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Abstract

An experimental study of the dewatering of wood-pulp fiber suspensions by uniaxial

compression is presented, to rationalize their dewatering dynamics within a two-

phase framework. Twenty-seven pulp suspensions are examined, encompassing

materials with different origins, preparation methodologies, and secondary treat-

ments. For each suspension in this library, the network permeability and compressive

yield stress are calibrated at low rates of dewatering. Faster compressions are then

used to verify that a solid bulk viscosity is essential to match two-phase model pre-

dictions with experimental observations, and to parameterize its magnitude. By com-

paring the results with a suspension of nylon fibers, we demonstrate that none of the

wood-pulp suspensions behave like an idealized fibrous porous medium. Neverthe-

less, the properties of pulp fiber networks can be reconciled within a two-phase

framework, and comparisons made between different wood-pulp suspensions and

between wood-pulp and nylon fibers, by appealing to potential microstructural ori-

gins of their macroscopic behavior.
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1 | INTRODUCTION

The dynamics of deformable porous media are central to a wide-

range of problems in geophysics and biology and to a great many

industrial processes. Consolidation or dewatering operations, for

example, in which a significant volume of liquid is removed from a

collapsing solid matrix, feature in sedimentology, the treatment of

mine tailings and waste water, and the production of ceramics and

paper products. Specific motivation for the current study stems from

the pulp and paper industry where various operations surround the

removal of water from suspensions of pulp fibers. In particular, the

interrogation of these operations raises the question of whether

such suspensions can be described as model, fibrous, deformable

porous media. Indeed, discussions along these lines have been pres-

ented previously.1-7

The two-phase description of deformable porous media8,9 typi-

cally identifies and focusses on two key material quantities: the per-

meability of the solid matrix and its ability to resist deformation,

described by an effective solid stress. For a suspension of elongated

deformable fibers, a solid matrix that resists stress can be established

at volume fractions of less than a percent, but can also be compressed

mechanically up to much higher concentrations with comparable vol-

umes of fluid and solid. The permeability and solid stress must there-

fore span more than two orders of magnitude of solid fraction from

the gel point of the material (defined by when the stress-supporting

matrix is created) up to its maximum packing.

Classical treatments of permeability often describe its depen-

dence on solid volume fraction in terms of the Carman–Kozeny law

for a packed bed of curved passages or tubes. Jackson and James10

comprehensively summarized measurements and theories for a large
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range of different elongated, relatively rigid fibers, and concluded that

these materials could also be conveniently described in terms of a

suitably scaled permeability, independently of the fibrous material.

However, suspensions of pulp fibers have repeatedly been found to

be much less permeable in comparison to the Jackson–James scal-

ing11-15 raising questions about the network microstructure in pulp

and whether these permeability measurements can be somehow

shifted back into line.

The solid stress in a deformable suspension is typically taken to

be elastic or plastic in origin. Either way, the stress is generally consid-

ered to be rate independent and can be calibrated empirically as a

function of the solid fraction to model the resistance to network col-

lapse in response to significant deformations.8,16-18 van Wyk19 pro-

posed a similar approach for fiber suspensions of wool and other

textiles, assuming that collapse was resisted by the elastic bending of

fibers (see also20), a prescription that was then partially repeated for

wood pulp.21 van Wyk's scaling arguments suggest a certain volume-

fraction dependence to the solid stress, borne out by experiments

with a number of materials. Nevertheless, the same suspensions can

display only limited recovery when unloading a previously compressed

suspension, demonstrating that deformations cannot be entirely

elastic.22,23

Pulp suspensions, in fact, often show very little recovery on

unloading,23-26 indicating that the resistance is primarily plastic. More-

over, a number of recent studies have suggested that the solid stress

must be rate-dependent in order to reproduce the observed

dewatering and flow-induced compaction of pulp suspensions and

capillary rise through paper sheets.15,27,28 These studies have

accounted for this rate dependence by extending the description of

the solid stress to include an effective bulk viscosity of the network,

with some precedence existing in earlier work,16,26,29-32 or by analogy

with the generic shear viscosity expected for a two-phase medium33

(alternative perspectives and models also exist34). Thus, pulp suspen-

sions appear to require an unconventional viscoplastic solid stress.

In detail, pulp suspensions are a mixture of wood fibers, water

and clay, with small quantities of inorganic salts and polymeric addi-

tives. Wood fibers, the principle component, are hollow, flexible rod-

like particles which have a wide distribution in length, diameter, and

morphology depending upon species, growing conditions, and method

of liberation from the wood matrix. They are composed of three clas-

ses of biopolymers (cellulose, hemicellulose, and lignin) wound into a

complex fiber-like substructure to create mechanical strength. Criti-

cally, morphological features such as pits allow fluid transport through

the wall into the hollow interior, while water may also be imbibed into

the ultrastructure of the wall itself. On grander scales of order milli-

meters, wood-fibers aggregate into coherent networks, through

mechanical entanglement rather than by colloidal force, creating a

complex three-dimensional architecture. The structure of the solid

matrix in a typical pulp suspension is therefore significantly richer than

that of a network of almost rigid circular cylinders (Jackson and

James's idealized fibrous medium). In addition, during the

preprocessing leading to papermaking, the fibers are typically chemi-

cally functionalized or mechanically beaten, altering the chemical

composition, surface charge or morphological features in order to

adjust or control the dewatering behavior and properties of the final

product. Given such complications, it is perhaps not surprising that

pulp suspensions display what appears to be nonideal behavior.

The aim of the present study is to record and rationalize this

nonideal behavior for a large suite of different pulp suspensions, and

to demonstrate how pulp suspensions appear to fall into a new two-

phase-model paradigm. More specifically, after introducing the two-

phase modeling framework, we explore experimentally the dewatering

behavior of a wide variety of different pulp-fiber suspensions. This

“library” of pulp suspensions encompasses some of the microstruc-

tural variability encountered in the papermaking industry by combin-

ing fibers with different wood origins and means of preparation and

treatment. For the library of suspensions, we first calibrate the two

traditional material quantities that characterize deformable porous

media (permeability and compressive solid stress) at relatively low

rates of compaction. We then conduct compressive dewatering tests

at different rates of compaction in order to gauge whether a rate

dependence is required in the solid stress, and if so, to calibrate its

magnitude for each pulp.

We further interrogate the library to gauge whether we can

detect the impact of any microstructural differences on the macro-

scopic material behavior. In particular, we examine how the perme-

ability, compressive yield stress and fitted bulk viscosity vary across

the library. Critically, in view of this relatively large data set, we are

able to compare our results with scaling theories based on idealized

descriptions of microstructural deformation and flow to judge if a rela-

tively simple physical picture might underscore the observed macro-

scopic material behavior.

