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This paper discusses the development of a near infrared (NIR) spectroscopic method coupled with multivariate
analysis to characterise historical paper. Specifically, partial least squares (PLS) regression was used to predict one
of the most important properties of paper as a condition indicator – degree of polymerisation (DP). Supported by a
set of model cellulose samples, the NIR-PLS method for DP prediction was validated and the modelling approach
that led to the best prediction of DP of paper was established. The coefficient of variation of the NIR-PLS models
were found to be approximately 8% and 20% of the DP of model cellulose and historical paper, respectively. The
variance of the reference DP, the variance of the predicted DP, and the model bias were identified as the main
sources of the total expected generalisation error of prediction. For both model cellulose and historical paper, the
variance of the predicted DP by the NIR-PLS models contributed the most to the total error of prediction. This
suggests that improving the instrumentation and the operation procedure is essential to improve model perfor-
mance. Furthermore, the effect of water content of the samples on model performance was investigated. The
model for historical paper was proven to be robust to relative humidity fluctuations between 30% and 70%,
indicating the applicability of the model for collection surveys in a range of environments.
1. Introduction

The determination of degree of polymerisation (DP) is of great sig-
nificance to assess the condition of polymeric materials in cultural heri-
tage [1]. It is one of the most important molecular properties that
correlate with the mechanical strength of polymers [2]. But DP is difficult
to measure directly, specifically of papers of historical importance. The
techniques typically used in chemistry, such as membrane osmometry,
size exclusion chromatography, viscometry, and mass spectrometry, can
be time consuming, inaccurate for the DP ranges involved, or require
specialised instrumentation and skills [3]. On the other hand, given that
significant value, including aesthetic, scientific, social, and economic, is
always associated with heritage objects, substantial sampling required
for destructive analytical methods is rarely an option. In heritage science,
a comparably accurate non-destructive method for DP determination is
highly desirable.

Quantitative near-infrared (NIR) spectroscopy provides a non-
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destructive alternative to chemical analysis. Given the complexity of
NIR spectra, multivariate analysis is often used to provide a correlation-
based quantitative interpretation. In multivariate analysis, the spectral
responses to chemical and physical properties of a sample set are
modelled based on the measurement of small absorbance changes
occurring at multiple wavelengths. Among several linear multivariate
methods, partial least squares (PLS) regression has been the most
important one for quantitative NIR analyses [4]. PLS constructs factors
that capture spectral variability as well as correlating with the reference
data, and is usually effective in achieving high accuracy of predictions
[5]. In recent years, the NIR-PLS method has gained progresses in the
analysis of complex multicomponent mixtures where the accuracy is
comparable or even better than the conventional wet chemistry methods
[6–9], which is especially promising for heritage materials.

A number of authors have attempted the application of NIR-PLS to
analyse DP and DP-related properties, such as molecular weight (Mw)
and viscosity of polymers for a range of historical and model cellulosic
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Table 2
Summary of sample sets used for the calibration and evaluation of the multi-
variate analysis.

Samples Number of samples Max DP Min DP CoV

Model paper 68 2405 468 1.41%
Historical paper 127 4071 425 2.33%
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materials. The performances of the models are summarised in Table 1.
Normalised root mean square error (NRMSE) for each model was
calculated as:

NRMSE ¼ RMSE∙(ymax - ymin)
�1, (1.1)

where RMSE is root mean square error, ymax and ymin are the maximum
and minimum reference values in the property of interest.

With the available data as shown in Table 1, a clear line can hardly be
drawn between the model performance for historical samples and model
samples, although historical samples generally exhibit far more
complexity in both chemical and physical characteristics. It is noticeable
that the results obtained using model paper in ground, powder and pulp
differ significantly from those obtained using model paper sheets. This
indicates that the performance of NIR-PLS models can be affected
significantly by physical properties. It signifies the fact that NIR spectra
represent a combination of molecular vibrations, optical properties of the
instrument, and the instrument-sample interactions. Material complexity
can in theory complicates the development of successful NIR-PLS models.

