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ABSTRACT
The rising prevalence of tick-borne diseases in humans in recent decades has called
attention to the need for more information on geographic risk for public health
planning. Species distribution models (SDMs) are an increasingly utilized method of
constructing potential geographic ranges. There are many knowledge gaps in our
understanding of risk of exposure to tick-borne pathogens, particularly for those in
the rickettsial group. Here, we conducted a systematic scoping review of the SDM
literature for rickettsial pathogens and tick vectors in the genus Amblyomma. Of the
174 reviewed articles, only 24 studies used SDMs to estimate the potential extent of
vector and/or pathogen ranges. The majority of studies (79%) estimated only tick
distributions using vector presence as a proxy for pathogen exposure. Studies were
conducted at different scales and across multiple continents. Few studies undertook
original data collection, and SDMs were mostly built with presence-only datasets
from public database or surveillance sources. The reliance on existing data sources,
using ticks as a proxy for disease risk, may simply reflect a lag in new data acquisition
and a thorough understanding of the tick-pathogen ecology involved.

Subjects Ecology, Entomology, Zoology, Infectious Diseases, Spatial and Geographic Information
Science
Keywords Amblyomma, Rickettsia, Species distribution models, PRISMA

INTRODUCTION
Tick-borne diseases are a global threat to public health, posing risks to both humans and
domesticated animals. In recent years there have been documented increases in tick-borne
diseases both in the United States and around the world. Much of this burden can be
attributed to Lyme disease in the United States, Europe, and northern Asia. However, in
the past 20 years, identification of previously unrecognized pathogens has revealed a
great diversity in tick-borne viruses and bacteria (Paddock et al., 2016). Increases in
tick-borne pathogen transmission and case detection have garnered a great deal of attention,
triggering greater funding, resources, and agency responses (CDC, 2018; Couzin-Frankel,
2019). Nevertheless, the expanding burden of tick-borne disease has also highlighted crucial
gaps in knowledge, particularly with regards to geographic risk mapping, an area of great
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interest to public health agencies. This is particularly evident in the case of rickettsial
pathogens, comprising the ehrlichiosis, anaplasmosis, and spotted fever rickettsioses,
which compared to Lyme disease remain understudied. Rickettsial pathogens of medical
importance may be encountered worldwide, and ticks from the Amblyomma genus are
competent vectors for many of these pathogens (Levin, Schumacher & Snellgrove, 2018).
Although numbers of documented cases have been increasing in recent years, the true extent
of geographic risk for rickettsial pathogens is challenging to delineate due to a lack of
consistent, long-term, and widespread surveillance data, and regionally low case detection.

Tick-borne rickettsial diseases are considered an emerging health problem in many
areas of the world (Parola, Paddock & Raoult, 2005). Diseases such as human ehrlichiosis
(Ehrlichia spp.), human anaplasmosis (Anaplasma spp.), and Rocky Mountain Spotted
Fever (RMSF) caused by R. rickettsii have shown generally increasing trends in recent
decades. In the United States alone, spotted fever group rickettsioses, caused by Rickettsia
spp., rose from over 400 reported cases in the year 2000, to over 6,000 cases in 2017
(CDC, 2020). Ricksettsial diseases typically present with nonspecific clinical symptoms,
including headache, fever, nausea, and muscle aches, though rashes are often present in
symptomatic cases of spotted fever group rickettsioses (Nicholson & Paddock, 2019).
Severe cases can quickly become life threatening, particularly when appropriate medical
treatment is delayed. Mapped distributions of the pathogens that cause tick-borne diseases
can be invaluable to public health agencies in communicating potential risk of exposure,
especially where emerging or understudied pathogens are concerned.

