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ABSTRACT

A domain decomposition method is developed to solve the problem of wave motion inside a harbor with its surface covered by an ice sheet.
The shape of the horizontal plane of the harbor can be arbitrary while the sidewall is vertical. The entrance of the harbor is open to the sea
with a free surface. The linearized velocity potential theory is adopted for fluid flow, and the thin elastic plate model is applied for the ice
sheet. The domain is divided into two subdomains. Inside the harbor, the velocity potential is expanded into a series of eigenfunctions in the
vertical direction. The orthogonal inner product is adopted to impose the impermeable condition on the harbor wall, together with the edge
conditions on the intersection of the harbor wall and the ice sheet. In the open sea outside of the harbor, through the modified Green
function, the velocity potential is written in terms of an integral equation over the surface of the harbor entrance, or the interface between
the two subdomains. On the interface, the orthogonal inner product is also applied to impose the continuity conditions of velocity and
pressure as well as the free ice edge conditions. Computations are first carried out for a rectangular harbor without the ice sheet to verify the
methodology, and then extensive results and discussions are provided for a harbor of a more general shape covered by an ice sheet with
different thicknesses and under different incident wave angles.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0051376

I. INTRODUCTION

A harbor can generally provide some protection to ships from
ocean wave excitation. However, because the fluid domain is in a con-
fined space, it may experience resonance. To understand the nature of
the fluid motion inside a harbor is of important practical relevance. In
general, the water surface inside the harbor is free. However, in some
cold regions, the water surface may become frozen or covered by an
ice sheet, while away from the harbor the water surface remains free.
In such a case, the free surface wave may propagate into the harbor
and create complex fluid ice sheet interaction. The present work tries
to shed some light on the mechanism of such a process.

When there is no ice sheet on the water surface in the harbor,
there has been extensive research on interactions of external waves
with internal fluid motion. Mcnown1 derived an analytical solution for
a circular harbor with a small entrance at which the flow into the har-
bor was prescribed. This was later extended to a harbor with a rectan-
gular shape by Kravtchenko and Mcnown.2 However, in the real
situation, the flow into the harbor is unknown. It depends on the inter-
action between flows inside and outside the harbor, which itself is part
of the solution. Hwang and Tuck3 constructed a boundary integral

equation over the harbor and coastal walls, and the latter was trun-
cated at a finite distance far away from the entrance for numerical
computations. Lee4 introduced a domain decomposition method, in
which the need to include the coastal wall in the integral equation was
removed and there was no truncation error involved. A partial reflec-
tion boundary condition was used by Isaacson and Qu5 on the harbor
boundary, which absorbs the wave energy similar to the effect of vis-
cosity. Hamanaka6 considered a more general problem in which the
harbor could contain several types of boundary, i.e., reflection bound-
ary, partial reflection boundary, open boundary, and incident-
absorbing boundary. The wave diffraction problem by a harbor was
also considered by Kumar et al7 through the two-dimensional bound-
ary integral method with Chebyshev point discretization applied on
the horizontal plane of the harbor boundary, together with the vertical
modes. However, when there is a body of general shape floating in the
harbor, the problem needs to be considered in a three-dimensional
sense, e.g., solved by Shi, Li, and Wu8 through introducing a domain
decomposition method.

Also, there has been growing interest in the wave/ice sheet inter-
actions, in the context of geophysics and polar engineering. In many
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cases, the wave motion of the fluid can be described through the line-
arized velocity potential theory while the ice sheet defection can be
modeled by a thin elastic plate. This model is valid for a wide range of
problems in the polar regions, as explained in the review papers by
Squire.9,10 For wave propagation from open sea to the semi-infinite ice
sheet, Fox and Squire11 obtained the wave reflection and transmission
coefficients through the matched eigenfunction expansions, where the
conjugate gradient method was applied to impose the matching condi-
tions at the interface and the ice edge conditions. When the wavenum-
ber for free surface wave is larger than that for flexural-gravity wave in
the ice sheet a critical angle exists for the incident wave. Similar to
Snell’s law, when the angle between the wave direction and the ice
edge is smaller than this critical angle, there will be no progressing
wave into the ice sheet.12 The same problem was considered by Sahoo
et al.,13 who obtained the unknowns through introducing an orthogo-
nal inner product. Various ice edge conditions were considered. In
addition, the problem has been solved through the Wiener-Hopf
method by Evans and Davies,14 Balmforth and Craster,15 Chung and
Fox16 and Tkacheva.17 In Balmforth and Craster,15 it was shown that
for a wide range of thickness of the ice sheet, the Kirchhoff-Love
model for a thin elastic plate would give similar results to those by the
Timoshenko–Mindlin model which included the effects of rotary iner-
tia and transverse shear force of the plate. Solutions have also been
obtained through the residue calculus technique, for example, by
Linton and Chung.18 For wave interaction with an ice sheet of finite
length, by introducing the large length assumption, Meylan and
Squire19 obtained an approximate solution for the two-dimensional
problem, based on that for waves from open water to the semi-infinite
ice sheet. It was found that there would be an infinite number of dis-
crete frequencies at which perfect transmission would occur. The
problem was solved without the large length assumption through the
Green function method by Meylan and Squire,20 which was then
extended to solve wave interactions with a circular ice floe in the
three-dimensional case.21 For ice floe with an arbitrary shape, Wang
and Meylan22 developed a numerical scheme based on the boundary
element method for fluid flow and finite element method for the ice
sheet deflection. Based on the wide spacing assumption, Shi, Li, and
Wu23 solved the problem of wave interactions with multiple ice floes
separated by wide polynyas, and the results showed a good agreement
with those without the approximation. When the width of polynya
tends to zero, it will become a crack. Li, Wu, and Ji24 derived a Green
function which itself satisfied the conditions at the crack. This enables
the diffraction potential by the crack to be written explicitly. The
Green function was then extended for an ice sheet with multiple
cracks. For a closed circular crack, Li, Wu, and Shi25 obtained a semi-
analytical solution by expanding the unknowns into Fourier series
along the crack, and the near-resonant wave motions were found
when the wave frequency is close to the natural frequency of the inner
ice sheet. Similar behavior was also observed by Li, Wu, and Ren26 for
mixed open and closed cracks. Brocklehurst et al.27 derived an analyti-
cal solution for flexural-gravity wave reflection by a vertical wall in the
two-dimensional case, in which the ice sheet extended to infinity at
one end and clamped to the wall at the other end. Instead of using the
integral transform method, Bhattacharjee and Soares28 solved the
same problem through the matched eigenfunction expansions. For
three-dimensional problems, Brocklehurst et al.29 investigated
flexural-gravity wave diffraction by a vertical wall of circular cross

section. The ice sheet was of infinite extent, and the results were
obtained through a Weber transform. Recently, Korobkin et al.30

reconsidered the problem through a vertical mode method, while Ren
et al.31 extended the problem to multiple vertical circular walls.