For historical paper, the model performances vary widely. This can be
partially explained by the wide range of raw materials and
manufacturing processes of the investigated materials, covering Western
paper, Chinese paper and Islamic paper. It is worth noting the data of
large variability reported specifically for Western paper [11,15,16]. On
one hand, exceptional models were developed that outperform all the
reported models for both historic and model cellulosic polymers [15]. On
the other hand, difficulties in developing acceptable models were re-
ported for similar materials [16]. Despite this divergence, an instrument
using NIR-PLS models to predict DP of paper has been developed and
implemented in practice with a relatively high RMSE [11]. These con-
trasting results for historical western paper may signify the complexity in
developing NIR-PLS models for historical materials. Since it is difficult to
gain insights based on the limited published data, further research is
needed to shed light on the contradictions.

Lack of a clear cause-effect relationship between DP and NIR mea-
surements also complicates model development. Successful quantitative
NIR analyses usually require an underlying cause-effect relationship be-
tween the analytes and spectral data. In the literature, most successful
models based on NIR-PLS have been developed for compositional anal-
ysis [6–9]. These models are mostly based on the Beer-Lambert Law,
where changes in absorbance are proportional to changes in the con-
centration of a chemical component. In contrast, DP is not a property that
can be clearly correlated to the concentration of a vibrating bond type.
Table 1
Summary of the reported data in the literature on the use of NIR spectroscopy to analy
latent variables of the models. RMSE represents root mean square error. Normalised R
otherwise using RMSE of calibration (RMSEC) or RMSE. R2 represents the coefficient o
is not available).

Property Sample type Data range N

DP Model pulp [10] 943–1757 2
Historical Western paper [11] NA N
Historical Chinese paper [12] 475–4475 8
Historical Islamic paper [13] 200–1800 3
Historical canvas [14] 350–2300 1
Historical Western paper [15] 500–4000 N

Mw (kg∙mol�1) Model paper [16] 50–475 1
Historical Western paper [16] 75–400 N
Historical Western paper [15] 150–1000 N

Viscosity Model cellulose derivative [17] 350–2250 1
Model paper [18] NA 6
Model paper ground [18] 750–2000 3
Model paper powder [18] NA 6
Model pulp [18] NA 4

a NRMSE was calculated using RMSEP when available. Otherwise RMSEC or RMSE
b It is not clear whether the reported RMSE is RMSEC or RMSEP.
c The authors reported difficulties in developing accepted models using individual
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This imposes an additional challenge to modelling of DP using NIR-PLS.
The issues of material complexity and the implicit DP-NIR relation-

ship may be partially overcome by large data sets, however, the amount
of available historical samples for the development of NIR-PLS models is
limited due to resource constrains. In this case, to improve model per-
formance, in-depth understanding of the prediction errors becomes
essential. However, discussions of error analysis are rarely found in the
literature.

To bridge the gaps in the literature and to lay a solid foundation for
future research, this paper addresses the identified challenges and diffi-
culties in the development of NIR-PLS models for historical Western
paper. Experiments were designed to investigate the approaches for
model development and evaluation. Through a comparison of model
paper and historical paper, a plausible underlying relationship between
DP and NIR response was explored, sources of prediction errors were
analysed, and the robustness of the models to environmental fluctuations
was assessed. These analyses not only deepen the understanding of the
model development and performance, but also ensure the applicability of
the NIR-PLS method to collections in practice.

2. Materials and methods

2.1. Sample sets and reference DP

The sample sets used for multivariate modelling of DP using NIR
spectroscopy are summarised in Table 2. A set of model papers was
prepared for a controlled feasibility study. Samples from the same sheet
of Whatman filter paper No. 1 were degraded in a VWR VENTI-Line®
oven (Radnor, US) at 90 �C for up to 5 months. All the samples were hung
freely during the degradation and no extra humidity was added to the
environment inside the oven. Intrinsic viscosity ([η]) of each sample was
determined based on BS ISO 5351 [19] to calculate DP using the
Mark-Houwink-Sakurada equation [20]:
se DP, Mw, and viscosity of cellulosic polymers by PLS regression. LV represents
MSE (NRMSE) is represented using RMSE of prediction (RMSEP) where available,
f determination of the regression used to obtain the RMSEP or RMSEC (if RMSEP

