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Abstract 
 

The focus of this project was to design a drive system that could replace the 

conventional chain drive system, improving on both the efficiency and reliability, in 

addition to being low cost and lightweight. This report will provide background into why 

this group chose this as the subject of their project, as well as challenges faced 

throughout the design process. The design developed was a drive shaft driven by a 

system of pinions and gears, with a freewheel mechanism that allowed the system to 

coast when not pedaling. Due to cost and time constraints, only a prototype was 

created, with additional research into materials selection and testing of our design. 

Despite this, there is still an enormous amount of potential to explore from this project 

as to alternatives to the traditional chain and sprocket drive shaft. We would like to 

thank our advisor David Peters for guiding us through this project, as well as Dr. Greg 

Morscher for assisting us with the materials selection software. 
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1. Introduction 

 

1.1 Background 

 

Since its invention, the bicycle has seen many innovations and design changes. 

However, one fundamental piece has remained relatively unchanged for nearly one and 

a half centuries: the chain drive.  

The first rear-wheel-chain-driven bicycle was invented in 1885 by J.K. Starley (1). 

He called his invention the “Rover”, but it soon became unofficially known as the “safety 

bicycle.” Until this new design, all bicycles were composed of a very large front wheel, 

with pedals attached to the axle for drive, and a much smaller rear wheel. These 

bicycles were not a viable means of transportation, being utilized only by enthusiasts. 

The design made these bicycles difficult to mount and operate, and put the rider at great 

risk of injury in the case of a collision due to his/her height off the ground. 

Throughout the years, the chain-drive-mechanism has been improved and modernized, 

but is still the same basic design. There are many shortcomings with this design: 

potential for the chain to break, need for cleaning and relubrication of the chain and 

sprockets due to their exposure to road debris, and the problem of the chain slipping off 

one of the sprockets. The latter is the issue that cyclists encounter most often when 

using a multi-speed bicycle. While this is typically an easy fix, it is a messy job because 

of the grease used to lubricate the parts and the dirt that inevitably sticks to it as the 

bicycle is ridden. As the parts wear, the problem can become even more common, 

especially when the rider is changing gear ratios. 

 

1.2 Goals and Objectives 

 

The goal of this project was to improve the drive mechanism and eliminate the 

issues commonly associated with a chain drive. The desire was to develop a more 

reliable and efficient design that could become the new standard just as J.K. Starley’s 

design made the “big wheel” bicycle obsolete. 

 In order to achieve this goal, we defined metrics for success that would be 

pursued throughout the project to ensure we stayed on track and used at the end to 

assess the final outcome. These metrics included the following: 

1. A fully 3d printed model 

2. The design functions as a drive shaft for a bike 

3. The bike gears do not slip in tests from 60rpm-90rpm in increments of 

10rpm for 10 minutes at each speed 

4. The model can sustain a 12mph speed 

 

 



1.3 Patent Research 

  

 Several chainless-bike patents were studied and evaluated in order to gain 

insight into different types of existing designs and how each design’s objectives aligned 

or did not align with ours. Links to the studied patents are listed below for reference: 

 

https://patentimages.storage.googleapis.com/1d/89/33/ec1981e5087936/EP1147979A1.pdf 

https://patentimages.storage.googleapis.com/0a/b1/7f/c2d995553c9383/US20110062678A1.pdf 

https://patentimages.storage.googleapis.com/06/14/b4/63368ea515b562/US4447068.pdf 

https://patentimages.storage.googleapis.com/0b/fa/80/78aa6085bb771e/US20100295264A1.pdf 

https://patentimages.storage.googleapis.com/44/83/35/dd32b478beaa70/US6394477.pdf 

https://patentimages.storage.googleapis.com/0d/1a/ff/07e5f5ccbf1d58/US6199884.pdf 

 

 The following chapters will discuss the design process that the group went 

through, from initial concept to the final revision that was used to create the prototype, 

the verification of the design, costs involved, and the conclusions drawn. 