The previous work on wave motion in the harbor is for a harbor
with open free surface, while the work on the ice sheet is for the surface
of infinite or semi-infinite extent. Here, we shall consider the problem
of the wave from the sea propagating into a frozen harbor, and its
excited fluid motion inside the harbor as well as the ice sheet deflec-
tion. The harbor has vertical wall boundary and constant depth while
its horizontal plane has an arbitrary shape. As external water surface is
free and internal water surface is covered by an ice sheet, an efficient
approach is to use the domain decomposition method. The total fluid
domain is divided into two subregions, i.e., one region inside the har-
bor and the other region outside the harbor. In the former, the velocity
potential is expanded into a series of eigenfunctions in the vertical
direction, which satisfies the ice sheet condition analytically. To
impose the boundary conditions on the vertical harbor wall and the
edge of ice sheet, an orthogonal inner product is applied. In the region
outside the harbor, a boundary integral equation is established over
the interface of the two subregions and the part over the coastal line is
removed analytically. On the interface, the continuities of both pres-
sure and velocity are satisfied through the orthogonal inner product.

The paper is organized as follows. The mathematical problem for
wave interaction with a frozen harbor of arbitrary geometry is formu-
lated in Sec. II. The solution method is constructed in Sec. III, i.e., a
series of eigenfunction expansions in the vertical direction in the inte-
rior region in Sec. IIIA, a boundary integral equation over the inter-
face in the exterior region in Sec. III B, matching procedure through
an orthogonal inner product in Sec. III C, and numerical discretization
through boundary element method in Sec. IIID. In Sec. IV, verifica-
tions of the proposed method are first carried out, and then a case
study for a given harbor shape is provided. Conclusions are drawn in
Sec. V.

II. MATHEMATICAL MODEL

The problem of wave interaction with a frozen harbor bounded
by vertical walls and with arbitrary shape in the horizontal plane is
sketched in Fig. 1. The region inside the harbor is covered by an ice
sheet, while the region outside the harbor is fully free. The water depth
H is assumed to be constant. To describe the problem, a Cartesian
coordinate system O� xyz is defined, with O� xy plane being the
undisturbed mean free water surface, and z axis pointing vertically
upwards. The entrance of the harbor is in the O� yz plane, and the
coastal wall is along the y axis and assumed to extend to infinity. The
edge of the ice sheet or its intersection with the harbor can be
described parametrically by

C ¼ ðxðsÞ; yðsÞÞð�c < s < þcÞ; (1)

where 2c is the total arc length of the edge, and s is the curvilinear
coordinate along the edge. To develop the numerical procedure, the
total fluid domain X is divided into two subregions, i.e., X1 inside the
harbor andX2 outside the harbor, as shown in the figure.

The fluid of density qw is assumed to be inviscid, incompressible,
and homogeneous, and its motion to be irrotational. Thus, the velocity
potential U can be introduced to describe the fluid flow. When the
amplitude of wave motion is small compared with its length, the
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linearization of boundary conditions can be further adopted. For sinu-
soidal motion in time with radian frequency x, the total velocity
potential can be written as

UðjÞðx; y; z; tÞ ¼Re ixg d2;j/Iðx; y; zÞ þ /ðjÞðx; y; zÞ
h i

eixt
n o

ðj ¼ 1; 2Þ; (2)

where di;j is the Kronecker delta function, /I is the incident velocity
potential, and g is the complex amplitude of the incident wave. The
superscripts j ¼ 1 and j ¼ 2 correspond to the velocity potential in
the interior and exterior subregions, respectively. The conservation of
mass requires that the velocity potential /ðjÞ should satisfy the Laplace
equation,

r2/ðjÞ þ @2/ðjÞ

@z2
¼ 0; (3)

throughout the fluid, where

r2 ¼ @2

@x2
þ @2

@y2
; (4)

is the Laplacian in the horizontal plane. Following Squire32 and others,
the ice sheet inside the harbor can be modeled as a thin elastic plate
with its draught effect being ignored. By assuming that the ice sheet is
in contact with the fluid at all points for all time, the displacement and
pressure on their interface should be continuous. The kinematic con-
dition on the ice sheet can be written as

@W
@t

¼ @Uð1Þ

@z
ðz ¼ 0Þ: (5)

The deflection of the ice sheet is governed by33

Lr4W þm
@2W
@t2

¼ �qw
@Uð1Þ

@t
þ gW

� �
ðz ¼ 0Þ; (6)

where g is the acceleration due to gravity, L ¼ Eh3=½12ð1� �2Þ� and
m ¼ qih are, respectively, the effective flexural rigidity and mass per
unit area of the ice sheet, with its Young’s modulus E, Possion’s ratio
�, density qi, and thickness h being assumed to be constant. The right
hand side of Eq. (6) is in fact the fluid pressure. Similar to the velocity
potential in Eq. (2), we may write the deflection of the ice sheet as

W x; y; tð Þ ¼ Re gw x; yð Þeixt
h i

: (7)

Combing Eqs. (5) and (6), and using (2) and (7), the boundary condi-
tion for the velocity potential on the ice sheet can be written as

ðLr4 þ qwg �mx2Þ @/
ð1Þ

@z
� qwx

2/ð1Þ ¼ 0 ðz ¼ 0Þ: (8)

Without loss of generality, the edge of the ice sheet inside the harbor is
assumed to be clamped to the vertical wall, which means that both the
displacement and the slop there are zero, i.e.,

w ¼ 0 and
@w
@N

¼ 0 ððx; yÞ 2 CI ; z ¼ 0Þ; (9)

or

@/ð1Þ

@z
¼ 0 and

@2/ð1Þ

@N@z
¼ 0 ððx; yÞ 2 CI ; z ¼ 0Þ; (10)

where ~N ¼ ðcosH; sinHÞ is the unit vector along the normal direc-
tion of CI or the harbor wall as shown in Fig. 1. On the vertical wall of
the harbor, the impermeable condition should be satisfied which states
that

@/ð1Þ

@N
¼ 0 ððx; yÞ 2 CI ; z 2 �H; 0½ �Þ: (11)

The ice edge at the interface of the two subregions X1 andX2 is free of
bending moment and shear force, i.e.,33

FIG. 1. Coordinate system and sketch of the problem. (a) Plane view with z ¼ 0; (b) view for cross section along O� xz plane with y ¼ 0.
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B @/ð1Þ