umber of LVs RMSE NRMSEa R2

RMSEC RMSEP

78 96 0.11 NA
A 400b NA NA

370 690 0.17 0.52
298 177 0.11 0.78

4 270 275 0.14 0.77
A 79 119 0.03 0.92
0 37 23 0.06 0.93
A NAc NA NA
A 24 49 0.06 0.95
2 96 NA 0.05 0.97

NA 131 NA 0.60
NA 195 0.16 0.62
NA 479 NA 0.62
NA 96 NA 0.54

was used. The same goes for R2.

samples.
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DP0.85 ¼ 1.1[η], (2.1)

where [η] is the intrinsic viscosity value in ml∙g�1. Given the homoge-
neity of the model samples [21], a single determination of DP was carried
out. Duplicate determinations of DP were carried out on five randomly
selected degraded samples for uncertainty estimation. The uncertainty of
DP determination was 55, assessed using the pooled standard deviation.
The uncertainty was also expressed as coefficient of variation (CoV),
which is 1.41% estimated by the average of the CoV of the five pairs of
measurements.

The same method of DP determination was used for the set of his-
torical paper by a group of different researchers. This sample set con-
tained mostly European rag papers from various sources, spanning from
14th to 20th century. Each sample was measured twice, in adjacent areas.
The uncertainty of the mean of two DP determinations was assessed using
the pooled standard deviation of pairs of DP determinations divided by
21/2, which gave DP 29. The average CoV was found to be 2.33%.

2.2. NIR spectroscopy

Spectral responses were collected from the samples in both sample
sets using a portable UV-VIS-NIR LabSpec 5000 Spectrometer (Analytical
Spectral Devices, USA). The spectrometer is equipped with three separate
detectors: a 512-element silicon photo-diode array detector for the
spectral region 350–1000 nm (spectral resolution: 3 nm) and two TE-
cooled extended range InGaAs photo-diode arrays for spectral regions
1000–1830 nm and 1830–2500 nm (spectral resolution: 10 nm). It was
operated in a diffuse reflection mode and was calibrated against Spec-
tralon® Calibrated Multi-Component Wavelength Calibration Standard
(WCS-MC-010, Labsphere, US).

The NIR spectroscopy was performed in a well-controlled laboratory
environment (23 � 0.5 �C and 50 � 5% RH). A Florilon™ Standard
(EFWS-99-02c, Avian Technologies LLC, US) was used for instrument

Y. Liu et al.
Fig. 1. Reflectance spectra of (a) model paper samples and (b) historical
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calibration before each set of measurements was taken. Using a Flo-
rilon™ Standard as the sample background during spectra acquisition,
spectral measurements of the samples were taken in circular areas of 1
mm in diameter using a fibre-optic probe in close contact with the
samples at 0� angle. Full range spectra of 200 scans were obtained from
three spots on a single sheet of each sample and the averages were stored
and used for further analyses.

Since a Florilon™ was used as the background, it was assumed that
little transmission occurred during spectra collection. Although the
spectrometer was used in a diffuse reflectance mode, the spectra
collected were considered to represent both the surface properties and
the bulk properties due to the penetration of NIR radiation through the
paper sheets. Fig. 1 shows the spectra of the model paper samples (Fig. 1
(a)) and the historical paper samples (Fig. 1. (b)). For model paper, major
variability in reflectance was observed in the visible range and relative
homogeneity was observed in the NIR range. For historical paper, vari-
ability in reflectance across the whole range of the wavelength was
observed, with major differences in spectral shapes observed in the
visible range. This is an indication of the large variation in material
composition and physical properties of the historical samples. A few
historical samples showed reflectance greater than 1, which is likely
caused by the fluorescence of the additive materials (fillers, sizing ma-
terials, etc.) used in the production process [22].
2.3. Multivariate analysis

