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Abstract 

The purpose of this non-experimental, quantitative study was to investigate the 

relationship of course-taking patterns of community college students enrolled in a 

 biology sequence to successful transfer into a biology or biology-related 

degree track at four-year institutions. The research was guided by the seminal work of 

Adelman (1999, 2006) on course-taking as it relates to academic momentum and the 

STEM transfer model developed by Wang (2016b). The relationship of course-taking 

behavior to transfer outcomes for a population of students in a biology transfer 

sequence at a large, community college in the Western U.S. was addressed using 

anonymized student transcript data provided by the institution and post-community 

college enrollment records from the National Student Clearinghouse database.  

Multinomial logistic regression was used to investigate the predictive value of 

leading indicators of academic momentum for the study population, previously 

identified for community college students in general (Adelman, 1999, 2005; Belfield 

et al., 2019; Jenkins & Bailey, 2017). Findings indicated that only first term grade 

point average (GPA) was a significant predictor of transfer for the overall model ( 2 = 

9.20(3), p = .03).  

Further examination of course-taking behavior found that students had a broad 

range of college-level coursework in biology, chemistry, physics, and math prior to 



 

Prior coursework was significantly 

related to outcomes. Disaggregation of the course-taking behavior revealed differences 

based on gender, age, race, and ethnicity. There were significant differences in 

biology, chemistry, and math coursework completed prior to enrolling in the first 

biology based on age but not gender, race, or ethnicity. Few 

differences in outcomes were found based on gender or age category. However, 

enrollment intensity varied significantly for students during the term they first 

att and gender but not race or ethnicity. 

The value of course-

enrollment intensity as predictors for transfer outcomes was explored using a logistic 

regression model. Results suggest that outcomes in the gatew

course may be a useful leading indicator for academic momentum for students in a 

the first course in the majo way but a 

gatekeeper

this study include promoting early student access to discipline specific advising and 

tutoring. Additionally, given the heterogeneity of college-level STEM preparation for 

that facilitate equitable learning environments are an important component of 

supporting student success. 

Keywords: academic momentum, leading indicators, biology, community college 
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Chapter 1: Introduction 

Economic projections suggest that the need for qualified individuals trained in 

science, technology, engineering, and mathematics (STEM) will grow almost 9% 

between 2014 and 2024 (Noonan, 2017). The National Science Foundation (NSF) has 

expressed concern that enrollment in STEM fields at the undergraduate level in the 

United States will not be able to meet the projected workforce demand (NSF, 2017). 

Some authors challenge this projection and suggest that the educational system is 

producing the number of required STEM graduates needed (Salzman & Benderly, 

2019). These authors suggest that the focus should be on increasing the engagement in 

STEM of a broader range of students given that representation of women and 

historically underserved racial and ethnic groups in STEM occupations currently does 

not match the demographic profile of the American population (National Science 

Board [NSB], 2019); Salzman & Benderly, 2019). Regardless of the fluctuating 

workforce projections, the discrepancy between students who indicate an interest in a 

STEM field and those who persist warrants further examination at the level of 

undergraduate education (Riegle-Crumb et al., 2019). 

Diversifying STEM Engagement in Undergraduate Education 

Diversifying the engagement in STEM of a broader range of students at the 

undergraduate level is an important goal (NSB, 2019; NSF, 2017). While enrollment 

in institutions of higher education by some historically underserved students is 

increasing, the completion of STEM degrees is not increasing similarly in all 

populations (Musu-Gillette et al., 2017; NSB, 2019; NSF 2017; Valantine & Collins, 
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2015). The reasons for this discrepancy are complex, but some explanations are 

connected to the experience students have at their undergraduate institutions. Riegle-

Crumb et al. (2019) found little difference between the percentages of African-

American, Hispanic, and White students who chose a STEM major upon college entry. 

These researchers and others found that students from historically underserved ethnic 

and racial groups who initially enrolled in a STEM major were more likely to leave or 

switch majors than White students (Ferrare & Lee, 2014; Riegle-Crumb et al., 2019; 

Seymour & Hewitt, 1997). Serious efforts are being made nationally to recruit, retain, 

and encourage completion in STEM majors for all students but particularly for 

historically underserved students. These efforts include the National Science 

Foundation (NSF) Improving Undergraduate STEM (IUSE) grant program, the Louis 

Stokes  Building 

Infrastructure Leading to Diversity (BUILD), and calls for reform of teaching in 

undergraduate STEM (Brewer & Smith, 2011; Laursen, 2019; National Academies of 

Sciences [NAS], 2019). Understanding the role of early course-taking patterns for the 

retention of students who are interested in STEM may inform efforts to support 

historically underserved students. 

Importance of Community College Transfer Function 

Community colleges may be an underdeveloped resource for meeting the need 

for a more diverse STEM-related workforce given the importance of the transfer 

function and their student demographics (NAS, 2019; Wang, 2015). Community 

colleges serve many functions that are important to the American educational 

landscape. Community colleges enrolled close to 5.4 million first-time students in fall 
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2019 (National Student Clearinghouse Research Center [NSCRC], 2019). This number 

represented approximately one-third of the undergraduates in the U.S. in 2019 

(NSCRC, 2019). For this large number of students, community colleges have different 

functions, including adult education, workforce training, and earning transfer credits 

towards a baccalaureate degree. 

The community college transfer function is highlighted by the large number of 

students who access resources at a community college on the path to a baccalaureate 

degree (NSCR, 2019; Shapiro, Dundar, et al., 2019; Shapiro, Ryu, et al., 2019). 

Federal data indicate that 53% of students who completed a baccalaureate degree at a 

four-year school between 2010 and 2017 had previously attended a community 

college. The STEM specific transfer function suggests additional potential for 

engaging a broader range of students in STEM, given that 47% of students earning a 

degree in science or engineering had attended a community college (NSB, 2019). 

One of the original purposes of community colleges was to provide greater 

access to higher education by providing an affordable transfer path to four-year 

institutions for students who might not otherwise be able to attain a baccalaureate 

degree 947; Vaughan, 1982). The 

combination of affordability and open access have resulted in community colleges 

serving a high proportion of students who are first- generation, post-traditional (older 

than the traditional 18 to 23 year old student), have disabilities, come from lower 

socioeconomic groups, or are members of other historically underserved populations. 

Therefore, the population is substantially different than many four-year institutions. 

For instance, the average age of a full-time community college student at the 



4 
 

beginning of the school year in 2019 was 1.3 years older than a traditional full-time 

student at a four-year institution who enters college directly from high school. 

Additionally, community college students who were financially dependent on their 

parents were more likely to come from the lowest family income quartile than their 

counterparts at four-year institutions (Ma & Baum, 2016). Community colleges are 

also more likely to be the school of choice for Latinx, Native Americans, Pacific 

Islanders, students with disabilities, and first-generation students (Cataldi et al., 2018; 

NAS, 2019; National Science Foundation [NSF], 2017). Understanding how this 

population of students accesses the transfer function opportunities available at a 

community college is important for increasing the engagement in STEM. 

Community College Transfer Function Challenges 

Community colleges provide an opportunity to diversify engagement in STEM 

given their population demographics and the importance of the transfer function. This 

potential of community colleges to play an essential role in increasing the participation 

of historically underserved students in STEM is challenged by the completion data 

that suggest that rather than democratizing, community colleges serve to stratify 

educational outcomes further (Dowd, 2007; Schudde & Grodsky, 2018). For example, 

completion rates for community college students are low and disproportionately low 

for historically underserved students, indicating the presence of an opportunity gap 

(Juszkiewicz, 2019; Shapiro et al., 2017b). Estimates for completion vary widely 

depending on how they are measured and whether three, six, or eight-year time frames 

are used. For a cohort of students who began community college in 2012, depending 

on the metric, completion rates range from 27% to 61% (Juszkiewicz, 2019). Using 
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comparable measures and an eight-year time frame, students who began college in 

2010 at a public four-year institution had higher completion rates compared to a 

similar cohort of community college students; completion rates were close to 69% for 

students at four-year institutions compared to just over 45% for students at two-year 

public institutions (Shapiro, Ryu, et al., 2019). Improving completion has become part 

of the national agenda for community colleges as they seek to fulfill their promise to 

democratize education (Bailey et al., 2015). 

As reform initiatives get underway, the debate continues about whether 

community colleges are serving their transfer function well. Some studies (Long & 

Kurlaender, 2009; Reynolds, 2012; Rouse, 1995) have found a negative association 

between beginning at a community college and eventually attaining a baccalaureate 

degree, proposing that attendance at a community college represents the diversion of 

qualified students from their educational goals. Alternatively, other research has found 

no negative association when other demographic factors are controlled for, suggesting 

that community colleges represent a viable option (Monaghan & Attewell, 2015). For 

example, in a study using longitudinal data from the National Center for Education 

Statistics (NCES), Melguizo et al. (2011) found that students who began at a four-year 

institution and students who transferred in from a community college were 

significantly different in their level of high school preparation and in other socio-

demographic characteristics. Given the initial disparities in the two groups, when the 

researchers used propensity matching to control for these factors, they found no 

significant difference in the degree outcomes between the transfer students from 

community colleges and the students who began at four-year institutions. Furthermore, 
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some authors suggest that because the characteristics of the student population and 

resulting enrollment patterns are heterogeneous, characterizing the effect of 

community college attendance on the probability of a student attaining a baccalaureate 

degree must be done considering the context of the student, as well as institutional 

characteristics such as size or geographical location (Brand et al., 2012; Umbach et al., 

2019). This research suggests that maximizing the potential of community colleges to 

increase diversity in STEM participation must be done with an understanding of the 

role of the community college and the identity of the student, specifically in a STEM 

context. 

STEM Engagement at the Community College 

Work directed at understanding the community college STEM context has 

resulted in the development of a STEM transfer model (Chan & Wang, 2018; Wang, 

2015, 2016a, 2016b; Wang et al., 2019) (Wang, 2015, 

2016b) builds on the concept of academic momentum as a leading indicator for 

student success (Adelman, 1999, 2006; Attewell et al., 2012) and uses the definition of 

momentum from physics  a combination of mass and velocity  to conceptualize the 

relationships between factors important for community college students to be 

successful in STEM. Wang (2015) theorizes that completion in STEM is influenced by 

the early academic momentum that students obtain based on the number of credits 

(mass) and the quality of attainment (velocity). In a study using national data for 

students enrolled in STEM classes at a post-secondary institution in the 2003-04 

academic year, the degree outcomes of matched groups of students beginning at a 

community college and at a four-year institution were compared (Wang, 2015). 
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Starting at a community college had a significantly negative effect (p < .001) on 

completing a baccalaureate degree (Wang, 2015). This finding is balanced by the 

evidence that elements associated with gaining academic momentum in a STEM 

degree, such as the number of first term STEM credits, the grades achieved in STEM 

courses, and summer enrollment, had a relatively greater positive impact on the 

outcomes of community college students than for their counterparts at public four-year 

institutions. This research suggests that while the community college population may 

be at a disadvantage, there is the opportunity to accelerate progress if the complex 

elements related to momentum are characterized well enough to understand where 

interventions would be effective. 

The current picture of engagement in different STEM disciplines underscores 

the need to consider disciplines separately. Participation in different STEM fields is 

not homogenous (NSB, 2019). In 2017, the overall number of STEM baccalaureate 

degrees awarded in the U.S. increased and almost reached gender parity, with slightly 

more than half of the degrees earned by women (NSB, 2019). The picture is very 

different when broken down by discipline, with over 60% of the baccalaureate degrees 

in biological sciences earned by women at one end of the spectrum, and less than 20% 

of the computer science degrees earned by women at the other end. When the numbers 

are disaggregated by race and ethnicity, differences are also seen in the number of 

baccalaureate degrees earned in different STEM disciplines (NSB, 2019). This finding 

may reflect differences in the disciplinary cultures within STEM (Reinholz et al., 

2019). The difference in the responses to the national call to reform teaching and 

learning in undergraduate STEM education may also reflect disciplinary culture 
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(Laursen, 2019; Malcom & Feder, 2016). If the student populations are different and 

the efforts to reform teaching vary between STEM disciplines, then to understand 

STEM momentum at a community college there is a need to examine student 

pathways in a discipline specific way. 

Community College Completion Reform Initiatives 

Numerous reform initiatives have influenced the focus of community colleges 

student transfer pathways (Bailey et al., 2015). Community colleges have been 

increasing efforts to improve student success since the Student Right-to-Know and 

Campus Security Act was passed in 1990 (Bailey, et al., 2015; Dougherty et al., 2017). 

These laws required all institutions of higher education that receive Title IV funding, 

to report retention and graduation rates (S.580, 1990). Many colleges across the nation 

are shifting from a focus on providing access to education to student-focused 

completion rates. In some states, the shift in focus has been accelerated by adoption of 

funding models incorporating completion rates (for a review of reform initiatives see 

Offenstein & Shulock, 2010). The adoption of a guided pathways model has many 

colleges restructuring student orientation, instruction, and advising (Bailey et al., 

2015). While the model is implemented differently on each campus, one of the more 

common outcomes is the development of clearly sequenced course maps designed to 

align with student goals (Bailey et al., 2015; Dougherty et al., 2017; Jenkins et al., 

2018). Colleges that are in the process of switching to a guided pathways model are 

asking faculty members to develop the appropriate maps for their disciplines (Bailey 

et al., 2015). For STEM disciplines, these course maps are informed by the transfer 

requirements in each major at four-year schools and existing articulation agreements. 
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These maps provide sequences based on prerequisites, but some of the sequencings in 

the course maps are arbitrary (Bailey et al., 2015). Students can progress through the 

transfer map differently based on the course sequence they choose. In addition, 

students also have different entry points into a sequence based on their academic 

preparation for courses like English or math (Bahr et al., 2017). An understanding of 

the impact of course sequences and variable entry points on student success would be 

useful for implementing appropriate curricula and for assessing the impact of student 

completion reform initiatives like guided pathways. Assessing appropriate curricula in 

the transfer pathway program map would be informed by an understanding of the 

relationship between the course-taking and achievement in upper-division courses at 

the primary receiving institution. 

Research Gap 

The limited information about the effect of course sequence and course-taking 

behavior on early academic momentum in specific STEM disciplines at community 

colleges suggests that there are differences associated with socio-demographic factors. 

Previous research (e.g., Hagedorn & DuBray, 2010) has found that there are 

differences in the progression of community college students through courses for a 

STEM major based on gender, race and ethnicity, and the degree of remediation 

required to reach college-level math. For instance, Wang (2016a) studied the course-

taking in beginning community college students and found differences in the timing of 

math enrollment for students who transferred successfully in STEM compared to those 

that did not. Wang (2016a) also found differences in the number of math credits 

accumulated by students successfully transferring in STEM based on gender and age.  
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Additionally, Bahr et al. (2017) mapped the course-taking patterns for 

community college students in math, chemistry, and physics tracks and also found 

differences related to student demographics and STEM discipline. The relationship 

between student demographic and STEM discipline was not always consistent, as 

evidenced by Hagedorn and Dubray (2010), who found significant differences in the 

grades based on race and ethnicity for introductory biology and physics classes but not 

for introductory chemistry. Another study (Cohen & Kelly, 2019a) examined the 

relationship between performance and persistence in an introductory STEM gateway 

course and found differences in the predictive value depending on the STEM 

discipline, including opposite outcomes for students taking introductory chemistry 

compared to biology. These results suggest that more work needs to be done to 

examine the interaction between course-taking behavior, student demographics, and 

specific STEM disciplines to inform the curricula associated with guided pathways 

reform initiatives at community colleges. If community colleges are to fulfill their 

transfer function and serve as an effective route for students interested in STEM, the 

relationship between course-taking patterns and historically underserved populations 

needs to be better understood to close the opportunity gap that currently exists. 

These findings, in conjunction with biological science being one of the top five 

majors for undergraduates and one of the growing disciplines in STEM, make the 

course-taking behavior in biology important to describe (NSB, 2019; NSCRC, 2019; 

Shapiro et al., 2019). This discipline also represents an opportunity to diversify 

engagement in STEM, since student intent to major in Biological or Agricultural 

Science is higher for a more diverse demographic of students compared to intent to 
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major in engineering, mathematics, and computer sciences or physical sciences (Eagan 

et al., 2017). 

Purpose Statement 

The purpose of this quantitative study is to investigate the relationship of 

course-taking patterns of community college students enrolled in biology courses to 

successful transfer into a biology or biology-related degree track at four-year 

institutions, by means of descriptive statistics to map student transcript information, 

and multinomial logistic regression. For the purposes of this study, transfer is defined 

as enrolling in a four-year institution after taking classes at a community college. The 

findings inform curriculum development, biology transfer maps in a guided pathways 

reform initiative, and support services related to advising community college students 

in science, technology, engineering, and math (STEM). The specific research 

questions investigated include: 

Research Question One 

To what extent do the leading indicators that predict successful transfer to a 

four-year institution identified for community college students in general, also predict 

transfer outcomes for students in a biology transfer sequence at a large western 

community college? 

Research Question Two 

What was the pattern of course-taking behavior of students in a biology-degree 

transfer sequence at a large western community college? 
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Research Question Three 

What was the pattern of course-taking behavior in a biology-degree transfer 

sequence for students, disaggregated by gender, age, race, and ethnicity, at a large 

western community college?  

Research Question Four 

What was the relationship between the course-taking behavior in a biology-

related degree sequence and predicting transfer to a four-year institution into a biology 

or biology-related degree track? 

Significance 

Community colleges are an important element in the pathway to diversifying 

the STEM workforce (Bahr et al., 2017; Wang, 2015). Given that approximately one-

third of the undergraduate in the U.S. in the fall of 2019 attended community college 

(NSRC, 2019) and that those students represented a diverse socio-demographics, the 

transfer function for community colleges represents an important stepping stone in the 

pathway to diversifying the STEM workforce. The low rates of successful transfer in 

STEM disciplines suggest that there is opportunity to improve the pathway (Bahr et 

al., 2013, 2017; Bailey et al., 2015; Wang, 2015). Reform initiatives are occurring in 

many community colleges to diversify participation in science, technology, 

engineering, and math (STEM) fields, specifically to increase completion and narrow 

opportunity gaps for historically underserved student population (Belfield et al., 2019; 

Malcom & Feder, 2016). Leading indicators that predict student success are useful for 

estimating the effectiveness of such reform initiatives. Previous research has identified 

leading indicators that help predict success in community college students, both for the 
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general student body and for students in STEM. Initial work in STEM suggests that a 

more detailed understanding of leading indicators related to course-taking patterns that 

contribute to academic momentum specific to each STEM discipline is needed. 

Understanding course-taking patterns, how they relate to success, and differences 

based on gender, age, race and ethnicity, may help colleges to adjust during periods of 

institutional reform. Additionally, information on how students gain academic 

momentum for successful transfer or completion may help institutions deploy 

resources more effectively to improve transfer success, decrease opportunity gaps and 

ultimately help diversify participation in STEM fields (Belfield et al., 2019; Jenkins & 

Bailey, 2017; Malcom & Feder, 2016). 

The results of this study inform policies and practices related to the 

implementation of the guided pathways reform initiative currently underway at the 

community college study site (Bailey et al., 2015). Part of the reform initiative has 

included providing students with program specific course maps to follow to achieve 

their goals. Information learned about the course-taking patterns of students interested 

in biology could inform the current sequence of proposed courses for students 

identifying transfer in biology or a biology-related degree as their goal. Information 

about leading indicators of academic momentum related to success in a biology 

transfer track could also inform institutional decisions about how to use resources to 

best support students (Offenstein & Shulock, 2010). The advising redesign process 

that is underway as part of the guided pathways reform initiative would benefit from 

any additional insight gained into optimal course-taking patterns for equitable transfer 

success (Bailey et al., 2015). 
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The findings of this study will benefit community college students by 

providing insight into the major transfer maps. The goal for developing major transfer 

maps was to 

colleges the ability to transfer without credit loss to any of the state public universities 

after the passage of OR-HB 2998 (2017). One of the first pathways to be outlined in 

the state was the major transfer map for biology (Higher Education Coordinating 

Commission [HECC], 2020). As the transfer map is implemented, information from 

this study on course-taking behavior in biology can inform advising for students trying 

to follow the map. 

Finally, information on the relationship of course-taking behavior of 

community college students and transfer success in the STEM discipline of biology 

adds to the emerging literature on this topic. Initial work suggests that there are 

differences between STEM disciplines in the details of course-taking patterns related 

the successful transfer and completion for community college students (Bahr et al., 

2017; Wang, 2016a). However, there is very little information available that is specific 

to the pathways taken by students interested pursuing a biology or biology-related 

degree. The work of Bahr et al. (2017) was specific to the STEM disciplines of 

chemistry, physics, and math, but it was descriptive and did not propose a predictive 

model. Additionally, Snyder and Cudney (2017) point out that most of the existing 

predictive models for retention in STEM are based on the characteristics of students at 

four-year institutions and may not be appropriate for community college populations. 

They conducted a review of the literature relating to predictive models of retention 

until graduation or transfer in STEM pathways in college environments, from the year 
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2000 to 2017 and found that little existed for community colleges. Snyder and Cudney 

(2017) suggested a validation of existing models using community college data. 

Subsequently, Wang (2016b) has filled in some of the gaps with her extensive work on 

community college transfer in STEM but not specifically for biology. This study 

informs the understanding of the relationship between course-taking behavior and 

transfer, specifically for students taking biology. 

Theoretical Framework 

The theoretical framework for this study is based on concepts of academic 

momentum (Adelman, 1999, 2006), extended by Wang (2016b) as the STEM transfer 

model. This model was informed by elements of social cognitive career theory (Lent 

& Brown, 2019; Lent et al., 1994), which is based in part on findings of the effect of 

proximal goal setting on the intrinsic motivation and self-efficacy components of 

social cognitive theory (Bandura & Schunk, 1981). This study adds specific 

information from the STEM discipline of biology to inform the curricular domain of 

the model, including patterns of course-taking behavior. 

Academic Momentum 

p of longitudinal 

patterns of college course-taking behavior to student degree completion for both 

students at four-year institutions and community colleges, support the academic 

momentum framework (Adelman, 1999; Adelman, 2005; Adelman, 2006). The 

resulting model that suggested degree completion for undergraduates was influenced 

not by discrete variables in isolation but by the cumulative and interactive effect of the 
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course-taking patterns, particularly in the early stages of a college experience. 

Adelman (1999, 2005, 2006) identified categories of contributors to academic 

momentum, including, academic resources (a composite of high school courses, test 

scores, and class rank), timing of college entry, credit accumulation in the first year, 

based on national data from the National Center for Education Statistics (NCES) and 

the National Education Longitudinal Study (NELS) for 1982-1993 and 1992-2000 

cohorts of students, described correlations between contributing factors and degree 

completion (Adelman, 1999, 2006). 

To extend the academic momentum framework, Attewell et al. (2012) used 

transcripts from the NELS 1988-2000 cohort of students to construct predictive 

growth curve models using four different aspects of academic momentum: timing of 

college entry, attendance pattern, high first term credit load, and summer attendance. 

Curves were constructed for students who began at a four-year institution as well as at 

a community college. Attewell et al. (2012) (1999, 2006) 

construction of the categories of momentum, noting that cause and effect were 

conflated in some of the categories (e.g. student grades represented an effect) and 

suggested they should excluded. Based on this critique, Attewell et al. (2012) altered 

the momentum categories to represent credits attempted and not the ratio of credits 

attempted and completed, they did not adjust for courses withdrawn or failed, they 

included remedial coursework, and they found that the similar growth curves for four-

year institutions and community colleges supported the predictive value of the 

academic momentum framework. Findings of this research indicated that late college 
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entry and part-time attendance were significant negative predictors of college 

completion (Attewell et al., 2012). Additionally, summer attendance was a significant 

positive predictor, and high credit loads were not a significant predictor of college 

completion (Attewell et al., 2012). The shift from conceptualizing academic 

momentum as descriptive to predictive tool highlights the need to inform the models 

with an understanding of elements of academic momentum in the context of different 

institutions, disciplines, and student socio-demographics. 

