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Abstract
We consider the estimation of an arbitrary parameter ϕ, such as the temperature or a magnetic
field, affecting in a distributed manner the components of an arbitrary linear optical passive
network, such as an integrated chip. We demonstrate that Heisenberg scaling precision (i.e. of the
order of 1/N, where N is the number of probe photons) can be achieved without any iterative
adaptation of the interferometer hardware and by using only a simple, single, squeezed light source
and well-established homodyne measurements techniques. Furthermore, no constraint on the
possible values of the parameter is needed but only a preliminary shot-noise estimation (i.e. with a
precision of

√
N) easily achievable without any quantum resources. Indeed, such a classical

knowledge of the parameter is enough to prepare a single, suitable optical stage either at the input
or the output of the network to monitor with Heisenberg-limited precision any variation of the
parameter to the order of 1/

√
N without the need to iteratively modify such a stage.

1. Introduction

Due to the discreteness of all natural phenomena, the error in the estimation of a physical parameter ϕ
through a measurement employing N probes (e.g. photons, electrons) is strongly limited by the so-called
‘shot noise’ factor of 1/

√
N. However, it has been proven that quantum features such as entanglement and

squeezing can be exploited to go beyond the shot-noise limit and reach a precision of order 1/N, which is
the so-called Heisenberg limit [1–9].

The situation most commonly considered in quantum metrology is the estimation of an optical phase
[1, 3, 5, 7, 10–12] or a phase-like parameter [4, 6, 13], that, e.g., is encoded through a unitary evolution
generated by a ϕ-independent Hermitian operator. Considerable effort has recently been done in the
direction of distributed quantum metrology in the multiparameter setting for the estimation of particular
functions of multiple parameters encoded in a specific manner to spatially separated nodes [14–20]. A
situation which has not been considered in these ‘distributed’ scenarios is the estimation of a single
parameter encoded in an arbitrary manner in different components of a multi-mode interferometer (see
figure 1). This could be the case for the estimation of the magnitude of an external field through its
influence on the optical properties of the components of an arbitrary interferometer. For example,
temperature has been used to tune the reflection and transmission coefficients of beamsplitters in on-chip
interferometers [21, 22]. Temperature can also be used to change the optical path length through a material
of index of refraction. Thus, the effects of one parameter (temperature in this case) are distributed across a
network that consists of beam splitters and phase shifters. Such general encodings of ϕ into an arbitrary
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Figure 1. An M-mode passive linear interferometer composed of an arbitrary number of beam splitters and phase shifters
having different and generic dependencies on a parameter ϕ. This scheme may represent for example the situation where ϕ is the
temperature or the magnitude of an electromagnetic or a gravitational field affecting the optical properties of the interferometer
components.

passive linear interferometer give rise to parameter-dependent generators, which has only recently started to
be considered [23]. Unfortunately, the current challenge in this general scenario is that the estimation
protocol becomes highly adaptive, since both the optimal input state of the probe, and the optimal
measurement to be performed depend on the unknown value of ϕ [23]. This challenge is also relevant in
the context of distributed quantum metrology with multiple unknown parameters and has been overcome
only if constraints in the range of variation of the parameters are given [14, 15, 18, 19, 24, 25]. Can such a
serious drawback be overcome in order to ultimately implement quantum technologies for distributed
quantum-enhanced metrology?

In this work, we show that this is possible by introducing an experimentally feasible metrological setup
achieving, when appropriate classical post-processing data analysis is performed, Heisenberg scaling in the
estimation of a generic parameter distributed over an arbitrary passive linear optical interferometer.
Independent of the structure of the multi-mode interferometer, we always pick a single mode squeezed
vacuum as the only input probe and balanced homodyne detection as measurement. No constraint on the
values the parameter can assume is needed: instead, only a preliminary classical estimation, namely with
shot-noise limited precision, suffices to correctly prepare our setup. In fact, only a single additional passive
linear optical stage is needed either at the input or at the output of the network, and its preparation only
requires a ‘classical’ knowledge of the parameter ϕ to estimate. For simplicity and without losing generality,
we will consider the case where such a stage V̂out is placed at the output of the network as in figure 2.
Remarkably, we will show that Heisenberg limited sensitivity can be obtained independently of any
parameter-independent passive linear optical stage V̂ in one can place at the input. This includes the case
where V̂ in is the identity operator, i.e. in the absence of any input stage. The role of V̂ in and V̂out as
parameter-independent and parameter-dependent stages can be inverted without any substantial change in
the following of this work. Noticeably, our setup is experimentally feasible since it employs only Gaussian
states and measurements, which are easier to manipulate and implement with respect to other states and
measurements commonly used in literature. We will show that all the information on the unknown
parameter is encoded in the variance of the quadrature field we measure through homodyne detection. The
dependence of the variance on the parameter is non-linear, which makes the search of an efficient and
unbiased estimator an hard task [26, 27]. However, it is well known that, also in non-linear models, the
maximum-likelihood estimator is an asymptotically efficient estimator [27–30]. Then, the use of the
maximum-likelihood estimator, coupled with our metrological setup, guarantees in the asymptotic regime
the saturation of the Fisher information, and thus the Heisenberg-scaling sensitivity.