Given that NIR was of the main interest, the spectral range from 1000
nm to 2500 nm was used for statistical analysis for both sample sets.
2400 nm–2500 nm were further removed due to low signal to noise ra-
tios. After the truncations, the spectra were treated by 1st derivative al-
gorithms developed by Savitzky-Golay (SG) [23] only for outlier
paper samples collected by UV-VIS-NIR LabSpec 5000 Spectrometer.
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detection. Spectra showing distinctive visual features were identified as
potential outliers and the corresponding samples were examined for
confirmation. No outliers were found in the model paper set, whereas
nine were identified in the historical paper set and excluded from further
analyses. These nine samples displayed unusual material characteristics,
included four thick and severely degraded rag paper, one mouldy thick
rag paper, one unusually thin rag paper, one exceptionally thick rag
paper, one thermal paper and one contemporary paper. Each sample set
was then randomly split into two subsets: 2/3 for cross-validated training
and 1/3 for independent test.

For the training sets, the spectra were pre-treated using SG derivation
and standard normal variate (SNV) [24] in sequence before partial least
squares (PLS) regression was carried out to model the relationship be-
tween NIR reflectance and DP. Fig. 2 presents the reflectance spectra of
the model paper samples (Fig. 2 (a)) and the historical paper samples
(Fig. 2 (b)) over 1000 nm–2400 nm pre-processed by 2nd order SG
derivation with a window width of 49 and 51 respectively and SNV. The
PLS regression models were developed, optimised, and selected based on
ten-fold cross-validation on the training sets. The number of PLS factors
was determined by choosing the number that gave the first local mini-
mum of the root mean square error of cross-validation (RMSECV). The
spectral ranges were estimated based on the ranges reported in the
literature for model paper [16] and the overtones of –OH stretching [25]
Fig. 2. Reflectance spectra of (a) model paper samples and (b) historical paper samp
respectively and SNV.
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and C––O [26]. The ranges were optimised by trial and error based on the
performance in cross-validation.

The same spectral treatments and PLS model coefficients obtained
from the training sets were applied to the test sets. The performance of
the selected models was evaluated by the root mean square error of
prediction (RMSEP) of the test sets, which was taken as the expected
generalisation error in this research. NRMSE of prediction (NRMSEP)
was calculated based on Equation (1.1). In cases where transformation
was applied to the response variable DP, RMSECV and R2 of cross-
validation (RCV

2 ) were calculated and evaluated in the transformed
scale whereas the RMSEP and R2 of prediction (Rp

2) were in the original
scale. All the analyses were carried out in MATLAB® 2017a with Sta-
tistics and Machine Learning Toolbox™; code can be shared upon
request.

3. Results and discussion

3.1. Model development

In principle, the cause-effect relationship ensures the true predictive
validity of the quantitative NIR spectroscopy as an analytical method. For
the quantification of analytes, this relationship is usually based on vi-
brations of chemical bonds. Given that DP itself is not directly
les pre-processed by 2nd order SG derivation with a window width of 49 and 51
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represented by a concentration of chemical bonds, the relationship be-
tween DP and chemical bonds in cellulose was explored. Under the
assumption that the content of oxidised and transformed groups in cel-
lulose fragments are negligible, the amount of three characteristic bonds
in cellulose in relation to DP can be estimated as the following:

ng ¼ N – N∙DP�1, (3.2)

nr ¼ N∙DP�1, (3.3)

nh ¼ 4 N þ 2 N∙DP�1, (3.4)

where ng is the concentration of β-1,4 glycosidic bonds between the
monomers (mol∙g�1), nr is the concentration of reducing end groups
(mol∙g�1), nh is the concentration of –OH of cellulose (mol∙g�1), N is the
concentration of monomers (mol∙g�1), and DP is the average number of
monomers in a cellulose chain. In these relationships, the concentrations
of bonds are all reciprocally related to DP. This reciprocal relationship
still holds when oxidation takes place in the degradation process.
Therefore, it was hypothesised that a correlation is more likely to be
found between the reciprocal of DP and the measured spectroscopic
response.

