and 12 granularities (Functional Requirements and Non-Functional Requirements).
Some non-functional requirements had a very small number of instances as it was
the case of the Portability requirements, containing only 12 examples, which repre-
sents 1.24% of the PROMISE base. To get around the unbalanced, we use versions
of the algorithms that take into account the bad distribution of classes and associate
weights to those classes.

2. Reliability of the study. The reliability of the study is related to whether the research
conducted will produce the same results as other researchers who replicate the study.
In this work, reliability is related to the processes we adopt to perform the automatic
classification of requirements. To mitigate this threat, we have detailed the processes
adopted (Chapter 4). Thus, we believe that this threat has been partially mitigated.

28

Chapter 7

Conclusions

In this work, we combined two text vectorization techniques with four machine learning
algorithms to manually classify user requirements into two types (functional requirements
and non-functional requirements), eleven types (non-functional requirements subclasses),
and twelve types (functional requirements plus non-functional requirements subclasses).
We evaluate the combination of these algorithms using the PROMISE_exp database,
which is an expansion of the PROMISE database.

We conducted some experiments to compare the precision, recall and F-measure of the
classification results across all combinations. We found that the combination of TF-IDF
and LR has the best performance measures for binary classification, non-functional re-
quirements classification and for requirements classifications in general, with an F-measure
of 91% on the binary classification, 74% in 11 granularity classification and 78% on the
12 granularity classification.

Studies have shown that in an unbalanced data set, automatic classification performs
worse when the size of requirements of some labels is smaller. Automatic Software Re-
quirements classification can help developers document their projects more effectively,
minimizing rework and making the software easier to use and understand. We hope
that this study help developers to use this techniques to automatize software require-
ments categorization and help them to understand stakeholders needs. Furthermore, the
classification performed can serve as a guideline and reference for other studies, help-
ing specialists in the field to choose the classification algorithm that presents the best
accuracy in the classification of NFR and FR requirements.

As future works, we aim to:

1. Increase the size of PROMISE_exp to use and explore others feature extraction
techniques such as word2vec [41], AUR-BoW [11], Hierarchal BoW [42] and Online
Unsupervised Multi-view Feature Selection [43].

29

2. Use advanced multi-view strategy to combine the different feature set in order to
avoid redundant information.

3. Analyze the use of other supervised classification algorithms with the use of Neural
Networks [44].

4. Compare the results of the supervised classification with those of an unsupervised
classification.

5. Look for ways to mitigate the unbalance of the base, being able to improve the
classification with little training data.

30

References

[1] Kurtanovic, Z. and W. Maalej: Automatically classifying functional and non-
functional requirements using supervised machine learning. In 2017 IEEE 25th In-
ternational Requirements Engineering Conference (RE), pages 490–495, Lisbon, Por-
tugal, 2017. IEEE. x, 4, 5, 12

[2] Lilleberg, J., Y. Zhu, and Y. Zhang: Support vector machines and word2vec for text
classification with semantic features. In 2015 IEEE 14th International Conference on
Cognitive Informatics & Cognitive Computing (ICCI*CC), pages 136–140, Beijing,
China, 2015. IEEE. 1

[3] Sarkar, Dipanjan: Text Analytics with Python. Apress, USA, 2016. 1, 6, 7

[4] Lima, Márcia, Victor Valle, Estevão Costa, Fylype Lira, and Bruno Gadelha: Soft-
ware engineering repositories: Expanding the promise database. In XXXIII Brazilian
Symposium on Software Engineering, page 427–436, Porto Alegre, RS, Brasil, 2020.
SBC. https://sol.sbc.org.br/index.php/sbes/article/view/9364. 1, 6, 11,
12, 15, 16, 21, 22

[5] Zubcoff, José Jacobo, Irene Garrigós, Sven Casteleyn, Jose-Norberto Mazón, José
Alfonso Aguilar, and Francisco Gomariz-Castillo: Evaluating different i*-based ap-
proaches for selecting functional requirements while balancing and optimizing non-
functional requirements: A controlled experiment. Inf. Softw. Technol., 106:68–84,
2019. 1

[6] Abad, Zahra Shakeri Hossein, Oliver Karras, Parisa Ghazi, Martin Glinz, Guenther
Ruhe, and Kurt Schneider: What works better? a study of classifying requirements,
2017. 1

