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Abstract

Correlated binary data are prevalent in a wide range of scientific disciplines, including
healthcare and medicine. The generalized estimating equations (GEEs) and the
multivariate probit (MP) model are two of the popular methods for analyzing such data.
However, both methods have some significant drawbacks. The GEEs may not have an
underlying likelihood and the MP model may fail to generate a multivariate binary
distribution with specified marginals and bivariate correlations. In this paper, we study
multivariate binary distributions that are based on D-vine pair-copula models as a
superior alternative to these methods. We elucidate the construction of these binary
distributions in two and three dimensions with numerical examples. For higher
dimensions, we provide a method of constructing a multidimensional binary
distribution with specified marginals and equicorrelated correlation matrix. We present
a real-life data analysis to illustrate the application of our results.

Keywords: D-vine, Mutivariate binary distributions, Multivariate probit model,
Pair-copulas

Introduction
In clinical trials and research studies in health care and medicine, the endpoint of the
observed data most often consists of correlated binary observations. The generalized esti-
mating equation (GEE), introduced by Liang and Zeger (1986), has been the common
statistical tool for analyzing such data. However, this method has several drawbacks. One
of the drawbacks is that it uses an ambiguously defined working correlation to model the
dependence in the binary observations, which could lead to misleading conclusions (Sabo
and Chaganty, 2010). Another drawback it is a non-likelihood approach, in the sense,
it does not have an underlying joint distribution for the correlated binary observations.
Other alternatives to GEEs for the analysis of correlated binary data are Markov chains
(MCs) and multivariate probit (MP) models. A contrasting study of the first order MC
model and the MP model was presented by Yang and Chaganty (2014). They showed that
both models are asymptotically efficient, and discussed situations where one is preferable
over the other.
In recent years, due to their success in other disciplines, copulas have been used to

develop likelihood-based methods as another alternative to GEEs. Some researchers have
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combined copulas with MC models. Escarela et al. (2009) have used Gaussian copula to
construct conditional probabilities in Markov chain models in the context of longitudinal
binary data. The copula-based bivariate probit models were generalized by Winkelmann
(2012) replacing the Gaussian distribution by Frank and Clayton copulas. Radice et al.
(2016) introduced nonlinear regression models, where non-Gaussian copulas were used
to deal with the dependence between binary responses. Smith et al. (2010) showed that
longitudinal continuous data can be modeled by D-vine pair-copula, and later extended
their work to the discrete case using a Bayesian framework in Smith and Khaled (2012).
A Gaussian copula model for integer-valued ARMA structured time series data with or
without covariates was developed by Lennon (2016). Panagiotelis et al. (2017) introduced
two algorithms for optimizing vine structure and pair-copula selection for discrete regular
vine copulas. One of these algorithms uses a modified Akaike information criterion and
the other uses predictive scores with cross-validation.
In this paper we studymultivariate binary distributions generated by D-vine pair-copula

models. These models are relatively easy to implement since they use only bivariate
copulas, and flexible because they allow different types of bivariate copulas to model dif-
ferent types of dependence in the conditional distributions. We will see that the D-vine
pair-copula model has some advantages over the MP model.
The organization of this paper is as follows. We first present a lucid description of

the construction of bivariate and trivariate binary distributions using bivariate Gaussian,
Clayton, Frank, and Gumbel copulas in “Construction of vine pair-copula binary distribu-
tions” section. We discuss comparisons between pair-copula models and the multivari-
ate probit (MP) model in “Comparison of pair-copula and MP models” section, together
with a numerical example where the vine pair-copula model overcomes the difficulties
associated with the MP model. In “Extensions to four and higher dimensions” section we
discuss extensions to four and higher dimensions and present a method of constructing
multivariate binary distribution with specified marginals and equicorrelated structure. In
“Parameter estimation” section, we discuss parameter estimation by maximum likelihood
for grouped data. “Data analysis” section contains an analysis of a real-life data. We end
the paper with some discussion in “Discussion” section.

Construction of vine pair-copula binary distributions
In this section, we illustrate methods of constructing multivariate binary distributions
with specified correlations using vine pair-copula methods. The major advantage of these
methods is that the multivariate distribution can be constructed using only bivariate cop-
ulas. The method is computationally feasible, flexible, and can accommodate various
types of dependence because the bivariate copula need not be the same for various bivari-
ate marginal and conditional distributions.We start first with the simplest cases, bivariate
and the trivariate distributions, and then show how they can be extended to higher dimen-
sions focusing on the special correlation structures useful in longitudinal and clustered
binary data analysis.

Bivariate binary distributions

Consider first the case of two binary variables. Let Y = (Y1, Y2), where the subscripts 1
and 2 possibly may indicate two sequential time points. Assume that E(Yi) = pi for i =
1, 2. According to the theorem of Sklar (1959), the joint CDF of Y using a copula function
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Table 1 Copula families of distribution functions

Name Copula function Parameter range

Gaussian C1(u1, u2; γ ) = �2(�
−1(u1),�−1(u2); γ ) − 1 ≤ γ ≤ 1

Clayton C2(u1, u2;α) = max(( u−α
1 + u−α

2 − 1) − 1
α , 0) α ∈[ −1,∞)\{0}

Frank C3(u1, u2;α) = − 1
α
log(1 + (e−αu1−1)(e−αu2−1)

e−α−1 ) α �= 0

Gumbel C4(u1, u2;α) = e−[ (− log u1)α+(− log u2)α ]
1
α

α ≥ 1

Independent C5(u1, u2) = u1 ∗ u2 N/A

Note: Here �2 denotes the standard bivariate normal CDF with correlation coefficient γ and �−1 is the inverse of the standard
normal CDF