This conceptualization of academic momentum has been characterized as the 

rate of credit accumulation driving the speed of progress towards completion (Attewell 

& Monaghan, 2016). Adelman (1999, 2006) did not attempt to explain why early 

college momentum was essential and was careful to point out that his findings were 

correlational and not causal. Attewell et al. (2012) proposed several non-mutually 

exclusive mechanisms, suggesting that taking more courses is a route to social 

integration (Tinto, 2012) or that early success in college course work reinforces self-

efficacy (Bandura, 1997). Still, their work does not explicitly address any of these 

ideas. Later more STEM specific models (Wang, 2013b, 2016b) address some of the 

cognitive domains and some elements of causality. To advance an understanding of 

potential causal mechanisms more work is needed to understand how the relationship 

between the elements of academic momentum and specific institutional and 

disciplinary contexts. 

STEM Transfer Model 

The second theoretical framework grounding this study is the STEM transfer 

model (Wang, 2016b), which builds on the elements of academic momentum that 



18 
 

connect the trajectory of course-taking behavior to eventual student degree completion 

by acknowledging the role of prior attitudes, the development of self-efficacy, and 

outcome expectations on academic decision-making processes (Wang, 2016b). Based 

on social cognitive career theory (Lent et al., 1994), which relates academic or career 

choices to interests, self-efficacy, and outcome expectations, the STEM transfer model 

(Wang, 2016b) ssful transfer 

and attainment of a STEM baccalaureate degree to the cumulative and interrelated 

effects of their person inputs and their experiences in higher education (Wang, 2016b). 

Person inputs refer to socio-demographic variables, initial attitudes, and existing 

academic abilities (Lent et al., 1994; Wang, 2016b). These variables are similar but 

(1999, 2006) constructs of academic resources, educational 

aspirations, and demographic variables. Adelman (2006) states, "This is a question 

about completion of academic credentials the culmination of opportunity, 

advisement, choice, effort, and commitment" (p. 9). What he does not address is how 

(2016b) STEM transfer model includes aspects of in the 

classroom into the theoretical framework. This framework is also informed by the 

details of the specific context of the program and the institution. These elements 

-taking behavior that creates STEM specific 

momentum (Wang, 2015) that in turn affects self-efficacy in STEM and outcome 

expectations regarding STEM and STEM transfer. 

Consistent with social cognitive career theory (Lent et al., 1994), an increase in 

self-efficacy and positive outcome expectations translate into persistence and intent to 
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transfer in STEM. The trajectory towards successful baccalaureate degree completion 

is then influenced by the learning experiences and contextual factors at the receiving 

institution (Wang, 2016b). The proposed study would build on existing empirical 

studies in STEM, informing this model by adding contextual data about the course-

taking patterns in the STEM discipline of biology at a large western community 

college. The goal would be to determine if the patterns of leading indicators of STEM 

momentum that are predictive of transfer success in the academic momentum 

literature are consistent for the discipline of biology. 

Summary 

Reform initiatives to diversify participation in science, technology, 

engineering, and math (STEM) fields (Belfield et al., 2019) need to be informed by 

information specific to institutional, discipline and socio-demographic context. 

Investigating the impact of course-taking patterns of community college students 

enrolled in biology courses on transfer into a biology-related degree field at four-year 

institutions would inform curriculum development, biology transfer maps in a guided 

pathways reform initiative, and support services related to advising community college 

students in STEM. The literature review in Chapter 2 provides a summary of the 

challenges in measuring community college student success and previously identified 

metrics that are early indicators for student success, including the impact of course-

taking behavior. The research outlining what is currently known about the patterns of 

course-taking behavior in STEM is reviewed, highlighting the gap between the impact 

of course-taking behavior in STEM and what is known specifically about the STEM 

discipline of biology. Chapter 3 describes how descriptive statistics, and multinomial 
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logistic regression will be used to describe the course-taking patterns in biology and 

their relationship to student transfer success. Chapter 4 describes the results of the 

study, and Chapter 5 provides a discussion of the results and suggestions for 

applications and further research. 
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Chapter 2: Literature Review 

This chapter reviews the literature related to the relationship of course-taking 

patterns for community college students and successful transfer into a STEM related 

degree as it relates to this study. The context for investigating transfer as a measure of 

success is provided in this review of the challenges of defining and tracking 

community college student success. This review will further explore how academic 

momentum has been conceptualized, including the existing research on leading 

indicators that may predict transfer, both for the general population of community 

college students and for those in STEM, to build the case for investigating the 

relationships in biology. The literature informing the understanding of how course-

taking patterns in STEM relate to successful transfer is included to further illuminate 

the research gap. For the purposes of this study, transfer is defined as enrolling in a 

four-year institution after taking the biology class that is the first in the sequence for 

majors. These findings inform curriculum development, biology transfer maps in a 

guided pathways reform initiative, and support services related to advising community 

college students in science, technology, engineering, and math (STEM).  

 Understanding the role of community colleges in democratizing education by 

providing affordable access to transfer pathways and opportunities for closing the 

opportunity gap for historically underserved students is complicated by the difficulty 

in defining and tracking student success (Bailey et al., 2015; Juszkiewicz, 2019; 

Voluntary Framework For Accountability [VFA], 2019). Given that student success in 

many states is now tied to funding, much effort has gone into trying to document 

success in ways appropriate for community colleges. Considerations, such as the 
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length of time that students should be tracked, the details of who should be tracked, 

and how to define success, have informed a variety of metrics (Juszkiewicz, 2019; 

Phillippe, 2019; VFA, 2019). Theoretical frameworks centered on academic 

momentum have guided the construction of a variety of leading indicators to help 

track the success of reform initiatives (Adelman, 1999, 2006; Attewell et al., 2012). In 

this effort, research on leading indicators of early academic momentum, such as credit 

accumulation, gateway course completion, persistence, continuous enrollment, and 

program-specific indicators, has helped establish the predictive value of these 

measures (Belfield et al., 2019; Witteveen & Attewell, 2017).  

Additionally, research related to measures of early academic momentum has 

resulted in an appreciation of the importance of context. There is evidence that the 

predictive value of metrics can vary based on socio-demographic student variables and 

program variables (Belfield et al., 2016; Calcagno et al., 2008; Wang, 2016a). The 

evidence that the predictive value of academic momentum metrics can be program-

specific has resulted in the extension of the academic momentum framework to inform 

community college STEM momentum and a STEM transfer model (Wang, 2016b). 

More research is needed to understand how this model can help inform initiatives to 

improve community college student success, particularly in STEM disciplines. 

Defining Success for Community College Students 

Defining success for community college students is complex (Bailey et al., 

2015; Ginder et al., 2018; Juszkiewicz, 2019; Taylor & Jain, 2017; VFA, 2019). 

Compliance with the reporting requirements of the Student Right-to-Know and 

Campus Security Act (PL-101-542) of 1990 requires all institutions of higher learning 
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who are eligible for federal funding (Title IV) to report to the U.S. Department of 

Education. The Integrated Postsecondary Education Data System (IPEDS) graduation 

rate represents the standard reporting of those data (Juszkiewicz, 2019). This standard 

utilizes a cohort of first-time, full-time, degree-seeking, college students tracked for 

150% of the expected time to achieve a credential: six years for a baccalaureate and 

(Juszkiewicz, 2019). However, these tracking 

time frames, and student profiles do not capture a community college population well. 

Many community college students are returning to college and are not first-time 

students; in the 2009-10 cohort of degree-seeking students enrolled at public two-year 

institutions, combining full-time and part-time, 53% were not first-time students 

(Ginder et al., 2018). Additionally, more than half of the students (57%) in the 2009-

10 cohort of degree seeking students from public two-year institutions were attending 

part-time (Ginder et al., 2018). Students also often transfer between community 

colleges as well as to four-year schools before completing a credential (Taylor & Jain, 

2017). Completion for these students is not captured using IPEDS graduation rates 

(Juszkiewicz, 2019). Recognizing the limitations of the various reporting structures is 

important for interpreting the value of different metrics for community college 

success. 

Documenting student success appropriately is a concern, especially in states 

where the focus on accountability in education has resulted in a portion of the state 

funding being contingent on measures of student success (Offenstein & Shulock, 

2010). The response has been the development of additional measures to more 

accurately capture student success at a community college. For example, the NSC 
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community college completion rate is calculated after tracking full-time students for 

six years instead of three. The differences in the way data are captured results in very 

different pictures of student outcomes; the IPEDS graduation rate for community 

colleges for the 2009-10 cohort was almost 27%, and the NSC graduation rate was 

61% (Juszkiewicz, 2019). These types of data and other aspects of the complexity of 

tracking community college success also led in 2018 the addition of Outcome 

Measures (OM) to IPEDS (Ginder et al., 2018) and the creation of a new database 

specific to community college needs, the Voluntary Framework for Accountability 

(VFA) (Phillippe, 2019; VFA 2019). Outcome Measures expand the students tracked 

from the standard cohort of first-time, full-time students to include first-time, part-

time, and non-first-time, full-time as well as non-first-time, part-time students (Ginder 

et al., 2018). The completion rate for the 2009-10 cohort of first-time, full-time 

degree-seeking students at two-year public institutions was almost 30% compared to 

38% for non-first-time, full-time degree-seeking students (Ginder et al., 2018). These 

completion rates were higher than the rates for comparable part-time students, which 

were 16% and 21% respectively. These differences help to illustrate how the multiple 

ways of defining completion and the heterogeneity of the student population makes 

defining success for community college students complex. 

 Other aspects of the complexity of the community college landscape are 

accounted for by the VFA (Phillippe, 2019; VFA 2019). Many community college 

students will also not be attending with the intent to earn a transfer degree. For 

instance, community colleges also provide students with the opportunity to earn post-

baccalaureate prerequisite courses for entry into professional programs, the 
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opportunity to attend college for personal enrichment, high school completion, and the 

chance to earn a terminal associate degree in a career and technical field. In 2009, a 

collaboration between the Association of Community Colleges and the College Board 

resulted in the creation of the VFA to gather data and to produce more appropriate 

measures of community college success, including metrics that help assess the 

developmental progress of institutions, some of which are implementing guided 

pathways (Phillippe, 2019; VFA 2019). Participation in the VFA is not 

comprehensive, but to date, over 200 institutions are participating (VFA, 2019). Nine 

student outcome measures, reported after six years for a cohort of students who 

entered the institution for the first time are: (a) attainment of a baccalaureate degree, 

(b) attainment of an associate degree, (c) attainment of a certificate, (d) transfer after 

the award of community college credential, (e) no transfer after award of community 

college credential, (f) transfer with no award of community college credential, (g) still 

enrolled during sixth academic year, (h) not still enrolled after sixth academic year, or 

(i) if not still enrolled whether the student earned more than 30 credits, or less than 30 

credits is also tracked. VFA metrics include: completion; persistence for the entire 

cohort; persistence for students identified as credential seeking; first-time in college 

cohort compared to the main cohort; reached credit threshold after one and two years; 

successful completion of college-level Math; successful completion of college-level 

English; and fall to next term retention (Phillippe, 2019; VFA, 2019). Choosing the 

most appropriate way of measuring success at a community college is critical to 

assessing the efficacy of reform initiatives. 
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Transfer to a four-year institution can be a measure of success for community 

college students who enroll with the intent to earn a baccalaureate degree. It is 

essential to consider transfer as well as associate degree completion when considering 

community college success because most students will transfer to a four-year 

institution without earning an associate degree or a certificate. For the fall 2012 cohort 

of first-time degree-seeking students who began at a community college, 61% 

transferred without earning an associate degree (Shapiro et al., 2017a). Tracking 

transfer is complicated because, as Taylor and Jain (2017) point out, there are different 

kinds of transfer within the community college landscape. Upward or vertical transfer 

from a community college to a four-year institution is just one of the possible 

trajectories. Students also transfer horizontally from community college to community 

college (Goldrick-Rab, 2006; Taylor & Jain, 2017). Adelman (2006) reports that for a 

cohort of students studied for the 1992-2000 period, vertical transfer had a 

significantly positive association (p < .05) with baccalaureate degree completion and 

horizontal transfer had a significantly negative association with baccalaureate degree 

completion (p < .05). Additionally, students can reverse transfer, which describes 

movement from a four-year institution to a community college. A reverse transfer can 

also refer to the policy of sending transcripts of students who have not completed at a 

four-year institution back to a community college for awarding an associate degree. 

Recently, reverse transfer has also referred to the practice of retroactively awarding an 

associate degree to students who move from a community college to a four-year 

institution without earning an associate degree but who subsequently earned the 

appropriate credits (Schudde & Grodsky, 2018). This practice increases the number of 
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community college students who appear to have completed a degree. It is essential to 

distinguish between different measures of success to be able to discern when higher 

success rates reflect a change in the method for capturing success or when they reflect 

improvements in student outcomes due to successful institutional reform.  

The Role of Leading Indicators 

Assessing the efficacy of reform initiatives at a community college is often 

done by tracking degree completion or transfer rates (Bailey et al., 2018). Although 

these measures are important, they are lagging indicators. Jenkins and Bailey (2017) 

suggest that lagging indicators may not provide timely enough information to let an 

institution make the necessary adjustments during the reform process to optimize 

success. They and others suggest that short term measures based on leading indicators 

of the success of institutional initiatives can be more valuable for optimizing the 

success of reform initiatives (Belfield et al., 2019; Jenkins & Bailey, 2017; Offenstein 

et al., 2010). Offenstein and Shulock (2010) draw a distinction between milestones, 

from their beginning point to completion of an educational program, as well as those 

achievements that mark the end  and success or 

completion but are not strictly required i

The same measures may be present in each, such as completion of a college-level 

math class. Distinguishing between a milestone and a leading indicator can often be 

done by adding the time frame in which the milestone was achieved, such as 

completion of a college-level math class within the first year. Adding an element of 
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goal (Offenstein & Shulock, 2010). 

Academic Momentum 

The academic momentum framework is supported by (1999, 2005, 

2006) seminal works documenting the relationship of longitudinal patterns of college 

course-taking behavior to student degree completion for both students at four-year 

institutions and community colleges. He proposed a model that suggested degree 

completion for undergraduates was influenced not by discrete variables in isolation but 

 

into college and by course load and subsequent course-taking patterns, particularly in 

the early stages of a college experience. Adelman identified categories of contributors 

to academic momentum including, academic resources (a composite of high school 

courses, test scores, and class rank), timing of college entry, credit accumulation in the 

first year, and attendance patterns, including enrolling during summer months. 

Statistics (NCES) and the National Education Longitudinal Study (NELS) for 1982-

1993 and 1992-2000 cohorts of students, described correlations between contributing 

factors and degree completion (Adelman, 1999, 2006). 

was the basis of future work on academic momentum. 

 To extend the academic momentum framework, Attewell et al. (2012) used 

transcripts from the NELS 1988-2000 cohort of students to construct predictive 

growth curve models using four different aspects of academic momentum: timing of 

college entry, attendance pattern, high first term credit load, and summer attendance. 
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Curves were constructed for students who began at a four-year institution as well as at 

a community college. Attewell et al. (2012) (1999, 2006) 

construction of the categories of momentum, noting that cause and effect were 

conflated in some of the categories. For example, student grades represented an effect 

and suggested they should not be included. In their subsequent work, Attewell et al. 

(2012) altered the momentum categories to represent credits attempted and not the 

ratio of credits attempted and completed; they did not adjust for courses withdrawn or 

failed, included remedial coursework, and found that the similar growth curves for 

four-year institutions and community colleges supported the predictive value of the 

academic momentum framework. Findings indicated that late college entry and part-

time attendance were significant negative predictors of college completion. 

Additionally, summer attendance was a significant positive predictor, and high credit 

loads were not a significant predictor of college completion (Attewell et al., 2012). 

The extension of the academic momentum framework in the construction of predictive 

models raises additional questions about the applicability of those models to 

heterogenous groups of students. 

This conceptualization of academic momentum has been characterized as the 

rate of credit accumulation driving the speed of progress towards completion (Attewell 

& Monaghan, 2016). Adelman (1999, 2006) did not attempt to explain why early 

college momentum was important and was careful to point out that his findings were 

correlational and not causal. Attewell et al. (2012) propose several non-mutually 

exclusive mechanisms, suggesting that taking more courses is a route to social 
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integration (Tinto, 2012) or that early success in college course work reinforces self-

efficacy (Bandura, 1997), but their work does not explicitly address any of these ideas. 

Identifying Leading Indicators of Academic Momentum 

Many community colleges are adopting guided pathways models of 

institutional reform (Bailey et al., 2015, 2018) using diff

concept of academic momentum to identify leading indicators to assess the efficacy of 

those efforts. Belfield et al.  (2019) proposed the following categories of early 

momentum metrics to serve as leading indicators of success for guided pathways 

institutional reform: credit accumulation, completion of gateway courses, and 

persistence. In a study looking at student transcripts from 75 community colleges in 

three states, Belfield et al. (2019) assessed nine different measures to validate these 

three categories as appropriate indicators of academic momentum. Student transcripts 

were assessed, and when compared against a baseline, students who met the 

benchmarks for leading indicators were more likely to complete a credential. These 

results, based on students from community colleges, are consistent with previous 

research from a 4-year institution (Witteveen & Attewell, 2017). Using similar but not 

identical indicators of academic momentum, such as credit accumulation, remedial 

coursework and grade point average, Witteveen and Attewell (2017) developed a data 

mining technique using a hidden Markov model, which incorporated the relationships 

between course outcomes and course-taking sequences, which allowed them to predict 

whether a student would graduate or not using only a few semesters of transcript data. 

While the leading indicators were predictive of success, there was also a relationship 

between whether a student graduated or not and the pattern of STEM course-taking. 
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Graduating students were more likely to alternate high credit loads with STEM course 

loads (Witteveen & Attewell, 2017). These findings have implications for effective 

advising and suggest that additional work exploring the relationship of leading 

indicators and other course-taking patterns to student success in areas like STEM 

would be valuable. 

Credit Accumulation Momentum 

Multiple authors have found that timely accumulation of credits in the first 

year is a good predictor of success and contributes to academic momentum (Adelman, 

2005; Belfield et al., 2016; Calcagno et al., 2007; Clovis & Chang, 2019; Davidson, 

2015; Whissemore, 2019). Belfield et al. (2019) found that 50% of students who had 

accumulated at least 15 college credits in their first year completed a degree, 

compared to the baseline average of 28%. Offenstein et al. (2010) suggested that 

between 20 and 30 credits completed during the first year is a good benchmark, 

consistent with the suggestion by Adelman (2006) in his investigation of course-taking 

behaviors that completion of at least 20 credits by the end of the first academic year 

was an important milestone. Results suggested dropping below 20 credits significantly 

decreased the probability of a baccalaureate degree by over 22% (p < .01). Students 

who attended part-time had difficulty accruing 30 credits by the end of the year, so in 

response to this tension, the VFA and others also benchmark 6 and 12 credits accrued 

by the first semester as well as 15, 24, and 30 credits accrued by the first year, as 

suggested by Belfield et al. (2019; see Offenstein & Shulock, 2010 for review of 

measures tracked by multiple state and multistate initiatives; Phillippe, 2019). 

Assessing the value of the different elements of academic momentum as leading 
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indicators of success in particular contexts, such as in a specific STEM discipline or 

for a socio-demographically distinct group of students, needs to be grounded in an 

awareness of the nuances of each element. 

There is evidence that suggests that a small difference in credit load has an 

impact on the momentum a student is accruing to carry them forward to completion. 

For financial aid status, a 12-credit load is defined as full-time, but some research 

suggests that even a small difference in enrollment intensity affects the predictive 

value of this metric. Some studies suggest there is a difference in predicting student 

success between taking a 12-credit or a 15-credit load in the first semester (Attewell & 

Monaghan, 2016; Belfield et al., 2016). In their study exploring the relationship of 

credit load and graduation rates, Attewell and Monaghan (2016) used propensity-score 

matching to control for the confounding variables (because students who take higher 

credit loads tend to be those who are already from socio-demographic groups who are 

more likely to be successful) and compared students from a national sample of first-

time students entering college in 2003-04, to see if credits attempted in the first 

semester represented a good metric for academic momentum. These researchers found 

that, after an attempt to control for the confounding variables, not only was a student 

taking 15 credits the first semester more likely to graduate from college, the effect was 

more pronounced for community college students compared to students at a four-year 

institution. Community college students were five percentage points less likely to earn 

a baccalaureate degree in six years if they took 12 instead of 15 credits their first 

semester (Attewell & Monaghan, 2016). The positive impact of increased credit 
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accumulation in the first semester is intuitive and raises questions of the applicability 

of this finding to all groups of students. 

 This finding is consistent with work done in the Tennessee Community 

College system that found students who took 15 credits in their first term were 

significantly (p < .01) more likely to complete a degree than students who took 12 

credits (Belfield et al., 2016). The beneficial effect of credit momentum was 

significantly (p < .01) more pronounced for women and students from historically 

underserved ethnic and racial groups (Belfield et al., 2016). Interestingly, Attewell and 

Monaghan (2016) found that when the students in different subgroups were compared, 

students who worked more than 30 hours per week did not seem to receive the same 

graduation benefit from carrying a 15 credit course load. This finding is important 

since over 31% of community college students enrolled in the 2015-16 academic year 

worked full-time (American Association of Community Colleges [AACC], 2019). 

These data suggest that applying one common set of leading indicators to the 

heterogeneous population of students that attends community college, without 

understanding differences between groups, may not be the most effective way of 

identifying opportunities for improving outcomes. More nuanced measures that 

cap journey, such as calculated course 

completion ratios or course completion efficiency, where the number of courses 

completed is divided by the number of courses attempted, have also been proposed as 

a credit accumulation metric (Adelman, 2006; Hagedorn et al., 2007; Hagedorn & 

Kress, 2008). 
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Course Momentum 

Gateway course momentum, or completion of college-level gateway courses 

within the first year of enrollment, is also a good leading indicator that predicts 

completion or transfer for community college students (Belfield et al., 2019). The 

usage of terms in the literature is not consistent (Hagedorn & DuBray, 2010), but in 

general, gateway courses refer to those that a student must pass to continue with their 

program of study, such as an introductory course, where the knowledge is 

foundational (Flanders, 2017). Sometimes the term gateway is used interchangeably 

with gatekeeper and sometimes the terms are differentiated. When the terms are 

differentiated, gatekeeper courses are those that also have to be completed for a 

student to continue on with a program of study but where the pass rates tend to be 

lower than gateway courses (Flanders, 2017; Hagedorn & DuBray, 2010). These 

courses then function as barriers for students.  

Remedial or developmental (pre-college) Math and English courses are often 

gatekeeper courses, and studies have shown that women and historically underserved 

racial and ethnic groups tend to be overrepresented in remedial classes, enrollment in 

which has a negative association with successful transfer (Crisp & Delgado, 2014; 

Hagedorn & DuBray, 2010). Jenkins and Bailey (2017) suggest that using gateway 

course momentum metrics that track college level instead of pre-college course work 

is indicative of how much support an institution has provided to move students past 

the barriers of developmental education. Belfield et al. (2019) tracked completion of 

college English, completion of college math, as well as completion of both college 
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English and math in the first year and found that these leading indicators were good 

predictors of an associate degree or certificate attainment. 

These results are consistent with the work of previous authors (Calcagno et al., 

2007; Davidson, 2015; Hagedorn et al., 2008). For instance, in a study of California 

community college students, Hagedorn et al. (2008) also found that students who 

successfully transferred were twice as likely to have completed an introductory 

biology, chemistry, or economics course. The importance of completion of gateway 

courses in, addition to college math and English, was further highlighted in a study of 

degree-seeking community college students from a single state, where there was a 

greater likelihood that a student would complete a credential if they completed any of 

the five top-enrolled gatekeeper courses identified for the liberal arts degree: 

composition, pre-calculus, biology, history, computer science (Zeidenberg et al., 

2012). There was no significant difference in the association with degree completion 

between these classes. Zeidenberg et al. (2012) note that it was possible to identify 

gatekeeper courses in all the programs of study within the state community college 

system and that these courses varied between programs. The evidence that there are 

differences between programs in which courses are gatekeepers raises the question of 

whether the role of gatekeeper courses is also different between programs or 

disciplines.  

Leading indicators of success are not equally relevant to all student 

populations. Schudde and Grodsky (2018) comment that 

may also affect different students in different ways" (p. 425). For example, in a study 

of Florida community college students, Calcagno et al. (2007) found that while older 
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students (25-65 years) were more likely to graduate than younger students (17-20 

years), the leading indicators of credit accumulation and passing the first college level 

math class were more important predictors of graduation for younger students. 

Opportunities for deploying institutional resources to support student success may 

arise if further study identifies other differences in the predictive value of leading 

indicators in the context of a specific study site or discipline. 