@z

� �
¼ 0 and S @/ð1Þ

@z

� �
¼ 0 ðx; yÞ 2 CC; z ¼ 0ð Þ; (12)

where the operators B and S are, respectively, defined as

B ¼ r2 � �0 sin2H
@2

@x2
þ cos2H

@2

@y2
� sin 2H

@2

@x@y

 !
; (13)

S ¼ @

@n
r2 þ �0

@

@s
cos 2H

@2

@x@y
þ sin 2H

2
@2

@y2
� @2

@x2

 !" #
; (14)

with �0 ¼ 1� �, and ~N ¼ ðcosH; sinHÞ and~s ¼ ð�sinH; cosHÞ
are the unit vectors along the normal and tangential directions of CC ,
respectively. In the subregion outside the harbor, the combination of
linearized dynamic and kinematic free surface boundary conditions
yields

�x2/ð2Þ þ g
@/ð2Þ

@z
¼ 0 ðz ¼ 0Þ: (15)

At infinity the radiation condition requires that the diffracted waves
should propagate outwards, or

lim
rh!1

ffiffiffiffi
rh

p @/ð2Þ

@rh
þ ik0/

ð2Þ
 !

¼ 0; (16)

where r2h ¼ x2 þ y2, i ¼ ffiffiffiffiffiffi�1
p

, and k0 is the wavenumber and is the
purely positive real root of the dispersion equation for the gravity
wave in the open sea,

K2ðx; kÞ � gk tanhðkHÞ � x2 ¼ 0: (17)

On the flat seabed, we have

@/ðjÞ

@z
¼ 0 ðj ¼ 1; 2; z ¼ �HÞ: (18)

III. SOLUTION PROCEDURES

As can be seen from the above section, the boundary condition
for the velocity potential on the upper surface is nonuniform. Inside
the harbor X1, the ice sheet boundary condition (8) should be satisfied
together with the ice edge conditions (10) and (12) along CI and CC ,
respectively. While outside the harbor X2 which extends from the
straight coastline to infinity, free surface boundary condition (15)
should be enforced. Although the subregion X1 is finite, the condition
on the ice sheet contains high derivative up to the fifth order, which is
usually a major challenge in numerical calculation. An effective way to
solve such a problem with nonuniform upper surface boundary condi-
tion is to use a different method in each subregion, and then match
the solutions in the two subregions on their interface.

A. Series expansion in the interior region X1

of the harbor

In the ice covered region X1 inside the harbor, through applying
the variable separation method, we have34

/ð1ÞðpÞ ¼
X1
m¼�2

umðx; yÞwmðzÞ; (19)

where

r2um þ j2mum ¼ 0; (20)

and

wmðzÞ ¼
cosh jmðz þ hÞ½ �

coshðjmhÞ ; (21)

with jm being the roots of the dispersion equation for ice sheet or

K1ðx;jÞ � ðLj4 þ qwg �mx2ÞjtanhðjhÞ � qwx
2 ¼ 0: (22)

It may be noticed that j�2 and j�1 are two complex roots with nega-
tive imaginary parts and symmetric about the imaginary axis, j0 is the
purely positive real root, jm (m ¼ 1; 2;…) are an infinite number of
purely negative imaginary roots. To convert the two dimensional
Helmholtz equation in Eq. (20) into an integral equation over
C ¼ CI þ CC , we may use the Green function,35

Gð1Þðp; qÞ ¼ p
2i
Hð2Þ

0 ðjmRÞ; (23)

where Hð2Þ
0 ðjmRÞ is the zero order Hankel function of second kind,36

and R is the horizontal distance between the field point pðx; y; zÞ and
the source point qðn; g; fÞ. Applying Green’s identity to Gð1Þðp; qÞ and
um, we have

að1ÞðpÞumðpÞ ¼
ð
C

Gð1Þðp; qÞ @umðqÞ
@N

� @Gð1Þðp; qÞ
@N

umðqÞ
� �

dl;

(24)

where að1Þ is the two-dimensional solid angle at field point p.
To impose the impermeable condition on the vertical harbor

wall, we may use the following inner product,13

hwm;w~mi ¼
ð0
�H

wmw~mdz þ
L

qwx2

dwm

dz
d3w~m

dz3
þ d3wm

dz3
dw~m

dz

� �
z¼0

:

(25)

Then if m 6¼ ~m, hwm;w~mi ¼ 0, and if m ¼ ~m, hwm;w~mi ¼ Qm,
where

Qm ¼ 2jmH þ sinhð2jmHÞ
4jmcosh

2ðjmHÞ þ 2Lj4m
qwx2

tanh2ðjmHÞ: (26)

Applying the inner product to @/ð1Þ=@n and w~m on the vertical har-
bor wall, we have

@/ð1Þ

@n
;w~m

* +
¼
ð0
�H

@/ð1Þ

@n
w~mdz

þ L
qwx2

@2/ð1Þ

@z@n
d3w~m

dz3
þ @4/ð1Þ

@z3@n
dw~m

dz

� �
z¼0

: (27)

According to the boundary condition Eq. (11) on the vertical harbor
wall and the clamped ice edge condition (10), both of the first and sec-
ond terms on the right hand side of the above equation are zero, i.e.,
Eq. (27) can be rewritten as

@/ð1Þ

@n
;wm

* +
¼ LjmtanhðjmHÞ

qwx2
!; (28)
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where

! ¼ @4/ð1Þ

@z3@n

� �
z¼0

: (29)

Substituting Eq. (19) into (28), we have

@um

@N
¼ LjmtanhðjmHÞ

qwx2Qm
!: (30)

Here, we have used ~n ¼ ~N on the vertical wall. The substitution of
Eqs. (30) into (24) further provides

að1ÞðpÞumðpÞ

¼
ð
CI

Gð1Þðp; qÞ LjmtanhðjmHÞ
qwx2Qm

!ðqÞ � @Gð1Þðp; qÞ
@N

umðqÞ
" #

dl

þ
ð
CC

Gð1Þðp; qÞ @umðqÞ
@N

� @Gð1Þðp; qÞ
@N

umðqÞ
� �

dl: (31)

B. Boundary integral equation in the exterior region
X2 of the harbor

In the exterior region X2 of the harbor bounded by the coastline
x ¼ 0, we may divide the total velocity potential /ð2Þ into three parts
or8

/ð2Þ ¼ /I þ /ð2Þ
I þ /ð2Þ

D ; (32)

where

/Iðx; y; zÞ ¼ uIðx; yÞZ0ðzÞ; (33)

