
Supplemental Material to 
Equilibrium Uniqueness in Entry Games with Private Information 

By 

José-Antonio Espín-Sánchez, Álvaro Parra, and Yuzhou Wang 

April 2018 

Revised May 2021 

COWLES FOUNDATION DISCUSSION PAPER NO. 2126RS 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

http://cowles.yale.edu/ 

http://cowles.yale.edu


Online Appendix

Equilibrium Uniqueness in Entry Games with
Private Information
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C Equilibrium Exists and is in Cutoff Strategies

An entry strategy for firm i is a mapping from the firm’s type vi to a probability of
entering in the market τi : [a, b] → [0, 1]. We assume that the strategy of firm i is an
integrable function with respect to its own type vi. We study the Bayesian Equilibria
of the entry game. Denote by τ = (τ1, τ2, . . . , τn) the vector of entry strategies. Given
a strategy profile τ , the expected profit of firm i after drawing the type vi but before
entry decisions are realized is

Πi(vi, τ) = τi(vi)

∑
e∈Ei

{∫
[a,b]n−1

πi(ve) Pr[e|τ−i, v−i]φ(v−i)d
n−1v−i

} (C.1)

where Pr[e|τ−i, v−i] is the probability of observing market structure e, given the vector
of strategies τ−i and the realizations of types v−i. The integral is over each of the n− 1
dimensions of firm i’s competitors types, v−i. Conditional on i’s entry, which occurs
with probability τi(vi), the expected profit of firm i consists on the expected sum of
profit that firm i would get under each feasible market structure, which is induced by
the vector of strategies τ and the realization of types v−i, integrated over all possible
realizations of the competitors’ types, φ(v−i).

Definition (Cutoff Strategy). A strategy τi(vi) is called cutoff if there exists a threshold
x > 0 such that

τi(vi) =

{
1 if vi ≥ x
0 if vi < x

.

A cutoff strategy specifies whether a firm enters a market with certainty depending
on whether its type is above or below some given threshold. In any best response, there
exists a type, vi, that makes a firm indifferent to enter the market. We break this
indifference by assuming that firms enter. For a cutoff strategy, this means that a firm
enters when its type is greater or equal to its cutoff. Given a vector τ−i, a best response
is given by the strategy τ̂i that maximizes (C.1) at every value of vi.

A Bayesian Nash equilibrium is defined by a vector of strategies τ in which every
firm best respond to each other. The next proposition establishes the existence of an
equilibrium and that, without loss of generality, we can restrict our analysis to cutoff
strategies.

Lemma C.1. For any game (πi, Fi)
n
i=1 satisfying assumptions A1-A4, there exists an

equilibrium. For any vector τ−i, firm i’s best response is a cutoff strategy. Therefore,
every equilibrium of the game is in cutoff strategies.

Proof of Lemma C.1.
Best responses are cutoff strategies: Fix any firm i and vector of strategies τ . By
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assumptions A4 and A2, we know that in equilibrium no firm will enter if they draw vj <
vj . For relevance, impose that τ satisfies the restriction τj(vj) = 0 in that range. Because
firm i’s profit is linear in τi, firm i’s best response is to participate with probability one
whenever there is a positive payoff of doing so. Suppose firm i enters the market with
certainty (τi(vi) = 1). The restriction above implies that there is positive probability
that firm i is the sole entrant to the market and, consequently, by A1, profits are strictly
increasing in vi. By A4, Πi(vi, τ) < 0, and Πi(vi, τ) > 0. Thus, Πi(vi, τ) single crosses
zero and i’s best response to τ−i is the cutoff strategy defined by the value xi that satisfies
Πi(xi, τi = 1, τ−i) = 0.

Existence: We check the conditions of Brouwer’s fixed-point theorem. Because Fi
is atomless and has full support and πi(ve) being continuous and differentiable in vi,
firm i’s best response lies in the compact and convex set [vi, v̄i]. Thus the n-dimensional
function of best responses is a continuous mapping from ×ni=1[vi, v̄i] to itself and the
conditions for the theorem are met. �

Existence follows from Brouwer’s fixed-point theorem. The restriction to cutoff
strategies is quite intuitive: regardless of which strategy competitors are playing, as-
sumption A1 implies that firm i’s expected profit is strictly increasing in its type. Be-
cause i’s expected profit is linear in its entry probability (see eq. (C.1)), i either prefers
to enter with certainty, when it is profitable to do so, or to stay out. The next Lemma
characterizes all cutoff equilibria.

Lemma C.2. The vector x of cutoff strategies constitutes an equilibrium if and only if
Πi(x) = 0 for every firm i.

Proof of Lemma C.2. By the previous proof a cutoff strategy is defined as the value
xi satisfying Πi(xi, τi = 1, τ−i) = 0. Because in a cutoff equilibrium Pr[e|τ, vi] is either
zero or one. Integrating (C.1) over payoff-irrelevant firms delivers (1). �

Lemma C.2 characterizes every equilibrium of the entry game. Firm i’s best response
to x−i is defined by a cutoff xi equal to the value of vi that satisfies Πi(vi,x−i) = 0. A
profile of equilibrium cutoffs x is, thus, constructed by the collection of functions Πi(x)
evaluated at a point in which every firm i is indifferent between entering the market
when drawing type xi.

D Uniqueness in the Linear Model

In this section we derive the condition for uniqueness used in Examples 4, 5 and 7.
Consider the following linear model

πi(ve) = ηi − δi
ne−1∑
k=1

rk−1
i + vi.