2 | MATERIALS, MODELING, AND
METHODS

2.1 | Materials

Twenty-seven fiber suspensions are assembled into our pulp library

to give some representation of the variability encountered in paper-

making processes due to differences in fiber origin, pulping method-

ology, energy level during mechanical beating (known as low-

consistency refining [LCR]), and polymer additives. Table 1 lists

details of the pulps, which are derived from a number of commer-

cially available fibers. In particular, the table provides a brief descrip-

tion of the type of pulp, the pulping method used in its production,

and whether polymeric additives or LCR was used for further treat-

ments. These details are complemented with the mean length L and

width W, measured in an Optest Fiber Quality Analyzer (FQA). Also

listed is the Canadian Standard Freeness (CSF) value, a simple, indus-

trially relevant drainage test in which a suspension is dewatered

under the action of gravity. Detailed modeling of this test and efforts

to relate its results to the material properties for a single pulp can be

found in Reference 27; we reconsider this quantity for the entire

library in Section 9.4.
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The content and rationale behind the library are illustrated further

in Figure 1. Before immersing ourselves in these details, however, we

pause to outline some background on the pulping processes and

subsequent refinements in order to inform that discussion. As men-

tioned previously, wood fibers vary in length, width, and wall thick-

ness, with a complicated dependence on tree species and origin,

TABLE 1 A table of pulp suspensions used for the library, showing the series reference number, the symbol used to plot experimental data,
the line style used for fits of permeability and compressive yield stress, the wood origin and pulping methodology, any chemical additives, the
degree of mechanical refining, the CSF score, and the mean fiber length L and width W

Series Symbol Line

Description Details

Material Additive LCR (kWh/t) CSF (ml) L (mm) W (μm)

1a NBSK (Canfor)b 705 2.57 26.7

2 NBSK (SCA, Östrand)c 680 2.15 25.5

3 SBK (Resolute, Catawba)d 730 2.45 26.8

4a HBK (Domtar)e 610 0.79 20.1

5 HBK (Fibria)f 415 0.76 16.2

6 HBK (Fibria) 80% NBSK (Canfor) 20% 480 0.95 16.6

7 HBK (Fibria) 60% NBSK (Canfor) 40% 530 1.16 17.3

8 HBK (Fibria) 40% NBSK (Canfor) 60% 575 1.46 18.2

9 HBK (Fibria) 20% NBSK (Canfor) 80% 635 1.83 20.3

10 NBSK (Canfor) Polymer 1g 705 2.57 26.7

11a NBSK (Canfor) Polymer 2h 745 2.57 26.7

12a NBSK (Canfor) Polymer 3i 760 2.57 26.7

13 NBSK (Canfor) Polymer 4j 710 2.57 26.7

14 NBSK (Canfor) Polymer 5k 720 2.57 26.7

15 NBSK (Canfor) 47 500 2.60 26.9

16 NBSK (Canfor) 95 385 2.59 27.0

17 NBSK (Canfor) 151 290 2.53 27.0

18 BCTMP (Rayonier)l 250 0.82 23.4

19 BCTMP (Rayonier) 13 200 0.77 23.5

20 BCTMP (Rayonier) 30 128 0.72 23.7

21 TMP (West Fraser)m 720 1.64 36.7

22 TMP (West Fraser) 56 680 1.63 36.6

23 TMP (West Fraser) 112 580 1.59 36.4

24 TMP (West Fraser) 229 390 1.50 35.6

25 TMP (Papier Masson)n 37 215 1.00 31.7

26 TMP (Papier Masson) 73 160 0.87 30.9

27 TMP (Papier Masson) 110 126 0.82 30.9

NFa Nylon Fiber 3.05 13.6

Abbreviations: BCTMP, bleached chemi-thermo mechanical pulp; CSF, Canadian Standard Freeness; LCR, low-consistency refining; NBSK, northern

bleached softwood Kraft; SBK, southern bleached Kraft; TMP, thermo-mechanical pulp.
aAlso reported in Reference 15.
bAn NBSK pulp comprised of a mixture of pine and spruce wood fibers35 obtained from Canfor Pulp (Prince George, BC Canada).
cAn NBSK pulp comprised of a mixture of pine and spruce wood fibers35 obtained from SCA from their Östand Mill (Sundsvall, Sweden).
dSBK pulp comprised of a mixture of southern pines35 obtained from Resolute Pulp from their Catawba mill (SC USA).
eHardwood bleached Kraft pulp comprised of aspen wood fiber obtained from Domtar Corporation (Montreal, QC Canada).
fHardwood bleached Kraft pulp comprised of eucalyptus wood fiber obtained Fibria Cellulose (S~ao Paulo, Brazil).
gEKA FIX 41. All polymer solutions were added at 0.1% (wt/wt fiber).
hEKA PL 1510.
iEKA PL 1510 + EKA NP 320.
jFennobond 3300E.
kFennosil ES325.
lBCTMP comprised of a mixture of spruce and fir obtained from Rayonier Advanced Materials (Temiscaming, QC, Canada).
mTMP comprised of lodgepole pine and white spruce obtained from West Fraser (Quesnel, BC, Canada).
nTMP comprised of a mixture of black and white spruce and balsam fir obtained from Papier Masson Mill (Gatineau, QC, Canada).
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stemming from differences in genetics and growing conditions. Typi-

cally, fibers from softwood trees (conifers) are longer, wider, and

have greater wall thickness than those from hardwoods (decidu-

ous).36 The process of separating the fibers from the wood matrix is

referred to as pulping, and two broad methodologies exist for the

task. Chemical pulping dissolves the lignin-rich layers that bind the

fibers together. The dissolution also removes substantial quantities

of lignin and some hemicellulose from the main body of the fiber

wall, enhancing the fiber wall's porosity, and exposing cellulose fibrils

that attract water molecules to the free hydroxyl groups.37 Kraft pul-

ping is used exclusively in this work, where fiber liberation occurs by

addition of sodium sulfide to a wood chip under alkaline conditions.

Thermomechanical pulping (TMP) takes a cruder approach of bashing

and cracking the matrix of wood chips by shear, created in the gap

between two closely spaced patterned-discs rotating at different

rates. This process avoids any significant dissolution of the fiber wall,

but also fractures the solid structure, reducing fiber lengths and pro-

ducing a high content of fines, which are primarily flakes from the

middle lamellae. As a result, the water content of the fiber wall is

typically lower and the fibers are stiffer than chemically pulped

fibers.38 A common variation of this process is a chemi-mechanical

pulp, where the lignin is partly dissolved, using a chemistry different

from the Kraft process, before mechanical treatment (BCTMP).

Beyond the pulping process, the morphology of fibers is modified

further by either chemical or mechanical means to modify

dewatering performance. Chemical refinement introduces polymeric

additives to control surface chemistry and the degree of flocculation,

while the second mechanical refinement is another brute-force

approach, aimed at creating fibrillation in the fibers both internally

and externally; this mechanical treatment is typically referred to as

beating or LCR.

Overall, we therefore expect a dependence of fiber

microstructure and macroscopic material behavior on wood type,

pulping process, and refinement. Consequently, the library

includes several softwood and hardwood fibers, pulped both

chemically and mechanically, and with different degrees of subse-

quent chemical and mechanical refinement. In the graphical sum-

mary in Figure 1, we plot the mean aspect ratio of the fibers

(defined as length to half-width, 2L/W); the ordering of the series

is chronological and has no other significance. The library begins

with three chemically pulped softwoods. Two chemically pulped

hardwoods then appear (aspen and eucalyptus; Series 4–5). Series

5 (eucalyptus) was then mixed with Series 1 (Northern Bleached

Softwood Kraft [NBSK]) to produce a series of chemical pulps (6–

9) with varying fiber geometry. NBSK was then refined chemically

(Series 10–14) with various commonly used additives, or mechani-

cally to varying degrees (Series 15–17). The remaining pulps are all

processed mechanically: Series 18–20 are hardwood BCTMP and

Series 21–27 are softwood TMP with varying degrees of LCR

energy.

In Figure 1, the pulps are grouped into three families (as indicated

by color), which represent chemical pulps with no mechanical refine-

ment (light red), chemical pulps with mechanical refinement (purple),

and mechanical pulps (blue); the significance of these groupings will

be exposed in Section 6. The fiber aspect ratios vary from about 50 to

200 across the library. Also plotted is the ratio between an effective

radius based on the fiber linear density, Reff, and the mean fiber half-

width W/2. The density-based effective radius Reff (which is also pro-

vided by the FQA) is about one half of W/2, which provides a rough

measure of the porosity contained within the hollow fiber wall. Finally,

note that within each family in the library there appear to be correla-

tions between the mean fiber length and width, as illustrated by the

inset of Figure 1.