Species distributions models (SDMs), also commonly referred to as ecological niche
models (ENMs), are becoming routinely used in vector-borne disease systems to model the
potential geographic distribution of risk (Baak-Baak et al., 2017; Carvalho et al., 2015;
Lippi et al., 2019; Peterson et al., 2002; Thomas & Beierkuhnlein, 2013). Broadly, this is
accomplished by correlating locations where a species of interest is known to occur
with the underlying environmental characteristics (e.g., climate, elevation, land cover).
The resulting model can then be projected to unsampled areas on the landscape, providing
a spatial prediction of areas that are ecologically suitable for species presence. In addition
to predicting contemporary species distributions, SDMs are also employed to estimate
the extent of potentially suitable habitat for invasive species, and potential shifts in
geographic distributions due to climate change (Lippi et al., 2019; Carvalho, Rangel & Vale,
2017). There are many methodological approaches to estimating species distributions,
and some of the more commonly encountered approaches include Maximum Entropy
(MaxEnt), Generalized Additive Models (GAM), Boosted Regression Trees (BRT), and
Random Forests (RF) (Elith, Leathwick & Hastie, 2008; Elith & Leathwick, 2009; Evans
et al., 2011; Phillips, Anderson & Schapire, 2006). Although SDMs are a commonly used
tool in estimating species ranges, the diversity in modeling approaches and applications
makes it challenging to compare results across models.

For vector-borne disease SDMs, records of vector or pathogen presence (either the
vector, the pathogen, the vector and pathogen, or even simply human case data) are often
used as proxies for risk of exposure, and therefore transmission. Species distribution
models have been used in a risk mapping capacity for many vector-borne disease systems,

Lippi et al. (2021), PeerJ, DOI 10.7717/peerj.10596 2/19

PeerJ ______________________ _ 

-

http://dx.doi.org/10.7717/peerj.10596
https://peerj.com/


spanning a range of pathogens vectored by arthropods including mosquitoes, gnats,
phlebotomine flies, fleas, triatomine bugs, and ticks (Carvalho et al., 2015; Lippi et al., 2019;
Peterson et al., 2002; Crkvencic & Šlapeta, 2019; Sloyer et al., 2019). This framework is
particularly useful in determining species limits for vectored transmission owing to the
very close relationships between ectotherm life histories, pathogen replication, and
environmental drivers such a temperature. Underlying distributions of reservoir hosts,
another requisite component of zoonotic transmission cycles, are also influenced by land
cover and environmental conditions (Gholamrezaei et al., 2016).

This work provides a comprehensive review of the published, peer-reviewed literature of
studies that estimated species distribution, or ecological niche, of selected Amblyomma
ticks, the rickettsial pathogens of potential public health concern they vector, or their
combined distributions. Following Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines, we identified and compiled studies that used
occurrence records and environmental predictors to estimate the geographic range of
target organisms (Moher et al., 2009). Additionally, we provide a synthesis of current
knowledge in the field, identifying the range of regions, spatial scales, and environmental
determinants used to define risk in these systems. Given the focus on vectors and
pathogens that pose a risk to human populations, this review is relevant not only to disease
ecologists and medical geographers who study vector-borne disease risk in a spatial
context, but also public health professionals who may use the types of studies reviewed
here in an advisory capacity. This work serves as a baseline for identifying knowledge gaps
and guiding new studies of geographic risk mapping in understudied tick-borne disease
systems.

Survey methodology
Literature searches were conducted following the guidelines in the PRISMA Statement, a
checklist and flow diagram to ensure transparency and reproducibility in systematic
reviews and meta-analyses (Moher et al., 2009; Liberati et al., 2009). Initial searches for
peer-reviewed studies were conducted through September 2019. Five online databases
were searched including Web of Science (Web of Science Core Collection, MEDLINE,
BIOSIS Citation Index, Zoological Record) and Google Scholar. Searches were performed
with combinations of key terms including “Amblyomma”, “Rickettsia�”, “niche model”,
“ecological niche model”, and “species distribution model”. No restrictions were placed on
geographic region of study or date of publication. Additional novel records for screening
were identified via literature cited sections in records identified via database searches.

