
Data-Driven Usability Refactoring:

Tools and Challenges

Alejandra Garrido1, Sergio Firmenich1, Julián Grigera2 and Gustavo Rossi1

LIFIA. Facultad de Informática. Universidad Nacional de La Plata
1Also CONICET 2Also CIC

La Plata. Argentina

{garrido, sfirmenich, juliang, gustavo}@lifia.info.unlp.edu.ar

Abstract—Usability has long been recognized as an important

software quality attribute and it has become essential in web

application development and maintenance. However, it is still

hard to integrate usability evaluation and improvement practices

in the software development process. Moreover, these practices

are usually unaffordable for small to medium-sized companies.

In this position paper we propose an approach and tools to allow

the crowd of web users participate in the process of usability

evaluation and repair. Since we use the refactoring technique for

usability improvement, we introduce the notion of “data-driven

refactoring”: use data from the mass of users to learn about

refactoring opportunities, plus also about refactoring

effectiveness. This creates an improvement cycle where some

refactorings may be discarded while others introduced,

depending on their evaluated success. The paper also discusses

some of the challenges that we foresee ahead.

Index Terms—Usability, accessibility, crowdsourcing,

refactoring, A/B testing.

I. INTRODUCTION

The number of web applications has grown exponentially

in recent years. This growth has led to great advances in

technology to present the user with increasingly attractive and

interactive solutions. Contradictorily, as the interaction

possibilities become more complex, the usability and

accessibility of the applications are weakened [1]. Usability

problems abound, like pages overloaded with content,

confusing processes, inconsistency in the design, or

inflexibility in certain operations [2]. In addition, most of

today's web applications do not meet the standards of

accessibility and are unusable by people with disabilities [3].

Organizations that may afford usability evaluation have

usability experts perform mostly guideline reviews and user

testing [4]. In user testing, representative users evaluate an

application by completing a sequence of typical tasks. The

benefit of user testing is that it captures real usage data. The

disadvantage is that it is expensive: it requires recruiting test

subjects and spending time and resources for experts to design

the tests, analyze results, discover problems and find solutions

for those problems. While there are tools to automate remote

user testing, and crowdsourcing platforms that may be applied

for the same purpose (e.g., uTest, test.IO), development teams

still need usability experts, at least to analyze the results and

find solutions for the problems encountered.

Moreover, learning from the behavior of masses of users

and making data-driven decisions is highly valuable [5]. That's

the reason why web analytic tools have become so popular to

measure traffic, market trends, and system’s effectiveness

while demanding fewer resources. However, concrete, high-

level problems are still hidden behind the statistics, and require

a usability expert to uncover them and find the solutions [6].

Meanwhile, A/B testing is usually applied by large

organizations to measure market performance of different

solutions with statistical significance [5], though the cost of

A/B testing may be prohibitive for small companies.

In our previous work we have proposed the use of the

refactoring mechanism to improve external qualities of web

applications, specifically usability and accessibility, and we

have advanced in refactoring tools in the client [2], [7]. One of

the benefits of client-side web refactorings (CSWR for short) is

that they create transformations by means of scripts, which can

be easily instantiated for a particular page and easily installed

in the browser. Besides usability and accessibility, CSWR may

be used in general to improve user experience (UX) with web

applications. The important point is that with this technology,

UX improvement is no longer restricted to site owners. While

there are approaches like Social Accessibility [8] that recruit

volunteer users to improve web accessibility by adding

metadata, to the best of our knowledge there is no other

proposal to collaboratively solve UX problems, and mainly, no

support to evaluate the solutions created by the community.

Consequently, our goal is to allow the crowd of web users

to collaboratively participate in the corrective and perfective

maintenance of web applications’ UX, through a refactoring-

and-testing iterative process with three-stages:

1. identification of the UX problems that users suffer, i.e.,

refactoring opportunities;

2. UX problem repair in terms of CSWR, created by and

for the community;

3. evaluation of CSWR through controlled experiments

that will ultimately guide the whole process.