/ð2Þ
I x; y; zð Þ ¼ /I �x; y; zð Þ ¼ �uIðx; yÞZ0ðzÞ; (34)

with �uIðx; yÞ ¼ uIð�x; yÞ and

uIðx; yÞ ¼
g
x2

e�ik0ðx cos bþy sin bÞ: (35)

Here, /ð2Þ
I is the diffracted potential of /I by the coastline at x ¼ 0,

while /ð2Þ
D is that by the harbor, k0 is the real solution of Eq. (17) and

Z0ðzÞ will be defined later in Eq. (54). It may be noticed that /ð2Þ
I has

been taken out separately because it does not decay as x ! 1. Away
from the harbor, /ð2Þ

D will behave like a ring wave and will decay in a
rate proportional to the square root of the distance to the harbor.
Applying Green’s identity to Gð2Þðp; qÞ and /ð2Þ

D , we have

að2ÞðpÞ/ð2Þ
D ðpÞ ¼

ð
SC

Gð2Þðp; qÞ @/
ð2Þ
D ðqÞ
@n

� @Gð2Þðp; qÞ
@n

/ð2Þ
D ðqÞ

" #
ds;

(36)

where both the derivative and integration are performed with respect
to q, að2Þ is the solid angle at point p, and SC is the interface of X1 and
X2. In Eq. (36), Gð2Þ ¼ Gþ �G, where G is the free surface Green func-
tion for open water or37

Gðp; qÞ ¼ 1
r1
þ 1
r2
þ 2

ðþ1

0
e�kH gkþ x2

gk tanhðkHÞ � x2

� cosh kðfþ HÞ½ �
coshðkHÞ cosh kðz þHÞ½ �J0ðkRÞdk; (37)

with �G ¼ Gðp; �qÞ and �qð�n; g; fÞ being the mirror image of q about
the coastline. The integral route in Eq. (37) from 0 toþ1 should pass
over the pole at k ¼ k0, r1 is the distance between p and q, r2 is the dis-
tance between p and the mirror image of q about the flat seabed, and
J0ðkRÞ is the zeroth-order Bessel function of first kind.36

C. Matching on the interface SC of the two subregions

On the interface SC of the two subregions, the continuity condi-
tions of pressure and velocity yield

/ð1Þðx; y; zÞ ¼ /ð2Þðx; y; zÞ; (38)

@/ð1Þðx; y; zÞ
@n

¼ @/ð2Þðx; y; zÞ
@n

; (39)

where the unit normal vector ~n points outward from X1. To satisfy
the continuity condition of pressure in (38), we apply inner product
(25) to/ð1Þ andw~m , which provides

h/ð1Þ;w~mi¼
ð0
�H

/ð1Þw~mdzþ
L

qwx2

@/ð1Þ

@z
d3w~m

dz3
þ@3/ð1Þ

@z3
dw~m

dz

� �
z¼0

¼
ð0
�H

/ð2Þw~mdzþ
L

qwx2

@/ð1Þ

@z
d3w~m

dz3
þ@3/ð1Þ

@z3
dw~m

dz

� �
z¼0

:

(40)

Similarly, we have for the continuity condition of velocity Eq. (39) or

@/ð1Þ

@n
;w~m

* +

¼
ð0
�H

@/ð1Þ

@n
w~mdz þ

L
qwx2

@2/ð1Þ

@z@N
d3w~m

dz3
þ @4/ð1Þ

@z3@N
dw~m

dz

� �
z¼0

¼
ð0
�H

@/ð2Þ

@n
w~mdz þ

L
qwx2

@2/ð1Þ

@z@N
d3w~m

dz3
þ @4/ð1Þ

@z3@N
dw~m

dz

� �
z¼0

:

(41)

Substituting Eq. (19) for /ð1Þ and the corresponding @/ð1Þ=@n into
the left hand sides of Eqs. (40) and (41), respectively, we have

u~mQ ~m ¼
ð0
�H

/ð2Þw~mdz þ
L

qwx2

@/ð1Þ

@z
d3w~m

dz3
þ @3/ð1Þ

@z3
dw~m

dz

� �
z¼0

;

(42)

and

@u~m

@N
Q ~m¼

ð0
�H

@/ð2Þ

@n
w~mdzþ

L
qwx2

@2/ð1Þ

@z@N
d3w~m

dz3
þ @4/ð1Þ

@z3@N
dw~m

dz

� �
z¼0

:

(43)

Invoking Eq. (3) or @2/ð1Þ=@z2 ¼ �r2/ð1Þ, the above two equations
can be rewritten as

u~mQ ~m ¼
ð0
�H

/ð2Þw~mdz þ
L

qwx2

@/ð1Þ

@z
d3w~m

dz3

 

�r2 @/ð1Þ

@z

� �
dw~m

dz

!
z¼0

; (44)

and
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@u~m

@N
Q ~m ¼

ð0
�H

@/ð2Þ

@n
w~mdz þ

L
qwx2

@2/ð1Þ

@z@N
d3w~m

dz3

(

� @

@N
r2 @/ð1Þ

@z

� �� �
dw~m

dz

)
z¼0

: (45)

The last terms in the above two equations can be replaced according
to the ice edge conditions. Using

@x
@s

¼ �sinH and
@y
@s

¼ cosH; (46)

on CC withH ¼ 0, the operators B and S in Eqs. (13) and (14) can be
written as

B ¼ r2 � �0
@2

@s2
þ @H

@s
@

@N

� �
¼ r2 � �0

@2

@y2
; (47)

S ¼ @

@N
r2 þ �0

@

@s
@2

@s@N
� @H

@s
@

@s

� �
¼ @

@N
r2 þ �0

@3

@y2@N
:

(48)

Then the free ice edge condition in Eq. (12) provides

r2 @/ð1Þ

@z

� �
¼ �0

@2

@y2
@/ð1Þ

@z

� �
; (49)

@

@N
r2 @/ð1Þ

@z

� �
¼ ��0

@3

@y2@N
@/ð1Þ

@z

� �
: (50)

Substituting Eqs. (49) and (50) into (44) and (45) respectively, we have

u~mQ ~m ¼
ð0
�H

/ð2Þw~mdz þ
L

qwx2

@/ð1Þ

@z
d3w~m

dz3

"

��0
@2

@y2
@/ð1Þ

@z

� �
dw~m

dz

#
z¼0

(51)

and

@u~m

@N
Q ~m ¼

ð0
�H

@/ð2Þ

@n
w~mdz þ

L
qwx2

@2/ð1Þ

@z@N
d3w~m

dz3

8<
:

þ �0
@3

@y2@N
@/ð1Þ

@z

� �" #
dw~m

dz

)
z¼0

: (52)

On the interface SC , which is vertically extended from the seabed to
the ice edge, we may expand the potential /ð2Þ

D as well as its normal
derivative into a series of orthogonal eigenfunctions,37

/ð2Þ
D ðpÞ ¼

X1
m¼0

/mðx; yÞZmðzÞ; @/ð2Þ
D ðpÞ
@n

¼
X1
m¼0

@/mðx; yÞ
@N

ZmðzÞ;

(53)

where

ZmðzÞ ¼ cosh kmðz þ HÞ½ �
coshðkmHÞ ; (54)

with km being the solutions of the dispersion equation (17) for free
surface. In particular, k0 is the purely positive real root, and km

(m ¼ 1; 2; …) are an infinite number of purely negative imaginary
root. Substituting Eqs. (53) into (32), and the obtained results together
with Eq. (19) into Eq. (51), we have

u~mQ ~m ¼ ðuI þ �uIÞ=0;~m þ
X1
m¼0

/m=m;~m þ
X1
m¼�2

<m;~mum; (55)

where

<m;~m ¼ L
qwx2

dwm

dz
d3w~m

dz3
� �0

dw~m

dz
@2

@y2

 !" #
z¼0

; (56)

=m;~m ¼
ð0
�H

ZmðzÞw~mðzÞdz

¼ 1
coshðkmhÞcoshðj~mhÞ

sinh hðkm � j~mÞ½ �
2ðkm � j~mÞ

�

þ sinh hðkm þ j~mÞ½ �
2ðkm þ j~mÞ

�
: (57)

Similarly, we have for Eq. (52),

@u~m

@N
Q~m ¼

X1
m¼0

@/m

@N
=m;~m þ

X1
m¼�2

@m;~mum; (58)

where

@m;~m ¼ L
qwx2

dwm

dz
d3w~m

dz3
þ �0

dw~m

dz
@2

@y2

 !
@

@N

" #
z¼0

: (59)

Substituting Eq. (53) and the series form of Eq. (37) or

Gðp; qÞ ¼
X1
m¼0

�4pikmcosh
2ðkmHÞ

2kmH þ sinhð2kmHÞZmðzÞZmðfÞHð2Þ
0 ðkmRÞ; (60)

into (36) and using the orthogonal property of ZmðzÞ, we can also
transform the boundary integral equation in X2 over the interface into
the line integral over the free ice edge CC , i.e.,

að2ÞðpÞ/mðpÞ ¼
ð
CC

Gð2Þ
m ðp; qÞ @/mðqÞ

@N
� @Gð2Þ

m ðp; qÞ
@N

/mðqÞ
" #

dl;

(61)

where

Gð2Þ
m ðp; qÞ ¼ p

i
Hð2Þ

0 ðkmRÞ þHð2Þ
0 ðkm�RÞ

h i
; (62)

with �R as the horizontal distance between p and the mirror image of q
about the coastline x ¼ 0.

D. Numerical discretization for the coupled equations

To solve the velocity potential /ðjÞ numerically, the harbor line
CI and interface line CC are discretized into NI and NC straight-line
segments. At each segment i, the variables um and /m are assumed to
be constant, and the boundary conditions are imposed at the center of
each segment. For infinite series (19) in X1 and (53) in X2, only the
first M terms are kept. Higher accuracy can be obtained by using a
finer mesh and more terms kept in the infinite series. Then boundary
integral equation (31) can be discretized into
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að1ÞðpiÞumðpiÞ ¼
XNI

j¼1

ð
Dlj

Gð1Þðpi; qjÞ LjmtanhðjmHÞ
qwx2Qm

!ðqjÞ
"

� @Gð1Þðpi; qjÞ
@N

umðqjÞ
#
dl

þ
XNIþNC

j¼NIþ1

ð
Dlj

Gð1Þðpi; qjÞ @umðqjÞ
@N

"

� @Gð1Þðpi; qjÞ
@N

umðqjÞ
#
dl; (63)

where pi and qj represent the center point of element i and j, respec-
tively. Equation (63) can be rewritten in the matrix form as

@Gð1Þ
II

@N
@Gð1Þ

IC

@N

@Gð1Þ
CI

@N
@Gð1Þ

CC

@N

2
66664

3
77775

uI
m

uC
m

" #
¼

~G
ð1Þ
II Gð1Þ

IC

~G
ð1Þ
CI Gð1Þ

CC

2
4

3
5 !

@uC
m

@N

2
4

3
5: (64)

where the element of submatrix in the left hand side or @Gð1Þ=@N is
defined as

@Gð1Þ

@N

� �
ij
¼ di;ja

ð1ÞðpiÞ þ
ð
Dlj

@Gð1Þðpi; qjÞ
@N

dl

ði; j ¼ 1;…;NI þ NCÞ; (65)

and that in the right hand side or Gð1Þ is given as

ðGð1ÞÞij ¼
ð
Dlj

Gð1Þðpi; qjÞdl

ði ¼ 1;…;NI þ NC; j ¼ NI þ 1;…;NI þ NCÞ (66)

and

~G
ð1Þjij ¼

LjmtanhðjmHÞ
qwx2Qm

ð
Dlj

Gð1Þðpi; qjÞdl

ði ¼ 1;…;NI þ NC; j ¼ 1;…;NIÞ: (67)

It may be noted that I and C used in Eq. (64) refer to the element on
CI and CC , respectively. Invoking Eq. (64), um can be given as

uI
m

uC
m

" #
¼ Qð1Þ

II Qð1Þ
IC

Qð1Þ
CI Qð1Þ

CC

2
4

3
5 !