2. Setup

Let us consider a given M-channel passive linear interferometer which depends on the parameter ϕ to be
estimated. The action of the interferometer on the input states is described by a passive linear unitary Ûϕ.
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Figure 2. Block diagram of the proposed setup. The parameter ϕ to be estimates is encoded in any given passive linear optical
network Ûϕ. The input state is obtained by squeezing the vacuum in a single mode with N photons in average, while at the
output of the setup the quadrature field xθ is measured by means of homodyne detection, and the phase of the local oscillator
shall be tuned to a value θ = θϕ which satisfies condition (5). A single auxiliary stage is needed at the input or the output of Ûϕ

(e.g. V̂out at the output of the network Ûϕ), whose preparation requires only a ‘classical’, namely shot-noise precise, prior
estimation of ϕ, such that condition (6) is verified. We show that Heisenberg-scaling sensitivity can be achieved for an arbitrary
choice of a parameter-independent stage, in the figure depicted as V̂ in at the input of the network Ûϕ.

The preparation of the input probe consists in the injection of a single-mode squeezed vacuum state in the
first port of a unitary stage V̂ in, which is used to scatter the photons injected among all the modes. The

input state in our protocol is therefore given by |ψ〉 = V̂ inŜ1(r)|vac〉, where Ŝ1(r) = e
r
2 (̂a2

1−â†2
1 ) is the

single-mode squeezing operator with squeezing parameter r > 0, and |vac〉 is the M-channel vacuum state.
The average number of photons injected in the apparatus is thus N = sinh2 r. At the output of the
interferometer, the unitary V̂out is applied in order to refocus all the photons into a single mode, namely the
first one, in order to capture all the information about the parameter in a single channel. In such a way the
estimation can be carried out with a single homodyne detection performed on the aforementioned channel.
For a linear passive unitary Û , we denote by U the M × M unitary matrix defined by

Û†âjÛ =
M∑

k=1

Ujkâk, (1)

whose elements are the single photon transition amplitudes. Then, the probability that a photon injected in
the first port of V̂ in comes out from the first port of V̂out is given by

Pϕ = |(VoutUϕVin)11|2, (2)

so that if the refocusing procedure is not perfect there will be some probability of photons scattering into
other channels, which is quantified by 1 − Pϕ. Ideally, we would like to exploit the information encoded by
the interferometric evolution in all the photons within the injected squeezed state. This corresponds to the
condition Pϕ = 1: we are essentially channelling all the information about the parameter in a single output
channel, namely the first one. Then, a homodyne detection of the field quadrature x̂θ is performed on the
first channel, where θ is the reference phase of the local oscillator employed to perform the measurement.
Let

γϕ = arg[(VoutUϕVin)11], (3)

be the phase accumulated through the whole setup by the field at the first output port, which will be
assumed such that ∂ϕγϕ �= 0. The latter assumption means that the phase γϕ is not constant around the
value ϕ of the parameter, which is instead effectively encoded in γϕ, as a small variation of ϕ implies a

proportional variation of γϕ. For those cases in which ∂ϕγϕ = 0, a different suitable choice of V̂ in would

restore the sensitivity of the setup. Noticeably, this would happen for a typical V̂ in [31]. The squeezed
direction of the probe at the output will be γϕ ± π/2, so that the minimum uncertainty quadrature field is
x̂γϕ+π/2.

