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Abstract

Cone Beam Computed Tomography (CBCT) is the most common imaging method

for Image Guided Radiation Therapy (IGRT). However due to the slow rotating

gantry, the image quality of CBCT can be adversely affected by respiratory motion,

as it blurs the tumour and nearby organs at risk (OARs), which makes visualiza-

tion of organ boundaries difficult, in particular for organs in the thoracic region.

Currently one approach to tackle the problem of respiratory motion is the use of

respiratory motion model to compensate for the motion during CBCT image recon-

struction. The overall goal of this work is to estimate the 3D motion, including the

breath-to-breath variability, on the day of treatment directly from the CBCT projec-

tion data, without requiring any external devices. The work presented here consist

of two main parts: firstly, we introduce a novel data driven method based on Prin-

cipal Component Analysis PCA, with the goal to extract a surrogate signal related

to the internal anatomy from the CBCT projections. Secondly, using the extracted

signals, we use surrogate-driven respiratory motion models to estimate the patient’s

3D respiratory motion. We utilized a recently developed generalized framework

that unifies image registration and correspondence model fitting into a single opti-

mization. This enables the model to be fitted directly to unsorted/unreconstructed
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data (CBCT projection data), thereby allowing an estimate of the patient’s respi-

ratory motion on the day of treatment. To evaluate our methods, we have used an

anthropomorphic software phantom combined with CBCT projection simulations.

We have also tested the proposed method on clinical data with promising results

obtained.
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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide according to the report

of the World Health Organisation (WHO) [4]. There was an estimated 17 million

cases of cancer worldwide as of 2018, and 9.6 million deaths due to cancer. There

are more than 360,000 new cases of cancer in the UK every year [5]. Three main

methods of cancer treatment exists, surgery, chemotherapy and radiotherapy. 45%

of patients diagnosed with cancer have surgery to remove the tumour as part of their

primary cancer treatment, while 27% of patients diagnosed with cancer in England

during 2013-2014 had radiotherapy as part of their primary cancer treatment [6].

The aim of radiotherapy is to deliver the optimum radiation dose to kill cancerous

tissue while minimising the dose to the healthy tissues. Lung cancer is the 3rd most

common cancer in the UK, it accounts for 13% of all new cancer cases. Lung cancer

does not usually cause noticeable symptoms until it spread through the lungs, as a

result the outlook for the condition is not as good as many other types of cancer [7].

With treatment techniques such as Intensity Modulated Radiation Therapy

(IMRT), and Intensity Modulated Proton Therapy (IMPT), it is now possible to
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deliver a more precise dose distribution to complex tumour shapes close to criti-

cal organs. However accurate patient positioning and beam placement is critical

for achieving the desired treatment goal. In order to ensure adequate patient posi-

tioning, IGRT was developed. This attempts to correct for any changes in patient

position and target localization before each treatment session. Currently, IGRT can

be performed using many systems and techniques, including, Magnetic Resonance

Imaging (MRI), ultrasound, portal imaging, and CBCT. CBCT is one of the most

common IGRT techniques used in clinical practice [8]. Most modern linear acceler-

ators (Linac) have a CBCT mounted 90° to the linac beam modulator. With highly

conformal treatment techniques such as IMRT and IMPT, an advanced imaging

modality is required for a precise localization of the target and OARs. CBCT en-

ables us to correct for changes of the target position prior to treatment and allows

monitoring of complex changes of the patient and tumour.

CBCT images suffer from respiratory motion artifacts such as blur, as a result

of the relatively long acquisition time (approx 1min). This limits soft tissue visu-

alization and localization accuracy, particularly in thoracic and abdominal region.

To take advantage of the higher conformity of radiation dose with these new treat-

ment techniques, methods to deal with uncertainties due to respiratory motion are

desirable. In this work, we have developed a surrogate driven respiratory motion

model derived from CBCT projection data. The derived motion model can be used

to correct some of the artifacts caused by respiratory motion in CBCT images. The

model can be used to produce sharper (less blurry) images of the anatomy in the

average position, this is particularly useful for patient position verification. In ad-
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dition, the derived motion model can be used to estimate the daily motion, which

can be used to assess if planned treatment is suitable and/or to inform adaptive RT,

where treatment is adapted to account for changes to the patient. The work pre-

sented here consists of two main parts. Initially we developed a novel data driven

respiratory motion signal extraction technique. This generates a signal from a re-

gion of interest within the thoracic cavity that exhibits respiratory motion, such as

the diaphragm and tumour in the CBCT projections. The method was evaluated

using anthropomorphic computerised XCAT phantom. Using the extracted signal

we used surrogate driven respiratory motion models to estimate the patient’s respi-

ratory motion prior to treatment based on a generalized framework that combines

image registration and respiratory motion model fitting into a single optimisation.

This potentially allows for the estimation of the 3D organ motion during CBCT

acquisition, using this we performed Motion Compensated Image Reconstruction

(MCIR) in order to account for and, reduce motion artifacts and improve the image

quality of CBCT images.

There now follows a brief overview of the contents of the rest of the chapters

in this thesis:

Chapter 2: Provides background information and relevant literature relating to

the work discussed in this thesis. It also contains a brief summary of the incidence of

lung cancer, the problem of respiratory motion in radiotherapy, methods of imaging

respiratory motion, image registration and modelling respiratory motion.

Chapter 3: Presents a data driven method for extracting a respiratory surrogate

signal from CBCT projection data. The aim is to obtain a signal that is correlated to
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the internal motion of the anatomy, which can be used to drive a correspondence res-

piratory motion model. In addition a secondary aim of the work presented here was

to produce a signal that is also suitable for respiratory-correlated Four-Dimensional

Cone Beam Computed Tomography (4D-CBCT) reconstruction.

Chapter 4: Describes the extensions and modifications made to the gener-

alised surrogate-driven motion modelling framework so that it can be applied to

CBCT projection data. It then presents experiments and results that evaluate the

CBCT-based motion models using an anthropomorphic software phantom.

Chapter 5: Extends the work in the previous chapter by including MCIR,

with the motion model fitting in an iterative approach. This means that an existing

‘reference’ image is not required thus the method can be applied to real clinical

data. This chapter presents experimental results of applying the iterative motion

model fitting and MCIR to both the same simulated data as used in chapter 4 and

real clinical data-sets.

Chapter 6: Summarises and discusses the findings and conclusions from this

research. We also discuss the future work that could be performed based on the

findings from this study.



Chapter 2

Background

In this chapter we give a brief description of the background related to this thesis.

We cover general topics such as lung cancer, means of treatment with radiotherapy,

the problem with respiratory motion and the associated treatment methods, includ-

ing the different modalities used over the course of a radiotherapy treatment. We

also introduce concepts such as image reconstruction and image registration meth-

ods that are related to the topic. Also included are the relevant literatures related to

the work conducted in chapters 3, 4 and 5.

2.1 Lung Cancer

There were approximately 130 new lung cancer cases every day between 2015 to

2017 in the UK [9]. Lung cancer incidence is strongly related to age, with the high-

est incidence rates being in older people. On average, between 2015 and 2017, each

year more than 4 in 10 cases were in people aged 75 and above [10]. Lung cancer

usually has a poor prognosis because most of the patients present with advanced or

metastatic disease at the time of diagnosis [11]. The treatment of lung cancer pa-



2.2. Radiotherapy 40

tient’s is dependent on the histological diagnosis, the patient’s fitness, the stage of

the cancer and the patient’s choice. Treatment can include a combination of surgery,

radiotherapy and chemotherapy.

2.2 Radiotherapy

The primary aim of radiotherapy is to treat cancerous tissue with ionizing radiation.

An effective radiotherapy treatment aims at delivering the optimum radiation dose

to the tumour while minimizing the dose delivered to normal healthy cells. The

overall goal is to kill the cancer cells by damaging their DNA with radiation. Var-

ious types of radiotherapy treatment method exist, such as external beam therapy,

brachytherapy and stereotactic radiosurgery. The main delivery system for external

beam treatment is a Linac as shown in figure 2.1. In a Linac, the ionizing beam is

produced by steering the electron beam into a target where the electrons undergo

bremsstrahlung 1, which creates high energy photons.

The Linac rotates around the patient and delivers radiation to the tumour. Vari-

ous types of treatment delivery with the Linac exists, the most common types being

3D conformal radiotherapy and IMRT. Both techniques can form highly conformal

dose distributions, where the high-dose region closely matches the shape of the tu-

mour, and there is a sharp fall off in dose outside the tumour to minimise dose to

surrounding OARs. Therefore, accurate verification of the tumour target is vital.

A crucial factor that determines a successful treatment is the ability to spare

healthy tissue while delivering the maximum dose to the tumour. However, pro-

1Bremsstrahlung radiation is any radiation produced due to the deceleration of a charged particle
passing through matter in the proximity of the strong electric fields of the atomic nuclei.
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Figure 2.1: A modern Linac

ducing such a treatment plan is complicated. For instance, the tumour can be

intertwined with healthy tissue. The clinical practice for planning and delivering

radiotherapy treatment in most institutions is to acquire anatomical patient infor-

mation from Computed Tomography (CT). The CT numbers in Hounsfield Units

(HU) provide tissue electron density information which is used for dose calcula-

tion. The delineation of the tumour and the OARs are performed by the clinician.

MRI and Positron Emission Tomography (PET) can aid with the delineation, which
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can sometimes be difficult on CT images alone. The 3D images and the delineation

are then used by the Treatment Planning Software (TPS) to produce an optimised

treatment.

Geometrical errors between the planned treatment from the CT scan and the

treatment delivered can occur. These errors can occur when defining the target

volume, creating the treatment plan or differences in the patient’s positioning on

the day of treatment. To compensate for these geometrical errors a ‘safety‘ mar-

gin is typically added around the tumour volume delineated on the CT scan during

planning. A clinical guideline for target volumes in radiotherapy has been recom-

mended by the International Commission on Radiation Units and Measurements

(ICRU) 83 [12].

• Gross Tumour Volume (GTV): This is the tumour volume that can be seen

via imaging.

• Clinical Tumour Volume (CTV): This is the GTV with an additional margin

that account for microscopic disease spread not visible with imaging.

• Internal Target Volume (ITV): This consists of an internal margin added to the

CTV to account for internal physiological movement and variations in shape,

size, and position of the CTV.

• Planning Treatment Volume (PTV): This is a geometric concept designed to

ensure that the radiation dose is actually delivered to the CTV. The aim is to

ensure that > 95% of the prescribed dose is delivered to 99% of the CTV [13].

The PTV allows for the uncertainties due to inter-fraction changes to patient
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and the setup errors.

2.3 Image Guided Radiation Therapy

IGRT uses medical imaging to improve the precision and accuracy of radiother-

apy [14]. IGRT aims to detect the tumour position immediately before treatment,

and allows for the adaptation of the radiotherapy plan in case the target position

changes compared with the planned position. In many cases radiotherapy treatment

is based on treatment plan constructed approximately 1-2 weeks before the start of

the treatment. Moreover, the treatment is delivered in multiple fractions on different

days. As a result, it is vital to align the patient with the treatment machine to ensure

that the planned treatment is delivered. The alignment can be performed using skin

markers (tattoos), however the internal anatomy can move relative to the skin due

to setup errors and anatomical/physiological changes. Therefore, IGRT is used to

improve the delivery of the treatment plan.

There are several commonly used IGRT techniques that can be deployed to in-

crease the accuracy of treatment delivery, ranging from standard portal imaging to

CBCT. Portal imaging uses the treatment beam and a flat panel detector for imaging.

It relies on using the bony anatomical structure for the alignment as it is difficult to

see soft tissue in the 2D projections. CBCT on the other hand allows for 3D vol-

ume reconstruction, therefore it is possible to setup the alignment on the soft tissue,

i.e. tumour. Nevertheless, CBCT still has poor soft-tissue contrast hence the re-

cent development of MR-linacs. MR-linacs can potentially provide the best image

guidance for radiotherapy treatment, especially for tumours in/near soft tissue, but
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require expensive specialist equipment. 3D IGRT such as CBCT and MR-linac

potentially allows for adaptive radiotherapy. As treatment delivery equipment be-

comes more complex, enabling escalating the dose delivered, the need for precise

target definition is important more than ever.

Currently, CBCT is the most common method used for IGRT. It is relatively

cheap compare to MR-linac. CBCT imaging can be used to identify anatomical

changes such as changes in the shape, size and to some extent the magnitude of the

motion during the course of radiotherapy treatment. This can be used to assess if

the plan is still suitable and/or facilitate adaptive radiotherapy. However, CBCT still

has its associated disadvantages. Due to the relative long acquisition time CBCT

images can be corrupted with motion blur artifacts, which can lead to inaccurate

measurements of the size, shape and the extent of the motion.

2.4 Respiratory Motion

Respiration is a quasi-periodic process of inhalation followed by an exhalation.

Oxygen is delivered to the cells from the external environment and carbon dioxide

is transported in the opposite direction. The most dominant muscle involved is the

diaphragm. During inhalation, the diaphragm contracts so that the lung volume ex-

pands by pulling in the inferior direction. The inter-costal muscles contract during

inhalation, pulling the ribs anteriorly and superiorly, therefore the lateral and ante-

rior posterior diameter of the thorax is increased [15]. There are two main types of

breathing, diaphragmatic and costal breathing. In general the diaphragmatic breath-

ing move the thoracic region in the Superior-Inferior (SI) direction, whereas the
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costal breathing move the thoracic region in the Anterior-Posterior (AP) direction.

A typical patients breathing pattern consists of a combination of both.

2.4.1 The problem of respiratory motion in imaging

In general, the largest range of respiratory motion is in the SI direction, where it

can range between 6-34mm [16]. Large variation in respiratory motion can also be

found between individuals [17]. Typically, the extent of the lung tumour motion in

the lower lobe tends to be largest. However, other studies have also showed cases

where large tumour motion had been observed in the middle/upper lobe [18, 19].

While respiratory motion often follows a repetitive pattern, it is typically irregular.

The diaphragm and inter-costal muscles affect the motion, and their contribution

can vary from breath to breath, and hence so can the motion. This can be affected

by physiological factors such as exertion, anxiousness, and changes to pose, and

also by natural breath-to-breath variations (which can be larger for some individ-

uals than others). And in addition, there can be a difference between the patient

breathing pattern from one day to another (i.e. contribution of diaphragm and inter-

costal muscles) but also “base-line-shifts” caused by anatomical and physiological

changes [20]. Also breathing motion can exhibit intra-cycle variation (also called

hysteresis) whereby the motion follows a different path during inhalation and exha-

lation

Respiratory motion can cause motion induced artifacts during image recon-

struction which can lead to distortion of the target volume and incorrect volumetric

and positional information. Respiratory motion artifacts such as blurring not only
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affect the delineation of tissue, but it can also affect the dose calculation accuracy.

2.4.2 Treating tumours affected by respiratory motion

Various methods have been developed to account for respiratory motion in radio-

therapy. Breath-hold technique can be used for treating thoracic tumours, since it

significantly reduces respiratory motion and changes in the internal anatomy. Sev-

eral methods of breath-hold technique have been implemented, such as the Active

Breathing Control (ABC). This is a device that helps facilitate reproducible breath-

holds without requiring the patient to reach maximum inspiration capacity. Another

approach is to ask the patient to hold their breath at some point in the breathing

cycle. During a breath-hold, the beam is turned on, and dose is delivered to the tu-

mour [21]. However, all breath-hold methods increase treatment time, and it can be

dependent on the ability of the patient to hold their breath, or training of additional

staff might be required to operate devices such as the ABC system.

There are two main treatment planning approaches used to account for respira-

tory motion: ITV approach and the mid-position (MidP) concept. Both of these ap-

proaches require Four-Dimensional Computed Tomography (4D-CT) images (see

section 2.5.3.2 ). For the ITV based approach, the GTV is extended such that it

covers the whole respiratory tumour motion in all phases of the 4D-CT [22]. For

the MidP position approach an image is created by deforming all the phases of the

4D-CT to produce a single image representing the time-weighted position of all the

images [23]. However, both of these approaches assume there is no breath-to-breath

and day-to-day variations.
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Techniques that monitor the respiratory motion of the patient in real time are

also available. These includes respiratory gating and real-time tumour tracking.

Respiratory gating involves the delivery of radiation within a particular part of the

patient’s breathing cycle, commonly referred to as the “gate”. While for the real-

time tumour tracking, the tumour motion is followed by dynamic movement of the

treatment field. Respiratory gating increases the treatment time, but real-time tu-

mour tracking can be more complex and need more accurate information to guide

the treatment which typically involves knowing the exact position of the tumour at

every point in time. Nevertheless, both techniques require accurate information on

the position of the tumour during treatment, and currently this generally involves

invasively placing a marker in or close to the tumour. Alternatively, new advanced

techniques such as MR-linacs can also be used to facilitate gated and tracked treat-

ments and this is an active area of research [24, 25]

2.5 CT & CBCT Imaging

In this section we discuss some fundamental concepts of tomographic imaging with

CT and CBCT. We cover topics from the projection acquisition to the different

image reconstruction techniques such as analytical and iterative reconstructions.

We also discuss different methods of tackling the problem of respiratory motion in

CT imaging, and we give a brief overview of motion mitigating methods in CBCT.

2.5.1 Projection

Image projection, also known as the Radon transform, is a linear transformation.

The projection of an image f (x,y) can be computed by summing all the intensity
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values of the pixels in the image along that specific direction [26]. In 2D, we can

write the equation of a line as given in equation (2.1), where ρ is the smallest dis-

tance of the line to the origin, and θ is the angle. Image projection can be repre-

sented in the form of equation (2.2) [27]. This is the line integral or ray sum through

the image f (x,y) whereby the position of the line is determined by the parameters

ρ and θ . The δ is the Dirac function. Shown in figure 2.2 is a projection of a 2D

image at a specific angle θ .

ρ = xcosθ + ysinθ (2.1)

G(ρ,θ) =
∫

∞

−∞

∫
∞

−∞

f (x,y)δ (ρ− xcosθ − ysinθ)dxdy (2.2)

Sou
rce

 

Detector 

Figure 2.2: Schematic layout of a single projection of a 2D image at a specific angle



2.5. CT & CBCT Imaging 49

2.5.2 Image Reconstruction in Tomography

Image reconstruction is a mathematical technique used to create tomographic im-

ages from projection data that have been acquired at various angles around the pa-

tient. There are two main types of image reconstruction methods: analytical and

iterative. Analytical approaches are based on Filtered Back Projection (FBP) and

are widely used clinically. Iterative methods are more complex but can offer better

image quality. The type of image reconstruction algorithm used has crucial impli-

cations for the image quality. In this section we will discuss the FBP and FDK

(Feldkamp, Davis, and Kress) algorithms, which are the most common analytical

reconstruction techniques used for tomography in medical imaging. We will also

give a brief description of the iterative reconstruction approach.

2.5.2.1 Analytical reconstruction

One of the most widely used analytical image reconstruction techniques is FBP.

This method assumes that the x-rays travel in straight lines, the x-ray photons all

have the same energy, and the x-ray intensity attenuates exponentially in the object

(Beer’s Law). FBP is closely related to simple Back Projection (BP). In BP the

projection is redistributed evenly along the original path in the image space. The

attenuation value is divided by the number of image pixels along the direction of the

projection, and the mean attenuation value obtained is assigned to these pixels. This

is repeated for each angle. However, performing a simple back projection will result

in a blurred version of the object, since all the projections are redistributed along

the original path. To reduce the effect of the blur on the image, a filter is introduced,
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the projections are first filtered using a high pass filter such as a ramp filter before

back-projection (FBP). This filter has the effect of removing low frequency signals

from the image, therefore contrasting features are highlighted.

For 3D-CBCT reconstruction, the most common technique used is the FDK

algorithm [28]. The FDK algorithm provides an approximate reconstruction and

it performs well only with a small cone angle. It has some distortion in the non

central axis, and some image quality artifacts. Image artifacts are more pronounced

as a function of distance from the central slice and the image quality degrades as

the cone angle increases. Nevertheless, the algorithm is practical and robust to use.

A schematic diagram of a CBCT reconstruction from Beaudry et al. [1] is shown in

figure 2.3, where the projection is defined by the projection angle and the detector

coordinates (a,b), whereas the beam is defined by the fan angle γ and the cone

angle κ .

Image removed on copyright grounds 

Figure 2.3: The cone beam geometry showing the variables used in the image reconstruc-
tion (adapted from Beaudry et al. [1])
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The FDK algorithm can be summarised as:

1. Pre-scale the projections by the cosine of the angle between the ray and the

central ray of the projection.

w(a,b) = cosγ cosκ (2.3)

where γ and κ are the fan angle and the cone angle respectively, and a and b

are the detector coordinates.

2. Apply a row-wise (1D) ramp filter g to the pre-scaled data

p̃(β ,a,b) = (w(a,b) · p(β ,a,b))∗g (2.4)

3. The filtered and pre-scaled projections are then back projected onto the vol-

ume of reconstruction

VFDK(x,y,z) =
∫ 2π R2

U(x,y,β )2 p̃(β ,a,b)dβ (2.5)

where U(x,y,β )2 is dependent on the distance between the source and the recon-

structed voxel projected onto the central ray

For further detail relating to CBCT reconstruction, the interested reader is rec-

ommended to read the original paper [28] and other good summaries of this ap-

proach, for instance [1, 29, 30].
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2.5.2.2 Iterative Reconstruction

Recently due to higher computational speed, iterative reconstruction methods are

getting more attention in medical imaging. This technique can be thought of as

a method of solving a system of equations, allowing for some noise in the data.

Iterative reconstruction discretises the image into pixels and treats each pixel value

independently as an unknown. We can then describe the imaging process using a

system of equations based on the geometry and physics. We can use an iterative

algorithm to solve the system. For CBCT the relationship between the image and

the projections is a linear equation. A system of linear equations can be thought of

in a matrix form AX = B, whereby each element in X is a voxel in the reconstructed

3D volume, and each element in B is a pixel in a 2D projection. A consist of the

matrix with coefficients that relate pixels in X and B. A is a large but sparse matrix,

as each pixel is only affected by the voxels that intersect a line from the source to

that specific pixel.

Iterative reconstruction methods consist of 3 major steps as shown in figure

2.4 [2]. We initially start with an arbitrary estimation of the image, we forward

project the current estimate, we compare the projection from the estimate with the

measured raw projection data. The comparison (the difference between the esti-

mated and measured projections) is back-projected and used to update the current

image, thereby creating a new estimate. We iterate these steps and update the cur-

rent estimate at each iteration. We stop once the maximum number of iterations has

been achieved or when there is no improvement when we compare the estimated

and measured projections.
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Image removed on copyright grounds 

Figure 2.4: The 3 main steps involved in iterative reconstruction method (adapted from
Beister et al [2])

2.5.2.3 Deep Learning Methods

Recently Deep Learning (DL) techniques are being applied to medical image re-

construction, this is partly inspired by the success of DL in computer vision prob-

lem and medical image analysis. DL techniques for image reconstruction are data

driven, where training datasets are used to tune parametric reconstruction algo-

rithms that approximate the solution.