In this context, for a given vector of cutoff strategies x, equation (1) is given by

Πi(vi,x−i) = ηi + vi − δiIne>1

∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

 ∏
`∈Ii(e)

(1− F`(x`))

 rne−2
i


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and Π′(x) = 1. Similarly, noticing that π(vi, ve\i)− π(vi, vj , ve\i) = rne−1δ we obtain

∆i,j(x) = δFj(xj)
∏
`6=i,j

(r + F`(x`)(1− r)) .

Then,
∆i,j(x)

Π′i(x)
= δFj(xj)

∏
` 6=i,j

(r + F`(x`)(1− r)) .

Noticing that F`(x`) for ` 6= i increases in x` we can replace x` = v` in the previous
expression, which leads to

∆i,j(x)

Π′i(x)
≤ δFj(vj)

∏
` 6=i,j

(r + F`(v`)(1− r)) .

When firms are symmetric, the previous expression can be used to derive equation (5).
When r = 1, the expression simplifies to:

∆i,j(x)

Π′i(x)
≤ δFj(vj).

which can be used to construct conditions (8) and (10).

E Uniqueness in a Selective-Entry Auction

Here we describe the model and derive the sufficient condition to determine whether
the selective-entry model of Roberts and Sweeting (2013, 2016) has a unique equi-
librium when there are one potential entrant from each group.

There are two bidders, a logger and a miller, which for simplicity we call
i ∈ {1, 2}. Each bidder observes a signal vi = θiεi where εi ∼ LN (0, σ2

ε) and
θi ∼ LN (µi, σ

2
θ) . Consequently, vi ∼ LN (µi, σ

2
θ + σ2

ε). We call the CDF of
this distribution Fi (vi). Conditional on vi the posterior of θi|vi ∼ LN(αµi +
(1− α) ln (vi) , ασ

2
θ), where

α =
σ2
ε

σ2
ε + σ2

θ

.

We denote the PDF of this distribution hi (θi|vi). For completeness

hi (θi|vi) =
1

θi
√

2ασ2
θπ

exp

(
−(ln θi − (αµi + (1− α) ln (vi)))

2

2ασ2
θ

)

fi (vi) =
1

vi
√

2 (σ2
θ + σ2

ε) π
exp

(
−(ln vi − µi)2

2 (σ2
θ + σ2

ε)

)
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Table 1: Roberts and Sweeting (2013, 2016) estimates.

µ1 µ2 σ2
ε σ2

θ α K r
3.9607 3.5824 0.857 8 0.332 1 0.689 2.0543 27.77

Note: From Tables 3 and 4 from the cited papers.

The sufficient condition for uniqueness hold if, for every xk ∈ [vk, vk] ,

fi (xi)

Fi (xi)

∆i,j (xi, xj)

Π′i (xi, xj)
< 1.

In the current scenario, these expressions become

∆i,j (xi, xj) = Fj (xj) (πi (xi)− πi (xi, xj))

Π′i (xi, xj) = Fj (xj) π
′
i (xi) +

∫ ∞
xj

π′i (xi, vj) dFj (vj)

where

πi (xi) =

∫ ∞
r

(θi − r)hi (θi|xi) dθi −K

πi (xi, xj) =

∫ ∞
r

(∫ θi

0

(θi −max {r, θj})hj (θj|xj) dθj
)
hi (θi|xi) dθi −K

π′i (xi) =

∫ ∞
r

(θi − r)
∂hi (θi|xi)

∂xi
dθi

π′i (xi, vj) =

∫ ∞
r

(∫ θi

0

(θi −max {r, θj})hj (θj|vj) dθj
)
∂hi (θi|xi)

∂xi
dθi

and

∂hi (θi|xi)
∂xi

= hi (θi|xi)
(1− α) (ln θi − (αµi + (1− α) lnxi))

xiασ2
θ

Using the estimates provided in Table 1, we can now compute all the necessary
elements to verify sufficient condition (7).

Cutoffs lower bound: The lower bound for a firm’s feasible cutoff, vi, is
given by the unique solution to:∫ ∞

r

(θi − r)hi (θi|vi) dθi = K.

Computing, we obtain v1 = 1.978 and v2 = 4.573.
Upper bound: The upper bound for a firm’s feasible cutoff, vi, is given by

the unique solution to: ∫ ∞
0

π (vi, vj) dFj (vj) = 0
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Computing, we obtain v1 = 3.468 and v2 = 13.109.
Sufficient condition: The left-hand side of sufficient condition is plotted

for the relevant range of cutoff. As it can be observed in the figure below, the
conditions are always less than one.

Strength and herculean equilibrium: For completeness, we also present
the strength of each firm. Firm i’s strength is given by the unique solution to
σi (si) = 0, where

σi (si) = Fj (si)πi (si) +

∫ ∞
si

πi (si, vj) dFj(vj)−K

The strength of each firm is given by s1 = 3.465 and s2 = 12.146. Finally, the
herculean equilibrium is given by the unique solution to the system Π1 (x1, x2) = 0
and Π2 (x1, x2) = 0, where

Πi (xi, xj) = Fj (xj) πi (xi) +

∫ ∞
xj

πi (xi, vj) dFj (vj)

We find that x1 = 3.314 ∈ (v1, s1) and x2 = 12.999 ∈ (s2, v2).
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