Duplicate records from the initial database searches were removed, and the remaining
abstracts were screened for relevance. Records were excluded in this initial screening based
on publication type (i.e., literature reviews, opinion pieces, and synthesis articles were
excluded), methodology (i.e., studies that did not examine geographic distributions or risk
were excluded), and selected taxonomic focus (i.e., vectors and pathogens other than the
Amblyomma and rickettsial pathogens (Ehrlichia spp. and Rickettsia spp.) were excluded).

The remaining articles were then assessed in full for eligibility, where information on
vectors, pathogens, modeling methods, geographic region, geographic scale of study, time
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period of study, data sources, and major findings were extracted from the text. Full-text
articles in this final screening were flagged for exclusion based on focus of the study
(e.g., modeling tick distributions as an exercise to compare modeling logistics and
methodologies), mismatch in target organisms (e.g., the distribution of a target pathogen
in a vector species of a non-target genus), or status as gray literature (e.g., unpublished
theses). Studies that focused solely on rickettsial pathogens of veterinary or wildlife
concern, including Anaplasma spp. transmitted by Amblyomma ticks, were not included in
this analysis. The focus of this review was on species-level pathogens, and serology studies
that only resolved pathogens to genus were also excluded.

Overview of reviewed studies
The initial search of the peer-reviewed literature yielded 174 studies published between
1994 and 2019. After removal of duplicate search results, 108 unique studies remained.
Studies were screened for topic relevance and abstract content, after which 32 studies
remained. These publications were then assessed in full, resulting in 24 studies on species
distribution models for Amblyomma ticks or rickettsial pathogens that were included in
the literature synthesis (Table 1). The PRISMA flow diagram outlining our literature
search and screening process is shown in Fig. 1.

The geographic extent of suitability models varied with study focus and stated research
goals, ranging from local and regional foci (e.g., county and state-level) to national and
global species distributions. Studies were primarily conducted for the United States (46%),
often limited to a single state or regional boundary. Other common geographic foci
included Africa (29%) and Latin America (21%). The majority of studies (83%) reported
the spatial scales of predicted distributions, which varied considerably across studies
ranging from fine-scale (1 km) to coarse resolution (50 km) gridded models.

Species occurrence data
The majority of reviewed studies (79%) modeled geographic distributions only for
Amblyomma ticks, using vector presence as a proxy for pathogen transmission and disease
risk. Amblyomma americanum was featured in 33% of articles, making it the most
commonly studied vector, followed by Amblyomma variegatum (29%) and Amblyomma
hebraeum (25%). Studies that estimated pathogen distributions, using health department
data or wildlife blood samples to determine presence, accounted for 20% of the reviewed
literature. Only 8% of studies used both tick occurrence and pathogen presence to model
geographic risk of transmission.

A majority of studies (63%) obtained positive records of species occurrence from
previously published literature. The time period of sample collections from previously
published sources typically ranged from the 1950s through the early 2000s, though one
study incorporated historical records dating back to the 1900s. In contrast, 29% of studies
primarily obtained georeferenced data points from public databases or entomological
collections. While using pre-existing databases of tick records yields higher occurrence
frequencies that span greater periods of time, few details are typically provided regarding
the nature of sample collections (e.g., active vs passive surveillance, transects vs
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Table 1 List of final publications on Amblyomma ticks and rickettsial group pathogens featured in literature review.