Some of the method are closely related to the conventional methods of im-

age reconstruction. DL is used as a reconstruction step by combining it with a

conventional image reconstruction technique to recover the missing details in the

input signal or to improve the resulting image. With this technique there are two

main approaches in dealing with the problem, performing the DL method in the

pre-processing domain or in the post-processing domain. In the pre-processing do-

main, various studies [31,32] have used a DL model to estimate missing parts of the
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signal that were not acquired in order to improve the input to a conventional image

reconstruction technique. The incomplete data could for instance be due to a lim-

ited Field of View (FOV), sub-sampling or a low dose acquisition. In the case of the

post-processing, the main objective is to learn the mapping between the low-quality

reconstructed image and its high-quality counterpart. For instance, Jin et al. [33]

enhanced FBP results on a sparse-view CT through subsequent filtering by a U-Net

to reduce artifacts. Similarly, Chen et al. [34] used an auto-encoder to improve FBP

results on a limited angle CT projection. However, the combination of conventional

reconstruction method and DL methods has potential downsides. For example, the

performance of DL post-processing methods can be impacted by the results of the

conventional methods. An additional limitation of DL methods is the need for a

good quality input images to train the method. However, CBCT/4D-CBCT images

suffer from various artifacts [35]. The DL methods described here are out-of-scope

for the work presented in this thesis.

2.5.3 Computed Tomography for Radiotherapy

CT imaging relies on X-ray projection images. The projection images are acquired

at different angles with the source and the detector rotating around the patient. A

typical CT scanner uses fan beam geometry, where the beam diverges from the

source. The patient is typically scanned in the SI direction producing a helical scan.

With helical scan, the patient moves through the scanner. The x-ray beam traces a

helical path. Helical acquisition scan takes approximately 20sec.

Organs that move with high enough speed can have their position change sig-
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nificantly over the course of one CT scan. This can be the case for lung tumours,

and they can be challenging to image accurately. In such cases the tumour often

display distortions due to the interplay of their motion with that of a CT scanner

and treatment couch. There are different CT scanning techniques that attempt to

account for the patient’s respiratory motion, a few are summarised below.

2.5.3.1 Breath hold CT

Breath hold CT refers to the acquisition of a standard helical CT scan while the

patient holds their breath. While giving better image quality in most cases, the

anatomy of the patient during a breath hold scan will be in a different position when

compared to normal breathing [36]. Moreover, studies have shown that it is difficult

for some patients to sustain a breath-hold during the scan [37], causing artifacts in

the images due to the patient struggling to hold their breath for the duration of the

scan.

2.5.3.2 Four Dimensional CT

Four Dimensional CT (4D-CT), otherwise known as respiratory correlated CT, is

a technique that attempts to overcome some of the limitations of breath hold CT.

4D-CT attempts to image the patient anatomy at different respiratory phases during

free breathing. The CT images can be acquired in either helical or cine mode 2.

In both cases each slice is imaged multiple times over a complete breath cycle, but

different slices are acquired during different breath cycles. The CT data is acquired

simultaneously with a respiratory surrogate signal that is correlated with the patient

2A cine scan acquires data continuously at the same position for a duration of time. Multiple cine
scans are required to cover a larger scan area.
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motion. The slices are then retrospectively sorted using the surrogate signal to form

coherent volumes.

4D-CT images are subject to artifacts resulting from aspects of the 4D acquisi-

tion and processing [38]. These are caused by inter-cycle variations in the breathing

motion, i.e. the anatomy can be in different positions during different breath cy-

cles, even when at exactly the same phase according to the surrogate signal. This

causes artifacts in the images, as the anatomy does not match between slices ac-

quired during different breath cycles. These artifacts can lead to systematic errors

in the patient contouring and dose calculations. Studies have shown discontinuities

in the diaphragm and heart in 4D-CT images [39]. Artifacts in 4D-CT are very

common, a study found that at least one artifact appeared in 4D-CT images for 45

out of 50 patients [40].

2.5.4 Cone Beam Computed Tomography (CBCT)

CBCT equipment consists of a kilo-voltage (kV) x-ray source and a flat-panel de-

tector. In radiotherapy, both are mounted on a Linac as seen in figure 2.1. The kV

source is positioned orthogonal to the Linac head. Multiple projections with the kV

source are acquired as the Linac gantry rotates around the patient. The projection

images are reconstructed to obtain a volumetric 3D image of the patient. Figure 2.5

shows the typical approach of acquiring multiple projections of a patient on a CBCT

device. The causes of CBCT image artifacts include respiratory motion, radiation

scatter and the beam hardening effect. [41].



2.5. CT & CBCT Imaging 57

Figure 2.5: CBCT acquisition method

2.5.4.1 Methods for handling respiratory motion in CBCT

Motion artifacts are a limiting factor in the use of reconstructed CBCT images. This

is mainly due to the mathematical model of CT reconstruction, which assumes that

the object is static. To reduce the artifacts induced by respiratory motion, respiratory

motion correction techniques are used. In general there are three main methods used

to account for respiratory motion in CBCT. Here, we give a brief summary of these

methods, however we expand on these topics in chapters 3, 4, and 5 respectively.

The first approach is gated CBCT. This approach is not commercially available

or widely used clinically. Here acquisition of the CBCT occurs within a given

respiratory gate, for instance the end expiration gate. Therefore the reconstructed

CBCT images are less susceptible to respiratory motion artifacts [42]. However, a

possible limitation of this approach is the use of an external marker on the abdomen

which is dependent on correlation with the internal anatomy, and in addition, gated
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CBCT scan can lead to longer acquisition time of approx 5min. Moreover, this

approach does not capture the extent of the motion.

The second method is respiratory correlated CBCT [43] or 4D-CBCT. This in-

volves binning the cone beam projections into different bins which correspond to

a specific respiratory phase. Each subset of the projections is then used to recon-

struct a 3D-CBCT image that represents a specific phase. Therefore, a 4D image

that represents the entire respiratory cycle can be obtained. However, due to the

insufficient angular sampling of the projections in each respiratory phase, and the

longer acquisition time (approx 4min) high-frequency streak artifacts are present in

the reconstructed images [44].

The final approach is respiratory motion compensated CBCT. Here an estimate

of the patient motion is made during the CBCT acquisition and the estimated mo-

tion is used to correct for motion during the image reconstruction. This method has

advantages compared to the previous method due to the fact that reconstructed im-

ages can be obtained without streak artifacts [45], since all the projections are used

in the reconstruction. If the motion estimate is accurate, the CBCT images would

have less motion artifacts. However the primary challenge of this approach is the

estimation of the 3D-motion of the patient that is required for respiratory motion

compensation. Different methods of estimating the motion that have been used in

the literature will be reviewed in section 2.8.
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2.6 Image Registration

Medical image registration is the process of aligning two or more images. The

goal of an image registration method is to find the optimal transformation that best

aligns the structures of interest in the input images. Image registration is a crucial

step for image analysis in which valuable information is conveyed in more than one

image. It serves as a fundamental basis for procedures such as IGRT. Image regis-

tration enables the estimation of motion between two images, thus it can improve

the correspondence of information in multi-modality imaging, allowing additional

information to be obtained for normal tissue and tumour definition.

An image registration method at its simplest can be divided into three main

components: (1) the transformation between two images (often called the source

and the target image) (2) the cost function incorporating a measure of similar-

ity between the source and the target image, this is composed of at least one

similarity measure, that measures how similar the images are, and possibly also

penalty/constraint terms to penalise undesirable transformations (this is important

for Deformable Image Registration (DIR) but not usually required for rigid/affine

registration). (3) an optimisation method in order to improve the cost function to

reach its optimum value by changing the transformation. We will now briefly dis-

cuss these 3 components.

2.6.1 Geometric Transformation Models

The geometric transformation model defines the type of transformation that is per-

mitted and how they are parameterised. The number of Degrees Of Freedom (DOF)
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in a transformation corresponds to the number of parameters used to define the

transformation. In general, the more the degrees of freedom, the more complex the

transformation can be represented. Geometric transformation can be categorized

into two main types: linear and non-linear transformations.

Rigid transformation is an example of a linear transformation. The aim of rigid

registration is to find the six DOF (3 rotations and 3 translations) of transformation

that maps the point in the source image into the corresponding point in the target

image. This transformation model does not allow any structures within the image

to change shape or size. Affine transformation is an extension of the rigid model

that includes 12 DOF (3 translation, 3 rotation, 3 scaling and 3 shearing). Affine

transformation allows changes to both the shape and size of all the structures in

the image. However, these changes are global across the entire image. Both these

transformations are generally not suitable for describing the deformation that can

occur in soft tissue due to respiration, but they are a starting point for more complex

non-rigid transformation.

Non-linear transformations have the capacity for modelling local deformations.

It includes a wide range of transformations, spanning from transformations with

few DOF to transformations which have a separate displacement for each voxel.

There are 2 main types of non-linear transformation model: parametric and non-

parametric models. Parametric models parameterise the transform using a math-

ematical model, whereas non-parametric uses a Deformation Vector Field (DVF)

which directly describes the transformation at each voxel. The most commonly

used parametric transformation model is a cubic B-spline, and this is the one used
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in this thesis. Registrations using a B-spline transformation model were originally

proposed for registration of MRI images [46].

The B-spline transformation model parameterises the transformation using the

displacements of regularly spaced control points which are typically separated by

several voxels. The displacement of points between the control points is computed

by using B-spline interpolation. B-spline functions are compactly supported, i.e. a

control point only influence the transformation in the local region around the control

point. B-spline transformation models can accurately describe local deformations

and reduce the computational complexity as a result of having lower number of

DOF when compared to non-parametric transformation model such as DVF.

2.6.2 Cost Function

Once the transformation model has been chosen, a function that will quantify how

good the registration is after the transformation has been applied is required. This

is done by defining a cost function which attempts to get the best alignment be-

tween the two images. A cost function consists of a similarity measure and zero

or more constraint/penalty terms. The choice of similarity measure is dependent

on issues such as, if the images were acquired with different modalities or imaging

parameters.

Voxel-based similarity measures compute the similarities of the images at ev-

ery voxel. Numerous voxel-based similarity measures have been developed for dif-

ferent applications. One of the most common voxel-based similarity measures used
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for lung CB(CT) images is Sum of Squared Differences (SSD).

SSD(A,B) =
Nv

∑
n
((A(xn)−B(xn))

2 (2.6)

where A and B are the images with Nv voxels. xn is the coordinate of the nth voxel.

SSD assumes that the images are identical once registered, and so is applicable

when the only differences between the images are due to motion. It also assumes

that the intensity values in both images are the same.

Another similarity measure that can be used is Normalised Cross Correlation

(NCC). This algorithm assumes that there is a linear relationship between the inten-

sities in the two images. NCC is advantageous in the case of registering different

modalities, such as CBCT and CT image. NCC can be computed as follows:

NCC(A,B) =
1

NvσAσB

Nv

∑
n
(A(xn)− Ā)(B(xn)− B̄)) (2.7)

where Ā and B̄ the mean intensities and σA,σB the standard deviations for the two

respective images.

One of the most widely used similarity measure in medical image registration

is Normalised Mutual information (NMI). NMI can be used for multi-modal reg-

istrations as it does not assume any specific predefined relationship between the

image intensities but rather measures the amount of information shared between

them. NMI can be fined as:

NMI(A,B) =
H(A)+H(B)

H(A,B)
(2.8)
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where H(A) and H(B) represents the marginal entropy’s of images A and B respec-

tively. H(A,B) is the joint entropy of the two images

It is worth noting that SSD is a dissimilarity measure, a larger value indicate

that the images are less similar, whereas for NCC and NMI a larger value indicate

that the images are more similar. Therefore, when optimising the registration we

seek to minimise the SSD, but maximise the NCC and NMI.

Image registration is an ill-posed problem, it is important to prevent non-

plausible deformations, caused by non-smooth and/or folding transformations.

There are many ways of constraining the registration, such as using finer/coarser

B-spline grids. Different penalty terms penalise different types of transformation,

e.g. diffusion encourages smooth deformations, log of Jacobian penalises volume

changes, bending energy encourages the first derivative of the transformation to be

smooth [47].

2.6.3 Iterative Optimisation Methods

The iterative optimisation method tries to obtain the parameters of the transfor-

mation model that give the best value of the similarity measure. The choice of

optimisation method is dependent on the transformation model and the similarity

measure being used. The most commonly used optimisation techniques are gradi-

ent based methods, which includes Gradient Descent (GD) and Conjugate Gradient

(CG). GD and CG optimisation techniques are often used with B-spline transforma-

tion models. At each iteration the gradient of the cost function with respect to the

transformation parameters is computed. GD updates the transformation by adding
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the gradient (scaled by a step-size) so as to improve the cost function. The CG

method has faster convergence compared to GD. CG uses the gradient from pre-

vious iterations together with the current gradient to determine the direction of the

update [48].

2.7 Modelling Respiratory Motion

2.7.1 General Concept

Motion modelling offers a potential solution to some of the problems introduced

by respiratory motion. The goal of a respiratory motion model is to model the

relationship between the motion of internal organs and a surrogate signal, such as

the displacement of the skin surface.

There are four main components that form a motion model: the surrogate

data, the geometric transformation (see 2.6.1), the correspondence model that re-

lates the parameters of the transformation to the surrogate signal and finally the

fitting method used to fit the correspondence model. These components determine

the quality of the motion model. Hereafter we discuss the general usage of motion

models and we also give a brief description of the main components.

2.7.2 Use of motion models

Motion models are primarily used when it is not possible to measure the motion

of interest directly with adequate temporal resolution, but surrogate data that are

closely related to the motion of interest can easily be acquired at high temporal

resolution. Motion models are typically based on imaging data that captures the
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internal motion. The surrogate signal is acquired at the same time as the imaging

data and the motion of interest. The model can then be used to estimate the internal

motion from the surrogate signals.

2.7.3 Surrogate Signals

As previously mentioned a surrogate signal that is closely related to the motion of

interest is required to build a motion model. The surrogate signal can be either a

1D signal , 2D data, or even 3D images. Various types of surrogate signals exist. A

spirometer is commonly used as a source of surrogate for respiratory motion models

[49]. However due to instrumentation errors, there can be a considerable drift in

the spirometry signal obtained. One of the most common methods of acquiring a

respiratory surrogate signal is by tracking the motion of points on the surface of

the chest or abdomen. This is typically performed using an optical tracking system

such as the Varian Real-time Position Management (RPM) system, or a laser based

tracking system can also be used. Higher dimensional data can also be used as

surrogate signals for motion models, such as surface information and imaging. [50]

Various studies have also proposed using higher dimensional surrogate data as a

source from which to derive simpler surrogate signals such as the use of CBCT

projections as surrogates [51].

Surrogate signals can be used to sort images to drive motion model in two

main ways: (1) phase binning, here an image is assigned to a bin according to the

phase of the breathing signal at the moment the image was generated. (2) amplitude

binning the images are grouped according to the amplitude of the corresponding
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breathing signal. Both approaches has associated advantage and limitation, some

studies [36, 52] have demonstrated that amplitude based sorting method is more

accurately related to the target position, whereas phase sorting performed well for

patients with more reproducible breathing pattern.

To model both intra-cycle variation and inter-cycle variation, a common ap-

proach when using a simple 1D position tracker is to use the current value of the

signal and the time-derivative of the signal as proposed by Low et al [53]. In addi-

tion, the more signals used, the more the variation that can be modelled. However,

using more signals can cause overfitting, since the more the degrees of freedom that

the model has, the more data is required to fit the correspondence model.

2.7.4 Correspondence models

There are two main types of models that approximate the relationship between the

surrogate data and the motion of interest: direct correspondence and indirect cor-

respondence. For the direct correspondence, the model estimates the motion as a

direct function of the surrogate as seen in figure 2.6. This can also be written as:

M = α(s) (2.9)

where s is the surrogate data (which may be a one or higher dimensional signals

such as displacement of a point or surface), α the direct correspondence model and

M a vector of transformation parameters.

For an indirect model, surrogate data is not acquired during the acquisition.

The motion is estimated from the imaging data, and a statistical model is used to
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Figure 2.6: An illustration of a typical respiratory motion model. Respiratory surrogate
signals are acquired simultaneously with imaging data, and image registration
is used to estimate the motion from the imaging data. Finally the correspon-
dence motion model approximates the relationship between the surrogate data
and the motion.

build the motion estimate, e.g using PCA [54]. The weights of the Principal Com-

ponent (PC) can be used to estimate the respiratory motion. During the model

application (see figure 2.7) the PC weights are optimised to find the best match be-

tween the measured surrogate data and the estimate of the surrogate data generated

by the motion model [3]. The direct correspondence approach was used in this the-

sis. Here, one of the most common models used is the linear correspondence model,

mainly due to its simplicity where the transformation parameters are modelled as

a linear combination of the surrogate signal. Other correspondence models used

include polynomial and B-spline models.
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Image removed on copyright grounds 

Figure 2.7: An illustration of the indirect correspondence model during the model applica-
tion. Here the internal variables are the PC weights. [3]

2.8 Literature Review

In this section we will give a detailed review of the literature relating to the work

presented in chapters 3, 4 and 5. We will discuss relevant literature relating to res-

piratory surrogate signal extraction suitable for building motion models and sorting

4D-CBCT projection data. Initially we will discuss literature relating to external

methods of extracting respiratory surrogate signals information in radiotherapy, and

then we will discuss data driven methods of extracting surrogate signals from CBCT

projection data. We will also discuss relevant studies relating to the mitigation of

the effect of motion artifacts in CBCT images. We will review methods such as

phase-correlated CBCT and discuss other methods of correcting for motion arti-

facts namely algorithmic approaches and the use of motion models to correct for

CBCT motion artifacts.
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2.8.1 Surrogate Signals from External Device

In this section we discuss methods found in literature that have been used for respi-

ratory surrogate signal extraction using an external means. Many methods of gen-

erating external surrogate signals for motion models and sorting 4D volumes have

been proposed. The most common approach are spirometers [55], surface mark-

ers [56] (e.g. RPM), and 3D surface information [50, 57]. An example of a tech-

nique used to monitor patients breathing motion during radiotherapy is a spirom-

eter. Spirometers measure airflow. The airflow during inhalation or exhalation is

measured using an apparatus attached to the mouth of the patient. The change in

air volume is then inferred from the integrated airflow signal over time [55]. This

approach has been used to estimate the change in lung volume [58, 59].

Another external method commonly used for estimating breathing motion is

optical tracking. Optical tracking uses a tracking device to detect the position of

an external marker positioned on the body of the patient, e.g. abdominal region for

lung motion. Ford et al. [56] was one of the first studies to use the RPM, by Var-

ian Medical Systems (Palo Alto, CA) to evaluate respiratory motion during gated

radiotherapy. The RPM works by monitoring the position of a marker placed on the

surface of the patient’s chest using an infrared source and an infrared video camera.

Similarly, Mageras et al. [60], used the RPM system to assess motion during gated

radiation therapy. They performed their study on 6 lung cancer patients. They vali-

dated their study using fluoroscopy to show that the external monitoring technique

correlated well with the diaphragm motion.

Dong et al. [61] used fiducial markers placed on the patient’s body to predict
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tumour location in lung cancer, they developed a method of automatically identify-

ing locations on the patient’s surface with the optimal prediction power for tumour

motion. The main assumption was based on the fact that there was a linear relation-

ship between the tumour motion and the surface marker position.

All these techniques are based on the assumption that the signal from the ex-

ternal device is related to the internal motion, however this is not always the case,

as various studies have shown. Ann et al. [57] evaluated the ability of external

skin markers to predict tumour motion by comparing fluoroscopic imaging. In their

study 34 sites in lungs and 14 sites in the diaphragm were investigated. They found

a high correlation between the external marker and the tumour motion in only 44%

of the patients studied.

Hoisak et al. [49] performed a study to evaluate the correlation between lung

motion information and the abdominal displacement with tumour motion with X-

ray fluoroscopy. The two measurements were acquired simultaneously. The corre-

lation between the signals obtained by the two methods ranged from 0.99 - 0.39.

Similarly, Gierga et al. [62], studied the correlation between internal and external

markers for tumours in the abdominal region. They found the motion of the tumour

was well correlated to the external markers, however they also discovered that large

underlying tumour motion ranging from 2 to 9 mm can occur between internal and

external marker motion. Yan et al. [63], also evaluated the correlation between ex-

ternal and internal markers for lung treatment. For this work they used multiple

external markers. They found a wide rage of variation between the correlation of

the external and internal signals.
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Studies have shown that external signals can be related to the internal motion,

but questions remain over how strong and reliable these relationships are. However,

such devices are still commonly used due to their simplicity and relatively low cost.

2.8.2 Data Driven Methods

Many data driven methods have been proposed for motion extraction, with the sig-

nal extracted from the imaging data. Data driven techniques are advantageous be-

cause they deal with some of the challenges highlighted above for the external based

methods. Signals derived from the data are related to the data itself, thus potentially

could be more related to the internal motion of the patient. Additionally there is no

equipment cost, and no extra setup time required.

Dhou et al. [64] developed a method using local intensity feature tracking.

This method works by extracting a respiratory signal based on feature points that

exhibit respiratory movement in the projections. Feature points extracted in the first

CBCT projection were tracked in subsequent projections to determine a trajectory

that represents the entire breathing motion of the patient, the method was able to

detect respiratory signal in all the projections, however the average run time of the

process was approx 26min. Similarly Park et al. [65] proposed an image regis-

tration based technique to sort CBCT projection data into different bins, based on

the related motion information. Their method combines the intensity based feature

point detection and trajectory tracking using random sample consensus. Feature

points observed between adjacent projections were selected based on image inten-

sity. Then the trajectories of the feature points were tracked using an image registra-
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tion algorithm. Respiratory signals were acquired from the analysis of the obtained

trajectories through periodicity analysis of the transitional patterns of the feature

point positions. They tested their method with 2 phantom data and 6 patient data.

Their method was compared to the Amsterdam Shroud (AS) (see below), Fourier

based method and the local intensity feature tracking method. The obtained respi-

ratory signals were used to perform phase correlated 4D-CBCT and their method

produced better image quality than the other techniques based on the Peak Signal

to Noise Ratio (PSNR).

Probably the most well-known method of motion extraction for CBCT pro-

jection data is the technique developed by Zijp et al. [66], termed the AS method.

We give a detailed description here. This technique assumes that there is a high

contrast structure that relates to breathing motion. This is usually provided by the

interface between the diaphragm and thoracic cavity. During respiratory motion

the diaphragm mainly has a translational motion along the SI direction. Therefore

the diaphragm is ideal for extracting information related to respiratory motion. A

detailed diagram of the 3 main steps involved in the AS technique is illustrated in

figure 2.8.

The first step applies a derivative filter along the SI direction, this highlights

structures with sharp edges such as the diaphragm as seen in figure 2.8B. The re-

sulting image is summed along the horizontal direction to obtain a 1D projection.

These steps are repeated for all the CBCT projections. The resulting 1D projec-

tions from all the CBCT projections can be depicted as a 2D image called the “AS”

image. The region in the AS image that corresponds to the diaphragm is normally
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the high contrast region. An example of this region is shown in figure 2.8C. Each

column represents a specific projection at a particular time point. The horizontal

axis of the “AS” image represents time.