  

https://patentimages.storage.googleapis.com/1d/89/33/ec1981e5087936/EP1147979A1.pdf
https://patentimages.storage.googleapis.com/0a/b1/7f/c2d995553c9383/US20110062678A1.pdf
https://patentimages.storage.googleapis.com/06/14/b4/63368ea515b562/US4447068.pdf
https://patentimages.storage.googleapis.com/0b/fa/80/78aa6085bb771e/US20100295264A1.pdf
https://patentimages.storage.googleapis.com/44/83/35/dd32b478beaa70/US6394477.pdf
https://patentimages.storage.googleapis.com/0d/1a/ff/07e5f5ccbf1d58/US6199884.pdf


2. Design 

 
2.1 Conceptual Design 

 

 Many of the initial design concepts aligned with our original goals; to have a multi 

speed drive shaft, where it would be possible to switch gears. Our goals were to design 

something practical, efficient, and low maintenance. Ultimately, due to time and cost 

constraints, we were not able to use any of our initial conceptual designs. However, 

some will be included for the sake of documentation.  

 

 
Figure 2.1. A conceptual sketch of a multi speed drive shaft 

 



 
Figure 2.2. A conceptual sketch of a multi speed drive shaft based on a continuous variable transmission 

 



 
Figure 2.3. A multi speed pulley and cable system 

 

 With these concepts in place, an objective and weighted decision matrix were 

constructed to further narrow down which concept we should choose moving forward. 

 



 
Figure 2.4. Objective Tree for our Chainless Bike Drive 

 

 

Figure 2.5. Weighted Decision Matrix for choosing a conceptual design 

 

From the decision matrix, it is evident that we would choose either the 3 Gear 

Internal Drive Shaft or the Internal Gear Hub 3 Speed Drive. Moving forward with the 3 

Gear Internal Drive Shaft, we needed to make simplifications to move it to a single 

speed system. 

 

2.2 Embodiment Design 
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 For our gear selection, we decided to use a pinion and gear system for both the 

front and rear axles, connected by the drive shaft. We selected both the pinion bevel 

gear and the straight bevel gear from the Solidworks Toolbox. Constraints for the design 

of the gears will be mentioned later in this section. 

 Another important aspect of the design was the freewheel mechanism. We 

wanted to create something that would spin with the gear while the pedals are engaged, 

and something that would allow the system to move for a short period of time while the 

pedals are not engaged, such as when coasting. To create this mechanism, we decided 

to create a mechanism within the rear gear, with a single spring loaded tooth attached 

to it. That way, the mechanism does not freely spin forever, and the spring will slow 

down the system over time. An example of this system is depicted in Figure 2.6. 

 

  
Figure 2.6. Freewheel Mechanism located inside of the front gear 

 



As pictured above, the single blue tooth (ratchet pawl) located on the left side of 

the freewheel mechanism is clicked into the grooves on the inside of the gear by the 

spring as it spins, which allows torque to be transferred to the gear when pedalling. 

In addition to cost, weight, and our other goals outlined earlier in the report, we 

also faced several design constraints that had to be addressed. The first constraint we 

had to face was the size of our gears and pinions. Ultimately, we wanted something 

small enough to fit on the side of a bicycle, but large enough to withstand the forces and 

moments created by the rider. Based on existing designs for gear sizes of shaft driven 

bicycles, we found that the maximum dimensions for the 3D printer we used would be a 

perfect size for the gears and pinions, while the number of teeth for each gear and 

pinion were found in Solidworks by creating a good gear ratio. 

Another constraint we faced was the size of the freewheel mechanism. Our goal 

was to create a fine ratchet pawl, but ultimately we wanted to be able to manufacture 

and 3D print one, sacrificing size for practicality, thus resulting in the design above. 

The final design constraint we faced was how long the drive shaft should be. 

Since our goal was to be able to attach our invention to a normal bicycle, we measured 

the distance from the front wheel to the rear wheel on a standard bicycle, subtracting 

the radii of the gears to develop a suitable drive shaft length. 

 

2.3 Detailed Design 

 

An isometric view of the complete drive shaft assembly is depicted below in 

Figure 2.7. 

 

  
Figure 2.7. Isometric view of Drive Shaft Assembly 

 

 



The individual components and their measurements are shown in Figures 2.8 

through 2.18. All measurements are in inches (Additional sketches are located in the 

Appendix). 