Focusing on academic momentum, more specifically, Jenkins and Bailey 

(2017) propose that program momentum should be included as a leading indicator of 

student success, where program momentum is defined as completion of at least nine 

credits in a specified program of study in the first year. The relevance of program 

momentum was supported by the work of Jenkins and Cho (2012), who found that 

concentration of work in a particular program of study and early entry into a program 

was predictive of completion. More work is needed to understand the role of program-

specific courses and identify appropriate leading indicators. The need for more work is 

evident in areas such as STEM where major efforts are focused to increase student 

success (NAS, 2019) and calls for reform of the teaching of introductory (gateway 

courses) have gone out at a national level (Brewer & Smith, 2011; Laursen, 2019). 

Persistence Momentum 

Persistence momentum metrics vary but are often based on the rate at which 

students remain enrolled from the first to the second term (Belfield et al., 2019). 

Hickman (2011) found that persistence from the first to the second term was a good 

predictor of student retention at the same institution in the following year. Studies of 

persistence and retention in a community college population are complicated by the 
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propensity of students to horizontally transfer between institutions, and therefore they 

do not persist at a particular institution but are retained educationally (Taylor & Jain, 

2017). Also, community college students often stop out or interrupt the progression of 

their education to take care of family or other personal issues, so their patterns of 

attendance are less predictable than students at four-year institutions (Hickman, 2011). 

Continuous enrollment or persisting in a time frame longer than first to second 

term, is also an indicator of success. In a study of California community college 

students, Hagedorn et al. (2008) found that those who were enrolled continuously with 

no breaks were more likely to transfer successfully. This finding is consistent with a 

national study of community college students that found there was a significant 

positive association (p < 0.01) between continuous enrollment and successful transfer 

(Wang, 2012). Continuous full-time enrollment may be optimal, but it is not the reality 

for many community college students. In a study designed to describe the patterns of 

enrollment for a sample of 14,429 community college students, just over 1% of the 

students followed a pattern of continuous, full-time enrollment fall through spring for 

their first five semesters (Crosta, 2014). Crosta (2014) found that the students 

full-time enrollment fall through spring. These realities highlight the need to more 

fully understand the relationships between different elements of academic momentum 

as they vary across the literature. If the adjustments to institutional reform initiatives 

are made based on leading indicators of early academic momentum, there is a need to 

ensure that these leading indicators are appropriate for the programs and the people 

they are designed to support. 
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Leading Indicators of Academic Momentum in STEM 

Some leading indicators of success in STEM have been identified in the 

context of the community college setting for both transfer and degree completion 

(Bahr et al., 2017; Hu & Ortagus, 2019; Zhang, 2019). In a study of community 

college students transferring to a four-year institution in Texas, students who 

completed college math courses, had higher GPAs, and carried higher first term credit 

loads in their first term at the four-year institution and were significantly (p < .01) 

more likely to complete a STEM degree than to not complete a baccalaureate degree 

(Zhang, 2019). Zhang (2019) used multinomial logistic regression to determine the 

relationship between socio-demographic characteristics, community college 

achievement, and attainment of a STEM baccalaureate degree, and found that females 

and older transfer students (greater than 24 years) were significantly less likely to 

obtain a STEM degree  (p < .001 and p < .05 respectively) compared to a non-STEM 

degree. These results are contrary to the findings in a study using propensity score 

matching and nationally representative data from BPS: 04/09 and PETS: 09, to track 

STEM degree completion after six years by students beginning at a community 

college. In this study, females starting at a community college had a STEM degree 

completion rate of over 25% and males had a completion rate of just over 20% (Hu & 

Ortagus, 2019). Both groups had lower completion rates than their counterparts who 

started at four-year schools. Hu and Ortagus (2019) also found that completion of 

gateway courses and credit accumulation were leading indicators of early academic 

momentum. These data suggest that the leading indicators for early academic 

momentum that predict success generally for community college students are also 
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predictive for STEM transfer student success. General patterns establishing 

components of academic momentum as good leading indicators of student success 

exist, but to facilitate broader engagement in specific STEM disciplines it is vital to 

understand if there are particular relationships between different student populations 

and specific leading indicators. 

Gateway Math Momentum in STEM 

 Math is foundational for all STEM pathways and multiple studies have found 

that the level of math at which a student begins college course-taking is an important 

factor in transfer success for a STEM major (Cohen & Kelly, 2019b, 2020; Hagedorn 

& DuBray, 2010; Wang, 2016a). While the entry point for math was important, the 

timing of math-taking and accumulation of math credits is also related to success. For 

instance, Wang (2016a) found that the STEM course-taking pattern that was most 

often exhibited by community college students successfully transferring in STEM 

included the first-term completion of a transferable STEM course other than math, 

followed by math in a subsequent term. Additionally, results suggested that while 

accumulating more transferable math and non-math STEM credits contributed to the 

probability of transferring, patterns were different when disaggregated by gender and 

age (Wang, 2016a). Wang (2016a) also found that traditional-age students had a 4% 

increase in the probability of transfer after completing 12-24 STEM credits and 2.7-6 

math credits, but there was no corresponding increase in the probability of transfer for 

non-traditional age students (24 years or older). Similar differences in the probability 

of transfer were not found based on race or ethnicity (Wang, 2016a) contrary to the 

results of other research (Hagedorn & DuBray, 2010). 
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For example, a transcript and survey analyses done by Hagedorn and Dubray 

(2010) using a sample of students from the Los Angeles Community College district, 

where the progression through math courses was tracked and compared to degree 

completion, and significant differences in the progression through the math sequence 

were found based on race and ethnicity. African-Americans and Hispanic students had 

significantly lower course completion ratios, and math and Science grade point 

averages (p < .05) compared to White and Asian students (Hagedorn & DuBray, 

2010). The importance of the math entry point was underscored because less than 13% 

of the STEM-transfer aspiring students from nine community colleges entered the 

STEM pathway at college level math (Hagedorn & DuBray, 2010). The discrepancies 

between the findings of different studies may be methodological, they may also 

represent differences in the relationship of different student populations to math 

completion as a leading indicator, and more study is needed. 

Course-taking Behavior in STEM 

The STEM transfer model (Wang, 2016b) suggests that transfer momentum is 

gained not just by the completion of individual elements of a STEM pathway, for 

example, math, but by . 

In a descriptive study of students in the community college system in California, 

course-taking patterns towards transfer in math, chemistry, and physics were mapped 

(Bahr et al., 2017). The course level at which students entered the pathway was related 

to transfer success in all three disciplines. Data were disaggregated by race, ethnicity, 

and gender. Differences in the course-taking patterns for women and students from 

historically disadvantaged racial or ethnic groups were found in all three disciplines. 
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These students tended to enter the pathways in the lower level courses compared to 

White male students. Women had higher pass rates for introductory courses on the 

first attempt for all three disciplines compared to men, but this finding did not 

necessarily result in similar patterns of progression. This research is consistent with 

earlier findings in a study of the Los Angeles community college system where 

women had significantly higher grades in science courses (p < .05) compared to males 

(Hagedorn & DuBray, 2010). Interestingly, in this study women had significantly 

higher course completion ratios for science courses than men (p < .001), although their 

study did not determine if these higher course completion ratios translated into 

successful transfer in a STEM major. These results suggest that there are variations 

within STEM disciplines and within groups of students progressing through STEM 

courses. More research describing the course-taking patterns of students in discipline-

specific STEM transfer pathways is needed. 

STEM Program Momentum 

Tracking program momentum is more nuanced because the goal is to keep the 

student not only progressing but progressing in a discipline-specific pathway. The 

Jenkins and Bailey (2017) definition of at least nine credits in a program of study 

works well in a STEM context where there are often multiple sequences of required 

classes. In a study to determine what patterns of course-taking were associated with 

successful transfer to a four-year institution in a STEM discipline, transcript 

information from national databases was used to assess the course-taking patterns for 

2,330 first-time community college students who completed a STEM course during 

their first year (Wang, 2016a). Wang (2016a) found that taking more transferrable 
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STEM classes and fewer classes in other course categories was related to transfer in a 

STEM major. The most successful course-taking pattern did not include math in the 

first term, indicating that the timing of course-taking is a critical element. There also 

seemed to be a dosage effect where earning more than 24 credits in STEM increased 

the likelihood of transfer in STEM, with some nuances in how many math versus other 

STEM discipline credits were earned. Differences in course-taking patterns emerged 

based on gender and age but not based on other demographic variables such as 

socioeconomic status, race or ethnicity (Wang, 2016a). Interestingly, students with 

credit concentrations in the physical sciences were more likely to transfer in STEM 

disciplines. This trend may have occurred because students taking other STEM classes 

may have been on non-transfer pathways, such as those connected to Allied Health 

programs, which include classes in biology. Describing course-taking for transfer in 

biology or a biology-related major may show patterns that are not evident in other 

STEM disciplines. 

It is important to consider that not all community college students are 

accessing the transfer function, and if the institution does not require students to 

declare a major, it can be difficult to discern intent. Course-taking patterns may reflect 

differences in the initial plan to transfer as well as changes based on experience. In a 

study examining the course-taking patterns of 1,668 first-time community college 

students taking STEM courses in a Midwestern state, in their first year, Chan and 

Wang (2018) found that course-taking patterns subsequently followed three major 

tracks in the first semester that they characterized as transfer, vocational, and 

exploring. Students who persisted did not necessarily follow the same patterns in their 
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second semester. Expanding on earlier work by following course-taking over a longer 

period, Wang et al. (2019) examined the relationship between course-taking patterns 

of community college students and successful transfer to four-year institutions in a 

Higher Education Information System (HEI) for first-time students who started in 

followed for eight years. Cluster analysis was used to identify five general patterns of 

transfer. Three of the cluster groups resulted in students successfully transferring into 

STEM majors. These three clusters were described as concentrating on STEM 

coursework, or concentrating on accumulating general education credits, or combining 

remedial coursework with a broad range of courses outside of STEM (Wang et al., 

2019). 

In contrast to prior research that found that credit accumulation focused on 

STEM classes was predictive of successful transfer (Wang et al., 2019), this research 

found that the clusters most focused around taking STEM courses were not the only 

ones that resulted in students transferring successfully to a STEM major (Wang et al., 

2019). Building a firm foundation in the general education courses required for one of 

s was also a viable route. Wang et al. (2019) suggest that an 

examination of the differences between STEM disciplines might be critical in 

understanding the transfer cluster groups. Also, in contrast to previous studies (Crisp 

& Delgado, 2014; Hagedorn & DuBray, 2010), students who began in a remedial 

course followed by a broad range of STEM and general education coursework were 

also successful, although they tended to transfer later. These findings indicate that 
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studies that follow students for a short period may miss course-taking patterns that 

eventually do lead to success for community college students. These findings suggest 

the pathway to success for community college students in STEM may be just as 

complicated as defining success. 

Summary 

Diversifying the engagement in STEM of a broader range of students at the 

undergraduate level is an important goal (NSB, 2019; NSF, 2017). The transfer 

function of community colleges will play a critical role in meeting this goal, given the 

demographics of the community college population (NAS, 2019; Wang, 2015). 

Successful transfer rates in STEM are low, and so understanding the transfer process 

is key to improving STEM engagement (Bailey et al., 2015). Research suggests that 

course-taking behavior is important for STEM transfer success (Bahr et al., 2017; 

Wang et al., 2019). Existing discipline specific information suggests that not all STEM 

disciplines are the same (Bahr et al., 2017), and there is little detailed information 

available to inform transfer maps in biology. Previous research also suggests that 

sociodemographic factors impact student success in transfer pathways (Belfield et al., 

2016; Calcagno et al., 2008; Wang, 2016b but there is a gap in the information 

available for students specifically engaged in a biology major course-taking sequence. 

Understanding course-taking patterns in biology by different groups of students may 

help inform initiatives to increase transfer rates. 

Existing reforms such as guided pathways initiatives (Bailey et al., 2015) use 

leading indicators of academic momentum to predict student success but there is 

currently no research available to support the validity of these indicators for a 
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population of students in a specific STEM degree sequence such as biology. Insights 

into these topics could inform curriculum development, biology transfer maps in a 

guided pathways reform initiative, and support services related to advising community 

college students intending to transfer and major in biology. Future chapters will 

outline a proposed methodology for a study to provide additional insight and fill 

research gaps for the discipline of biology. 
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Chapter 3: Methodology 

The following chapter discusses the methodology used to describe the patterns 

of course-taking behavior of students in a biology degree-transfer sequence at a large 

western community college and differences disaggregated by gender age, race, and 

ethnicity. The process for identifying the relationship between course-taking behaviors 

identified as leading indicators of academic success and transfer to a four-year 

institution was described. This chapter includes a description of the population of 

students whose transcripts were evaluated, and the methods used to describe and 

analyze patterns in their course-taking behavior related to transfer to a four-year 

institution, and success in upper-division biology courses. Ethical considerations will 

also be discussed. 

Purpose Statement 

The purpose of this quantitative study was to investigate the relationship of 

course-taking patterns of community college students enrolled in biology courses to 

successful transfer into a biology or biology-related degree track at four-year 

institutions, by means of descriptive statistics to map student transcript information, 

and multinomial logistic regression. For the purposes of this study, transfer was 

defined as enrolling in a four-year institution. This information will help inform 

curriculum development, biology transfer maps in a guided pathways reform initiative, 

and support services related to advising community college students in science, 

technology, engineering, and math (STEM).  

Research Questions 

The specific research questions investigated included: 
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Research Question One 

To what extent do the leading indicators that predict successful transfer to a 

four-year institution identified for community college students in general, also predict 

transfer outcomes for students in a biology transfer sequence at a large western 

community college? 

Research Question Two 

What was the pattern of course-taking behavior of students in a biology-degree 

transfer sequence at a large western community college? 

Research Question Three 

What was the pattern of course-taking behavior in a biology-degree transfer 

sequence for students, disaggregated by gender, age, race, and ethnicity, at a large 

western community college?  

Research Question Four 

What was the relationship between the course-taking behavior in a biology-

related degree sequence and predicting transfer to a four-year institution into a biology 

or biology-related degree track? 

Rationale for Methodology and Research Design 

This non-experimental quantitative study using archival transcript data used an 

ex post facto design to answer four research questions. A quantitative methodology 

was appropriate for these research questions because the goal was to describe and 

establish relationships between the variables associated with the course-taking patterns 

of the students in this study (Mertler, 2016). Students cannot be randomly assigned to 

comparison groups and so a non-experimental design is appropriate (Field, 2018). 
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Archival transcript data were used and since no manipulation of the variables will be 

done after the fact, and the data were not collected originally for research, an ex post 

facto design is appropriate (Silva, 2010). Multiple authors have made the case that for 

community college students, who are often commuters and who engage with the 

institution in a very heterogeneous way, a transcript is a good record of their 

interaction with the institution and is not subject to limitations of memory and 

provides reliable insight into student course-taking behavior (Adelman, 2005; 

Hagedorn & Kress, 2008; Wang, 2016a). 

Research questions one and four were investigated using multivariate 

multinomial logistic regression models (Field, 2018; Hosmer et al., 2013). The 

dependent variables of interest were discrete and categorical. There was also no reason 

to assume that the relationship between the independent and dependent variables of 

interest was linear, so a multivariate logistic regression model is an appropriate 

method (Muijs, 2016). 

For research questions two and three, the patterns of course-taking behavior of 

students in a biology-degree transfer sequence at a large western community college 

were investigated and descri -square test 

and a one-way analysis of variance (ANOVA) for continuous variables (Muijs, 2016).  

Setting 

The setting for this study was a large, public, community college in the 

Western U.S. Demographic characteristics for the overall student population, and 

students enrolled in 

academic year at this community college, are presented in Table 1. A range of lower-
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division classes in the biological sciences are offered at this community college and 

the relative demographic profile of the student population taking those classes is 

different from the general college population, supporting the need to examine the 

leading indicators for student success in a discipline-specific context. 

Table 1 
  
Demographics for Large, Western Community College compared to Students Enrolled 

 

 2014/15 

Demographic Variable All Students 
Students Enrolled in First 

Biology Sequence 
Student headcount 54,249 342 
Average Age 30 years 26 yearsa 
Sex 

Female 53% 59% 
Male 47% 40% 
No Report  1% 

Race and Ethnicity  
Asian 7% 10% 
Black/African American 6% 3% 
Hispanic 10% 8% 
International/Nonresident 
Alien 

3% 3% 

Multiracial 6% 6% 
American Indian 1% 1% 
Hawaiian/Pacific Islander <1% <1% 
White 61% 63% 
Not reported  5% 

Notes. astudents under 18 were excluded from cohort.  

Values may not add up to 100% because of rounding 

 
Participants 

The data for this study were drawn from the transcripts for the population of 

students who signal potential interest in a biology transfer degree-track by enrolling in 
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western 

community college in the United States, in the 2014/15 academic year. To remove 

high school and dual-credit students, participants under 18 years were excluded from 

the analyses, which excluded 12 students from the cohort of 354 students. The 

remaining 342 students were followed through the fall of 2020. Many of the 

paradigms for required federal reporting use 150% time to completion as a tracking 

metric; such as tracking for three years for a two-year degree. Yet, for the 

heterogeneous community college population, arguments have been made that this is 

not enough time to capture the picture of student success (Ginder et al., 2018; 

Juszkiewicz, 2019; Offenstein & Shulock, 2010; Phillippe, 2019). Leinbach and 

Jenkins (2008) argue that a five-year window for tracking community college student 

transfer success is optimal to balance the need to capture the success of students 

enrolling part-time and the practicality of using the study to inform policy decisions 

when the enrollment environment and student population is constantly changing. 

Tracking students through the 2019/20 academic year potentially included the 

confounding variable of the impact of COVID-19 on student course-taking and 

transfer behaviors for the spring of 2020 and was considered in the interpretation of 

the analyses. 

Procedures 

Data for this study came from multiple sources. Individual student transcripts 

for the population of students enrolled 

sequence in the three consecutive academic years, were provided by the office of 

Institutional Effectiveness at the large, western community college from the 
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instituti Banner is a type of enterprise resource planning software 

marketed by Ellucian (Ellucian, 2020). Data were shared with the researcher in a 

Microsoft Excel spreadsheet with student identifiers removed. Transcript records 

unique to a particular student were identified using a personal identification master 

(PIDM) number. A PIDM is a number assigned by Banner that links together all 

records in Banner but is never included on any screen or form. The transfer outcome 

information to match to the individual student data records came from the office of 

Institutional Effectiveness and a request to StudentTracker® (National Student 

Clearinghouse). Participants whose records were not available from the NSC to 

determine transfer outcomes were excluded from the analyses, reducing the sample 

size by two. Identifying student information was removed from the StudentTracker® 

records and shared with the researcher using PIDM sequences. PIDM sequences were 

then matched between data sets.  

Data Analyses 

The patterns of course-taking behavior and their relationship to transfer 

outcomes were explored using a combination of descriptive and inferential statistics. 

A summary of data analyses used to answer research questions one through five is 

presented in Table 2. 
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Table 2 

Summary of Analyses for Research Questions 

Research Question Data Collected to Answer 
Data Analysis 
Technique 

1. To what extent do the 
leading indicators that 
predict successful transfer 
identified for community 
college students in general, 
also predict transfer 
outcomes for students on a 
biology transfer track at a 
large western community 
college? 

Transfer outcomes predicted by 
leading indicators of academic 
momentum 

Multinomial 
Logistic 
Regression 

2. What is the pattern of 
course-taking behavior of 
students in a biology-degree 
transfer track at a large 
western community college? 

College-level biology, chemistry, 
physics and math prior to 

 
 

sequences 
 
Continuity of course-taking in 

 
Enrollment intensity 

Descriptive 
statistics 
 

-
square test 

3. To what extent are there 
differences in course-taking 
behavior in a biology or 
biology-related degree 
transfer track for students 
disaggregated by gender, 
age, race, and ethnicity at a 
large western community 
college?  

Disaggregation by age, gender, 
race, and ethnicity 

Descriptive 
statistics 
 

-
square test 
 
One-way 
ANOVA 

4. What is the relationship 
between the course-taking 
behavior in a biology-related 
degree sequence and 
predicting transfer to a four-
year institution in a biology 
or biology-related degree 
track? 

Transfer outcomes predicted by 
course-taking patterns 

Multinomial 
Logistic 
Regression  
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Data Analysis Research Question One 

This study continued with an analysis of the relationship between leading 

indicators that predict successful transfer to a four-year institution for a general 

population of students (Attewell & Monaghan, 2016; Belfield et al., 2016, 2019), to 

determine if those indicators also predict transfer outcomes for students in a biology-

degree transfer sequence. Transfer outcome was the dependent variable or outcome for 

fitting a multinomial logistic regression model (Field, 2018; Hosmer et al., 2013). 

Transfer outcome was determined using enrollment records from the NSC data query 

and was divided into four categories: (a) transfer to a four-year institution in a biology 

or biology-related degree track, (b) transfer to a four-year institution in a non-biology 

related degree track, (c) transfer to a professional or graduate program, or (d) not 

transferred within the time period tracked. The cohort of students being tracked were a 

mix of first-time and college students those that had complex enrollment histories. 

Their transfer status was tracked based on NSC records of attendance at a four-year 

institution after the date of enrollment in the first-term 

large, western community college, up to and including the fall of 2020. Determination 

of the transfer outcome was based on NSC enrollment codes. Students who transferred 

into undergraduate programs were classified as being not in biology or in a biology or 

biology-related program. Program designation was made using the reported NCES 

classification of instructional program (CIP) codes for either primary or secondary 

major (NCES, 2020). The programs that were included as biology or biology-related 

were based on the crosswalk of STEM categorization and major fields of study in 

BPS: 96/01, NSPAS:04, and ELS:01/06 which included agriculture, agricultural 
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sciences (CIP code 01), natural resources (CIP code 03), forestry (CIP code 03) and 

biological sciences (CIP code 26) and selected subjects from multi-interdisciplinary 

studies (CIP code 30) such as Marine Science (Chen & Weko, 2009). The health 

professions and related clinical sciences (CIP code 51) were not included as biology or 

biology-related. This is important to note because biology courses are often taken by 

as prerequisites by students interested in the health professions. 

Predictor Variables Research Question One. The independent variables or 

predictors for the multinomial logistic regression model were seven leading indicators 

(Adelman, 1999, 

2005, 2006; Belfield et al., 2016, 2019; Calcagno et al., 2007; Clovis & Chang, 2019; 

Crisp & Nuñez, 2014; Davidson, 2015; Wang, 2012; Whissemore, 2019) (see Table 3) 

and fit to the logistic regression model using purposeful selection (Bursac et al., 2008; 

Hosmer et al., 2013). These included: (a) accumulation of college-level credit in the 

first term, (b) accumulation of college-level credit in the first year, (c) completion of 

college-level math in the first year, (d) first-term grade point average, (e) completion 

se) in the first year, (f) 

college-level credit accumulation in courses specific to a biology transfer degree track, 

and (g) enrollment intensity in the first year. Accumulation of college credit was 

determined as passing a course at the 100 or above level with a C grade or better. 

Completion of college-level math in the first year was determined using course-taking 

n the first year 

was determined using transcript records showing a grade of a C or better for the first 

-period 
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examined were not included. Grade point average was calculated based on all courses, 

including remedial courses, for which a grade was received, this did not include 

courses for which a P grade was recorded. To compute an average, the numerical 

value of four for an A, three for a B, two for a C and one for a D grade was used. Plus 

or minus grades were not assigned at the institution of record. The accumulation of 

college-level credit in the biology transfer degree track was determined using the 

 

statewide course articulation agreement for biology (HECC, 2020). Cut points were 

not used due to the challenge of converting term and semester credits. Enrollment 

intensity was determined using the number of credits attempted by the student in the 

first year using the transcript data. Categories were based on the financial aid criteria 

followed by the community college, consistent with federal financial aid guidelines. 

Full-time was 36 or more credits, three-quarter time was 27 to 35 credits, half-time 

was 18 to 26 credits and less than half-time was less than 18 credits. Credits attempted 

were determined based on four terms of enrollment. Students did not all begin in the 

fall term so start dates were staggered. Student enrollment intensity may also not have 

been consistent term to term in the first year. The enrollment intensity calculation was 

designed to reflect academic momentum of the student and not financial aid eligibility.  