This hypothesis that the reciprocal transformation leads to better
model performance was validated using the model paper set. In addition
to DP and DP�1, ln (DP) was also used as an option for response variable
because logarithm is a common transformation to correct nonlinearity.
Three different PLS calibration models were built and the results are
presented in Table 3. PLS scores, which are linear combinations of the
mean-centred reflectance at each wavelength multiplied by the co-
efficients for each PLS factor, were calculated. In all three cases, the
scores of the first PLS factor explained the majority of the variance in the
spectral response. The relationship between the score of the first PLS
factor and different transformations of DP of the training set was plotted
across the model paper samples in Fig. 3. The score of the first PLS factor
clearly shows a curved dependency on DP (Fig. 3. (a)). However, this
curvature was straightened by a reciprocal transformation of DP (Fig. 3
(b)), which suggests that a reciprocally transformed fit better approxi-
mates the linear relationship between DP and PLS factors.

Furthermore, for comparison, predictions obtained from all the
models were converted to DP to obtain RMSEPs in the original scale, i.e.
DP. As shown in Table 3, a logarithmic transformation of DP decreased
the RMSEP by 76% and 44% compared to DP and DP�1, respectively.
Therefore, ln (DP�1) was considered as the most appropriate trans-
formation of DP for model calibration, which was simplified as ln (DP).

Using a logarithmic transformation of DP, PLS regression analysis was
carried out for the data sets of model paper and historical paper. Table 4
summarises the pre-processing algorithms, the spectral range, the num-
ber of PLS factors, and the performance of the models that were found to
have the best predictive capacity based on cross-validation on the
training sets. No outliers were excluded during model calibration and
validation. Wide window widths were used for the pre-processing by SG
derivatives suggesting that the spectra might be noisy. RMSECV are in
logarithmic scales whereas RMSEP is in DP for comparison with
Table 3
Comparison of RMSEP, RP

2, and RCV
2 for models using different transformations of

the responsible variable DPv of the model paper set. For comparison, all the
models were developed using the same spectral range 1000–2400 nm. RMSEPs
are all in the original scale.

DP DP�1 ln
(DP)

RMSEP 351 288 200
RP
2 0.55 0.96 0.86

RCV
2 0.70 0.89 0.88

% variance in the spectroscopic response explained by the
1st PLS factor

75% 93% 84%

Number of PLS factors 1 6 4

Fig. 3. Comparison of the dependence of the scores of the first PLS factors on (a)
DP, (b) DP-1, and (c) ln (DP) as response variables modelled by PLS regression
using the training set of model paper.
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Table 4
Summary of the parameters and the results of the PLS regression for DP. RMSECVs were assessed on logarithmic scale whereas individual predictions were converted to
DP to obtained RMSEPs on the original scale, i.e. DP. CoV for the training and test sets are presented in the parentheses.

Data set Pre-processing algorithms Spectral range (nm) Number of factors RMSECV RCV
2 RMSEP RP

2

Model paper SNV, SG 2nd derivatives (window width 49) 1130–1620 4 0.08 (8.81%) 0.95 112 (7.66%) 0.96
Historical paper SNV, SG 2nd derivatives (window width 51) 1290–1720, 1870–1920, 2100–2160 8 0.20 (22.15%) 0.82 185 (18.38%) 0.93
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viscometry and similar research.
The model paper set provided a controlled study of the NIR spec-

troscopy as an analytical method for DP prediction. Fig. 4 presents the
PLS regression results for the model paper samples. Although these
samples were chemically degraded, DP was considered as the dominant
varying property. The changes in these samples are likely to be mainly
related to the scission of cellulose chains with little effects originating
from naturally occurring paper components and degradation products,
which could potentially complicate the NIR modelling and increase the
prediction error. As shown in Fig. 4, the good linearity between the
reference values and the modelled values in both training and test sets
demonstrates that a linear relationship between the spectral response and
DP could be well established by PLS regression. The RMSEP of DP for
model paper set was 112, ~8% across DP range 468–2462, consistent
with the performance of the training set. This can be considered as a
baseline of the expected generalisation error for DP prediction of cellu-
losic materials.