Table 1 and Figure 1 also include data for a suspension of nylon

fibers in glycerin. This inclusion provides a more ideal yardstick against

which to compare the pulps. Four of the twenty-seven pulps, as well

as the nylon suspension, were used previously in Reference 15. As

indicated in Table 1, each pulp suspension is given a corresponding

symbol used throughout to display the results, and a line style for the

fits of the material properties.

F IGURE 1 Pictorial
representation of the pulp library,
plotting the mean fiber aspect
ratio 2L/W and the ratio of the
linear density-based effective
radius Reff to half-width W/2,
which provides a proxy for the
porosity contained within the
fiber. The light red, purple and

blue coloring identifies three
families of pulps discussed in
Section 6. The inset shows a
rough correlation between L and
W/2, with the points colored by
family [Color figure can be
viewed at wileyonlinelibrary.com]
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2.2 | Two-phase modeling

To describe the pulp suspension as a two-phase medium, we identify the

fiber network as a solid phase, and the water both between and within

the fibers as a fluid phase. Individually, both phases are incompressible.

Following our previous study15 and as illustrated in Figure 2(A), we

explore the behavior of consolidating pulp suspensions using a relatively

simple, uniaxial compression test with a porous piston. In this setup, a

uniform, networked suspension at an initial solid volume fraction ϕ0 is

dewatered by driving the permeable piston down at a constant velocity

V. The load required to maintain this speed, σ(t), is a measured output. If

the local solid volume fraction is ϕ(z, t), implying stress-free conditions

on the side walls of the container, conservation of mass demands that

∂ϕ

∂t
þ ∂

∂z
ϕvsð Þ¼0, ð1Þ

�∂ϕ

∂t
þ ∂

∂z
1�ϕð Þvl½ � ¼0, ð2Þ

where vs and vl are the solid and liquid (vertical) velocities. Fluid

motion through the network is governed by Darcy's law,

1�ϕð Þ vs�vlð Þ¼ k ϕð Þ
μ

∂p
∂z

, ð3Þ

given the neglect of gravity and inertia (see Reference 15). Here, p

and μ are the pore pressure and viscosity of the fluid, and the perme-

ability k(ϕ) is discussed in Section 3.

Following Terzaghi's principle,39 we write bulk conservation of

stress in the form,

∂

∂z
pþPð Þ¼0, ð4Þ

where P is the solid network's effective (compressive) stress. As

suggested previously,15,16,27,28,32 we take the latter to be given by the

viscoplastic constitutive law,

P¼Py ϕð Þ�η ϕð Þ∂vs=∂z if P ≥Py ϕð Þ
∂vs=∂z¼0 otherwise

�
, ð5Þ

where Py(ϕ) is the compressive yield stress (discussed further in Sec-

tion 4); η(ϕ) plays the role of a solid bulk viscosity, which is expected

to be O(μ) if it stems from the motion of the solid through the viscous

fluid of the suspension.16 This Bingham-like constitutive model, similar

to laws proposed for single-phase models of fiber suspensions in

shear,40 incorporates an unyielded state for P <Py ϕð Þ in which col-

lapse is prevented (demanding ∂vs/∂z≡ϕ�1Dϕ/Dt = 0, where D/Dt is

the convective derivative following the solid phase), and a yielded

state for P >Py ϕð Þ.
Equations (1)–(5) are solved over 0 < z< h(t), subject to the initial

and boundary conditions,

ϕ z,0ð Þ¼ϕ0, 0 < z< h0, ð6Þ

vs 0,tð Þ¼0, and vs h,tð Þ¼dh=dt¼�V, ð7Þ

where the height of piston is h(t) at time t, and h(0) = h0 initially. The

load on the piston is

σ tð Þ¼Py ϕð Þ�η ϕð Þ∂vs
∂z

����
z¼h tð Þ

, ð8Þ

which may be compared to experimental measurements.

The rapidity of dewatering and the strength of the bulk viscosity

are gauged by the two dimensionless groupings,15

γ¼ p�k�
μh0V

, ε¼ k�η�
μh20

, ð9Þ

where p*, k*, and η* denote typical scales for the compressive yield

stress, permeability, and bulk viscosity, respectively, that will be

defined subsequently. Importantly, the parameter γ provides a mea-

sure of the role of Darcy drag in resisting compression: if γ is large,

the compression becomes quasi-static, the solid fraction becomes uni-

form in depth, and the load measured on the piston provides a direct

measure of the compressive strength of the suspension.

2.3 | Permeability calibration

The permeability apparatus is sketched in Figure 2(B): the pulp sus-

pension is contained between a permeable surface and piston, located

at z = 0 and z = h, respectively. The hydraulically driven piston is

capable of a maximum compressional load of 1 MPa. With the suspen-

sion retained between the surfaces, the height of the piston sets the

average volume fraction �ϕ¼ϕ0h0=h. Critically, both the imposed load

(a) (b)

F IGURE 2 The geometry of the dewatering experiment is shown
in (A). The permeable piston, imposing a load σ(t) at z = h(t),
compresses the suspension contained in a closed base cup. The
permeability apparatus is sketched in (B). The permeable piston,
imposing a load σ at z = h, holds the compressed suspension in a
chamber with a permeable top. Fluid flows with rate Q through the
suspension under a pressure drop Δp
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σ and the height h are corrected for the compliance of the equip-

ment.24 A flow rate Q of reverse-osmosis water is recirculated

through the compressed fiber network from a water reservoir while

the pressure drop Δp across the suspension is measured. The water

reservoir is held under a vacuum throughout the experiment,

maintaining a dissolved oxygen content below 5 ppm and a heat

exchanger is used to maintain the temperature at approximately 20�C.

The permeable surfaces are stainless steel discs with repeating arrays

of 0.66mm diameter holes spaced 1.5–2mm apart, resulting in an

open area of approximately 11% (results with other permeable sur-

faces showed no significant differences). The cross-sectional area of

the chamber is A = 81.07 cm2.

We extract the permeability as a function of �ϕ from the measure-

ment of Δp according to

k �ϕð Þ¼Qμh
AΔp

: ð10Þ

Note that the tests are designed so that differential compaction across

the sample is minimized, justifying the validity of this equation

(in particular, data collected are collected only when the applied hydraulic

pressure is small in comparison to the stiffness of the network; see Ref-

erence 15, appendix B). Typical trials use 500–1000 g of pulp suspension

with ϕ0 = 0.02�0.03, and collect measurements at 5 to 10 different

values of h. For all experimental calibrations, the pulp suspensions were

reslushed using standard TAPPI protocols (reference number T262) to

prepare a desired ϕ0. Further details of suspension preparation can be

found in Reference 24. At least four trials for each pulp suspension were

performed to accommodate experimental variability. Our results for spe-

cific pulp varieties are consistent with previous studies.11-14,41,42

The results collected are fit to the functional form

k ϕð Þ¼ k�
ϕ
ln

1
ϕ

� �
e�bϕ, ð11Þ

with the characteristic scale k* and parameter b estimated by linear

regression. This form, which conveniently captures the collapse of Jack-

son and James10 over their entire range of solid fraction (see Sec-

tion 6.1), combines the expected permeability law in the limit of a dilute

suspension of solid rods10 with an exponential factor that suppresses k

(ϕ) at high solid fraction, similar to fits used previously for pulp.14,15,42

2.4 | Compressive yield stress calibration

The compressive yield stress is calibrated using the uniaxial

dewatering equipment shown in Figure 1. The cup has a cross-

sectional area of 50 cm2, and 250–275 g of pulp suspension with

ϕ0 = 0.02�0.03 was used. The permeable surface of the piston is the

same as that used in the permeability cell. The piston is driven by the

hydraulic actuator of an MTS 858 tabletop material tester, which has

a control unit that performs uniform rate compression tests. The

usable stroke of the piston is approximately 60 mm, with its location

recorded throughout the experiment. Compressive loads σ(t) are lim-

ited to maximum values of about 1.2 MPa, and are measured by a load

cell at the base of the cup. The piston height and compressive

load are corrected for compliance and drag from the piston's seal,

respectively (see24 for further details).