Finally, to extract a respiratory signal from the AS image shown in 2.8C, each

column is aligned to the next column, such that the SSD of all pixel values is min-

imized. The number of pixels that each column has to be shifted by for an optimal

fit represents the respiration signal. Though the AS approach enables the extraction

of a respiratory surrogate signal from CBCT projections, a limitation of this method

is that it is highly dependent on the presence of a high contrast structure (such as

the diaphragm) within the FOV of the CBCT projection data. In addition, the AS

method suffers from baseline drift in the extracted signal due to error accumulation

between successive time points in the Shroud image, and the motion of the con-

trasting structures in the 2D image due the rotation of the detector. A majority of

the methods are designed to generate a phase signal to be used for binning CBCT

projections, therefore a drift in the signal is not a problem.
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Figure 2.8: The AS method. A) The CBCT projections. B) The derivative of the CBCT
projections along the SI direction. C) The Shroud image, each column repre-
sents the sum of the image in B summed along the horizontal axis

Chao et al. [67] proposed a method of extracting respiratory signals from

CBCT based on the AS technique. An adaptive normalisation filtering was applied

to the AS image to further increase the weak oscillating structure locally. From

the corrected AS image, the respiratory signal was obtained using a two-step op-

timisation technique in order to reveal the large-scale regularity of the breathing

signals. Using their proposed method, they were able to obtain less noisy breath-

ing signals for 5 patients. They compared their method to the original AS method

by evaluating the breaths per minute (bpm), and they found that the new algorithm

outperformed the original AS technique for all patients by 8.5% to 30% when the

waveform acquired by an air bellows belt was used as reference. Similarly Yan et

al. [68] proposed a method termed Local Principal Component Analysis (LPCA)

using the AS image. It works by applying PCA to a subset of the AS data-set in a
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sliding window manner (see section 3.2.2). By doing so, this reduces the effect of

the detector motion on the extracted signal. The proposed method showed improved

performance when compared to other techniques such as the AS and the intensity

analysis method, however for certain patient cases the method failed when there is

insufficient contrast within the projections in particular for half-fan scan mode.

Kavanagh et al. [69] developed another method analyzing the variation in pixel

values between adjacent projections by developing a pixel value summation and

then applying a high-pass filter. The comparison of their method to the AS method

yielded good visual comparison. They concluded that their new technique gener-

ates a suitable breathing signal for projection sorting, however further analysis on

patient data and more quantitative analysis to other methods found in the literature

is required.

The primary interest in this work is in relation to respiratory surrogate signal

extraction from CBCT data. Nevertheless, data driven methods for non-CBCT data

also exist (e.g. PET). Thielemans et al. [70] proposed a technique of using PCA

to extract motion information from gated PET data. Their technique worked based

on extracting the first PC from the data which represents the largest amount of

variation, in this case the largest variation in the data is the respiratory signal. Their

method was tested on clinical PET data and CINE CT images.

2.8.3 Phase Correlated CBCT

An initial solution to account for respiratory motion is respiratory correlated CBCT

also known as 4D-CBCT. This method involves binning the cone beam projections
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depending on their position in the respiratory cycle based on a respiratory signal.

The subset of the cone beam projections is then used to reconstruct a 3D-CBCT im-

age, each image representing a particular phase of the respiratory cycle, therefore

we obtain a 4D-CBCT image of the entire respiratory cycle. Sonke et al. [43] first

presented this solution on a CBCT scanner integrated with a Linac. In their study,

they retrospectively sorted the projections from patients and phantom data respec-

tively using the AS signal. [66]. Motion artifacts present in the 3D-CBCT were

substantially reduced in the 4D-CBCT, such that the shape of moving structures

could be identified more accurately. Dietrich et al. [71] also presented a similar

solution. In their work they tested the method using phantom and patient data-sets,

in this case the breathing phase was detected by an external gating system. The

reconstructed 4D-CBCT images were compared to 4D-CT therefore allowing for

re-positioning of the patient for inter-fraction set-up motion. Kriminski et al. [72]

performed a similar study, however they used a mobile CBCT consisting of a C-arm

to image a moving phantom. They found that images reconstructed from the phase

binning of the CBCT projections showed a significant improvement when com-

pared to the reconstructed image from the complete projection data. Li et al. [73]

also performed a similar study, they used an internal planted fiducial marker as the

respiratory signal, and they found that it was possible to reconstruct artifact (blur,

view aliasing) free 4D-CBCT images.

Respiratory correlated CBCT is one of the main techniques developed to ac-

count for the effects of respiratory motion on a CBCT mounted on a Linac. How-

ever, this method has its associated limitations. The reduced number of projections
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that contributes to the reconstruction of each respiratory phase causes view aliasing

artifacts which degrades the image quality [44]. The artifacts can be reduced by per-

forming multiple gantry rotations, or slowing down the gantry speed, such as with

the case of Sonke et al. [43], whereby a 4min CBCT acquisition scan was acquired.

However, the increase in imaging acquisition time leads to increased dose and po-

tentially introduces greater positioning uncertainty, due to patient motion over the

long acquisition duration. Moreover, respiratory correlated CBCT also assumes that

the patient’s respiratory pattern is regular. There have been various studies in the

literature that demonstrate otherwise [74, 75]. In addition, studies have also shown

that respiratory correlated CBCT can underestimate lung target motion during ra-

diotherapy [76], since large variation in respiration can occur from breath to breath

and from day to day.

2.8.4 Algebraic approach to the removal of motion artifacts in

CBCT

Algebraic reconstruction techniques have been proposed to improve image quality

while reducing the number of projections required to reconstruct images of accept-

able quality. Several methods adopt optimisation-based approaches that use com-

pressed sensing (including total variation (TV) regularization) to reconstruct images

from sparsely angular sampled data. These methods have the potential to reduce pa-

tient dose due to their ability to use fewer projections.

Jia et al. [77] proposed two novel solution for 4D-CBCT reconstruction using

a temporal non-local mean (TNLM) energy term approach. The method involves
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a 4D-CBCT reconstruction algorithm and an enhancement algorithm through tem-

poral regularization. Different phases of the 4D-CBCT were reconstructed or en-

hanced at the same time by minimising a data fidelity term and the TNLM term. The

TNLM approach was used to account for the temporal redundancy of the 4D-CBCT

images. Both approaches generated better image quality visually when compared to

the FDK approach. The reconstruction approach improved contrast-to-noise ratio

(CNR) by a factor of 2.56–3.13 and the enhancement method increased the CNR by

2.75–3.33 times relative to the FDK results.

Leng et al. [78] proposed an image reconstruction method based on prior im-

age constrained compressed sensing (PICCS) [79] to achieve streak artifact-free im-

ages in 4D-CBCT. PICCS allows accurate reconstruction of a volume using under-

sampled numbers of projections (approx. 10–20 projections) without artifacts. The

prior image used was the volume reconstructed using the entire CBCT projections

without phase binning. They tested their approach on simulated data, and qualitative

results showed improvement in the image quality of the PICCS approach relative to

the standard FDK reconstruction method.

Mory et al. [80] proposed the 4D RecOnstructiOn using Spatial and Tempo-

ral Regularization (4D ROOSTER) method. This method was originally proposed

for C-arm system during intra-cardiac interventions. There are two main parts to

the algorithm, it alternates between a reconstruction and regularization in order to

reconstruct the heart from a single 10sec acquisition. The reconstruction step is

based on CG and the regularisation consists of four main components: enforcing

positivity, averaging along time outside a motion mask that contains the heart and
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vessels, 3D spatial total variation minimization, and 1D temporal total variation

minimization. Mory et al. [81] later built upon the existing ROOSTER and is called

motion- aware ROOSTER (MA-ROOSTER). It performs temporal regularization

along curved trajectories, following the motion estimated on a prior 4D-CT scan.

The MA-ROOSTER was compared to the ROOSTER, motion-compensated FDK

(MC-FDK), and respiration-correlated method, using CBCT acquisitions from both

physical phantom and patient data. Qualitatively the result for the MA-ROOSTER

yielded streak-free reconstruction comparable to the MC-FDK results.

2.8.5 Motion model approach to the removal of motion artifacts

in CBCT

Motion models can be used to improve the quality of CBCT images by parameter-

ising respiratory motion in terms of a surrogate signal and the model can be used to

estimate anatomical changes (see section 2.7 ). This information can then be used to

improve image reconstruction. Various techniques has been proposed to model res-

piratory induced motion [3]. Normally a 3D data + time datasets that describes the

motion of the body such as a 4D-CT is required for constructing a motion model.

Zhang et al. [82] proposed a PCA based motion model, whereby deformation

fields were generated from 4D-CT volumes and signal from the diaphragm was

used as surrogate. PCA was performed to parameterize the 3D deformation field in

terms of the diaphragm motion. They found that the first two PCs were adequate

to accurately describe the organ motion based on data from 4 patients. In their

subsequent study, Zhang et al. [83] used their method to correct motion artifacts
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in 1min CBCT scans. The CBCT were respiratory sorted into multiple bins and

the 3D images from each phase were deformed to an end-exhale image. Similar

to their previous study PCA was used to parameterize the 3D deformation field in

terms of the diaphragm motion. The obtained model was used to deform each of the

phase sorted CBCT volumes to a chosen reference volume, and the average of the

images resulted in a single CBCT image. They evaluated their proposed method on

two patient cases and simulated data. They concluded that blurring and streaking

artifacts are visibly reduced with motion correction. However, the use of respiratory

sorted CBCT images to build the model is affected by the strong streaking artifacts

observed in the reconstruction. The artifacts will be different in each phase image

thereby influencing the non-rigid registration.

Rit et al. [44] proposed a method of compensating for respiratory motion of

3D-CBCT image using a prior motion model estimated from a 4D planning CT. The

respiratory motion model was estimated from 4D-CT using an optical flow method

to estimate the 3D DVFs from the End Exhale (EE) image to the other images of

the 4D-CT. The method for the motion compensated algorithm back-projects the

projection data into the subject space to produce a tomographic image. However,

unlike the FDK approach which back-projects along straight lines of x-ray acqui-

sition, the algorithm used here back-projects along straight lines, and then warps

the back-projections. Their method assumes that the respiratory motion during the

CBCT acquisition is identical to that of the 4D planning CT. They found that noise

and view-aliasing artifacts were lower on the motion compensated CBCT images

with 1 min scan than on respiration-correlated CBCT images with 4min scan.
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Riblett et al [84] also proposed a similar method by combining group-wise

DIR to build a motion model and MCIR. 4D-CBCT reconstructions were regis-

tered to pre-selected respiratory phase reference images (end inhalation) to model

respiratory motion. The resulting transformations were used to deform projection

data during the FDK back-projection operation to create MCIR similar to Rit et

al [44]. The improvement in image quality was assessed by evaluating the reduc-

tion in aliasing artifacts, image noise reduction, contrast from implanted markers

and tissue inter-phase sharpness, which was defined as the slope of a sigmoid curve

fit to a moving tissue boundary. Overall, they found that their method had improved

image quality when compared to 4D-CBCT images, and reductions in view aliasing

artifacts were obtained for clinical data.

Vandemeulebroucke et al [85] proposed a method of estimating respiratory

motion from CBCT projections by including prior information from 4D-CT. The

model was fitted to the CBCT projection data by optimising the model parameters

such that the measured CBCT projections matched the simulated projections using

NCC as the similarity measure. They found that their proposed method was suffi-

cient to estimate the internal patient motion from CBCT projections. A limitation

of this approach is that it assumes the model from 4D-CT is still valid at the time

of the CBCT acquisition, thus would not account for day-to-day variations in the

model.

Zhang et al. [86] proposed a technique to estimate 4D-CBCT using prior in-

formation and limited angle projections. They proposed a motion modeling and

free-form deformation (MM-FD) technique. In the MM-FD technique, the DVFs
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were estimated using a motion model derived from planning 4D-CT using PCA.

The motion model parameters were optimised by matching the projections of the

deformed volumes to the input projections, then the estimated DVFs were fine-

tuned using a FD model based on data fidelity constraint and deformation energy

minimization. The proposed method was able to estimate CBCT images accurately.

However this study was limited to simulated idealized scatter-free imaging data.

The MM-FD technique does not work well with real clinical imaging data, which

contains scatter, beam-hardening effects and energy spectrum mismatches between

CT and CBCT. In their follow up study, Zhang et al. [87] also investigated clinical

feasibility using phantom and patient datasets, by modifying the previous MM-FD

technique by introducing normalised cross correlation (CC) as a similarity metric.

The accuracy of this technique was assessed by comparing the estimated anatomi-

cal structure to the Ground Truth (GT) reference 4D-CBCT. The Volume Percent-

age Difference (VPD) and the Center Of Mass Shift (COMS) of the tumour volume

were used as an evaluation metric. They found that their new approach was able

to estimate 4D-CBCT images with geometrical accuracy of the tumour within 10%

VPD and 2 mm COMS.

Sauppe et al. [88] proposed a method of reducing respiratory induced motion

blur in motion compensated 4D-CBCT images called phase-to-amplitude resam-

pling (PTAR). The method uses a phase-gating approach to estimate the initial DVF

and then a phase-adapted amplitude gating method is applied, here the number and

distribution of bins is defined based on the mean amplitude of the corresponding

phase bin. The proposed method produced better image quality when compared to
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conventional phase gated images, especially for irregular breathing patterns for both

simulated and patient data-set.

Numerous studies have shown success with building adequate respiratory mo-

tion models derived from prior CT. Nonetheless, models derived from 4D-CT may

not provide appropriate information for CBCT reconstruction due to changes in

breathing patterns and anatomy between acquiring treatment simulation images and

treatment delivery as previously discovered by [89–91]. Thus it is preferable to de-

rive a motion model based on CBCT projections acquired with the patient in treat-

ment position. However, these approaches typically estimate the patient’s motion

from the 4D-CBCT data, which are often corrupted with view aliasing artifacts, and

this can affect the accuracy of the motion estimated.

Wang et al. [92] developed a method of improving the image quality of 4D-

CBCT images by proposing a simultaneous image reconstruction and motion esti-

mation approach termed simultaneous motion estimation and image reconstruction

(SMEIR). The method works by alternating between a MCIR based on Simulta-

neous Algebraic Reconstruction Technique (SART) [93] and a motion model es-

timation to obtain an optimal DVF. The CBCT projections were binned into mul-

tiple breathing phases, using these images and the measured projections. SMEIR

extracted DVFs between the breathing phases by solving an optical flow-based op-

timization problem [94]. The performance of the proposed method was evaluated

on a 4D phantom and patient data. The quality of reconstructed 4D images and

the accuracy of tumour motion were assessed by comparison with conventional 4D-

CBCT images. Patient breathing motion irregularity was found to be one of the
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potential limitations of this method since this causes the number of projections in

each bin to vary greatly, thus leading to streaking artifacts.

Recently Guo et al. [95] proposed a motion compensated CBCT method based

on SART [93], termed the Motion-Compensated Simultaneous Algebraic Recon-

struction Technique (MC-SART), which is capable of reconstructing high quality

images and motion models from cone beam projections and respiratory surrogate

measurements. This method derived DVFs from respiratory sorted CBCT recon-

structed images and a motion model was estimated using DIR between the recon-

structed bins. MC-SART uses an iteratively updated motion model to incorporate

motion compensation into the forward and back projection operators of the image

reconstruction. Qualitative image quality improvement was obtained when com-

pared to other state-of-the-art algorithms. However, this method was only tested on

one CBCT acquisition.

2.8.6 Summary

Multiple methods of determining respiratory related signals exist, each with their

own advantages and disadvantages. External based methods do not require any

surgery but the motion acquired externally may not have a strong relationship with

the motion of the internal structure of the anatomy. Also some of these techniques

require training the users, reduce time efficiency due to the set-up time required, and

require an extra apparatus at extra financial cost. These types of techniques could

also introduce additional setup errors into the radiotherapy process. Data driven

methods avoid the problems of the external methods but have intrinsic disadvan-
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tages as well. For instance, most methods are highly dependent on the presence of

a high contrast structure (such as the diaphragm) within the FOV of the CBCT pro-

jection data. Potentially this type of method would not be sufficient for acquiring a

respiratory signal under certain clinical acquisitions whereby the diaphragm is not

present within the FOV. In addition methods such as the AS method suffer from

signal drift, which is not a problem for phase sorting, however it is a potential prob-

lem for motion modelling. In chapter 3 we propose a new data driven respiratory

motion extraction technique from CBCT projection data to address the limitations

of the previous techniques. In particular, our technique can be applied to different

regions of the projection data, thus it does not require a high contrast structure (such

as the diaphragm) to be present in the FOV of the projections.

Numerous methods have been proposed in the literature to account for respira-

tory motion in CBCT reconstructed images. However, these techniques have their

associated limitations. For instance, respiratory correlated approaches assume re-

producible motion during every respiratory cycle, so therefore cannot be used to

model breath-to-breath variations, and often contain artifacts caused by these vari-

ations. In addition, these methods require long acquisition times, and as the images

are formed from data acquired during different breath cycles they may not give a

good representation of the true motion and its variability. In addition, the insuffi-

cient angular sampling of the cone-beam projection during respiratory phase bin-

ning causes view-aliasing artifacts such as high frequency streaks. Methods have

been proposed for improving the quality of respiratory correlated images, such as

reduction in the gantry speed during CBCT projection acquisitions. However, the
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increase in imaging time could increase patient discomfort and introduces greater

uncertainty due to patient motion over the longer scan duration.

Even though motion models derived from 4D-CT have been used widely in

the literature, the clinical utility of such methods may be limited by the accuracy

of the prior model [74]. The anatomy between the time of 4D-CT acquisition

and the day of treatment might have changed, thus making the motion model in-

accurate, and in addition, the robustness of the method could be limited due to

inaccuracies of the prior model as a result of artifacts in the 4D planning CT or

mis-registration [96] [44]. Furthermore, changes in the breathing pattern between

planning CT acquisition and treatment day is a another cause for concern.

In addition, motion models derived from 4D-CBCT also have their associated

limitations such as view aliasing artifacts in the reconstructed images which can

affect the accuracy of the motion estimates. Despite the success of modern mo-

tion compensation algorithms, some limitations potentially remain regarding the

accuracy of the obtained DVFs. Many of the proposed algorithms assume regular

breathing patterns and are unable to account for inter-cycle variations in the data

used to calculate the motion model.

In chapters 4 and 5 we build upon a recently proposed framework that unifies

image registration and motion model fitting into a single optimisation [97]. This

method enables the model to be fitted directly to the CBCT projections, and does

not require the data to be sorted and reconstructed into full 3D volumes. Since the

model is fitted to all of the projections simultaneously, the full 3D motion can be

estimated. MCIR can also be performed by using an iterative scheme. Finally, no
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prior model estimate is required, thus the obtained model is only as a result of the

CBCT data on the day of treatment.



Chapter 3

Data-driven ROI respiratory signal

extraction from CBCT Projections
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3.1 Aim of this chapter

This chapter presents a method to generate a data driven respiratory motion signal

from CBCT projection data that could be potentially used as a surrogate for respi-

ratory motion model fitting. Our method is based on reducing the dimensionality of

the data using PCA.

PCA can be applied to datasets which contain a large amount of variability,

such as the case of clinical CBCT projection data. However, there are still chal-

lenges related to using PCA as a means of extracting motion information from

CBCT projection data. Within a given CBCT projection, there are two types of

motion, (1) Detector induced motion, and (2) Respiratory induced motion. The sig-

nals generated are affected by both types of motion. The respiratory motion is the

main component that’s of interest to us, therefore when using PCA, different tech-

niques had to be introduced to reduce the effect of detector motion on the extracted

signal.

In this work we propose a new data driven respiratory motion extraction tech-

nique from CBCT projection data. Our primary goal is to extract a signal that can

be used as input for a respiratory motion model. In contrast to normal 4D-CBCT

which uses the phase of the respiratory signal, motion models require a signal that

correlates well with the internal motion of the patient. A secondary aim of this work

is to produce a signal that remains suitable (for either motion models or 4D-CBCT)

when the diaphragm is not in the FOV of the projection. By combining several

ideas from the literature, our method aims to overcome the problems of the current

techniques.
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We first use the Region of Interest (ROI) enhancement method previously in-

troduced by Martin et al. [98] to enhance the contrast and to reduce sensitivity to

structures moving across the FOV of the projections. We then use PCA in a sliding

window manner as used in Yan et al. [68], on the enhanced data. Our technique can

be applied to different regions of the projection data, allowing signals to be gen-

erated from specific structures such as the diaphragm. In this chapter, we present

the method, test it extensively on simulated data and provide preliminary results on

patient datasets.

3.2 Method

Our method can be divided into 4 major steps: (1) use an ROI enhancement method

to select a region from the projection data [98]; (2) extract respiratory related in-

formation using PCA with a sliding window approach, inspired by Thielemans et

al. [70] and Yan et al . [68]; (3) combine signals from the sliding window after cor-

recting for the arbitrary sign flip resulting of using PCA independently on subsets

of the data; (4) determine the overall sign of the extracted signal. We now give more

details about the steps involved in our proposed method.

3.2.1 ROI Enhancement

Measured CBCT data gives projections through the whole body. The enhanced ROI

method [98] aims to obtain approximate projections of the ROI only, by reducing

the influence of other body parts being visible in the enhanced projections. In ad-

dition, by cropping the enhanced ROI image to the mask of the ROI projections we

minimise the effect of detector rotation which causes the ROI to move in the pro-
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jections, if it is not positioned at the centre of rotation. Figure 3.2 shows a graphical

representation of the ROI enhancement method. The projection data (A in figure

3.2) is reconstructed into a 3D volume (B) using a standard approach, e.g. FDK.

The ROI is defined by the user and a non-ROI volume (C) and ROI volume (D)

are created by setting all voxels inside/outside the ROI to the same intensity as air.

Projections are simulated through these volumes using the same geometry as the

original projections to generate non-ROI projections (E) and ROI projections (F).

The non-ROI projections are subtracted from the original projections to produce the

difference projections (G). The ROI appears enhanced in the difference projections,

but they can also contain artifacts due to motion outside the ROI and the limited

FOV of the reconstructed volume. To minimise the impact of these artifacts the

difference projections are masked by the ROI projections to produce the enhanced

ROI projections (H). To further reduce the influence of the detector motion when

the ROI is not positioned at the centre of rotation, we cropped the enhanced projec-

tions (H) to the mask of the ROI (F). Shown in the right of figure 3.2 is the cropped

region of the enhanced ROI for the tumour.

An additional step is added to the previously developed ROI enhancement

method [98] when applied to truncated data, i.e. where part of the anatomy is im-

aged by projections that cover < 180 degrees. This part of the anatomy is missing

from the reconstructed image, and therefore also from the simulated non-ROI pro-

jections. As a consequence this anatomy remains in the enhanced ROI projections.

To help mitigate this problem, a global linear correction (i.e. scaling and offset)

is applied to the non-ROI projections by performing a least squares fit between
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the non-ROI projections and the original projections (excluding pixels in the ROI).

While this global linear correction does not correct for truncation, it is a simple and

fast method that reduces the effect of truncation on the enhanced ROI projections.