 

 

 
Figure 2.8. Front Gear 

 
Figure 2.9. Front Gear and Pinion 

 
Figure 2.10. Front Gear 



 
Figure 2.11. Front Gear and Pinion 

 

 

 
Figure 2.12. Ratchet Pawl 

 
Figure 2.13. Ratchet Pawl 

 

 



 
Figure 2.14. Rear Gear 

 
Figure 2.15. Rear Gear and Pinion 

 
 

 
Figure 2.16. Rear Gear and Pinion 

 



 
Figure 2.17. Ratchet Holder 

 



Figure 2.18. Ratchet Holder 

 

As mentioned in section 2.2, Our gear and pinion designs were based on existing 

designs of bicycles with similar gears, as well as taking into account the size limitations 

of the 3D printer (for easier replication of a real life drive shaft system). From there, 

design of the ratchet pawl and ratchet holder were based off of the front gear geometry 

to ensure a large enough part to 3D print, and small enough to fit inside of the gear. 

Being able to take our design from solid works and import it into a 3D printer 

made designing a prototype easier, and allowed for easy calculations when selecting a 

material and running various tests. A prototype was constructed from the 3D printed 

gears, pinions, ratchet pawl and ratchet holder, while the drive shaft was constructed 

from pvc piping with the measurements of the shaft from Solidworks. A depiction of the 

prototype is pictured below in Figure 2.19. 

 

 
Figure 2.19. Prototype of Bicycle Drive Shaft System 

 

There are multiple ASME standards that would apply to the manufacturing of our 

design, which will be mentioned in section 4. While our design may meet geometrical 

requirements for mounting on a bike, there is still materials selection to determine a 

suitable material, and testing to see how our design compares to a traditional bicycle. 

Both of these topics will be discussed in the next section.  

 

3. Verification 

 

 This section consists of two separate parts: verification of the bench prototype 

that was built and analysis/research of materials that could be used to build a full 

scale/functional prototype on a bicycle. 

 

3.1 Prototype Testing 

 

For comparison purposes, a Schwinn 21-speed, 26” mountain bike was used as 

a control for the conventional chain-driven bicycle. With the prototype having a 35 tooth 

front ring gear, 14 tooth front pinion gear, 24 tooth rear ring gear, and 16 tooth rear 

pinion gear, we know the rear axle turns roughly 1.667 times for every turn of the front 



axle by dividing the front ring/pinion ratio by the rear ring/pinion ratio. Testing was done 

using 5th gear (smallest front sprocket and the 5th rear sprocket), as this was the 

closest ratio to the prototype. 

First, an average pace needed to be determined that the conventional bicycle 

would operate at. According to Wahoo Fitness, 90 rpm is an ideal target cadence for a 

cyclist to avoid leg fatigue(2). In the design presentation, this group utilized wheel speed 

as a more easily relatable metric of success. To calculate wheel speed, we must first 

determine the wheel rpm by multiplying the pedaling rpm by the 1.667 front/rear axle 

ratio, in this case being 150 wheel rpm. Then, we multiply the wheel rpm, tire diameter 

(in inches), Pi, and 60 (minutes per hour). This result is then divided by 63,360 (inches 

per mile) to come to 11.60 miles per hour, which was rounded to 12 miles per hour.  

The first test conducted was to determine the torque needed to drive the bicycle 

at the above pace without a load. To determine this, the length of the pedal arm was 

measured so a force gauge could be used on the pedal. On this particular bicycle, the 

length measured at 6.5 inches. The force gauge used for this testing was a digital 

luggage scale. To keep a consistent pace, a metronome was used. At 90 rpm, the 

bicycle with no load required only around 2 pounds of force to be driven, resulting in 13 

lbf ・in of torque. To measure the force on the prototype, vice grip pliers were attached 

to the front axle and the luggage scale was attached to them exactly 6.5 inches from the 

center of the axle. Unfortunately, even with no wheel attached to the prototype system, 

it required roughly 19.5 lbf ・in of torque to maintain 90 rpm. 

The second test conducted was to determine the torque required to move the 

bicycle when loaded with a rider. The rider used for testing purposes weighed roughly 

170 pounds. The testing setup was the same as the previous test, using the luggage 

scale to measure force. In this test, the bicycle required roughly 40 pounds of force, or 

260 lbf ・in of torque, to move with the rider aboard. Since the prototype is a bench 

model and cannot be ridden, to compare it in this test, it was decided to apply the same 

torque while locking the gears in place to check for its ability to withstand the same load. 

