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Morris, Michael, M.A., Spring 2021 Mathematical Sciences

ON COLORING ORIENTED GRAPHS OF LARGE GIRTH

Chairperson: P. Mark Kayll

We prove that for every oriented graphD and every choice of positive integers
k and `, there exists an oriented graphD∗ along with a surjective homomorphism
ψ : D∗ → D such that: (i) girth(D∗) ≥ `; (ii) for every oriented graph C with
at most k vertices, there exists a homomorphism from D∗ to C if and only if
there exists a homomorphism fromD to C; and (iii) for everyD-pointed oriented
graph C with at most k vertices and for every homomorphism ϕ : D∗ → C there
exists a unique homomorphism f : D → C such that ϕ = f ◦ ψ. Finding the
chromatic number of an oriented graph D is equivalent to finding the smallest
integer k such that there is a homomorphism from D to a tournament on k
vertices, so our main theorem provides results about girth and chromatic number
of oriented graphs. While we prove our main theorem probabilistically (i.e.
nonconstructively), we conclude with a construction of an oriented graph with
any given girth ` ≥ 3 and chromatic number k ≥ 5.

Keywords: oriented graph, chromatic number, girth
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Chapter 1 | Introduction

Graph theory is a comparatively new branch of mathematics, having begun

only in the early 18th century with Leonhard Euler’s solution [6] to the Seven

Bridges of Königsberg problem, and the first textbook [9] on the subject not

being published until the 20th century. The simplicity of the notion of a graph

and of some elementary theorems provide graph theory with a certain elegance.

Our natural intuition here can lead us to many true results, but also to false

assumptions about graphs. One of the most fascinating examples of the false

assumptions is that a graph with only large cycles will require relatively few

colors for a proper vertex coloring. In 1959, Paul Erdős famously proved [5]

that we can indeed have graphs of arbitrarily large girth and arbitrarily large

chromatic number, contradicting untrained intuition at that time.

In Erdős’ groundbreaking paper, he was able to demonstrate probabilistically

the existence of such counterintuitive graphs. We discuss the history of this and

related topics with a debt of gratitude to Mark Kayll and Esmaeil Parsa for

their brief history of the topic in [8]. We begin by noting that [5] presents a

probabilistic proof and does not suggest a way to construct such a graph. This
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work then leads naturally in a few directions: (1) to generalize Erdős’ result;

(2) to consider analogues of his results for other types of graphs, specifically of

interest to us, directed graphs; and (3) to find a way to construct these graphs

whose existence is guaranteed by Erdős.

Both refinements and generalizations of [5] have followed in the intervening

six-plus decades. In 1976, Bollobás and Sauer [3] refined Erdős’ result by show-

ing that for any positive integer n there are graphs of arbitrarily large girth

that are uniquely n-colorable. In 1996, Zhu [17], working with graph homomor-

phisms as a generalization of coloring, was able to carry forward the work of

[3] by showing that for any ‘core’ H, there are uniquely H-colorable graphs of

arbitrarily large girth. We note that complete graphs are cores, so Zhu’s work

provides a generalization of [5]. Zhu’s result in [17] was further generalized by

Nešetřil and Zhu [12] in 2004 to the notion of ‘pointed’ graphs. We end up

following a similar trajectory in our work here.

We now shift our attention to digraphs. In 2004, Bokal, Fijavž, Juvan, Kayll,

and Mohar [2] studied the circular chromatic number of digraphs and showed

that the coloring theory of digraphs is similar to that of undirected graphs. In

the world of undirected graphs, the circular chromatic number, χC(G), can be

considered as a refinement of the chromatic number, χ(G), because χ(G)− 1 <

χC(G) ≤ χ(G) [16]. When we consider circular coloring of a digraph D, we

are looking for a map ρ : V (D)→ Sp where Sp is a circle with circumference p

and the images of all adjacent vertices in V (D) are at least one (directed) unit

apart. Then the circular chromatic number of D is the infimum of real numbers
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p such that D admits a circular p-coloring. We do note that a problem arises

because the infimum may not be achieved.