The effect of applying the global linear correction is shown in figure 3.1

A B

Figure 3.1: The effect of applying a global linear correction. (A) The enhanced projection
when no correction was applied. (B) The enhanced projection after applying a
global linear correction
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Figure 3.2: Flowchart of the region of interest enhancement technique
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3.2.2 PCA using a Sliding Window

PCA seeks to reduce the dimensionality of given data where there is a large amount

of interrelated variables [99]. Similar to Thielemans et al. [70] PCA was used to

describe dynamic data di as a linear expansion of K orthogonal PCs. Here it is

applied on the enhanced ROI projections. This can be expressed as in equation 3.1,

where di is the data at time point i, d̄ is the mean of the data over all time points

used for PCA, Pk the PCs with the same dimension as di, and wik the weight factors.

Since Pk are orthogonal basis vectors, the weight factors wik can be computed as in

equation 3.2 :

di ≈ d̄ +
K

∑
k=1

wikPk (3.1)

wik = Pk.(di− d̄) (3.2)

PCA has been used to extract a respiratory signal from PET data [70] using all

projection data over the whole acquisition. Note that in PET the detectors are sta-

tionary. In contrast, an intrinsic property of CBCT projection data is the movement

of structures across the FOV due to the detector motion. Although the ROI enhance-

ment method reduces the influence of detector motion, it can still have an impact

when moving structures move in front of or behind the ROI. To further reduce the

influence of detector motion, we introduce a sliding window technique, as in the

LPCA method [68]. By selecting a subset of the data-set prior to computing PCA,

the approach reduces any variation in the selected data that is due to detector mo-



3.2. Method 95

tion. Therefore if respiratory motion is present in the selected data si, it is expected

that the motion information will be contained in the weight factor that corresponds

to the 1st PC.

In order to apply PCA, the enhanced ROI projection from each time point is

rearranged into a 1D vector, and these are concatenated into a 2D matrix as shown

in figure 3.3(1). Each column here represents a specific time point. We compute

PCA on a subset of the data by choosing n time points (corresponding to n number

of projections). We then repeatedly shift the window by one time point and compute

PCA on each subset, as illustrated by the different colour windows shown in figure

3.3(1). For each window, we assume that the 1st PC and its corresponding weight

factor represent the respiratory motion information. An illustration of the 1st PC and

its associated weight factors are shown in figure 3.3(2) for the first four windows.

The sign of the respiratory signal extracted by PCA cannot be unequivocally

obtained since the result of the product Pkwik will not change if at the same time,

wik →−wik and Pk →−Pk. Since we are computing PCA independently on each

window, each PC and weight will have an arbitrary sign, as illustrated in figure

3.3(3).

Since the sign of the signals extracted by PCA using the sliding window

method are uncorrelated, we devised a method of correcting for this by using the

Euclidean distance between adjacent PCs. For instance in equation 3.3, in which

Px
1 represents the 1st PC for the xth window, then Px+1

1 is the first PC for the next

window. We can determine which PCs require a sign change by enforcing adjacent

PCs to be similar:
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Px
1 =


Px

1 if
∥∥Px

1 +Px+1
1

∥∥> ∥∥Px
1 −Px+1

1

∥∥
−Px

1 otherwise
(3.3)

Performing this results in the weights shown in figure 3.3(4). To obtain a single

signal that represents the respiratory motion, we calculate the average at each time

point as represented by the black respiratory curve in 3.3(5) .

Figure 3.3: Illustration of the proposed sliding window method based on the first 4 win-
dows. 1) The enhanced ROI, each colour represents a particular window; 2)
the corresponding first PC coefficients and their associated weights for each
colour/window; 3) the weight factors; 4) the weight factors after applying sign
flip correction; 5) the black curve shows the average weight at each time point.
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3.2.3 Overall Respiratory Signal Sign Determination

As discussed above, the sign of the respiratory signal obtained via PCA is ambigu-

ous. As a consequence the black curve shown in figure 3.3(5), which represents the

respiratory motion is also ambiguous. A new method was required to determine the

true sign of the respiratory trace. We implemented a method based on a previous

work in PET [100]. The method assumes that respiratory motion predominantly oc-

curs along the SI direction [101]. Bertolli et al. [100] derived an alternative signal

with a known sign from the dynamic data di that is utilised for PCA. A signal was

computed as shown in equation 3.4.

ri = gz.(di− d̄) (3.4)

where gz is the gradient along the SI direction of the mean of the data d̄. The

description of the temporal change in the projection from its mean resembles the

result expected from PCA (see figure 3.4), as shown in equation 3.2, however with

a fixed sign. Bertolli et al. therefore flipped the sign of the PCA trace to be positively

correlated with r. For this study we used the signal obtained from equation 3.4 to

flip the sign of the signal obtained from our proposed method.

3.2.4 Evaluation experiments

3.2.4.1 Simulations

To evaluate the performance of the methods introduced in this work, we tested

our approach with simulated phantom data using the XCAT computerized phan-

tom [102], a software package that is commonly used to create anatomical models
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Figure 3.4: gz, the gradient along the SI direction of the mean of the data d̄. This resembles
the result expected for the PC as shown in figure 3.3

for medical imaging research. XCAT provides an approximate representation of

the human anatomy. XCAT uses non-uniform rational B-spline surfaces to model

realistic and detailed human anatomical structures. It is also capable of simulating

realistic 4D respiratory motion. We used XCAT to simulate attenuation images of

the thoracic cavity of the human body where attenuation was computed for photons

of 140 keV as appropriate for CBCT. The output of the XCAT software is a 4D

data-set where the 4th dimension represents time, i.e a series of 3D volumes, that

describes the respiratory motion. The XCAT software takes two input parameters

to define the motion: the translation of the diaphragm and the AP translation of the

thoracic region.

In this study, the XCAT phantom motion simulations were based on respiratory

signals extracted from cine MRI data from a lung cancer patient. The respiratory

signals were acquired from a local region of the diaphragm and the skin surface

sections respectively. The volumes simulated from the XCAT had 512×512×160

voxels with a spatial resolution of 0.878×0.878×2.0mm3, the same as reconstruc-

tions from a clinical CBCT scanner. The number of volumes and their temporal

resolution varied based on the CBCT system and the type of scan being simulated.
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The acquisition rate for the 3D-CBCT scan on the Varian OBI was 11.38fps, while

for 4D-CBCT acquisition it was 15fps [103]. The acquisition rate for the 3D-CBCT

scan on the Varian true-beam was 14.9fps, while for 4D-CBCT it was 7fps.

CBCT projections were then simulated from the 4D XCAT images using RTK

[104], an open source toolkit for CBCT reconstruction. The CBCT geometry and

other simulation parameters were based on real CBCT scans and the patient data

available for this study. We simulated CBCT projections based on the true-beam

and on-board Imaging (OBI) systems (both from Varian Medical Systems, Palo

Alto, CA) respectively. The detectors for both systems contain 1024× 768 pixels

of size 0.388×0.388mm2. Different types of CBCT acquisitions were simulated in

order to replicate different clinical scenarios, as detailed in table 3.1. At our clinical

institution, acquisitions using the OBI system are typically centred on the tumour

(at the treatment iso-centre), and so the projection data is often truncated and some

of the anatomy is outside the FOV of the reconstruction. However, acquisitions

using the true-beam system are typically centred close to the centre of the patient,

and therefore the reconstructions include all of the patient’s anatomy. Therefore,

we simulated both situations of patient-scanner alignment seen in the real scans at

our institution.

Simulations 1-3 were based on the OBI system, whereas simulations 4-6 were

based on the true-beam configuration. Simulations 1-2 and 4-5 were all based on

3D-CBCT scans with a duration of 60 seconds, whereas simulations 3 and 6 were

based on 4D-CBCT scans with durations of 180 sec and 114 sec for simulation 3

(OBI) and simulation 6 (true-beam) respectively. In addition, simulations 3 and 6
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had tumours in the upper-lung, so the diaphragm was not present in the projection

data, whereas the other simulations had mid-lung tumours, so the diaphragm was

present. Simulations 2 and 5 used a 30 mm diameter tumour, whereas the others

used a 15 mm diameter tumour.

Table 3.1: The acquisition parameters for the CBCT were: Source to Iso-centre Distance =
1000mm, Source to Detector Distance = 1536mm, and a total rotational angle of
360 degrees.

No.of Acquisition Acquisition Tumour Tumour
Projections Duration (s) Type (s) Diameter (mm) Position

Varian OBI
Simulation 1 683 60 3D-CBCT 15 Middle ∗∗

Simulation 2 683 60 3D-CBCT 30 Middle ∗∗

Simulation 3+ 2700 180 4D-CBCT 15 Upper ∗

Varian true-Beam
Simulation 4 894 60 3D-CBCT 15 Middle ∗

Simulation 5 894 60 3D-CBCT 30 Middle ∗

Simulation 6+ 1008 144 4D-CBCT 15 Upper ∗∗

∗∗ Right lung.
∗ Left lung.

+ No diaphragm.

3.2.5 Clinical Data

We tested our method on three clinical CBCT projection data-sets from real lung

cancer patients. The first data-set was acquired using the OBI system, and consisted

of 683 projections covering 360°acquired at 11.38 fps. The second and third data-

sets were acquired from the same patient on two different days using the true-beam

system, and consisted of 894 projections covering 360°acquired at 14.9 fps. As

for the simulated data, the OBI acquisition was centred on the tumour, resulting

in truncated projections and part of the anatomy was missing from the FOV of the
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reconstruction. The true-beam acquisition was centred on the centre of the patient

(and also employed a half-fan scan mode), so included all of the patient’s anatomy

in the reconstruction, however this also limits the anatomy that appears in every

projection.

3.2.6 Signal Extraction

For simulations 1-2 and 4-5 two signals were generated by placing the ROI on

the diaphragm (D-ROI) and the tumour (T-ROI) respectively. For simulations 3

and 6 only the T-ROI signals were generated since there was no diaphragm in the

projections. For the real data-sets, signals were generated by defining the ROI on the

diaphragm. To evaluate the quality of results generated from the proposed method,

we compared the respiratory signals extracted from the simulated data to the tumour

SI motion signal from the 4D XCAT. The tumour SI motion signal was obtained

using the centre of mass (COM) of the XCAT tumour volumes.

As previously mentioned the method proposed in this study relies on a user-

defined window size for the sliding window. This was determined based on 4 pre-

liminary simulated CBCT acquisitions with different real patient’s respiratory traces

as the input motion signal. For each simulation we tested our method using differ-

ent window sizes and compared the result obtained from the T-ROI to the tumour

GT motion signal, and the result from the D-ROI was compared to the diaphragm

GT motion signal. An average of the correlation coefficient for each window size

across the 4 different simulations is shown in figure 3.5. The optimum window size

was 30 projections, corresponding to 2.65 seconds. This window size was therefore
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used for all further results in this paper.

To compare our proposed method with the commonly used AS method [66],

signals were generated using the implementation in RTK. In RTK’s implementation

an upper bound and lower bound region of the AS image need to be specified. For

the simulations where the diaphragm was present, we specified the bound region to

correspond to the positions of the diaphragm. For the other simulations, we selected

bounds that corresponded to the tumour region. As previously mentioned, there can

be a drift in the AS signal caused by error accumulation. This affected some of

the AS signals generated in this study. If the AS signal is being used to determine

the respiratory phase, e.g. for binning 4D-CBCT data, then the signal drift is not a

problem, but if the AS signal is being compared to a known input signal as here, this

drift unfairly impacts the results. Therefore, we attempted to correct for the drift by

fitting a 2nd order polynomial to the signal and subtracted it from the AS signal. We

call this signal the “Modified AS” (M-AS). An illustration of the difference between

the AS and the M-AS is shown below in figure 3.6.

Hereafter all signals shown in this work have been normalised such that the

signals have a mean of 0 and a standard deviation of 1.

3.2.7 Analysis

For the simulations, the tumour SI motion extracted from the XCAT volumes were

correlated with the T-ROI, the D-ROI and the M-AS signals respectively. The com-

parison was performed using the CC between the signals.

Respiratory correlated 4D-CBCT reconstruction was performed based on the
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Figure 3.5: Average of the correlation coefficient when compared to the input signal motion
for different window sizes from 4 different preliminary simulated CBCT data.
The results shown here are when either the T-ROI and D-ROI were used for
signal extraction.
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Figure 3.6: Illustration of the difference between the tumour SI Motion, the AS, and the
M-AS signals

acquisitions from simulations 3 and 6. The projections were binned into 10 bins,

according to the respiratory phase values determined from the breathing signals.

The phase of the signals was calculated using a saw-tooth waveform as described in

Chinneck et al. [105]. We then reconstructed each phase image individually using

openRTK. The obtained 4D-CBCT reconstructions from the different signals were

assessed qualitatively and by comparing the reconstructed images and a line profile

through the tumour. In addition, the accuracy of the phase bin assignment for the T-
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ROI and M-AS signals was evaluated using equation 3.5, which computes the Root

Mean Squared Difference (RMSD) in the bin assigned by the evaluated signal and

bin assigned by the tumour SI motion, taking phase wrap-around into account.

binRMSD =

√
1
N ∑

t
min[(gSI

t −g f
t )

2,(gSI
t − (g f

t −N))2,(gSI
t − (g f

t +N))2] (3.5)

where N is the numbers of bins, gSI
t is the bin value that corresponds to the SI

tumour motion signal at time point t and g f
t is the bin value that corresponds to the

T-ROI or the AS signal respectively at time point t

For the clinical data, a clinician manually identified the diaphragm location in

the projections for the true-beam data. The peak of the diaphragm in the ipsilateral

lung was identified. For time points where the peak diaphragm was unidentifiable

from the projections a point was selected that was closest to the peak of the previous

projection. The manually extracted signal was compared to the D-ROI and the

M-AS signals respectively. However, for the OBI patient data, it was difficult to

identify the peak of the diaphragm in the ipsilateral lung due to the poor image

quality of the projections and radiation scatter. Therefore, the D-ROI and the M-

AS signals from the patient’s projections were compared in order to indicate if the

signal from the D-ROI is plausible when compared to the M-AS. It was not possible

to use the T-ROI from the clinical data-sets since there was no clear tumour in the

reconstructed images and in addition for the true-beam acquisition, the tumour was

not in every projection image.
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Figure 3.7: Respiratory traces obtained from the Varian OBI imaging system acquisitions
(simulations 1-2). Top shows the comparison between the tumour SI motion
signal and the two T-ROIs (15mm and 30mm) respectively. Bottom shows the
comparison between the D-ROI signal and the M-AS signal relative to the tu-
mour SI motion signal

3.3 Results

Figure 3.7 shows the results obtained for simulations 1-2, with the 3D-CBCT acqui-

sitions on the OBI imaging system. The CC between the T-ROIs (15mm and 30mm)

and the tumour SI motion were 0.911 and 0.890 respectively, while the comparison

of the D-ROI signal to the tumour SI motion yielded a CC of 0.810. The CC be-

tween AS and tumour SI and CC between M-AS and tumour SI were 0.573 and

0.737 respectively. Simulations 1 and 2 are exactly the same with the exception of

the tumour sizes, so therefore the results for the D-ROI and AS/M-AS signals were

the same for both simulations. This was also the case for simulations 4-5.

Results obtained for simulations 4-5 with the 3D-CBCT true-beam imaging
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Figure 3.8: Respiratory traces obtained from the Varian true-beam imaging system acqui-
sitions (simulations 4-5). Top shows the comparison between the SI tumour
motion signal and the two T-ROIs (15mm and 30mm) respectively. Bottom
shows the comparison between the tumour SI motion, the D-ROI signal and
the M-AS signal.

system acquisitions are shown in figure 3.8. The CC comparison between the tu-

mour SI motion and the T-ROIs (15mm and 30mm) were 0.957 and 0.977 respec-

tively, while for the diaphragm, the AS, M-AS and the D-ROI had a CC of 0.890,

0.893 and 0.898 respectively when compared to the tumour SI motion.

Results for the 4D-CBCT acquisitions from both the true-beam imaging sys-

tem and the OBI imaging system are shown in figure 3.9. As previously mentioned,

for these acquisitions the diaphragm was not present in the FOV of the CBCT pro-

jections. CC of 0.045 and 0.065 were obtained for the AS and M-AS respectively,

while for the T-ROI a CC of 0.880 was obtained. Similarly for the true-beam acqui-

sition (simulation 6), a CC of 0.009 and 0.142 were obtained for the AS and M-AS

respectively when compared to the tumour SI motion signal, while for the T-ROI
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a CC of 0.879 was obtained. All the correlation results for all the simulations are

illustrated in table 3.2.

Figure 3.10 shows the sagittal slices from the end-exhale (EE) and end-inhale

(EI) images from the 4D-CBCT reconstruction, obtained using the SI tumour mo-

tion signal, the T-ROI signal and the M-AS signal for simulation 3. Figure 3.11

shows similar results for simulation 6. Line profiles through the tumour are also

shown in figures 3.10 and 3.11. The binRMSD for simulation 3 was 0.195 and 0.487

for the T-ROI and M-AS respectively, while for simulation 6 the binRMSD was 0.141

and 0.397 for the T-ROI and the M-AS respectively.

Respiratory signals obtained from the clinical CBCT projections from 3 differ-

ent acquisitions are shown in figure 3.12. For patient 1 a CC of 0.710 was obtained

between the D-ROI and the M-AS. For patient 2 (acquisition 1) a CC of 0.45, 0.841

and 0.860 were obtained for the AS, M-AS and the D-ROI when compared to the

manually extracted signal respectively. While for patient 2 (Acquisition 2) a CC

of 0.62, 0.840 and 0.740 were obtained for the AS, M-AS and the D-ROI when

compared to the manually extracted signal respectively. Results from the clinical

data-sets are also shown in table 3.2
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Figure 3.9: Respiratory traces obtained for the simulations when the diaphragm was ab-
sent in the FOV of the projection data for the 4D-CBCT acquisitions. Shown
is the comparison of the tumour SI motion, the T-ROI signal and the M-AS
signal. Top the resulting traces obtained from simulation 3. Bottom, shows the
respiratory traces from simulation 6.

Table 3.2: Correlation coefficients obtained from the simulated and the clinical data-sets.
For the simulations, the signals from the T-ROI, D-ROI, AS, and the M-AS were
compared to the tumour SI motion signal, while for the clinical data the AS, M-
AS and the D-ROI were compared to the manually extracted diaphragm peak
position signal.

T-ROI
AS M-AS D-ROI 15mm 30mm

Varian OBI ∗

3D-CBCT 0.573 0.737 0.810 0.911 0.890
4D-CBCT 0.045 0.065 0.880

Varian true-Beam∗
3D-CBCT 0.890 0.898 0.898 0.957 0.977
4D-CBCT 0.009 0.142 0.879

Patient 2∗∗
Acquisition 1 0.45 0.841 0.860
Acquisition 2 0.62 0.840 0.740

∗ Simulations.
∗∗ Clinical Data.
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Figure 3.10: Sagittal planes of the images reconstructed from respiratory sorted phase bins
using the tumour SI motion, T-ROI, and the M-AS signals respectively from
simulation 3. Shown in the top row are the sagittal EI images, while the
bottom row shows the EE images. The last column shows the line profile
through the tumour for each corresponding signal used to bin the projections.

3.4 Discussion

Figure 3.5 indicates that our proposed method is not sensitive to the actual size used

for the sliding window, as long as it is not too short compared to the breathing cycle

nor too long compared to the detector motion. This suggests that a fixed value can

be used for all or most patients as used here, although it would be possible to update

the window size after a first pass.

The respiratory signals extracted for all the simulations presented in this study

using our proposed method showed better correlation with the tumour SI motion

when compared to AS and M-AS as illustrated by the results in table 3.2. We only

compared our results to the tumour SI motion because the two input parameters

(diaphragm and AP translation) that define the motion in the XCAT phantom were
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Figure 3.11: Sagittal planes of the images reconstructed from respiratory sorted phase bins
using the tumour SI motion, T-ROI, and the M-AS signals respectively from
simulation 6. Shown in the top row are the sagittal EI images, while the
bottom row shows the EE images. The last column shows the line profile
through the tumour for each corresponding signal used to bin the projections.

completely correlated. Therefore, the same result would be obtained for the tumour

SI motion and the tumour AP motion from the XCAT. Overall the highest CC of

0.977 was obtained for the Varian true-beam acquisition (simulation 4) with the

30mm tumour, while for the M-AS the highest CC was 0.893 for the same simula-

tion when compared to the tumour SI motion. The lowest CC for our method was

0.810 for the OBI acquisition (simulation 1), while for the M-AS method the lowest

correlation coefficient was 0.065 for the 4D-CBCT OBI acquisition (simulation 3).

Visual inspection of the traces confirmed the correlation results. Respiratory signals

obtained from the T-ROIs comparison to the tumour SI motion signals as shown at

the top of figures 3.7 and 3.8 indicated that our method is invariant to tumour sizes

when applied to a T-ROI.
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Figure 3.12: Respiratory signals obtained from the clinical CBCT projections from 3 differ-
ent acquisitions. Top shows the D-ROI and the M-AS from patient 1 acquired
on a Varian OBI imaging system. Middle and bottom, shows the manually ex-
tracted diaphragm signal relative to the D-ROI and the M-AS from patient 2,
The CBCT projections were acquired on different dates on a Varian true-beam
imaging system.

As previously observed in the literature [106], the AS method produced poor

results when relying on poorer contrast features such as the tumour, as other parts

of the anatomy can obstruct their view in some projections. Our results suggest that

our method is robust to changes in FOV, making the method suitable independent

of what region of the thorax is being treated. The proposed method does not require

the diaphragm in the FOV. However, it does require a structure that is moving with

the patient’s respiration.
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It is worth noting that the extracted signal is not expected to be stable over

multiple fractions since we can have changes in the anatomy and variability in the

patient’s breathing from one fraction to another. In addition if the ROI is placed in

a different location this could potentially impact the result obtained.

The 4D-CBCT reconstructed images obtained from using the SI tumour signal

and the T-ROI signal are of similar visual quality, and show a similar amount of

motion for the tumour. However, the reconstruction images obtained from using

the M-AS signal appear blurrier due to the incorrect binning of some projections,

and the tumour motion appears reduced, as expected from the observed CCs. The

profile comparisons shown in figures 3.10 and 3.11 also illustrate the difference in

image quality between the two sets of reconstructions for both imaging systems

respectively. Similar trends were observed for both the true-beam and the OBI sim-

ulations, however the 4D-CBCT reconstructions from the true-beam showed poorer

image quality and profiles when compared to the OBI reconstruction. A potential

reason could be that more projections were acquired for the OBI 4D-CBCT sim-

ulations (2700 projections for OBI, 1008 projections for the true-beam 4D-CBCT

simulations), thus angular under-sampling can be seen in the reconstructed images.

Overall the obtained signal obtained with the method proposed can be used for 4D-

CBCT phase sorting as demonstrated in figures 3.10 and 3.11, and in addition, it

should give a reliable amplitude that can be used for either amplitude sorting of

4D-CBCT or amplitude-based motion models.