Again, unfortunately, the prototype did not perform as well as the conventional bicycle. 

In this instance, the failure was due to the attachment of the front axle and ring gear. 

The design consists of a simple press fit and once 65 lbf ・in of torque was applied to 

the front axle, it slipped within the gear. 

The final test conducted was a test of the prototype’s durability at high rpm, far 

exceeding what a conventional bicycle would experience during normal operation. This 

test was performed using an electric drill to drive the front axle. The drill in question is 

rated at a maximum of 600 rpm with no load and the test was run at full speed for one 

minute. Assuming the drill was running between 80% and 90% efficiency, this means 

the prototype was able to withstand roughly 480 to 540 rpm at the front axle and 800 to 

900 rpm at the rear axle. With the same size wheel as the conventional bicycle, this 

translates to a speed between 62 and 70 miles per hour, much higher than it would 



realistically ever operate at. Happily, the prototype proved to be a successful design in 

terms of durability. 

 

3.2 Materials Research 

 

There are essentially two types of parts where materials would be selected; bevel 

gears and the drive shaft. Typically, bevel gears are manufactured with a certain metal, 

and drive shafts are manufactured with a variety of materials, such as metals, 

composites, or carbon fiber. Bevel gears are commonly manufactured using steel 

because of its high strength to weight ratio and high resistance to wear. While our 

design will likely incorporate metal bevel gears, and a composite drive shaft, it calls into 

question what type of metal and what type of composite material should be selected. 

The materials selected should be strong and durable enough to prevent deformation,  

and cheap enough to be feasible for manufacturing.  

To ensure a proper material is selected, the approximate bending stress will be 

calculated using the Lewis Form Equation, where the bending stress should not exceed 

the yield stress of the selected material. Similarly, the stress in the drive shaft will be 

determined, and should not exceed the yield stress of the selected material. To start the 

calculations, we must first find the moment created by the rider peddling the bike, using 

the equation below 

 

 𝑀 =  𝑚𝑔𝑙 
Eq. 1 

 

where m is the mass of the rider, g is gravity, and L is the lever arm of the bike pedals. 

This moment would be experienced by the system as a whole, so to determine the force 

acting on a certain tooth, you would just need to divide by the gears pitch radius.  

The gear that would experience the largest force would be the smallest gear, 

which is the front pinion. Assuming the rider weighs 85 kilograms, and the lever arm of 

the bicycle is 0.1778 meters, then the moment created by the rider is 148.2586 Newton 

meters. To find the force acting on the tooth, we can divide this moment by the pitch 

radius of the gear, which is 0.0905 meters. This would give us a force of 1.638 

kilonewtons. From here, the Lewis Form Equation can be calculated as 

 

 
𝑆 =  

𝐹𝑃

𝑓𝑌
 

Eq. 2 

 
where F is the force on the tooth, P is the pitch diameter, f is the face width of the tooth, 

and Y is the Lewis Form Factor. The pitch diameter is defined as the number of teeth 



(14)  divided by the diameter (0.0825 meters). In the case of this gear, P would equal 

169.697 meters-1. The face width of the tooth is measured to be 0.019 meters. The 

Lewis Form Factor has its own equation, depending on the pitch angle of the gear and 

the number of teeth. In this case, the Lewis Form factor would be 0.25. Putting all of 

these values into the equation above, the highest stress experienced by the gears 

would be 58.5264 MPa.  

The highest stress that would be experienced by the shaft would be the shear 

stress due to torsion. This can be found using the following equation 

 

 𝑇 =  𝑀
𝑟

𝐽
 Eq. 3 

 
where T is the shear stress in the shaft, M is the torsion experienced by the shaft, r is 

the radius of the shaft, and J is the polar moment of inertia of the shaft. The torsion 

experienced by the shaft is the moment experienced by the gear connected to it. To find 

this, the force of 1.638 kilonewtons is multiplied by the pitch radius of the connected 

gear, which is 0.0413 meters. This yields a torsion of 67.6583 Newton meters. The 

radius of the shaft is 0.0133 meters. The polar moment of inertia is found to be 1.9*10-9 

meters4. Plugging these values into the equation above yields the result of 473.608 

MPa.  