C is given by F(y1, y2) = C(F1(y1), F2(y2)), where F1 and F2 are CDFs of the univariate
binary distributions of Y1 and Y2 respectively. Following Panagiotelis et al. (2012), we can
recover the joint probability mass function (PMF) of Y from the CDF as

P(Y1 = y1,Y2 = y2)=C(F1(y1), F2(y2); θ) − C(F1(y1 − 1), F2(y2); θ)

−C(F1(y1), F2(y2 − 1); θ) + C(F1(y1 − 1), F2(y2 − 1); θ).
(1)

The C(u1,u2; θ) could be any copula Ci, 1 ≤ i ≤ 5, given in Table 1. The copula
parameter θ is the correlation coefficient γ for the Gaussian copula, and it is α for the
Clayton, Frank, and Gumbel copulas.
Selecting yi = 0, 1 and noting that Fi(0) = P(Yi = 0) = 1 − pi = qi for i = 1, 2, Eq. (1)

simplifies to the probabilities given in Table 2.
Given ρ = Corr(Y1,Y2), and if we use in Table 2 the Gaussian copula C1, the parameter

θ = γ can be obtained by solving equation

Corr(Y1,Y2) = ρ = C1(p1, p2; γ ) − p1 p2√p1 q1 p2 q2
, (2)

since 1 − q1 − q2 + C1(q1, q2; γ ) = C1(p1, p2; γ ).

Trivariate binary distributions

In this section we extend the pair-copula method to construct three dimensional binary
distributions. Let Y = (Y1, Y2, Y3) be a vector of three correlated binary random
variables. Note that

P(Y1 = y1,Y2 = y2,Y3 = y3) = P(Y2 = y2) ∗ P(Y1 = y1,Y3 = y3|Y2 = y2). (3)

The above equation shows the three dimension distribution can be obtained by con-
structing the bivariate conditional distribution of (Y1, Y3) given Y2 = y2. To this
end we introduce some notation. We first construct bivariate distributions for (Y1, Y2)
and (Y2, Y3) selecting bivariate copulas C12(u1, u2) and C23(u1, u2) from Table 2. For
notational convenience we omit the copula parameter here and in some formulas later.

Table 2 PMF of bivariate binary variables

(Y1, Y2) Probability

(0, 0) C(q1, q2; θ)

(0, 1) q1 − C(q1, q2; θ)

(1, 0) q2 − C(q1, q2; θ)

(1, 1) 1 − q1 − q2 + C(q1, q2; θ)

Note: There are 3 parameters for this distribution, marginal means p1, p2 and copula parameter θ
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Table 3 Conditional PMF of (Y1, Y3) given Y2
Probability

(Y1, Y3)|Y2 = 0

(0, 0) C13|0(q1|0, q3|0; θ13|Y2=0)

(0, 1) q1|0 − C13|0(q1|0, q3|0; θ13|Y2=0)

(1, 0) q3|0 − C13|0(q1|0, q3|0; θ13|Y2=0)

(1, 1) 1 − q1|0 − q3|0 + C13|0(q1|0, q3|0; θ13|Y2=0)

(Y1, Y3)|Y2 = 1

(0, 0) C13|1(q1|1, q3|1; θ13|Y2=1)

(0, 1) q1|1 − C13|1(q1|1, q3|1; θ13|Y2=1)

(1, 0) q3|1 − C13|1(q1|1, q3|1; θ13|Y2=1)

(1, 1) 1 − q1|1 − q3|1 + C13|1(q1|1, q3|1; θ13|Y2=1)

Note: P(Y1, Y3|Y2 = 0) has 6 parameters; marginal means p1, p2, p3 and copula parameters θ12, θ23, θ13|Y2=0. P(Y1, Y3|Y2 = 1)
needs the same first five parameters and θ13|Y2=1

Let q1|0 = P(Y1 = 0|Y2 = 0) = C12(q1,q2)
q2 and p1|0 = 1 − q1|0 = 1 − C12(q1,q2)

q2 . Thus
Y1|Y2 = 0 is distributed as Bernoulli with mean p1|0. Similarly, Y3|Y2 = 0 is distributed
as Bernoulli with mean p3|0, where p3|0 = 1 − C23(q2,q3)

q2 . We also have Y1|Y2 = 1 is
Bernoulli with mean p1|1 = 1 − q1−C12(q1,q2)

p2 , and Y3|Y2 = 1 is Bernoulli with mean
p3|1 = 1 − q3−C23(q2,q3)

p2 .
Table 3 shows the conditional distributions of (Y1, Y3)|Y2 = 0 and (Y1, Y3)|Y2 = 1.