The cohort tracked included post-traditional students, some of whom had a 

long relationship with the community college and reflected course-taking for shifting 

educational goals. For the purposes of this study, students who had attended the large 

western community college, 

more classes, erm back at the 
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community college post- -taking gap 

greater than seven years in their transcript, the earlier courses were not included in the 

 taking after the 

ga

course taking. 

Table 3 

Leading Indicator Variables Coded for Multinomial Logistic Regression  

Variable Variable Description 

Transfer outcome category 

0 = No Transfer; 1 = Transfer Biology or 
Biology-related Program; 2 = Transfer Non- 
Biology; 3 = Transfer Professional or Graduate 
Program 

College level credits first term 
(completed with a C or better) 

Continuous: range 0  18 credits 

College level credits first year 
(completed with a C or better) 

Continuous: range 0  65 credits 

Completion of college level math 
by end of first year 

0 = No; 1 = Yes 
 

Completion of first course in 
m biology sequence in the 
first year (with a C or better) 

0 = No; 1 = Yes 
 

Program credits in biology major 
transfer map completed first year 
(with a C or better ) 

Continuous: range 0 - 55 

Enrollment intensity first year 
(all credits attempted including pre-
college) 

Low (<18) = 0; Half (18 -<27) = 1; Quarter (27 
- <36 ) =2; = 3 

Grade point average first term 0.00  4.00 
 

Data Analyses Research Question Two 

 This study began with an exploration of the pattern of course-taking behavior 

of students in the 2014/15 

academic year using descriptive statistics. Following previous work using a 
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deconstructive approach to mapping course-taking the STEM disciplines of chemistry, 

math, and physics for the California community college system (Bahr et al., 2017), the 

following were mapped using transcript data from students enrolled in the first class of 

 

 The biology course

sequence; 

 The chemistry coursew

sequence (the first class has a chemistry co-requisite) 

 

sequence; 

 The pre-college and college math coursework prior to entry into the 

 sequence (the first class has a math pre-requisite of 

Intermediate Algebra, which is one level below college Algebra); 

 The relationship between prior biology, chemistry, math and physics 

coursework and passing the first course in the m a C 

or better; 

 The relationship between prior biology, chemistry, math and physics 

biology with a C or better; 

 The continuity of course- gy sequence; 

 Enrollm

biology sequence was attempted. 
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Data Analysis Research Question Three 

Differences in course-taking behavior in a biology or biology-related degree 

transfer track for students disaggregated by gender, age, and race, and ethnicity at a 

large western community college were described by disaggregating data gathered from 

student transcripts for research question one. Student course-taking behaviors were 

disaggregated by gender using the binary categories of male and female. Not all 

students identified as male or female, but to maintain confidentiality, students who did 

not report were not included in the data disaggregated by gender. The information for 

these students was retained in other analyses. Student birth year was used to calculate 

age in 2014 and participants were categorized into three age categories. Age categories 

represented traditional-age college students who are those 23 years and younger, as 

well as two categories to post-traditional age students; 24 to 29 years and 30 years and 

older. The range of ages designated as traditional-age varies slightly in the literature to 

and the upper end of the age category ranges from 23 to 25. Given that the community 

college represented in the study does not offer upper division courses and would 

typically serve a traditional age population at the beginning of their college career the 

lower end of the range and the age categories suggested by Wang et al. (2018) were 

adopted for the analyses in this study. These categories are also consistent with those 

proposed in the statistical profiles of undergraduate populations where the age cutoff 

for traditional college students was based on the classification of dependent status for 

financial aid purposes (Horn & Nevill, 2006) Students were categorized using self-

reported categories of identity using NCES guidelines (NCES, n.d.). The 

representation in some of the categories was low and so to preserve student 
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confidentiality, data were aggregated for categories where the initial sample was less 

than 10 cases. The category designated American Indian and Other Races/Ethnicities 

represents students who identified as American Indian, Hawaiian or Pacific Islander 

and non-resident alien. Consideration for collapsing categories was based on 

numerical considerations, recognizing the categories as a reflection of the self-reported 

identity of the student as a reflection of a social experience (Ross et al., 2020). The ex 

post facto design of the study limited the options because respondents were only given 

the option of a discrete set of categories and within group homogeneity should not be 

assumed (Manly, 2006). Analyses were carried out using IBM SPSS. 

Data Analysis Research Question Four 

The relationship between the STEM courses taken and transfer in a biology-

degree transfer sequence was be investigated using multivariate multinomial logistic 

regression (Field, 2018). Multinomial logistic regression allowed examination of a 

series of predictor variables associated with student demographics and course-taking 

behavior to determine the relationship to transfer. The dependent variable or outcome 

was transfer outcome in four categories: transfer to a four-year institution in a biology 

or biology-related degree track, or transfer to a four-year institution in a non-biology 

related degree track, transfer to a graduate or professional degree program or not 

transferred within the time period tracked. The independent or predictor variables 

examined for the model included the course-taking behaviors described in research 

question two: prior, coursework in biology, grade for the first attempt at the first 

y and math, enrollment intensity, 
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 (see 

Table 4). Analyses were carried out using IBM SPSS. 

Table 4   

Course-taking Variables Coded for Fitting Multinomial Logistic Regression  

Variable Variable Description 

Transfer Outcome Category 0 = No Transfer; 1 = Transfer Biology or 
Biology-related Program; 2 = Transfer Not 
Biology; 3 = Transfer Professional or Graduate 
Program 

Credits 100-level biology  Continuous: range 1 to 25 credits 
Credits 200-level biology  Continuous: range 0 to 20 credits 
Credits 100-level chemistry  Continuous: range 0 to 19 credits 
Credits 200-level chemistry Continuous: range 0 to 30 credits 
Credits 100-level physics  Continuous: range 0 to 4 credits 
Credits 200-level physics Continuous: range 0 to 15 credits 
Credits pre-college math Continuous: 0 to 16 credits 
Credits 100-level math Continuous: range 0 to 14 credits 
Credits 200-level math Continuous: 0 to 23 credits 
Continuity between first attempt 
first course and first attempt 
second course in m
biology 

Continuous: 0 to 81 

Enrollment intensity term first 
attempted major biology 

Continuous: range 5 to 19 credits 

Grade first attempt first course 
m biology 

0 = D, F, W, NP, and I; 1 = C, 2 = B, 3 = A 

Age category -  
Gender 0 = Female, 1 = Male 
Race and ethnicity 
 

0 = White, 2 = Asian, 3 = Hispanic, 4 = Not 
Reported, 5 =American Indian and Other 
Races/Ethnicitiesa, 6 = Black/African American 

Notes. a Categories of race and ethnicity with 9 cases or less were aggregated to preserve confidentiality 

and include American Indian, Hawaiian Pacific Islander and nonresident aliens 

 
Ethical Considerations 

 This study was reviewed by the Institutional Review Board (IRB) at the 

University of Portland. The approval letter and materials for the IRB at the University 
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of Portland was shared with large western community college that is the setting for the 

study and further security protocols reviewed. Confidentiality of the participants was 

maintained by assigning each student a random code and any identifying information 

will not be included in the reporting. Disaggregated data that resulted in small enough 

sample sizes to potentially reveal the identity of the student was omitted from the 

reporting to preserve confidentiality.  

Summary 

 This study investigated the impact of course-taking patterns of community 

college students enrolled in biology courses on successful transfer into a biology-

related degree field at four-year institutions. A cohort of students from a large, western 

uence in 2014/15 was 

tracked and the entry into the sequence, exit out of the sequence and transfer outcomes 

was described using descriptive statistics. Inferential statistics were used to determine 

the relationship between early indicators of academic success and transfer for the same 

cohort of students. Chapter four documents the results of this study. Chapter five 

includes a discussion of the results. Including how this information may inform 

curriculum development, biology transfer maps in a guided pathways reform initiative, 

and support services related to advising community college students in biology, 

directions for future research and limitations.  
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Chapter 4: Results 

This chapter reports the data analyses for an examination of the relationship 

between course-taking patterns for students in in undergraduate biology and 

community college transfer-success. This relationship was explored for a group of 

students enrolled in 

2014/15 academic year at a large, western community college. The analyses are 

organized around four research questions: (a) To what extent do the leading indicators 

that predict successful transfer to a four-year institution identified for community 

college students in general, also predict transfer outcomes for students in a biology 

transfer sequence at a large western community college? (b) What is the pattern of 

course-taking behavior of students in a biology-degree transfer sequence at a large 

western community college? (c) What is the pattern of course-taking behavior in a 

biology-degree transfer sequence for students disaggregated by gender, age, race, and 

ethnicity at a large community college in the west? and (d) What is the relationship 

between the course-taking behavior in a biology-related degree sequence and transfer 

to a four-year institution in a biology or biology-related degree track? The predictive 

value for transfer outcomes for the leading indicators of academic momentum (credit 

accumulation in the first term, first year, and in t -

biology in the first year, and first-year enrollment intensity) are fit to a logistic 

regression model. Aspects of course-taking examined using descriptive statistics 

included level of biology, chemistry, physics, and math taken prior to enrollment in 

sequence, grade outcome, retention through the three-term 
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nrolment intensity, and relative timing of course-taking 

described using a one-way AN -square tests. Data were 

disaggregated by gender, age, race and ethnicity. Finally, course-taking variables were 

fit to a logistic regression model to determine the predictive relationship to transfer 

outcomes. 

Research Question One 

The first research question was: To what extent do the leading indicators that 

predict successful transfer to a four-year institution identified for community college 

students in general, also predict transfer outcomes for students in a biology transfer 

sequence at a large western community college? 

Transfer Outcomes Descriptive Statistics 

The relationship between transfer into a biology related degree program and 

academic momentum for the cohort of students taking the first course in the m

biology sequence at a large western community college in the 2014/15 academic year 

was initially examined using descriptive statistics. Most students (72%, n = 243) in the 

cohort 

college later transferred to a four-year institution. The most common outcome was 

transfer into a biology or biology-related degree program (see Table 5). A small group 

of students (3%, n = 9) transferred directly into a professional or graduate degree 

program. Interestingly, all the students in this category transferred into a program with 

a classification of instructional programs (CIP) code of 51, which is designated for 

health professions and related clinical sciences (NCES, 2020). 
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Table 5  

2014/15 Academic Year as of Fall 2020 (N =336) 

Transfer Outcome n % 
No transfer 93 28 
Transfer biology or biology-related degree program 129 38 
Transfer non-biology degree program 105 31 
Transfer into professional or graduate school program 9 3 

 
Leading Indicators of Academic Momentum Descriptive Statistics 

Additionally, four of the seven variables examined as leading indicators of 

academic momentum were continuous, including: (a) college credits completed with a 

C or higher in the first term, (b) college credits completed with a C or higher in the 

first year, (c) college credits fulfilling criteria 

(MTM) outlined for biology (HECC, 2020) completed with a C or higher in the first 

year, and (d) first term grade point average (see Table 6). 

Table 6 

Descriptive Statistics for Continuous Leading Indicators of Academic Momentum for 

the 

Year as of Fall 2020 (N = 336) 

Leading Indicators of Academic Momentum Mean SD 
College credits completed in the first term 6.55 4.54 
College credits completed in the first year 21.85 14.38 
Program credits in the biology major transfer map completed in 
the first year 

9.38 10.53 

Grade point average first term 2.94 1.29 
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College Credits Completed First Term 

Students who transferred into a professional program or into graduate school 

had the highest average number of first term college credits completed with a C or 

better (M = 7.22, SD = 2.91), and students who transferred into biology had the lowest 

average number of first term college credits completed with a C or better (M = 

6.31, SD = 4.39) (see Figure 1). A one-way ANOVA was used to determine that there 

was no significant difference in the average number of college credits accumulated in 

the first term between students achieving the four transfer outcomes, F(3, 332) = .30, p 

= .83.  

Figure 1 

Average Number of College Credits Completed in the First Term (±SE) (N = 336)  

 
Notes. Categories were assigned based on transfer status achieved on or before fall 2020  
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College Credits Completed First Year 

The group of students who transferred into a professional program or into 

graduate school also had the highest average number of first year college credits 

completed with a C or better (M = 23.78, SD = 9.72), and the students who did not 

transfer had the lowest average number of first year college credits completed with a C 

or better (M = 21.15, SD = 14.64) (see Figure 2). A one-way ANOVA was used to 

determine that there was no significant difference in the average number of college 

credits accumulated in the first year between students achieving the four transfer 

outcomes, F(3, 332) = .19, p = .91.  

 
Figure 2 
 
Average Number of College Credits Completed in the First Year (N = 336)  

Note. Categories were assigned based on transfer status achieved on or before fall 2020  
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College Credits in the Major Completed in the First Year 

The group of students who transferred into a professional program or into 

graduate school had the highest average number of first year college credits completed 

with a (M = 12.11, SD = 8.94), and the 

students who transferred but not in biology had lowest average number credits in this 

category (M = 8.66, SD = 9.86) (see Figure 3). A one-way ANOVA was used to 

determine that there was no significant difference in the average number of first year 

credits earned that coul  (MTM) 

between students achieving the four transfer outcomes, F(3, 332) = 1.58, p = .20.  

Figure 3  
 
Average Number Fir

Biology ± SE by Transfer Category (N = 336) 

 
Note. Categories were assigned based on transfer status achieved on or before fall 2020  
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First-term GPA 

The group of students who transferred into a professional program or into 

graduate school had the highest average first term GPA (M = 3.89, SD = .33), and the 

students who did not transfer had the lowest average first term GPA (M = 2.84, SD = 

1.41). A one-way ANOVA indicated no significant difference in the mean first term 

GPA between students achieving the four transfer outcomes, F(3, 332) = 1.87, p = .13 

(see Figure 4). 

Figure 4 

First-term Grade Point Average (GPA) ± SE for for Students Enrolled in First Term of 

M Biology during the 2014/15 Academic Year (N = 336)  

 
Note. Categories were assigned based on transfer status achieved on or before fall 2020  
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Completed College Level Math First Year 

Three of the seven variables examined as leading indicators of academic 

momentum were discrete categorical variables, including enrollment intensity in the 

first-year, completed college-level math in the first year, and completed the first class 

n the first year (see Table 7). The group of 

students who transferred into a professional program or into graduate school had the 

highest level of passing college level math in the first year (89%, n = 9), although 

there was no significant difference between the number of students who had 

completed college level math by their first year for different transfer outcome 

categories ( 2(3, N = 297) = 5.31, p = .15).  

 

Additionally, there was no significant difference in the number of students who 

completed the first cours year for 

different transfer outcome categories ( 2(3, N = 336) = 2.03, p = .57). Most students 

(80%, n = 268) in all categories did not complete the first course in the sequence in 

their first year. This finding reflects both a high failure rate and the fact that most 

eventually transferred to a four-year school in a biology or biology-related program. 

Only 30% (n = 102) att

first year of enrollment at the community college, with 67% (n = 68) of those students 

completing the course on the first attempt. 



70 
 

Enrollment Intensity First Year 

There was also no significant difference in the patterns of enrollment intensity 

in the first year by transfer outcome category ( 2(3, N = 336) = 7.12, p = .63). The 

pattern of enrollment was consistent in all categories of transfer outcome with most 

students attending either full time or less than half time (see Table 7). 
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Predictive Value of Leading Indicators for Transfer Outcome 

A logistic regression model (Hosmer et al., 2013) was constructed to examine 

the value of leading indicators identified for community college students in general, 

that predict successful transfer to a four-year institution, for the cohort of students 

taking  in the 2014/15 academic year. 

The selection of variables to investigate was based on previous research (Adelman, 

1999, 2005, 2006; Bailey et al., 2018; Belfield et al., 2019). These variables included: 

college-level credit accumulation in the first term and the first year, the completion of 

college-level math in the first year, first-term grade point average, completion of the 

 in the first year, accumulation of credits 

 (HECC, 2020) and enrollment intensity in 

the first year.  

Purposeful selection (Bursac et al., 2008; Hosmer et al., 2013) was used to 

choose candidates as covariates to fit an initial multinomial logistic regression model. 

Screening for covariates was done using likelihood ratio tests from univariate logistic 

regression analyses with a conservative screening level of p < .25 (Mickey & 

Greenland, 1989). Using this method, the following variables were identified for the 

initial model: completion of college-level math in the first year, first-term grade point 

average, and accumulation ) (see 

Table 8). The likelihood ratio test was chosen as a screening tool instead of the Wald 

statistic because simulation studies have shown that it leads to fewer Type II errors 

when the sample size is small to moderate (Hosmer et al., 2013). Some data were 

missing for the variable completion of college-level math in the first year, so 
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subsequent tests of the initial model were carried out using only participants whose 

information was complete for all three variables (N = 297). 

Table 8 

Leading Indicators of Academic Momentum Coded for Multinomial Logistic 

Regression Model 

Leading Indicator N 2 df p 

College credits completed first term  336 .91 3 .82 
College credits completed first year  336 .57 3 .90 
GPA first term 336 10.14 3 .02* 
Program credits completed first year 336 4.67 3   .20  
College math completed first year 297 6.05 3  .11  
First course maj biology completed first 
year 

336 1.93 3 .59 

Enrollment intensity first year 336 1.49 3 .68 
Note.  p < 0.25, *p < .05. 

No Transfer as reference category for logistic regression model 

Building the Model 

Using the variables identified through purposeful selection, the initial logistic 

regression model was run to determine the effects on the likelihood of being in one of 

the four transfer categories predicted by the following variables; completion of 

college-level math in the first year, first-term grade point average, and accumulation 

of credits specific to the biology ). The reference category 

was set to be no transfer. The logistic regression model including these variables as 

predictors was significantly better at explaining the variance in the data than the 

baseline model with no predictors ( 2 = 19.11(9), p = .024). The model correctly 

classified 40% of cases. Consistent with the covariates, including number of credits 

accumulated in a program specific to a biology transfer, the model correctly classified 

98% of the cases transferring in a biology or biology-related discipline, but predicted 
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membership in other categories poorly. Neither the Pearson ( 2 = 368.83(477), p = 

1.00) nor the Deviance ( 2 = 373.34(477), p = 1.00) Goodness-of-fit were significant, 

indicating that there was no significant difference between the predicted and observed 

data, and the model was a good fit. These measures have been criticized as over-

estimating the fit of the model when the covariates are continuous, so Python was used 

to compute a generalized Hosmer-Lemeshow goodness-of-fit test for multinomial 

logistic regression models (Fagerland & Hosmer, 2012). This test is slightly different 

than the Hosmer-Lemeshow test available for binary logistic regression in SPSS but 

can also be applied to binary logistic regression and will provide similar results 

(Fagerland & Hosmer, 2012). The generalized Hosmer-Lemeshow goodness-of-fit test 

was also not significant ( 2 = 9.80(24), p > .99), confirming that the observed results 

were not significantly different than those predicted by the model. 

 The likelihood ratio tests for the contribution of each covariate as a predictor in 

the overall model indicated that GPA first term was a significant predictor ( 2 = 

9.20(3), p = .027), while completed college math first year ( 2 = 5.63(3), p = .13) and 

accumulation of program credits in the MTM ( 2 = 4.80(3), p = .19) were not 

significant predictors. A second more parsimonious model was fit by sequentially 

removing the non-significant predictors. Values of the estimated coefficients in the 

larger model were compared to those in the reduced models to determine if the 

variables being removed were effect modifiers. The removal of the non-significant 

predictors did result in a change in the estimated coefficient for first term GPA by 

more than 20%; therefore, the variables were added back into the model (Field, 2018; 

Hosmer et al., 2013), and the initial model was accepted as the main effects model 
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(see Table 9). Checks for interactions between variables were carried out and none 

were found to contribute significantly to the main effects model. A review of the 

pseudo R2 values suggested that although the model with predictors significantly 

explained more of the variance in the data, the effect size of the variables chosen as 

predictors was small (Cox & Snell = .06; Nagelkerke = .07). 

Tests of Model Assumptions 

Logistic regression models assume that the outcomes are not biased by 

collinearity between the independent variables, and that there is a linear relationship 

between the continuous variables and the logit of the dependent variable. Tests for 

multicollinearity were run to identify variables that had unacceptable levels of 

correlation and would violate the assumptions of the logistic regression model (Field, 

2018). The variance proportions suggested some level of association between 

accumulations of program credits in the MTM and completing college math in the first 

year. This finding is not surprising since college math is one of the elements of the 

MTM, but none of the tolerance levels were less than .1 (Menard, 1995) and all 

variance inflation factor (VIF) values were below 2, indicating acceptable levels of 

correlation between the covariates (Myers, 1990).  

Finally, a Box-Tidwell Test (Field, 2018) was used to confirm the linear 

relationship between the continuous independent variables and the natural log of the 

outcome variable (logit). The interactions between each continuous independent 

variable and its natural logarithm were not significant when added to the model, 

indicating that the assumptions of linearity were not violated for the variables included 

in the model.  
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Contributions of Predictors 

 The logistic regression model was significantly better at explaining the 

variance in the data than the baseline model with no predictors ( 2 = 19.11(9), p = 

.024). The predictor factors included: the effects of completion of college-level math 

in the first year, first-term grade point average, and accumulation of credits specific to 

those variables, only GPA first term was 

a significant predictor ( 2 = 9.20(3), p = .027) for the overall model. The relationship 

of each variable to the different categories of transfer outcome was more complex, 

indicating that different variables contributed in different ways for each of the transfer 

outcome categories (see Table 9). Variables that were significant predictors of the 

category of transfer compared to no transfer were determined using the Wald statistic. 

Standard errors were rescaled for under dispersion using the Pearson statistic (Field, 

2018). 
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Transfer to a Program that was Biology or Biology-related 

None of the variables were significant (p predictors of transfer to a 

program that was biology or biology-related compared to not transferring at all (see 

Table 9). The trend in the estimated odds ratios suggested that as the number of credits 

earned in the biology MTM increased there was an increase in the odds of transferring 

into a biology or biology-related program. The estimated odds ratios also suggested 

that an increase in first-term GPA and completing college level math in the first year 

predicted a decrease in the odds of transferring into a biology related program 

compared to not transferring. 

Transfer to a Program that was Non-biology Related 

None of the variables were significant (p predictors of transfer to a 

program that was not biology or biology-related compared to not transferring at all 

(see Table 9). The trends in the estimated odds ratios suggested that as GPA and 

number of credits earned in the biology MTM increased, there was an increase in the 

odds of transferring. The estimated odds ratios also suggested that completing college-

level math in the first-year decrease in the odds of transferring into a program that was 

not biology compared to not transferring. 

Transfer to a Professional or Graduate Program 

First term GPA was a significant predictor (B = 2.03, (SE = 1.03) Wald = 3.90, 

p = .048) for transferring to a graduate or professional program compared to not 

transferring to a four-year institution. The estimated odds ratio (Exp(B) = 7.57) 

indicated that for every one-point increase in first-term GPA, the odds were 7.57 times 

higher of transferring in this category compared to not transferring. The strong 
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association between GPA and successful transfer to a professional or graduate 

program may reflect the competitive nature of programs such as pharmacy, that 

students transferred into. These data would not reflect unsuccessful applications to 

professional programs. Completing college math in the first year was also a significant 

predictor (B= 2.15, (SE = 1.03) Wald = 4.33, p = .037) for transferring into a graduate 

or professional program. The estimated odds ratio (Exp(B) = 8.63) indicated that 

completing college math resulted in the odds being 8.63 higher of transferring into a 

professional or graduate program. Accumulating program credits associated with the 

biology major r (p 

for students transferring to a professional or graduate program. The odds ratio less 

than one suggests that for every one-credit increase in classes associated with the 

biology MTM, the student was less likely to transfer into a professional or graduate 

into a 

biology program but to acquire prerequisite classes that happened to overlap. All the 

students in this category transferred to programs in health professions and related 

clinical sciences.  

Research Question Two 

The second research question was: What is the pattern of course-taking 

behavior of students in a biology-degree transfer sequence at a large western 

community college? 

The course-taking patterns of the group of students, 18 years or older, who 

Aspects of course-taking examined included the level of biology, chemistry, physics, 
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and math taken prior to enrollmen

grade outcome, retention through the three-

continuity of course-taking for sequential classes and enrollment intensity. These 

patterns of course-taking only reflect courses on the community college transcript and 

do not include experiences students may have had in high school with International 

Baccalaureate (IB) or Advanced Placement (AP) classes. Students planning to transfer 

to a biology or biology-related program at a four-year institution would need to take a 

suite of STEM courses, including biology, chemistry, physics, and math. The timing 

for some of the course-taking would be driven by pre-requisites but in the cafeteria 

model of course-taking available to students during the 2014/15 academic year, 

community college career having taken a variety of other STEM courses.   