By using acyclic homomorphisms, [2] resolves both the potential problem

of an infimum not being achieved and, perhaps more importantly, the issue

of finding a natural way to create a digraph analogue of the chromatic num-

ber of an undirected graph. As a result, they define the chromatic number

χ(D) of a digraph D to be the minimum integer k such that V (D) can be

partitioned into k acyclic subsets. In addition to this yielding the relations

χ(D)− 1 < χC(D) ≤ χ(D)—making this a good analogue of chromatic number

of an undirected graph—another nice consequence of using acyclic homomor-

phisms to define circular chromatic number is that there is no longer the possi-

bility of having a circular chromatic number that is not a minimum. Although

acyclic homomorphisms do have the nice properties just discussed, they also

introduce complications. For example, the authors of [8] had to use a lot of

care to demonstrate that certain mappings fail to be acyclic homomorphisms.

The fact that we use oriented coloring in our work here means we have no need

to rely on acyclic homomorphisms to resolve the sorts of problems that they

address. We hope the reader will appreciate the way this has simplified our

work in comparison with that of [8].

Following [2], a subset of the authors and their doctoral students in [7]

completed work in the realm of digraphs analogous to that of Zhu for graphs

in [17]. Then [8] generalized the results of [2, 7] just as Nešetřil and Zhu in

[12] generalized [5, 17]. One of our successes in the present work is a similar
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sequence of generalizations for oriented graphs.

We delay definitions for a little longer (until Section 2) and proceed to give

our main result and a few of its consequences:

Theorem 1. For every oriented graph D and every choice of positive integers k

and `, there exists an oriented graph D∗ along with a surjective homomorphism

ψ : D∗ → D such that:

(i) girth(D∗) ≥ `;

(ii) For every oriented graph C with at most k vertices, there exists a homo-

morphism from D∗ to C if and only if there exists a homomorphism from

D to C; and

(iii) For every D-pointed oriented graph C with at most k vertices and for

every homomorphism ϕ : D∗ → C there exists a unique homomorphism

f : D → C such that ϕ = f ◦ ψ.

We hope that at this point an attentive reader familiar with [8] will be con-

cerned that our Theorem 1 is an immediate consequence of [8, Theorem 1].

After all, their theorem is proven for digraphs in general, and oriented graphs

are a specific type of digraph. Furthermore, oriented colorings are homomor-

phisms from oriented graphs to oriented graphs, so in particular they are acyclic

homomorphisms. We can see this because preimages under a homomorphism

must be independent sets, and are hence acyclic. The important difference is

that in our Theorem 1, we are able to get an oriented D∗ and an oriented col-

oring ψ, whereas in [8] we are only guaranteed a digraph D∗ and an acyclic
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homomorphism ψ. Although D∗ of [8] will in fact be an oriented graph when D

is an oriented graph, one can readily check that the acyclic homomorphism ψ of

[8] in general will not be an oriented coloring, so their results do not guarantee

us the desired results in the world of oriented graphs. The importance of this

distinction becomes clear as we discuss two consequences of Theorem 1, which

we now state.

Theorem 2. If D and C are oriented graphs such that D is not C-colorable,

then for every positive integer `, there exists an oriented graph D∗ of girth at

least ` that is D-colorable but not C-colorable.

Theorem 3. For every oriented core D and every positive integer `, there is

an oriented graph D∗ of girth at least ` that is uniquely D-colorable.

To see that Theorem 1 implies Theorem 2, if we have D and C as in The-

orem 2 with a given integer ` and take k to be the order of C, then (i) of

Theorem 1 gives us a D∗ of required girth such that we have ψ : D∗ → D, so

D∗ is D-colorable. But as D is not C-colorable, condition (ii) of Theorem 1

implies that D∗ is not C-colorable.

To see that Theorem 1 implies Theorem 3 follows a similar argument as in

[8]. We note that cores D are D-pointed. So if we are given a positive integer

` and a core D, we can take k = |V (D)|. Then Theorem 1 gives us D∗ of girth

at least ` and a D-coloring ψ : D∗ → D. We can set C = D in part (iii) of

Theorem 1, which gives us that for every D-coloring ϕ : D∗ → D there is a

(unique) homomorphism f : D → D such that ϕ = f ◦ ψ. Because D is a core,
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f is an automorphism, so ϕ and ψ differ by this automorphism and D∗ is indeed

uniquely D-colorable.
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Chapter 2 | Terminology and Notation

We assume basic familiarity with graphs and digraphs and refer the reader

to [4] for any missing concepts not addressed here. For our work we consider

oriented graphs and oriented colorings going forward unless otherwise indicated.