Finally, from Eq. (3) and using the conditonal distributions we can get the joint trivariate
PMF as given in Table 4.
We give six numerical examples to see that different copulas and parameter values give

rise to different trivariate binary distributions. All these six distributions have the same
marginal means p1 = 0.8, p2 = 0.7 and p3 = 0.6. The choice of the copulas and parameter
values are summarized in Table 5 for these six cases.
We give details of the calculations only for case 5, the others are similarly done. In this

case we start with Table 2 using Gaussian copula with γ12 = 0.752, γ23 = 0.607, and
p = (0.8, 0.7, 0.6). The resulting PMFs of bivariate binary variables are in Table 6.
Now, to construct the conditional PMFs of bivariate variables we need to get the

marginal parameters of the conditional Bernoulli variables Y1|Y2 = 0 and Y1|Y2 = 1.
These are

Table 4 PMF of trivariate binary variables

(Y1, Y2, Y3) Probability

(0, 0, 0) q2 ∗ C13|0(q1|0, q3|0)
(0, 0, 1) C12(q1, q2) − q2 ∗ C13|0(q1|0, q3|0)
(0, 1, 0) p2 ∗ C13|1(q1|1, q3|1)
(0, 1, 1) q1 − C12(q1, q2) − p2 ∗ C13|1(q1|1, q3|1)
(1, 0, 0) C23(q2, q3) − q2 ∗ C13|0(q1|0, q3|0)
(1, 0, 1) q2 − C23(q2, q3) − C12(q1, q2) + q2 ∗ C13|0(q1|0, q3|0)
(1, 1, 0) q3 − C23(q2, q3) − p2 ∗ C13|1(q1|1, q3|1)
(1, 1, 1) 1 − q1 − q2 − q3 + C12(q1, q2) + C23(q2, q3) + p2 ∗ C13|1(q1|1, q3|1)
Note: There are 7 parameters here: marginal means p1, p2, p3 and copula parameters θ12, θ23, θ13|Y2=0, and θ13|Y2=1
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Table 5 Summary of parameter values for PMF of the trivariate binary variables

Case Pair-copulas Dependence

1 All Gaussian γ12 = 0.752, γ23 = 0.607

γ13|Y2=0 = 0.480, γ13|Y2=1 = 0.233

2 All Clayton α12 = 2, α23 = 1.5

α13|Y2=0 = α13|Y2=1 = 0.4

3 All Frank α12 = α23 = 1.85

α13|Y2=0 = 0.95, α13|Y2=1 = 0.85

4 All Gumbel α12 = α23 = 10

α13|Y2=0 = α13|Y2=1 = 4

5 Gaussian for marginals γ12 = 0.752, γ23 = 0.607

Frank for conditionals α13|Y2=0 = 0.95, α13|Y2=1 = 0.85

6 All Independent

q1|0 = P(Y1 = 0,Y2 = 0)
q2

= 0.1517
0.3

= 0.5057,

q3|0 = P(Y2 = 0,Y3 = 0)
q2

= 0.2097
0.3

= 0.6990,

q1|1 = P(Y1 = 0,Y2 = 1)
p2

= 0.0483
0.7

= 0.0690,

q3|1 = P(Y2 = 1,Y3 = 0)
p2

= 0.1903
0.7

= 0.2719.

Then, p1|0 = 1 − 0.5057 = 0.4943, p3|0 = 1 − 0.6990 = 0.3010, p1|1 = 1 − 0.0690 =
0.931 and p3|1 = 1 − 0.2719 = 0.7281. Also, Frank copula is used for the conditional
distributions with parameters α13|Y2=0 = 0.95, α13|Y2=1 = 0.85. The PMFs of conditional
bivariate binary variables are calculated according to Table 3, resulting in the values given
in Table 7.
Since P(Y1 = y1,Y2 = y2,Y3 = y3) = P(Y2 = y2)∗P(Y1 = y1,Y3 = y3|Y2 = y2), the last

step is to multiply values in Table 7 by P(Y2 = y2) to get the joint trivariate probability.
For example, P(Y1 = 0,Y2 = 0,Y3 = 0) = 0.3782 ∗ 0.3 = 0.1135 or P(Y1 = 1, Y2 =
1, Y3 = 0) = 0.2475 ∗ 0.7 = 0.1732. The three dimensional joint binary distributions for
the six cases are given in Table 8.

Table 6 PMF of bivariate binary variables using Gaussian copula

Probability

(Y1, Y2)

(0, 0) C(q1, q2; γ12) = �2(�
−1(0.2),�−1(0.3); 0.752) = 0.1517

(0, 1) q1 − C(q1, q2; γ12) = 0.2 − 0.1517 = 0.0483

(1, 0) q2 − C(q1, q2; γ12) = 0.3 − 0.1517 = 0.1483

(1, 1) 1 − q1 − q2 + C(q1, q2; γ12) = 1 − 0.2 − 0.3 + 0.1517 = 0.6517

(Y2, Y3)

(0, 0) C(q2, q3; γ23) = �2(�
−1(0.3),�−1(0.4); 0.607) = 0.2097

(0, 1) q2 − C(q2, q3; γ23) = 0.3 − 0.2097 = 0.0903

(1, 0) q3 − C(q2, q3; γ23) = 0.4 − 0.2097 = 0.1903

(1, 1) 1 − q2 − q3 + C(q2, q3; γ23) = 1 − 0.3 − 0.4 + 0.2097 = 0.5097



Lin and Chaganty Journal of Statistical Distributions and Applications             (2021) 8:4 Page 6 of 14

Table 7 Conditional PMF of bivariate binary variables generated by Frank copula

Probability

(Y1, Y3|Y2 = 0)

(0, 0) C13|0(q1|0, q3|0; θ13|Y2=0)