Prior Biology Coursework 

The level of college coursework taken by students prior to their first attempt of 

coursework (see Table 10). Analysis of the data showed that 63% (n = 214) of 

students had no record of any college-level biology coursework prior to attempting 

n = 85) had a mix of 100 and/or 200 level coursework 

already on their transcripts. The number of prior biology classes ranged widely from 

zero to seven with 37% of students (n = 128) having some prior college-level biology 

on their transcript. Table 10 contains a breakdown of the prior biology course-taking 

behavior by level. 
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Table 10 

Number of Students Entering First Term of 

Coursework in Biology (N = 342) 

Category of Biology Taken n % 
No biology  214 63 
100-level biology 85 25 
200-level biology 12 4 
100 & 200-level biology 31 9 
 

Students had completed an average of 3.37 credits (SD = 5.63) of biology prior 

to entry, with a range of 0 to 30 credits. Students were categorized based on the 

records in their transcript of prior college-level biology course-taking behavior. The 

categories included: (a) no prior biology, (b) 100 level courses in biology, (c) 200 

level courses in biology, and (d) both 100 and 200 level courses in biology. There was 

no significant difference in the number of students who completed the first-term of the 

their category of prior 

biology course-taking behavior ( 2(3, N = 342) = 5.95, p = .11) (see Figure 5). 

However, students who were in different course taking categories did receive 

significantly different grades in the first ( 2(9, N 

= 342) = 19.19, p = .03). The effect size for prior biology course-taking was modest 

(phi = .23).  
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Figure 5  

 Level of Coursework in Biology Prior to 

Enrollment (N = 342) 

 
Students who had successfully completed other 200 level biology prior to 

uence tended to receive higher grades, while this 

was not necessarily the case for students who had successfully taken 100-level biology 

classes prio 6).   

 
 
 
 
 
 
 
 
 
 
 
 
 

0
10
20
30
40
50
60
70
80
90

100

No Biology 100-level 200-level 100 & 200-
level

%
 S

tu
de

nt
s

Prior Coursework

No Pass Pass



83 
 

Figure 6 

Grade Distribution and Level of Prior Coursework in Biology Prior to Enrollment in 

 (N = 342) 

 

 
 
Prior Chemistry Coursework 

Chemistry is a required co-

sequence. Data analysis indicated that 43% (n = 148) of the students had no record of 
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% (n = 194) had a mix of 100 and 200 level 

coursework (see Table 11).   
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Table 11 

Number of Students Entering 

Coursework in Chemistry (N = 342) 

Category of Chemistry Taken n % 
No chemistry  148 43 
100-level chemistry 85 25 
200-level chemistry 75 22 
100 & 200-level chemistry 34 10 

 

Students had completed an average of 5.0 credits (SD = 5.79) of chemistry 

prior to entry, with a range of 0 to 30 credits. Students were categorized based on the 

records in their transcript of prior college-level chemistry course-taking behavior. The 

categories included: (a) no prior chemistry, (b) 100 level courses in chemistry, (c) 200 

level courses in chemistry, and (d) both 100 and 200 level courses in chemistry. There 

was a significant difference in the number of students who completed the first course 

nce on their first attempt based on their category of prior 

chemistry course-taking behavior ( 2(3, N = 342) = 8.41, p = .04), with a modest 

effect size (phi = .16) (see Figure 7).  
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Figure 7 

 Level of Coursework in Chemistry 

Prior to Enrollment (N = 342) 

 

 
 

However, unlike the relationship between prior course taking in biology and 

grades, students who were in different course taking chemistry categories did not 

sequence ( 2(9, N = 342) = 12.48, p = .19) (see Figure 8). 
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Figure 8   

Grade Distribution and Level of Prior Coursework in Chemistry Prior to Enrollment 

 (N = 342) 

 
Prior Physics Coursework 

Next, the data were analyzed to determine prior coursework in physics. Fewer 
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had prior college physics coursework compared to their history with biology and 

chemistry. Findings indicate that 88% (n = 302) of the students had no record of 
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Table 12 

Coursework in Physics (N = 342) 

Category of Physics Taken n % 
No physics  302 88 
100-level physics 9 3 
200-level physics 31 9 
 

Additionally, students had completed an average of .77 credits (SD = 2.52) of 

physics prior to entry, with a range of 0 to 15 credits. The range of physics courses 

taken by any one student was zero to five. Students were categorized based on the 

records in their transcript of prior college-level physics course-taking behavior. The 

categories included: (a) no prior physics, (b) 100 level courses in physics, and (c) 200 

level courses in physics. There was no significant difference in the number of students 

who completed the first- r first attempt 

based on their category of prior physics course-taking behavior ( 2(2, N = 342) = 5.97, 

p = .051) (see Figure 9). The trend suggested that with a larger sample size this may 

have been a significant effect. 
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Figure 9  

 Level of Coursework in Physics Prior to 

Enrollment (N = 342) 

 
Students who were in different course taking physics categories also did not receive 

significantly d ( 2(6, 

N = 342) = 10.04, p = .12) (see Figure 10). 

 
 
 
 
 
 
 
  

0

10

20

30

40

50

60

70

80

90

100

No Physics 100-level 200-level 100 & 200-level

%
 S

tu
de

nt
s

Prior Coursework

No Pass Pass



89 
 

Figure 10 

Grade Distribution and Level of Prior Coursework in Physics Prior to Enrollment in 

 (N = 342) 
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transcript should be interpreted cautiously. The earlier examination of the relationship 

between completing college level math in the first year and transfer used additional 

course-taking behavior, such as enrolling in a class with a math prerequisite, to assess 

math background, but these analyses are based solely on the math courses in the 

mean no math background, just no math courses taken at the community college in the 

study. Most students (67%, n = 231) had some level of math coursework on their 

le combinations (see 

Table 13). 

Table 13 

equence with Prior 

Coursework in Math (N = 342) 

Category of Math Taken n % 
No math on transcript 111 33 
Pre-college math  31 9 
100-level math  36 10 
200-level math  25 7 
Pre-college & 100-level math  70 20 
100 & 200-level math  27 8 
Pre-college,100 & 200-level math  41 12 
Pre-college & 200-level math  <5 <1 
 

Students had completed an average of 5.65 credits (SD = 6.12) of math at the 

community college prior to attempting the first course in t

sequence, with a range of 0 to 28 credits. The most frequent pattern of coursework 

taken was a combination of pre-college and 100-level math courses (20%, n = 70). 

Due to the large number of categories and a relatively small sample size, categories 
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were collapsed to reflect the highest level of math taken. The categories for analysis 

included: (a) no math, (b) remedial math, (c) 100-level math, and (d) 200-level math 

(see Figure 11). There was a significant difference in the number of students who 

completed the first-  sequence on their first attempt based 

on the highest-level of prior math recorded on their transcript ( 2(3, N = 342) = 11.34, 

p = .01) with a modest effect size (phi = .18) (Muijs, 2016).  

Figure 11  

 Level of Coursework in Math Prior to Enrollment 

(N = 342) 

 

 
Additionally, students with different levels of math also had significantly different 

( 2(9, N = 342) = 21.39, p = 

.01) (see Figure 12) with a modest effect size (phi = .25) (Muijs, 2016).  
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Figure 12 

Grade Distribution and Level of Prior Coursework in Math Prior to Enrollment in 

 (N = 342) 

 
 
Grade Distribution 

Analysis of the grade distributions indicated that the majority of students 

(71%, n 

grade or higher (includes P) on the first attempt, with 29% (n = 99) of the students 

receiving a D, F, W, NP or I grade (see Table 14). For the students who were enrolled 

in the first , 17% would attempt the 

class more than once. A small number of students took the course four times (see 

Table 14). Of the 56 students who retook the class, 20% (n = 11) had already received 

a passing grade on the first attempt. 
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Table 14 

Progression through the for Students the Enrolled in First 

Course in 2014/15 Academic Year (N = 342) 

 

Progression of Enrollment 

First Course in 
Sequence 

Second Course in 
Sequence 

Third Course in 
Sequence 

Number of Attempts n % n % n % 
 Not enrolled   114 33 59 26 
 1 286 84 206 60 164 72 
 2    46 13 21 6 5 2 
 3 or more   10 3 <5 <1   
Grade First Attempta       
 A   83 24 63 28 57 34 
 B   95 28 77 34 65 38 
 C or P   65 19 47 21 38 22 
 D, F, W, NP, or I   99 29 41 18 9 5 
Notes. P = pass, NP = no pass, I = incomplete;  

a% grade received reflects only those students who attempted course 
 

 

The progression of the initial group of students identified for the study from 

and the third terms 

of the three-course sequence was also tracked. The level of attrition from the first to 

the second (33%, n = 114) and from the second to the third class (26%, n = 59) 

remained relatively consistent with 49% (n = 169) of the initial group of students 

progressing through all three terms of the sequence. These numbers reflect the 

progression of students who passed the prerequisite course in the sequence on the first 

biology sequence was repeated by 17% (n = 56) of the students who, with a small 
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number repeating it three or more times (3%, n = 10). Some of the students repeating 

the class (20%, n = 11) had received a passing grade the first time. All those students 

progressed to the second course in the sequence, although only 64% (n =7) received a 

higher grade the second time. Only 60% of the 45 students who repeated the first class 

because of non-completion eventually progressed to the second course in the 

sequence. It is important to note that the proportion of students completing 

biology classes increased in the second course in the sequence and again in the third 

(see Table 14). Some students completed the pre-requisite class but chose not to 

sequence 18% (n = 44) did not enroll in the second course. A similar proportion of the 

students who n = 

34) did not enroll in the third course. This pattern suggests that they did not require the 

class for their educational goals or that factors other than grades impacted their 

retention in the sequence. 

Continuity 

Most 

on the first attempt enrolled in the next course in the sequence in the next term (see 

Table 15). Only 4% (n = 8) of students who completed the pre-requisite class on the 

first attempt waited more than a year (five terms or more) to take the next class. The 

variation within the latter small number of number of students was very broad, with a 

range of 16 terms between classes. Students who did not pass on the first attempt had a 

broader gap, up to 81 terms, but if this was adjusted to account for the gap between the 
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e, the 

range did not differ between groups.   

Table 15 

Number o

Students Completing Prerequisite Course on First Attempt 

Sequence of Enrollment 

Terms 

First Course to Second 

Course 

% Second Course to Third 

Course 

% 

1 164 82 121 86 
2 18 9 8 6 
3 6 3 3 2 
4 3 1 5 3 
5 8 4 5 3 

N  199  140  
Notes. A sequence of enrollment <1 represents concurrent enrollment or enrollment prior.  

% may not add up to 100 due to rounding. 

 
Enrollment Intensity 

 The total number of credits a student is enrolled in during a given term is a 

measure of enrollment intensity. The number of credits the students enrolled in the 

ear were 

carrying the first time they took the class varied greatly (M = 11.83, SD = 3.57). The 

-credit class so 41 students were 

a full load of 

12 credits or more (see Figure 13). 
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Figure 13 

Enrollment Intensity During First Attempt First Course in 

(N = 342)
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Prior Coursework in Biology, Chemistry, Physics and Math Disaggregated by 

Gender 

 Student course-taking behaviors were disaggregated by gender using the binary 

categories of male and female. Not all students identified as male or female, but to 

maintain confidentiality, students who did not report were not included in the 

disaggregated data. Based on the binary classification of gender, there were no 

significant differences in the level of biology coursework completed prior to enrolling 

( 2(3, N = 337) = .56, p = .91). Most 

female students (62%, n = 123) had no prior college-level biology coursework on their 

transcripts. Most male students (64%, n = 88) also had no prior college-level biology 

coursework on their transcripts (see Table 16). There was also no significant 

difference in the level of chemistry coursework completed prior to enrolling in the first 

( 2(3, N = 

337) = .93, p = .82). Most female students (58%, n = 117) had some prior college-

level chemistry coursework on their transcripts. Similarly, most male students (55%, n 

= 75) also had some college-level chemistry coursework on their transcripts (see Table 

16). Consistent with the patterns observed for biology and chemistry course-taking 

there were no significant differences between female and male students observed in 

the level of physics coursework completed prior to enrolling in the first term of the 

( 2(2, N = 337) = 1.01, p = .60). Most female students 

(89%, n = 178) and most male students (87%, n = 119) had no college-level physics 

on their transcripts (see Table 16). This contrasts with the patterns for math course 
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taking where both female (53%, n =123) and male (67%, n = 92) students, had some 

college-level math on their transcripts (see Table 16). There were no significant 

sequence ( 2(2, N = 228) = .35, p = .84). It is 

important to 

level math pre-requisite and 109 students in the sample had no record of math taking 

on their community college transcript and are not represented in the disaggregated 

Chi-square data analysis. Given the available data it was not possible to determine if 

these students had tested out of the precollege math prerequisite, transferred in credit, 

or had the math prerequisite waived. 
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Table 16 

College Coursework Disaggregated by Gender (N = 337a) 

Prior Coursework 

Gender 
Female Male 

n % n % 
Biology No biology 123 62 88 64 

100-level biology 50 25 34 25 
200-level biology 8 4 4 3 
100 & 200-level biology 19 9 11 8 

Chemistry No chemistry 83 41 62 45 
 100-level chemistry 52 26 31 23 
 200-level chemistry 46 23 29 21 
 100 & 200-level chemistry 19 9 15 11 
Physics No physics 178 89 119 87 
 100-level physics 6 3 3 2 
 200-level physics 16 8 15 11 
Mathb  No math on transcript 77 38 32 23 
 Pre-college math 16 8 13 9 
 100-level math 59 29 47 34 
 200-level math 48 24 45 33 
Notes. aA students who did not identify as male or female, removed to retain confidentiality.  

bRepresents the highest level on transcript. 

 
 Disaggregated by Gender 

Examination of the grade distributions disaggregated by gender indicated 

similar patterns of achievement on the fi

biology sequence (see Table 17). There were no significant differences between 

female and male students in the grade distributions f

biology ( 2(3, N = 337) = 2.29, p = .

similar for female (71%, n = 143) and male (70%, n = 96) students. This was also the 
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case for the s n = 114) of 

the female and 81% (n = 71) of the male students completed with a C or better on the 

first attempt. There were no significant differences between female and male students 

in the grade dis ( 2(3, N = 225) = 

1.09, p = .78). The trend towards increasing completion rates for both groups 

sequence with 96% (n = 91) of the 

female students and 93% (n = 67) of the male students passing with a C or better on 

the first attempt. There were no significant differences between female and male 

students in the grade distributions for the third course ( 2(3, N = 

167) = 1.73, p = .63). 
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Table 17 

Grade Distribution for Students Progressing 

Disaggregated by Gender (N = 337) 

Gradea 

Gender 
Female Male 

n % n % 
First Course in Sequence A 55 28 28 20 

B 53 26 40 29 
C or P 35 17 28 20 
D,F,W,NP 
or I 

57 29 41 30 

Second Course in Sequence A 36 26 27 31 
 B 48 35 28 32 
 C or P 30 22 16 18 
 D,F,W,NP 

or I 
23 17 17 19 

Third Course in Sequence A 36 38 21 29 
 B 35 37 29 40 
 C or P 20 21 17 24 
 D,F,W,NP 

or I 
4 4 5 7 

Notes. P = pass, NP = no pass, I = incomplete, 

 a% grade received reflects only those students who attempted course. 

 

Enrollment Intensity Disaggregated by Gender 

Enrollment intensity in the term the student first attempted the first course in 

intensity was examined using both the total number of credits and the category of 

enrollment relevant for guidelines related to financial aid. These categories were: (a) 

Full-time was 12 or more credits, (b) Three quarter-time was 9 to 11 credits, (c) half-

time was 6 to 10 credits, and (d) less than half-time was less than 6 credits. The first 
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class 

class would be less than half-time. 

There was a wide range in the number of credits the students were enrolled in 

during the first- the 2014/15 academic 

year (5 credits to 19 credits), with female students showing a lower enrollment 

intensity (M = 11.52, SD = 3.55) compared to males (M = 12.32, SD = 3.62). Fewer 

females (57%) compared to males (63%) were attending full-time (see Figure 14). 

More females (14%) than males (9%) were attending less than half-time, meaning the 

intensity during the term the student was enrolled in the first course in the majo

biology sequence for the first time indicated a significant difference between female 

and male students when compared using the t-test for independent samples (t(335) = -

2.01, p = .04). The effect of gender on enrollment intensity was weak (eta-squared = 

.01) (Muijs, 2016).  
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Figure 14 

Disaggregated by Gender (N = 337)  

 

Prior Coursework Biology, Chemistry, Physics and Math, Disaggregated by Age 

Student course-taking behaviors were disaggregated by age (see Table 18). 

Age categories represented traditional-age college students who are those 23 years and 

younger, as well as two categories of post-traditional age students; 24 to 29 years and 

30 years and older. There were significant differences in the level of biology 
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sequence compared to traditional age students (see Table 18). There were also 

significant differences in the level of chemistry coursework completed prior to 

enrolling ( 2(6, N = 342) = 20.34, p = 

.002) based on student age category. The effect size was modest (phi = .24) (Muijs, 

2016). More post-traditional students 30 years and older had taken 100-level 

chemistry coursework compared to students in the other age categories. However, 

more traditional-age students had taken 200-level chemistry coursework compared to 

the post-traditional age students (see Table 18). Few students in any of the age 

categories had any physics coursework prior to enrolling in the first term of the 

y sequence. There were no significant differences in the level of physics 

sequence ( 2(4, N = 342) = 1.15, p = .87) based on student age category. Similar to 

patterns for biology and chemistry, there were significant differences in the level of 

math coursework recorded on the transcript prior to enrolling in the first term of the 

nt age category. The effect size was modest 

(phi = .27) (Muijs, 2016).   
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 Disaggregated by Age 

Examination of the grade distributions disaggregated by age indicated different 

patterns of achievement on th  

sequence (see Table 19). Students in the youngest age category completed the first 

than students who were 24 to 29 years old (68%) or students who were 30 and older 

(33%). 

(31%) compared to other age groups. Grade distributions between age groups for the 

equence were not significantly different ( 2(6, N = 

342) = 8.67, p = .19). Completion rates increased for students attempting the second 

categories (see Table 19). Students who were 23 years or younger completed the 

second course 

students in the next age category (87%) but at higher rates than students in the oldest 

age group (74%). The trend for a higher percentage of students who were 24 to 29 

years old to receiv

biology sequence were significantly different ( 2(6, N = 228) = 14.01, p = .03) with a 

modest effect size (phi = .25) (Muijs, 2016). The achievement gaps between age 

groups narrowed and a trend towards increasing completion rates for all three age 

students 23 years and younger passing the class on the first attempt, and 98% of the 
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students 24 to 29 years passing on the first attempt and finally 92% of the students 30 

attempt. The observed trend that students who were 24 to 29 years old received A 

letter grades at a higher levels compared to other age groups continued in the third 

19). However, grade distributions 

between age groups for the third cou

significantly different ( 2(6, N = 169) = 4.3, p = .64).  
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Enrollment Intensity Disaggregated by Age 

There was a wide range in the number of credits the students were enrolled in 

the first- uring the 2014/15 academic year with 

the youngest group of students showing the highest enrollment intensity (M = 12.72, 

SD = 3.41). The students in the next age group (24 to 29 years) had a slightly lower 

enrollment intensity (M = 11.27, SD = 3.45) and the older group of students had the 

lowest enrollment intensity (M = 10.80, SD = 3.65). Age categories were compared 

using a one-way ANOVA. There was a significant difference in the enrollment 

intensity during the term the student was first enrolled in the f

biology sequence between age groups (F(2, 339) = 10.19, p < .001). The effect size for 

age was weak (eta-squared = .06) (Muijs, 2016). Most students who were 23 years or 

younger (71%, n = 111) and just over half of the students who were 24 to 29 years 

(55%, n = 54) were enrolled full-time. Less than half (43%, n = 36) of the students 

who were 30 years or older were enrolled full time (see Figure 15). In the group of 

students who were 30 years or older and attending at less than half time (usually 

taking just one course), most of those students were female (87%, n = 13). This is not 

the case for the traditional age category of students where most of the females are 

attending full time and they constituted 61% (n = 68) of the full-time enrollment 

category. 
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Figure 15 

Enrollment Intensity During Firs  

Disaggregated by Age (N = 342) 
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Prior Coursework in Biology, Chemistry, Physics and Math Disaggregated by Race 

and Ethnicity 

Student course-taking behaviors were disaggregated by race and ethnicity, 

using self-reported categories of identity. The representation in some of the categories 

was low, and so to preserve student confidentiality, data were aggregated for 

categories where the initial sample was less than 10 cases. The category designated 

American Indian and Other Races/Ethnicities represents students who identified as 

American Indian, Hawaiian/Pacific Islander or non-resident alien. To further ensure 

confidentiality, levels of course taking prior to enrollment in the first course of the 

collapsed to represent the highest levels or course taking. The 

number of categories in relationship to the sample size precluded using inferential 

statistics for some comparisons. A description of the emerging trends from descriptive 

statistics informs the question of what the patterns of course-taking behavior were for 

students identifying in different racial and ethnic groups. 

Most White, Asian, and Hispanic students entered the first course in the 

-level biology coursework on their 

transcript (see Figure 16). This trend was also true for students who did not choose to 

report their race and ethnicity and American Indian, Hawaiian/Pacific Islander and 

non-resident alien students who are represented in the American Indian and Other 

biology sequence with some prior college level biology experience, mostly (37%) with 

100-level biology courses. In contrast, most of the Black/African American students 
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biology on their transcripts (55%). Most of the prior biology course-taking experience 

of Black/African American students, was at the 100-level (36%) but a small number 

had 200-level experience (18%). The students who choose not to report their race or 

ethnicity had the highest level of 200-level biology experience (28%) and the students 

who were in the American Indian and Other Races/Ethnicities category had no 200-

(see Figure 16). 

Figure 16 

Students Entering the with Prior 

Coursework in Biology Disaggregated by Race and Ethnicity (N = 342) 
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Table 20 includes the mean, standard deviation, and sample size for the 

number of college-level biology credits earned with a C or better, by students prior to 

 

Table 20 

Credits College-level Biology Earned 

Biology Sequence (N = 342) 

Race and Ethnicity M SD n 

American Indian and other races/ethnicitiesa 1.07 1.83 15 
Asian 3.30 6.26 33 
Black/African American 4.36 5.46 11 
Hispanic 3.59 5.77 27 
Multiracial 4.18 5.31 22 
Not reported 4.89 6.85 18 
White 3.25 5.62 216 

Notes. A 100-level lecture/lab class is four credits, a 200-level lecture/lab class is five credits. 
 
 aStudents who identified as American Indian, Hawaiian Pacific Islander and nonresident alien.  

All categories of race and ethnicity in the study were compared using a one-

way ANOVA. There were no significant differences between students in different 

categories of race and ethnicity based on the average number of college-level biology 

credits earned 

(F(6,335) = .79, p = .58). 

 Most students in all the race and ethnicity categories except Hispanic entered 

e with some prior college-level 

chemistry coursework on their transcript (see Figure 17). Under half (44%) of the 

Hispanic students had some prior college-level chemistry coursework. Most of the 

Asian students (58%) had 200-level chemistry. The multiracial students also had a 
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high proportion (45%) of chemistry course experience at the 200-level. Black/African 

American students had the bulk of their experience (45%) at the 100-level prior to 

Figure 17). 

Figure 17 

Students Entering the with Prior 

Coursework in Chemistry Disaggregated by Race and Ethnicity (N = 342) 
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Table 21 

Credits College-level Chemistry Earned 

Biology Sequence (N = 342) 

Race and Ethnicity M SD n 
American Indian and other races/ethnicitiesa 5.47 8.45 15 
Asian 7.00 5.51 33 
Black/African American 5.27 6.29 11 
Hispanic 3.30 4.55 27 
Multiracial 5.68 5.41 22 
Not reported 4.61 5.55 18 
White 4.82 5.76 216 

Notes. A 100-level lecture/lab class is four or five credits, a 200-level lecture/lab class is five credits.  
 
aStudents who identified as American Indian, Hawaiian Pacific Islander and nonresident alien. 