An oriented graph D is a digraph in which for every pair of vertices u, v, at most

one of uv and vu is an element of A(D), the arc set of D. Our oriented graphs

will always be finite, simple, that is, loopless without multiple arcs, and opposite

arcs are precluded by the definition of oriented graphs. It can be easier to think

about an oriented graph as one obtained by assigning directions to each edge

of some (undirected) graph G. Recall that a tournament D on n vertices is an

oriented graph obtained by assigning a direction to each edge of the complete

graph Kn. When we discuss cycles of oriented graphs, we mean directed cycles,

and the girth of an oriented graph D is the length of a shortest directed cycle

in D. Finally, for oriented graphs D and C, an oriented graph homomorphism

is a map f : V (D)→ V (C) such that for xy ∈ A(D) we have f(x)f(y) ∈ A(C).

We are now ready to define an ‘oriented coloring’ of an oriented graph D.

An oriented k-coloring, then, is a map c : V (D)→ {1, ..., k} such that:
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1. c(x) 6= c(y) for every arc xy ∈ A(D), and

2. c(u) 6= c(y) for every two arcs uv ∈ A(D) and xy ∈ A(D) with c(v) = c(x).

This is by now a standard definition; see, e.g., [15].

This definition of an oriented coloring is equivalent to that of a homomor-

phism to a tournament on k vertices. First, it is clear that a homomorphism to

a tournament satisfies condition (1) of being an oriented coloring because it is a

homomorphism, and condition (2) is satisfied because tournaments have no op-

posite arcs. On the other hand, given such a map c, we can construct an oriented

graph C∗ with V (C∗) = {1, ..., k} and A(C∗) = {xy : x, y ∈ V (C∗) and xy =

c(a)c(b) for some ab ∈ A(D)}. Then it is clear that C∗ is a subgraph of a tour-

nament C ′ on k vertices by property (2) of c. Furthermore, C∗ was constructed

so that c is a homomorphism to C∗ and thus a homomorphism to C ′, so c is

a homomorphism to a tournament on k vertices. In our work ahead we always

consider oriented colorings to be homomorphisms to oriented graphs.

For terminology more directly related to our theorem statements, we say

that a homomorphism of oriented graphs of D to C is a C-coloring of D, and

we say that D is C-colorable. We say that D is uniquely C-colorable if there is

a homomorphism of D onto C, and for any two C-colorings ψ and ϕ of D, these

homomorphisms ‘differ by an automorphism’. That is, there is some f ∈ Aut(C)

such that ψ = f ◦ ϕ. For an oriented graph D, we say that D is a core if every

homomorphism f : V (D)→ V (D) is an automorphism. Finally, we say that for

oriented graphs C and D, the digraph C is D-pointed if there do not exist two

distinct C-colorings of D that agree on all but one vertex of D.
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Chapter 3 | Setup for the Proof of Theorem 1

For a given oriented graph D, we begin the ‘construction’ of the digraph D∗,

and we do so by first constructing a digraph D0 again inspired by [8]. We define

Figure 1: The view in D0 of elements resulting from one arc xy in D.

V (D0) = V1 ∪ V2 ∪ · · · ∪ Va where V (D) = {1, 2, ..., a}, and each |Vi| = n for

some fixed n large enough to satisfy necessary probabilistic inequalities. Then

we define the arc set A(D0) = {xy : x ∈ Vi, y ∈ Vj and ij ∈ A(D)}. We can

view each Vi simply as the preimage of a vertex i ∈ V (D) under the natural

homomorphism ψ : D0 → D, mapping each Vi to i, for i ∈ {1, ..., a}. See Fig. 1.
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Now we useD0 to ‘construct’ an oriented graphD∗ probabilistically. First we

fix an ε with 0 < ε < 1/(4`) where ` is chosen as in the statement of Theorem 1.

Then our random oriented graph model D(n, p) consists of spanning subgraphs

of D0 where arcs are chosen randomly and independently with probability p =

nε−1 with n sufficiently large. We now introduce two lemmas from [8].

Lemma 1. (i) The expected number of cycles of length less than ` in a digraph

D̂ ∈ D(n, p) is bounded above by nε`n−ε/2;

(ii) The expected number of pairs of cycles of length less than ` in a digraph

D̂ ∈ D(n, p) which intersect in at least one vertex is bounded above by n−1/2.

This is Lemma 5 of [8], except that our oriented graph model D(n, p) differs.

In particular, our D0 has fewer arcs than the analogue in [8], so the lemma

remains true in our case. This along with the First Moment Method [1] shows

that asymptotically almost all oriented graphs in D(n, p) have at most nε` cycles

of length less than ` which are pairwise vertex-disjoint, see, e.g., [8].

