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Abstract  

Every year the Vertical Flight Society (VFS), a professional society for vertical takeoff or 

vertical lift vehicles, sponsors a student design competition in order to foster innovation and 

interest in vertical flight technology. The University of Portland sponsored a five-person 

mechanical engineering team to compete in the 8th annual Micro Air Vehicle (MAV) Student 

Challenge. The team created an MAV that was capable of transporting a bag of sand from one 

set area to another. This required the development of a vehicle body, component selection, and 

testing. While the competition was ultimately cancelled, the team was successful in the creation 

of a vehicle.   

Applications of VTOL UAVs and MAVs 

The use of Vertical Take-off and Landing (VTOL) are widespread and interest is continually 

growing. A vertical takeoff aircraft is much more flexible than other forms of aircraft, as 

theoretically it can take off and land almost anywhere. Applications include military use, 

projected personal transportation, package delivery, emergency rescue and land survey. Interest 

in the development of a personal VTOL vehicle, or a “flying car”, has been peaking in the last 

few years, with Uber announcing their intent to develop a fleet of VTOL vehicles in Dallas, Los 

Angeles and Melbourne starting in 2023 (Uber Elevate 2020). Human transport, however, is only 

a small part of the many applications of VTOL vehicles, particularly when considering 

Unmanned Aerial Vehicles (UAVs).  

A UAV is a vehicle without a pilot abord. Levels of autonomy can range from being under 

complete control of a human operator or be fully autonomous using onboard computers and 

preset objectives. To be clear, a UAV need not also be vertical takeoff. There are many examples 

of fixed wing UAVs, often used for survey and monitoring purposes. Depending on the sensors 
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on board, high resolution maps can be created of ground surfaces, allowing for targeted 

identification of potentially archeologically significant sites (Zorich 2019). UAVs can also be 

used for agriculture in order to monitor crop growth, pinpoint irrigation problems, and target 

pesticide application (Meola 2020).    

A micro air vehicle (MAV) is a small air vehicle. The definition ranges from country to country. 

In Canada, a vehicle must be less than 2 kg to qualify, while the US defines it as being less than 

25 kg (Federal Aviatio nAdministration 2015). The applications and designs of these vehicles 

range wildly, from photography, advanced defense, and disaster relief. Current MAVs in 

production have been used to inspect military targets and search for roadside bombs. MAVs 

fitted with radiation sensors were also used after the Fukushima Daiichi nuclear disaster to 

monitor the site (Army Technology n.d.). The MAV space is also one that is highly dynamic and 

often bioinspired. This inspiration can take a physical design shape, seen in flapping wing or 

claw like perching mechanisms, or it can take a more abstract shape. Flocking, schooling, or 

swarming behavior is of particular interest as it provides unique sensing, information processing 

and action opportunities.   

Barriers to Adoption  

Despite design innovations, there are two central issues yet to be solved for MAVs. The first is 

stability in challenging conditions, such as storms. Unlike larger aircrafts, which rely on their 

weight and wingspan to maintain stability in rapidly changing conditions. Particularly when 

considering emergency search and rescue applications, where weather conditions may preclude a 

manned vehicle, stability in the face of buffeting winds, low temperatures and rain is critical to 

performance. To a less life-threatening degree, the same is applicable for package delivery. 
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Regardless of weather conditions, delivery deadlines must be hit, and maintaining stable flight is 

critical.  

Another central challenge to MAV technology is flight time. Since the lift of the vehicle is 

limited by its rotor size, the maximum battery size is somewhat limited. In addition, the larger 

the battery carried, the shorter the flight time, as the motors draw more current to carry the 

vehicle. Active flight time is most usually measured in minutes, not hours. This puts a massive 

limit on the distance an MAV can travel and limits its usefulness. Innovations in the field are 

needed that radically improve vehicle efficiency. This could take the form of lightweighting, 

whereby components are reduced in weight, or by an increase in motor/rotor efficiency.  