All categories of race and ethnicity in the study were compared using a one-

way ANOVA. There were no significant differences between students in different 

categories of race and ethnicity based on the average number of college-level 

chemistry credits earne gy 

sequence (F(6,335) = 1.17, p = .32). 

 Most of the students in all the race and ethnicity categories entered the first 

-level physics coursework 

on their transcript (see Figure 18). A small number of students (27%, n < 5) who 

identified in the category of American Indian or Other Races/Ethnicities, had 200-

sequence. The Black/African American students had no prior physics course-taking 

experience. 

 



116 
 
Figure 18 

Students Entering the with Prior 

Coursework in Physics Disaggregated by Race and Ethnicity (N=342) 
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saggregated by race and 

ethnicity. 

Table 22 

Credits College-level Physics Earned 

Biology Sequence (N = 342) 

Race and Ethnicity M SD n 
American Indian and other races/ethnicitiesa 2.33 4.53 15 
Asian 1.55 3.88 33 
Black/African American 0.00 0.00 11 
Hispanic 0.15 0.77 27 
Multiracial 0.18 0.85 22 
Not reported 1.11 3.00 18 
White 0.70 2.28 216 

Notes. A 100-level lecture/lab class is four credits, a 200-level lecture/lab class is four or five credits.  

aStudents who identified as American Indian, Hawaiian Pacific Islander and nonresident alien.  

All categories of race and ethnicity in the study were compared using a one-

way ANOVA. There was a significant difference between students in different 

categories of race and ethnicity based on the average number of college-level physics 

(F(6,335) = 2.3, p = .04). The effect size was weak (eta-squared = .04) (Muijs, 2016). 

 

have entered the class with Intermediate Algebra, a pre-college class, unless they 

tested out of the math requirement or an instructor waived the pre-requisite for an 

individual student. The course-taking pattern prior to enrollment in the first course in 

the ma
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transcript, most students in all the race and ethnicity categories had some college-level 

math prio 19). 

There were some differences in the level of college math taken. Most of the Asian 

(52%) and multiracial (59%) students had 200-level math. The majority of 

Black/African American (57%) and non-reporting students (60%) had 100-level math 

19).  

Figure 19 

Students Entering the with Prior 

Coursework in Math Disaggregated by Race and Ethnicity (N =231) 
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Table 23 

Credits College-level Math Earned 

Biology Sequence (N = 231) 

Race and Ethnicity M SD n 
American Indian and other races/ethnicitiesa 4.40 4.81 15 
Asian 6.67 6.22 33 
Black/African American 4.82 6.88 11 
Hispanic 5.19 6.21 27 
Multiracial 7.82 6.14 22 
Not reported 3.78 5.40 18 
White 5.61 6.18 216 

Notes. A 100-level lecture class is four or five credits, a 200-level lecture class is four credits.  

aStudents who identified as American Indian, Hawaiian Pacific Islander and nonresident alien.  

All categories of race and ethnicity in the study were compared using a one-

way ANOVA. There were no significant differences between students in different 

categories of race and ethnicity based on the average number of college-level math 

(F(6,335) = 1.06, p = .39).  

 Disaggregated by Race and 

Ethnicity 

Examination of the grade distributions disaggregated by race and ethnicity 

indicate dissimilar distribution patterns on the first attempt for all three courses in the 

n Indian and 

Other Races/Ethncities (73%, n = 11), did not report (72%, n = 13), identified as Asian 

(76%, n = 25), Multiracial (68%, n = 15) or, White (74%, n = 159), completed the first 

students who 
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identified as Black/African-American (54%, n = 6), or Hispanic (52%, n = 14) (see 

Figure 20).  

Figure 20 

Race and Ethnicity (N = 342) 
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some exceptions. Students who identified as Hispanic (80 %), Multiracial (79%), did 

not report (100%) or who identified as White (84%), completed the second course at 

higher levels compared to the first course in the sequence. Students who were 

represented in the category of American Indians and Other Races/Ethnicities (71%) or 

who identified as Asian (75%) completed the second course at slightly lower but very 

similar levels compared to the first. The students who identified as Black/African 

American showed the largest drop in completion levels, 43% in the second course 

compared to 54% in the first (see Figure 21). 

Figure 21 

gy Sequence disaggregated by 

Race and Ethnicity (N = 228)  
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The differences in grade distribution patterns on the first attempt appeared to 

narrow for the third course in the major 2). Students 

in all categories of race and ethnicity showed higher levels of completing the third 

course in the sequence compared to the second and the first. More students who 

identified as Hispanic (86%) completed the third class compared to the second. All 

other categories of race and ethnicity showed levels of completing the third class of 

93% or higher. The biggest change in the trend towards completion was by the 

students who identified as Black/African American (100%), all of whom completed 

the third class. It is important to note that these completion rates for all categories 

represent the students remaining in the class and a reduced sample size.  
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Figure 22 

Disaggregated by 

Race and Ethnicity (N = 169) 

 

Completion of the  Disaggregated by Race and Ethnicity 

and Gender 

The grade distribution patterns for students disaggregated by race and 

ethnicity, changed markedly over the three-

to describe the pattern

biology courses were examined disaggregating the data by race, ethnicity, and gender. 
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category. Some striking trends emerge that show a very different pattern of completion 

for male and female Black/African American students, where none of the males 

completed the first course in class on the first attempt 

compared to 83% of the female students. All the Black/African American males 

attempted the course a second time. Fewer male students identifying as multiracial or 

who did not report completed compared to corresponding female students, but the 

differences were not as large (see Figure 23). 

Figure 23 

Students Completing First Cou

Disaggregated by Gender, Race, and Ethnicity (N = 342) 

 
 

The levels of successf

biology sequence by race and ethnicity, and comparing males and females within each 

category, are shown in Figure 24. The differences in the pattern of completion 

between Black/African American males and females remain, with none of the males 
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biology on the first attempt 

compared to all the females. The differences between male and female students in 

other categories did not maintain a consistent trajectory. Fewer female multiracial 

students were now completing compared to males, and all the students who did not 

report completed the second course. Fewer Asian, Hispanic, and White males also 

completed the second course in the biology sequence, but the disparities were not  

large. 

Figure 24  

Students Completing the Second 

Disaggregated by Gender, Race and Ethnicity (N = 228) 

 

 

sequence by race and ethnicity and comparing males and females within each category 
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are shown in Figure 25. Completion patterns between male and female students in all 

race and 

sequence, with a 10% difference or less. However, it is important to note that the 

Black /African American males are no longer represented in the sample. Most of the 

Black /African American males in the sample did attempt the second class in the 

sequence a second time (75%, n < 5), but none enrolled in the third class. These data 

do not represent a sample size large enough to infer statistical significance, but they 

represent a pattern of completion and enrollment that raises critical questions about the 

experi

finding will be further discussed in Chapter 5.  

Figure 25   

Students Completing the Third Cours

Disaggregated by Gender, Race and Ethnicity (N = 169) 
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Completion of  Disaggregated by Chemistry Preparation, 

Race, Ethnicity, and Gender 

The relationship between course-taking behavior, completion and the first 

esearch question two. There 

was a significant difference in the number of students who completed the first term on 

their first attempt based on their category of prior chemistry course taking behavior 

( 2(3, N = 342) = 8.414, p = .04), (see figure 7). Noting once again that the design of 

this study is non-experimental and that causal relationships should not be inferred (see 

Figure 26), juxtaposes the proportion of students completing the first course in the 

n their transcripts with the 

proportion of students completing with college chemistry on their transcripts 

disaggregated by race and ethnicity. The proportion of students who were in the 

American Indian and Other Races/Ethnicities and Black/African American categories 

chemistry was lower than the prop

chemistry (see Figure 26). This finding raises questions about the role of experience 

with high school chemistry, which was unknown and the role of 200 versus 100-level 

college chemistry in preparing studen

were very small, so the trends should be interpreted cautiously. 
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Figure 26 

Completion of the First 

Disaggregated by Chemistry Preparation, Race, and Ethnicity (N = 342) 

 

Enrollment Intensity Disaggregated by Race and Ethnicity 

There was a wide range in the number of credits the students were enrolled in 

(range 5 to 19 credits). There was not a large range in the average number of credits 

enrolled in between students in different categories of race and ethnicity (see Figure 

27). Hispanic students had highest average enrollment intensity based on credits (M = 

12.52, SD = 3.31) and Black/African American students had the lowest average 

enrollment intensity based on credits (M = 10.55, SD = 3.88). All categories of race 

and ethnicity in the study were compared using a one-way ANOVA. There were no 

significant differences between students in different categories of race and ethnicity 

based on the intensity of enrollment measured by the number of enrolled credits 
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d

sequence (F(6,335) = 59, p = .74).  

Figure 27 

Disaggregated by Race and Ethnicity (N = 342)   
 

 
Research Question Four  

What was the relationship between the course-taking behavior in a biology-

related degree sequence and predicting transfer to a four-year institution into a biology 

or biology-related degree track? 

Predictive Value of Course-Taking Behaviors for Transfer Outcome 

A logistic regression model (Hosmer et al., 2013) was constructed to examine 

the relationship of course-taking behaviors to successful transfer to a four-year 
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institution, for the cohort of students taking 

sequence in the 2014/15 academic year. The selection of variables to investigate was 

based on previous research (Bahr, 2013b; Chan & Wang, 2018; Cohen & Kelly, 2020; 

Wang, 2013a; Wang et al., 2019; Wang, Wang, et al., 2017) and a purposeful selection 

process (Bursac et al., 2008). These variables included: biology, chemistry, physics 

and math course-

rst attempt, and enrollment 

sequence.  

Purposeful selection (Bursac et al., 2008; Hosmer et al., 2013) was used to 

choose candidates as covariates to fit an initial multinomial logistic regression model. 

Screening for variables to put in the model was done using likelihood ratio tests from 

univariate logistic regression analyses with a conservative screening level of p < .25 

(Mickey & Greenland, 1989). Using this method, the following course-taking 

variables were identified for the initial model: credits of 100-level biology, 200-level 

biology, 200-level chemistry, pre-college math, and 200-level math earned prior to 

enroll sequence; as well as the 

 (see 

Table 24). Students who did not report gender were excluded from the analysis to 

maintain confidentiality. Students for whom no NSC enrollment records were 

available, and so transfer outcomes could not be assigned, were also excluded from the 

analysis. Tests of the variables for all models were carried out using only participants 

whose information was complete for all variables (N = 336). 
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Table 24 

Likelihood Ratio Tests from the Univariate Logistic Regression for Inclusion of 

Independent Variables  

Course-taking N 2 df p 

Credits 100-level biology  336 5.04 3 .17  
Credits 200-level biology  336 12.29 3 .006** 
Credits 100-level chemistry  336 2.33 3 .53 
Credits 200-level chemistry 336 5.41 3 .14  
Credits 100-level physics 336 2.70 3 .44 
Credits 200-level physics 336 1.98 3 .58 
Credits pre-college math 336 5.57 3 .13  
Credits 100-level math  336 2.96 3 .40 
Credits 200-level math 336 6.65 3 .08  
Gap between first and second course in 
m biology 

336 2.94 3 .40 

Enrollment intensity term first attempted 
m biology 

336 10.16 3 .02** 

Grade first attempt first course m
biology 

336 16.46 3 .001** 

Gender 336 .772 3 .86 
Age 336 6.50 3 .09  
Race and ethnicity 336 3.68 3 .30 

Notes. . p < 0.25, *p < .05,**p < .01.  

No Transfer as reference category for logistic regression model. 

Building the Model 

Using the variables identified through purposeful selection, the preliminary 

initial logistic regression model was run to determine the effects, on the likelihood of 

being in one of the four transfer categories, predicted by following course-taking 

variables: credits accumulated of 100-level biology, 200-level biology, 200-level 

chemistry, pre-college math, and 200-level math prior to enrollment in the first course 

, grade first attempt in the first course of 
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. The reference category was set to be no transfer. Credits of 

pre-college math accumulated was removed as a variable based on preliminary results 

that it was not a significant predictor in the initial model ( 2 = 1.65(3), p = .65). In the 

subsequent revised model, credits of 100-level biology accumulated prior to enrolling 

sequence was no longer a significant 

predictor ( 2 = 7.16(3), p = .07) and was removed from the model, as was age ( 2 = 

6.42(3), p = .09). Additional runs with these variables removed led to removing 200-

level Math and then 200-level Chemistry to create the most parsimonious model. The 

logistic regression model including the remaining variables as predictors was 

significantly better at explaining the variance in the data than the baseline model with 

no predictors ( 2 = 38.79(9), p < .001). The model correctly classified 43% of cases 

overall. The model correctly classified 79% of the cases transferring into a biology or 

biology-related discipline, 24% of cases as no transfer, 18% cases of transfer not 

biology and 11% of cases correctly as transfer into a professional or graduate program. 

Neither the Pearson ( 2 = 196.68(234), p = .96) nor the Deviance ( 2 = 179.61(234), p 

= .997) Goodness-of-fit were significant, indicating that there was no significant 

difference between the predicted and observed data, and the model was a good fit. The 

generalized Hosmer-Lemeshow goodness-of-fit test was also not significant ( 2 = 

10.50(24), p = .99), confirming that the observed results were not significantly 

different than those predicted by the model (Fagerland & Hosmer, 2012). 

 The likelihood ratio tests for the contribution of each covariate as a predictor in 

the overall model indicated that all were s
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Table 25). Checks for interactions between variables were carried out and none were 

found to contribute significantly to the main effects model. A review of the pseudo R2 

values suggested that the model with predictors significantly explained more of the 

variance in the data and represented a modest effect or improvement over the baseline 

model (Cox & Snell = .11; Nagelkerke = .12) (Muijs, 2016). 

Table 25 

Likelihood Ratio Tests for Individual Predictors in Final Logistic Regression Model 

Course-taking N 2 df p 

Credits 200-level biology  336 11.90 3 .008* 
Enrollment intensity term first attempted 
m biology 

336 10.51 3 .015* 

Grade first attempt first course m
biology 

336 16.45 3 .001* 

Notes.  *p < .05,**p < .01.  

No Transfer as reference category for logistic regression model. 

Tests of Model Assumptions 

Logistic regression models assume that the outcomes are not biased by 

collinearity between the independent variables, and that there is a linear relationship 

between the continuous variables and the logit of the dependent variable. Tests for 

multicollinearity were run to identify variables that had unacceptable levels of 

correlation and would violate the assumptions of the logistic regression model (Field, 

2018). None of the tolerance levels were less than .1 (Menard, 1995) and all variance 

inflation factor (VIF) values were below 2, indicating acceptable levels of correlation 

between the covariates (Myers, 1990).  
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Finally, a Box-Tidwell Test (Field, 2013) was used to confirm the linear 

relationship between the continuous independent variables and the natural log of the 

outcome variable (logit). The interactions between each continuous independent 

variable and its natural logarithm were not significant when added to the model, 

indicating that the assumptions of linearity were not violated for the variables included 

in the model.  

Contributions of Predictors 

 The logistic regression model was significantly better at explaining the 

variance in the data than the baseline model with no predictors ( 2 = 38.79(9), p < 

.001). The predictor factors included: credits accumulated of 200-level biology prior to 

biology sequence; as well as the 

enrollment intensity in the term the student first attempted maj level biology and 

. All 

predictors were significant in the overall model (see Table 26). The relationship of 

each variable to the different categories of transfer outcome was more complex, 

indicating that different variables contributed in different ways for each of the transfer 

outcome categories (see Table 26). Variables that were significant predictors of the 

category of transfer compared to no transfer were determined using the Wald statistic.  

Transfer to a Program that was Biology or Biology-related 

The contribution of predictors to different transfer outcomes varied within the 

significant predictor of transfer into a program that was biology or biology-related (B 
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= .27, (SE = .12) Wald = 4.86, p = .03) compared to not transferring to a four-year 

institution. The estimated odds ratio (Exp(B) = 1.31) indicated that for every 

additional increase in grade level, the odds were 1.31 times higher of transferring into 

a biology-related program compared to not transferring.  

Transfer to a Program that was Non-biology-related 

None of the variables in the model were predictors of transferring into a 

program that was not biology or biology related.  

Transfer to a Professional or Graduate Program 

significant predictor of transfer into a program that was a graduate or professional 

program (B = 1.70, (SE = .62) Wald = 7.55, p = .006) compared to not transferring to a 

four-year institution. The estimated odds ratio (Exp(B) = 5.50) indicated that for every 

additional increase in grade level, the odds were 5.50 times higher of transferring into 

a professional or graduate compared to not transferring. This would be consistent with 

the competitive nature of graduate programs. In addition, the enrollment intensity or 

number of credits a student was attempting 

significant predictor (B = -.33, (SE = .11) Wald = 9.77, p = .004). A student was 

predicted to be less likely to transfer into a professional or graduate program the more 

credits they were taking. The estimated odds ratio (Exp(B) = .72) indicated that for 

every additional credit a student attempted the term they were taking 

they were .72 times as likely to transfer into a graduate or professional program, or 

that students carrying higher credit loads were less likely to transfer (see Table 26). 
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Summary 

 Chapter four presented the results of the study to investigate the relationship of 

course-

successful transfer. A summary of the findings for the four research questions that 

guided this study is presented. 

Research Question One 

An examination of how leading indicators that predict successful transfer to a 

four-year institution, identified for community college students in general, applied to 

students in a biology transfer sequence at a large western community college 

suggested that first term GPA, was predictive of transfer. Additionally, accumulation 

of credits associated with the biology MTM in the first year, and completing college-

level math in the first year were effect modifiers. The relationship was not strong or 

consistent across categories of transfer outcome suggesting that further research is 

needed to fully understand the complex relationship of academic momentum and 

transfer outcomes for this population of students. 

Research Question Two 

Students had a broad range of prior coursework in biology, chemistry, physics, 

in biology, chemistry and math were related to statistically significantly better 

gy sequence. Physics was the exception, with most 

as students progressed through the three-term 
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the overall attrition was high. Som

sequence took the next class in the following term. Students ranged broadly in how 

many credits they were taking in the term th

load was close to a full course load, but the bulk of students were either carrying a full 

course load or just one course. 

Research Question Three 

Disaggregation of the course-taking behavior by gender, age, race, and 

ethnicity revealed very few differences between male and female students except for 

enrollment intensity. Fewer women were enrolled full-time compared to men. There 

were statistically significant differences in prior course work based on age for biology, 

chemistry, and math but not for physics. The grade distributions were not different 

they were significantly different for the second course. Fewer students older than 30 

years were enrolled full-time compared to students in the younger age categories. 

Most of the students older than 30 years taking just one class a term were female. This 

contrasts to the enrollment intensity patterns for traditional age students, 23 years or 

younger where most of the female students were enrolled full-time. There were no 

chemistry, or math between students in different categories of race and ethnicity. 

There were statistically significant differences seen in physics course taking although 

the overall level of physics course work was very small. The sample sizes for some of 
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the categories of race and ethnicity were too small to make statistical comparisons but 

trends suggested disparities in the distribution of grades and completion. Data 

disaggregated further by race, ethnicity and gender raised equity questions about the 

experienc  

Research Question Four 

 An examination of how the course-taking behaviors related to prior course 

work in biology, chemistry, and math, and enrollment intensity, applied to students in 

a biology transfer sequence at a large western community college suggested that some 

of these variables were good predictors of transfer outcomes. Accumulation of 200-

credits es in 

the most parsimonious fitted logistic regression model. A higher grade in the first 

biology-related program or into a professional or graduate program. Lower levels of 

enrollment intensity were related to higher odds of transferring into a professional or 

graduate program. The trends were similar for transfer to a non-biology related 

program but none of the predictors were statistically significant for that transfer 

category. 

The implications of the research findings presented in this chapter are 

discussed in chapter five. Additionally, connections with prior research and limitations 

of the study are also discussed. Chapter five concludes with recommendations for 

future research. 
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Chapter 5: Discussion 

The purpose of this quantitative study was to investigate the relationship of 

course-taking patterns of community college students enrolled in biology courses to 

successful transfer into a biology or biology-related degree track at four-year 

institutions. The study investigated four research questions: (a) To what extent do the 

leading indicators that predict successful transfer to a four-year institution identified 

for community college students in general, also predict transfer outcomes for students 

in a biology transfer sequence at a large western community college? (b) What is the 

pattern of course-taking behavior of students in a biology-degree transfer sequence at 

a large western community college? (c) What is the pattern of course-taking behavior 

in a biology-degree transfer sequence for students disaggregated by gender, age, race, 

and ethnicity at a large community college in the west? and (d) What is the 

relationship between the course-taking behavior in a biology-related degree sequence 

and transfer to a four-year institution in a biology or biology-related degree track? 

This chapter will discuss the results of this study, which have implications for 

curriculum development, implementation of biology transfer maps in guided pathways 

reform initiatives, and support services related to advising community college students 

in a biology transfer sequence. The predictive value of some, but not all, leading 

indicators of academic momentum identified in previous research (Adelman, 1999, 

2006; Attewell et al., 2012; Belfield et al., 2019; Jenkins et al., 2018; Witteveen & 

Attewell, 2017) for first-time college-age students was confirmed for the more 

heterogenous group of students tracked in this study. The examination of the course-
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taking behavior for the group of students tracked in this study also suggests additional 

metrics specific to biology as leading indicators for transfer success. The identification 

of additional predictors reinforces the importance of the disciplinary context for 

assessment of leading indicators of success (Belfield et al., 2016; Calcagno et al., 

2008; Wang, 2016b). The findings indicate the importance of achievement in the first 

course i

successfully. The relationship between college course-taking behavior in STEM prior 

comes is documented. Differences in course-

taking patterns based on gender, age, race and ethnicity are explored. Consistent with 

the national conversation about the opportunity gaps for Black/African American 

males (Riegle-Crumb et al., 2019; Wood, 2012), the findings of this study also raise 

additional questions related to the experiences of historically underserved students in 

that builds on the findings of this study will be important for increasing the 

engagement of a broader range of students in biology, particularly in historically 

under-represented groups. This chapter will discuss the findings identified in Chapter 

4, organized by research question. 

Research Question One 

Leading Indicators of Academic Momentum as Predictors in a Logistic Regression 

Model 

Leading indicators of academic momentum were fit to a logistic regression 

model to determine their value for predicting transfer outcomes in the groups of 
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students studied. First term GPA was a significant predictor ( 2 = 9.20(3), p = .027) of 

successful transfer to a four-year institution. This is a leading indicator previously 

identified for community college students in general to predict successful transfer to a 

four-year institution (Cohen & Kelly, 2019b; Zhang, 2019). This finding was based on 

a multinomial logistic regression model where a significant loglikelihood ratio ( 2 = 

19.11(9), p = .02) indicated that the model with predictors was significantly better at 

explaining the variance in the data than the baseline model with no predictors. The 

model included first term GPA, accumulation of credits associated with the biology 

MTM in the first year, and completing college level math in the first year as 

predictors. 

The accumulation of credits associated with the biology MTM, in the first 

year, and completing college level math in the first year, were not significant 

predictors in the overall model but were found to be effect modifiers (Field, 2018; 

Hosmer et al., 2013) and so these variables were included in the final model. The 

predictive value of first term GPA for the heterogenous population of community 

college students in a biology transfer sequence is consistent with previous 

demonstrations of the connection between GPA and college student success. For 

instance, McCormick and Carroll (1999) found a significant (p < .05) association 

between first year GPA and degree completion for students at a four-year institution. 

This finding is consistent with the predictive value of GPA for transfer and degree 

completion demonstrated for a group of community college students in New York 

State (Cohen & Kelly, 2019b). Previous research by Zhang (2019), also demonstrated 
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that a group of community college students in Texas were more likely to subsequently 

complete a STEM degree at a four year institution if they had higher GPAs. This study 

extends those previous findings to support the predictive value of first-term GPA for a 

sample of community college students that was heterogenous in terms of age and prior 

college experience.   

Some authors (i.e., Attewell et al., 2012) have critiqued the use of GPA as a 

leading indicator for academic momentum suggesting that grades are an effect rather 

than an element of academic momentum. This perspective is valuable to consider 

given that the model proposed by this study also included completing college math the 

transfer map in 

the first year because they were effect modifiers. The finding that completing college 

map are effect modifiers is intuitive because a failed attempt at a college-level math 

class or completing the 

components of the first term GPA. The patterns of course taking that contribute to 

student GPA remain an important consideration, which will be discussed further in 

this chapter under research question two. 