= − 1
0.95 log

(
1 + (e−0.95∗0.5057−1)(e−0.95∗0.699−1)

e−0.95−1

)
= 0.3782

(0, 1) q1|0 − C13|0(q1|0, q3|0; θ13|Y2=0) = 0.5057 − 0.3782 = 0.1275

(1, 0) q3|0 − C13|0(q1|0, q3|0; θ13|Y2=0) = 0.699 − 0.3782 = 0.3208

(1, 1) 1 − q1|0 − q3|0 + C13|0(q1|0, q3|0; θ13|Y2=0) = 0.1735

(Y1, Y3|Y2 = 1)

(0, 0) C13|1(q1|1, q3|1; θ13|Y2=1)

= − 1
0.85 log

(
1 + (e−0.85∗0.069−1)(e−0.85∗0.2719−1)

e−0.85−1

)
= 0.0244

(0, 1) q1|1 − C13|1(q1|1, q3|1; θ13|Y2=1) = 0.069 − 0.0244 = 0.0446

(1, 0) q3|1 − C13|1(q1|1, q3|1; θ13|Y2=1) = 0.2719 − 0.0244 = 0.2475

(1, 1) 1 − q1|1 − q3|1 + C13|1(q1|1, q3|1; θ13|Y2=1) = 0.6835

Comparison of pair-copula andMPmodels
In this section, we will compare the probability mass functions generated by the pair-
copula methods and by the multivariate probit model. We will see that even if we use
bivariate Gaussian copulas, these two methods yield different probability mass functions.
Furthermore, the pair-copula method is successful in cases where the MP model fails to
generate a probability mass function with specified univariate marginals and correlations.

Multivariate probit (MP) model

Let Y = (Y1,Y2, . . . ,Ym) be a vector of binary random variables. The multivariate
probit model assumes that associated with the vector Y there is a latent vector Z =
(Z1,Z2, . . . ,Zm), which is distributed as multivariate normal (MVN), such that Yt = 1
if Zt > 0, and Yt = 0 if Zt ≤ 0. Assume Zt = μt + εt , where ε = (ε1, . . . , εm) is
MVN(0, R). Then, pt = P(Yt = 1) = P(Zt > 0) = P(μt + εt > 0) = �(μt), and
qt = (1 − pt) = �(−μt). The joint PMF of Y = (Y1,Y2, . . . ,Ym) is given by

P(Y1 = y1,Y2 = y2, . . . ,Ym = ym) =
∫

Dm
...

∫

D1

1
(2π)

m
2 |R| 12

exp
(

−ε R−1 ε′

2

)
dε,

(4)

where Dt = (−∞,μt) if yt = 1, and Dt = (μt ,∞) if yt = 0. For example, for m = 3 we
have

Table 8 PMF of trivariate binary variables

(Y1, Y2, Y3) PMF1 PMF2 PMF3 PMF4 PMF5 PMF6

(0, 0, 0) 0.1267 0.1366 0.0582 0.1983 0.1135 0.024

(0, 0, 1) 0.0250 0.0322 0.0337 0.0000 0.0382 0.036

(0, 1, 0) 0.0210 0.0190 0.0450 0.0017 0.0171 0.056

(0, 1, 1) 0.0273 0.0122 0.0631 0.0000 0.0312 0.084

(1, 0, 0) 0.0830 0.0939 0.1077 0.0994 0.0963 0.096

(1, 0, 1) 0.0653 0.0373 0.1004 0.0023 0.0520 0.144

(1, 1, 0) 0.1693 0.1505 0.1891 0.1006 0.1732 0.224

(1, 1, 1) 0.4824 0.5182 0.4028 0.5977 0.4785 0.336
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P(Y1 = 0,Y2 = 0,Y3 = 0) =
∫ ∞

μ1

∫ ∞

μ2

∫ ∞

μ3
φ3(ε1, ε2, ε3 ; R) dε

= �3(−μ1,−μ2,−μ3 ; R),

where �3(ε ; R) is the CDF of trivariate standard normal with correlation matrix R.

Distributions generated by pair-copula andMPmodels

Since the MP model relies on the Gaussian distribution, for a fair comparison we will use
the Gaussian copulas for the bivariate and conditional distributions in the pair-copula
construction. Consider the case of two dimensions. In this case, takingC12 as the bivariate
Gaussian copula, the PMF as given in Table 2 is P(Y1 = 0,Y2 = 0) = C12(q1, q2; γ ) =
�2(�−1(q1),�−1(q2); γ ) = �2(−μ1,−μ2; γ ), which is identical to the probability under
the MP model. Therefore, the probability distributions are the same for two dimensions.
For three dimensions for the MP model, we have

P(Y1 = 0,Y2 = 0,Y3 = 0) = �3(−μ1,−μ2,−μ3 ; R). (5)

From Table 4, we see that for the pair-copula model

P(Y1 = 0, Y2 = 0, Y3 = 0) = q2 C13|0(q1|0, q3|0). (6)

With bivariate Gaussian copulas we have qi = �(−μi) for i = 1, 2, 3 and

q1|0 = C12(q1, q2)
q2

= �2(−μ1,−μ2; γ12)

�(−μ2)
= P(ε1 < −μ1|ε2 < −μ2),

q3|0 = C23(q2, q3)
q2

= �2(−μ2,−μ3; γ23)

�(−μ2)
= P(ε3 < −μ3|ε2 < −μ2), (7)

where ε = (ε1, ε2, ε3) is distributed as a standard trivariate normal with correlation
matrix R = (γij). The quantities q1|0 and q3|0 are the same as the corresponding values for
the probit model. Taking C13|0(u1,u2) as bivariate Gaussian copula with correlation γ13|0,
Eq. (6) is equivalent to

P(Y1 = 0, Y2 = 0, Y3 = 0) = �(−μ2) �2
(
�−1(q1|0),�−1(q3|0); γ13|0

)
. (8)

Clearly the quantity (8) is not equal to (5) since the parameter γ13|0 can be any value in
(−1, 1) and need not be related to R. Thus the PMF of the pair-coupla model is different
from the MP model.