Vector Pathogen Modeling
Method

Location Environmental
Data

Major Factors Reference

A. americanum Rickettsia spp. GAM, Splines,
LR

USA N/A Expanding range
of vector
correlates with
increased
incidence

Behravesh
et al. (2016)

A. americanum N/A LR,BRT,RF,
MaxEnt,
MARS

USA (FL) DEM,
STATSGO soil
and hydrology
database, FL
Coop Land
Cover, Daymet

Annual
precipitation,
Mean
temperature of
driest quarter,
Minimum
temperature of
coldest month,
Mean NDVI

Kessler, Ganser
& Glass
(2019)

A. americanum N/A LR USA (FL) WorldClim,
FGDL, FL
CLC, DEM

Forested areas,
Precipitation
seasonality

Kessler et al.
(2019)

A. americanum N/A MaxEnt USA (KS) CliMond Soil moisture,
Temperature,
Precipitation

Raghavan
et al. (2016)

A. americanum N/A MaxEnt North
America

WorldClim Annual
precipitation,
Precipitation
seasonality,
Mean diurnal
range,
Maximum
temperature of
warmest month

Raghavan
et al. (2019)

A. americanum N/A LR USA (MO) University of
Missouri
Land-use
Classification
Map,
Landsat5,
NDVI, DEM,
The Climate
Source

Forested areas,
Elevated relative
humidity in June

Reese et al.
(2011)

A. americanum N/A BRT, GLM,
MARS,
MaxEnt, RF

USA WorldClim,
Daymet

Mean diurnal
temperature
range, Annual
precipitation,
Mean vapor
pressure in July

Springer et al.
(2015)

A. americanum,
A. maculatum,
A. cajennense,
A. mixtum

N/A MaxEnt USA (CA) WorldClim,
PRISM

Minimum
temperature of
coldest month

Pascoe et al.
(2019)

(Continued)
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Table 1 (continued)

Vector Pathogen Modeling
Method

Location Environmental
Data

Major Factors Reference

A. hebraeum N/A DOMAIN South Africa NOAA AVHRR Mean yearly
temperature,
Mean monthly
max
temperature,
NDVI, Water
vapor pressure
deficit

Estrada-Peña
(2003)

A. variegatum N/A MaxEnt, Gower
distance

Africa,
projected to
New World

BioGeo Berkeley
climate data

NDVI in June-
August

Estrada-Peña
et al. (2007)

A. hebraeum,
A. variegatum

N/A MaxEnt Zimbabwe Climate
Research Unit
Time Series
(CRU TS) 2.0

Temperature,
Total annual
rainfall, Rainfall
seasonality

Estrada-Peña,
Horak &
Petney
(2008)

A. hebraeum,
A. variegatum

N/A CLIMEX Zimbabwe Climate data
from
published
literature

N/A Norval et al.
(1994)

A. variegatum,
A. gemma,
A. lepidum

N/A WofE, ENFA Tanzania NOAA
LandSat5

Cattle density,
Rainfall,
Drought period
(varied by
species)

Lynen et al.
(2007)

A. cajennense N/A MaxEnt Mexico and
USA (TX)

WordClim,
USGS DEM

Elevation, NDVI,
Mean
temperature (13-
16 ˚C), Seasonal
rainfall

Illoldi-Rangel
et al. (2012)

A. cajennense N/A ENFA, MaxEnt,
GARP

Colombia WorldClim,
NDVI

Isothermality,
Precipitation of
driest quarter

Acevedo-
Gutierrez
et al. (2018)

A. cajennense,
A. sculptum

N/A MaxEnt Brazil WorldClim Seven variables
selected from
literature:
Annual mean
temperature,
Mean diurnal
temperature
range, Max
temperature in
warmest month,
Min temperature
in coldest
month, Annual
precipitation,
Precipitation in
wettest and
driest months

De Oliveira
et al. (2017)
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Table 1 (continued)

Vector Pathogen Modeling
Method

Location Environmental
Data

Major Factors Reference

A. mixtum,
A. cajennense,
A. tonelliae,
A. sculptum

N/A MaxEnt Central and
South
America

MODIS NDVI
and LST

Regional
differences in
vegetation and
temperature
align with tick
species

Estrada-Peña
et al. (2014)