In this paper we describe our approach, the tools we have

built, and the challenges that remain ahead. We hope to

contribute to both: the users’ community, to share solutions

otherwise unattainable, and the site owners, to learn from the

feedback of users about their problems and preferred solutions.

.

52

II. APPROACH AND TOOLS

The enormous number of websites available in the WWW

and the amount of different needs and capacities of their users

calls for a massive collaborative approach for assessing and

improving the UX, that is, a crowdsourcing approach.

Crowdsourcing uses the power of the crowd to solve problems,

reaching solutions otherwise unattainable or unaffordable.

Using an open call for participation, crowdsourcing has been

used for some time to solve different types of software

engineering problems with high success [9].

Our client-side web refactoring (CSWR) technology makes

it possible to apply crowdsourcing at different stages of UX

improvement. On the one hand, CSWR allows improving the

design of a running application, after learning from feedback of

real users about what works and what doesn’t [2]. On the other

hand, since CSWR are applied on the client, they can be

instantiated by volunteers other than website owners, can be

distributed to other users, and its effectiveness to solve the

problems can be measured again. Thus, the approach lets

feedback in the form of web usage data drive the refactoring

process: by mining UX problems before and after refactoring

we are able assess the real improvement.

We propose a platform for the voluntary, non-anonymous

participation of web users in 3 different stages of the process of

UX corrective maintenance and improvement: (A) UX

assessment; (B) UX repair and (C) repair evaluation.

A. UX Assessment

In the literature of refactoring, a useful concept is that of

“bad smells”, which relates to the potential problems in the

design that may be solved by refactoring. Similarly, we have

defined and catalogued usability smells as hints to usability

problems that may be solved by usability refactorings [2], [6].

The same applies to accessibility smells and, in general, we can

talk about UX smells. Cataloging UX smells allows identifying

and classifying problems with the web interface at a higher

level of abstraction than that provided by raw statistics.

Particularly, we are concerned with UX smells related with the

user interaction (UI), i.e., patterns of user events that were

shown to create problematic interaction.

Thus, regarding the collaboratively assessment and report

of UX problems related with the UI, our approach proposes 2

methods: 1) automatic identification of UX smells from UI

events, and 2) manual report of UX smells.

1) Automatic Detection of UX Smells: we have developed a

tool called USF that mines UI events from real users on-the-

fly, classifies the relevant ones and analyses them to discover

usability smells of user interaction [6]. USF has a client-side

component that preprocesses raw UI events and sends relevant

ones to the server, where several detection algorithms,

optimized through data stream mining techniques [10], allow

instant smell reporting without causing a performance

downgrade. USF is currently able to detect more than 16

usability smells with good precision. Some examples are:

“Undescriptive Element”, “Misleading Link”, “Free Input for

Limited Values” and “Unnecessary Bulk Action”.

2) Manual Report of UX Smells: since not all UX smells

can be detected automatically, it’s important to allow users to

make explicit reports of smells. To receive smell reports, we

are adapting a tool that gathers web adaptations requirements

from final users [11]. With this tool, reporting a UX smell

works as “subscribing” to it: in later stages, when solutions to

the smell become available, its subscribers will be invited to

vote for them (more on this in Section C). While we could use

an existing crowdsourcing environment like uTest, test.IO or

mTurk to gather UX smell reports, there are some mismatches

with our approach. These platforms all propose workers to

perform certain tasks, so they are useful to perform remote

user testing [12]. We instead are interested to gather problems

that occur “in the wild”, without predefined tasks. Moreover,

we prefer a voluntary participation, where users seek solutions

for their UX problems rather than a monetary compensation.

This prevents all problems related with fraud [12].

Manual reports of smells should be integrated with

automatic ones and clustered similarly until enough instances

from different users show their relevance.

B. UX Repair

CSWR implement catalogued solutions for UX smells, by

applying transformations to the Document Object Model

(DOM) of web pages when installed on the client browser [7].

An example is “Split Page”, which solves the problem of a

saturated, complex page by dividing it into simpler pages or

sections. Each CSWR is coded as a generic configurable script

that applies a well-known solution or design pattern, and gets

instantiated by providing specific parameters like the URL (or

URL pattern) of the target webpage and the xPaths of the DOM

elements where the changes are applied.