An advantage of the pair-copula method over the MPmodel

In this section, we give an example to show that the pair-copula method is useful to con-
struct multivariate binary distributions with specifiedmarginals and correlation structure
in cases where the multivariate probit model breaks down. Let’s assume the marginal
means are given by the vector p = (0.2, 0.3, 0.2). For the equicorrelated structure
the feasible range of the correlation parameter ρ is (− 0.25, 0.7638), see Theorem 1 in
Chaganty and Joe (2006). For the value ρ = 0.76, the latent correlation matrix obtained
by solving Eq. (2), for all pairs is

R =
⎡
⎢⎣

1 0.9853 0.9411
0.9853 1 0.9853
0.9411 0.9853 1

⎤
⎥⎦ ,
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Table 9 Input values for construction of the PMF of equicorrelated binary variables

Input values

(Y1, Y2) p1 = 0.2, p2 = 0.3, γ12 = 0.9853

(Y2, Y3) p2 = 0.3, p3 = 0.2, γ23 = 0.9853

(Y1, Y3|Y2) p1|0 = 0.001, p3|0 = 0.001, γ13|Y2=0 = 0.8968

p1|1 = 0.6643, p3|1 = 0.6643, γ13|Y2=1 = 0.6398

which is not positive definite and thus the MPmethod does not give a PMF for the binary
variables. However, the pair-copula method generates a PMF for the binary variables
with specified marginal means and equicorrelated structure. The input values needed to
calculate the PMF are listed in Table 9.
Proceeding as in “Trivariate binary distributions” section, the resulting three dimen-

sional distribution is given in Table 10. We can check that this distribution has the
specified marginal means p1 = 0.2, p2 = 0.3, and p3 = 0.2, and equicorrelated structure
with ρ = 0.76.

Extensions to four and higher dimensions
The pair-copula method for three dimensions described in “Trivariate binary distri-
butions” section can be extended to construct four or higher-dimensional multivariate
binary distributions. The foundations of these higher dimensional extensions have been
laid out in Joe (1996; 1997). In a pioneering work, Bedford and Cooke (2002) showed how
to use graphical models consisting of vines with trees and edges. The edges in a given
tree become the nodes of the next tree. The vine structures not only help in enumerating
and organizing numerous decompositions of a multivariate distribution but also facilitate
models for different types of dependence for the marginal and conditional distributions.
In recent years several articles have been published in the literature on vine pair-copula
models, see Kurowicka and Joe (2011). The papers by Min and Czado (2010), Gruber
and Czado (2015), and Dalla Valle et al. (2018) discuss Bayesian inference for these vine
pair-copula models. The lecture notes by Czado (2019) and Brechmann and Schepsmeier
(2013) discusses the practical implementation of vine copulas using the R software. The
two most popular vines are the canonical C-vine and the drawable D-vine, see Czado
(2019) and Joe (2014). An application of the C-vine for analyzing familial data is in Deng
and Chaganty (2021). In this paper, we focus on the D-vine which is a natural candidate
for analyzing longitudinal data which consists of an ordered sequence of variables.
Figure 1 shows the nested tree structure of the D-vine form variables. There are (m−1)

trees and for the ith tree there are m − i + 1 nodes, represented by rectangular boxes.
In the case of m = 4, the D-vine consists of 3 trees. For the pair-copula construction we
will need bivariate copulas for the pairs (12), (23), and (34) in tree 1. Since we are dealing
with binary variables, for tree 2 we will need two bivariate copulas for constructing the

Table 10 Three dimensional distribution with specified marginals

(Y1, Y2, Y3) Probability (Y1, Y2, Y3) Probability

(0, 0, 0) 0.6989 (1, 0, 0) 0.0004

(0, 0, 1) 0.0004 (1, 0, 1) 0.0003

(0, 1, 0) 0.0627 (1, 1, 0) 0.0380

(0, 1, 1) 0.0380 (1, 1, 1) 0.1613



Lin and Chaganty Journal of Statistical Distributions and Applications             (2021) 8:4 Page 9 of 14

Fig. 1 D-vine structure of dimensionm

conditional distribution of (13|2) and another two for constructing (24|3). The final tree
requires the construction of the conditional distribution of (14|23), which in turn requires
four bivariate copulas for the four possible values of the conditioned variables 2 and 3.
The joint PMF in four dimensions is given by

P(Y1 = y1,Y2 = y2,Y3 = y3,Y4 = y4) = P(Y1 = y1,Y4 = y4|Y2 = y2,Y3 = y3)
× P(Y2 = y2,Y3 = y3), (9)

The probability P(Y1 = y1,Y4 = y4|Y2 = y2,Y3 = y3) requires p1|00 = P(Y1 = 1|Y2 =
0,Y3 = 0), p1|01 = P(Y1 = 1|Y2 = 0,Y3 = 1),. . . , p4|11 = P(Y4 = 1|Y2 = 1,Y3 = 1),
which can be obtained from the bivariate and trivariate distributions constructed as in
“Construction of vine pair-copula binary distributions” section.