 With these maximum stresses, we will be able to select a material from the CES 

software. There are several factors that will be displayed on the graph, which will help 

us select an appropriate material. First, the yield stress must be higher than the 

maximum stresses experienced by both the gears and the drive shaft, as to make sure 

there is no deformation in the part. The density and price of the materials will also be 

factored in, to show materials which may weigh too much, and materials that may cost 

too much. In the CES software, we will only be considering composites, metals, and 

alloys. The lower limit for the yield stress is set to 60 MPa, due to the maximum stress 

experienced by the gears. There is no maximum limit set to the yield stress, as multiple 

factors of safety could be applied to manufacturing the necessary parts. Figure 3.1 

shows the graph generated by the CES software. 



 
Figure 3.1. A visual representation yield strength vs. density and price of various materials 

 

The materials in black and bright red are alloys, the dark red materials are 

composites, and the materials in green and purple are metals. From the graph, you can 

see that some of the most expensive and most dense materials are alloys, which would 

discourage one from using these materials. On the other hand, you could see that 

metals are some of the cheapest and least dense materials, making them extremely 

desirable to use for manufacturing. Their yield strength is also extremely high, which 

would make them suitable for both gear and drive shaft manufacturing. While 

composites land somewhere in the middle of the graph, not every composite would be 

suitable for the design. For example, Unit Directional composites would not be 

recommended for manufacturing, because the material would fail under a lower stress 

depending on the direction the material is manufactured in. Because of this, composites 

would be risky to use and are not recommended. A close up of the most suitable metals 

is shown in Figure 3.2.  

 



 
Figure 3.2. A magnified look at the most suitable materials from Figure 1 

 

Many of the metals shown at the top have the highest yield stress of around 2000 

MPa. This is well above the maximum stresses experienced by the gears and the shaft. 

From left to right (least expensive/dense to most expensive/dense), these metals 

include cast iron, low alloy steel, stainless steel, and tool steel. These same materials 

would also be suitable for a lower selected maximum yield stress, such as 1000 MPa. 

Ultimately, the best metal to select is cast iron; not only does it have an extremely high 

yield stress, but it is also the least dense and the least expensive material. Some 

examples of suitable cast iron metals are shown in Figure 3.3. 

 

 



Figure 3.3. Examples of different types of cast iron suitable for manufacturing this design 

If, for whatever reason, a different material is desired for the gears (a material 

closer to the gears maximum stress), these are shown in Figure 3.4. 

 

 

Figure 3.4. Examples of cast irons which are rated close to the maximum stress of the gears 

 
 

4. Design Standards 

 

There are multiple design standards that need to be met by our project. One 

such standard is the ANSI/AGMA ISO 22849, which is the code of design 

recommendations for bevel gears. This standard includes tolerances, manufacturing, 

strength and efficiency for gears, along with the capacity of how certain bevel gears can 

be applied. Another standard would be the B30.21, which is standard for lever hoists. 

This standard would apply to our ratchet pawl and holder, with construction, installation, 

operation, inspection and maintenance of such ratchet pawl systems. 

In addition to the design standards mentioned above, there are other standards 

that would apply to our design project. In a production environment, in terms of 

materials, we would need to satisfy ASTM standards. One example of this would be the 

A291/A291M-19 standards, which are standard specifications for steel forgings, carbon 

and alloy, for pinions, gears and shafts for reduction gears. This standard covers 



various chemical requirements the materials must meet, and also covers how the 

material would be forged and machined.  

5. Costs 

 The costs for this project can be divided into two categories: labor and parts.  

 

5.1 Labor 

For labor, the assumption is that each group member spent roughly three hours 

per week on various parts of this project. Based on data from payscale.com, the 

average salary of a mechanical engineer in Akron, Ohio with less than one year of 

experience is $60,992 per year(3). If working 40 hours per week for all 52 weeks of a 

year, this translates to 2,080 hours worked and an hourly pay rate of $29.32 per hour. 