The Challenge  

The VFS Student Design Challenge is constructed 

with the above technical challenges in mind. For the 

2020 competition, the challenge was centered around 

a potential emergency flooding scenario, specifically a 

dam breath on the Riviere Rouge. In order to provide 

disaster relief to a mountain town, sandbags needed to 

be delivered to the banks of a river, before a storm 

arrived. This storm, initiated halfway through the 

competition, at the 5 minute mark, was to be modeled 

using an industrial fan. The proposed competition 

field can be seen in figure 1 (Vertical Flight Society).  
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Design Criteria 

In order to create a working prototype ready for competition, a design criteria table was made 

using the rules published by the Vertical Flight Society ((Vertical Flight Society). Distinctions 

were made between qualitative and quantitative descriptions, and related subsystems were 

grouped.  

Table 1: Design Criteria Table   
Qualitative Description  Quantitative Description  Importance   Consequences   

Physical Requirements  
Any number of rotors/propellers  >1   5  ‐  

Size  
<45 cm or 17.7" in any 
dimensions  1  DQ  

Weight (including batteries)  <500 g (17.6 oz)   1  DQ  
Robust (able to take a drop)         

Ability Requirements  
Vertical takeoff and landing, hover     1    
Flies Indoors  Flies <15 ft in the air  1    
Able to pick up package  up to 30 g, ~1 oz   1    
must take off and land safely on helipad  within 3 ft  2    
must hover for 10 seconds before and after 
pickup (static pickup  10 s hover  3    
climb over a 6 ft barrier  6 ft   4    
climb over a high net (4 ft ) and below a 
barrier 2ft  > 2 ft flight   2    
Able to pick up package from braided loop, 
statically    1    
Must be able to not drop package    1  DQ  
Able to be flown for at least 10 minutes  10 minutes  3    
Complete the distance  130 ft  2    
Carry packages  20‐30 g  1    
Able to be flown out of the line of sight of 
the pilot    1  DQ  
FPV Goggle Use    4    
Landing Gear         
Stable hover     1  DQ  

Must be able to remain in competition 
zone, follow a straight line  <3 ft out  1  DQ  

Electronic Requirements  
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Onboard cameras  >1 camera is allowed  1    
No gasoline engines (electric only)    5    
Target recognition capability using on‐
board camera system    1    

Controls Requirements  
Onboard flight stabilization    2  TB  
Onboard RC kill switch or remote operation 
button command to cut all power    1  DQ  
Standard communication (2.4 gz)    4    
Stable roll/pitch performance    2    

Nice to Haves  
Modular     3    
Quick Connects to allow easy component 
replacement    2    
Clean Wire Management    4    
Ruggedness    4    
Field Readiness     5    
Potential for sensors     3    
Good sensor integration and craftsmanship    4    
  
Control Components  

 

Fig. 2: Overview of Component Communication 
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Figure 2 above describes the relationships between key electrical and controls components that 

power and communicate with the vehicle. At the top is the battery, connected to the PDB, or 

power distribution board. The battery used was a LiPo, a lithium-ion polymer battery that is 

popular due to its relative lightweight. The voltage of these batteries ranges from 3.3 V to 22.2 

V, depending on how many cells are included as part of the battery. The higher the voltage, the 

more power they can put out. For this competition, the battery was limited to a three cell, or 3S 

battery with a voltage of 11.1 V.  

Connected to the battery is the power distribution board (PDB). The PDB acts as a regulator and 

can output different voltages to different parts of the circuit. It communicates with the ESCs 

(electronic speed controllers) and the flight controller. It powers the flight controller using a 5 V 

out, as the flight controller would be damaged by a higher voltage. The connection to the ESC is 

regulated by the flight controller, which sends a control signal to regulate the voltage sent to the 

ESC. A control signal is very small compared to the current used to power devices and uses 

changes in frequency to communicate a condition. The team selected the PDB used as it came as 

a part of the flight controller package and was known to effectively communicate with the flight 

controller.  