@uC
m

@N

2
4

3
5; (68)

where

Qð1Þ
II Qð1Þ

IC

Qð1Þ
CI Qð1Þ

CC

2
4

3
5 ¼

@Gð1Þ
II

@N
@Gð1Þ

IC

@N

@Gð1Þ
CI

@N
@Gð1Þ

CC

@N

2
6664

3
7775
�1

~G
ð1Þ
II Gð1Þ

IC

~G
ð1Þ
CI Gð1Þ

CC

2
4

3
5: (69)

This gives

uI
m

	 
 ¼ Qð1Þ
II

h i
!½ � þ Qð1Þ

IC

h i
@uC

m

@N

� �
: (70)

Substituting Eqs. (70) into (19) and invoking the clamped ice edge
condition Eq. (10), we have at panel i of CI ,

XM�3

m¼�2

uI
mðpiÞ

dwmðzÞ
dz

¼ 0 ðz ¼ 0; i ¼ 1; 2;…NIÞ (71)

or

XM�3

m¼�2

jmtanhðjmHÞ Q 1ð Þ
iI

h i
!½ � þ Q 1ð Þ

iC

h i
@uC

m

@N

� �� �

¼ 0 ði ¼ 1; 2;…NIÞ: (72)

Once ½!� is solved through (72), Eq. (30) gives on CI ,

@uI
~m

@N
¼ Lj~m tanhðj~mHÞ

qwx2Q~m
½!�: (73)

InX2 outside the harbor, Eq. (61) can be discretized as

að2ÞðpiÞ/~mðpiÞ¼
XNC

j¼1

ð
Dlj

Gð2Þ
~m pi;qjð Þ

@/~mðqjÞ
@N

"

�@Gð2Þ
~m pi;qjð Þ
@N

/~mðqjÞ
#
dl; ði; j¼ 1;…;NCÞ: (74)

While Eqs. (55) and (58) can be discretized and truncated as

uC
~mQ~m ¼ ðuI þ �uIIÞ=0;~m þ

XM�1

m¼0

/m=m;~m þ
XM�3

m¼�2

<m;~mum (75)

and

@uC
~m

@N
Q~m ¼

XM�1

m¼0

@/m

@N
=m;~m þ

XM�3

m¼�2

@m;~mum: (76)

Equations (63), (72)–(76) provide 2M � ðNI þ 2NCÞ þ NI equations,
the number of which is the same as the unknowns, i.e., um, @um=@n,
/m, @/m=@n, !. This means that the overall equations are completed
and can be solved simultaneously.

IV. NUMERICAL RESULTS

In following numerical computations, the typical parameters of
ice sheet and fluid are taken to be38

E ¼ 5GPa; � ¼ 0:3; qi ¼ 922:5 kgm�3;

qw ¼ 1025 kgm�3; g ¼ 9:80m s�2;
(77)

to provide physical meaningful results. All the results will be presented
in the dimensionless form based on the three basic parameters, i.e.,
density of water qw, acceleration due to gravity g, and a characteristic
length scale.

A. Verification of the method and solution procedure

We first consider the wave interactions with a rectangular harbor
with its length Ll taken to be the characteristic length scale. The harbor
width and depth are set to be Lw ¼ 0:1943 and H ¼ 0:8268, respec-
tively. The incident wave from the open sea is assumed to propagate
normally into the harbor or b ¼ p. The case has been studied by Lee4

and Shi, Li, and Wu8 when there is no ice sheet on the water surface
inside the harbor. As the ice thickness is zero or L ¼ 0 and m ¼ 0 in
Eq. (8), the solution will become that for a free surface harbor. In such
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a case, n ¼ �1;�2 should be removed from Eq. (19), and Eq. (30)
becomes @um=@N ¼ 0. While Eqs. (55) and (58) can be simplified as
u~m ¼ ðuI þ �uIÞd0;~m and @u~m=@N ¼ @/~m=@N , respectively, which
means that in Eqs. (19) and (53), only the terms corresponding to j0
and k0 are nonzero. Figure 2 shows the amplification factor R at
ð�1; 0; 0Þ against the wavenumber k0. Here, R at a given point ðx; yÞ
is defined as the ratio of the complex wave amplitude there to that due

to /I þ /ð2Þ
I at the coastal line, or f ¼ 2g cos ðk0x cosbÞ

exp ð�ik0y sinbÞ which gives jfj ¼ 2jg cos ðk0x cos bÞj. Here, the
wave amplitude w is determined through kinematic boundary condi-
tions (5), which provides

w ¼ @/
@z

� �
z¼0

: (78)

As a comparison, the numerical results for h ¼ 0 in Shi, Li, and Wu8

are also provided. It can be seen from the figure that convergence has
been achieved when NI ¼ 134 and NC ¼ 12, and the converged
results agree well with those in Shi et al.8 Computations are then car-
ried out for the rectangular harbor covered by an ice sheet but with
very small thickness, i.e., h ¼ 1� 10�4 and h ¼ 1� 10�5, while the
other parameters are the same as those in Fig. 2. For nonzero h, the
infinite series are truncated at M ¼ 20 which is found to provide
graphically convergent results. When the ice thickness is very small,
the solution becomes very close to that for a free surface harbor. This
can be observed in Fig. 3, which shows jRj at ð�0:5; 0; 0Þ against the
wave number k0 with different h.

B. Wave motions in a frozen harbor

We now consider the wave motion in a frozen harbor to show
the effect of ice sheet. The shape of the harbor is a combination of a
rectangle and a semicircle, as shown in Fig. 4. The length Ll of the rect-
angle shown in the figure is chosen as the characteristic length scale.
The width of the harbor Lw which equals the diameter of the semicir-
cle is set to be Lw ¼ 0:5 or a ¼ 0:25, and the water depth is chosen as
H ¼ 0:25. In the following numerical computations, the harbor line
CI and interface line CC are, respectively, discretized into NI ¼ 279
and NC ¼ 51 straight line segments, while the first M ¼ 20 terms are
kept in the infinite series. These are found to provide graphically con-
vergent results.

1. The effect of ice thickness on the ice sheet deflection

Figure 5 shows the amplification factor R at three chosen points
inside the harbor against the wavenumber k0, namely, P1ð�1:0; 0; 0Þ,
P2ð�0:5; 0; 0Þ and P3ð0�; 0; 0Þ, together with the point P4ð0þ; 0; 0Þ
outside the harbor. Here, 0� and 0þ indicate that the point is
approached from the left- and right-hand side, respectively. The inci-
dent wave is assumed to propagate normally into the harbor with
b ¼ p. Three different ice thicknesses are considered, i.e.,
h ¼ 5� 10�4, 5� 10�3 and 1� 10�2. The results for a free surface
harbor with h ¼ 0 are also provided. The wavenumber varies from
0:05 to 20 with step Dk0 ¼ 0:05 in the calculation. It can be seen from
the comparison of results in Figs. 5(c) and 5(d) that jRj on both sides
of the ice edge are different, or the free surface elevation and the ice
sheet deflection at the interface line are generally not the same. This is
because that although they share the same kinematic boundary condi-
tion, the dynamic boundary conditions are different.