Results obtained from patient 1 are limited as there was no manually extracted

signal present for comparison and the acquired data was not suitable for 4D- CBCT.
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Nevertheless, we compared the signals extracted from the D-ROI and the M-AS,

which yielded a CC of 0.71, this illustrates a degree of consistency between the two

different methods. For both acquisitions from patient 2, reasonable results were ob-

tained for the M-AS method and our proposed method when compared to the man-

ually extracted signal. In acquisition 1, the proposed method performed marginally

better than the M-AS, with the D-ROI obtaining a CC of 0.860 while the M-AS

obtained a CC 0.841. For acquisition 2 the M-AS performed better with a CC of

0.840 while the D-ROI obtained a CC of 0.740.

When performing the ROI enhancement method, it is difficult to completely

omit the influence of structures moving across the ROI projection due to the in-

trinsic nature of the CBCT projection data. There are two issues that cause other

structures to be present in the enhanced projections. Firstly, truncated projections

lead to parts of the anatomy to be missing from the reconstruction, and hence they

are missing from the forward projections and consequently present in the enhanced

ROI projections. Truncation is an issue for the CBCT acquired on the OBI since the

centre of rotation of the CBCT projection is positioned at the centre of the tumour.

For the true-beam acquisitions, the centre of rotation is positioned relatively close to

the centre of the body, thus the full anatomy is in the reconstructed image. The cur-

rent method described in section 3.2.1 is simple but there were still some structures

remaining. Secondly, the ROI enhancement method assumes that all of the anatomy

outside the ROI does not move, which is not the case. When structures outside the

ROI move they will appear blurred in the non-ROI image. The non-ROI projections

are generated from the static non-ROI image, so the structures do not move in the
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non-ROI projections. This causes a mismatch between the non-ROI projections and

original projections, and leads to artifacts in the difference projections. The effect of

the artifacts is mitigated by masking the difference projections to the ROI, but when

moving structures pass directly in-front-of or behind the ROI they can still impact

the extracted signal. While this indicates that the enhancement method could be

further improved, our current evaluation suggests that it is largely sufficient for pro-

ducing input data for PCA. It would be possible to improve the ROI enhancement

technique. In particular, the truncation problem could potentially be addressed by

performing an iterative reconstruction instead of the FDK reconstruction technique

currently used. However iterative reconstructions increase computation time, hence

affecting the clinical applicability of the method.

The proposed method fails when the sliding window technique was excluded

in the method. Both the proposed methods in this paper and the LPCA method [68]

utilise PCA in a sliding window manner. However there are significant differences

between the two approaches. Firstly, the pre-processing step for the LPCA method

is primarily dependent on the AS technique and a method of subtracting the back-

ground from the AS image. In contrast, the method proposed in this paper is based

on using an enhanced version of the actual projection data directly. Our proposed

method also provides the user with more flexibility in specifying what region of

the body to focus on to extract a respiratory signal. A further difference between

the methods is that the LPCA method relies on computing the first 5 PCs, and then

chooses the “best” PC based on the PC of the previous window. In our case, we

only compute the 1st PC which represents the largest variation in the pre-processed
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data. Comparing our method to the LPCA technique is beyond the scope of this

study and remains for a future study.

A potential limitation of the proposed method in the study arises when select-

ing the ROI. The ROI selection is limited to the area of the reconstructed image

whereby the ROI would be present in all the forward projections. For the OBI sim-

ulations, the centre of rotation is positioned at the tumour location, thus this region

would be present in all projections. In our current approach, the ROIs have been

selected manually, however future work would include using the PTV (with expan-

sion in the SI direction, to cover the range of the tumour movement). However for

the true-beam acquisitions, where there is a larger detector offset and the centre of

rotation of the projections is positioned close to the centre of the patient, this limits

the selected ROI to be close to the centre of the patient. This was the case for the

two acquisitions for patient 2. Nevertheless, we were able to obtain a meaningful

signal when compared to the manually extracted signal since part of the diaphragm

was close to the centre of rotation. This could be accounted for by generating two

signals from different lungs respectively depending on which lung(s) are visible in

the FOV, and then using a combination of both signals. The current computational

time of the method proposed is approx 30min, however this can be improved upon

by using a more dedicated hardware such as a Graphic Processing Unit (GPU). In

addition, it is not possible to apply the proposed method “on the fly” during CBCT

projection acquisition since the reconstructed volume is required for our approach,

whereas for technique such as the AS method, it is possible to extract the respiratory

signal “on the fly”.
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3.5 Conclusion

In this work we have introduced a novel method of extracting respiratory motion

from CBCT projection data, with the primary aim of extracting a signal that is bet-

ter correlated to the internal motion, and hence suitable for building motion models

(see chapter 4) as well as performing 4D-CBCT reconstructions. The method allows

selecting a ROI for generating the signal, allowing targeting a specific region such

as the diaphragm or a tumour. We have shown on simulated data that our method

can produce a signal from both the diaphragm and the tumour that is strongly cor-

related with the tumour SI motion, and that the method is robust to tumour size and

location. We have also demonstrated that the method can be successfully applied to

real clinical data.



Chapter 4

Deriving a respiratory motion model

from CBCT projection data
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4.1 Aim of this chapter

Respiratory induced organ motion is one of the primary sources of tumour localisa-

tion uncertainty, which can cause error and uncertainty during radiotherapy. 4D-CT

can be used to measure motion such that it can be taken into account during treat-

ment planning, but the magnitude and pattern of breathing can vary from day to

day, thus the 4D-CT may not give a good representation of the motion at the time of

treatment. 4D-CBCT can be used to monitor motion just prior to treatment deliv-

ery, but this requires a longer acquisition (compared to 3D-CBCT) and hence more

dose to the patient. In addition, 4D-CBCT can suffer from poor image quality, and

therefore may not give a good representation of the true motion and its variabil-

ity. Patient specific motion models can potentially provide accurate estimates of the

respiratory motion, including modelling breath to breath variability. McClelland et

al. [97] proposed a framework unifying DIR and motion modelling into a single op-

timisation. This framework can fit a motion model directly to ‘unsorted’ dynamic

data, e.g. multi-slice data (from CT or MR) or projection data (from CBCT). Previ-

ously published results demonstrated good performance for CT and MR slice data.

Here we adapt the framework to work with CBCT projection data, and investigate

the optimal parameters to use and thoroughly evaluated the results (using phantom

data)

The method described in McClelland et al. [97] enables the model to be fitted

directly to the frames of the CBCT projections, and does not require the data to be

first sorted into full 3D volumes. The model can also account for breath-to-breath

variability, therefore this approach does not assume reproducible breathing. Since
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the model is fitted to all of the frames of the projection image data simultaneously,

the full 3D motion can be estimated. MCIR can also be performed based on the es-

timated motion. Finally, no prior model estimate is required, therefore, the obtained

model is only as a result of the CBCT data available on the day of treatment.

It is very difficult to evaluate the motion model accuracy using real patient

data as the true motion is unknown. Therefore, in this chapter an anthropomorphic

software phantom (XCAT) [102] was used to simulate CBCT projection data and

evaluate the method as a proof-of-concept. The next chapter details some amend-

ments required for the method to be applicable to real patient data and provides a

proof-of-concept.

4.2 Methodology

In this section we discuss the generalized framework unifying image registration

and respiratory motion models proposed by McClelland et al. [97], and the adjust-

ments required for it to be applicable for CBCT data.

As discussed previously in section 2.7, a correspondence model is typically

used to describe the relationship between surrogate signals and the internal motion

of the anatomy. Once the model coefficients are estimated, the model itself can be

used to provide a DVF at any time point using surrogate signals acquired during

image acquisition. A typical example of a correspondence model is illustrated in

figure 2.6. Ideally, 3D dynamic images would be acquired along with a surrogate

signal simultaneously. In that case, registration can be used to determine the geo-

metric transformation to warp the reference-static image I0 to be aligned with the
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dynamic image It . The reference static image can be one of the dynamic images or a

breath-hold image. The static image is registered to the dynamic images so that the

static image is deformed to appear like the dynamic images. Then a correspondence

model is fitted between the transformations obtained from each time point and the

corresponding surrogate signals.

However, due to the limitations of scanner technology, it is difficult or even

impossible to acquire 3D dynamic image data at sufficient time resolution to deter-

mine the motion of interest. In particular, the acquisition of a complete set of CBCT

projections requires approximately 60 seconds for 3D-CBCT, since the system must

perform one complete turn around the patient to cover all projection angles.

The proposed framework in [97] allows the model to be fitted to partial image

data such as CBCT projections and it does not require any sorting of the projections.

The framework directly optimises the model parameters on all the dynamic projec-

tions simultaneously, it transforms a reference static image I0 such that the projec-

tions of the deformed images match the measured projections. The cost function

Ctotal to be minimised on all the dynamic projections in order to find the optimum

parameters is given by equation :

Ctotal =
Ni

∑
t=1

Ct (4.1)

Ct(Pt , I0,Mt) = Sim(Pt ,At(T (I0,Mt)))+Con(Mt) (4.2)
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Mt = R1st,1 +R2st,2 +R3 (4.3)

where Ni is the number of projections. Pt is the measured projection, At is the

projection operator, Mt is the motion parameter which is a Free Form Deformation

(FFD) with b-splines, T (I0,Mt) is the reference static image I0 deformed with the

motion parameters Mt . At(T (I0,Mt) denotes the simulated projection at time t. The

FFD is a function of the model parameters R and the surrogate at time t, where we

used a linear model of two surrogate signals eq. 4.3. Finally, the Sim and Con are

similarity and constraint functions respectively.

We can use a gradient based technique to find the minimum of the cost function.

Calculating the gradient of the cost function, Ctotal , with respect to the model pa-

rameters R:

∂Ctotal

∂R
=

Ni

∑
t=1

∂Ct

∂R
(4.4)

The chain rule can be used to calculate the gradient for each projection, ∂Ct
∂R

∂Ct

∂R
=

∂Mt

∂R
∂Ct

∂Mt
(4.5)

This means that to optimise the model parameters on the projection data di-

rectly, the gradient of the cost function with respect to the motion parameters can

be calculated from the gradient of the similarity measure and the constraint term

with respect to Mt , and the gradient of the motion Mt with respect to the model

parameters R. For the model of eq. 4.3:
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∂Mt

∂R1
= st,1,

∂Mt

∂R2
= st,2,

∂Mt

∂R3
= 1 (4.6)

To compute the gradient of cost function with respect to motion parameters,

∂Ct
∂Mt

, we note that the similarity Sim is defined in the space of the partial image data

but the transformation parameterized by Mt is defined in the space of the full images.

Therefore, when calculating, ∂Ct
∂Mt

, it is necessary to transform the gradient of Sim

from partial image space into full image space. This is done using the adjoint of

the image acquisition function A∗t i.e. the adjoint of the forward projection operator,

which is the back projection operator. Quoting from [97]:

∂Ct

∂Mt
=

∂Sim
∂Mt

+
∂Con
∂Mt

(4.7)

∂Sim
∂Mt

=
∂ ITt

∂Mt

∂Sim
∂ ITt

(4.8)

∂Sim
∂ ITt

= A∗t

(
∂Sim
∂PAt

)
(4.9)

where ITt = T (I0,Mt), and PAt = At(ITt ).
∂Sim
∂PAt

is the gradient of the similarity mea-

sure with respect to the simulated partial image data, ∂Sim
∂ ITt

is the gradient of the

similarity measure with respect to the transformed reference state image, and ∂ ITt
∂Mt

is the gradient of the transformed reference-state image with respect to the mo-

tion parameters, e.g. for B-spline transformations this is the spatial gradient of the

reference-state image transformed by Mt and convolved with the B-spline kernel.
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[97].

Theoretically the framework can work with any type of data, providing At and

A∗t are known. The initial implementation used for the framework only worked

with volume and slice data (where At was a point-spread-function of the slice data).

That initial implementation was extended to work with CBCT projection data by a

Masters student from CREATIS. OpenRTK was used to implement the forward and

back-projection [107]. However, the different orientations used by the motion mod-

elling framework (which was based on Nifty-Reg and used nifti images so assumed

the standard nifti RAS orientation) and OpenRTK (which uses a scanner based coor-

dinate system [108]) caused complications meaning the code did not work correctly

when using a multi-resolution approach.

Hereafter are the contributions of the author of this thesis. The coordinate

system complication was addressed by consistently converting between Nifty-Reg

and OpenRTK coordinate systems. In order to do this, we assumed that the pa-

tient was always scanned in a supine position (which lung RT patients are) this

meant the scanner based coordinate system was equivalent to LSA patient based

coordinate system. In addition the initial work of the Masters student only included

limited validation using an existing motion model from a 4D-CT. Here we have

performed a thorough validation using the XCAT phantom including tuning of the

hyper-parameters.

The ability to use the motion model for MCIR was also implemented based

on the FDK algorithm. The estimated motion from the model was used to warp

the back-projection step of the FDK before performing a weighted average of the
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deformed back projections to obtain a MCIR. Each individual back-projection was

deformed using a different DVF. When performing the MCIR the dynamic data

must be deformed into the space of I0. The inverse of the estimated transformations

can be used. However, this can be computationally expensive. Instead the adjoint

function of the transformation is used i.e. “push-interpolation” instead of the usual

“pull-interpolation”. This can potentially lead to voxels with no intensity informa-

tion (i.e. “holes”) in the deformed image, however if the holes are not present in the

same location for all dynamic images, the holes will not affect the final MCIR. A

visual representation of the push/pull interpolation is shown in figure 4.1.

Figure 4.1: Push/Pull interpolation. (A) push-interpolation, here holes can occur in the
deformed image, marked in blue. (B) pull-interpolation mitigates this problem
since intensity values at locations that do not coincide with pixel coordinates
can be obtained from the original image using interpolation

.

The framework was implemented using the open source NiftyReg software.

This uses a B-spline transformation model and CG optimisation in a multi-

resolution approach. For all the experiments performed SSD as been used as the

similarity measure, and a linear correspondence model with two surrogate signals

relating the motion to both the value and temporal derivative of the surrogate signal

was used. This correspondence model has been popular in the literature due to its
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simplicity and ability to model both intra- and inter-cycle variations [53, 109, 110].

It is worth noting that the reference I0 volume does not represent the average po-

sition of the anatomy during acquisition, therefore an extra constant offset model

parameter was included in the linear model to account for the difference between

the I0 and the average position of the anatomy. This is achieved by including an

extra surrogate signal with a constant value of 1 for every time point. Hence, when

the motion parameters are computed from the linear combination of the model pa-

rameters weighted by the surrogate signal for every time point, the constant signal

enables the offset between the reference volume I0 and the average position to be

accounted for. If the offset term is not included, then the reference image position

has to corresponds to the (0,0) value of the breathing signal. However the reference

image that was used in this chapter does not correspond to the average position,

so therefore the constant term was included. For the experiments in this study, the

GT motion and reference-state image are known, so the results of the motion model

fitting and the MCIR can be quantitatively assessed.

4.2.1 Hyper-parameter Optimisation

Here we discuss the hyper-parameters that were tuned in order to obtain a model

with optimal performance. We define the optimum performance as the ability of

the respiratory correspondence model generated to estimate the motion of the pa-

tient while also taking into account computational efficiency such as computational

time. The 4 main hyper-parameters that were investigated were: Control Point

Grid (CPG) spacing, the number of respiratory correspondence model fitting itera-
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tions, number of the spatial multi-resolution levels, and the numbers of projections

required to fit the model. Below is a brief introduction to each of these hyper-

parameters and their effect on the resulting model fitting.

The balance between accuracy and robustness is partly controlled by the CPG

spacing for the B-Spline basis. In order to be able to model a localised deformation

a fine CPG spacing is typically used. However, to model a global and smooth

deformation a coarse control point spacing would be beneficial.

The spatial multi-resolution can be described as a pyramid set of successively

smoothed and down-sampled images of the original image and the transformation.

The model fitting is initially performed at the coarsest level. Once the maximum

number of iterations have been used (or once there is no more improvement), the

next level of the pyramid is initiated, finishing with the original (finest) resolution

level. In addition, when moving to a finer resolution level the transformation needs

to be up-sampled, so that the CPG spacing relative to the voxel size is the same

at each level. Usually the amount of data decreases two-fold in each dimension at

each successive step. Performing the model fitting process at multiple scales ensures

that large scale features are aligned with the finer structures being registered during

later levels. This approach aims to avoid that the optimisation is trapped in a local

minimum. It can also help to speed up the computational time by reducing the

amount of data used in earlier iterations.

Another parameter is the maximum number of iterations used at every level

of the pyramid. Lower number of iterations can lead to under-fitting, while higher

iteration number can increase the computational time. We will therefore investigate
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the optimum balance between the number of iterations and an adequate estimate

from the model.

CBCT uses approximately between 630 and 1008 projections (true-beam) de-

pending on the type of acquisition, we hypothesise that we may be able to still fit

an accurate model with substantially fewer projections. Therefore, we investigate if

reducing the number of projections still results in a reasonable fit. We disregarded

every other projection, etc. retaining 1/2, 1/3, etc.. of the total projections. This

was to retain a consistent angular sampling so that the motion was sampled from

different directions as well as over different breath cycles (thus sampling breath-to-

breath variability.)

4.3 Experiments

In this section we describe the experiments used to tune and evaluate our proposed

method. Firstly the optimum hyper-parameters to fit the model and the choice of

surrogate signal to use were investigated. Secondly the proposed method was tested

on different simulations based on clinical acquisition scenarios. Finally using the

motion estimated from the simulations MCIRs were performed and compared to

other reconstruction methods.

4.3.1 Simulations

The accuracy of the developed method in this study was evaluated with different

patient scenarios and scanning parameters using datasets from the XCAT computer-

ized phantom [102]. We used XCAT to simulate attenuation images of the thoracic

cavity of the human body as previously discussed in section 3.2.4.1 .
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4.3.1.1 Experimental setup

The XCAT phantom software can additionally output a DVF defining the motion

of each voxel in the phantom. The XCAT DVFs (which we will refer to as XD-

VFs) are similar to DVFs calculated with DIR techniques, with the very important

discrepancy being that the XDVFs are determined directly from the motion of the

XCAT NURBS surfaces, and do not rely on any type of DIR. Consequently, the

XDVF can be used to determine the location and deformation of every voxel in the

phantom throughout respiration without the uncertainty introduced by using DIR-

derived DVFs.

Though XCAT provides reproducible and realistic simulated motion, it has its

limitations. For instance, XCAT can generate inconsistent and non-invertible defor-

mations whereby structures can move through each other. Eiben et al. [25] proposed

a post processing technique for the XCAT DVF, that corrects and inverts the XCAT-

DVFs while preserving sliding motion between organs. We have incorporated that

technique into our approach in order to obtain modified XDVFs (M-XDVFs) suit-

able for validation.

We briefly summarise the approach here. There are 3 main steps involved in the

post processing. Firstly the XCAT volume with a tumour is generated while XDVFs

for the entire time series are also generated. Secondly the XDVFs are processed

for consistency and inverted. They were smoothed such that structures no longer

moved through each other, but in such a way as to preserve sliding motion along the

chest wall. Finally, a post-processed XCAT time series is obtained by deforming

the reference XCAT volume with a tumour using the M-XDVFs. An illustration of
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the post-processing steps is shown in figure 4.2.

Figure 4.2: An illustration of the XDVFs post processing method that corrects and inverts
the XCAT-DVFs while preserving sliding motion between organs.

In this study, the XCAT phantom motion simulations were based on respiratory

signals extracted from cine MRI data from a lung cancer patient. The respiratory

signals were acquired from a local region of the diaphragm and the skin surface sec-

tions respectively (i.e. diaphragm and skin-AP signals). The phantom datasets and

the experiments performed with them mimicked the real datasets and experiments

as closely as possible. The volumes simulated from the XCAT had 256×256×180

voxels with a spatial resolution of 1.757×1.757×2.0mm3. The number of volumes

and their temporal resolution varied based on the CBCT system and the type of scan

being simulated (see table 4.1).

CBCT projections were then simulated from the post-processed 4D-XCAT vol-

umes illustrated in figure 4.2 using openRTK [104]. The CBCT geometry and the
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simulation parameters were based on real CBCT scans and the patient data avail-

able for this study. We simulated CBCT projections based on the true-beam and

on-board Imaging (OBI) systems (both from Varian Medical Systems, Palo Alto,

CA) respectively. The detector for both systems contains 1024×768 pixels of size

0.38×0.38mm2. This was scaled down by a factor of 4 in each direction to reduce

computational time, giving 256× 192 pixels of size 1.55× 1.55mm2. Different

types of CBCT acquisitions were simulated in order to replicate different clinical

scenarios, as detailed in table 4.1. The acquisition parameters for the CBCT were:

Source to iso-centre distance of 1000mm, source to detector distance of 1536mm.

Simulation 1 was based on the OBI system, whereas simulations 2-5 were based

on the true-beam configuration. As previously described in section 3.2.4.1, at our

clinical institution, acquisitions using the OBI system are typically centred on the

tumour (at the treatment iso-centre), and therefore the projection data is often trun-

cated and some of the anatomy is outside the FOV of the reconstruction. However,

acquisitions using the true-beam system are typically centred close to the centre of

the patient, and therefore the reconstructions include all of the patient’s anatomy.

Table 4.1: Parameters for the XCAT simulations used in this chapter.

Tumour No.of Acquisition Acquisition Tumour
size(mm) Projections Duration (s) type Position

Simulation 1 20 683 60 3D-CBCT Middle ∗∗

Simulation 2 25 1008 144 4D-CBCT Upper ∗∗

Simulation 3 15 1008 144 4D-CBCT Lower ∗

Simulation 4 25 1008 144 4D-CBCT Upper ∗

Simulation 5 30 1008 144 4D-CBCT Lower ∗∗

∗ Left lung.
∗∗ Right lung.
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Simulation 1 was based on 3D-CBCT scan with a duration of 60 seconds.

Simulations 2-5 were all based on 4D-CBCT acquisition with a scan duration of

144 seconds. In addition, simulation 1 had a tumour of size 20mm diameter in

the mid-lung position, simulations 2 and 4 had tumours in the upper-lung of size

25mm diameter, whereas simulations 3 and 5 had the tumour positioned in the lower

lobe of the lung with 15mm and 30mm diameter tumour sizes respectively. The

simulations performed in this study are summarised in table 4.1, and the tumour

positions relative to the body for all simulations are also shown in figure 4.3. We

have chosen these simulations to analyse the different effects that the motion model

has for different regions of the lung, hence why we have positioned the tumour

in different parts of the lungs, similarly we have used different tumour sizes for

each simulation in order to investigate how the size of the tumour in each region is

affected by the motion estimated by the model.

The simulation parameters presented in table 4.1 were based on the acquisition

parameters from our clinical institution. At the start of this project only 3D OBI

data were acquired at our clinical institution, hence why the hyper parameters of

the model were optimised based on the OBI configuration (simulation 1). Acquisi-

tions from the true-beam machine were later acquired on the clinical system, as a

result simulations 2-5 were based on true-beam acquisition. Additionally we have

simulated 4D-CBCT acquisitions for simulations 2-5 in order to fairly compare our

proposed method to the standard respiratory correlated 4D-CBCT images.