The flight controller is the most significant part of the vehicle and can be thought of as the 

“brains” of the vehicle. It processes inputs from onboard sensors in order to stabilize flight by 

modulating motor outputs. It also takes remote controller (RC) inputs and processes them into 

motor outputs, maneuvering the craft. The selection of this component was highly linked to the 

software used. Different flight control software have different intended uses, ranging from 

autonomous vehicle research to drone racing. With these intended uses come limitations. More 

research oriented softwares, such as PX4 and ArduPilot have more flexibility in terms of 
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integrating sensors and actuation components, but do not have integrated first-person view (FPV) 

capabilities. Other software oriented towards racing have this FPV capability but are less flexible 

when integrating components.  The software was chosen first, as it would limit the type of flight 

controller available for use. A decision matrix was made, shown below, in order to determine the 

most optimal flight control software.  

Table 2: Selection Matrix for Software  

  Weight 
(1-10)  

PX4
  

Comments  
ArduPilot
  

Comments  
BetaFlight 
  

Comments  

Altitude Hold  10  10  

Explicit 
Flight Mode 
for this 
that does not 
use GPS  

9  
Explicit 
Altitude hold 
mode   

4  

Self-leveling 
modes available, 
Sonar integratio
n is not 
available in a 
flight mode   

Ability to fly 
well without 
GPS  

10  5  
Hefty drift 
reported  

1  
GPS is a 
central part   

10  
No attempt to 
"map"   

SONAR 
integration  

7  10  

Able to 
easily 
integrate a 
number of 
different 
rangefinders
  

5  
analog sonar 
capability   

4  
No  functional 
altitude hold 
mode   

Video 
Integration  

4  6  
Switching 
possible  

1  

requires 
separate 
relay/processor
  

10  
able to route 
through the 
flight controller  

Support / 
Troubleshootin
g  

5  4  
Least out of 
all of them   

10  Ivler  7  Good Forums  

Flexibility of 
Flight Modes  

6  6  

Multiple 
kinds of 
stabilization 
modes  

6  

Multiple kinds 
of stabilization 
modes, GPS 
based  

7  

Fewer options 
than others, 
modules not 
modes.   

Precision of 
Tuning 
Control  

6  8  
Precise 
options 
available  

9  
Exact PID and 
roll rate 
establishment  

8  PID available   

Open Source  1  10    10    10    



 Kalnin 9 
 

Optical Flow 
Integration  

4  10    10    4  
Able to use 
serial ports, but 
no clear input  

Ease of Use  4  1    5    5    
    402    349    379    
  
As shown above, PX4 was the most applicable software, finding a balance of ease of use with 

integration flexibility and a critical capability of non-GPS reliance. This decision significantly 

limited the flight controllers available to three models, shown below.  

Table 3: Selection Matrix for Flight Controller  

  Weight PixHawk Racer   PixHawk Mini 
4    PixHawk 4    

Fast 
Processing   10  10  4 khz, 32 bit 

interface  10    10    

SONAR 
integration   8  3    10  2 I2C 

ports  10  Explicit and 
Present  

Current 
Sensor  2  10  present  5    0    

Black Box  2  10  micro SD  10    0    
Integrated 
OSD  1  0    0    0    

Integrated 
Camera 
Switching  

1  0    0    0    

Serial Ports  10  2  Not good 
outs  8    10  Lots and 

varied  
Weight  6  10  10.4  9  7 g  3  15.8 g  
Safety 
Switch  8  5  optional  0    0    

Wifi  2  10  Flash 
with Wifi  0    0    

Radio 
Telemetry  10  10  works 

with FrSKY  10    10  works 
with FrSKY  

    404    444    398    
 

Ultimately, the PixHawk Mini 4 was selected for its relative lightweight and having enough ports 

to integrate possible LIDAR or SONAR units in addition to hook controls.  
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An electronic speed controller (ESC) is a circuit that controls and regulates the power sent to the 

ESC. It has a high impact on the maneuverability and flight performance of the vehicle. It is also 

one of the most robust electrical components on the vehicle, as it distributes a large (amps, 

versus milliamps) amount of current. In order to minimize weight, a four-in-one ESC was 

chosen. ESCs can also be purchased per motor, allowing for flexibility in the number of motors. 