A. mixtum,
A. ovale

R. rickettsii,
R. amblyommii

MaxEnt Panama WorldClim Mean temperature
of driest quarter,
Elevation,
Coastal shrub
landcover,
Forested areas,
Rural areas

Bermúdez
et al. (2016)

10+ species of
Amblyomma
ticks in
mainland
Africa

N/A LR Mainland
Africa

CRES climate,
NDVI

Latitudinal
gradient

Cumming
(2000)

10+ species of
Amblyomma
ticks in
mainland
Africa

N/A LR Mainland
Africa

CRES climate,
NDVI

Climate better
predictor than
NDVI,
Minimum
temperature,
Maximum
temperature,
Rainfall

Cumming
(2002)

10+ species of
Amblyomma
ticks

N/A Multiple
Regression

Global IMAGE 2.2
climate change
models

All scenarios of
climate change
drove increases
in tick habitat

Cumming &
Van Vuuren
(2006)

N/A R. rickettsii BHM USA (KS, MO,
OK, AR)

National
Landcover
Dataset,
MODIS,
NASA
POWER, US
Census

Poverty, Average
humidity,
Average land
surface
temperature

Raghavan
et al. (2016)

N/A E. chaffeensis LR USA (MS) MLCD, MODIS
NDVI

Soil moisture,
Flooding, Forest
cover, NDVI

Manangan
et al. (2007)

N/A E. chaffeensis GWR South-central
and
Southeastern
USA

NLCD, Daymet,
white-tailed
deer density

Temperature,
Humidity,
Precipitation,
Forest cover

Wimberly
et al. (2008)

Note:
BHM, Bayesian Hierarchical Model; BRT, Boosted Regression Trees; ENFA, Ecological Niche Factor Analysis; GARP, Genetic Algorithm for Rule-Set Production; GLM,
Generalized Linear Model; GWR, Geographically Weighted Regression; LR, Linear Regression; MARS, Multivariate Adaptive Regression Splines; RF, Random Forests.
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convenience sampling, etc.). Only 21% of studies collected occurrence records solely
through field sampling, with field collections spanning one to 13 years. Few studies (13%)
used true absence data collected via field sampling, instead opting to use modeling
approaches that take advantage of presence-only datasets.

Environmental data
Environmental predictor datasets used to build SDMs were generally chosen in accordance
with the specified geographic extent, scale, and goals of a given study. Many of the data
products used for localized studies are only available for a given region or country
(e.g., Daymet climate data for North America, USGS National Land Cover Database with
coverage for the United States, etc.). Despite the wide range of environmental inputs across
studies, the WorldClim dataset of long-term climate averages, and derived bioclimatic
variables, were the most commonly utilized source of climatological data, featured as input
data in 36% of reviewed articles (Hijmans et al., 2005). Six articles estimated potential shifts
in vector ranges driven by future climate change and required modeled climate data at
given time horizons, with half of these studies using WorldClim scenarios of future
climatic conditions.

Modeling approaches and output
The reviewed literature primarily consisted of studies that used presence-only,
correlative modeling approaches. A variety of SDM methods were used to estimate tick

Figure 1 PRISMA flow diagram outlining the literature search and screening process.
Full-size DOI: 10.7717/peerj.10596/fig-1
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distributions, including logistic regression (LR), geographically weighted regression
(GWR), ecological niche factor analysis (ENFA), and generalized additive models (GAM)
(Table 1). However, the MaxEnt algorithm was the most commonly used method, with
50% of studies using MaxEnt to estimate species distributions. Regression analyses were
also frequently included in SDM studies (42%), even when more advanced statistical
models were also used.