[7] Navarro-Almanza, R., R. Juarez-Ramirez, and G. Licea: Towards supporting software
engineering using deep learning: A case of software requirements classification. In
2017 5th International Conference in Software Engineering Research and Innovation
(CONISOFT), pages 116–120, Mérida, Mexico, 2017. IEEE. 2

[8] Bengfort, Benjamin, Rebecca Bilbro, and Tony Ojeda: Applied Text Analysis with
Python. OŔeilly Media, Inc., USA, 2016. 2, 7

[9] Géron, Aurélien: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow. O’Reilly Media, Inc., USA, 2019. 2, 8, 9, 10

31

https://sol.sbc.org.br/index.php/sbes/article/view/9364

[10] Yang, Yiming and Jan O. Pedersen: A comparative study on feature selection in
text categorization. In Proceedings of the Fourteenth International Conference on
Machine Learning, ICML ’97, page 412–420, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc., ISBN 1558604863. 2, 8

[11] Lu, Mengmeng and Peng Liang: Automatic classification of non-functional require-
ments from augmented app user reviews. In Proceedings of the 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineering, EASE’17,
page 344–353, New York, NY, USA, 2017. Association for Computing Machinery,
ISBN 9781450348041. https://doi.org/10.1145/3084226.3084241. 2, 7, 12, 29

[12] IEEE: Ieee standard glossary of software engineering terminology. IEEE Std 610.12-
1990, 1:1–84, 1990. 3, 4

[13] Pohl, Klaus and Chris Rupp: Requirements Engineering Fundamentals. O’Reilly
Media, Inc., USA, 2011. 3, 4

[14] Pacheco, C., I. García, and M. Reyes: Requirements elicitation techniques: a sys-
tematic literature review based on the maturity of the techniques. IET Software,
12(4):365–378, 2018. 3

[15] Martins, Hugo Ferreira, Antônio Carvalho de Oliveira Junior, Edna Dias Canedo, Ri-
cardo Ajax Dias Kosloski, Roberto Ávila Paldês, and Edgard Costa Oliveira: Design
thinking: Challenges for software requirements elicitation. Inf., 10(12):371, 2019. 3

[16] Fernandes, João and Ricardo J Machado: Requirements Elicitation, pages 85–117.
Springer, EUA, January 2016, ISBN 978-3-319-18596-5. 4

[17] Anton, Ana I.: Goal Identification and Refinement in the Specification of Software-
Based Information Systems. PhD thesis, School of Information & Computer Sci-
enceAtlanta, USA, 1997. 4

[18] Davis, Alan M.: Software Requirements: Objects, Functions, and States. Prentice-
Hall, Inc., USA, 1993, ISBN 013805763X. 4

[19] Calazans, Angélica Toffano Seidel, Roberto Ávila Paldês, Edna Dias Canedo, Eloisa
Toffano Seidel Masson, Fernando de A. Guimarães, Kiane Mabel Fialho Rezende,
Emeli Braosi, and Ricardo Ajax Dias Kosloski: Quality requirements: Analysis of
utilization in the systems of a financial institution. In ESEM, pages 1–6, 10.1109/E-
SEM.2019.8870151, 2019. IEEE. 4

[20] Canedo, Edna Dias, Angélica Toffano Seidel Calazans, Eloisa Toffano Seidel Masson,
Pedro Henrique Teixeira Costa, and Fernanda Lima: Perceptions of ICT practitioners
regarding software privacy. Entropy, 22(4):429, 2020. 4

[21] VanderPlas, Jake: Python Data Science Handbook. O’Reilly Media, Inc., USA, 2016.
5, 9, 21

32

https://doi.org/10.1145/3084226.3084241

[22] Vaca-Alajarín, Juan Martńez-Cabeza-de and Luis Manuel Tomás-Balibrea: Auto-
matic classification system of marble slabs in production line according to texture
and color using artificial neural networks. In Solina, Franc and Alešs Leonardis (edi-
tors): Computer Analysis of Images and Patterns, pages 167–174, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. 6

[23] Patil, Ms, Ms Pawar, Ms Patil, and Arjun Nichal: A review paper on brain tumor
segmentation and detection. IJIREEICE, 5:12–15, January 2017. 6

[24] Chan, Chee hong, Aixin Sun, and Ee Peng Lim: Automated online news classification
with personalization. The 4th International Conference of Asian Digital Libraries,
8(1), March 2002. 6

[25] Shirgave, Suresh, Chetan Awati, Rashmi More, and Sonam Patil: A review on credit
card fraud detection using machine learning. International Journal of Scientific and
Technology Research, 8:1217–1220, October 2019. 6