We have constructed a repository of CSWR in their generic

form (called abstract CSWR), and have evaluated them in two

aspects: (i) their effectiveness in improving usability in use of

e-commerce applications [13] and the accessibility of websites

like Facebook, LinkedIn, MercadoLibre and Gmail [7], and (ii)

the implementation effort perceived by developers [13].

Our goal is to involve the crowd of web users to participate

in instantiating CSWR to solve the UX smells captured

automatically or manually by other users. For this purpose, our

crowdsourcing platform will work as a UX smell tracking

system. To promote a massive use of our system, we’ve

developed two strategies to simplify CSWR instantiation for

non-programmers: 1) automatic, and 2) visual instantiation.

1) Automatic Instantiation of CSWR: we have developed a

tool called Kobold that is fed with bad smell reports from

USF, suggests the appropriate CSWR to solve the smell, and

in some cases it may instantiate the CSWR automatically [14].

Some refactorings that Kobold may create automatically are:

“Add Autocomplete”, “Add Validation”, and “Add Processing

Page”. Thus, given a UX smell, a volunteer would request the

system to suggest an appropriate CSWR, and in many cases,

instantiate it automatically. In other cases Kobold requests

specific parameters from users for a semi-automatic

instantiation.

53

2) Visual Instantiation of CSWR: we’ve built a tool that

allows users point-and-click on the target page to select the

components that will act as values for each parameter [7]. Our

next step is to combine this tool with Kobold’s semi-

automated instantiation, so appropriate CSWR parameters

may be visually selected.

Once CSWR are instantiated either automatically or

visually, they are submitted to the platform for the next stage.

Note that with this strategy, we are able to control the kind of

scripts fed in the system to be only known CSWR instances

created with our tools.

C. Repair Evaluation

Having a UX smell tracking system makes it possible to

evaluate the effectiveness of each refactoring in solving smells,

and use the results to retrofit the process of continuous

improvement. For this purpose, we propose a strategy similar

to A/B testing, which splits the universe of users to compare

alternative solutions, under the premise that most of the ideas

fail and it’s essential to experiment frequently [5]. With this

strategy, when multiple CSWR are proposed to solve a given

smell, all of them are laid to compete with each other and with

the original version (until a significant number of results are

gathered). Note that our “universe of users” includes all

registered members of the platform that visit the page under

test, including the subscribers of the smell being solved.

In the case of traditional A/B testing, metrics reflecting

revenue or costs are defined to decide the winning version [5].

In our context, we don’t have such a metric to compare

versions. The simplest approach is to execute the evaluation

stage similarly to the UX assessment stage (A): collect UX

smells both automatically and manually, though filtering those

occurring at the same DOM element(s) of the original smell.

When the evaluation stage is over, the deciding criterion is: (i)

discard those CSWR that collected the same or any smell; (ii)

keep those CSWR that did not collect any smells. To decide

among the remaining refactorings, we propose a voting

mechanism among those users that subscribed to the original

smell (those that reported the smell manually in stage A).

Although we are building automated support in our

platform for this stage, including random assignment of users

to test cells and verification of ending conditions, a person is

needed to decide when to start the A/B test and with which

CSWR. This job is reserved to trusted community members, so

we propose using a trustworthiness indicator based on their

involvement and performance, as proposed elsewhere [15].

III. CHALLENGES

There are several interesting challenges that may be

discussed in the context of the proposed approach.

A. Challenges in UX Assessment

1) Manual Smell Reports from Disabled Users: with respect

to the accessibility requirements, an important challenge that

we have is to adapt the tool, nowadays mostly visual, to be

easily accessed by users through a screen reader.

B. Challenges in UX Repair

1) Resilience to DOM Update: CSWR are instantiated with

a URL pattern and the xPath of applicable DOM elements.

Thus, instantiated refactorings depend heavily on the DOM,

and may break upon a page update. We propose a strategy that

would detect these updates automatically and feed them in the

platform as a special kind of smell, inviting members to repair

the parameters of the CSWR instance under the new DOM.