At sufficiently slow rates of compression (V≡dh/dt = 1μm/s) the

Darcy drag and rate-dependent solid stress are expected to be negligi-

ble, implying that the solid remains uniform in depth, with �ϕ tð Þ¼
ϕ0h0=h tð Þ, such that the load at the piston (Equation (8)) is σ ≈ Py �ϕð Þ.
Measurements are averaged over four separate trials, and following

references 1,15 fitted to a functional form

Py ϕð Þ¼ p�ϕn

1�ϕð Þq , ð12Þ

with the characteristic scale p* and parameters n and q estimated by

linear regression (note that the notation here is a little different to that

used previously). This form combines a power-law behavior in the

numerator like that traditionally adopted for pulp and other

materials,22,43 with a term in the denominator that steepens the stress

law at higher solid fractions and builds in a divergence as the solid

fraction gets large, similar to the Krieger–Dougherty modification of

Einstein's viscosity for a suspension of spherical particles.44 With

measurements of k* and p* in hand, we confirm that the compressive

yield-stress calibrations are performed quasi-statically by computing

the dimensionless grouping γ in Equation (9) and verifying that γ�1.

As noted in Reference 15, our measurements of Py(ϕ) are similar to

previous studies.1,25.

2.5 | Dewatering tests and bulk viscosity
calibration

Having calibrated k(ϕ) and Py(ϕ), rapid dewatering tests were con-

ducted in order to investigate to what extent the suspensions exhibit

rate-dependent stresses. These experiments differ from the compres-

sive yield stress calibration described above only in the driving rate V

of the piston, and the protocol discussed above was also used here.

Typically, four different compression rates were chosen for each sus-

pension, with the maximum piston speed V being limited to 10 mm/s.

Tests terminated when the load passed 1.2 MPa. For each compres-

sion rate, experimental uncertainty was again accommodated by aver-

aging over four duplicate trials. All the experiments used 250–275 g

of pulp suspension with ϕ0 = 0.02�0.03.

To determine the bulk viscosity function η(ϕ), we first note that

some success in reproducing the dewatering dynamics of pulp suspen-

sions has been achieved using the functional form,

η ϕð Þ¼ η�ϕ
2 ð13Þ

where the constant η* = O(107)Pa � s.15,27,45 We continue with this

form here, and estimate the parameter η* for each pulp from our

experimental data as follows. Given the load σExp(t; V) averaged over
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each of the four duplicate trials for each compression speed V, we

minimize the objective error function ℱ,

ℱ η�ð Þ¼ ℰ η�,Vð Þh i, ℰ η�,Vð Þ¼
Ð
σModel

�ϕ;V,η�ð Þ�σExp:ð�ϕ;VÞj jd�ϕÐ
σExp: �ϕ;Vð Þd�ϕ ,

ð14Þ

where time t has been converted into the mean solid fraction via �ϕ¼
ϕ0h0=h tð Þ , and σModel

�ϕ;V,η�ð Þ is the predicted stress from the model.

The angular brackets h� � �i represent an average over all the different

experimental compression speeds V. Based on the range of η* that

gave values of ℱ within 5% of the minimum, we report an uncertainty

of approximately 20% in our estimates for η*.

3 | RESULTS

3.1 | Permeability, k(ϕ)

The measured permeabilities of the pulp suspensions are shown in

Figure 3 and compared with that for nylon; the fitting constants k*

and b of (11) are listed in Table 2. Figure 3(A) illustrates the variability

of the experimental measurements about some mean curve and the

quality with which that curve is fit by Equation (11) for Series

12, 7, and 21, which provide examples of relatively good, average and

poor fits, respectively. A more representative selection of pulp perme-

abilities is shown in Figure 3(B). For each suspension, the symbols rep-

resent sample measurements (we avoid showing all of the data points

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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F IGURE 3 (A) Permeability results and fit (11) for well-fit, typical and poorly-fit suspensions (Series 12, 7, and 21, respectively).
(B) Permeabilities for a representative subset of the library (Series 1 ( ), 3 ( ), 4 ( ), 5 ( ), 12 ( ), 16 ( ), 25 ( ), 26 ( ). (C) Scaled permeabilities
for all the pulps. The cloud of small gray symbols represent the bulk of the compilation of Jackson and James.10 (D) Scaled permeability, K¼ k=α2,
against scaled solid fraction, Φ = βϕ, for the entire pulp library; the scaling parameters α and β are plotted in Figure 4 [Color figure can be viewed
at wileyonlinelibrary.com]
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for clarity) and the lines shown in Equation (11). These representative

results show significant variation across the pulp suspensions, with

considerable differences in magnitude and more subtle variations in

trend, similar to previous findings. Moreover, the pulp permeabilities

are all much less than that for nylon (Figure 3(B)).

A key step taken by Jackson and James10 was to recognize that

the greatest variability between the permeability of different fibrous

porous media was due to a difference in the characteristic length-

scale controlling flow (i.e. the pore size). For relatively straight and

rigid, large aspect ratio, uniformly sized rods, this length scale is the

fiber radius R, and a scaling of k(ϕ) by R2 achieves the Jackson and

James collapse. In Figure 3(C), we follow the Jackson and James scal-

ing, using the mean pulp half-width W/2 measured by the FQA in

place of R. This figure also shows the bulk of the data compiled by

Jackson and James, which includes nylon fibers, wools, wire crimps,

and filter pads. The plot demonstrates how Jackson and James's com-

pilation collapses to within a band whose thickness (on the logarithmic

plot) is less than a factor of about 10, whereas the original permeabil-

ities varied by several orders of magnitude. Jackson and James argued

that the remaining scatter is due to variations in fiber orientation,

cross-sectional shape of the particles, and homogeneity of the porous

network.

The permeability of our nylon fibers does indeed fall within the

Jackson and James band, confirming how this material conforms to

the ideal norm of a fibrous porous medium. Evidently, as demon-

strated in Figure 3(C), pulp does not conform to this scaling, perhaps

because its microstructure falls far short of the restrictions imposed

by Jackson and James when compiling their data: pulp fibers are poly-

disperse, noncircular, and curved or bent. Worse still, the hollow fibers

may partially or fully collapse as the suspension is consolidated,22,46

leading to either tube-like particles or flattened ribbon structures.

Irrespective of this, two rough groupings of the series do seem to be

evident in Figure 3(C): the chemically pulped hardwoods and soft-

woods become broadly aligned with one another and are

noticeably more permeable than the mechanically pulped and refined

chemically pulped suspensions. These groupings are those that were

previously identified in Figure 1, where the group of chemical pulps is

colored red, and the others are highlighted in blue and purple.