Environmental factors that were most influential in published SDMs were reported in
80% of reviewed studies. Generally, studies included some measure of temperature,
precipitation, soil moisture, or land cover in models of tick distributions. The temporal
scale of environmental predictors varied considerably between studies, ranging from daily
temperature estimates and monthly ranges to annual and long-term climate averages.
Covariates that contributed most prominently to distribution estimates were often
reported in the reviewed literature, yet actual values and ranges for environmental
predictors were seldom reported. Indicators of seasonality for precipitation (66% of
studies) and temperature (50% of studies) were among the most consistent covariates
included in final SDMs. Common bioclimatic variables used in final models for tick habitat
suitability, regardless of taxon or location, included annual mean temperature, annual
mean precipitation, and indicators of seasonality and extremes in temperature and
precipitation, such as maximum temperature in the warmest month, minimum
temperature in the coldest month, and precipitation in the wettest and driest months.
The Normalized Difference Vegetation Index (NDVI), an index derived from remote
sensing data to measure green vegetation cover, was used as an environmental predictor in
25% of studies. Despite the prevalence of NDVI in these studies, compared to climate
variables there was little consensus regarding the reliability of this predictor in defining
vector niches across studies. Only one study incorporated tick host density as an
environmental predictor of habitat suitability.

DISCUSSION
Species distribution modeling has become a widely used tool for estimating ranges of
organisms, or in the case of pathogens and their vectors, the geographic risk of disease
exposure. However, the potential geographic distributions of rickettsial pathogens
transmitted by Amblyomma spp. are still relatively understudied, compared to other
vector-borne disease systems. In contrast with the 174 candidate publications identified for
screening in this literature review, similar search terminology applied to other
vector-borne disease systems yielded raw publication counts of 1,126 for Aedes spp. and
dengue fever, 728 for Anopheles spp. and malaria, and 366 for Ixodes spp. and Lyme
disease. This lag is likely due, in part, to more recent recognition of the presence of these
disease transmission systems for the spotted fever rickettsioses and ehrlichiosis tick-borne
diseases (Childs & Paddock, 2003).

The studies included in the final list of screened articles predominantly focused on
establishing the distribution of the lone star tick (A. americanum) in the United States.
The body of work here perhaps reflects this species’ relatively recent implication in the
transmission of rickettsial pathogens, in addition to the connection to emerging alpha-gal
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allergy, given that the majority of this literature was published within the past five years
(Levin et al., 2017; Crispell et al., 2019). Nevertheless, lone star ticks have long been
included in tick surveillance and outreach programs in the United States, due to their
aggressive feeding behavior and previously suspected medical importance. As such,
established surveillance protocols and reliable collection records for this species in North
America may be more accessible than for other Amblyomma species in other locations,
facilitating the production of presence-only models. Other geographic foci identified in
this review were driven by the relative interest in, or importance of, vector species: the
medically important Cayenne tick (A. cajennense) in Latin America, and bont ticks
(A. variegatum and A. hebraeum) in Africa, which are primarily known as important pests
of livestock.

Few studies directly estimated the geographic range of the pathogens, either in human
hosts or animal reservoirs, and the majority of SDM articles used tick presence as a proxy
for potential exposure to the pathogens they transmit. This may be, in part, due to the
logistical challenges and constraints of collecting serological data for rickettsial pathogens.
Until very recently, reliable diagnostic testing for rickettsial pathogens was not available,
and even now access to those tests is not ubiquitous (Parola, Paddock & Raoult, 2005).
Detection of cases by point-of-care health practitioners can also be problematic, due to the
nonspecific clinical presentation of rickettsial diseases. Despite updates in our taxonomic
knowledge of these pathogens, the Centers for Disease Control recently changed case
definitions to reflect cross-reactivity in diagnostic tests, and thus, cases of spotted fever
group rickettsioses are reported in aggregate (CDC, 2020; Centers for Disease Control and
Prevention, 2010). Collecting serological data from wildlife reservoirs presents its own
set of challenges, and there are many instances in which the ecology of transmission is
poorly understood, and the full range of vertebrate hosts is unknown (Eremeeva & Dasch,
2015). In cases where transmission cycles are known, conducting field surveys to assess
seroprevalence in wildlife hosts is often time consuming, labor intensive, and requires
specialized expertise. In the context of building SDMs, this can result in datasets that are
geographically limited in extent, and may not represent the full range of suitable ecological
conditions, driving inaccuracies in resulting models.