2) Managing Dependences between Refactorings: CSWR

depend on others that modify the same DOM element. In

previous works we defined some guidelines to compose

refactorings according to the impact of changes [7]. However,

composing instantiated CSWR automatically while

guaranteeing the consistence of the composition is still a

challenge. A strategy we intend to explore is to introduce

some concepts from concurrent computing, and see DOM

elements as shared resources that a CSWR may lock to

prevent its changes to be spoiled.

3) Encouraging Adoption: motivation is an important

antecedent for obtaining contributions in crowdsourcing

communities. Previous work shows that there exist a clear

intention of web users to improve their UX voluntarily [11];

thus, they are motivated to participate. However, if the

cognitive effort for making a contribution is inadequate,

volunteers may be discouraged. To encourage adoption, we

aim at reducing the effort required for every step in our

approach, and at recognizing user participation by merit

(increasing their trustworthiness).

4) Preventing Design Corruption: allowing the crowd to

alter the website design may be considered harmful, as it

could lead to break its consistency. For example, Yale's art

school allows users to alter its website, which produces some

chaos (art.yale.edu). This challenge may be solved in two

ways: (i) let trusted members review submitted solutions and

start the evaluation stage only with selected CSWR which

appear safe and useful; (ii) after the evaluation period, let the

platform members decide if they want to uninstall a solution.

C. Challenges in Repair Evaluation

1) Other Ways to Measure CSWR Performance: as we

mentioned before, applying A/B testing for usability with no

information of the task being executed, makes it very difficult

to find appropriate metrics to decide the winning CSWR

(among all those proposed to solve the same smell). Apart

from our current strategy, we plan to explore a different

approach in the future: using the UI event log in USF to infer

the task being executed at the time of collecting the smell

(through sequential pattern mining), and measure usability in

use of the different versions [13].

2) Identifying Malicious Scripts: our current approach is to

allow members to instantiate existing CSWR only through our

tools. This approach may be considered too restrictive,

especially since we’d like to allow new abstract CSWR to be

defined. However, allowing new JS scripts to be added poses a

54

security risk for users. We foresee two ways to tackle this

problem, which could be even combined. First, we could let

members with a higher trustworthiness indicator be in charge

of evaluating new abstract CSWR before they enter stage C.

Secondly, we could define a Domain Specific Language

(DSL) for creating new abstract CSWR; this DSL should

allow defining the kind of changes over the DOM elements

that CSWR require, without using JS. In this way, we would

prevent to execute any malicious JS sentence.

3) Hierarchical Community vs. Automatization: having

higher ranked members in crowdsourcing communities makes

it easier to control certain tasks; in our system, trusted

members have the power to start the evaluation stage, and

discard unsafe or unuseful solutions. However, this may cause

a task overload on a small subgroup of members, known as

herding [16]. In such case, we could resort to automate the

start of the evaluation stage. Moreover, to avoid frustrating

members with bad solutions during the whole evaluation

period, we may let them uninstall unwanted CSWR at any

time, which would count as a negative vote.

IV. RELATED WORK

There are several tools aimed at improving usability and

accessibility through a crowdsourcing approach. Takagi et al.

proposed the Social Accessibility service to receive problem

reports from end users and collaboratively add accessibility

metadata to webpages [8]. These authors have also explored

the challenges of sustainable crowdsourcing services to support

accessibility, and conclude that the main success factors for

this kind of approaches are the simplicity of the tasks, their

management, and the decisive role of top contributors. A

similar platform is Social4All, which allows to collaboratively

create accessible profiles for different websites [3].

Regarding usability evaluation, CrowdStudy is a tool that

incorporates crowdsourcing techniques to recruit volunteers to

perform remote user testing [17]. It differs from our approach

since it requires usability experts to design user tests with

guided tasks and associated usability metrics. Similarly, uTest

is a crowdsourcing service provider specific for usability

testing [12]. Users must follow test scripts composed of several

tasks, upload screenshots and keep track of timing. Instead, our

approach doesn’t require experts, it gathers UX smells in the

wild, and it may even go unnoticed to users.