TABLE 2 Fitted material parameters,
showing k* and b in the permeability fit
(11), the parameters p*, n, and q for the
compressive yield stress fit (12), the
optimal value of η*, and the range of
experimental values of the dimensionless
piston speed γ (9) used to calibrate η*

Series

Permeability Compressive yield stress Bulk viscosity series

k* (m
2) b p* (MPa) n q η* (MPa s) γ

1 3.60�10�13 18.52 0.67 1.89 2.98 10.0 529–0.534

2 2.67�10�13 20.38 0.62 1.87 3.83 28.6 12.0–0.297

3 5.67�10�13 21.19 0.77 2.04 3.62 11.6 36.8–0.920

4 2.76�10�13 14.06 1.31 2.23 2.13 8.71 730–0.721

5 8.12�10�14 19.74 1.05 2.11 3.02 73.6 6.27–0.146

6 9.43�10�14 19.42 0.87 2.03 3.19 63.5 5.94–0.139

7 • 1.21�10�13 18.89 0.70 1.95 3.36 32.5 6.26–0.162

8 1.63�10�13 19.11 0.64 1.91 3.54 26.4 7.79–0.197

9 2.12�10�13 19.06 0.51 1.81 3.69 21.5 8.00–0.205

10 1.89�10�13 14.21 0.70 1.99 3.09 7.92 10.0–0.254

11 3.72�10�13 13.72 0.84 2.13 2.86 3.53 24.1–0.599

12 5.28�10�13 14.25 0.69 1.98 3.05 8.84 27.9–0.702

13 2.43�10�13 17.77 0.43 1.72 3.77 20.6 8.33–0.199

14 2.69�10�13 16.37 0.78 2.16 3.12 12.5 16.2–0.393

15 1.19�10�14 22.99 0.39 1.82 4.42 661 1.81–0.359

16 8.54�10�15 25.74 0.31 1.70 4.76 5224 5.31–0.207

17 6.02�10�15 25.72 0.24 1.61 5.16 4495 2.83–0.282

18 1.62�10�14 22.91 1.62 2.12 2.87 323 1.80–0.209

19 1.21�10�14 24.99 1.34 2.04 3.45 338 2.78–0.282

20 1.65�10�14 26.14 1.30 2.03 3.30 1112 7.41–0.719

21 2.41�10�14 21.22 3.93 2.20 1.09 329 6.81–0.154

22 1.28�10�14 15.27 3.89 2.25 1.01 174 3.42–0.096

23 3.56�10�14 21.22 3.16 2.18 1.34 211 8.34–0.191

24 1.35�10�14 19.08 2.83 2.20 1.31 284 2.83–0.082

25 9.71�10�15 18.19 2.68 2.29 2.06 109 9.65–0.504

26 2.36�10�15 16.55 1.40 1.99 2.76 692 1.26–0.149

27 1.47�10�15 23.10 1.66 2.09 2.48 5609 1.82–0.166
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Despite the failure to align the permeabilities of our pulp suspen-

sions with either themselves or other, more ideal fibrous porous

media, a two-parameter rescaling of the data can achieve a surpris-

ingly compact collapse. More specifically, our fit of the nylon data is

k¼R2K Φð Þ, where

K Φð Þ¼0:147
Φ

ln
1
Φ

� �
e�5:4Φ, ð15Þ

and Φ≡ϕ, which pierces through the center of the Jackson and James

band, even when plotted for values of Φ outside of those used to cali-

brate the fit (Figure 3(C)). Given this functional form, we scale the

solid volume fraction and permeability of the pulp data k(ϕ) by the fac-

tors α and β so that

K¼ k
α2

and Φ¼ βϕ, ð16Þ

and then perform a least squares calculation to minimize the difference

between α�2k(βϕ) and K Φð Þ . The collapse of the data that results is

shown in Figure 3(D). The numerical values of the scaling parameters

α and β are plotted in Figure 4. The two families of suspensions are

clearly visible in the scaling parameter data, with the chemically pul-

ped softwood and hardwood fibers having values of 2α/W over the

range 0.15�0.22, whereas for the mechanically pulped suspensions

and refined chemically pulped fibers, 2α/W is between 0.02 and 0.05.

3.2 | Compressive yield stress, Py(ϕ)

In Figure 5, we show compressive yield stresses for a representative

selection of pulp suspensions and the full library. Again, the symbols dis-

play select data points and the line is (12), which admirably fits the data

for all 27 pulps. Unlike the permeability, there is relatively little spread in

Py(ϕ) across the library, with all the series falling within a factor of about

four of one another at any given solid fraction. The logarithmic plot of the

data highlights how the dependence on solid fraction extends beyond a

simple power law, and supports the functional form of Equation (12). The

fitting parameters are tabulated in Table 2 and plotted in Figure 6. These

display only mild variations across the library. In particular there is little

signature of any significant dependence on fiber aspect ratio.

Qualitatively, the variations in the prefactor p* follow broad

expectations based on microstructural properties: the unrefined

chemical pulps are all similar, with the shorter hardwoods being

slightly more rigid, and chemical additives have minimal impact (the

red squares in Figure 6). Mechanically refining the chemical pulps

reduces fiber stiffness (and therefore p*; purple sequence), whereas

mechanically pulped fibers are mostly stronger (blue stars).

Figure 5 also shows that the magnitudes of the compressive yield

stresses of the pulp suspensions are broadly similar to that of nylon.

In detail, however, there is a definite suggestion that the nylon stress

rises noticeably faster with ϕ. Indeed, interpreting n as the index of a

low-solid-fraction power-law behavior, we see that the pulps are all

consistent with the dependence Py	ϕ2, where the nylon is closer to

Py	ϕ3 (see Figure 6(B)). As we discuss later, this distinction may bear

on the interpretation of the microstructural origin of this stress. Con-

sequently, to ensure that this conclusion is not an artifact of the fitting

procedure over a narrow window of solid fractions, and because our

fits of n are slightly lower than previous results for a pulp similar to

Series 1 and 3,1 we have compared the results with some other tests

conducted at much lower concentrations. These tests consist either

of pumping water out of a suspension held in a container with a per-

meable base, or monitoring the sedimentation under gravity of the

solid from an initial concentration below the gel point. Such tests

formed the basis of the low-ϕ calibrations of Py(ϕ) conducted in refer-

ence 27; here, we extend these to nylon and carry over our previous

50 100 150 200
2

2.5

3

3.5

0.8

1

1.2

1.4

1.6

1.8
(b)

50 100 150 200
0

0.05

0.1

0.15

0.2
(a)

Chemical pulps

Refined pulps

(15-17)
(18-27)

F IGURE 4 The scaling parameters (A) α and (B) β of the pulp permeability data used in Figure 3(D), as defined in Equation (16). In (B), the solid
volume fraction scaling is re-interpreted on the right-hand axis as the water-retention-value-like quantity (β�1)ρf/ρs, where ρf and ρs are the fluid
and solid densities (see discussion in Section 9.1). The scaling parameters are plotted against the mean fiber aspect ratio 2L/W, and the symbol/
color scheme follows that given in Figure 1 [Color figure can be viewed at wileyonlinelibrary.com]
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results for pulp Series 1. The measurements of Py(ϕ) for these mate-

rials, now extended down to much smaller volume fractions, are

shown in Figure 5(C,D) and are consistent with the fits of the MTS

data, except for the sudden drop-off near the gel point. Importantly,

one gains further confidence in the conclusion that Py	ϕn with n≈2

for pulp and n≈3 for nylon at low concentrations. The somewhat

higher power-law exponents reported in previous literature22,26,43

may have their origin in the use of strongly anisotropic fiber mats, or

the use of a single power-law over the entire range of solid fraction

which becomes artificially biased if the stress law steepens at higher

compactions.