3. Heisenberg scaling

The ultimate precision δϕ achievable in a given estimation procedure based on ν measurements is
determined by the Fisher information F(ϕ) through the Cramer–Rao bound [28]:

δϕ � 1√
νF(ϕ)

. (4)
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Evaluating F(ϕ) associated with the described setup, we find that the Heisenberg scaling can be
asymptotically achieved for large N if the following conditions are satisfied (see appendix A)

θϕ ∼ γϕ ± π

2
+

kϕ
N

, (5)

Pϕ ∼ 1 − 
ϕ
N

, (6)

where 
ϕ � 0 and kϕ �= 0 are arbitrary but both independent of N, and where θϕ is an optimal choice for θ.
From a physical point of view, 
ϕ represents the average number of photons scattered into channels which
are not measured, while kϕ/N represents the ‘resolution’ needed in the homodyne detection. In practice,
one can even fix kϕ to a constant value without using additional resources.

Under conditions (5) and (6), the Fisher information asymptotically reads (see appendix A)

F(ϕ) ≡ 1

2

(
∂ϕΔϕ

Δϕ

)2

∼ 8�(kϕ, 
ϕ)(∂ϕγϕ)2N2, (7)

where

Δϕ =
1

2

[
1 + Pϕ

(
2 sinh2(r) + cos[2(γϕ − θ)] sinh 2r

)]
, (8)

is the variance of the measured quadrature, and �(k, 
) = [8k/(16k2 + 4
+ 1)]2. Then, according to the
Cramer–Rao bound (4) the ultimate precision achievable with this setup is given by δϕ = O(1/N). The
search for an unbiased efficient estimator, i.e. saturating the inequality (4), is complicated by the fact that
the measurement results depend on the parameter only through the variance (8) which has a nonlinear
dependence on ϕ [26]. However, it is known that the bound can be asymptotically saturated through
post-processing data analysis employing the maximum-likelihood estimator [27–30]. The prefactor �(k, 
)
reaches its maximum value � = 1 at k = ±1/4 and 
 = 0, while it vanishes at k = 0, hence the requirement
kϕ �= 0 needed to reach Heisenberg scaling. At k = 0 the quadrature field being measured has the minimal
variance, so a vanishing Fisher information for this value of k may appear counter-intuitive. However, this
occurs as a consequence of the fact that, for a local-oscillator phase θ = γϕ ± π/2, the probability
distribution based on a homodyne measurement in the first output channel is locally insensitive to
variations of ϕ. Indeed, when condition (6) holds, the output state in the first channel is essentially a
vacuum squeezed state rotated by the phase γϕ in (3) accumulated through the interferometer. More
precisely, the probability distribution depends only on the variance of x̂θ , which has a minimum for this
value of θ, hence being a stationary point.

The aforementioned conditions (5) and (6) imply an adaptive procedure, since they depend on the true
value of the unknown parameter ϕ. However, condition (5) only establishes the minimal resolution
required in the variation of θ during the feedback procedure of the homodyne detection, and, quite
interestingly, condition (6) can be satisfied by manipulating only one of the two unitary stages, while
leaving the other one arbitrary. The Heisenberg sensitivity is preserved even if a ratio 
ϕ/N of the photons
in the squeezed input probe is not detected in the first channel, meaning that our protocol is robust against
imperfections in the optimized stage. This stage can thus be efficiently built even if the prior knowledge of
ϕ is affected by some error δϕ.

Noticeably, this uncertainty δϕ is allowed to be of the order 1/
√

N to satisfy condition (6). Hence, a
classical estimation of ϕ (i.e. shot-noise limited in the number of resources) is sufficient to gather the
information needed to prepare the parameter-dependent stage V̂out for an arbitrary parameter-independent
stage V̂ in. This result is due to the very structure of Pϕ = |(VoutUϕVin)11|2, which is essentially nothing but a
transition probability P = |〈vout|vin〉|2 between |vin〉 = UϕVin|e1〉 and |vout〉 = V†

out|e1〉, with
|e1〉 = (1, 0, . . . , 0)T. A simple geometrical consequence of this expression is that a small tilt of order
O(1/

√
N) between the unit vectors |vin〉 and |vout〉 yields a quadratic reduction of their transition

probability

P = cos2

(
O

(
1√
N

))
∼ 1 − O

(
1

N

)
. (9)

Furthermore, given that for any unknown parameter ϕ no prior knowledge of its value is required with
higher precision than 1/

√
N, the adapted interferometer is also able to monitor the value of the parameter

in an overall interval of the same order with Heisenberg-limited precision without any further change of the
adapted stage.
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Figure 3. A two-channel example. The parameter ϕ is encoded into the reflectivity sin ηϕ of a beam splitter, and into the phase
shifts λϕ and λ′

ϕ associated with its two arms. A non-adapted choice of V̂ in is shown in the figure, realized with a beam splitter
and two ± π

4 -phase shifts not depending on ϕ. The adaptation here is performed only on V̂out through the tuning of
αϕcl

= (λϕcl
− λ′

ϕcl
)/2 − π/4, where ϕcl is a prior classical estimation of ϕ. Eventually, homodyne detection is performed on the

first output channel, with the local oscillator (l.o.) phase θϕ shown in (13).