As k0 ! 0, it can be seen that jRj at P4ð0þ; 0; 0Þ tends to 1 at
different h. This is because that when k0 ! 0, /ð2Þ

D in Eq. (32) satisfies
@/ð2Þ

D =@z ¼ 0 on z ¼ 0 according to Eq. (15). Therefore, /ð2Þ
D does

not make an additional contribution to the free surface elevation
which is calculated through Eq. (78), while from Eqs. (33)–(35), we
have j@ð/I þ /ð2Þ

I Þ=@zj ¼ 2 on z ¼ 0. However, this is different on
the ice sheet inside the harbor. Equation (22) shows that at x ¼ 0,
j�2 ¼ �ðqwg=LÞ1=4 exp ðip=4Þ, j�1 ¼ �ðqwg=LÞ1=4 exp ði3p=4Þ,
and jm ¼ �imp=H, m ¼ 0; 1;…;1. This means that when the
operator @=@z is applied to Eq. (19), the first two terms are not

FIG. 2. The modulus of amplification factor R against k0 at ð�1; 0; 0Þ of a rectan-
gular harbor. Solid line: NI ¼ 134 and NC ¼ 12; dashed line: NI ¼ 269 and
NC ¼ 24; open circles: results from Shi, Li, and Wu.8 (h ¼ 0, b ¼ p).

FIG. 3. The modulus of amplification factor R against k0 at ð�0:5; 0; 0Þ of a rect-
angular harbor. Solid line: h ¼ 0; dashed line: h ¼ 1� 10�5; dashed–dotted line:
h ¼ 1� 10�4. (b ¼ p, NI ¼ 134, NC ¼ 12, M ¼ 20).

FIG. 4. Plane view of a frozen harbor.
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automatically equal to zero on z ¼ 0, while those of m � 0 are. As a
result, @/ð1Þ=@z is not automatically zero on z ¼ 0 when k0 ! 0 or

x ! 0, or R is nonzero. Also, /ð1Þ is not equal to /I þ /ð2Þ
I . Thus,

jRj is not equal to 1 either and its value changes from location to loca-
tion. When h ¼ 0, to match the conditions in Eqs. (38) and (39) more

conveniently, we can write /ð1Þ ¼ /I þ /ð2Þ
I þ /ð1Þ

D . Here, @/ð1Þ
D =@z

¼ 0 on z ¼ 0 as k0 ! 0. Thus, jRj is equal to 1 everywhere.
When k0 increases from zero, jRj increases very rapidly, espe-

cially when ice thickness is small. The first peak of the amplification
factor can be larger than 4, deep inside the harbor at x ¼ �1:0. As x
moves toward the harbor entrance, the first peak of jRj decreases in
the four cases calculated. The results of small ice thickness resemble
more closely to those of the full free surface problem. However, even
at h ¼ 5� 10�4, the results are still quite different from those at
h ¼ 0. Shi, Li, and Wu8 gave detailed discussions on the reasons for
highly oscillatory behavior of the results at h ¼ 0. Similar reasons can
be applied here. Figure 6 depicts flexural gravity wavenumber j0
against free surface wavenumber k0 at three different ice thicknesses
together with the result for h ¼ 0. It can be observed from the figure
that as k0 increases, j0 for different ice thicknesses departs from each
other. Generally, j0 is smaller for a thicker ice sheet at a given k0, indi-
cating a larger wavelength. At h ¼ 5� 10�4, j0 is very close to k0 or

the result at h ¼ 0. However, because of the effects of other jm, their
results in Fig. 5 are not close.

Figure 7 shows the magnitude of the amplification factorR along
the longitudinal cut at y ¼ 0 with three different ice thicknesses h
together with the results without ice sheet. Two wave numbers are
considered, i.e., k0 ¼ 10 and 20. From the figure, it can be observed
that when k0 is fixed, jRj is less oscillatory with x at larger h. This is

FIG. 5. The modulus of amplification fac-
tor R against k0 inside the frozen harbor
with different ice thickness h. Solid line:
h ¼ 0; dashed line: h ¼ 5� 10�4;
dashed-dotted line: h ¼ 5� 10�3; dotted
line: h ¼ 1� 10�2. (a) P1ð�1:0; 0; 0Þ;
(b) P2ð�0:5; 0; 0Þ; (c) P3ð0�; 0; 0Þ; (d)
P4ð0þ; 0; 0Þ. (b ¼ p, NI ¼ 279,
NC ¼ 51, M ¼ 20).

FIG. 6. Flexural gravity wavenumber j0 against the free surface wavenumber k0
at different ice thicknesses h. Solid line: h ¼ 0; dashed line: h ¼ 5� 10�4;
dashed–dotted line: h ¼ 5� 10�3; dotted line: h ¼ 1� 10�2.
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because j0 is smaller at larger h, as shown in Fig. 6. It is interesting to
see that when h is very small, jRj is not always smaller than that at
h ¼ 0. At larger h, the ice sheet becomes more rigid and jRj becomes
smaller overall. It can be also seen from Fig. 7 that for some k0 and h,
there are several points of x at which R is very small. Figure 8 depicts
the contour of jRj as a function of x and y with the wavenumber taken
to be k0 ¼ 10. The ice thickness is chosen as h ¼ 5� 10�3. As a com-
parison, h ¼ 0 for a free surface harbor is also provided. From the fig-
ure, we can observe that for h ¼ 0, jRj does not change that
significantly with y in the rectangular section. When there is an ice
sheet, or h 6¼ 0, variation of jRj with y becomes very obvious. As the
edge of the ice sheet is clamped to the harbor wall, R ¼ 0 along the
edge, as can be seen in Figs. 7 and 8.

2. The effect of incident wave angle on the ice sheet
deflection

We now consider the effect of incident wave angle on wave
motions inside the harbor. Figure 9 provides the amplification factor
R against the wave number k0 with different incident wave angles.
The ice thickness is taken to be h ¼ 5� 10�3, and the step and range
of k0 as well as the positions where R is computed are the same as
those in Fig. 5. Four incident wave angles are considered, namely,
b ¼ p, 5p=6, 2p=3 and 11p=18, in last of which the incident wave
propagates nearly parallel to the coastal line. It can be seen from Eqs.
(38) and (39) together with Eq. (32), the driving force for the wave
motion inside the harbor is the incident wave and its reflection by the
coastal wall. Noticing Eq. (35) and the fact that the matching condi-
tions in Eqs. (38) and (39) are imposed at x ¼ 0, the driving term is in

the form of exp ð�ik0y sin bÞ. Therefore, when k0y is small, the effect
of b to the solution is small, and when k0 ¼ 0, the result is indepen-
dent to b. This can be clearly seen in Fig. 9. Generally, at
P1ð�1:0; 0; 0Þ and P2ð�0:5; 0; 0Þ, or points away from the entrance,
jRj is smaller when b is smaller. This means when the wave is more
parallel to the coastal wall, the fluid deep inside the harbor will be less
disturbed. This is almost the same near the entrance, or at
P3ð0�; 0; 0Þ. Point P4ð0þ; 0; 0Þ is on the free surface outside the har-
bor. At larger k0, jRj can sometimes be larger at smaller b.