We introduce some definitions from [8] (which itself adopted these from

[12]), first calling a set A ⊆ V (D0) large if there are distinct i, j ∈ {1, ..., a}

with ij ∈ A(D) such that |A ∩ Vi| ≥ n/k and |A ∩ Vj | ≥ n/k, and calling

ij ∈ A(D) in this case a good arc for A. Then given a large A, we denote

by |D̂/A| the minimum number of arcs of a random D̂ which lie in the set

{xy : x ∈ A ∩ Vi, y ∈ A ∩ Vj} with ij a good arc. Then we have:

Lemma 2. If D̂ ∈ D(n, p) and A is large, then P (|D̂/A| ≥ n) = 1− o(1).

Again the space D(n, p) in [8] differs from ours, but the proof still follows
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through unchanged because the arcs counted in |D̂/A| in [8] are all present in

the current model.

Finally, we need the following version of Chernoff’s bounds on the tail dis-

tributions of binomial random variables; see, e.g., [8]:

Theorem 4. If X is a binomial random variable and 0 < δ < 3/2, then

P (|X − E(X)| ≥ δE(X)) ≤ 2e−δ
2E(X)/3.

Now we can move on to the proof of our main theorem.
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Chapter 4 | Proof of Theorem 1

Lemma 1 and its consequences mean that asymptotically almost all D′ ∈

D(n, p) have at most nε` pairwise-disjoint cycles of length less than `. Similarly,

Lemma 2 guarantees that asymptotically almost all D′ ∈ D(n, p) have the prop-

erty that all good arcs of D for large sets A induce at least n arcs of D′. In the

proof of (iii) we introduce a third property that almost all D′ ∈ D(n, p) possess.

Therefore, there exists someD′ ∈ D(n, p) enjoying the two stated properties and

a property to be named later, and we select such a D′. Now we pick one arc from

each of the at most nε` cycles of length less than ` in D′, giving an independent

arc set M , and define D∗ = D′−M = (V (D0), A(D′)\M). It is clear then that

D∗ has girth at least `, and that ψ : D∗ → D defined by ψ(x) = i if and only

if x ∈ Vi gives a surjective homomorphism, yielding (i) from Theorem 1. Note

that since ε < 1/(4`), the deleted arc set satisfies |M | ≤ nε` < n1/4.

Now we work toward (ii) from Theorem 1. Let us fix an oriented graph C of

order at most k, and assume that there is a homomorphism ϕ : D∗ → C. Then

for every i ∈ V (D) there is a vertex x ∈ V (C) such that |Vi ∩ ϕ−1(x)| ≥ n/k.

This is because there are at most k vertices in C, so there are at most k such
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intersections ranging over all x ∈ V (C), and they must cover the n vertices of Vi.

Therefore, the Pigeonhole Principle implies that at least one such intersection

has cardinality at least n/k. Then let us define f : V (D) → V (C) by f(i) = x

for some x ∈ V (C) such that |Vi ∩ ϕ−1(x)| ≥ n/k. We must show this f is a

homomorphism.

Let ij ∈ A(D) and consider all possible a, b ∈ V (D∗) where a ∈ Vi ∩

ϕ−1(f(i)) and b ∈ Vj ∩ ϕ−1(f(j)). If there is one such arc ab ∈ A(D∗), this

will guarantee the existence of an arc f(i)f(j) ∈ A(C) by the existence of ϕ.

Recall that f satisfies |Vi ∩ϕ−1(f(i))| ≥ n/k and |Vj ∩ϕ−1(f(j))| ≥ n/k. Then

A =
(
Vi ∩ ϕ−1(f(i))

)
∪
(
Vj ∩ ϕ−1(f(j))

)
is large as defined for Lemma 2, so by

our choice of D′ relying on that lemma, D′ has at least n arcs with endpoints

in A. Then since we have removed at most n1/4 arcs from D′ to construct D∗,

there exists at least one such arc ab ∈ A(D∗), and in fact many such arcs. So

we have ϕ(a)ϕ(b) ∈ A(C), and we have that f(i) = ϕ(a) and f(j) = ϕ(b) with

f(i) 6= f(j) because ϕ is a homomorphism. So f(i)f(j) ∈ A(C), and f maps

arcs to arcs and is thus a homomorphism.

Conversely, if we assume that there is a homomorphism f : V (D)→ V (C),

then we get the homomorphism ϕ : V (D∗) → V (C) by ϕ = f ◦ ψ, completing

our proof of (ii).