There are three electric lines that come from the ESC, a voltage in, a pulse width modulation 

(PWM) and a ground. The PWM is the signal line, communicating with the motor. ESC choice 

was largely driven by weight and by the current drawn by each motor. A detailed description of 

the communication between components can be seen below.  

 

Figure 2: Final Electrical Diagram 

Motor and Rotor Selection 

The motor choice was a delicate balance of thrust, weight, and power draw. The larger the 

motors, the more thrust they could provide, increasing flight speed, carrying capacity and 
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maneuverability. The increase in thrust, however, also increased the power drawn and the batter 

weight, decreasing flight time. Online data from MiniQuad Test Bench (Harrell) were used to 

compare to compare the power draw, thrust, and weight of commercially available motors, 

providing a standardized test setup that company provided specification sheets do not. After 

crawling through data sheets and aiming for a thrust to weight ratio of 1:4, or approximately 

4000 g of thrust. The Lumenier RX 2206-11 2350 Kv motor was chosen, due to its relatively 

high efficiency. The thrust to weight ratio is critical to the flight performance of the quadcopter. 

If the maximum thrust of the vehicle is only itself, it would not be able to “push” itself around 

and would be simply buoyant like a hot air balloon. The higher the thrust to weight ratio, the 

more acrobatic maneuvers are possible.  

Rotors are a similarly key part of the performance of the vehicle and have a high impact on the 

performance of the motors. Data from MiniQuad Test Bench was again used to predict rotor 

performance. If a rotor is too heavy or large for a motor, then the efficiency is significantly 

reduced. If a rotor is too small, or light, then the thrust produced by the motor is significantly 

reduced. Rotors were selected using the following data. Aiming for a minimum power useage 

while still hitting 900-1000 g of thrust per motor.  

Table 4: MiniQuad Test Bench Data for Lumenier RX2206 2350kv (Harrell) 

Rotors   Thrust (g)   Power Used (W)   Thrust (g)/Watt  

HQProp 4x4   636   207   3.07  

HQProp 4x4.5   726   257   2.82  

HQProp 4x4x3   736   243   3.02  

Diatone Ghost 5x3   842   220   3.82  

HQProp 5x4GF   903   262   3.44  

GemFan 5x4.5   985   288   3.42  

HQProp 5x4x3   1046   317   3.30  

GemFan 5x4.6   1055   350   3.01  

King Kong 6x4   1261   369   3.41  
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The thrust values found online were then compared to theoretical values calculated by simple 

momentum theory (Anderson, John David), shown below in equations 1 and 2, where hpactual is 

the wattage consumed per motor, disk area, A, was defined as 19.63 in2,  pounds of thrust 

required per motor, T, was defined as ¾ lbs/motor, and a Figure of Merit, FM, of 0.6 was 

assumed to have a more conservative estimation. The disc loading, shown in Equation 2, was 

calculated using a rotor diameter, d, of 5”. 

 √
                           Eq. 1      	                                            Eq. 2 

The team found a final calculated power of 57.53 Watts/motor, which totals to about 230 Watts. 

The initial flight time estimate with a total vehicle weight of 3 lbs was found to be 7 minutes.  