Although wavelength assignment of NIR spectra is complicated due to
many broad and overlapping bands corresponding to overtones and
combinations of fundamental vibrations in themid- and far-IR region [4],
the PLS regression analysis for model paper gave an idea of the most
critical spectral range for DP prediction. As shown in Table 4 for model
paper, the spectral range used for the PLS model is roughly from 1130 nm
to 1620 nm, including bands of the 1st overtone assigned to –OH
stretching (1428–1591 nm) [25] and 3rd overtone assigned to aldehyde
and ketone (1436–1478 nm) and conjugated aldehyde (1461–1495 nm)
[26]. This provides additional evidence that the success of the NIR-PLS
method is likely to be based on the concentration of glycosidic bonds,
reducing end groups, and –OH groups in cellulose.

The historical paper set required more complicated calibration
models with a wider spectral range and more PLS factors than the model
Fig. 4. Correlations between the modelled DP by PLS regression and reference DP m
consist of Whatman filter paper No. 1. Parameters presented in Table 4 were used fo
logarithmic scale whereas data of the test set are presented in the original scales, i.e
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paper set (Table 4). The results of the PLS regression analysis for the
historical paper samples are presented in Fig. 5. Good linearity was also
obtained between the reference DP and themodelled DP, however, larger
errors were obtained compared to model paper. This is likely a reflection
of the variability of historical paper regarding the inhomogeneity of
physical and chemical properties, including surface texture, thickness,
fibres, sizing, and the degradation products accumulated over the cen-
turies. Consistent performance of the training set and the test set was
observed across the DP range of 427–4071.
3.2. Error evaluation

Errors in the spectral and the reference data as well as the bias of the
statistical model affect the accuracy and precision of the predictions by
the NIR-PLS method [5]. To gain insights into the errors of DP prediction
by NIR-PLS method, RMSEP was used to represent the expected gener-
alisation error. Mean square error of prediction (MSEP) was derived
based on the bias-variance decomposition [27]:

MSEP ¼ σ2 þ Bias2[f(x)] þ Var[f(x)], (3.5)

where MSEP is the square of RMSEP, σ2 is the sample variance in refer-
ence DP, Bias2 [f(x)] represents the residual model error between the best
fitting PLS approximation and the true model for DP, and Var [f(x)] is the
variance in the predicted DP of the test sample set.

The pooled standard deviation of the reference DP specified in
Methodology was used to represent the σ for model paper and historical
paper samples. Given that each spectral measurement represents the
average of three spectra, the variance of the predicted DP was estimated
as one third of the pooled variance of 20 duplicates randomly selected
from the test sample sets. Measurements were taken from two different
spots on each sample which gave standard deviation of DP 98 for model
easured chemically for (a) training and (b) test data sets of model paper samples
r the PLS regression analysis. Note that data of the training set are presented on
. DP.



Fig. 5. Correlations between the modelled DP and reference DP measured chemically for (a) training and (b) test data sets of historical paper samples. Parameters
presented in Table 4 were used for the PLS regression analysis. Note that data of the training set are presented in logarithmic scales whereas data of the test set are
presented in the original scales, i.e. DP.
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paper and DP 129 for historical paper. The bias of the PLS regression
model from the true model was difficult to quantify directly. Therefore,
the percentage contribution of bias2 was inferred by subtracting the
contributions of the variance of reference DP and predicted DP from
100%.

Table 5 summarises the contributions of the variance of reference DP,
the variance of the predicted DP, and the square bias of the model. For
both model paper and historical paper, the variance of predicted DP was
found to be the largest contributor to the total variance estimated by
MSEP. This is consistent with what Lu et al. [5] reported that the per-
formance of the models for natural materials were sensitive to random
noise in the spectra. Various sources can cause the variance in prediction,
including the instrumentation, the chemical and physical inhomogeneity
of the samples, and the measuring procedures. Given that the percentage
contribution of Var [f(x)] of model paper samples (77%) was found to be
higher than historical paper samples (49%), and model paper samples
were inherently more homogeneous in chemical and physical properties
than the historical samples, it is likely that the instrumentation and the
measuring procedures contribute the most to the variances. Therefore,
optimising these two factors can be crucial to the minimisation of the
prediction errors.