It is important to note that the effect size of predictors in the model was small, 

and none of the variables were significant predictors specifically of transfer to a 

program that was biology or biology-related, compared to not transferring. There was 

a non-statistically significant trend (B = .03, (SE = .02) Wald = 2.92, p = .09) that 
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increased the likelihood of transferring in a biology or biology related degree program 

(see Table 10). The lack of significance raises some questions about the importance of 

the relevance of the timing of courses for the group of students in the study, and of the 

calculation of leading indicators for academic momentum. Only 30% (n = 102) 

enrollment at the community college. Offenstein and Shulock (2010) suggest that 

adding a time frame gives a milestone of achievement that makes it a part of the 

leading indicators of academic momentum may need to shift as a 

change throughout their association with the institution. Students may enter without 

clear academic goals and the relevance of leading indicators to academic momentum 

towards a specific goal may be dependent on the development of that goal as students 

have experiences that change their intent to transfer (Wang, Lee, et al., 2017; Wang, 

Sun, et al., 2017). Helping students identify academic goals early and providing 

appropriate ongoing support such as advising, is part of how the reform models such 

as guided pathways can help support students to improve their academic momentum 

(Bailey et al., 2015). Tracking student goals in concert with their performance on 

leading indicators of academic momentum would assist advisors as they worked with 

students to stay on track for academic goals. 

First term GPA as a Predictor for Transfer to a Professional or Graduate Program 

First term GPA was a significant predictor (B = 2.03, (SE = 1.03) Wald = 3.90, 

p = .048) for transferring to a graduate or professional program compared to not 
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transferring to a four-year institution. The group of students transferring into a 

professional or graduate program had the highest average first term GPA (M = 3.89, 

SD = .33) compared to students in the other categories of transfer outcome (see Figure 

3). All the students in this category transferred into a professional or graduate 

program, in the health professions or related-clinical sciences. The association 

between GPA and successful transfer to a professional or graduate program may 

reflect the competitive nature of programs such as pharmacy, that students transferred 

into. This detail is pertinent because these data would not reflect unsuccessful 

applications to professional programs. 

Completion of College Math as a Predictor for Transfer to a Professional or 

Graduate Program 

Completing college math in the first year was also a significant predictor (B= 

2.15, (SE = 1.03) Wald = 4.33, p = .04) for transferring into a graduate or professional 

program. The group of students transferring into a professional or graduate program 

had the highest level of completing college math in the first year (89%, n = 9) 

compared to students in the other categories of transfer outcome (see Figure 3). The 

finding that completing college level math is a predictor of transfer outcomes for the 

group of students studied is consistent with previous research (Belfield et al., 2019; 

Flanders, 2017; Hagedorn & DuBray, 2010), where completion of college-level 

gateway courses such as college-level math was a good predictor of success in a 

broader population of community college students.  
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Program Credits as a Predictor for Transfer to a Professional or Graduate Program 

 transfer 

map (MTM) was not a significant predictor (p 

to a professional or graduate program. This finding is consistent with the evidence 

based on transfer outcome that majoring in biology was not the goal for this group of 

students. 

Leading Indicators of Academic Momentum Not Included in Model 

The additional leading indicators screened as potential predictors for fitting the 

logistic regression model were: (a) credit accumulation in the first term, first year, (b) 

-year enrollment intensity. 

These indicators were not predictive of transfer (see Table 8 and Table 9). This finding 

is not consistent with previous research (Adelman, 1999, 2005, 2006; Attewell & 

Monaghan, 2016; Belfield et al., 2019) where the rate of credit accumulation is a 

foundational element of academic momentum. Several elements of this study may 

have contributed to the differences observed. First, many of the previous studies have 

focused on first-time college students of traditional age (Adelman, 1999, 2005, 2006; 

Attewell et al., 2012; Attewell & Monaghan, 2016; Belfield et al., 2019). The present 

study included a representative mix of community college students, some of whom 

were not first-time college students, and the majority of whom (53%, n = 183) were of 

post-traditional age. Older students were carrying fewer credits (see Figure 15). It was 

not known if this was related to their work-status. Working more than 30 hours per 

(2016) study on the 
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relationship of credit load to academic momentum towards degree completion. 

Differences in course-taking behavior dissagregated by age are discussed later in this 

chapter in research question three. Second, some of the students in the study had a 

long association with the community college. These students may have been accessing 

the institution for more than just the transfer function. Calculating the credit 

accumulation for the first year or the first term enrolled, when the student is perhaps 

taking a class for personal enrichment, may not have the same predictive value as 

calculating it when a student is accessing the institution for the transfer function. 

Research Question Two 

An examination of the patterns of course-taking behavior of students in a 

biology-degree transfer sequence at a large western community college found that 

students had a broad range of coursework in biology, chemistry, physics, and math 

prior to 

average of 3.37 credits (SD = 5.63) of biology, 5.0 credits (SD = 5.79) of chemistry, 

.77 credits (SD = 2.52) of physics and 5.65 credits (SD = 6.12) of math, prior to the 

laboratory class combination in these disciplines ranged from four to five credits, 

depending on the level. It was evident that students were attempting the first course in 

-level STEM 

classes. This variation in course-preparation informs an understanding of the 

challenges inherent in creating equitable learning opportunities in the 

classroom. 
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Prior Biology Coursework and Outcomes 

The number of prior biology classes ranged widely from zero to seven with 

37% of students (n = 128) having some prior college-level biology on their transcript 

(see Table 10). Most of the students with prior college-level biology on their 

transcripts (66%, n = 85) had taken 100-level biology. High-school or 100-level 

biology is recommended, but t

biology prerequisites, and 100-

map for transfer (HECC, 2020). There was no significant difference in the number of 

students who completed the first-

attempt based on their category of prior biology course-taking behavior ( 2(3, N = 

342) = 5.95, p = .11) raising some questions about the efficacy of the recommendation 

to take 100-level biology prior to 

infer causality for these results, here and in the following discussions, because of the 

non-experimental design of the project, but the questions raised by the pattern of 

course taking do suggest the need for further consideration. The recommendation to 

take a 100- ht account for 

some of the course taking patterns, but 20% (n = 68) of the students in the study had 

more than one previous biology course. Given that the excess accumulation of 

unnecessary credits has been identified as a barrier to completion for community 

college students (Monaghan & Attewell, 2015), this pattern of accumulation of 100-

level biology credits points to an opportunity for targeted advising (Bailey et al., 

2015). It may also suggest that a student is developing aspirations and STEM self-
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efficacy (Wang, 2017), based on their exploratory experiences in biology. Regardless, 

of the reason for the pattern, the documentation of the range of prior student 

experience with college-level biology in the classroom, calls for teaching strategies 

that promote equitable learning environments for students with variable STEM 

backgrounds.  

Students who were in different course taking categories did receive 

significantly different grades in the first term of th ( 2(9, N 

= 342) = 19.19, p = .03). The reality that 37% of the students in the first course in 

competitive environment (Holland, 2019) where first generation, female, and 

historically underrepresented students often experience imposter syndrome (Canning 

et al., 2020; Clance & Imes, 1978; Lindemann et al., 2016) or a lack of a sense of 

belonging (Rodriguez & Blaney, 2020). Information about the additional component 

of college preparedness, based on high school biology background, would be an 

important piece of information before making conclusions about whether the prior 

college biology course taking patterns exacerbated existing inequities or provided an 

opportunity for different groups of students to augment their high school backgrounds 

before attempting the first course in sequence. 

Prior Chemistry Coursework and Outcomes 

The patterns of chemistry course-taking prior to students attempting the first 

alignments and equitable classroom learning environments. The 200-level chemistry 
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class has a 100- -college math 

prerequisite and a 100-level chemistry co-requisite. Most students (57%, n = 194) had 

begun their chemistry prepara

biology sequence (see Figure 7). The significant difference in the number of students 

who completed the first-

based on their category of chemistry course-taking behavior ( 2(3, N = 342) = 8.414, p 

= .04) raises some questions about the chemistry co-requisite currently in place. The 

findings that students with more prior 200-level chemistry coursework tended to be 

more successful in their first at

should be done to investigate the possibility that chemistry should be a pre-requisite 

and not a co- -requisite would be 

consistent with the curricular scaffolding for undergraduate biology programs at other 

institutions (Kohn et al., 2018).  

chemistry and some undergraduate education reform efforts have focused on better 

integration of concepts between the physical and biological sciences (Thompson et al., 

2013). Previous research on the curricular connections between undergraduate 

chemistry and biology has demonstrated that student experiences with some concepts 

fundamental to both chemistry and biology, such as energy, are presented differently 

between disciplines (Kohn et al. 2018). Kohn et al. (2018) suggest that instructors 

from different disciplines must work together to provide learning opportunities to 

connect concepts and facilitate transfer of knowledge. This proposal represents both a 
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challenge and an opportunity for collaboration in a context where students are not 

progressing through the courses in the same sequence.  

Alternatively, the increased completion for students with additional experience 

in college-level chemistry may reflect the filtering effect of unsuccessful chemistry as 

a gateway course (Cohen & Kelly, 2019a). This filtering effect may also be relevant 

for the patterns of course taking, and student success previously discussed for biology 

and math. Koch and Drake (2018) found that introductory chemistry served as a 

gateway course for student success. Their study of students at 36 different universities 

and colleges found that the average rate of not successfully completing introductory 

chemistry was 29% (n = 20,987). These findings were consistent with those of Cohen 

and Kelly (2019a) who found that enrollment in chemistry predicted a change from a 

STEM to a non-STEM major and concluded that chemistry was a primary STEM 

gatekeeper. Students who pass through one gateway course to the next one may have 

increased chances of success, based on characteristics related to college success that 

are independent of the disciplinary content they gained from the first course. Before 

implementing more stringent chemistry pre-requisites for the first course in the 

 how critical chemistry concepts are introduced 

within the context of that course might also be beneficial. 

Prior Physics Courswork and Outcomes 

The course-

biology sequence was very low; only 12% (n = 40) of the students in the study had 

college physics, at any level, on their transcripts (see Table 12). Most of that course 
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taking was 200-level physics (9%, n = 31). Included in the 200-level physics options 

track were algebra-based physics and calculus-based physics. The algebra-based 

physics had a 100-level math requirement and the calculus-based physics had a 200-

level math requirement. The need to complete these math prerequisites may have 

impacted the timing of physics course-taking. There was no significant difference in 

the number of students who completed the first- ence 

on their first attempt based on their category of prior physics course-taking behavior 

( 2(2, N = 342) = 5.97, p = .051) (see Figure 9). Physics course-taking was not a 

predictor in the logistic regression model fit for transfer outcomes discussed in 

research question four. The low sample size for the number of students taking any 

physics at all precluded asking more nuanced questions based on the different physics 

pathways and remains an opportunity for future research. A slightly higher sample size 

might very well have produced a significant result, but it would nonetheless remain an 

uncommon element of student preparedness. 

Prior Math Coursework and Outcomes 

intermediate algebra, a pre-college level math class, so it is not surprising that most 

students (67%, n = 231) had some level of math on their community college transcript. 

Many students in the study had pre-college or remedial math as part of their course-

taking history (42%, n = 143) but only 9% (n = 31) had pre-college math as the 

highest level of math on their transcript. There was a significant difference in the 

number of students who completed the first-
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the first attempt based on the highest level of prior math recorded on their transcript 

( 2(3, N = 342) = 11.34, p = .01). Completing college level math in the first year was 

identified as a variable in the logistic regression model fit for predicting transfer 

category for the group of students in this study (see prior discussion of research 

question one). This finding is consistent with earlier research identifying math as a key 

element in the accumulation of STEM academic momentum (Calcagno et al., 2007; 

Cohen & Kelly, 2019b, 2020; Hagedorn & DuBray, 2010; Park et al., 2020; Park & 

Ngo, 2021; Wang, Wang, et al., 2017). For example, previous research suggests that 

higher levels of math self-efficacy were more likely to change student academic 

trajectories from a vocational pathway towards a transfer degree (Chan & Wang, 

2018). Many studies have documented the role of remedial or pre-college math 

placement in community college transfer success (Bahr, 2010, 2013a; Melguizo & 

Ngo, 2020; Park et al., 2020; Park & Ngo, 2021). Previous research has shown that 

misalignment of math placement can hinder STEM-aspiring students from pursing 

STEM pathways (Park et al., 2020). Practically, students in this study who were 

initially placed in pre-college math (n = 143) would not have been able to begin the 

account for the low number of students in the study who attempted the m

biology sequence in their first year (30%, n = 102).  

Course-taking patterns in math disaggregated by gender, age, race, and 

ethnicity are discussed in research question three. The logistic regression model fit to 

determine the predictive value of the number of pre-college, 100 and 200-level math 



154 
 
credits accumulated by students in this study for transfer category is discussed in 

research question four. Many students in the present study had no math course-taking 

on their transcripts (33%, n = 111). T

sequence, and the course-taking patterns examined for determination of whether they 

had completed college-level math in the first year, made it clear that no math on the 

transcripts did not mean the absence of a background in math. Students may have 

tested out of the math prerequisites, transferred in credits, or, had the prerequisites 

waived. These details would be important for establishing causal relationships and to 

suggest directions for future research. However, the results for this study present a 

picture of a broad range of math backgrounds amongst the students in the first class in 

should be paid to how biology concepts dependent on foundational math skills are 

presented in the classroom. 

Grade Distribution and Retention 

The grade distribution patterns and retention rates in the three-

biology sequence suggest that the first in the sequence is a gatekeeper course. 

Gateway courses are those that a student must complete to continue with their program 

of study and they can become gatekeepers that are barriers, creating friction that slows 

academic momentum when completion rates are low (Flanders, 2017; Hagedorn & 

DuBray, 2010; Zeidenberg et al., 2012). The number of students who did not 

successfully complete on the first attempt was highest for the first course in the 

n = 99). Non-completion dropped considerably in the 
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second course to 18% (n = 41) and again in the third course to less than 1% (n = 9). 

The high level of completion in the third class in the sequence is very encouraging but 

it is important to juxtapose that level of completion with the overall retention rate 

within the sequence of 49% (n = 169). Less than half of the students who begin the 

that these 

data reflect some students who completed the pre-requisite class but chose not to 

gardless, 

are opportunities to improve student outcomes by focusing on the student experience 

(Brewer & Smith, 2011).   

multiple times (17%, n = 56). A few students (3%, n = 10) took the class three or more 

well (see Table 14). Of the students who repeated the first course in the sequence, 20% 

(n = 11) had a passing grade on the first attempt and only 64% (n =7) improved their 

grade on the second attempt. Only 60% of the 45 students who repeated the first class 

because of non-completion eventually progressed to the second course in the 

sequence. However, for the determined few that took the class three or more times, all 

of them progressed to the second course. These findings suggest that one of the 

additional supports that may be beneficial to this group of students is increased access 

to discipline specific advisors. This opportunity would be consistent with the supports 
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suggested by the guided pathways reform movement (Bailey et al., 2015). Students 

registering to repeat a gateway course could be flagged for connection to advising and 

tutoring resources appropriate for STEM transfer pathways at the institution (Bailey et 

al., 2015; Packard & Jeffers, 2013).  

Continuity 

The students who progressed thr

a surprising degree of continuity in their enrollment patterns. Enrollment was tracked 

beginning from the term they enrolled in m

Most students (82%, n = 164) who completed t

sequence on the first attempt enrolled in the second class in the sequence the following 

term. A small number of students (9%, n = 18) waited a term and then continued to the 

next course. Only 4% (n = 8) waited more than a year to continue in the sequence. 

This pattern of course taking was consistent for the students who completed the 

first attempt. Most students 

(86%, n = 121) took the third course in the sequence the following term. Only 3% (n = 

5) waited more than a year to continue to the final course in the sequence. These 

results are surprising because previous research has shown that many community 

college students have intermittent enrollment patterns (Crosta, 2014). This previous 

research demonstrated a positive association between completion of a community 

college credential and the degree of enrollment continuity. Given this connection, 

Crosta (2014) expresses concern that the ability of students to begin a sequence in a 

flexible community college structure, at multiple points during the year rather than just 
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in the fall, may delay success. The data presented in the current study include summer 

terms and represent a variety of entry points during the academic year, and suggest 

that continuous ac

the students in this population. The enrollment gap between the first and second 

sed in 

research question four. Future investigations might focus on querying those students 

continue to the second, to see if access in terms of course scheduling details of time, 

place and modality of instruction was a barrier. 

Enrollment Intensity  

Students ranged broadly in how many credits (M = 11.83, SD = 3.57) they 

carrying a full load while a small number were taking just 

(see Figure 13). The variation in enrollment is consistent with earlier findings by 

Crosta (2014) who found that community college students are extremely variable in 

their enrollment patterns. Enrollment intensity during the term a student first 

outcome as discussed in research question four.  
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Research Question Three 

Prior Coursework in Biology, Chemistry, Physics and Math Disaggregated by 

Gender 

Most of the students whose course-taking behaviors were tracked for this study 

were female (59%, n = 200). This demographic mirrors national trends for 

awarded in the life sciences (NSB, 2019). Disaggregation of the course-taking data by 

gender revealed very few differences between male and female students except that 

fewer women were enrolled full-time compared to men. There were no significant 

differences between female and male students in the level of biology ( 2(3, N = 337) = 

.56, p = .91), chemistry ( 2(3, N = 337) = .93, p = .82), physics ( 2(2, N = 337) = 1.01, 

p = .60) or math ( 2(2, N = 228) = .35, p = .84) coursework completed prior to 

consistent with the prior findings that, when the field of study has been controlled for, 

course-taking differences such as those often reported between male and female 

students in math, were not evident (Douglas & Salzman, 2020). Alternati

(2016a) study on the course-taking patterns of community college students found a 

relationship between the number of credits of math, the timing of math, and the 

probability of transfer in STEM for women. No similar patterns emerged from this 

study. Gender was not a predictor for transfer category in the logistic regression model 

discussed in research question four. However, the trends that emerged when the 
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course-taking patterns were disaggregated by gender and age, and gender, race, and 

ethnicity in research question three are a reminder to consider the intersectionality of 

identity and how that impacts student experience. 

Grade Distribution Disaggregated by Gender 

There were also no significant differences between female and male students in 

the grade distributions for the ( 2(3, N = 337) = 2.29, p 

= .51), or for the second course ( 2(3, N = 225) = 1.09, p = .78) or the third course 

( 2(3, N = 167) = 1.73, p = .63) in the sequence. These results are also consistent with 

other studies such as the one by Lauer et al. (2013) where there were no differences in 

the grades between male and female students in an introductory biology class at a mid-

sized research university.    

Enrollment Intensity Disaggregated by Gender 

There was a significant difference (t(335) = -2.01, p = .04) between females 

and males in enrollment intensity during the term they were enrolled in their first 

 Fewer females (57%) compared to 

males (63%) were attending full-time (see Figure 14). More females (14%) than males 

discrepancy may come from studies (Costello, 2012) that have found that community 

colleges have higher proportions of students who are low income and single parents 

(Horn & Nevill, 2006). The single parents who are attending community college are 

more likely to be women (Horn & Nevill, 2006). Affordability, child-care availability 
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and tensions between work and home life can be factors that limit the ability of some 

women to carry high credit loads (Costello, 2012). Additional demographic and 

qualitative information would be needed to further explore the relationship of these 

potential factors to the finding that the females in this study enrolled at a lower 

intensity. However, it does suggest that any interpretation of course-taking behavior 

should take into consideration potential barriers to access such as the limited 

availability of evening classes for working students, or class times that do not coincide 

with available daycare options. 

It is important to note that a small number of students in the study did not 

identify as female or male. The sample size was very small, so to maintain 

confidentiality they were removed from the data disaggregated by gender. There is a 

need for future research to also consider the experiences of gender non-conforming 

students in STEM (Kersey & Voigt, 2020). 

Prior Coursework Biology, Chemistry, Physics and Math, Disaggregated by Age 

Most of the students in this study were of post-traditional age (M = 26 years, 

SD = 6.8). Students under 18 years old were not included to exclude high school 

students. Students in the study were categorized into three age categories: (a) 23 years 

and younger (b) 24-29 years, and (c) 30 years and older. There were significant 

differences by age category in the level of biology ( 2(6, N = 342) = 21.48, p = .002), 

chemistry ( 2(6, N = 342) = 20.34, p = .002), and math ( 2(4, N = 231) = 17.16, p = 

.002
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biology sequence, but not for physics ( 2(4, N = 342) = 1.15, p = .87). The results may 

have been a function of the length of time available to older students create an 

educational history. This study differs from others in that all the students, 18 and 

ence were included, not just 

those who were first-time college students. This more inclusive group of students 

incorporates those returning to college to pick up prerequisite courses for professional 

or graduate school that included other prior 200-level STEM courses, evidenced by the 

finding that 55% (n = 5) of the students who transferred directly to professional or 

graduate programs were in the 24-29 years old age category. The largest portion of the 

students in the 24-29 years old category did not transfer directly to professional or 

graduate school but to a biology or biology related program (43%, n = 42). This trend 

is very similar to the portion of students in the 23 years and younger category who 

transferred into a biology or biology related program (40%, n = 63) and more than the 

portion of students 30 years and older who transferred into that same category (29%, n 

=24). The students aged 24-29 years were more likely to have 200-level STEM 

coursework compared to other age groups; with 20% (n = 20) of students in that group 

with 200-level biology, 37% (n = 37) with 200-level chemistry, 13% (n = 13) with 

200-level physics and 55% (n = 37) with 200 level Math (see Table 18).   

The possibility that the differences in amount of course-taking were strictly a 

function of the time available to create an educational history was not consistent with 

the findings for the group of students aged 30 years or more. This group of students 

had slightly lower percentages of 200-level biology (19%, n = 16), chemistry (30%, n 
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= 26), and physics (7%, n = 6) but much lower percentages of 200-level math (22%, n 

= 13) compared to the students in the 24-29 years old category (see Table 18). The 

largest portion of the students in the 30 years or more age category did not transfer 

(40%, n = 33). There is some resonance between the findings for this group of 

students and the complex relationship between age, credit accumulation and transfer in 

STEM previously explored in a study of first-time college students at community 

college (Wang, 2016a). Data mining techniques were used (Wang, 2016a) to 

determine the relationship of accumulation of STEM credits, particularly in math, and 

transfer outcomes. (2016a) study students 24 years and older were found to 

be less likely to transfer in either a STEM or non-STEM program compared to their 

traditional aged counterparts when both groups had 12-25 transferable STEM credits, 

and 2.7-6 math credits. The discrepancies d the findings for 

the group of students 24-29 years old in this study compared to their traditional aged 

counterparts, raise some questions about other important differences between age 

categories. 
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Grade Distribution Disaggregated by Age 

It may be that prior educational experiences or differences in educational goals 

are complicating the interpretation of these results. Students who delay entry into 

college as first-time students often have poorer outcomes, with researcher s citing lack 

of study skills and competing obligations as factors (Adelman, 2006; Richardson & 

King, 1998). Those previous research findings are not consistent with the results of 

this study that there were no significant differences in the grade distributions based on 

age category for the first or third course in th

significant difference in the grade distributions based on age category for the second 

 

category receiving higher grades compared to the younger and older students. The 

difference for the group of students in this study is that many of the older students 

have prior college experience. 

Enrollment Intensity Disaggregated by Age 

The role of competing obligations as factors in educational outcomes for older 

students is consistent with the significant differences found in enrollment intensity for 

students in different age groups (F(2, 339) = 10.19, p < .001), although the effect size 

for age was weak (eta-squared = .06) (Muijs, 2016). Most students who were 23 years 

or younger (70%) and just over half of the students who were 24 to 29 years (55%) 

were enrolled full-time. Less than half (44%, n = 36) of the students who were 30 

years or older were enrolled full time (see Figure 15). In the group of students who 

were 30 years or older and attending at less than half time (usually taking just one 
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course), most of those students were female (87%, n = 13). This was not the case for 

the traditional age category of students where most of the females were attending full 

time and they made up 61% (n = 68) of the full-time enrollment category. There is an 

intersection in course taking intensity of the role of age and gender, connecting to the 

previous discussion on the differences in course-taking intensity found based on 

gender. Age as a predictor for transfer outcome is discussed further in research 

question four. Recognizing the intersectional nature of the experiences that inform the 

needs of community college students is important in supporting their success. Wang et 

al. (2018) found that age was an important variable in determining the kind of social 

supports that were relevant for community college success. Female students, who are 

30 or older appear to be engaging with course-taking in a different way than male or 

younger students and therefore may need connections to different supports and 

resources at the institution. 