The formula to calculate the labor cost for this project was given in the Final Report 

Guidelines on Brightspace and is shown below(4): 

 

𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝑖𝑑𝑒𝑎𝑙 𝑠𝑎𝑙𝑎𝑟𝑦 (ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑡𝑒)  ×  𝑎𝑐𝑡𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑠𝑝𝑒𝑛𝑡 ×  2.5 

 

Assuming 15 full weeks over the last two semesters, each student worked for 90 hours. 

With 4 students involved, there were a total of 360 hours dedicated to this project from 

start to finish. When inserting these figures into the equation above, the total labor cost 

estimate comes to $26,388. 

  

5.2 Parts 

Many of the parts for this project are off-the-shelf pieces that can easily be found 

online. However, several custom pieces were 3-D printed utilizing the free service 

available to University of Akron students in the 3-D Print Lab, therefore, are more 

difficult to place a price on. The basic components are summarized in Table 4.1. 

 

Table 4.1: Prototype Basic Components Cost 

Part Use in Model Price 

½” Bore Ball Bearings, qty.10 Axle bearings, rear gear bearing $19.95 

Carrier Bearings, qty. 2 Driveshaft attachment/support $13.98 

Nylon Washers, qty. 50(used 1) Spacer between gear/ratchet $8.99 

Torsion Spring Ratchet mechanism $10.98 

Roll Pin, ¼” x 1” Attach pawl to ratchet hub $1.02 

PVC, ¾” ID x 2’ length Driveshaft $1.35 



PVC, ½” ID x 1’ length Axle spacers $0.99 

Aluminum Rod, ½” x 36” Axles $7.98 

Total  $65.24 

 

  

 

The 3-D printed pieces consisted of both sets of gears and the pieces for the 

ratchet mechanism on the rear axle. To determine a rough cost for these pieces, 

students used a website called PrintAWorld(5), which gives users an instant quote for 

the cost to print uploaded STL files. The costs are listed in Table 4.2. 

 

Table 4.2: Prototype 3-D Printed Components Cost 

Prototype Part Price 

Front Ring Gear $477.26 

Front Pinion Gear $99.14 

Rear Ring Gear $313.33 

Rear Pinion Gear $111.78 

Ratchet Mechanism Hub $44.21 

Ratchet Mechanism Pawl $8.09 

Total $1,053.81 

  



6. Conclusion 

 

 This design project brought with it many challenges and obstacles in addition to 

those already inherent to such an involved assignment. This group set a very lofty goal 

for itself from the beginning by aspiring to invent an alternative to a design that is nearly 

140 years old. Initially, the goal was to develop a replacement for a modern multi-speed 

bicycle, but ultimately this had to be simplified to a single-speed, direct-drive system. 

While the basic concept of the design was proven functional (power was transferred 

from the front axle to the rear and the rear wheel was also capable of moving 

independently of the front axle, such as in a coasting situation), it is clear that this first 

iteration has not improved upon the conventional design. 

The most obvious downfall comes from the simplification of the design. In a world 

where 21-speed bicycles are commonplace, a single-speed bicycle is a far from 

desirable alternative. The advantage of having multiple speeds is the adaptability of the 

bicycle to multiple terrains and riding conditions. A single-speed bicycle is only practical 

on smooth level surfaces for a leisurely ride. Further disadvantages to this design are 

that, in testing, it required more pedal effort from the operator than the conventional 

design, both unloaded and at speed. The one potential advantage to this design is its 

ability to withstand high rpm. If someone ever desired to create a hybrid out of a bicycle 

using this drive system that would allow them to either pedal or use an engine to power 

it, this design would be robust enough to handle the higher potential speeds. 

Many lessons were learned over the course of the past two semesters while 

working on this project. Most importantly it introduced the members of this group to 

ways for collaborating with one another while working remotely. Group projects are 

always made most difficult by trying to synchronize several schedules to find meeting 

times which work for everyone. With the COVID-19 pandemic making software that 

allowed for virtual meetings more prevalent, it became slightly easier to achieve this. On 

the other hand, this presented its own set of challenges when physical, hands on work 

needed to be completed. 

Overall, this was a great learning experience that these students can take with 

them as they begin their careers. There is also still great potential in this design, 

whether it be continued by members of this group, or adopted by another. Either way, 

this group is confident that a chainless bike drive is something that will replace the 

conventional chain-driven system and pave the way for the future of human-powered 

transportation. 
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