For model paper, ~90% of the total variance coming from the sam-
ples and ~10% from the square bias of the PLS regression model. This
indicates that the NIR-PLS method is capable of modelling DP of paper
with good accuracy and precision. But for historical paper, the estimated
square bias of the model was evidently high, ~50%. Since historical
paper is much more complex in chemical and physical properties than
model paper, it is likely that the NIR-PLS method was largely affected by
these complexities. However, it is worth noting that this estimation was
Table 5
Summary of the percentage contributions of the three sources to MSEP. Historical
paper’ represent the results where the CoV of historic paper was corrected by a
factor of 4 for the possible underestimation of variance in reference DP.

Samples Variance of
reference DP (σ2)

Variance of predicted
DP (Var [f(x)])

Square bias of
model (Bias2 [f(x)])

Model paper 12% 77% 11%
Historical
paper

2% 49% 49%
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based on the estimation of σ2. Unexpectedly, σ2 of the historical paper
samples was evidently smaller compared to that of the model paper
samples. This could be the result of underestimation due to adjacent
sampling for DP measurements by viscometry.

It was difficult to quantify the possible underestimation of σ2 of his-
torical paper based on available data. However, according to recent
research, the CoV of historical rag paper samples was estimated 8.6% on
average [21]. Given that more than 90% of the reference samples were
historical rag paper, it was hypothesised that applying a correction factor
of 3.78 to the CoV of the historical paper sample set could lead to more
reasonable estimations. Under this hypothesis, σ2 was estimated to
contribute 33% of the total error and the square bias of the model
contributed 18%. This estimation looks consistent with the estimation for
model paper, where the variance of predicted DP contributed the most to
the model error and the model bias contributed the least. But further
research is needed to verify the validity of this approach.
3.3. Effect of moisture content

Water content is one of the most important factors that cause un-
certainty in quantitative NIR spectroscopy [28]. This is because the NIR
spectral range covers multiple O–H vibrations of H2O, including a strong
absorption at 1930 nm, and the O–H bond is particularly active and
intense due to the large mass difference between the atoms [28]. How-
ever, the effect of moisture content of samples on quantitative NIR pre-
diction of DP has not been studied. Since the NIR models are usually
developed using samples conditioned in controlled laboratory environ-
ments, typically 23 � 0.5 �C and 45% � 5% RH [29], it is important to
understand the effect of moisture content for applications of the models
in practice, where the moisture content of the samples may vary greatly.

Given that the complexity of the NIR spectra and the chemical
composition of historical paper, the sensitivity of DP prediction on
changing moisture content is difficult to be derived from direct inter-
pretation of the spectra. Therefore, an experiment was designed to assess
the effect of moisture content on DP predicted by NIR-PLS models.
Triplicate samples of model paper and historical paper were conditioned
at different moisture contents by equilibrating the samples at the same T
(23� 0.5 �C) but varying RH (20%–80%) in a climate chamber. For each
condition, triplicate NIR spectra were collected from three spots on each



Fig. 6. The dependency of DP predicted by NIR spectroscopy on the moisture
content of (a) model paper and (b) historical paper. The empty circle represents
the reference DP values measured by viscometry and the error bars represent the
standard deviation of the triplicate DP values predicted using the NIR-PLS
model. For the model paper samples, the error bars are invisible compared to
the magnitude of the change in DP caused by the change of moisture content.
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sample. The average of the measurements was used to calculate the
predicted DP of each sample using the PLS regression models specified in
Table 4. The average mass of each sample before and after each set of NIR
measurements was used to represent the mass of the sample during the
measurements. Relative moisture content was expressed as the percent-
age mass change in the sample compared to the mass at 23 �C and 50%
RH, at which the NIR-PLS model was developed.