Figure 10 depicts the amplification factor R along the longitudi-
nal cut at y ¼ 0 with different incident wave angles b. The wavenum-
ber and ice sheet thickness are taken to be k0 ¼ 20 and h ¼ 5� 10�3,
respectively. The results for a free surface harbor are also provided as a
comparison. When other parameters are fixed, different wave direc-
tion in fact gives a driving term of different magnitude in Eqs. (38)
and (39). It is therefore expected that jRj will have a similar pattern
but different magnitude. This in fact can be observed from Fig.10. For
both the free surface harbor and the frozen harbor, jRj at different b
all oscillates with x in a similar manner. Deep inside the harbor with
h ¼ 0, jRj decreases with b. However, this is not the case near the har-
bor entrance. While for a frozen harbor, R tends to be zero close to
the left end of the harbor for all b due to the clamped ice edge condi-
tion, and everywhere else on x, jRj decreases with b. To show the spa-
tial variations ofR more clearly, in Figs. 11 and 12 the contour of jRj
is provided for h ¼ 0 and h ¼ 5� 10�3, respectively. In both figures,
two values of b are considered, i.e., b ¼ p and b ¼ 11p=18. For the
normal incident wave case, the wave elevation inside the harbor is
symmetric with respect to x-axis, as expected. When the incident wave
becomes nearly parallel to the coastal line, the color of the largest value
of jRj at h ¼ 0 is similar to that in the normal incident wave case.

FIG. 8. Contour of the modulus of amplification factor R. (a) h ¼ 0; (b)
h ¼ 5� 10�3. (b ¼ p, k0 ¼ 10, NI ¼ 279, NC ¼ 51, M ¼ 20).

FIG. 7. The modulus of amplification factor R against x inside the frozen harbor at
y ¼ 0. Solid line: h ¼ 0; dashed line: h ¼ 5� 10�4; dashed–dotted line:
h ¼ 5� 10�3; dotted line: h ¼ 1� 10�2. (a) k0 ¼ 10; (b) k0 ¼ 20. (b ¼ p,
NI ¼ 279, NC ¼ 51, M ¼ 20).
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However, when the harbor is frozen,R for b ¼ 11p=18 is almost zero
inside the harbor, as has been observed in Figs. 9 and 10. For a frozen
harbor, the waves inside and outside the harbor will propagate with
different wavenumbers, and at a given wave frequency the wavenum-
ber for the former is generally smaller than the later, as shown in
Fig. 6. Specifically, at k0 ¼ 20 and h ¼ 5� 10�3, we have j0=k0
¼ 0:5592. For free surface wave interactions with a semi-infinite
ice sheet, or the harbor width Lw being taken as infinity, at the ice
edge along x ¼ 0, we should have k0 sin ðp� bÞ ¼ j0 sin a

12 with
b 2 ½p=2; p� and a 2 ½0; p=2�, where a is the angle between transmit-
ted progressing wave and ice edge. When a ¼ p=2, b corresponds to a
critical angle, i.e., bc ¼ p� arcsinðj0=k0Þ. When b is smaller than bc
there will be no wave transmitted into the ice sheet. For j0=k0
¼ 0:5592, we have bc ¼ 2:5482 and b ¼ 11p=18 � 1:9199<bc. In
such a case, there will be no wave below the ice sheet when Lw ¼ 1.
For a finite Lw, the wave motion may not be exactly zero, but is
expected to be small, which is reflected in Fig. 12(b).

V. CONCLUSIONS

The problem of ocean wave interactions with a harbor covered
by an ice sheet clamped to the harbor wall has been solved, based on
the linearized velocity potential theory and thin elastic plate model. A
domain decomposition methodology is developed, which decomposes

the problem into two subdomains, i.e., one inside the harbor and
the other outside the harbor. The velocity potential inside the harbor
is written in terms of eigenfunction series in the vertical direction satis-
fying the bottom and ice sheet conditions. Each of the functions in the
horizontal plane satisfies the Helmholtz equation which is further
transformed into an integral equation along the ice edge. By adopting
an orthogonal inner product, the conditions on the harbor wall and
ice edge are satisfied. Outside the harbor, the velocity potential is writ-
ten as an integral equation through the modified free surface Green
function, which does not involve the coastline. The pressures and the
velocities inside and outside the harbor are matched at the interface by
using the orthogonal inner product, through which the ice edge condi-
tion at the harbor entrance is also satisfied. Numerical solutions are
obtained through the boundary element method.

From the results of a rectangular harbor, it is demonstrated that
when the thickness of ice sheet inside the harbor is very small, the
result will become close to that for a free surface harbor. The devel-
oped method is applicable to a harbor of an arbitrary horizontal geom-
etry. This is demonstrated through a case study using a shape that is
composed of a rectangle and semicircle. It is found in the case study
that on both sides of the harbor entrance or at the ice edge, the wave
elevation is different due to the difference of the dynamic boundary
conditions. As the free surface wavenumber k0 ! 0, the modulus of

FIG. 9. The modulus of amplification fac-
tor R against k0 inside the frozen harbor
with different incident wave angles b.
Solid line: b ¼ p; dashed line: b ¼ 5p=
6; dashed–dotted line: b ¼ 2p=3; dotted
line: b ¼ 11p=18. (a) P1ð�1:0; 0; 0Þ; (b)
P2ð�0:5; 0; 0Þ; (c) P3ð0�; 0; 0Þ; (d)
P4ð0þ; 0; 0Þ. (h ¼ 5� 10�3, NI ¼ 279,
NC ¼ 51, M ¼ 20).
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amplification factor jRj inside the harbor with an ice sheet is generally
small than 1, while jRj outside the harbor tends to 1. When ice sheet
thickness h is very small, jRj inside the harbor becomes very close to 1
as k0 ! 0. When h increases, the flexural gravity wavenumber j0

decreases and jRj is less oscillatory spatially. Overall, jRj decreases
with the increase in h, but when h is very small, jRj at some places
inside the harbor can be larger than that at h ¼ 0. As the angle
between the incident wave and the coastline becomes smaller, jRj
inside the harbor is generally smaller, but jRj outside the harbor can
sometimes be larger at large k0. When the incident wave is nearly par-
allel to the coastline, jRj inside a frozen harbor is almost zero every-
where. This is different from a harbor with h ¼ 0, at which the largest
value of jRj corresponding to oblique incident wave is similar to that
corresponding to the normal incident wave.
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