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Abstract
We study the dynamics of coupled oscillator networks with higher-order interactions and their
ability to store information. In particular, the fixed points of these oscillator systems consist of two
clusters of oscillators that become entrained at opposite phases, mapping easily to information
more commonly represented by sequences of 0’s and 1’s. While 2N such fixed point states exist in a
system of N oscillators, we find that a relatively small fraction of these are stable, as chosen by the
network topology. To understand the memory selection of such oscillator networks, we derive a
stability criterion to identify precisely which states are stable, i.e., which pieces of information are
supported by the network. We also investigate the process by which the system can switch between
different stable states when a random perturbation is applied that may force the system into the
basin of attraction of another stable state.

1. Introduction

Collective behavior in ensembles of network-coupled dynamical units is an important area of research due
to a wide range of both natural and engineered applications [1, 2]. Examples include cardiac pacemakers [3],
synthetic cell engineering [4], and power grid dynamics [5, 6]. Moving beyond such a system’s ability to either
remain incoherent or synchronize into a single entrained group, various combinations of dynamical and struc-
tural properties may give rise to more complicated synchronization patterns, for instance when oscillators
form coexisting synchronized and incoherent groups known as chimera states [7] or spontaneously partition
themselves in different clusters that remain entrained within but do not synchronize with one another [8]. Of
particular interest here are patterns where phase oscillators form multiple entrained groups. In the illustrative
case of two groups, which will be our focus in this work, oscillator systems can be used as models for infor-
mation storage, treating oscillators that entrain to one or the other group as a 0 or 1, i.e., a bit, in a piece of
information [9–12]. Given the mappings between phase and integrate-and-fire oscillators [13], understanding
the dynamics that give rise to such patterns may shed light on cognitive function and memory [14–18].

In addition to the collective behavior seen in network dynamics that emerge from classical pair-wise inter-
actions, a great deal of interest has recently been paid to higher-order interactions, i.e., interactions that take
place between three or more units (and are fundamentally different than linear combinations of pair-wise
interactions) [19–21]. A large outstanding question in this direction is: what novel effects do such higher-
order interactions have on macroscopic behavior? Phase reduction techniques have already shown that such
interactions take place in generic oscillator systems [24, 25] and empirical data suggests that they may play an
important role in brain dynamics [26–28]. In particular, three-way interactions interactions may describe cor-
relations in neuronal spiking activity in the brain that provides a missing link between structure and function
[29]. Some results have been developed for treating synchronization of identical (possibly chaotic) oscillators
[22, 23] and higher-order interactions between phase oscillators have been investigated in a handful of studies
[30–34], but we demonstrated in recent work that such interactions naturally enable systems to store memory
and information via the kinds of patterns described above [35, 36].
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In this paper we study the process by which memory is generated in oscillator systems with non-trivial net-
work topologies and higher-order interactions. We find that, compared to the all-to-all coupled case studied in
references [35, 36], when there is an underlying network topology that constrains the interactions the mem-
ory capacity of the system, quantified by the number of stable fixed point states the dynamics supports, is also
constrained. Specifically, we identify precisely which oscillator states, i.e., pieces of information, are supported
by a given network topology using a linear stability criterion. We then study the process by which the system
switches from one piece of information to another as perturbations are applied to the different stable states
and may move the system into the basin of attraction of a different state.

The remainder of this paper is organized as follows. In section 2 we present the model and discuss the
connection between stable states and memory. In section 3 we present a stability analysis and explore mem-
ory capacity in oscillator networks with higher-order interactions with an illustrative example. In section 4 we
investigate the process by which the system can move between different stable states under random perturba-
tions, thereby switching between pieces of information. In section 5 we explore the effects of network structure
and investigate the asymmetry of stable states. In section 6 we conclude with a discussion of our results.