4. Example

We show how our results, which are valid for an arbitrary M-port interferometer, can be applied to a
particular example of a parameter ϕ distributed over a two-channel interferometer, shown in the red box in
figure 3. In this setup, both the reflectivity sin ηϕ of a beam splitter, and the optical path lengths λϕ and λ′

ϕ

in the two arms depend on the parameter to be estimated: we can think of the parameter ϕ as the
magnitude of an external field, or of a characteristic of the environment, say the temperature, which in turn
influences the optical properties of the devices. The functional dependence of ηϕ, λϕ and λ′

ϕ on ϕ is
assumed to be smooth. The distributed nature of ϕ prevents us from thinking of it as a generalized phase, a
case commonly studied in literature. The unitary matrix describing phase shifts λ and λ′ on the two arms is
the 2 × 2 diagonal matrix UPS(λ,λ′) = diag (eiλ, eiλ′), while the action of a beam splitter with reflectivity
sin η is given by UBS(η) = eiησy , with σy being the second Pauli matrix. Thus, the interferometer in figure 3
is described by Uϕ = UPS(λϕ,λ′

ϕ)UBS(ηϕ).
As previously discussed, Heisenberg scaling can be achieved by suitably adapting one of the two passive

linear optical stages V̂ in and V̂out. Condition (6) is satisfied here with the arbitrary choice of V̂ in which is
shown in figure 3. It consists of a balanced beam splitter, followed by two ± π

4 -phase shifts, one on each
arm, and thus is described by the unitary matrix Vin = UPS(π/4,−π/4)UBS(π/4). The stage V̂out, which
will have to be adapted, consists of two phase shifts, ∓α, followed by another balanced beam splitter, and
corresponds to the unitary matrix Vout = UBS(π/4)UPS(−α,+α).

A direct computation of the matrix element (VoutUϕVin)11 gives for this scheme the probability (2),

Pϕ =
1

2

(
1 + sin(λϕ − λ′

ϕ − 2α)
)

, (10)

and the accumulated phase (3),

γϕ =
λϕ + λ′

ϕ

2
+ ηϕ +

π

2
. (11)

The adaptive procedure in this example can be accomplished by simply tuning the phase shifts ±α (see
figure 3) to ±αϕ, with αϕ = (λϕ − λ′

ϕ)/2 − π/4, so that Pϕ = 1.
Of course, tuning α requires a prior knowledge of the parameter we want to estimate. However, as

discussed above, for any arbitrary given network Uϕ, by denoting with δϕ = ϕcl − ϕ the difference between
a previous coarse estimation ϕcl and the true value ϕ of the parameter, a precision δϕ = O(1/

√
N) is

sufficient to reach Heisenberg scaling. Indeed, by tuning the phase shifters in the output stage according to
the coarse estimation of the parameter, equation (10) reads Pϕ = [1 + cos(λϕ − λϕcl

− λ′
ϕ + λ′

ϕcl
)]/2. Thus,

a Taylor expansion for small values of δϕ shows that

Pϕ ∼ 1 − 1

4

(
∂(λϕ − λ′

ϕ)

∂ϕ

)2

δϕ2. (12)

It is clear from this expression that it is possible to satisfy equation (6) with δϕ = O(1/
√

N), which is
achievable with a classical strategy employing αN photons for a measurement at the shot-noise limit, and
(1 − α)N photons for the homodyne estimation.

5
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Finally, in accordance with equations (5) and (11), the phase θ of the local oscillator in the homodyne
detection must then be tuned according to the value

θϕ ∼
λϕ + λ′

ϕ

2
+ ηϕ +

kϕ
N
. (13)

We notice that, although not appearing in V̂out, the value of the unknown reflectivity sin ηϕ influences the
quadrature field to be measured.