3.3 | Dewatering and bulk viscosity, η(ϕ)

We choose the same three representative Series (7, 12, 21) as when

presenting the permeability results to illustrate the dewatering behav-

ior found across the library; again, these series represent relatively

F IGURE 5 (A) A representative selection of results for compressive yield stress (Series 1 ( ), 3 ( ), 4 ( ), 5 ( ), 13 ( ), 16 ( ), 21 ( ), 23 ( ),

and nylon fibers ( )). (B) A plot of Py(ϕ) for the full pulp library. The shaded region spans the range of measurements for pulp according to the
fits, and the error bars represent two standard deviations over the repeats of each test. Panels (C) and (D) show Py data for nylon and NBSK
(Series 1), respectively, extended to lower concentrations. The fit for NBSK is shown as the dashed line in the nylon plot, and vice versa. The
“pump-out” data measure the compressive yield stress by withdrawing water from below a suspension held in a vessel with a permeable
bottom27; the “sedimentation” data come from measuring the final heights hf from gravitational collapse (plotting �ϕ≈ϕ0h0=hf against ϕ0h0(ρs� ρf)
g). In (C), data from six tests with the MTS are shown (lighter red dots), together with the average over these tests (darker red dots); in (D), only
the average MTS measurements are shown [Color figure can be viewed at wileyonlinelibrary.com]
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good, typical and bad fits to the model (i.e., small, typical, and high

values of the objective function ℱ in Equation (14), respectively).

Results for these series are shown in Figure 7, which plots the instan-

taneous load σ(t) against mean solid fraction �ϕ tð Þ¼ϕ0h0=h tð Þ. The fig-

ure illustrates the increasing difficulty of dewatering the pulp

suspension at higher rates of compaction V (lower values of γ), a fea-

ture that is qualitatively similar for the three series. In more detail, at

fixed compression rate, Series 7 (Panel B) is rather harder to dewater

than either of the other series (Panels A and C), which are themselves

somewhat similar. This difference is partly expected, because of the

relatively low permeability of Series 7 relative to that of Series 12 (see

Table 2), although this explanation ignores any potentially differing

contributions from the bulk viscosity, as we quantify (and also dismiss)

below.

The comparison of Series 12 and 21 (Panels A and C) is more curi-

ous, because their loads are similar but Series 21 has a lower

permeability than Series 7. In fact, Series 21 highlights an experimen-

tal challenge that we found for a subset of the mechanically pulped

suspensions (Series 21–24): these suspensions had a higher content

of “fines” (the fraction of measured fiber lengths less than 0.5 mm)

than the other pulp suspensions. The high fines content means that

retention of the solid phase underneath the permeable piston is a

challenge at elevated compression rates. This was evident visually

after the experiment by the cloudiness of the water above the piston.

The ineffective retention of the solid phase implies that the measured

compression load was probably artificially low during dewatering, a

problem commonly encountered in industry when dealing with

mechanically pulped suspensions. For the other mechanical pulps

(Series 25–27), these retention issues were less severe.

The successful match for Series 12 between the experiments

and the theoretical model (with optimally tuned bulk viscosity

parameter) is illustrated in Figure 8. Although at the lower rates of
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F IGURE 6 Characteristic scale and the parameters of the fit for the compressive yield stress in Equation (12), with p* scaled by the Young's
modulus E (assumed to be 1010Pa for cellulose; for nylon 2L/W≈450 and p*/E≈0.0057 if E = 109Pa). All the panels plot the fitting constants
against the mean fiber aspect ratio 2L/W, and the symbol/color scheme follows that given in Figure 1 [Color figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 7 Compressive load σ(t) against average solid fraction �ϕ tð Þ
ϕ0h0=h tð Þ for Series (A) 12, (B) 7, and (C) 21. Four dewatering
experiments are shown as the colored lines, corresponding to V = 0.25, 1.5, 5, and 10mm/s, respectively, with increasing dewatering rates
(decreasing values of γ) indicated by the black arrow. The compressive yield stress is shown by the black line. The error bars and dotted lines
represent two standard deviations over the multiple repeats of each trial [Color figure can be viewed at wileyonlinelibrary.com]
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compression the model performs well with or without a bulk viscos-

ity, it can only be matched with the experiments at the highest com-

pression rate when the bulk viscosity is included. This conclusion

mirrors the findings of Hewitt et al.,15 which they reinforced by com-

paring observations of the successive displacements of tracers in the

solid network with the solid velocity predicted by the model. Cru-

cially, no such conclusion was reached for dewatering tests on the

nylon suspension, for which the model without any bulk viscosity

sufficed to represent experiments. In other words, for more idealized

fibers like nylon, there is little sign of a rate-dependent solid stress,

in contrast to pulp.

A more typical example illustrating the match between the model

and experiment is provided by Series 7, which is shown in Figure 9. In

this case, the zero-bulk-viscosity model solutions begin to struggle

even at lower compression rates. Moreover, although the fitted-bulk-

viscosity solutions still represent the experimental results, discrepan-

cies are more noticeable for some of the tests. Despite this, the fitted-

bulk-viscosity model evidently remains effective in matching the

dewatering experiments.

The overall performance of the model with and without bulk viscos-

ity is quantified in Figure 10, which displays the net discrepancy ℰ

defined in Equation (14) for all the tests over the entire library. In this

figure, results for the majority of the series are plotted in fainter gray,

but the three representatives Series (12, 7, 12, and 21) are distinguished

to reinforce the relatively good, typical and poor performance of the

model for these examples. Figure 10(A) shows the values of ℰ using the

optimal value of η*, whereas Figure 10(B) shows ℰ for η* = 0 (no rate

dependence). In the latter case, for several series at the fast compression

rates (small γ), ℰ diverges because the model predicts unbounded piston

loads σ(t) when a highly packed boundary layer forms against the piston,

shutting down dewatering (see Reference 15 for a full description of this

behavior). The inclusion of a bulk viscosity therefore not only improves

the representation of the experiment by the model, but in many cases

allows a model prediction to be made at all.
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F IGURE 8 Series 12 model representation for dewatering rates of (A) 0.25, (B) 1.5, (C) 5, and (D) 10 mm/s (γ = 27.9, 4.5, 1.4, and 0.70). In
each panel, the experimental data are shown by the red solid line, the model result with a fitted bulk viscosity by the red short dashed line, and
the zero-bulk-viscosity model by the red long dashed line. The black line shows the compressive yield stress [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 9 Series 7 model representation presented for compression rates of (A) 0.25, (B) 1.5, (C) 5, and (D) 10 mm/s (γ = 6.3, 1.1, 0.32, and
0.16). In each panel, the experimental data are shown by the green solid line, the model result with a fitted bulk viscosity by the green short
dashed line, and the zero bulk viscosity model by the green long dashed line. The black line shows the compressive yield stress [Color figure can
be viewed at wileyonlinelibrary.com]
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The optimal values of bulk viscosity parameter η* for the pulp

library are plotted in Figure 11. The mechanical and refined pulps have

higher bulk viscosities than the unrefined chemical pulps, which are

similar for both the soft and hardwoods, and with chemical additives.

Otherwise the plot reveals little obvious trend across the library.

A more interesting plot is shown in Figure 12, which plots charac-

teristic measures of the permeability, compressive yield stress and

bulk viscosity. In particular, although there is no obvious relation

between k* and p* (Panel A), there is a clear correlation between k*

and the bulk viscosity parameter η* (Panel B). In particular, one

observes the inverse relation

η� Pa�s½ � ¼5�10�6

k� m2½ � , ð17Þ

which was reported with preliminary data by Paterson et al.27 Note

that the issues with retention noted above lead us to highlight the

results for η* for Series 21–24 in green in both Figures 11 and 12, and

treat them with some caution, although their positions in these plots

do not appear to be unusual.

For dewatering tests in general, the bulk viscosity is characterized

by the dimensionless parameter ε¼ k�η�=μh
2
0 , introduced in

Equation (9). The relation in Equation (17) implies that ε/ μh20

� ��1
,

which depends only on the fluid viscosity and the initial height of

packing. In the various experiments of this study, μ was constant and

h0 varied only marginally, so that ε	O(10�1�100). In retrospect, we

see that this consistent value of ε assisted our calibration of Py(ϕ),

which exploits a large γ� ε limit (see Reference 15), and ensured that

the dynamic dewatering tests operated in the regime where the bulk

viscosity was important (i.e. mostly to the left of the flat net discrep-

ancy on the right of Figure 10(B)). The small range of ε also rational-

izes why the dewatering behavior of Series 12 and 7 can be

understood primarily in terms of their characteristic permeabilities.