2. The 2-simplex oscillator model

We begin by consider an extension of the Kuramoto model with higher-order interactions, specifically three-
way, or 2-simplex, interactions [37]. The all-to-all coupled case was treated in detail in references [35, 36], but
when placed on a nontrivial network topology the system is governed by the following equations of motion
for N oscillators,

θ̇i = ωi +
K

2

N∑
j=1

N∑
l=1

Bijl sin(θj + θl − 2θi), (1)

where θi and ωi are the phase and natural frequency, respectively, of oscillator i and K is the global coupling
strength. Importantly, the coupling function is the sine of a linear combination of three oscillators, rather
than two, and interactions are determined by the adjacency tensor B. We note that this coupling function is
one of the two possibilities for 2-simplex interactions that arise from phase reduction. The other possibil-
ity, sin(2θj − θl − θi), does not admit stable solutions with multiple clusters, and therefore does not support
memory storage, so we focus on the coupling in equation (1). For simplicity we assume that the entries of B are
unweighted and undirected, so that Bijl = 1 if a three-way interaction exists between oscillators i, j, and l (and
other wise Bijl = 0) and Bijl = Bilj = Bjil = Bjli = Blij = Blji. This last property essentially states that interac-
tions are not directed and, with the factor of 2 in the denominator of equation (1), each three-way interactions
is counted exactly once. In principle, the higher-order structure encoded in B may be defined in different ways
depending on the application. In other words, the entries of B may or may not depend on the entries of an
underlying network consisting of nodes and links (i.e., 0- and 1-simplexes) encoded in an adjacency matrix A.
However, here we consider the case where higher-order interactions are in fact dictated by the adjacency matrix
A (which we assume is unweighted and undirected) so that Bijl = AijAjlAli, i.e., a higher-order interaction exists
between a group of three nodes if they are connected in a triangle.

The dynamics of equation (1) naturally give rise to synchronized state patterns that entrain oscillators in
two groups at opposite sides of the torus. To see this we introduce the set of local order parameters

zi = ri eiψi =
1

2

N∑
j=1

N∑
l=1

Bijl eiθj eiθl , (2)

which allows us to rewrite equation (1) as

θ̇i = ωi + Kri sin(ψi − 2θi). (3)

First, by entering the rotating reference frame θ �→ θ + ωt, where ω = 1
N

∑N
i=1 ωi is the mean natural fre-

quency, we may set the mean frequency to zero. Next, assuming that the dynamics relax to a stationary state,
oscillator i becomes phase-locked if |ωi| � Kri (we will return to this condition later) and converges to one of
two stable fixed points defined by

θ∗i = φi or φi + π. (4)

2
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where

φ∗
i =

ψi + arcsin
(

ωi
Kri

)

2
. (5)

A suitable shift initial conditions allows us to center the mean phases ψi about zero, and under typical condi-
tions we expect that phase-locking oscillators will have ψi ≈ 0, which, combined with equation (4), yields two
entrained groups of phase-locked oscillators: one about θ = 0 and the other about θ = π.

While this demonstrates that phase-locked oscillators tend to fall into one of two possible groups, the pres-
ence of drifting oscillators poses an issue in terms of interpretation. To this end, we consider the dynamics of
equation (1) in the regime where the coupling strength is sufficiently strong compared to the spread of fre-
quencies, so that K � |ωi| for all i = 1, . . . , N. By considering the rescaled time τ = Kt and approximating
ωi/K ≈ 0, equation (1) simplifies to

θ̇i =
1

2

N∑
j=1

N∑
l=1

Bijl sin(θj + θl − 2θi), (6)

in which case all oscillators converge to either 0 or π.
Before we move on to the analysis of these states, it is worthwhile to discuss their representation of infor-

mation. In particular, a fixed point of a system of N oscillators will be given by some θ∗ ∈ R
N , where each

θ∗i = 0 or π. This is easily interpretable as a string of bits: for instance, in a system of N = 5 oscillators we may
converge to the state θ∗ = [0, 0,π, 0,π]T, which one can be mapped to the sequence of bits (0, 0, 1, 0, 1). This
manner of memory in oscillator systems is not dissimilar to that observed in neural models consisting of Ising
spin particles, best exemplified in the seminal 1988 papers by Gardner [38] and Gardner and Derrida [39]. In
these models information bits, i.e., 0’s and 1’s, are equivalent not to oscillator phases, but Ising spins: pluses
and minuses. The oscillator systems studied here can then be interpreted as a different model for capturing
and studying a similar phenomenon.