The phantom data-set from simulation 1 was used to optimise the hyper param-

eters of the model fitting as described in section 4.2.1. We used the GT respiratory
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Figure 4.3: The coronal and sagittal slices of the XCAT volumes showing the relative po-
sition of the tumour for each simulation.

signals (the two input parameters to define the motion: the translation of the di-

aphragm and the anterior-posterior translation of the thoracic region as previously

described in section 3.2.4.1) as the surrogate signals. Here we optimised the CPG

spacing, the number of spatial multi-resolution levels, the number of model fitting

iterations, and the number of projections required to fit the model respectively. For

the CPG spacing optimisation the same spacing was used in all directions. We in-
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vestigated CPG spacings of: 2, 5, 8, 10, and 13 voxels. We initialised the hyper

parameters with the default setting of 3 multi-resolution levels with the maximum

number of iterations to fit the model to 300 per level, while varying the CPG spac-

ing. The results for the model while tuning the hyper parameters for simulation

1 were evaluated using the Deformation Field Error (DFE) (see section 4.3.2) be-

tween the model estimated DVF and the M-XDVF. The mean DFE was computed

from each time point and these were averaged over all time points. A body mask

was also used when calculating the DFE in order to ignore voxels outside the body.

Based on the results obtained, an optimum value for the CPG spacing was chosen

and this value was used henceforth for future experiments. Furthermore the results

from simulations 2-5 were evaluated using DFE, DICE coefficient, and the Centre

of Mass Distance (COMD). Further information on the evaluation metrics is pro-

vided in section 4.3.2.

5 different multi resolution levels (1 level, 2 levels, ..., 5 levels) were investi-

gated while fixing the CPG spacing (based on the value found in the previous exper-

iment) and the maximum number of iterations to a constant value to fit the model

(300 max fit iterations). The optimum number of levels was determined based on

the mean DFE. Based on this the optimum value was used henceforth.

Using the default number of iterations to fit the model (300 iterations) allowed

the fitting to converge, i.e. it stopped before 300 iterations were used, while 50

iterations caused the fitting to stop early, but preliminary experiments indicated most

of the improvement in the cost function occurred during the first 50 iterations, so

we hypothesised that stopping after 50 iterations would reduce the computation
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time but only have a minor impact on the results. Therefore we investigated setting

the maximum number of fitting iterations to 50 and to 300. The total number of

projections used to fit the model was varied from using the full data to 1/10 (1, 1/2,

..., 1/10) of the datasets. The mean DFE and the computational time was used to

determine the optimum values required to fit a motion model.

We investigated the effect of the choice of surrogate signal on the model es-

timated motion. The method described in section 3.2.6 was used to generate a

surrogate signal from the D-ROI and the T-ROI respectively for simulation 1. A

correspondence model was built using the GT signal, the D-ROI signal and the

T-ROI signal respectively as surrogates to drive the model fitting, while using the

optimum parameters as discussed above.

From the optimum hyper parameters obtained for the model based on simu-

lation 1 and using the optimum surrogate signal, we used these parameters on the

remaining simulations to produce a respiratory motion model estimate. For simu-

lations 2-5, the mean DFE between the M-XDVF and the correspondence model

estimate was evaluated, the COMD (see section 4.3.2) between the GT tumour vol-

ume and the model estimated tumour volume was also calculated. In addition the

DICE coefficient was obtained for the tumour in the GT volumes and the model

estimated volumes.

MCIR was obtained for simulations 2-5. The image quality of the MCIR tests

if the accuracy of the model is sufficient to compensate for the motion during the ac-

quisition and hence improve the quality of the reconstructed image. The MCIR was

compared to different volumes: (1) IstaticRecon, this is a reconstruction from the sim-
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ulated projections through a single static XCAT volume (at the reference position)

and it is used so as to isolate and study the effects of motion on the reconstructed

image (by completely removing the effects of motion). (2) a MCIR with the known

GT motion used to produce the volumes initially. (3) a standard FDK reconstruc-

tion (no motion model applied). (4) a 4D-CBCT reconstruction. The comparisons

between the different volumes were performed using the Root Mean Squared Er-

ror (RMSE) and PSNR, these terms are described in section 4.3.2. In addition line

profiles through important structures such as the tumour and diaphragm were also

assessed. Image quality was also evaluated qualitatively by assessing the visibility

of structures within the volume.

4.3.2 Evaluation

To assess the accuracy of the estimate from the model, we performed quantitative

and qualitative analysis using different metrics. Since the GT DVFs were available,

the results of all the phantom experiments were assessed by calculating the Dis-

placement Field Error (DFE), defined as the 3D Euclidean distance at each pixel

between the GT displacement field and the displacement field resulting from the

fitted motion model. The DFE was calculated at every pixel inside the body of the

deformed phantom for every time-point. Pixels outside the phantom were ignored

as they do not contain any image data to guide the model fitting.

A tumour volume for each time point can be simulated by using the M-XDVF

to deform a reference tumour XCAT 3D volume. In addition, the DVF obtained

from the fitted model can also be used to deform a reference tumour XCAT 3D vol-
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ume. These were converted into binary volumes. Then we can assess the ability of

the model to estimate the tumour position at each time point using 2 methods, (1)

by calculating the centroid of the tumour in each image and measuring the 3D Eu-

clidean distance between them (COMD), and, (2) calculating the DICE coefficient

between the respective tumour volumes.

COMD =
∥∥c(Y )− c(Ŷ )

∥∥ (4.10)

DICE =
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(4.11)

where Y is the GT volume of the tumour and Ŷ is the model estimated volume for

the tumour. In equation 4.10, c(Y ) and c(Ŷ ) represent the centre of mass coordinate

of volumes Y and Ŷ respectively and ‖·‖ is the Euclidean distance.

To qualitatively evaluate the ability of the fitted model to model respiratory

motion, we used a colour overlay technique. We used the GT volumes and the es-

timated volumes using the model at each time point respectively and superimposed

both images. The blue and red colour shows regions of discrepancy between the GT

volume and the volume as estimated from the fitted model and this is done at every

time point to produce a movie.

We employed different metrics to assess the quality of the MCIR resulting from

the fitted model. The Root Mean Square Error (RMSE) for two arbitrary images can

be defined as in equation 4.12. The volumes used in this study were from the XCAT

phantom where the voxel values represent the attenuation coefficient. Note that this
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has not been converted to HU.

RMSE =
1
n

√
n

∑
i=1

(Ai−Bi)2 (4.12)

where Ai is the voxel value of the IstaticRecon and Bi is the voxel value of the volume

being assessed (which is not always the MCIR volume) and n the number of voxels.

In addition, to further quantify the accuracy of the reconstructed images, we

used the PSNR defined as:

PSNR = 10Log10

(
MAX2

MSE

)
(4.13)

where MAX is maximum possible voxel value of the volume, and MSE is the mean

squared error, i.e. MSE between IstaticRecon and the volume to be assessed.

4.4 Results

4.4.1 Hyper-Parameter Optimisation

DFE results obtained for the hyper-parameter optimisation of the model are sum-

marised in figure 4.4. The mean DFEs for the different CPG spacings are shown in

table 4.2. The lowest DFE was obtained for a CPG spacing of 8 voxels, here we

obtained a mean value of 0.83 and a std of 0.44, with a maximum DFE of 2.40mm.

Figure 4.4A shows a graphical representation of the DFEs. The highest mean DFE

value was obtained when a CPG spacing of 5 voxels was used. Meanwhile when

larger CPG spacings such as (8,10,13) voxels were used lower DFE was observed.

When 10 voxels were used as the CPG spacing the DFE was slightly higher than that
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of 8 voxels, which was not expected. Nevertheless the DFE value obtained when 10

voxels was used was still considerable lower than when smaller CPG spacings were

used. These results indicated that coarser CPG spacing generally produced rela-

tively lower DFE errors when compared to using finer CPG spacing. In the case of

using no motion model the mean DFE obtained was 2.40mm with a maximum DFE

value of 7.56mm. Based on these results, we used a CPG spacing of 8 voxels for the

rest of the hyper-parameter optimisation since this produced the lowest CPG spac-

ing. Colour overlay comparing the GT image and the model estimated image for

the 2 voxels and 8 voxels CPG spacings are shown in figure 4.5. The corresponding

movie for these images over all time-points is in the attached supplementary ma-

terial. (CPG Spacing 2pixels vs 8pixels.mp4 - First row shows the coronal slice

comparison between the GT and the model estimate when using a CPG spacing of

2 voxels, while the second row shows the coronal slice comparison between the GT

and the model estimate when using a CPG spacing of 8 voxels. Based on the colour

overlay shown in the middle column, both CPG spacings were able to model the mo-

tion accurately however the colour overlay for the CPG spacing of 8 voxels showed

lower amount of mismatch between the GT and the model estimate indicating that

it performed better relative to when using a CPG of 2 voxels)

The DFEs obtained for the optimisation of the multi-resolution levels are

shown in table 4.3. 5 different numbers of resolution levels were investigated in

total. Using 1 resolution level resulted in the highest mean DFE of 1.42mm with a

std of 1.04mm and the maximum DFE of 4.63mm, while using 3 resolution levels

yielded the lowest mean DFE of 0.83mm with a std of 0.44mm and a maximum

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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A B

C(i) 

C(ii) 

Amount of projections (fraction)

Amount of projections (fraction)

Figure 4.4: Box plot of the DFEs in mm for the different hyper-parameters investigated.
(A) the DFEs obtained for the different CPG spacing, (B) the DFEs obtained
for the different spatial resolution. (C(i)) the DFEs obtained while varying
the number of projections required to fit the model using 50 iterations. (C(ii))
the DFEs obtained while varying the number of projections required to fit the
model using 300 iterations.

DFE of 2.40mm. Using 4 resolution levels yielded a mean DFE of 1.06mm with

a maximum of 3.40mm and a std of 0.66. The gradual reduction of the DFE as

the number of multi-resolution levels was increased (with the exception of using 4
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Colour Overlay CPG Spacing

A B

Figure 4.5: Coronal slice of the colour overlay images between the GT volume and the
model estimated volume at EE, the red and blue colours show regions where
there is discrepancy (also highlighted by the red arrows) between the GT vol-
ume and the model estimated volume. (A) 2 voxels CPG spacing; (B) 8 voxels
CPG spacing.

Table 4.2: DFEs (mm) for the different CPG spacings used to build the correspondence
model, while the other hyper-parameters were: multi-resolution levels = 3, max-
imum iterations to fit the model = 300.

CPG spacing (voxels) mean max min std
2 1.76 5.45 0.28 1.23
5 1.79 4.84 0.56 0.99
8 0.83 2.40 0.33 0.44

10 1.04 3.28 0.32 0.64
13 0.89 2.53 0.33 0.48

resolution levels) suggests that the optimisation did result in local minima if only

1 or 2 levels were used, but did not when 3 or more were used. Colour overlay

comparisons of the model estimate and the GT image of a coronal slice between

3 spatial resolution levels are shown in figure 4.6. The corresponding movie for

these images over all time-points can be found in the attached supplementary ma-

terial. (Res level 1 vs 3 level.mp4 - First row shows the coronal slice comparison

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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between the GT and the model estimate when the number of multi-resolution levels

was set to 1, while the second row shows the corresponding image when using 3

resolution levels. Looking at the colour overlay over all time points, both cases

were able to model the motion accurately, but less discrepancy between the GT

and the model estimate can be observed for 3 resolution levels, thus supporting the

quantitative analysis.) Figure 4.4B shows the DFEs for the different number of

spatial resolution levels used. 3 spatial resolution levels were used for subsequent

experiments since this yielded the lowest DFE value.

Table 4.3: DFEs (mm) for the different numbers of spatial resolution levels to build the
correspondence model, while the other hyper-parameters were: CPG spacing =
8 voxels, maximum iteration to fit the model = 300.

Spatial Resolution mean max min std
1 1.42 4.63 0.21 1.04
2 1.18 3.73 0.28 0.79
3 0.83 2.40 0.33 0.44
4 1.06 3.40 0.32 0.66
5 0.87 2.66 0.37 0.46

DFEs obtained when using different number of projections to fit the model are

summarised in tables 4.4 and 4.5 respectively. The maximum number of respiratory

correspondence model fitting iterations was set to 50 and 300 respectively. For the

50 iterations setting, the largest mean DFE of 2.40mm was obtained when using

1/10 of the projection data, while the lowest DFE of 1.18mm was obtained for

1/2. Using 1/4 of the data yielded a mean DFE of 1.21mm. Similarly for the 300

iterations setting, the largest DFE of 2.66mm obtained when using 1/10 of the data,

while the lowest DFE of 1.03mm was obtained for 1/2 and using 1/4 of the data

yielded a mean DFE of 1.05mm. Overall from the observation of figure 4.4 in most
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Colour Overlay Spatial Resolution

A B

Figure 4.6: Coronal slice of the colour overlay images between the GT volume and the
model estimated volume for different numbers of spatial resolution levels. The
red and blue colours show regions where there is discrepancy (also highlighted
by the red arrows) between the GT volume and the model estimated volume.
(A) using 1 spatial resolution level. (B) using 3 spatial resolution level.

cases the DFEs were lower when a higher iteration value of 300 was used compared

to using 50 iterations, however this is at a cost of increased computational time. (see

figures 4.4 and 4.5)

There is a clear trend when using 1/7 of the data or less, the accuracy de-

ceases as less data is used, with the exception of using 1/9 of the data. Currently

this result is difficult to explain and requires further investigation, nevertheless this

further highlights the importance of using more datasets to find the optimal param-

eters. We chose 1/4 with 50 iterations as the optimum parameter to use, since

the computational time was lower when using 50 iterations, and the DFE of 1/4

also yielded a relatively lower DFE. Qualitative results also support this suggest-

ing that there is not a substantial increase in the accuracy when using 50 or 300

maximum fitting iterations. Figure 4.7 shows the colour overlay comparison be-
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tween the GT image and the model estimated image when using different number

of projections to fit the model and using different maximum number of respira-

tory correspondence model fitting iterations. The corresponding movie for these

images over all time-points can be found in the attached supplementary material.

(No iteration No of projections.mp4 - Shows the comparison between the GT and

the model estimate when using 50 and 300 iterations respectively, and while using

the full data set and 1/4 of the number of projections to fit the model. From the

colour overlay images shown in the middle column, no major difference can be ob-

served when using the full data set or 1/4 of the data to fit the model, and a similar

trend was observed when using either 50 or 300 iterations to fit the model, no major

changes were observed.).

Table 4.4: DFEs (mm) for the different number of projections used to build the correspon-
dence model, while the other hyper-parameters were: CPG spacing = 8 voxels,
spatial resolution = 3 levels , maximum iterations to fit the model = 50.

Amount of data (fraction) mean max min std time (hr)
1 1.25 3.63 0.37 0.75 2.72
2 1.18 3.38 0.34 0.71 1.36
3 1.24 3.59 0.34 0.76 0.90
4 1.21 3.47 0.34 0.73 0.68
5 1.47 4.11 0.40 0.91 0.50
6 1.27 3.67 0.35 0.78 0.43
7 1.62 4.40 0.45 0.98 0.36
8 1.86 4.53 0.53 1.03 0.35
9 1.19 3.43 0.34 0.72 0.30

10 2.40 5.52 0.62 1.27 0.28

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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50 Iteration

300 Iteration

A B

C D

Figure 4.7: Coronal slice of the colour overlay image between the GT volume and the
model estimated volume. Top row shows the result when 50 maximum fit-
ting iterations were used to fit the correspondence model, while bottom row
shows the comparison when 300 maximum fitting iterations was used. (A and
C) shows the comparison obtained when using the full data to fit the model. (B
and D) shows the comparison when 1/4 of the data were used to fit the model
respectively.

Table 4.5: DFEs (mm) for the different number of projections used to build the correspon-
dence model, while the other hyper-parameters were: CPG spacing = 8 voxels,
spatial resolution = 3 levels , maximum iterations to fit the model = 300

Amount of data (fraction) mean max min std time (hr)
1 0.80 2.34 0.31 0.43 14.35
2 1.03 2.94 0.34 0.58 4.00
3 1.05 3.02 0.34 0.60 3.6
4 1.05 2.97 0.34 0.59 1.13
5 1.19 2.97 0.48 0.59 1.85
6 0.90 2.45 0.38 0.45 2.53
7 1.51 3.32 0.69 0.63 0.62
8 2.01 4.28 0.78 0.87 1.83
9 1.03 2.90 0.34 0.58 0.90

10 2.66 4.99 1.08 0.96 0.32
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4.4.2 Choice of Surrogate Signals

For the experiments in this section the optimum hyper-parameters (CPG spacing =

8 voxels, number of spatial multi-resolution levels = 3, number of iterations = 50,

number of projections to fit the model = 1/4) determined based on the results from

section 4.4.1. We evaluated the impact of using the signals developed in chapter 3

compared to the GT signals. Figure 4.8 shows the box-plot of the DFEs obtained

when the GT signal, the D-ROI signal, and the T-ROI signal were used as the sur-

rogate signal to drive the model fitting respectively. A summary of the results is

shown in table 4.6. In addition colour overlays of coronal slice images as estimated

by the model and the corresponding GT images are shown in figure 4.9 for the 3

different types of surrogate signals used. The corresponding movie for these images

over all time-points can be found in the attached supplementary material. (Surro-

gate signals comparisons.mp4 - The first row shows the coronal slice through the

GT volume, the difference colour overlay, and the estimate from the model when the

GT signal was used as surrogate to build the motion model. The second and third

rows show the corresponding images through the estimated volumes when using the

D-ROI and T-ROI signals respectively to fit the model. From observing the colour

overlay images in the middle column, the overall motion appears to have been mod-

elled reasonably well, with the diaphragm and other lung structures moving up and

down with the breathing. However, the mismatch between the GT image and the

model estimated image when using the GT signal was similar to the discrepancy

seen when using the D-ROI signal as surrogate to drive the model. In addition, the

colour overlay image between the GT image and the model estimated image for the

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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T-ROI showed larger difference between the two, for instance for some time points

large discrepancy between the GT and the estimated motion can be observed.) The

results for the COMD of the tumour volume for the signals (GT, D-ROI and T-ROI)

used to build the model relative to the GT tumour volume are shown in table 4.7.

Overall the DFE obtained using the D-ROI was lower when compared to using T-

ROI. This is not greatly surprising since the D-ROI signal had a better correlation

to the GT signal relative to the T-ROI, partly due to the fact that the diaphragm

region has a higher contrast thus it was easier for the method described in chapter

3 to identify the signal. Nevertheless the mean DFE obtained for the D-ROI and

T-ROI were still in the same range and lower than when no motion model was used,

therefore suggesting that using either signal as surrogate should produce a suitable

estimate of the motion.

Figure 4.8: Box plot of the DFEs for the different surrogate signals used to obtain a corre-
spondence model
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Table 4.6: DFEs in mm when using different surrogate signals to drive the correspondence
model.

DFE (mm) mean max min std
GT 1.21 3.47 0.34 0.73

D-ROI 1.64 4.68 0.55 0.50
T-ROI 1.74 5.46 0.50 1.00

No Model 2.40 7.56 0.08 1.83

Ground Truth

Surrogate Signal

D-ROI T-ROI
A CB

Figure 4.9: Coronal slice of the colour overlay image between the GT volume and the
model estimated volume. A colour overlay comparison obtained when the GT
signal was used as surrogate signal. B colour overlay comparison obtained
when the D-ROI signal was used as surrogate signal. C colour overlay compar-
ison obtained when the T-ROI signal was used as surrogate signal.

Table 4.7: The distance (mm) between the centroids of two volumes (GT volume and model
estimated volume). Shown are the mean and the std based on the different type
of signals used to build the model.

GT D-ROI T-ROI No Model
COMD 0.67(±0.39) 1.45(±1.29) 1.69(±1.34) 4.72(±3.74)

Using the optimum hyper parameters obtained previously and the signal from

the D-ROI as surrogate, we fitted a motion model to 4 simulations (simulations 2-5)

described in table 4.1. The resulting DFEs are shown in table 4.8. The results of the

DICE coefficients between the GT tumour volume and the model estimated tumour
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volume are shown in table 4.9. The COMD between the GT volume relative to the

case of no motion model and when a motion model was applied are shown in table

4.10.

Table 4.8: The DFEs in mm obtained when the XDVFs were compared to the model esti-
mates for different simulations

DFE (mm) Motion model No Motion Model
Simulation 2 1.97 (±0.75) 2.53 (±1.79)
Simulation 3 1.91 (±0.63) 2.53 (±1.79)
Simulation 4 1.82 (±0.85) 2.26 (±1.91)
Simulation 5 1.82 (±0.75) 2.26 (±1.91)

Table 4.9: The DICE coefficients obtained from the tumour volume when comparing the
GT volumes to the model estimated volumes for different simulations

DICE mean max min std
Simulation 2 0.98 0.99 0.93 0.01
Simulation 3 0.87 0.98 0.66 0.06
Simulation 4 0.95 0.99 0.85 0.02
Simulation 5 0.92 0.98 0.72 0.05

Table 4.10: The COMD (mm) for the case of motion model and when no motion model
was applied for simulations 2-5.

COMD (mm) Motion model No Motion model
Simulation 2 0.32(±0.27) 1.21(±1.01)
Simulation 3 1.28(±0.93) 4.75(±4.05)
Simulation 4 0.60(±0.44) 1.53(±1.58)
Simulation 5 1.67(±1.23) 4.56 (±4.17)

The mean DFE for all simulations was <2mm with simulation 2 having the

highest mean DFE of 1.97mm. Simulations 2 and 3 had the same underlying GT

motion, with the exception of different tumour sizes and the tumour being in a

different location in the lung, in addition the FOV of the projection acquisition for

simulation 3 has been lowered slightly since the tumour was in the lower part of the
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lung, these could explain the slight difference in DFE obtained between simulations

2 and 3. The mean DFEs obtained for simulations 4 and 5 were identical and both

simulations had the same underlying motion, even though the acquisition FOV has

been adjusted slightly to account for the fact that the tumour was in the lower region

of the lung for simulation 5, and the tumour in both simulations 4 and 5 had different

volumes and in different region of the lungs. In addition, the DFE values obtained

when the model was applied to simulations 2-5 were all lower than when no motion

model was applied. In all cases the COMDs were lower when a motion model was

applied. The relatively lower COMD value obtained for simulations 2 and 4 for the

motion model and no motion model cases were due to the position of the tumour

being in the upper lobe of the lung where there is less respiratory motion.