V. CONCLUSION

Usability, accessibility and UX in general are very

important aspects of the software engineering process of a web

application. However, outside the HCI community, these

aspects do not receive enough attention. Most importantly,

there are not enough tools to make UX maintenance and

improvement affordable for small/medium companies, mainly

to learn from feedback of their users and try different ideas. We

believe that a collaborative UX maintenance process involving

the community of users may give an answer, both to the

companies that want to improve the UX of their applications

and to the users for which their problems usually go unheard.

Finally, our approach provides an environment for research

on globalization issues of web applications, making it possible

to wisely mine UX smells from crowds of different locations

and cultures, which may drive localized refactorings.

ACKNOWLEDGMENT

This research is supported by ANPCyT-Argentina grant

PICT-2015-3000.

REFERENCES

[1] J. Nielsen and H. Loranger, Prioritizing Web Usability. Pearson

Education, 2006.

[2] A. Garrido, G. Rossi, and D. Distante, “Refactoring for

Usability in Web Applications.,” IEEE Softw., vol. 28, no. 3, pp.

60–67, 2011.

[3] R. Gonzalez Crespo, J. Pascual Espada, and D. Burgos,

“Social4all: Definition of specific adaptations in Web

applications to improve accessibility,” Comput. Stand.

Interfaces, vol. 48, pp. 1–9, 2016.

[4] A. Fernandez, E. Insfran, and S. Abrahão, “Usability evaluation

methods for the web: A systematic mapping study,” Inf. Softw.

Technol., vol. 53, no. 8, pp. 789–817, 2011.

[5] R. Kohavi and R. Longbotham, “Online Controlled Experiments

and A/B Tests Motivation and Background,” Encycl. Mach.

Learn. Data Min., pp. 1–11, 2015.

[6] J. Grigera, A. Garrido, J. M. Rivero, and G. Rossi, “Automatic

detection of usability smells in web applications,” Int. J. Hum.

Comput. Stud., vol. 97, pp. 129–148, 2017.

[7] A. Garrido, S. Firmenich, G. Rossi, J. Grigera, N. Medina, and I.

Harari, “Personalized web accessibility using client-side

refactoring,” IEEE Internet Comp, vol. 17, no. 4, pp. 58–66,

2013.

[8] H. Takagi, S. Harada, D. Sato, and C. Asakawa, “Lessons

Learned from Crowd Accessibility Services,” in Int. Conf.

Human-Comp. Interaction. LNCS-8117, 2013, pp. 587–604.

[9] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use

of crowdsourcing in software engineering,” J. Syst. Softw., 2016.

[10] L. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of

Massive Datasets. Cambridge University Press, 2014.

[11] D. Firmenich, S. Firmenich, J. M. Rivero, L. Antonelli, and G.

Rossi, “CrowdMock: an approach for defining and evolving web

augmentation requirements,” Requir. Eng., pp. 1–29, 2016.

[12] D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing

for usability testing,” in Proc. ASIST, 2012, vol. 49, no. 1.

[13] J. Grigera, A. Garrido, I.Panach, D.Distante,G.Rossi, “Assessing

refactorings for usability in e-commerce applications,” Empir.

Softw. Eng., vol. 21, no. 3, pp. 1224–1271, 2016.

[14] J. Grigera, A. Garrido, and G. Rossi, “Kobold: Web Usability as

a Service,” in ASE 2017 - Tool Demonstrations, 2017, p. to

appear.

[15] Y. H. Tung and S. S. Tseng, “A novel approach to collaborative

testing in a crowdsourcing environment,” J. Syst. Softw., vol. 86,

no. 8, pp. 2143–2153, 2013.

[16] H. Yu, C. Miao, C. Leung, Y. Chen, S. Fauvel, and V. R.

Lesser, “Mitigating Herding in Hierarchical Crowdsourcing

Networks,” Sci. Rep., vol. 6, no. 4, 2016.

[17] M. Nebeling, M. Speicher, and M. Norrie, “CrowdStudy:

General toolkit for crowdsourced evaluation of web interfaces,”

in ACM Symp. Eng. Interac. Comp. Sys., 2013, pp. 255–264.

55