3. Stability analysis

To understand the nature of fixed point states of the dynamics given by equation (6), we begin by analyzing their
asymptotic stability. Recall that we are interested in fixed points θ∗ ∈ R

N with entries θ∗i = 0 or π. First, 2N

such states exist. However, the dynamics are invariant under rotations, including rotation byπ, i.e., θ �→ θ + π,
so without any loss of generality we ‘anchor’ θ∗1 = 0, leaving 2N−1 possible fixed point solutions. Then, given
a fixed point θ∗, its stability is governed by the eigenvalues of the Jacobian matrix DF(θ∗) whose entries are
given by

DFij(θ
∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
N∑

k=1

N∑
l=1

Bikl cos(θ∗k + θ∗l − 2θ∗i ) if i = j,

N∑
l=1

Bijl cos(θ∗j + θ∗l − 2θ∗i ) if i �= j.

(7)

Due to the rotational invariance of the dynamics, DF(θ∗) is guaranteed to have one trivial eigenvalue λ = 0,
which can also be seen by noting that the rows of DF(θ∗) all sum to zero, so v ∝ 1 is an eigenvector with
eigenvalue λ = 0. Therefore, if all other eigenvalue have strictly negative real part, i.e., are contained in the
left-half complex plane, then θ∗ is stable, and otherwise it is unstable. This gives us the machinery to evaluate
the stability of each of the 2N−1 fixed points described above.

Before a more in-depth exploration of the stability of possible states we consider a small, illustrative
example. Specifically, consider the network and two states depicted in figures 1(a) and (b), where blue and yel-
low filled nodes correspond to states θi = 0 and π, respectively. (Here we index the nodes i = 1, 2, . . . , N = 8
in the clockwise direction, starting from the top, so we constrain θ1 = 0.) For the given network structure
(where all nodes are part of at least one connected triangle and therefore are part of at least one higher-
order interaction) the state depicted in (a) is stable, while the state in (b) is unstable. To see this we plot in
figure 1(c) the eigenvalue spectra of the Jacobian matrices DF(θ∗) for the two states (a) and (b) using circles
and crosses, respectively. Not that in with exception to the trivial eigenvalue λ = 0 for each, the full spec-
trum for (a) is contained in the left-half complex plane, whereas four eigenvalues for (b) are located in the
right-half complex plane. To test this stability criterion we directly simulate the evolution of a small pertur-
bation δθ(t) = θ(t) − θ∗ initially set at ‖δθ(0)‖ = 10−2 and plot the results in figure 1(d). Time series for
perturbations to states (a) and (b) are plotted as thick solid and dashed curves, respectively, showing that the

3
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Figure 1. Example: Stable and unstable states. (a) and (b) Two possible fixed points of the dynamics that are stable and unstable,
respectively, on a network of size N = 8. Oscillator values θ = 0 and π are colored blue and yellow, respectively. (The top right
oscillator is constrained to be θ∗1 = 0.) (c) Eigenvalue spectrum of the Jacobian DF(θ∗) for states depicted in (a) and (b), plotted
as circles and crosses, respectively. (d) The time series of the norm of perturbations δθ(t) = θ(t) − θ∗ , initially set to
‖δθ(0)‖ = 10−2, for all 2N−1 = 128 possible states. Perturbations to states depicted in (a) and (b) are plotted as thick solid and
dashed curves, respectively. Perturbations to all other possible states are plotted as thin curves, solid or dashed if they are
predicted to be stable or unstable, respectively.

perturbations exponentially decay and grow until saturation, respective. We also plot the time series for per-
turbations to all other states as solid or dashed curves based on the prediction from the stability criterion,
getting 100% agreement.