Figure 4.10 shows colour overlays of EE and EI images as estimated by the

model compared to the corresponding GT volume for simulation 2, also shown is

the relative tumour centroid position in the AP and SI directions for the GT and the

model estimated tumour volumes. Similar illustration for simulations 3, 4 and 5

are shown in figures 4.11, 4.12 and 4.13 respectively. The corresponding movie for

these images over all time-points comparing the GT motion and the model estimated

motion can be found in the attached supplementary material. (Simulation 2.mp4 -

Shows the movie of the visual comparison between the GT and the model estimate

for simulation 2. Shown are the coronal and sagittal slices for the GT and the model

estimate, and the colour overlay between the two is shown in the middle. In general,

the motion appears to have been modelled reasonably well, with the diaphragm and

other lung structures moving up and down with the breathing. However, discrepan-

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp


4.4. Results 150

cies can be seen in particular for deep breaths in the lower part of the lung where

more motion is observed. Similar finding were observed for Simulation 3.mp4,

Simulation 4.mp4, and Simulation 5.mp4)
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Figure 4.10: (A and B) shows the colour overlay of the estimated and the GT volume at
EE and EI for simulation 2. (C) comparison of the tumour centroid position
between the model and the case where no motion model was applied relative
to the GT motion for the AP and SI directions respectively
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Figure 4.11: (A and B) shows the colour overlay of the estimated and the GT volume at
EE and EI for simulation 3. (C) comparison of the tumour centroid position
between the model and the case where no motion model was applied relative
to the GT motion for the AP and SI directions respectively
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Figure 4.12: (A and B) shows the colour overlay of the estimated and the GT volume at
EE and EI for simulation 4. (C) comparison of the tumour centroid position
between the model and the case where no motion model was applied relative
to the GT motion for the AP and SI directions respectively
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Figure 4.13: (A and B) shows the colour overlay of the estimated and the GT volume at
EE and EI for simulation 5. (C) comparison of the tumour centroid position
between the model and the case where no motion model was applied relative
to the GT motion for the AP and SI directions respectively

4.4.3 Image Quality Assessment

Quantitative results of the reconstructed image quality are shown in table 4.11. The

IstaticRecon volume was compared to the GT-MCIR volume, MCIR volume, the re-
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construction with no motion model applied, and the 4D-CBCT volume respectively.

The evaluation was performed using RMSE and PSNR. Relative to the IstaticRecon

reconstruction, for all the simulations the RMSE was low for the GT-MCIR vol-

ume, and a gradual increase in RMSE value was observed for the MCIR from the

proposed method, followed by the no motion model reconstruction, and then finally

the 4D-CBCT. The PSNR was highest for the GT-MCIR volumes when compared

to the IstaticRecon, while a gradual reduction in PSNR was observed for the MCIR,

no motion model volume and the 4D-CBCT volume respectively. These results

were as expected. Since the GT-MCIR represents the ideal motion estimate, the

results are expected to match the IstaticRecon relative to the other methods, neverthe-

less the results of the MCIR were also comparable to that of the GT-MCIR, which

suggests that the mode used to perform the MCIR was sufficient to compensate

for the majority of the motion in the reconstruction. In addition, the MCIR results

have accounted for most of the impact of the motion seen in the case of no motion

model. The PSNR was higher for the no motion model case when compared to the

4D-CBCT, this could potentially be due to aliasing artifacts observed in the 4D-

CBCT reconstructions. Qualitative assessment of the image quality also supports

the quantitative results.

Qualitative image quality assessment for simulation 2 is shown in figure 4.14.

Coronal slice comparisons between the IstaticRecon reconstruction, the GT-MCIR, the

MCIR, the no motion model and the 4D-CBCT are shown in figure 4.14A, while

the corresponding images for the sagittal slice are shown in figure 4.14B. The black

arrow illustrates a region of visual discrepancies between the reconstructed images.
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Figure 4.14C shows the line profile through the diaphragm based on the red line

shown in figure 4.14A, while figure 4.14D shows the line profile through the tumour

as illustrated by the red line in figure 4.14B. Similar results for simulations 3-5 are

illustrated in figures 4.15, 4.16 and 4.17 respectively. Overall the visual observation

showed improvement in image quality of the structures within the lungs for the GT-

MCIR and the MCIR respectively, these improvements could not be observed for

the no motion model and the 4D-CBCT in most cases where motion blur or aliasing

artifacts corrupt the images, similarly the diaphragm appears sharper for the GT-

MCIR and the MCIR relative to the no motion model reconstructions and the 4D-

CBCT images. The line profiles of the diaphragm and the tumour also confirmed

the visual observation, with the line profile of the IstaticRecon, GT-MCIR, and the

MCIR showing similar sharpness at the diaphragm boundaries.

Table 4.11: The quantitative analysis obtained for the simulated data for different recon-
structions when compared to the static reconstruction volume.

Metrics GT-MCIR MCIR No Motion Model 4D-CBCT

RMSE 6.9×10−4 7.7×10−4 1.0×10−3 1.7×10−3

Simulation 2 PSNR 63.20 62.24 59.67 55.13

RMSE 6.0×10−4 7.0×10−4 1.2×10−3 2.4×10−3

Simulation 3 PSNR 63.24 62.95 57.82 52.24

RMSE 5.2×10−4 5.4×10−4 7.7×10−4 9.2×10−3

Simulation 4 PSNR 65.72 65.39 62.32 40.67

RMSE 3.9×10−4 5.3×10−4 7.6×10−4 9.2×10−4

Simulation 5 PSNR 68.03 65.47 62.29 40.71
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4.5 Discussion

The optimisation of the hyper-parameters of the model was performed in order to

find the optimum values that maintain for computational efficiency while also pro-

ducing an adequate motion estimate. The optimum parameters were found to be

(CPG spacing = 8 voxels, number of spatial multi-resolution levels = 3, maximum

number of iterations to fit the model = 50, number of projections required to fit the

model = 1/4). The criteria for choosing the hyper-parameters were based on the

DFE when the GT motion was compared to the model estimated motion and the

computational time. The results of the DFEs for all the hyper-parameters tested are

shown in figure 4.4. Overall the mean DFEs obtained based on the optimised hyper

parameters were less then when no motion model was applied.

The GT signals were used for the hyper-parameter optimisation because these

signals would give the optimum results that represent the actual motion observed

in the simulations. However, this was not feasible in a clinical setting since these

signals are not available. Thus, we investigated the use of the D-ROI and T-ROI

signals developed in chapter 3, and the results were compared to the GT signal. The

DFEs between the GT motion and the model estimated motion when the individual

surrogate signals were used are shown in table 4.6. As expected using the GT signal

yielded the lowest mean DFE, this is probably due to the GT surrogate signal being

a closer representation of the GT motion relative to the derived D-ROI and T-ROI

signals. In addition, the GT signal used to build the model consist of 2 independent

signals (i.e. diaphragm and skin-AP), whereas for the D-ROI and T-ROI the signal

and their temporal derivative was used. The mean DFE obtained for the D-ROI
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was lower than that obtained for the T-ROI. A reason for this could be down to the

method derived in chapter 3. In this case the method was able to identify the moving

structure of the diaphragm better due to its higher contrast region compared to that

of the tumour region. Nevertheless, the results obtained using the three different

surrogate signals were less than when no motion model was applied. Even though

the T-ROI resulted in the highest DFE, the result is still plausible, which suggests it

can be used to obtain an adequate motion estimate. Overall the results suggest that

either the D-ROI or the T-ROI can be used.

Reduction in motion blur (diaphragm, tumour in lower lobe and blood vessels

) can be visibly seen in all the images for our proposed MCIR technique relative

to the current standards such as the no motion reconstructed images and the 4D-

CBCT reconstruction based on the results shown in figures 4.14, 4.15, 4.16 and

4.17 respectively.

Quantitative results also support the visual assessments, as shown in table 4.11.

For all simulations the RMSE values were lower when the IStaticRecon volume was

compared with the MCIR from our proposed method, relative to the no motion

model reconstruction and a 4D-CBCT volume. Higher PSNR was obtained for our

MCIR volumes relative to the no motion model reconstruction and 4D-CBCT vol-

ume. These results suggest that the obtained MCIR through our proposed method

was able to produce better reconstructed images in terms of the image quality when

compared to the standard approaches (no motion reconstruction and 4D-CBCT).

Furthermore, the results obtained for the GT-MCIR represent the “best case sce-

nario” whereby the GT motion was used in performing the MCIR. The GT-MCIR
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serves as an indication of what the MCIR via our proposed method should look like

if we could perfectly recover the motion. As expected in all cases the GT-MCIR

outperformed our proposed MCIR and the other methods, however quantitative re-

sults obtained for the GT-MCIR volumes and the MCIR volumes were relatively

similar, visual assessments also supports this with the diaphragm, blood vessels and

tumour volume appearing significantly less blurred when compared to the no motion

reconstruction and the 4D-CBCT images. These results suggest that the proposed

approach was able to produce adequate MCIR similar to the “best case scenario”.

The intensity profiles through the diaphragm and the tumour also support the

visual observations for all simulations. The line profile of the diaphragm for all sim-

ulations showed relatively sharp edges for the IStaticRecon, the GT-MCIR, the MCIR

and in some cases for the 4D-CBCT. However, the profile from the diaphragm in

the case of no motion model reconstruction were not as sharp, mainly due to mo-

tion blur artifact, similar observations apply to the line profile through the tumour

region, with the exception of tumours in the upper lobe where less respiratory in-

duced motion occurs.

The 4D-CBCT reconstructions showed adequate sharpness along the edges of

the diaphragm region for simulations 2-5 when compared to the IStaticRecon as il-

lustrated in figures 4.14, 4.15, 4.16 and 4.17, nevertheless prominent view aliasing

artifacts can be observed in the images. The quantitative analysis also supports this

observation with the PSNR of the 4D-CBCT relative to the IStaticRecon reconstruc-

tion being lower for all simulations when compared to the GT-MCIR, MCIR or the

no motion model reconstruction.
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We have used the XCAT phantom in this work to evaluate the accuracy of the

motion estimated since the GT motion is known, however there are some associated

limitations to using a digital phantom study. For instance the tissues in the phantom

are modelled homogeneously (the same CT number is assigned to the same organ),

which is not necessarily the case for patients [111]. Also the simulated projections

using openRTK are different to real projection data. The current implementation of

openRTK does not model artifacts such as beam hardening and scatter.

In this study we have used 4 simulations with 2 different GT motions to eval-

uate the proposed method. More simulations with more variable GT motion should

be performed in order to further assess the accuracy of the estimated motion from

the model. Ideally more simulations are required for Varian OBI and true-beam

data respectively. A subset of these data (giving good representation of different

types of data) should be used to tune the hyper-parameters and then more thorough

validation (as performed for simulations 2-5) should be conducted using all data.

Nevertheless, the initial results presented in this chapter are promising and show

the approach can produce good results in a clinically realistic setting. Rather than

spending more time evaluating the approach from this chapter on more datasets,

instead it was decided to investigate modifications to the method so that it can be

suitable for real patient data (see chapter 5).

The purpose of the method derived in chapter 3 was to develop a method of

extracting surrogate signals that closely relate to the internal motion of the anatomy.

The results from using the signals from the T-ROI and the D-ROI suggest that these

signals are adequate to be used to drive a respiratory motion model. Though we
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have used a data driven approach here to derive the surrogate signal, the use of

other methods such as the RPM signal should also be investigated, in order to see

how the resulting motion estimation performs.

It is important to note that there is a trade-off between computational time and

accuracy. Reducing the amount of data (1/4) used to fit the model also reduced

the computational time drastically while giving an adequate estimate of the motion

when compared to using all of the data to fit the model. Even though the optimum

maximum fit iterations was found to be 50, this does not necessarily indicate that

this number of iterations would produce the best motion estimate, however partly

due to the computational efficiency this value was chosen, and the results using only

50 maximum fit iterations generated adequate motion estimates for all experiments,

thus suggesting that the value was sufficient. The average computation time for

simulations 2-5 was approximately 2hrs, and this is not clinically feasible. Compu-

tational time could be improved upon by using a more advanced implementation of

the motion modelling algorithm and dedicated hardware such as a GPU.

The aim of the initial experiments was not necessarily to find the best param-

eters, but rather sufficient parameters that gave suitable results. More experiments

with more parameter values (and more data) are needed to really determine the op-

timum parameters. In addition, this should also be done with real data, since the

optimum parameters for real data may be different. However this is difficult as the

true motion is not known.
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4.6 Conclusion

The proposed method was tested on simulated data-set with known GT. For all the

simulated studies we were able to recover the motion and they were assessed both

quantitatively and qualitatively. In addition, the MCIR volumes obtained based on

the estimated motion showed an improvement in image quality relative to when no

motion model was applied (i.e standard CBCT reconstruction technique and 4D-

CBCT phase binning reconstruction) both quantitatively and qualitatively. So far

the method has been applied to simulated data-sets where a reference static image

is required. The next chapter details how we have expanded on this study to be

applicable for clinical data.



Chapter 5

Iterative respiratory motion

estimation and motion compensated

image reconstruction
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5.1 Aim of this chapter

The method described in chapter 4 is not easily applicable to clinical data. The

method requires a static volume. There are two main potential approaches to over-

come this: either obtaining a 4D-CT image or from the CBCT data itself.

In the first approach, one of the phases of a 4D-CT, (e.g used for planning)

could be used as a reference volume for the motion model fitting. The 4D-CT will

provide a relatively high-quality reference static image for the motion model, and

in addition the 4D-CT data would contain all the anatomy in the FOV which is re-

quired when simulating projection through 4D-CT image. However, this approach

has its associated disadvantages. Firstly, anatomical changes can occur during ra-

diotherapy treatment, such as previously blocked regions of the lung re-inflating,

which will be difficult to account for by deforming the existing CT. Secondly, due

to differences in imaging devices, simulated projections through an existing CT

will appear different to the real CBCT projections due to scatter and beam harden-

ing [41].

Another approach is to use a MCIR volume from the CBCT as the static image.

However, MCIR requires motion estimates. This chapter proposes an iterative ap-

proach for performing the respiratory correspondence model fitting and MCIR in an

iterative manner (termed MM-MCIR). The method described here is only applica-

ble to non-truncated data-sets such as the ones acquired on the true-beam system at

our clinical institution with the full anatomy in the reconstruction FOV. The reason

for this will be discussed in section 5.5. We first tested this approach on simulated

data, then the method was applied to clinically acquired data-sets.
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5.2 Methodology

In this section we give a brief description of our approach. The correspondence

model fitting approach used here was initiated by first performing a standard FDK

reconstruction with an initial estimate of no motion. The result will contain blurring

and/or other motion artifacts, but this is used as an initial estimate of I0 to fit the

model parameters. The fitted model is then used to perform MCIR (see section

4.2), updating the estimate of I0. The process continues to iterate between fitting

the model and reconstructing I0 until there is no more improvement or the maximum

number of iterations is reached. For each iteration the output motion models and

images were saved. The method is run for a fixed number of iterations. Alternatively

a cost function (such as used for the model fitting) could be used to determine if

there is improvement after each iteration of model fitting and MCIR.

5.3 Experiments

We tested the proposed method on the simulated datasets from simulations 2-5 from

the previous chapter (see section 4.3.1.1). These simulations were based on true-

beam acquisition, thus the full anatomy is in the reconstruction FOV. Since simula-

tion 1 was based on Varian OBI acquisition with limited FOV of the anatomy in the

reconstructed volume, this data-set could not be used for the proposed technique.

The same hyper-parameters for the motion model estimation were used as in the

previous experiments (CPG spacing = 8 voxels, spatial multi-resolution level = 3,

numbers of iteration to fit the model = 50, number of projections to fit the model =

1/4).
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In addition, we tested our method on two clinical CBCT projection data-sets

from a real lung cancer patient. It is the same true-beam data as described in chapter

3. The data-sets were acquired from the same patient on two different days using the

true-beam Varian system, and consisted of 894 projections covering 360° acquired

at 14.9 fps. The true-beam acquisition was centred on the centre of the patient (and

also employed a half-fan scan mode), so included all of the patient’s anatomy in

the reconstruction. The same hyper-parameters as for the simulated data were used,

with the following exceptions:

• all of the available data was used to fit the model

• we fine-tuned the CPG spacing used to fit the model, while keeping the re-

maining hyper-parameters constant.

The CPG spacing was fine-tuned using the first real data, and the result was

then applied to the second real data-set. As in the previous chapter, the D-ROI

signal obtained from chapter 3 for the clinical data was used as the surrogate signal

to drive the model.

5.3.1 Evaluation

For the simulated data-sets, the I0 used to fit the model is in the average position,

while the GT XCAT DVFs were obtained relative to a EE volume. Also a constant

offset term is not used in the model, as the I0 used here corresponds to the average

position. In order to perform a fair comparison between the MM-MCIR and the

IstaticRecon both volumes need to be in the same position. IstaticRecon in the average

position was obtained by determining the respiratory motion trajectory based on
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the diaphragm and the AP motion signals used to drive the XCAT simulation. The

volume at the time point that corresponds to the average position was determined

by choosing the volume that corresponds to the (0,0) input signals. This position

is highlighted by the red point in the respiratory motion trajectory as shown in fig-

ure 5.1. The corresponding volume for this point is also illustrated in figure 5.1 as

IstaticRecon[223]
1, also shown is the IstaticRecon[1]

2 used in the previous chapter and

an example of the MCIR obtained when applying the MM-MCIR approach. The

blue line illustrates the alignment of the diaphragm position between the three vol-

umes. As expected the MCIR volume and the IstaticRecon[223] volume are in a similar

position.

Respiratory motion trajectory

Figure 5.1: Illustration of the respiratory motion trajectory from the GT XCAT simulation
and the corresponding IstaticRecon positions and the MCIR volume obtained via
MM-MCIR. The blue line in the volumes illustrates the alignment of the di-
aphragm position.

The image quality of the MCIR volumes were assessed both qualitatively and

quantitatively relative to the IstaticRecon volume, and the standard FDK reconstruc-

tion with no motion model. The respective volumes were assessed qualitatively by

comparing the image quality of the different structures such as the diaphragm, tu-

mour and the different vessels within the lungs based on visual assessment. We also

1This volume is the 223rd XCAT volume that corresponds to the average position
2This volume is the 1st XCAT volume that corresponds to the EE position
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compared the intensity line profile through the diaphragm and the tumour for each

volume. Quantitatively we used the RMSE and the PSNR (as described in section

4.3.2) to assess the quality of the images with respect to the IstaticRecon volume.

Since there was no IStaticRecon available for the clinical data, the MM-MCIR

volumes were assessed qualitatively relative to the standard FDK reconstruction.

We evaluated the image quality of the different structures within the body such as

the sharpness of the diaphragm and the vessels within the lungs. A line profile along

the diaphragm region for the MCIR volumes and the standard reconstruction were

plotted to illustrate the relative sharpness.

5.4 Results

5.4.1 Simulations

Quantitative results for simulations 2-5 are summarised in table 5.1. Shown are the

results for the comparison of the IStaticRecon image to the standard reconstruction (no

motion model) image and the MM-MCIR obtained after iterations 1 and 5 respec-

tively. In all cases the RMSE were lower for the MM-MCIR volumes relative to

the no motion model volume, which indicated better similarity between the MM-

MCIR volumes and the IStaticRecon. The largest difference for the RMSE value was

obtained for simulation 2, with a value of 5.08× 10−3 for the no motion model,

and 4.70× 10−4 for the MM-MCIR after both iterations 1 and 5. In all cases the

PSNR obtained were higher for the two MM-MCIR volumes relative to the no mo-

tion model volume, again this indicated an improvement in the image quality for

the two MM-MCIR volumes. In all cases only relatively small differences can be
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observed between the results obtained by MM-MCIR after iterations 1 and 5 re-

spectively. The results of MM-MCIR for simulations 2-5 are shown in figure 5.2.

For some of the numerical results shown in table 5.1, iteration 5 was slightly worse

than iteration 1. The difference is small, however it is consistent across all simula-

tions. Overall the largest improvement in image quality can be seen after iteration

1, in some cases there was still smaller improvement after iteration 2, however it

is possible that further iterations can make the result slightly worse as the method

starts to over-fit to artifacts in the MCIRs.

Table 5.1: The quantitative analysis obtained for the simulated data. The IStaticRecon was
evaluated against the no motion model reconstruction, the first iteration and the
fifth iteration of MM-MCIR respectively.

Metrics No Motion Model Iteration 1 Iteration 5

Simulation 2 RMSE 5.80×10−4 4.70×10−4 4.70×10−4

PSNR 64.73 66.40 66.48

Simulation 3 RMSE 5.78×10−4 5.12×10−4 5.01×10−4

PSNR 64.77 65.81 65.92

Simulation 4 RMSE 6.67×10−4 6.17×10−4 6.42×10−4

PSNR 63.53 64.20 63.84

Simulation 5 RMSE 6.67×10−4 6.24×10−4 6.42×10−4

PSNR 63.52 64.08 63.84

Qualitative evaluation for simulations 3 and 5 are shown in figures 5.3 and 5.4,

while the results for simulations 2 and 4 can be found in appendix A. The first col-

umn shows a slice through the sagittal plane of the IStaticRecon volume, no motion

model reconstruction, and the MM-MCIR volume after iterations 1 and 5 respec-

tively. For each reconstructed volume, the corresponding coronal slices are shown

in the second column. The red arrows shown in the images highlight regions of dis-

crepancies between the respective slices through the volume as an indicator of the
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Figure 5.2: Results of the RMSE, and PNSR for simulations 2-5 and the different numbers
of iterations used.

improvement in image quality. Based on visual assessment, the improvement of the

structures indicated by the red arrows can be seen for the MM-MCIR reconstruc-

tions relative to the no motion model case when compared to the IStaticRecon image.

Less motion blur artifacts can be observed for the MM-MCIR images, in particular

in the lower part of the lung where large motion is typically expected. However it

is difficult to distinguish any visual improvement between the MM-MCIR images

from iterations 1 and 5.

Figures 5.5 and 5.6 for simulations 3 and 5 illustrate the intensity line profiles

through the diaphragm and the tumour region respectively. The relative sharpness

of the boundaries is an indicator of improved image quality. This can be observed

for all cases. The line profiles obtained for the case of no motion model and the

MM-MCIR after iterations 1 and 5 were not as sharp as the IStaticRecon profile as

expected. Nevertheless, improved sharpness was observed for the MM-MCIR after

iterations 1 and 5 when compared to the case of no motion model, thus suggesting
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Figure 5.3: Qualitative results shown for simulation 3. The first column shows the sagittal
slice through the reconstruction images for the IStaticRecon, no motion model, the
MM-MCIR after 1 iteration and the MM-MCIR after 5 iterations respectively,
while the second column shows the coronal slices through the same correspond-
ing volumes. The arrows shown in red highlight regions of discrepancies be-
tween the different volumes.



5.4. Results 173

N
o 

M
ot

io
n 

M
od

el
Ite

ra
tio

n 
1

Ite
ra

tio
n 

5

Figure 5.4: Qualitative results shown for simulation 5. The first column shows the sagittal
slice through the reconstruction images for the IStaticRecon, no motion model, the
MM-MCIR after 1 iteration and the MM-MCIR after 5 iterations respectively,
while the second column shows the coronal slices through the same correspond-
ing volumes. The arrows shown in red highlight regions of discrepancies be-
tween the different volumes.
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that MM-MCIR performance is better than the standard approach of CBCT recon-

struction. The corresponding results for simulations 2 and 4 are shown in appendix

A. Overall for the case of the tumour profiles, a relatively small difference was ob-

served between all the reconstructed images, in particularly for simulations 2 and 4

with tumours in the upper lobe of the lung. Nevertheless, for simulations 3 and 5

with tumours in the lower lobe less motion blur of the tumour can be observed.
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Iteration 1No Motion Model Iteration 5

Figure 5.5: Results obtained for simulation 3. Shown are the slices through the reconstruc-
tion images for the IStaticRecon, no motion model, MM-MCIR after 1 iteration
and the MM-MCIR after 5 iterations. The coronal slices are shown in the first
row, while the corresponding sagittal slices for the volumes are shown in the
second row. The diaphragm profile shows the intensity profile through the di-
aphragm region in the first row as highlighted by the red line, while the tumour
profile shows the intensity profile through the tumour region as highlighted by
the red line in the second row.
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Iteration 1No Motion Model Iteration 5

Figure 5.6: Results obtained for simulation 5. Shown are the slices through the reconstruc-
tion images for the IStaticRecon, no motion model, the MM-MCIR after 1 iteration
and the MM-MCIR after 5 iterations. The coronal slices are shown in the first
row, while the corresponding sagittal slices for the volumes are shown in the
second row. The diaphragm profile shows the intensity profile through the di-
aphragm region in the first row as highlighted by the red line, while the tumour
profile shows the intensity profile through the tumour region as highlighted by
the red line in the second row.