4 | DISCUSSION

4.1 | Permeability

Pulp fibers are hollow, complicated structures with space within the

walls that traps water. It is therefore plausible that certain regions of

the pore space do not participate in the bulk flow through the net-

work, but form relatively stagnant reservoirs. This viewpoint, which

has been advanced a number of times in previous studies,12,26,47,48
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F IGURE 11 The optimal bulk
viscosity parameter for the pulp
library. The points circled in green

indicate the series with possible
dewatering issues related to the
retention of fines, as discussed in
the main text [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 10 The error function ℰ defined in Equation (14) which shows the discrepancy between the experiment and model with (Panel (A))
and without (Panel (B)) a bulk viscosity, as a function of (dimensionless) dewatering rate γ = p*k*/μh0V. Series 12 ( ), 7 ( ), and 21 ( ) are
highlighted. Points in (B) for which the model cannot be solved due to divergent piston loading (including the entire Series 21) are plotted beyond
the axis limits [Color figure can be viewed at wileyonlinelibrary.com]
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implies that a fraction of the solvent volume is inaccessible and bet-

ter viewed as part of the solid, at least until the very highest consoli-

dations. In turn, this suggests that the effective permeability should

be equivalent to that of a network with a higher solid volume fraction

and a smaller pore scale. It is therefore tempting to interpret the two

scaling factors α and β used to collapse our permeability data as those

that are required to recover the effective solid fraction and pore size

from those based on the dry mass of solid and fiber radius. With this

interpretation, 2α/W is related to fiber geometry; the relatively low

numbers found for this ratio in Figure 4(A) suggest that typical pore

scales are rather smaller than the fiber dimensions at the solid fractions

of our calibrations. Moreover, the lower permeabilities of Series 15–17

and 18–27 can be attributed to a lower characteristic pore scale

prompted by mechanical pulping or refining. It is interesting that 2α/W

appears to segregate the series into two distinct groups, suggesting

both that different chemical treatments have minimal impact on the

characteristic pore scale, and that any form of mechanical treatment or

refinement results in the emergence of a distinct, lower characteristic

pore scale.

Similarly, βϕ measures the volume fraction occupied by inaccessi-

ble water and must therefore be related to the geometrical factor

2Reff/W plotted in Figure 1, which indicates the discrepancy between

fiber size and solid content at the microscale. In particular, if water were

completely locked inside the fiber, then β	 (2Reff/W)�2. This overesti-

mates the scaling parameter by a factor of order unity, in line with the

idea that only some of the water within the fiber is accessible.

The scaling factor β can alternatively be interpreted as the ratio

of inaccessible water to dry mass of solid, via (β�1)ρl/ρs (the right-

hand axis in Figure 4(B)). Two tests are conventionally conducted to

quantify more directly the amount of water trapped in the fiber wall.

The first, which measures what is termed the “water retention value,”
is a centrifuge experiment in which a sample suspension is dewatered

at a centrifugal force of (3000±50)g for 15min± 30s (TAPPI standard

reference UM 256). The centrifugal force is assumed sufficient to

remove the accessible water, and the trapped water is then

determined by drying the sample. A second test calculates the “fiber
saturation point” by adding a polymer solution of known concentra-

tion to a moist pulp suspension. The polymer has a molecular diameter

exceeding the largest pore in the fiber walls, and so only the accessi-

ble water dilutes the polymer solution, the total volume of which can

be determined from the change in polymer concentration.49 Although

both tests have their limitations,21,48 there is evidence to suggest that

they furnish similar estimates of the amount of trapped water.50

Those estimates indicate that the amount of trapped water ranges

from 0.8 to 2.4 g per 1 g of solid for typical pulps, which is consistent

with the estimates of (β�1)ρl/ρs in Figure 4(B).

4.2 | Compressive yield stress

van Wyk's scaling argument for textile fibers supposes that the solid

stress stems from the elastic bending forces resisting the collapse of the

network.19 We briefly review this argument here, following the more

recent discussion of Toll,20 then revise it in view of our experimental

results. For slender, relatively dilute fibers of length L and typical cross-

sectional widthW, the expected number density of contacts scales as

nc 	 ϕ2

W3
, ð18Þ

(see also References 51 and 52). If each contact point sustains a force

f, the bulk stress supported by the microstructure is

Py ϕð Þ	 ncΔf, ð19Þ

where Δ represents the typical length scale of microscopic

deformation.

For a contact force stemming from the elastic bending of cylindrical,

randomly orientated, relatively dilute fibers, the length scale for defor-

mation is the typical distance between each contact, Δ	W/ϕ, and
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f 	 EW4

W=ϕð Þ2
, ð20Þ

where E is Young's modulus of the fiber wall.19,20 Hence,

Py ϕð Þ	 Eϕ3, ð21Þ

which is independent of fiber geometry and has been shown to cap-

ture the solid-fraction dependence of the solid stress for suspensions

of wool.19

At lower solid fractions, our compressive yield stress data also

takes the power-law form Py! p*ϕ
n. Moreover, for nylon suspensions

the exponent n≈3, suggestive of elastic bending forces providing the

restoring forces underscoring the solid stress. The pulp suspensions,

however, show a weaker dependence on solid fraction, with n≈2.

Given Equations (18) and (19), a ϕ2-dependence of Py(ϕ) is suggestive

of a contact force f and deformation length-scale Δ that are indepen-

dent of solid fraction. For example, if elastic deformation takes place

over the scale of the fiber radius, such as might arise by a local col-

lapse or buckling of the wall due to the hollow nature of a fiber,22,46

then Δ	W and f	 EW2, giving

Py ϕð Þ	 Eϕ2, ð22Þ

which aligns with our results in Figure 6, both in terms of the power n

and the fiber-geometry-independent prefactor p*. Thus, pulp fiber

structure might underlie the weakening of the ϕ�dependence of Py(ϕ).

Despite this, the limited recovery of the network on unloading22-26

argues against an elastic origin to the solid stress. Moreover, our fitted

values of the prefactor p* of the power-law, which should match up

with E, are too small by factors of O(10�4�10�3) in comparison to

typical values of the Young's modulus for nylon and cellulose of E = O

(109) and (1010) Pa, respectively; see Figure 6. One might argue

instead53 that frictional rearrangements under elastic normal forces

dominate the compressive yield stress, leading to

Py ϕð Þ	 νEϕ3 or νEϕ2, ð23Þ

where ν is an effective friction coefficient at the contact points, which

might be sufficiently low due to the presence of interstitial fluid to

rationalize the relatively small values of p*/E. Alternatively, for pulp,

plastic deformation of the fiber wall at a yield stress of σY might be

implied, so that f	 σYW
2 and therefore Py(ϕ)	 σYϕ

2, as long as σY var-

ies little between pulps. Either way, the relative insensitivity of the

compressive yield stress across the entire pulp library, with its various

constituents possessing a range of fiber geometries and statistics,

points to an underlying microstructural mechanics that must have a

universal flavor and transparent origin.

4.3 | Bulk viscosity

Buscall and White16 argued that the viscous flow of the solvent around

a collapsing solid network should translate to a bulk solid viscosity, much

as the averaging procedure of two-phase theory generically predicts

solid shear viscosities.33 However, they also argued that such solid vis-

cosities should be insignificant since they will be of the order of the sol-

vent viscosity μ = 10�3Pa s, in contrast to our calibration in Figure 11.

Detailed single-phase constitutive theories for slender fibers40,54,55 also

predict shear viscosities of this kind, as well as suggesting a dependence

on the fiber aspect ratio that can significantly promote the size.