Now we look at (iii), letting C be aD-pointed oriented graph of order at most

k, and ϕ : V (D∗)→ V (C) be a homomorphism. We will use f : V (D)→ V (C)

as in the proof of (ii). As in [8], theD-pointedness of C forces for every i ∈ V (D)

the existence of a unique xi ∈ V (C) such that |ϕ−1(xi) ∩ Vi| ≥ n/k. If some xi
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were not unique and x′i also satisfies |ϕ−1(x′i)∩ Vi| ≥ n/k, then we could define

f ′ by

f ′(j) =


f(j) for j 6= i

x′i for j = i

giving another homomorphism differing at one vertex of D and contradicting

the D-pointedness of C. This establishes the uniqueness of a homomorphism f

chosen in this way. If we assume that ϕ 6= f ◦ψ, there must be some vertex z ∈

V (D∗) such that ϕ(z) 6= (f ◦ψ)(z). So if z ∈ Vj , then (f ◦ψ)(z) = f(j) 6= ϕ(z).

So Vj \
(
ϕ−1(f(j)) ∩ Vj

)
6= ∅ (as it contains z), which leads to a contradiction

as we proceed to show.

Now let i0 ∈ {1, ..., a} be such that t := |ϕ−1(f(i0))∩Vi0 | is minimum, so we

have n/k ≤ t < n. Because t < n, the set ϕ−1(f(i0)) ∩ Vi0 is a proper subset of

Vi0 , and so we can choose x ∈ V (C) with x 6= f(i0) such that |ϕ−1(x)∩Vi0 | > 0.

Then we define f ′ : V (D)→ V (C) by:

f ′(i) =


f(i) for i 6= i0

x for i = i0.

Because f and f ′ differ only at i0 and C is D-pointed, f ′ is not a homomor-

phism. Thus, it fails to send arcs to arcs. So it must be for some v ∈ V (D)

not equal to i0, either vi0 ∈ A(D) and f(v)x /∈ A(C) or i0v ∈ A(D) and

xf(v) /∈ A(C). Without loss of generality, we may assume that i0v ∈ A(D) and

xf(v) /∈ A(C). By the definition of f we have that |ϕ−1(f(v)) ∩ Vv| ≥ n/k.

Then because nε` ≤ n1/4 = o(n/k) we can choose A ⊆ ϕ−1(f(v)) ∩ Vv with

14



|A| ≥ n/2k so that A is not incident with any arc of M that was removed to

construct D∗ from D′. We can also choose B = ϕ−1(x)∩Vi0 , which we observed

above is nonempty. If we let the random variable Y count the arcs from B to

A in D∗ we can bound the expected value E(Y ) by:

E(Y ) ≥ n

2k
p =

n · nε−1

2k
=
nε

2k
.

Then by Theorem 4 with δ = 1 we have

P (Y = 0) ≤ P (|Y − E(Y )| ≥ E(Y )) ≤ 2e−E(Y )/3 ≤ 2e−n
ε/6k.

It is clear this is asymptotically zero. So for sufficiently large n, for almost

all D′ ∈ D(n, p), the corresponding D∗ will have ba ∈ A(D∗) with a ∈ A and

b ∈ B. This is the third property for which we selected D′ at the beginning of

the proof, so we in fact have ba ∈ A(D∗) with a ∈ A and b ∈ B. Then because ϕ

is a homomorphism, we have ϕ(b)ϕ(a) ∈ A(C). But ϕ(a) = f(v) and ϕ(b) = x,

so xf(v) ∈ A(C) which is a contradiction. Thus our assumption of the existence

of a vertex z ∈ V (D∗) such that ϕ(z) 6= (f ◦ ψ)(z) is incorrect, and we must

have ϕ = f ◦ ψ. Finally, we note that the surjectivity of ψ implies that such a

homomorphism f is unique.
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Chapter 5 | Constructions

Our last natural direction of exploration from Erdős’ original theorem is that

of actually constructing those graphs which we have probabilistically proven

exist. These constructions are generally challenging and delicate. The common

approach is to proceed by induction, constructing a (di)graph of chromatic

number n + 1 with girth ` using copies of a (di)graph of chromatic number n

with girth `. The first such construction was completed by Lovász [11] in 1968

using hypergraphs intermediately. It was not until 1989 that Křìž in [10] was

able to create a purely graph-theoretic construction of highly chromatic graphs

without short cycles. Similarly, Severino in [13] demonstrated constructions of

highly chromatic digraphs without short cycles and in [14] constructed uniquely

n-colorable digraphs with arbitrarily large girth.