Species distribution models call for spatially continuous environmental variables as data
inputs for model building, and the availability of appropriate, georeferenced data products
varies with region. For example, the Daymet (daymet.ornl.gov) dataset offers freely
available, high resolution weather parameters, but is limited to North America. Remotely
sensed data, such as land surface temperature and NDVI, can also be used in this capacity,
but may require extensive geoprocessing before use; the quality of remote sensing imagery
may also vary considerably, depending on study area (Barsi et al., 2019). In contrast,
bioclimatic variables derived from WorldClim (WorldClim.org) data offer accessible
datasets of long-term climate trends, in a product with interpolated global coverage.
The open accessibility of global climate variables, at a variety of spatial resolutions, is
perhaps why the use of WorldClim data is so pervasive in the SDM literature, not limited
to vector-borne disease studies. Yet, despite the prevalence of WorldClim data products
used in the capacity of model building, there are a range of variables selected as top
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predictors of species presence, even within species found in the same geographic region.
Differences in environmental drivers across studies may reflect real biological differences
in environmental suitability for ticks, or their host organisms, but may also arise for a
number of other reasons, including differences in variable selection methodology and
spatial resolution used in the studies (Elith & Graham, 2009; Farashi & Alizadeh-
Noughani, 2018). Other factors that perhaps more closely reflect the physical habitat
requirements of ticks, such as soil moisture or vegetative land cover, were more commonly
included as predictors in studies conducted on finer spatial scales, using regionally
available environmental datasets.

A difficulty presents itself when estimating species distributions for ticks based on
environmental conditions. Other arthropod vectors, such as mosquitoes, are extremely
sensitive to fluctuations in climatic conditions, which in turn dictate the suitability of
an area for survival and reproduction. In many instances, the physiological responses
and environmental limits of insect vectors are well understood, via both laboratory
experiments and empirical field studies (Mordecai et al., 2019; Paaijmans et al., 2013; Reuss
et al., 2018). In contrast with insect vectors, ticks are resilient to many of the climatic
factors that would limit other species. In other words, broad-scale patterns in temperature
and precipitation are not necessarily primary drivers of tick presence on the landscape.
This conflicts with many of the studies found in this review, which rely heavily on
long-term climatic data layers, such as bioclimatic variables, as the main predictors of tick
suitability. Further to this point, reliance on climate data may contribute to the relatively
low agreement in niche-defining environmental parameters across the reviewed studies.
With the exception of indicators of seasonality, the major climatic and land cover
predictors in the literature vary greatly with species and geographic extent. Given the close
association between ticks and their vertebrate hosts, this may indicate that it is not the
vector’s niche that is being modeled, but rather the niche of the host organisms that
support tick populations. Yet, data on host density were included as a variable in just one of
the studies reviewed here, likely due to the difficulty of obtaining continuous, coincident,
georeferenced datasets on wildlife population densities.

Reaching consensus across SDMs is notoriously problematic, owing largely to the
abundance of methodological approaches and lack of standardized reporting practices in
presence data and final models (Mordecai et al., 2019; Carlson et al., 2018; Hao et al.,
2019; Merow, Smith & Silander, 2013; Rund et al., 2019). We find similar issues when
comparing published SDMs for Amblyomma ticks and rickettsial pathogens, where there
is considerable diversity in methods and primary findings despite the small number of
studies performed. While major environmental predictors are typically reported for
SDMs, most studies do not report values or numerical ranges for suitability, making the
assessment of these relationships in a biological context difficult. We also expect
differences in projected distributions to arise as an artifact of methodology, and for this
reason, modeling algorithms and user-specified parameters should be chosen to align
with data limitations and study aims. The methods in the literature reviewed here
predominantly comprised two methods of estimating species ranges, MaxEnt and spatial
regressions. Additional studies that incorporate other commonly implemented modeling
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algorithms, for example random forests (RF) and boosted regression trees (BRT), may
help determine the impact that methodology on predicted distributions for tick-borne
diseases.