To provide a model scaling law for the bulk viscosity along the lines

of Section 9.2, we first consider slender cylindrical fibers sliding past

one another, separated by a gap of order W. Because entire fibers are

in motion, the length scale of deformation is Δ	 L. The relative velocity

between the fibers is U	 L ∂vs/∂z, and so the viscous shear stress is of

order μU/W, acting over an area of order W2 when the fibers are

inclined to one another. The viscous contact force is therefore fv	
μUW, implying an additional rate-dependent solid stress of

P�Py ϕð Þ	 ncΔfv 	 μ
L
W

� �2

ϕ2 ∂vs
∂z

, ð24Þ

which reproduces the scaling of the short-range stress proposed in

Reference 55, as well as the ϕ2 dependence adopted for η(ϕ) in our

two-phase model in Equation (13). However, Equation (24) suggests a

bulk viscosity scaling of O(10�1�101) Pa � s for aspect ratios 2L/W

over a range of 50�200, which is much smaller than the calibrated

values of η*. The relatively strong dependence on aspect ratio is also

inconsistent with the pulp library (Figure 11), and there is no clear

connection to the permeability scale k*.

We therefore turn to a less specific idealization of the collapsing

network, using this last point to suggest that the conduits conveying

the fluid should have a typical cross-sectional area of k*. Over the

deformation length Δ, solid velocity differences of order U = Δ ∂vs/∂z

drive fluid down these conduits. Mass balance then demands that the

fluid velocity associated with the collapse of the network is O(Δ2U/

k*), and so the associated viscous stress is μ Δ2U=k�
� 	

=
ffiffiffiffiffi
k�

p
, acting over

the area of the conduit wall Δ
ffiffiffiffiffi
k�

p
. Thus, f	 μΔ3U/k*, and so

P�Py ϕð Þ	 μ
Δ5

k�W3
ϕ2 ∂vs

∂z
, ð25Þ

which successfully recovers the observed relation between η*≡ μΔ5/

(k*W
3) and the permeability scale. However, the choice of the defor-

mation length Δ is not obvious. Taking Δ	W for our pulp library

yields η* k*	 μW2	O(10�11) m2 Pa � s, which is rather smaller than the

magnitude that we found in Equation (17). On the other hand, taking

Δ	 L gives an estimate that is too large, suggesting that the deforma-

tion distance lies at some unknown scale between the typical fiber

length and width, and indicating that questions still remain about the

physical origin of the observed bulk viscosity.

4.4 | Freeness

Finally, we return to a further measurement made at the outset for

the pulp library, the CSF value (see Section 2 and Table 1), which is
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plotted against both k* and η* in Figure 13. The Freeness test is a sim-

ple, table-top-scale gravity-driven drainage test for pulp in which a

sample drains through a specially designed funnel. Despite the test's

simplicity, the relationship between CSF and any of the material

parameters is not immediately transparent. However, Paterson et al.27

previously noted that the CSF value was correlated with η* for a lim-

ited selection of pulps, and confirmed this observation with some

detailed modeling of the Freeness test, assuming the bulk-viscosity

relation (17). Figure 13 also plots the theoretical prediction from Pat-

erson et al.27 and shows that this correlation (to either η* or k*, given

their inverse relationship (17)) holds across all the unrefined chemical

pulps (red squares). However, the plot again exposes differences

between the different “families” of pulp: evidently, the mechanical

pulps (blue stars) and mechanically refined pulps (purple diamonds)

follow different trends.

The correlation for the unrefined chemical pulps is interesting

because it suggests that one can estimate the permeability and bulk

viscosity scales simply from the Freeness value. Moreover, given the

narrow spread of Py(ϕ) for this particular type of pulp, one could fur-

ther adopt a nominal choice for this quantity, and thus estimate all the

material properties from a single experimental measurement.

The story is evidently more complicated with mechanical pulping or

refinement, for which pulps with different permeability can still give

rise to comparable Freeness values.11

5 | CONCLUSIONS

In this study, we have catalogued the two-phase properties of a

library of suspensions of wood pulp. Conventionally, these properties

are characterized by how the permeability and solid stress depend on

the solid fraction. Pulp suspensions show very limited recovery

on unloading, and so we interpret the rate-independent solid stress as

a compressive plastic yield stress. Following previous

work,15,16,27,28,32,45 we have included a rate-dependent component to

the solid stress with the form of a bulk viscosity to gauge whether this

addition improves theoretical modeling of the dewatering behavior of

the entire pulp library. The library consisted of a range of different

source woods and preparation and refinement techniques, which we

split into three broad “families”: chemical pulps with variant degrees

of chemical, but not mechanical, refinement; mechanically refined

chemical pulps; and mechanical pulps (with or without subsequent

mechanical refinement).

For all three families of pulp, we confirmed our previous findings

that the solid stress must be rate dependent in order that the two-

phase model match our dewatering results. The entire library, a much

wider variety pulps than considered in previous studies, therefore

adds weight and robustness to our inclusion of a solid bulk viscosity.

Furthermore, the breadth of this library permits us to explore whether

we can identify any microstructural signatures in the macroscopic

dewatering behavior.

Network permeability displays a great variation across the pulp

library, whereas the compressive yield stress does not. Despite the

variability in the permeability, and its relatively low range of values

in comparison to more idealized fibrous porous media, we have

shown that a simple shift of the data can align the different pulps,

both with one another and with a law proposed by Jackson and

James for ideal fibers. This shift can be interpreted as a combination

of scaling of the solid fraction, accounting for the fact that the fiber

walls are themselves porous and inaccessibly trap water, and a scal-

ing of the fiber dimensions, to account for the relatively complicated

geometry of the pulp fibers which indicates that fiber radius may not

be the typical pore scale. Indeed, we found that our pulp library nat-

urally segregated into two distinct groupings, based on whether the

pulp had undergone any form of mechanical treatment or not, with

the former appearing to reveal a distinct, lower, characteristic pore

scale.

The main feature of the compressive yield stress of the pulps is

that they uniformly follow a power law Py	ϕ2 for low solid volume

fraction ϕ. This is different from a plastic stress stemming from fric-

tional rearrangements under elastic bending forces that apparently

characterizes more ideal fibers like nylon. Instead, the ϕ�dependence
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of the stress may be more consistent with frictional rearrangements

under forces due to local collapse or buckling of the fiber wall. Thus,

pulp suspensions appear to follow a different microstructural

paradigm.

The dewatering tests demonstrate definitively that the inclusion

of a rate-dependent solid stress permits the two-phase model to bet-

ter represent observations. This feature remains true for all the pulps

in the library, with the main discrepancy between the models and

experiments apparently due to the problematic loss of fines (small-

scale debris generated by pulp production or refinement) during com-

paction. Interestingly, the bulk viscosity representation that we have

adopted (and which works well) has the same power-law dependence

on the solid fraction as the low�ϕ compressive yield stress, sugges-

tive of a local viscous contact force, and is inversely related to the

characteristic permeability scale, as expected if that pore scale also

controls the viscous dissipation. Nevertheless, it is difficult to match

the magnitude of the observed bulk viscosity using crude scaling the-

ory, and the detailed origin of the rate dependent stress in pulp sus-

pensions remains unclear and worthy of further investigation. Again,

this behavior contrasts with the dewatering behavior of a nylon sus-

pension, for which no solid bulk viscosity is apparent, reinforcing the

different nature of the two-phase paradigm for pulp.

Many of the issues left open by the current work may be under-

stood by performing dewatering experiments in conjunction with

detailed imaging of the deforming solid network at the microscopic

level. This exercise would inform the factors that control the perme-

ability, the mechanics underscoring the compressive yield stress, and

the origin of the bulk viscosity.
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