Ideally, we would like to construct the digraph D∗ with all the properties

described in Theorem 1. We shall content ourselves with a construction of an

oriented graph of a given girth and chromatic number and leave the construction

of such a D∗ for a future author.

Theorem 5. For integers k ≥ 5 and ` ≥ 3, there exists an oriented graph D
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with chromatic number k and girth `.

Remark : Some instances of (k, `) with k = 3 or k = 4 are also feasible. In

particular, k = 3 is feasible for ` ≡ 0 (mod 3), and k = 4 is feasible for all

` ≥ 3 with ` 6= 5. However, we state Theorem 5 as such because when ` =

5, of necessity our basis starts at k = 5. Readers may find it illustrative to

convince themselves that the directed 5-cycle admits no homomorphism to a

tournament on four vertices, while a directed cycle of any other order admits

such a homomorphism.

Proof. We follow the common approach to which we alluded above and pro-

ceed by induction on k, so let us fix integers k and `. Then we begin by con-

sidering
−→
C`, an oriented cycle of length ` (and girth `). We define V (

−→
C`) =

{v0, v1, ..., v`−1}, and there is a homomorphism c : V (
−→
C`) → V (T5) where

V (T5) = {t0, t1, t2, t3, t4} and {t0t1, t1t2, t2t3, t3t4, t2t0, t3t0, t4t0} ⊂ A(T5). Then

if ` ≡ 0 (mod 3), we have c : V (
−→
C`)→ V (T5) defined by

c(vr) = tr mod 3.

If ` ≡ 1 (mod 3), then c is defined by

c(vr) =


tr mod 3 for r < `− 1

t3 for r = `− 1.
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And finally, if ` ≡ 2 (mod 3), then c is defined by

c(vr) =



tr mod 3 for r < `− 2

t3 for r = `− 2

t4 for r = `− 1.

We note that our base cases have given us an oriented graph of girth ` with

chromatic number k ≤ 5. The verification of our induction below will then

guarantee the existence of an oriented graph of girth ` with any given chromatic

number k ≥ 5.

Having established our base cases, we now proceed with the induction. So

assume we have an oriented graph Dk of girth `, chromatic number k, and order

m, and then define V (Dk) = {v0, v1, ..., vm−1}. Because Dk has chromatic

number k, there exists a tournament Tk with V (Tk) = {t0, t1, ..., tk−1} and

a homomorphism ϕk : V (Dk) → V (Tk). Now we construct Dk+1 and the

corresponding Tk+1. Define the vertex set V (Dk+1) = V (Dk) ∪ {vm}, and

define the arc set A(Dk+1) = A(Dk) ∪ {(vivm : i ∈ {0, 1, ...,m − 1}}. Then we

construct Tk+1 in exactly the same fashion; i.e., V (Tk+1) = V (Tk) ∪ {tk} and

A(Tk+1) = A(Tk) ∪ {(titk : i ∈ {0, 1, ..., k − 1}}.

We now examine the girth and chromatic number of Dk+1. First of all, it is

immediately clear that we have created no new oriented cycles in this construc-

tion, so Dk+1 also has girth `. It is equally clear that we have a homomorphism
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ϕk+1 : V (Dk+1)→ V (Tk+1) defined by

ϕk+1(v) =


ϕk(v) for v 6= vm

tk for v = vm.

Therefore, χ(Dk+1) ≤ k + 1.

To complete the proof, it remains to show that Dk+1 admits no homo-

morphism to a tournament on k vertices. Assume to the contrary that for

some order-k tournament T ′k the digraph Dk+1 admits a homomorphism ψ :

V (Dk+1) → V (T ′k). Let’s say that ψ(vm) = x ∈ V (T ′k). Then because every

vertex v ∈ V (Dk+1) \ {vm} forms an arc vvm, we know that ψ(v) 6= x for ev-

ery v 6= vm. If we let Λ be the subgraph of Dk+1 induced by the vertex set

{v0, ..., vm−1}, then Λ is isomorphic to Dk. Similarly, if we let Γ be the sub-

graph of T ′k induced by V (T ′k) \ {x}, then Γ is a tournament on k − 1 vertices.

But then ψ|V (Λ) gives a homomorphism from Λ to Γ, a tournament on k − 1

vertices, contradicting the fact that Dk has chromatic number k. Therefore,

Dk+1 indeed has chromatic number k + 1.
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