Geographic risk mapping of pathogens is not limited to species distribution modeling.
Other methods of estimating geographic distributions, such as mechanistic and simulation
approaches, also exist for estimating the range and expansion of Amblyomma ticks and
rickettsial pathogens, often using tick abundance and human case data (Dahlgren et al.,
2016; Springer et al., 2014; Parola et al., 2013; Sagurova et al., 2019). Correlative models,
such as SDMs, are nevertheless useful in estimating potential species limits, particularly
when data for mechanistic or process-driven models are lacking. This is the case for many
tick species, where physiological mechanisms and limits are often poorly understood.
For Amblyomma spp. only a few articles address the effects of temperature and humidity in
a controlled setting (Guglielmone, 1992; Koch, 1983; Yoder, Selim & Needham, 1997;
Needham & Teel, 1991; Strey et al., 1996). At extreme temperatures where insect vectors
may die, ticks will become quiescent until conditions are more favorable. Thresholds that
are known to cause instantaneous tick mortality are prohibitive to life such as −22 �C
(Burks et al., 1996). Presence-only modeling approaches, which predominated in the
reviewed literature, are also convenient when studying organisms that are difficult to
extensively sample throughout their range. These methods are attractive in that they allow
us to take advantage of pre-existing collection datasets, seemingly obviating the need
for labor and resource intensive field sampling. However, with the exception of studies
which explicitly conducted surveys for ticks, the full methods for originally obtaining
presence points (e.g., the original collection strategies) are not always clearly defined.
Biases introduced via sampling protocol (e.g., convenience sampling, or targeting a single
life stage or behavior) may not adequately represent the true realized niche for species,
dramatically influencing SDM predictions. In many tick models, data are collected through
dragging or flagging which only samples questing ticks that have not found hosts.
The number of successful host-seeking ticks is not known and for ticks that are not
possible to collect on drags/flags the surveillance method may drastically underrepresent
this life stage (Gaff et al., 2020). If the purpose of the model is to measure disease risk,
questing data may be appropriate, but for tick control a greater understanding of the
species life history would be needed. While these limitations may be logistically
unavoidable, we recommend more detailed reporting of sampling methods and their
associated limitations in future studies.

Additional field studies and ground-truthing are needed to fully assess the accuracy and
predictive power of many current estimated tick distributions, using independently
collected data to validate mapped predictions. Further, novel collection efforts that
explicitly target nymphal ticks, or ticks that have successfully found hosts, will allow for
models that more closely reflect environmental suitability across life stages. Indeed, the
general dearth of novel georeferenced occurrence datasets represents a major limitation
for the establishment of spatial risk of tick-borne diseases. This is particularly evident
when attempting to directly assess the distribution of rickettsial pathogens, rather than
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relying on tick distributions as a proxy of risk. Future work to identify all components of
transmission cycles will also help us create more refined spatial predictions for tick-borne
diseases, where data on reservoir hosts could also serve as informative data layers in an
SDM framework, or as alternate proxies of pathogen distributions.

CONCLUSIONS
Species distribution modeling of Amblyomma ticks and the rickettsial group pathogens
they vector is underrepresented in the literature compared to other vector-borne disease
systems. Even among a limited number of published studies, there is considerable variation
in the methods and reported environmental influences for these models. This scoping
literature review highlights a knowledge gap in our understanding of potential geographic
risk for this transmission system. Given the recent public health interest in tick-borne
diseases, the dearth of studies may result from lags in new data acquisition and limitations
in our knowledge of the tick-pathogen ecology involved.
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