Continuing with the example above, only a relatively small fraction (10 out of a possible 2N−1 = 128) of
states are in fact stable. In figure 2 we plot these stable states. In terms of strings of bits (where θ = 0 and π

correspond to 0 and 1) these states are precisely

(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 1),

(0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 1), (8)

(0, 1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 1),

(0, 1, 1, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 1)

Inspecting these ten states more closely, we find two important properties. First, a number of the stable states
appear to be combinations of one another in the sense that oscillators with θ∗i = π in different stable states
often combined to create another stable state. For example, the state depicted in figure 2(d) is a combination
of those in figures 2(b) and (c). This does not always happen, however, as states depicted in figures 2(c) and
(e) do not combine to form a new stable state. More specifically, it also points to the role of node i = 8 (the
location of θi = π in the state at the top of the right column) which has no effect on the stability of a given
state. To see this, note that any stable state with θ8 = 0 is still stable when θ8 is changed to 0, and vice versa. It
is worth noting that node i = 8 is the most poorly connected node in the network is the sense that is has only
one three-way interaction.

The second important property that this example illustrates is a certain asymmetry in the collection of
stable states. Note first, that of the ten total stable states, one has zero θ∗ = π entries, four have one π entry,
four have two π entry, and one has three π entries. However, of all 2N−1 = 128 possible fixed points, one has
zero π entries, seven have one π entry, 21 have twoπ entries, 35 have three π entries, 35 have four π entries, and
so on. In particular, the majority of all fixed point states have a roughly even distribution of 0 and π entries,
but when we restrict our attention to only stable states we find a strong asymmetry as they tend to have an
uneven distribution of 0 and π entries.

4



J.Phys.Complex. 2 (2021) 015003 (8pp) P S Skardal and A Arenas

Figure 2. Stable states. For the example network depicted in figure 1, all 10 stable states (out of a possible 2N−1 = 128 possible
fixed points).

Figure 3. Switching. Illustration of the transition network between states (a)–(j) illustrated in figure 2. Each directed link is
drawn with width proportional to the rate at which the system switches from one state to another under a random perturbation
of size ‖δθ‖ = 1.55. (Self-links, describing rates at which perturbations do not cause a transition, are not illustrated.)

4. Switching

Lastly, with the stability analysis above as a tool for identifying stable states of the system, i.e., supported pieces
of information, we investigate the process by which the system may switch between different pieces of memory,
i.e., stable states. What we describe here is not quite a homoclinic network [40, 41] but is in many senses similar.
Sticking with our example network illustrated above, none of the 10 stable states depicted in figure 2 are con-
nected with a heteroclinic orbit since they are all asymptotically stable. Instead, we again consider perturbations
δθ to these stable states θ∗, but now we allow perturbations to not be arbitrarily small, letting ‖δθ‖ = O(1),
so that the perturbed state θ∗ + δθ may fall outside of the basin of attraction of θ∗ and eventually converge to
another stable state.

More precisely, we consider the following setup. For each of the 10 stable states (a)–(j) depicted in figure 2,
we introduce 103 random perturbations of size ‖δθ‖ = 1.55. Then, for each of these perturbations to the
states j we find the fraction that eventually converge to each other state i, and let this fraction populate the
entry πij of the transition matrix Π. Thus, each entry πij describes the rate at which perturbations of this size
cause a switch in states j → i. This transition network is by nature directed and weighted, and is illustrated in
figure 3, letting more strongly (weakly) weighted links be thicker (thinner). We have neglected to illustrate self-
links, i.e., entries πii that describe rates at which the perturbation does not result in a switch in state. It should
be noted that the choice ‖δθ‖ = 1.55 is important; choosing perturbations too small eventually leads to no
transitions from one state to another, while choosing perturbations too large eventually leads to much denser
networks whose links reflect only the size of the basins of attraction of each state. The choice used here lies in
between these two extremes. In this example, for instance, we see that a few state pairs have particularly strong
rates of transitions, i.e., (d) → (c) and (j) → (i). This stems from the similarity of the states themselves (see
figure 2 where it can be seen that these states differ only by a single oscillator). Switching between such similar
states appears to exist between other pairs as well, e.g., (b) → (a), (f) → (e), and (h) → (g), but the strength

5
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Figure 4. For a family of soft spherical networks of size N = 12, the fraction of stable states for each network vs the
corresponding (a) mean and (b) standard deviation of the 2-simplex degree.