[26] Tiha, Anjana: Intelligent Chatbot using Deep Learning. PhD thesis, University of
Memphis, April 2018. 6

[27] Iqbal, T., P. Elahidoost, and L. Lúcio: A bird’s eye view on requirements engineering
and machine learning. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 11–20, Nara, Japan, 2018. IEEE. 6, 12

[28] Abdul Salam, Mustafa: Sentiment analysis of product reviews using bag of words and
bag of concepts. International Journal of Electronics, 11:49–60, December 2019. 7, 9,
11

[29] Fei, Ning and Yangyang Zhang: Movie genre classification using tf-idf and svm. In
Proceedings of the 2019 7th International Conference on Information Technology:
IoT and Smart City, ICIT 2019, page 131–136, New York, NY, USA, 2019. Associa-
tion for Computing Machinery, ISBN 9781450376631. https://doi.org/10.1145/
3377170.3377234. 7, 11

[30] Erkan, Ali and Tunga Gungor: Sentiment analysis using averaged weighted word
vector features, 2020. 7

[31] Forman, George: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res., 3(null):1289–1305, 2003, ISSN 1532-4435. 8

[32] Kotsiantis, Sotiris: Supervised machine learning: A review of classification techniques.
Informatica (Ljubljana), 31:249–269, October 2007. 9

[33] Vergara, D., S. Hernández, and F. Jorquera: Multinomial naive bayes for real-time
gender recognition. In 2016 XXI Symposium on Signal Processing, Images and Arti-
ficial Vision (STSIVA), pages 1–6, Bucaramanga, Colombia, 2016. IEEE. 10, 11

[34] Lorena, Ana Carolina and André CPLF de Carvalho: Uma introdução às support
vector machines. Revista de Informática Teórica e Aplicada, 14(2):43–67, 2007. 11

33

https://doi.org/10.1145/3377170.3377234
https://doi.org/10.1145/3377170.3377234

[35] Larose, Daniel and Chantal Larose: k-Nearest Neighbor Algorithm, pages 149–164.
Wiley-Interscience, EUA, July 2014. 11

[36] Hahs-Vaughn, Debbie and Richard Lomax: An Introduction to Statistical Concepts,
pages 997–1063. Routledge, Abingdon, UK, February 2020, ISBN 9781315624358.
11

[37] Clement, J.: App stores: number of apps in leading app stores
2019, 2019. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/, visited on 2020-04-23,
Library Catalog: www.statista.com. 12

[38] Jindal, R., R. Malhotra, and A. Jain: Automated classification of security require-
ments. In 2016 International Conference on Advances in Computing, Communica-
tions and Informatics (ICACCI), pages 2027–2033, Jaipur, India, 2016. IEEE. 13

[39] Sayyad Shirabad, J. and T.J. Menzies: The PROMISE Repository of Software Engi-
neering Databases. School of Information Technology and Engineering, University of
Ottawa, Canada, 2005. http://promise.site.uottawa.ca/SERepository. 15

[40] Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, Edouard Duchesnay, and Gilles Louppe: Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12, January 2012. 22

[41] Kurnia, Rafly: Classification of user comment using word2vec and svm classifier.
International Journal of Advanced Trends in Computer Science and Engineering,
9:643–648, February 2020. 29

[42] Jiang, Fan, Hai Miao Hu, Jin Zheng, and Bo Li: A hierarchal bow for image retrieval
by enhancing feature salience. Neurocomputing, 175:146 – 154, 2016, ISSN 0925-2312.
http://www.sciencedirect.com/science/article/pii/S0925231215015039. 29

[43] Shao, Weixiang, Lifang He, Chun Ta Lu, Xiaokai Wei, and Philip S. Yu: Online
unsupervised multi-view feature selection, 2016. 29

[44] Aggarwal C., Charu: Neural Networks and Deep Learning: A Textbook. Springer,
USA, 2019. 30

34

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://promise.site.uottawa.ca/SERepository
http://www.sciencedirect.com/science/article/pii/S0925231215015039

	56d008a3e56fcb074c9aaba4851dd7523a07ed93f3660662ff49c6a25ac508f2.pdf
	56d008a3e56fcb074c9aaba4851dd7523a07ed93f3660662ff49c6a25ac508f2.pdf
	56d008a3e56fcb074c9aaba4851dd7523a07ed93f3660662ff49c6a25ac508f2.pdf