Physical Design  

A quadcopter design was chosen as it balances stability with a minimal power draw. An increase 

in motors increases flight stability and total lift capability but comes with additional weight and 

power draw requirements. In order to maintain quadcopter performance in the case of a 

catastrophic crash, the team wanted to develop a modular design that could have pre-prepared 

spares of wing assemblies on hand. This could take two forms, a fully modular design where 

each arm had a single motor attached, and a semi-modular design that attached a side to the 

baseplate, composed of two motors. The performance of the two designs were compared using 

ANSYS, a finite element analysis software. The software breaks down a solid model into 

extremely small finite units, or elements, and shows how they interact and stretch when a force is 

placed at a location on the model. The results can be seen below. What the team was looking for 

in these models was the total deflection. This reflects the stiffness of the design. If a quadcopter 
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arm is not stiff then any “push” by the motor would result in the arm vibrating instead of 

translating or rotating the entire craft.  

 

The two designs were modeled to be as similar as possible, with the same plate thickness and 

material used for both designs. The force was also standardized. According to the model, the 

maximum deflection was of the fully modular arm was found to be 0.0135", while the deflection 

of the semi-modular arm was 0.0075”. To verify the model’s findings, the team printed out the 

designs in plastic using 3-D printing. A test was completed using a spring-based force gauge to 

Figure 3: ANSYS of Modular Arm 
Figure 4: ANSYS of Semi-Modular Arm 

Figure 5: Comparative Deflection of Wing Designs 
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compare the deflection of the two designs when loaded from 500 to 2000 grams, after which 

both designs catastrophically failed. The deflection of the arm was measured using a ruler, 

leading to high uncertainty of 0.02”. With this uncertainty in mind, the two designs were only 

differentiated by the differences in weight. Since the semi-modular design used fewer fasteners 

than the fully modular design, it reduced the weight of the vehicle by 44 g, as described in the 

table below.  

Table 5: Comparative Weights of Modular and Butterfly Designs 
 Weight of PLA Printed Arm 

Per Side (g) 
Total Weight of Fasteners 

Needed (g) 
Total Weight as Tested 

(g) 
(x4 motors) 

Fully Modular 7 12 76 
Semi-Modular 10 6 32 

 

Once the semi-modular design was selected, additional simulation was conducted using ANSYS 

in order to determine whether the magnitude of stress would be within the allowable range for 

carbon fiber. Carbon fiber is difficult to model using conventional software approaches, as it is 

anisotropic. This means that the strength and “stretchiness” of the material varies with the 

orientation. Metals, such as aluminum are isotropic, meaning their material characteristics are the 

same in every dimension. A factor of safety (FOS) of 2 was included in this analysis to account 

for the inaccuracies in the model. The team found that if the carbon fiber sheets were 1/8” in 

thickness the wing would stiff and strong enough to repeatedly carry flight loads with minimal 

deflection. The calculated deflection of the wing using a load of 876 g, or the maximum thrust of 

the selected motor, was 0.0084”. The maximum stress was found to be 969.8 psi, well below the 

ultimate tensile stress of carbon fiber, 500,000 psi.  The stress analysis is also useful in that it 

predicts where failure might occur. For this competition, the likely breaking points, seen in 
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orange, were ideal sacrificial spots, as they were unlikely to harm the motors if broken and 

would allow for easy removal of the fasteners used.  

 Test Results   

Before the competition, testing was undertaken to ascertain the true lift capability and flight time 

of the vehicle. The flight time ranged from 3 – 5 minutes, depending on how aggressively the 

vehicle was flown and how long it held the sandbag to be delivered. The target weight of sand to 

be delivered was 1.5 lbs, but the vehicle was unsuccessful in lifting this weight. A reduced 

weight of 1 lb was effectively used. The final weight of the vehicle unloaded was also 

significantly higher than anticipated, 1.5 lbs versus 1 lb. This could account for the decrease in 

estimated flight time. The power draw of additional components, such as the camera circuit and 

pickup mechanism are prime suspects for the decreased flight time, as is the replacement of the 

originally selected rotors with ones that provided additional thrust. Despite these setbacks, the 

team was largely successful in its goals of creating a working entry to the VFS competition.  

 

Figure 6: Stress Analysis of Final Design 
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