Figure 5. For a family of soft spherical networks of size N = 12, the marginal fraction of stable states as a function of state
asymmetry.

of the transition is variable. Moreover, the uniform state (a) (where θ∗ = 0) is a sink where the system cannot
escape from. This property is not particularly surprising for reasonable perturbations since state (a) is the
most linearly stable in the sense that the largest nontrivial eigenvalue is the most negative compared to those
for other states.

5. Network structure and state asymmetry

Before concluding we investigate two aspects of the stability properties of the system. We begin by probing the
effect of network structure on the overall stability of different states. Keeping in mind the combinatorial com-
plexity of the number of possible states to probe (recall that for a network of N oscillators we have 2N−1 states
to examine) we maintain a relatively small network size, specifically N = 12, but study an ensemble of 800 soft
spherical networks built using the hyperbolic graph generator [42]. In particular, we use a small but finite tem-
perature of T = 1 guaranteeing that, while some long-range links exist, the networks are significantly clustered.
(We throw out any networks that are not connected by its triangles.) Moreover, while we use a target mean
1-simplex degree of 〈k(1)〉 = 4 we note that the mean 2-simplex degree, 〈k(2)〉, where k(2)

i = 1
2

∑N
j,l=1 AijAjlAli,

as well as its standard deviation, vary significantly from network to network.
We begin by investigating the overall stability of states by, for each network, calculating the fraction of

all states that are stable. In figures 4(a) and (b) we plot the fraction of stable states for each network vs the
corresponding mean and standard deviation of the 2-simplex degree. It is clear to see that the fraction of
stable states that a network admits has a positive correlation with both the mean and standard deviation of the
2-simplex degree.

We also investigate more closely the nature of the states that end up being stable. Recall that from the
example depicted in figure 2 we observed a noticeable asymmetry. We now examine this by defining an
asymmetry identifier for each state θ∗ as

η(θ∗) =

∑N
i=1 χθi=0 −

∑N
i=1 χθi=π

N
, (9)

where χθ∗i =0 = 1 if θ∗i = 0 and χθ∗i =0 = 0 otherwise (and similarly, χθ∗i =π = 1 if θ∗i = π and χθ∗i =π = 0 oth-

erwise). In particular, η(θ∗) = 1 or 0 in the cases that all θ∗i share the same value or are even split between 0
and π. Using this asymmetry identifier to organize the entire ensemble of possible states, we then evaluate, for
all states θ∗ that share an asymmetry identifier value η(θ∗) the fraction of states that are stable. In figure 5 we

6
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plot, as a function of the asymmetry identifier η(θ∗) the fraction of stable states for states sharing the value
η(θ∗) averaged over the ensemble of networks used above. (Error bars indicate one standard deviation above
and below the mean.) We observe that the trend observed in our example depicted in figure 2 persists, i.e.,
states that are more asymmetric are more likely to be stable.

6. Discussion

In this paper we have studied the process by which oscillator networks with higher-order interactions can select
memory and information, often represented as sequences of bits, by stabilizing fixed points consisting of two
groups of clustered oscillators at opposite phases. While oscillator networks have long been used as models for
encoding and storing such information [16], such systems have often required fine-tuning and engineering of,
e.g., individual coupling strengths, to attain a given state. However, the discovery that higher-order interactions
naturally leads to a wide variety of such states provides a more natural formalism for information storage
without such fine-tuning [35, 36].

Here we have presented a stability analysis for determining precisely which of the 2N potential states are
stable. This selection depends on the underlying network topology that encodes the higher-order interactions
between oscillators. Moreover, we have also used our stability analysis to study the process by which the oscil-
lator network can switch between different stable states, as a perturbation can be applied to force the system
into a basin of attraction for another stable state.
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