5.4.2 Clinical Data

Figure 5.7 shows the sagittal slice through the MCIR images while varying the

CPG spacing (in voxels) for patient 1 acquisition 1. The first row shows the images
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obtained from the no motion model reconstructions, while the second and third

rows show the images obtained after the first and fifth iterations of MM-MCIR

respectively. From the visual observation the images displayed on the first row are

identical as expected. However, for the second and third rows, the image quality

improved as the CPG spacing was increased. The non-physical artifacts seen in

the MM-MCIR images occur as a result of using smaller CPG spacing, however

the image quality gradually improves when 20, 30 and 40 (voxels) CPG spacing

were used respectively. A similar trend was observed for patient 1 acquisition 2 as

illustrated in figure 5.8. The use of a coarser CPG spacing resulted in a smoother

deformation, thereby limiting the effect of the non-physical artifacts seen in the

images.

Figures 5.9 and 5.10 illustrate the qualitative results obtained from the MM-

MCIR for patient 1 acquisition 1 and 2 respectively using a CPG of 30 voxels.

Shown are the coronal and sagittal slices for the case of no motion model, MM-

MCIR after the first iteration and the MM-MCIR after the fifth iteration. The red

arrows highlight regions of discrepancy between the different structures seen in

each image, such as the improved sharpness of the diaphragm, and the reduction

in blur artifacts observed within the vessels for the MM-MCIR images. Based

on visual assessment it is difficult to distinguish any difference/improvement in

the image quality between the MM-MCIR for iteration 1 and 5. Also shown are

the intensity line profiles through the diaphragm region as highlighted by the red

line in the coronal slice for each reconstructed image respectively. The line pro-

file through the diaphragm for the MM-MCIR images has a steeper profile than the
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no motion model image indicating improved image quality for the MM-MCIR re-

constructions. The corresponding movies for both patient acquisition showing the

motion output from the model animated with the reference static image are shown

in the attached supplementary material. (Patient 2A 1 iter vs 5 iter.mp4 and Pa-

tient 2B 1 iter vs 5 iter.mp4 - In both cases the first row shows the coronal and

sagittal slice of the reference static image animated with the output of the model

after 1 iteration. The second row shows the corresponding slices of the reference

static image animated with the output of the model after iteration 5. In general the

motion of the diaphragm follows a breathing pattern, however unexpected left-right

motion of the rib cage (left) can also be observed )

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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Figure 5.9: The image quality assessment between the reconstructions obtained with no
motion correction, and MCIR images obtained after iteration 1 and 5 of MM-
MCIR respectively for patient 1 acquisition 1. The red arrows highlight regions
of difference between the different reconstructed images. The first column
shows the sagittal slices for the reconstructed volumes . The second column
shows the coronal slices for the reconstructed volumes. The intensity line pro-
file shown in the bottom corresponds to the red line along the diaphragm shown
in the second column.
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Figure 5.10: The image quality assessment between the reconstructions obtained with no
motion correction, and MCIR images obtained after iteration 1 and 5 of MM-
MCIR respectively for patient 1 acquisition 2. The red arrows highlight re-
gions of difference between the different reconstructed images. The first col-
umn shows the sagittal slices for the reconstructed volumes. The second col-
umn shows the coronal slices for the reconstructed volumes. The intensity line
profile shown in the bottom corresponds to the red line along the diaphragm
shown in the second column.
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5.5 Discussion

Quantitative results for the simulations shown in table 5.1 suggest that there were

improvements in the reconstructed images when compared to the case of no motion

model. The RMSE values were lower for the MM-MCIR reconstructions relative

to the no motion model reconstructions for all cases. The PSNR for the MM-MCIR

cases were higher when compared to the no motion model reconstructions for all

simulations. The qualitative results also showed improved visual assessments of the

reconstructed images for the MM-MCIR images when compared to the no motion

model images, as shown in figures 5.3, and 5.4 for simulations 3 and 5 respectively.

In both cases, the tumour region appears less blurry in the MM-MCIR images rel-

ative to the no motion model case when compared to IStaticRecon, also blood vessels

and airways appear less blurry and more visible in some cases for the MM-MCIR

reconstructions as highlighted by the red arrows. Similar results were obtained for

simulations 2 and 5 as shown in figures A.1 and A.3 in appendix A, however less

discrepancies in the tumour were observed in these cases as expected, since the tu-

mours were located in the upper lobe of the lung where less respiratory motion is

observed. Similarly the intensity line profile comparison between the IStaticRecon, the

no motion model reconstruction and the MM-MCIR reconstructions also showed

similar trends. The relative sharpness of the diaphragm can be observed from the

line profiles shown in figures 5.5 and 5.6 for simulations 3 and 5 respectively. The

relative sharpness of the diaphragm serves as an indicator of the improvement in the

image quality.

For the patient data, we qualitatively assessed the performance of the MM-
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MCIR approach by comparing the result to the reconstruction obtained when no

motion model was applied. Figures 5.9 and 5.10 illustrate the results obtained.

Based on visual assessment, the results showed clear improvements, the vessels

were more visible in the MM-MCIR images relative to the case of no motion mod-

els as indicated by the red arrows, similarly the diaphragms appeared sharper for

the MM-MCIR images. In addition no visual difference was observed between

the MM-MCIR for iterations 1 and 5 respectively. Intensity line profiles of the di-

aphragm region from the reconstructed images for the two clinical acquisitions also

support the above observations.

Even though M-XDVF were available for simulations 2-5, calculation of the

DFEs is more complicated due to using a different I0 position for the simulation

and for the generation of the MM-MCIR. The MM-MCIR approach was based on

using standard (no motion) reconstruction. This reconstruction was based on the

average position of the acquisition, the resulting motion model was also based on

this average position. Whereas the M-XDVFs as obtained from the XCAT phantom

were based on computing transformations from the first time point EE position to

all subsequent time points. As a result, the DVFs obtained from the model do not

correspond to those obtained from the GT motion. Nevertheless, it is possible to

calculate the GT DVFs from the average position to each time-point, by inverting

and composing transformations, and these could be used to calculate the DFEs.

Further analysis on the simulated data would be the subject of future work.

Due to the limited time to complete the work for this chapter, I decided to

focus on the results from the clinical data rather than perform the DFE analysis for
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the simulated data.

There are some intrinsic intensity differences between the simulated and clin-

ical datasets. For instance in the case of the Varian data-set used in this study,

we discovered substantial fluctuations in the image intensity between successive

projections in some cases as illustrated in figure 5.11. These fluctuations are not

present in the simulated projections from the reference static image, as a result

this would likely affect the result of the motion model, since these intensity dif-

ferences do not correspond to the motion of interest. The comparison of the pro-

jections over all time points can be found in the supplementary material. (Dynam-

icProj vs simulatedProjection.mp4 - Shows the comparison between the real pro-

jections (left), and the simulated model estimated projections (right). The difference

between the two set of projections is shown in the middle. The intensity fluctuation

of the real projections can be seen over time.)

The hyper-parameters used for the simulations in this work were based on the

ones from chapter 4. Using these hyper-parameters poorer results were obtained

for the patient data. For instance, using CPG spacing from the last chapter gave

poor results on the clinical data, hence we investigated using coarser CPG spacing

for the clinical data. However based on the visual observation in figures 5.7 and

5.8, a small change in CPG spacing could lead to a large change in the results.

Gradual improvement in image quality can be observed for higher CPG spacing,

which constrains the motion to be smooth. The reference static volume used in

chapters 4 and 5 are of different image quality, and there are intrinsic intensity

differences between the real projections and the simulated projections (see figure

https://liveuclac-my.sharepoint.com/:f:/g/personal/rmapaak_ucl_ac_uk/Evb5KBFGfQZBtc-h0yTP3bgBQnrh0oU9GfzH4mAGi3Zjqw?e=aymujp
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5.11 ), these could potentially affect the optimum parameters.

The hyper-parameters used in chapter 4 gave good results on the simulated

data for the MM-MCIR approach but they did not on real data. When we analysed

the results in figures 5.7 and 5.8 some of the recovered motion was not physically

plausible so we decided to investigate if using a coarser CPG spacing (to constrain

the motion to be smoother) would lead to better results. We also investigated the

reason for the poorer results on the real data and discovered the intensity fluctua-

tions, which are likely having a large impact on the results. Therefore, while more

work is certainly required to tune the parameters for real data, it is imperative that

the intensity fluctuations are first addressed, as these are likely having a large impact

on which parameters work best (and requiring that larger constraints are placed on

the models and motion to get plausible results than may be the case if the intensity

fluctuations were not present). Similarly, for the patient data an optimisation of the

hyper-parameters is necessary in order to determine the most suitable ones to use.

Based on the different CPG spacings used in this experiment for the patient data,

a CPG spacing of 30 and 40 voxels produced a relatively improved image quality,

however this may not be the case once the intensity fluctuation has been resolved.

Further tuning and the optimisation of the hyper-parameters on a larger clinical

data-sets should lead to more robust results. The use of a larger CPG spacing for

the real data in an attempt to constrain the motion can lead to degradation in the

image quality in the rib and lung boundary region as shown in figure 5.10. Using

a linear model and B-Spline may not be a perfect representation of the true motion

for the clinical data, thus affecting the image quality of the MCIR. Finally CBCT
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artifacts such as scatter present in the real data would also impact the accuracy of

the estimated model and the MCIR.

A full iteration of the MM-MCIR (fitting the model and then performing

MCIR) for the patient data took approximately 5 hours, while for the simulated

data it was approximately 2 hours. We decided to use all of the projections when

using the real data to try and minimise the impact of the intensity fluctuation, even

though this led to an increase in the computation time to fit the models. It is de-

sirable to perform as few iterations as possible while also obtaining good enough

improved image quality in the MCIR volume and a good estimate of the motion,

these need further investigating in the future. In most cases for the simulated and

clinical data-sets no substantial improvement was observed between the resulting

reconstructions from MM-MCIR after iteration 1 and iteration 5 respectively (see

figure 5.2). Thus performing only one iteration of MM-MCIR could be sufficient

since this would also reduce the computation time drastically.

For the simulated data the run time for the model fitting was approximately 50

min, while the MCIR was just over 1 hour. While for the patient data the model

fitting took just over 3 hours and the MCIR was approximately 2 hours. The current

run-time for the MM-MCIR needs to be dramatically reduced for it to be clinically

viable, although there is evidence that this should be achievable by reducing the

amount of data required for fitting the model and using more advanced implemen-

tations of the motion modelling algorithm and dedicated hardware such as Graphics

Processing Units (GPU). Regarding the MCIR, one way to improve on the compu-

tational time is to bin the projections that have similar motion rather than using fully
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continuous motion estimates, this could enable several projections to be corrected at

once, rather than doing each separately, thereby greatly reducing the computational

time with minimal impact on the MCIR.

Though we were able to apply the MM-MCIR approach to clinically acquired

data, there is still a constraint on the type of data this method could be suitable for in

its current state. The CBCT data used in this study were projection images whereby

the FDK reconstructions covered the entire trans-axial FOV of the patient. For

many clinical applications, the FOV of the CBCT reconstruction is mainly focused

on the tumour region, therefore leading to truncated reconstruction, thus this method

would have limited use. However at our collaborating clinical institution, as well as

some others, there seems to be a recent tendency towards non-truncated data, thus

this could be less of an issue in the future. A technique to combat the truncated

data-set issue will be discussed in chapter 6.
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Figure 5.11: Illustration of the difference between adjacent projections. The first column
shows the real projections for adjacent time points. The second column shows
the difference projection between the real projections and the simulated pro-
jections. The third shows the simulated projections for adjacent time points.
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5.6 Conclusion

This chapter extended the correspondence model developed in chapter 4 so that

it can be applicable to clinical data. With the true-beam CBCT projection which

allows full reconstruction of the patient’s FOV, a correspondence motion model was

built and MCIR was applied in an iterative approach using the no motion model

reconstruction as the initial static volume. Improved image quality was obtained

after the first iteration of MM-MCIR. The MM-MCIR approach was tested on both

simulated and clinical data. In most cases no substantial quantitative or qualitative

improvement in the image quality was observed after the first iteration of MM-

MCIR. This implies that only a single iteration of MM-MCIR could be sufficient,

but further investigation is required to confirm this conclusion.

We have obtained promising results, even though there are clearly still some

errors in the real patient data (which are more evident in the movies). This may

be due to the intensity fluctuations. The results presented here are entirely from

CBCT projection data from standard 3D-CBCT scan with no external signal, and

no previous motion model from 4D-CT or other data. To our knowledge these are

the first results on real clinical data to achieve this, and that can account for breath-

to-breath variability and do not rely on respiratory sorted 4D-CT.



Chapter 6

Summary and Future work

In the work presented in this thesis, we have developed a way for respiratory motion

correction of CBCT data, which is solely data-driven and does not need any external

monitoring equipment.

Firstly, we introduced a method of extracting a respiratory motion signal from

CBCT projection data that correlates to the internal motion. The method allows

selecting a ROI for generating the signal, allowing targeting a specific region such as

the diaphragm or a tumour. We have shown on simulated data that this method can

produce a signal from both the diaphragm and the tumour that is strongly correlated

with the internal motion.

In relation to the study presented in chapter 3, future work should involve fur-

ther analysis with more real data to demonstrate the clinical utility of the proposed

method. In this work the clinical data used were from a Varian scanner, it is also

important to investigate if the method is applicable to different types of scanner

technology with different scan protocols. To truly test the advantage of the pro-

posed technique, the method should be tested on acquisitions whereby there is no
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diaphragm in the FOV of the projections.

Validating the method on clinical data is difficult since there is no GT signal.

A potential solution to this, is to manually determine the respiratory signal from the

projection data by selecting a region that corresponds to respiratory motion from

each projection image, as done for one patient, however this approach is time con-

suming. Another approach would be to use data with implanted markers such that

the markers are easy to identify manually. In addition, 4D-CBCT can be performed

(as we have performed on simulated data) using the signal and this can be compared

to other methods, however qualitative/quantitative assessment on the 4D-CBCT re-

construction can be difficult due to its poor image quality. Another approach to

validating the method would be to use the signal to build motion models and then

assess the impact of the signal based on the model results.

The correspondence model for CBCT data was extended based on the previous

work by the Masters student by thoroughly testing on simulated data and accurately

recovering motion (as measured by DFE and COM). MCIR was also implemented

using the model estimate (i.e. using “continuous” motion estimates rather than

phase-binned). To ensure the method was applicable to patient data, an iterative

approach (MM-MCIR) was implemented such that an existing static reference im-

age was not required and a standard reconstruction image was used instead. This

method was tested on both simulated and clinical data, with results of MM-MCIR

showing improved image quality relative to when no motion model was applied.

In the current work we have used a commonly employed technique of using

a single measured signal, and its temporal derivative [3]. However, it would also
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be possible to use two measured signals which may be better than using a single

signal and its derivative. For CBCT this could be the T-ROI and the D-ROI, D-ROI

and RPM signal, or chest and abdominal skin markers could also be used. More

experiments on real patient data with real signals need to be performed in order to

determine which signal(s) is(are) best to use.

The proposed method of building a correspondence model from CBCT projec-

tion data requires further validation. More simulation studies with more complex

variable motion/anatomy are required. In addition, a physical phantom could poten-

tially be used to further validate the method proposed, this would enable end-to-end

testing of the method, however realistic motion is difficult to achieve with physical

phantoms. Furthermore, the motion model can potentially be validated using patient

data if two CBCT acquisitions from the same patient are available on the same day.

A motion model could be built using the projection data from both acquisitions, and

the resulting motion estimate and MCIR could be compared, as well as how well

each model (and MCIR) predicts the projections from the other acquisition.

For validating the accuracy of the model over a single CBCT acquisition, the

projection data can be used even though it is difficult to estimate the GT motion

from the projection data. This is due to difficulties such as low contrast and image

quality, structures moving in-front/behind each other within the FOV, and in some

cases limited FOV. A potential solution to tackle this issue is to manually identify

high contrast structures such as the diaphragm. Implanted markers could be used,

however this approach can be invasive and ideally the markers would be removed

from the projection images so that they are not unfairly affecting the model fitting.
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The unified framework can use different similarity measures (important for us-

ing a CT volume as the reference static image. See below), different constraint

terms and different transformation models. Future work could investigate if these

improve performance. The current implementation of the framework is entirely

CPU based, but it could be implemented on GPU (RTK is partially implemented

on GPU) which would be expected to significantly reduce the run-time by an order

of magnitude. For the framework to fit the current clinical workflow, ideally the

computational time needs to be in the order of 1-2 mins. Different approaches to

reduce the computational time exist besides implementation on a GPU. As demon-

strated on the simulated data, the number of projections used to fit the model can

be reduced. In addition, the use of a CT volume as static reference image would

remove the need for an iterative MM-MCIR, therefore reducing the computational

time. Also using a prior motion model from patient planning or a model generated

from a previous fraction to initialise the model fitting and MCIR could potentially

reduce the computational time.

As discussed in chapter 5, using the MCIR as the reference static image in an

iterative approach requires non-truncated data so that the full anatomy is in the re-

constructed FOV and thus will be present in the simulated projections. However,

many clinical centres still acquire truncated CBCT data, and the current iterative ap-

proach cannot be applied to these datasets. A way of overcoming this issue is to use

a 4D-CT volume as the reference image, since the whole of the patient’s anatomy

is present in the FOV, and the image quality is better than that of conventional 3D-

CBCT image reconstruction. Another advantage of using 4D-CT from planning is
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that the radiotherapy structures defined on the 4D-CT volume can be animated by

the model and propagated onto the model estimates. However this approach has

its associated limitations. Firstly the 4D-CT is typically acquired days/weeks prior

to treatment, therefore as a result the anatomy could have changed considerably

prior to the day of CBCT acquisition, in particular for later fractions when the ra-

diotherapy treatment may have caused anatomical changes. In addition, there are

differences between the intensity values of 4D-CT and CBCT, therefore SSD is not

suitable as a measure of similarity. A different image similarity metric that is invari-

ant to image intensity such as Local Normalised Cross Correlation (LNCC) could be

used, and/or the clinically acquired projections can be modified to be similar to the

simulated projections from 4D-CT (either by correcting for effects such as scatter

in the real projections, or by simulating those effects in the simulated projections).

How long the estimated model is valid for is another area that requires investi-

gating, although in most cases using a prior model may provide a good initialization.

However it is still unclear if it remains valid over a fraction of treatment, and this

needs investigating as part of future work. Acquisitions of CBCT projections at the

beginning and end of treatment could be used to test if the models are still valid.

There are multiple opportunities for improving the current unified registration

and model fitting framework. An important example is to modify the deformation

model to handle sliding motion when two parts of the anatomy slide past each other,

e.g. the chest wall and the lung during respiration. Most transformation models try

to produce a continuous and smooth deformation field. However, when sliding

motion occurs the deformation is not continuous, therefore any continuous defor-
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mation will inevitably include errors. A number of algorithms have been proposed

to address sliding motion [112–114]. However, some of these methods can struggle

when there is no clear intensity difference at the sliding boundary (such as between

liver and chest wall). Most algorithms for sliding motion require the target image to

be segmented. In the case of CBCT the target images are the projection images, so

it is not possible to segment the sliding regions. Therefore, Eiben et al. [115] devel-

oped an algorithm, which instead only requires the source image to be segmented.

In the future this could be incorporated into the motion modelling framework.

The motion model presented in this work could potentially be used for adaptive

radiotherapy studies. It could be used for offline adaptation, where the model and

the MCIR can be used to give a better estimate of the dose delivered based on

the motion during CBCT acquisition. It could also be used for online treatment

adaptation, where the model and the MCIR could be used to redefine the target

based on the current motion and re-optimise the treatment plan based on the updated

target and current motion. The model could potentially be used to guide active

treatment for instance gating/tracking treatment, however this would require the

use of a different surrogate signal that can be acquired during treatment delivery.

In summary, this PhD thesis has demonstrated the potential for building respi-

ratory motion models from CBCT data. While there is still much work to be done

to optimise the results and improve the method so that it is suitable for clinical use,

the results presented here are promising, and with further development could pro-

vide accurate motion information and ultimately lead to more accurate and more

effective radiotherapy treatments for lung tumours.



Chapter 7

Appendices



Appendix A

Figures

Iteration 1 Iteration 5No Motion Model

Figure A.1: Qualitative results shown for simulation 2. The first row shows the slice
through the reconstruction images for IStatic, no motion model, the MM-MCIR
after 1 iteration and the MM-MCIR after 5 iterations respectively, while the
2nd row shows the sagittal slices through the same corresponding volumes.
The arrows shown in red highlight regions of discrepancies between the differ-
ent volumes.
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Iteration 1No Motion Model Iteration 5

Figure A.2: Results obtained for simulation 2. Shown are the slices through the reconstruc-
tion images for IStatic, no motion model, the MM-MCIR after 1 iteration and
the MM-MCIR after 5 iterations iterations. The coronal slices are shown in the
1st row, while the corresponding sagittal slices for the volumes are shown in
the 2nd row. The diaphragm profile shows the intensity profile through the di-
aphragm region in the 1st row as highlighted by the red line, while the tumour
profile shows the intensity profile through the tumour region as highlighted by
the red line in the 2nd row.
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Iteration 1 Iteration 5No Motion Model

Figure A.3: Qualitative results shown for simulation 4. The first row shows the slice
through the reconstruction images for IStatic, no motion model, the MM-MCIR
after 1 iteration and the MM-MCIR after 5 iterations respectively, while the
2nd row shows the sagittal slices through the same corresponding volumes.
The arrows shown in red highlight regions of discrepancies between the differ-
ent volumes.
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Iteration 1No Motion Model Iteration 5

Figure A.4: Results obtained for simulation 4. Shown are the slices through the reconstruc-
tion images for IStatic, no motion model, the MM-MCIR after 1 iteration and
the MM-MCIR after 5 iterations. The coronal slices are shown in the 1st row,
while the corresponding sagittal slices for the volumes are shown in the 2nd

row. The diaphragm profile shows the intensity profile through the diaphragm
region in the 1st row as highlighted by the red line, while the tumour profile
shows the intensity profile through the tumour region as highlighted by the red
line in the 2nd row.
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