Fig. 6 presents the scatter plots of the predicted DP in relation to the
relative moisture content for model paper (Fig. 6 (a)) and historical paper
(Fig. 6 (b)). Substantial change in the predicted DP of a model paper was
observed when moisture content of the samples fluctuated between�3%
and þ5%. This observation suggests that the NIR-PLS model for DP of
model paper is not robust to varying moisture contents, although the
spectral range including the most intense –OH vibration of H2O was
excluded from the model. In this case, samples of a range of moisture
content need to be used for the development of the NIR-PLS models to
achieve improved robustness.

However, a closer look at the dependency of predicted DP of model
paper on the relative moisture content reveals that the relationship can
be approximated exponentially across the range investigated. Trans-
formed on logarithmic scale with base 10, this dependency can be
approximated with a good linear fit over the range�3% (Residual Sum of
Squares ¼ 0.02, R2 ¼ 0.99). Therefore, in the case of model paper, the
NIR-PLS model developed at a single moisture content can be extrapo-
lated for predictions at other moisture contents. This extrapolation is
8

valid for a conditioning environment of 30%–70% RH at 23 �C, estimated
by the equation developed by PaltaKari and Karlsson [30].

In contrast, when the moisture content of samples fluctuated within
�3% (30%–70% RH at 23 �C), the variation of the predicted DP of his-
torical paper was found to be within the range of model uncertainty
(Fig. 6 (b)). This observation suggests that the NIR-PLS model for his-
torical paper is reasonably robust to the change of moisture content of the
samples, thus no correction may be necessary for the application of the
NIR-PLS model to the samples with different moisture contents. The
reason for this observed stability in prediction can be complex and is
likely associated with the complexity of historical paper. Part of the
complexity may come from the natural ageing processes, during which
the void structures in cellulose are changed and the structural resistance
to the disruption caused by water absorption is increased [31]. It is worth
noting that there is a tendency of increasing uncertainty as the change in
moisture content increases, which may limit the accuracy of the pre-
dictions at extreme moisture contents.

4. Conclusions

To clarify the inconsistency in the literature and lay a foundation for
future research, this paper systematically investigated the development
of a NIR spectroscopic method coupled with PLS regression to non-
destructively predict the DP of historical paper. The feasibility of the
NIR-PLS method was studied using model paper samples composed of
almost pure cellulose. Using log-transformed DP as response variable,
satisfactory NIR-PLS models were established for model paper and his-
torical paper. RMSEPwas found to be DP 112 (~8%) for model paper and
DP 185 (~20%) for historical paper. The larger error for historical paper
is likely to be a result of the inhomogeneity of the samples, which is
caused by the differing chemical and physical properties due to the
original materials, manufacturing processes, and accumulation of
degradation products over time.

RMSEP was taken as the expected generalisation error of the NIR-PLS
models for error analysis. The variance of the reference DP, the variance
of the predicted DP, and the bias of the NIR-PLS model from the true
model for DP prediction were identified as the three sources of error. For
both model paper and historical paper, the variance of the predicted DP
contributed the most – 77% and 49% for model paper and historical
paper respectively. This suggests that the performance of the current NIR-
PLS models is mainly limited by the repeatability of the NIR measure-
ments, which may be improved by enhanced precision and accuracy of
the instrument and the operational procedures. The NIR-PLS method was
found adequate to model DP of model paper but was likely to be affected
by the complexity of the historical paper.

To assess the practicality of the NIR-PLSmodels, the effect of moisture
content of the samples on DP prediction was investigated. With the
fluctuation of moisture content being �3%, substantial variations in the
predicted DP were observed for model paper, whereas the variations
contained within the model uncertainty for historical paper. This sug-
gests that the NIR-PLS models developed using model samples tend to be
overly ideal for real conditions and should be avoided in real applica-
tions. Since the NIR-PLS model for historical paper was found robust to
environmental conditions equivalent to 30%–70% RH at 23 �C, the
quantitative NIR spectroscopic method can be applied to historical paper
with confidence in a range of environments to obtain plausible pre-
dictions of DP.
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