Binary distributions with structured correlation matrices

To allow parsimonious modeling, multivariate binary distributions with structured corre-
lation matrices are normally employed in the analysis of longitudinal or clustered binary
data. The two most popular structured correlation matrices are autoregressive of order
one (AR(1)) and equicorrelated. Yang and Chaganty (2014) have outlined a method of
constructing a multivariate binary distribution with AR(1) structure, and here we focus
on the equicorrelated structure.
In “An advantage of the pair-copula method over the MP model” section, we gave an

example of a three-dimensional binary distribution with specified marginals and equicor-
related structure. The pair-copula method with bivariate Gaussian copulas can be used
to generate higher-dimensional multivariate binary distributions with specified marginals
and equicorrelated structure. This requires specification of the partial correlations
Corr(Y1,Y3|Y2), Corr(Y2,Y4|Y3), ..., Corr(Ym−2,Ym|Ym−1) for tree 2; Corr(Y1,Y4|Y2,Y3),
..., Corr(Ym−3,Ym|Ym−2,Ym−1) for tree 3; ....; Corr(Y1,Ym|Y2, ...Ym−1) for treem − 1. For
binary variables, these partial correlations depend on the values of the conditional vari-
ables. To simplify matters we set Corr(Yi,Yi+k|Yi+1, ...Yi+k−1) = ρ/(1 + (k − 1)ρ). The
motivation for this assumption comes from the result that for equicorrelated structure,
partial correlation ρi,i+k|i+1,...,i+k−1 equals ρ/(1 + (k − 1)ρ) as shown in the Appendix.
The corresponding parameter γi,i+k|i+1,...,i+k−1 of the bivariate Gaussian copula can be
obtained by solving Eq. (2) using the two conditional probabilities pi|i+1,...,i+k−1 and
pi+k|i+1,...,i+k−1. In the next section we give a numerical example to illustrate this method
for dimensionm = 4.

1 
12 

2 
23 

L__3 _ _J----------------------~ Tree 1 

~0----------------------jm-2,m-1 I m-2,mlm-1 I m-1,m I 
Tree 2 

l,m I 2,3, ... ,m-1 

J 1,m-l I 2,3, ... ,m-2 J J 2,m I 3,4, ... ,m-1 J Tree m-1 



Lin and Chaganty Journal of Statistical Distributions and Applications             (2021) 8:4 Page 10 of 14

Table 11 Input values for construction of the PMF of equicorrelated binary variables

Input values

(Y1, Y2) p1 = 0.26, p2 = 0.36, γ12 = 0.6156

(Y2, Y3) p2 = 0.36, p3 = 0.25, γ23 = 0.6191

(Y3, Y4) p3 = 0.25, p4 = 0.24, γ34 = 0.6214

(Y1, Y3|Y2) p1|0 = 0.1284, p3|0 = 0.1201, γ13|Y2=0 = 0.5316

p1|1 = 0.4939, p3|1 = 0.4809, γ13|Y2=1 = 0.4340

(Y2, Y4|Y3) p2|0 = 0.2491, p4|0 = 0.1414, γ24|Y3=0 = 0.5049

p2|1 = 0.6926, p4|1 = 0.5359, γ24|Y3=1 = 0.4531

(Y1, Y4|Y2, Y3) p1|00 = 0.0931, p4|00 = 0.0840, γ14|Y1=0,Y3=0 = 0.4723

p1|01 = 0.3871, p4|01 = 0.3220, γ14|Y1=0,Y3=1 = 0.3538

p1|10 = 0.3564, p4|10 = 0.3142, γ14|Y1=1,Y3=0 = 0.3560

p1|11 = 0.6423, p4|11 = 0.6308, γ14|Y1=1,Y3=1 = 0.3510

Numerical example of equicorrelated binary distribution

Assuming the marginal means are p = (0.26, 0.36, 0.25, 0.24), the feasible range of the
correlation parameter ρ is (−0.3244, 0.7492) for the equicorrelated structure. Let ρ = 0.4,
the distribution is calculated and presented in Table 12 using input values from Table 11.
We can check the marginal means of the distribution in Table 12 are P(Y1 = 1) = 0.26,

P(Y2 = 1) = 0.36, P(Y3 = 1) = 0.25, P(Y4 = 1) = 0.24, and further the distribution has
an equicorrelated structure with ρ = 0.4.

Parameter estimation
In this section, we discuss estimation of the parameters via maximum likelihood esti-
mation (MLE) for the D-vine pair-copula model with bivariate Gaussian distributions.
Suppose that there are n independent subjects, and there arem repeated binary observa-
tions on each subject. Thus the data consists of binary vectors yi = (yi1, yi2, · · · , yim) of
dimension m. Let pj be the marginal probability of yij assumed to be the same for all i.
There are 2m possible combinations for yi. For instance, when m = 4, we have 16 com-
binations, that is, yi = (0, 0, 0, 0), or (0, 0, 0, 1), or (0, 0, 1, 0), · · · , or (1, 1, 1, 1). The n
observations can be grouped into 2m counts. Assume the number of (0, · · · , 0) vectors
is n1, the number of (0, · · · , 1) is n2, so on and so forth, the number of (1, · · · , 1) is n2m .
Using these notations, the loglikelihood, 
(θ), for D-vine pair-copula model for a sample
of n independent observations is given by