Prior Coursework in Biology, Chemistry, Physics and Math Disaggregated by Race 

and Ethnicity 

The group of students whose course-taking behaviors were tracked for this 

study did not reflect the level of diversity in the general student population at the 

large, western community college (see Table 1). The general student body at the study 

site was predominately White (61%) and the group of participants in the present study 

was even more so, (63%). Additionally, there were more Asian students (10%) and 

fewer Black/African American (3%) and Hispanic students (8%) enrolled in the first 
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2014/15. This pattern of diversity in biology that is not representative of the 

surrounding population is consistent with the concerns for STEM engagement at the 

national level (Musu-Gillette et al., 2017; NSB, 2019; Valantine & Collins, 2015). 

Representation was equivalent to general student population for those who identified 

as International, Nonresident alien, Multi-racial, or Hawaiian/Pacific Islander. The 

representation in some of these categories of race and ethnicity was sufficiently small 

to require aggregation to protect student confidentiality. The aggregate category 

included students who identified as American Indian, Hawaiian/Pacific Islander and 

International/Nonresident Aliens.  

There were no significant differences in credits earned prior 

biology, in biology (F(6,335) = .79, p = .58), chemistry (F(6,335) = 1.17, p = .32), or 

math (F(6,335) = 1.06, p = .39) between students in different categories of race and 

ethnicity. There were significant differences seen in physics course taking (F(6,335) = 

2.3, p = .04) although the overall level of physics course work was very small and the 

effect size was weak (eta-squared = .04) (Muijs, 2016).  

There were some different trends in course-taking behavior between students 

in different categories of race and ethnicity. Most students in the American Indian and 

Other Races/Ethnicities, Asian, Hispanic, Non-reporting and White categories of race 

and ethnicity entered the first course 

college-level biology coursework. Half or more of the Black/African American and 

Multiracial students had some prior college-level biology coursework, mostly at the 

100-level (see Figure 17). Most students in all the categories of race and ethnicity 
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chemistry coursework (see Figure 18). The course-taking in physics represented a very 

small number of students. Students in the American Indian and Other 

Races/Ethnicities category had the highest level of prior physics course-work and 

Black/African Americans had the lowest, before enrolling in the first course-in 

19). For the students with math courses on their transcript, 

most students in all the categories of race and ethnicity had some college-level math 

prior to enrolling in t 19). More 

prior coursework in biology, chemistry, physics, or chemistry was not necessarily 

 

Grade Distribution Disaggregated by Race and Ethnicity 

The sample sizes for some of the categories of race and ethnicity were too 

small to make comparisons using inferential statistics, but some trends emerged that 

pointed to disparities in the distribution of grades and pass rates. Examination of the 

grade distributions disaggregated by race and ethnicity indicate dissimilar distribution 

patterns on the first 

Students who were represented in the American Indian and Other Races/Ethnicities 

(73%, n = 11), did not report (72%, n = 13), identified as Asian (76%, n = 25), 

Multiracial (68%, n = 15) or, White (74%, n = 159), completed the first course in the 

tified as 

Black/African American (54%, n = 6), or Hispanic (52%, n = 14) (see Figure 20). 

Most students completed the second cours
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the Black/African American students whose pass rates dropped from 54% in the first 

sequence was 93% or higher for all categories of race, and ethnicity (see Figure 22). 

However, disaggregating the pass rates by gender, race and ethnicity indicated that the 

gender ratios for the remaining students had changed, and none of the Black/African 

American males completed the second class or enrolled in the third (see Figure 25). 

Slight drops in relative proportions of passing students were also seen for Asian males, 

who went from 42% to 31% of the passing students for that category. For all other 

categories, males were a higher proportion of the passing students by the third course 

ysis. The 

trend observed for levels of completion for Black/African American and Hispanic 

0) is consistent some previous 

studies (Hagedorn & DuBray, 2010; Weston et al., 2019). The loss of the African 

American males from the course sequence is also consistent with a large body of 

literature that documents the opportunity gap for African American males in higher 

education (Bush, 2010; Fries-Britt, 2017; Wood, 2012).  

A comparison of the proportion of students in each category of race and 

e with and without 

college chemistry on their transcripts indicated higher pass rates for Asian, Hispanic, 

Multiracial, and White students who had prior college chemistry course work 

compared to no prior enrollment, but lower pass rates for students in the American 

Indian and Other Races/Ethnicities category and Black/African Americans who had 
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chemistry coursework (see Figure 26). This trend is interesting because there was a 

significant difference in the number of students, not disaggregated by race and 

ethnicity, who completed the first term on their first attempt based on their category of 

prior chemistry course taking behavior ( 2(3, N = 342) = 8.414, p = .04), (see Figure 

7). Most of the chemistry course-taking by the students in the American Indian and 

Other Races/Ethnicities, and Black/African American students prior to attempting the 

-level.  

This finding again raises the question of the appropriateness of the existing 

chemistry co- -level course. It is also a 

reminder that the level o

biology sequence was unknown. 

class with no college chemistry on their transcripts may have arrived with a strong 

background from high school or other educational experiences (Wang, 2013a). 

ology 

sequence with college-level course work that exceeded existing prerequisite 

requirements and not completing, it is also an opportunity to highlight the importance 

of culturally-responsive and anti-racist pedagogies for the twenty-first century 

community college classroom because classroom climate is key factor in student 

success (Kishimoto, 2018; Ladson-Billings, 2014). Recent work by Whitcomb and 

Singh (2021), documented a ten-year trend of consistently lower GPAs for historically 

underrepresented students, compared to white students at a large public university for 

a range STEM majors, including biology. Based on their findings, these authors 
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(Whitcomb & Singh, 2021) call for greater support, mentoring and guidance for 

historically underrepresented students trying to overcome inequities faced at a 

primarily white institution. 

Enrollment Intensity Disaggregated by Race and Ethnicity 

There were no significant differences between students in different categories 

of race and ethnicity based on the intensity of enrollment, measured by the number of 

biology sequence, when compared using a one-way ANOVA (F(6,335) = 59, p = .74). 

Hispanic students had the highest average enrollment intensity based on credits (M = 

12.52, SD = 3.31) and Black/African American students had the lowest average 

enrollment intensity based on credits (M = 10.55, SD = 3.88). Students in the 

American Indian and Other Races/Ethnicities category, and Asian students had the 

highest proportion of full-time attendance (see Figure 27). Black/African American 

students had the highest proportion of less than half-time attendance. Employment 

status and socioeconomic situation was unknown for these students. Enrollment 

intensity is an important factor in the ability to accumulate credits to achieve academic 

momentum (Adelman, 1999, 2006; Crosta, 2014). The majority of community college 

students work and the demands of work and school often present academic challenges 

(Horn & Nevill, 2006). 
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Research Question Four 

Predictive Value of Course-Taking Behaviors for Transfer Outcome 

The examination of leading indicators of academic momentum in research 

question one identified first term GPA as significant predictor of transfer outcome. 

Accumulation of credits associated with the biology MTM and passing college level 

math in the first year were found to be effect modifiers and were included in the 

model. The model only correctly classified 40% of cases and was a weak predictor for 

transfer outcomes other than transfer to a biology or biology related program. The goal 

of research question four was to identify variables related to course-taking that could 

predict transfer outcome in a multinomial logistic regression model. Based on the 

course-taking information gathered in research question two and the application of a 

purposeful selection process (Bursac et al., 2008), the following variables were fit to a 

logic regression model: (a) number of credits of 200-level biology accumulated prior 

 (b) the grade on the first attempt in the 

(c) enrollment intensity during the term enrolled in 

predictor for all categories of transfer outcome compared to the model fit for the 

leading indicators of academic momentum in research question one.  

Transfer to a Program that was Biology or Biology-related 

program that was biology or biology related is intuitive and may be a good leading 

indicator of academic momentum for a biology major. Attewell et al. (2012) critique 
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(1999, 2006) work as a measure of academic 

momentum because they argue it is an effect rather than a cause. The same criticism 

argument would be the findings of Wang (2017) that STEM momentum has a 

cognitive domain that includes the development of STEM efficacy. Grades may not be 

the best measure of learning, but they are a unit of measure that is traded for resources 

in the academic world and they are highly valued by students. This practice has 

implications for advising and for targeting student support resources. The current 

leading indicators of academic momentum are tied to the first year of enrollment. The 

work of Chan and Wang (2018), suggests that a student s relationship with their goals 

STEM momentum model suggests that students can change their direction depending 

on their accumulated experiences (Wang, 2016b; Wang, Lee, et al., 2017). The leading 

indicators for academic momentum may be more beneficial for students whose 

educational goals are already identified in the first year and less so for students who 

are exploring. Wang et al.(2019) has identified a variety of pathways that are 

potentially successful for transfer in STEM and some of them begin with general 

education courses. The addition of a predictive indicator such as the grade in the first 

advisor an indicator of when a student might 

have begun to act on the academic goal of transferring in biology. The indicator would 

could be easily flagged at 

registration with easy follow-up at the end of the term.  



172 
 

The predictive value for academic performan

biology plus the relatively high no pass rate documented in research questions two and 

(Flanders, 2017; 

Hagedorn & DuBray, 2010). Identifying a gateway class allows for effective 

deployment of resources. Attention to best practices based on culturally responsive 

pedagogy (Ladson-Billings, 2014), embedded, accurate, discipline-specific advising 

(Packard & Jeffers, 2013), plus additional outreach to connect students to support 

systems such as information about on-campus child-care availability might help retain 

more historically underserved students. 

Transfer to a Professional or Graduate Program 

The significant predictors for transfer to a professional or graduate program 

In previous descriptions of elements of academic momentum, full-time enrollment has 

been connected to credit accumulation and successful transfer or baccalaureate degree 

completion (Adelman, 1999, 2006; Crosta, 2014). The negative relationship between 

enrollment intensity and transfer to a professional or graduate program is therefore 

very interesting. This finding and the somewhat anomalous age data discussed in 

research question three, where the 24 to 29 year-old age category of students showed 

very different characteristics than the younger and older cohorts is another reminder 

that community colleges serve a variety of functions. The group of students who are 

not utilizing the community college for the baccalaureate transfer function but for 

accumulating prerequisites to transfer to a professional or graduate program began to 



173 
 
emerge as a distinct group in this study. The needs of this group of adult learners may 

need to be considered in arenas like the scheduling of classes in ways that are different 

from those for students accessing the community college for other reasons.  

Limitations 

There are several limitations in this study that must be addressed. First, this 

study was conducted using the transcripts from a cohort of students at a single large 

western community college, limiting generalizability and external validity (Muijs, 

2016). Second, entering students at this institution do not currently need to declare a 

major, so student cohorts were identified by the proxy of course-enrollment. Student 

intent was inferred by e

may have engaged with the institution for different reasons than transfer to a four-year 

institution. Additional variables related to work life balance and socioeconomic status 

that may impact student outcomes are outside the scope of this research (Horn & 

Nevill, 2006). Information about educational experiences in high school or at other 

colleges was not available and may enhance the understanding of the patterns 

presented in this research (Adelman, 2006). Small sample sizes precluded inferential 

statistical analysis for some comparisons of data disaggregated by race and ethnicity. 

Therefore, emerging patterns in course-taking behavior and post-transfer outcomes 

will not provide inferences about causality but point to opportunities for further 

research (Muijs, 2016). Additionally, lack of control of the independent variables and 

non-random assignment of students to treatment groups are weaknesses for internal 

validity in an ex post facto design (Silva, 2010). The resulting limitations of the 
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generalizability of findings when participants are not selected randomly also limit 

external validity (Muijs, 2016). Despite these limitations, this research has enhanced 

the understanding of the relationship of course-taking patterns for students at a large, 

western community college, in a biology transfer sequence, to transfer outcomes. 

There is an opportunity for future research to address the limitations and deepen the 

understanding of that relationship to support student success. 

Future Research 

The exploration of the relationship between course-taking patterns in 

undergraduate biology and community college transfer-success in this ex post facto 

study raised many questions that will help direct future research. The examination of 

leading indicators of academic momentum for their value as predictors of transfer 

outcome, for a group of students that was not limited to first-time college students and 

was discipline-focused, led to questions about the appropriate timing metrics. Leading 

institution (Belfield et al., 2019; Leinbach & Jenkins, 2008). These metrics may have 

limited value when a student already has a long association with an institution and if 

they change their goals. More research tying the development of metrics to the 

emergence of student educational goals is needed.  

 This study documented patterns of course taking using a non-experimental 

design. Further exa

biology including information about high school STEM experiences and any relevant 

International Baccalaureate or Advanced Placement transfer credit, as well as 
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matching participants for known confounding variables, would be useful to address 

questions about causality. This might be particularly useful for curriculum design, 

including a review of appropriate prerequistes, given the relationships between prior 

course-taking behavior and outcom

this study.  

Further research is also needed to further understand the positive relationship 

between prior course-

Characteristics related to college success that are independent of disciplinary content 

may include the development of greater self-efficacy (Bandura & Schunk, 1981; Lent 

& Brown, 2019; Wang, 2017). The STEM transfer model conceptualized by Wang 

(2016b) suggests that transfer momentum is gained not just by the completion of 

individual elements of a STEM pathway, but 

trajectory in that pathway. In the STEM transfer model, academic momentum is the 

product of ongoing learning experiences and those that student has already 

experienced (Wang et al., 2017). Wang suggests that a component of STEM 

momentum is the building of STEM efficacy as a student experiences, success in 

STEM courses (2017). Pragmatically, the e

classroom may vary widely in their earlier exposure to college-level STEM 

coursework should challenge instructors to check assumptions about prior learning 

and inform the teaching strategies employed to meet student needs. 

The description of course-taking behavior disaggregated by gender, age, race, 

and ethnicity also provided direction for further inquiry. A growing number of 
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students are gender non-conforming (Kersey & Voigt, 2020). The small sample-size 

precluded bringing that perspective to this research, and more work should be done in 

this area to serve the needs of students who do not identify as male or female. The 

findings of differences in the course-taking intensity for different age groups of 

students raised questions about parental status, work status and socioeconomic levels. 

A previous study based on the 2015-16 academic year found that  over 31% of 

community college students enrolled in the 2015-16 academic year worked full-time 

(AACC, 2019), so this is a key factor influencing course-taking patterns. Additional 

research that includes these factors would be beneficial to understanding the patterns 

observed. The examination of the course-taking patterns that differed based on race 

and ethnicity was limited by a small sample size. Future research might employ quota 

sampling to ensure a more diverse student sample (Muijs, 2016). Questions also arose 

about the experience of the students in the classroom and the role that may have 

played in their course taking behaviors and outcomes (Eddy et al., 2014; Riegle-

Crumb et al., 2019; Seymour & Hewitt, 1997; Wood, 2012). Focus groups or other 

qualitative methods might be employed, in addition to quota sampling to gain a better 

understanding of, for example, the Black/African American male experience in 

. These and other student voices documenting their experiences in the 

of academic momentum to further inform the STEM transfer model (Wang, 2016b). 

The data used in this study represent a snapshot of the course-taking behavior 

and the resulting transfer outcomes for a group of students enrolled in the first course 
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the current situation. The issues of microaggressions in the classroom and systemic 

racism have begun to inform the discussion of how to support equitable student 

success in the classroom. The study site has more recently engaged in many 

discussions and a great deal of professional development to help the faculty develop 

skills for culturally-responsive, and anti-racist teaching practices (Kishimoto, 2018; 

Ladson-Billings, 2014). The data from this study period may serve as a baseline to 

hopefully document better outcomes at later times for historically underserved 

students in STEM.  

Finally, the fitting of the logistic regression model with course-taking variables 

to predict transfer success yielded some interesting predictors based on even a small 

student sample. Future research could test and extend the model to improve the 

usefulness for informing student biology transfer advising. Refining the model to 

include more elements related to t

map would extend the usefulness of the findings in this study. Additionally, it would 

be useful to extend the generalizability of these findings by examining course-taking 

patterns for additional years and including additional sites from a range of geographic 

locations. It would be useful to know how robust the relationships found in these data 

were on a national level. 

Implications and Conclusion 

The purpose of this non-experimental, quantitative study was to investigate the 

relationship of course-taking patterns of community college students enrolled in a 
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 biology sequence to successful transfer into a biology or biology-related 

degree track at four-year institutions. The research was guided by the seminal work of 

Adelman (1999, 2006) on course-taking as it relates to academic momentum and the 

STEM transfer model developed by Wang (2016b). The relationship of course-taking 

behavior to transfer outcomes for a population of students in a biology transfer 

sequence at a large community college in the Western U.S. was addressed using 

anonymized student transcript data provided by the institution and post-community 

college enrollment records from the National Student Clearinghouse database.  

Expand Leading Indicators of Academic Momentum 

The findings of this study that inform an understanding of how students gain 

academic momentum for successful transfer or completion have implications for how 

institutional resources could be deployed to improve transfer success, decrease 

opportunity gaps and ultimately help diversify participation in STEM fields (Belfield 

et al., 2019; Jenkins & Bailey, 2017; Malcom & Feder, 2016). Most of the leading 

indicators for academic momentum for traditional aged, first-time community college 

students (Adelman, 1999, 2005; Belfield et al., 2016, 2019; Calcagno et al., 2007; 

Chan & Wang, 2018; Clovis & Chang, 2019; Hagedorn & DuBray, 2010; Leinbach & 

Jenkins, 2008) were not good predictors of transfer outcomes for the more 

heterogenous group of students in this study. Seven metrics were investigated and of 

those only first-term GPA was significant predictor of transfer outcome for this 

population. Two additional variables were identified as effects modifiers: program 

credits completed the first year and college math completed the first year. This 
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confirms the predictive value of a few of the leading indicators of academic 

momentum but suggests that as signposts for focusing institutional resources in 

support of the student population studied, these indicators are not entirely adequate.  

Focus on the Classroom Experience 

Course-

were documented to gain a better understanding of academic momentum in this 

population to identify more relevant leading indicators. The description of course-

taking behavior for students prior to enrolling in the first-

indicated a broad range of preparation in college-level biology, chemistry, physics and 

math. (2016b) STEM transfer model includes aspects of 

experiences in the classroom in the theoretical framework. These elements combine 

the details of student course-taking behavior that creates STEM specific momentum 

(Wang, 2015) that in turn affects self-efficacy in STEM and outcome expectations 

regarding STEM and STEM transfer. This study informs that framework with the 

biology sequence. The broad range of prior college-level coursework of students in 

ggests the need to focus on that classroom experience. Prior 

research has explored the need for additional support for students coming into the 

college STEM classroom with deficits in their high school background (Carver et al., 

2017; Xu et al., 2018). The findings in the current study shift that conversation to 

consideration of the classroom climate when students are coming in with a wide range 

of assets based on their college-level background. In their seminal work, Seymour and 
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Hewitt (1997) discuss the role of an unwelcoming classroom climate as a factor for 

students leaving STEM classrooms. More recent work suggests that in many areas this 

has not changed, and undergraduates still experience the STEM classroom culture as 

competitive and unsupportive (Hunter, 2019). The reality of a student population with 

a very broad range of experience and STEM skills may exacerbate existing inequities 

and create an even more challenging classroom environment. Changing the classroom 

environment will require the instructor to intentionally create a supportive learning 

culture. 

Support Quality Instruction 

Creating a supportive learning culture that supports students with a broad range 

of STEM experience requires high quality instruction. The quality of instruction has 

been recognized as a key component in the success of undergraduate STEM students, 

particularly for historically underserved students (Brewer & Smith, 2011; Graham et 

al., 2013). While pedagogical differences exist between STEM disciplines 

(Fairweather & Paulson, 2008; Singer et al., 2012), teaching strategies that incorporate 

elements of active and collaborative learning have been found to improve student 

outcomes across STEM disciplines, particularly for historically underserved student 

populations (Fairweather & Paulson, 2008; Freeman et al., 2014; Haak et al., 2011). 

Quality instruction is not just a function of strategies but also of an understanding of 

the learning process. Andrews et al. (2011) found no association between success and 

changes in instructional practices such as the incorporation of strategies like active 

learning. They suggested that an understanding of the underlying pedagogy was 
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important in how effective the active learning strategy was in the classroom. This is 

(2013) that change in undergraduate 

STEM teaching is limited by a lack of understanding of theory both for practice and 

for models of change. Schinske et al. (2017) suggests a number of strategies specific 

to the community college for connecting theory and practice through broadening 

participation in biology education research. Additionally, productive partnerships 

between education and STEM departments at the undergraduate level are beginning to 

emerge, such as that documented by Schneider and Pickett (2006) for engineering and 

these may  

The focus on reform in the biology classroom experience is not new (Brewer & 

Smith, 2011; Henderson et al., 2011). Despite national investments in major reform 

initiatives and a large body of research documenting best practices in undergraduate 

STEM teaching, change in teaching strategies in undergraduate STEM classrooms has 

been slow (Dancy & Henderson, 2008; Singer et al., 2012; Stains et al., 2018). 

Barriers to STEM faculty changing teaching strategies include institutional and 

individual variables including, time, mismatch of institutional support and rewards 

systems, lack of pedagogical training, student resistance, and professional identity 

(Brownell & Tanner, 2012; Henderson et al., 2011). These realities and the 

that an institutional commitment to professional development is needed to support 

both full-time and part-time instructors to develop the skills to create a classroom 
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Focus on Equity and Inclusion 

The results of this study documented differences in course-taking patterns of 

the adult learners based on gender, age, race, and 

ethnicity. The trends identified suggest a need to consider the intersectionality of 

student identities and tailor supports to meet those needs. Strategies to meet those 

needs might include connecting students to advising or student services resources, as 

well initiatives to evaluate the classroom climate for equity and inclusion (Bailey et 

al., 2015; Goldrick-Rab & Shaw, 2018; Packard & Jeffers, 2013; Whitcomb & Singh, 

2021).  

It is important to note that the categories of race and ethnicity used in this 

study were based on how the students self-identified using the categories provided at 

the time of enrollment. These categories do not adequately represent the variation in 

student identities and experiences. Mindful of these limitations there is a need to 

engage student voices. To create a student-centered culture where the focus is on 

meeting the needs of a diverse group, who are engaging with the institution in a 

variety of ways for different reasons, the students need to be part of the process to 

further understand implications of the differences in course-taking patterns 

documented in this study. 

Discipline-specific Leading Indicators of Academic Momentum 

The course-taking patterns examined in this study that were fit to a logistic 

regression model identified a potential new leading indicator of academic momentum 

for a heterogenous group of students in a biology transfer sequence. The grade in the 
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 to a 

biology related program. This information combined with the findings based on the 

logistic regression model fit for leading indicators of academic momentum (Adelman, 

1999, 2005; Belfield et al., 2016, 2019; Calcagno et al., 2007; Chan & Wang, 2018; 

Clovis & Chang, 2019; Hagedorn & DuBray, 2010; Leinbach & Jenkins, 2008) where 

first term GPA was also signficant predictor of transfer for the overall model, begins 

to tell a cohesive story of the importance of early achievement. This is consistent with 

the STEM transfer model (Wang, 2016b) where the trajectory of the student is 

influenced both by the accumulation of appropriate academic elements, like gateway 

courses and the development of self-efficacy and outcome expectations (Lent et al., 

1994; Wang, 2016b). The combination of these early leading indicators, one general 

and one very discipline specific predictor, can help focus institutional resources to 

better support student outcomes.  

Conclusion 

The overa

that this is an important gateway class. The results of this study suggest a number of 

opportunities for institutional support. The relationship of prior coursetaking and 

outcomes, especially for chemistry and math, suggest a review of the prerequisites 

would be beneficial, and informs advising for program pathways. The number of 

students taking the course multiple times suggest an opportunity for targeted advising 

and embedded connections with student services supports. The broad range of STEM 

background and varying levels of enrollment intensity combined with the low 
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completion rates for some historically underrepresented groups suggest that 

appropriate professional development to prepare instructors to support students more 

holistically is warranted. This study reflects the course-taking and outcome patterns of 

students at a particular point in time and may provide a baseline for assessing the 

success of reform initiatives the institution has since embraced. The landscape of the 

community college classroom is complex and this study documents some of the 

The mission of a 

community college is to serve the community. Understanding the community of 

biology STEM learners better is a key step towards fulfilling that mission. 
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