5. Conclusions

We provided an experimentally feasible metrological setup for the estimation of a generic parameter
encoded into an M-mode passive linear interferometer with Heisenberg scaling precision. Our proposal
could find applications in those situations where the parameter is distributed among different components
of the interferometer, and as an example it can provide an advantageous paradigm in quantum
thermometry [32] or quantum magnetometry [33, 34], in those situations where an external field such as
the temperature or a magnetic field influences the optical properties of beam splitters and phase shifts in an
interferometer. The practical advantages of our scheme are twofold: on one hand, it employs only a
Gaussian state and Gaussian measurements, whose experimental feasibility is widely known; on the other
hand, the adaptive procedure is facilitated by reducing the adaptivity to a single modification of only one
interferometric stage (either at the input or the output) and with no need to iteratively change the optical
hardware. Moreover, our setup does not require a perfect refocusing, being robust against loss of photons.
As a matter of fact, analyzing the Cramér–Rao bound associated with our setup, we showed that the
amount of information on the parameter required to prepare the optimized interferometric stage is
achievable with only a classical shot-noise limited estimation. Finally, no further parameter-dependent
adaptation is necessary to measure with Heisenberg-limited sensitivity any value of the parameter within an
overall range of variation of the order of 1/

√
N. Our results also motivate future studies of more specific

bounds for the precision of the estimation given the Gaussian statistic of the outcome of the measurements
in our setup [35]. To the best of our knowledge, our estimation setup for a distributed parameter is the first
one requiring a feasible input states for the probe, and such an efficient optical hardware preparation.
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Appendix A. Derivation of (7)

In this appendix, we outline the key steps required to derive the expression for the Fisher information
shown in (7), when conditions (5) and (6) are met. Homodyne detection is performed in order to measure
the quadrature field [36]

x̂θ = eiθâ†1 â1 x̂1 e−iθâ†1 â1 , (A1)

where x̂1 = (â1 + â†1)/
√

2 is the position quadrature of the field in the first mode. The POVM elements
describing the measurement are given by

Π̂x = eiθâ†1 â1 |x〉11〈x|e−iθâ†1 â1 , (A2)

where x̂1|x〉1 = x|x〉1. The probability of obtaining a value x from a measurement of x̂θ is determined
according to the Born rule by

p(x|ϕ) = Tr(Π̂xûϕŜ1(r)|vac〉〈vac|Ŝ†1(r)û†
ϕ). (A3)
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A calculation of (A3) can be carried out using the phase-space formalism [31], which leads to a Gaussian
probability distribution:

p(x|ϕ) =
1√

2πΔϕ

exp

(
− x2

2Δϕ

)
, (A4)

with variance given by

Δϕ =
1

2

[
1 + Pϕ

(
2 sinh2(r) + cos[2(γϕ − θ)] sinh 2r

)]
. (A5)

The probability distribution of the measurement determines the Fisher information F(ϕ) according to

F(ϕ) =

∫
dx p(x|ϕ)

(
∂ ln p(x|ϕ)

∂ϕ

)2

=
1

2

(
∂ϕΔϕ

Δϕ

)2

. (A6)

Recalling that sinh2 r = N, (A5) reads

Δϕ =
1

2
+ Pϕfϕ(N), (A7)

where
fϕ(N) = N + cos[2(γϕ − θ)]

√
N(N + 1), (A8)

and the derivative of (A7) reads

∂ϕΔϕ = (∂ϕPϕ)fϕ(N) + 2Pϕ(∂ϕγϕ)hϕ(N), (A9)

where
hϕ(N) = sin[2(γϕ − θ)]

√
N(N + 1). (A10)

Substituting (A7) and (A9) into (A6) we finally obtain the expression of the Fisher information:

F(ϕ) = 2

(
(∂ϕPϕ)fϕ(N) + 2Pϕ(∂ϕγϕ)hϕ(N)

1 + 2Pϕfϕ(N)

)2

. (A11)

If the direction of the quadrature being measured satisfies condition (5), the asymptotic behaviour of fϕ(N)
and hϕ(N) for large N is given by:

fϕ(N) = −1

2
+

2k2
ϕ

N
+

1

8N
+ O

(
1

N2

)
, (A12)

hϕ(N) = 2kϕ

(
1 +

1

2N

)
+ O

(
1

N2

)
. (A13)

Substituting (A12) and (A13) into (A11) and using condition (6), one immediately obtains (7).
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