Table 12 Four dimensional distribution with specified marginals and equicorrelated structure

(Y1, Y2, Y3, Y4) Probability (Y1, Y2, Y3, Y4) Probability

(0, 0, 0, 0) 0.4779 (1, 0, 0, 0) 0.0379

(0, 0, 0, 1) 0.0328 (1, 0, 0, 1) 0.0145

(0, 0, 1, 0) 0.0358 (1, 0, 1, 0) 0.0163

(0, 0, 1, 1) 0.0113 (1, 0, 1, 1) 0.0135

(0, 1, 0, 0) 0.0917 (1, 1, 0, 0) 0.0364

(0, 1, 0, 1) 0.0285 (1, 1, 0, 1) 0.0302

(0, 1, 1, 0) 0.0318 (1, 1, 1, 0) 0.0322

(0, 1, 1, 1) 0.0302 (1, 1, 1, 1) 0.0791



Lin and Chaganty Journal of Statistical Distributions and Applications             (2021) 8:4 Page 11 of 14


(θ) ∝ n1 logP(Yi1 = 0,Yi2 = 0, . . . ,Yim = 0) + n2 logP(Yi1 = 0,Yi2 = 0, . . . ,Yim = 1)

+ . . . + n2m logP(Yi1 = 1,Yi2 = 1, . . . ,Yim = 1), (10)

where the parameter θ consists of marginal probabilities and copula parameters that are
functions of correlations between the binary variables. Take the two dimensional example
shown in Table 2 for instance, the loglikelihood is


(γ12, p1, p2) ∝n1 log(P(Yi1 = 0,Yi2 = 0)) + n2 log(P(Yi1 = 0,Yi2 = 1))

+n3 log(P(Yi1 = 1,Yi2 = 0)) + n4 log(P(Yi1 = 1,Yi2 = 1))

=n1 log(C1(q1, q2; γ12)) + n2 log(q1 − C1(q1, q2; γ12))

+n3 log(q2 − C1(q1, q2; γ12)) + n4 log(1 − q1 − q2 + C1(q1, q2; γ12)),

(11)

where C1 is the bivariate Gaussian copula. The maximum likelihood estimates of the
parameters are obtained by maximizing (10) using the optimization routine “L-BFGS-B”
by Byrd et al. (1995) which allows box constraints. The standard errors of the parameters
are obtained from the Hessian matrix at optimized values using “Richardson” method of
the function “Hessian” in the R package “numDeriv” by Gilbert and Varadhan (2012).

Data analysis
Here we present a real-life data analysis to illustrate the application of the D-vine pair-
copula with bivariate Gaussian distributions. We also compare the results with the MP
model and the model that ignores the correlation between the variables.

Drug response data

This data was first reported by Grizzle et al. (1969). Here 46 subjects were treated with
three drugs 1, 2 and 3, and recorded their response as 0 for unfavorable or 1 for favor-
able. For example, (0, 0, 0) stands for unfavorable responses for all the three drugs. We
assume the three binary responses are equicorrelated with correlation parameter ρ. The
maximum likelihood estimates (MLE) of the marginal probabilities p1, p2 and p3 and ρ

together with standard errors (SE) are presented in Table 13.
The estimate of ρ is close to zero both for the MP and D-vine pair-copula models. The

estimates and standard errors of D-vine independent copula model are listed at the last
two columns of Table 13. The D-Vine independent copula model has the minimum AIC
and seems to be a good choice for this data.

Table 13 Parameter estimates and standard errors for the drug response data

MP D-vine pair-copula Independent D-Vine

Parameter MLE SE p-value MLE SE p-value MLE SE p-value

p1 0.3911 0.0871 < 0.0001 0.3906 0.0725 < 0.0001 0.3913 0.0719 < 0.0001

p2 0.4081 0.0994 < 0.0001 0.3905 0.0725 < 0.0001 0.3913 0.0719 < 0.0001

p3 0.6635 0.1042 < 0.0001 0.6495 0.0700 < 0.0001 0.6522 0.0702 < 0.0001

ρ 0.0683 0.0216 0.0008 0.0395 0.0848 0.3207 NA NA NA

AIC 190.59 190.37 188.59
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Discussion
In recent years vine pair-copula models have become popular for analyzing dependent
multivariate data. However, understanding and using these models for discrete in par-
ticular for binary data can pose as a challenge to the practitioner. In this paper, we have
illustrated the pair-copula construction of binary distributions in the case of two and
three dimensions that make it easy for the practitioner. In three dimensions using bivari-
ate Gaussian copula, we have shown that the probability mass function generated by the
pair-copula differs from the mass function of the multivariate probit (MP) model. We
gave a numerical example where the MP model fails but one is able to use the pair-
copula method to generate mass function with specified marginals and correlations. For
four and higher dimensions we provide a method of constructing a multivariate binary
distribution with specified marginals and equicorrelated structure using the D-vine pair-
copula method. We discussed the maximum likelihood estimation of the parameters
for grouped multivariate binary data and provided a real-life data analysis. Future work
involves including covariates in these models.

Appendix
Consider the equicorrelated structure given by R = (1 − ρ)Im + ρ em eTm, with parameter
ρ. Here Im is the identity matrix of dimensionm and em is am× 1 column vector of ones.
From formula (2.19), page 40 in Joe (2014), we have the partial correlation is given by

ρ1,m|2,...,m−1 = ρ − ρ2 eTm−2 R
−1
11 em−2

1 − ρ2 eTm−2 R
−1
11 em−2

, (12)

where R11 = (1 − ρ)Im−2 + ρ em−2 eTm−2. Using the formula in Example 4.1 of Chaganty
(1997), we have

R−1
11 = 1

1 − ρ

[
Im−2 − ρ

1 + (m − 3)ρ
em−2 eTm−2

]
.

Since eTm−2 em−2 = (m − 2) we get

eTm−2 R
−1
11 em−2 = 1

1 − ρ

(
(m − 2) − ρ

1 + (m − 3)ρ
(m − 2)2

)

= (m − 2)
1 − ρ

(
1 − ρ(m − 2)

1 + (m − 3)ρ

)

= (m − 2)
1 + (m − 3)ρ

. (13)

Substituting (13) in (12) and simplfying we get

ρ1,m|2,...,m−1 = ρ(1 + (m − 3)ρ) − (m − 2)ρ2

1 + (m − 3)ρ − (m − 2)ρ2

= ρ − ρ2

mρ(1 − ρ) + (1 − ρ)(1 − 2ρ)

= ρ

1 + (m − 2)ρ
. (14)

The constant (m − 2) in the denominator of (14) represents the number of condi-
tional variables. More generally, for the equicorrelated structure the partial correlation
ρi,i+k|i+1,...,i+k−1 = ρ/(1 + (k − 1)ρ) for any 1 ≤ i ≤ (m − k), 1 ≤ k ≤ (m − 1).



Lin and Chaganty Journal of Statistical Distributions and Applications             (2021) 8:4 Page 13 of 14

Abbreviations
AIC: Akaike information criterion; AR(1): Autoregressive of order one; CDF: Cumulative distribution function; GEE:
Generalized estimating equations; MC: Markov chains; MLE: Maximum likelihood estimation; MP: Multivariate probit;
MVN: Multivariate normal; PMF: Probability mass function; SE: Standard error

Acknowledgements
We thank the associate editor and two referees whose constructive comments on an earlier version resulted in an
improved presentation.

Authors’ contributions
All authors have contributed equally to the work. The author(s) read and approved the final manuscript.

Funding
There is no funding support for the research work.

Availability of data andmaterials
Interested readers can contact the first author.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 12 October 2020 Accepted: 16 February 2021

References
Bedford, T., Cooke, R. M.: Vines–a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)
Brechmann, E., Schepsmeier, U.: Modeling dependence with c- and d-vine copulas: the r package cdvine. J. Stat. Softw.,

52 (2013). https://doi.org/10.18637/jss.v052.i03
Byrd, R. H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci.

Comput. 16(5), 1190–1208 (1995)
Chaganty, N. R.: An alternative approach to the analysis of longitudinal data via generalized estimating equations. J. Stat.

Plan. Inf. 63(1), 39–54 (1997)
Chaganty, N. R., Joe, H.: Range of correlation matrices for dependent bernoulli random variables. Biometrika. 93(1),

197–206 (2006)
Czado, C.: Analyzing Dependent Data with Vine Copulas: A Practical Guide With R. Springer International Publishing,

Lecture Notes in Statistics (2019)
Dalla Valle, L., Leisen, F., Rossini, L.: Bayesian non-parametric conditional copula estimation of twin data. J. Roy. Stat. Soc. C:

Appl. Stat. 67, 523–548 (2018)
Deng, Y., Chaganty, N. R.: Pair-copula models for analyzing family data. J. Stat. Theory Pract. 15(1), 13 (2021)
Escarela, G., Perez-Ruiz, L. C., Bowater, R. J.: A copula-based markov chain model for the analysis of binary longitudinal

data. J. Appl. Stat. 36(6), 647–657 (2009)
Gilbert, P., Varadhan, R.: numDeriv: Accurate Numerical Derivatives. R Package (2012). http://CRAN.R-project.org/

package=numDeriv
Grizzle, J. E., Starmer, C. F., Koch, G. G.: Analysis of categorical data by linear models. Biometrics, 489–504 (1969)
Gruber, L., Czado, C.: Sequential bayesian model selection of regular vine copulas. Bayesian Anal. 10, 937–963 (2015)
Joe, H.: Families ofm-variate distributions with given margins andm(m − 1)/2 bivariate dependence parameters.

Lecture Notes–Monograph Series, vol. 28. Institute of Mathematical Statistics, Hayward (1996)
Joe, H.: Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC, London (1997)
Joe, H.: Dependence modeling with copulas. Chapman and Hall/CRC, London (2014)
Kurowicka, D., Joe, H.: Dependence modeling: vine copula handbook. World scientific, Singapore (2011)
Lennon, H.: Gaussian copula modelling for integer-valued time series. PhD thesis. The University of Manchester (United

Kingdom) (2016)
Liang, K. Y., Zeger, S. L.: Longitudinal data analysis using generalized linear models. Biometrika. 73(1), 13–22 (1986)
Min, A., Czado, C.: Bayesian inference for multivariate copulas using pair-copula constructions. J. Financ. Econ. 8, 511–546

(2010)
Panagiotelis, A., Czado, C., Joe, H.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107(499),

1063–1072 (2012)
Panagiotelis, A., Czado, C., Joe, H., Stöber, J.: Model selection for discrete regular vine copulas. Comput. Stat. Data Anal.

106, 138–152 (2017)
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