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0.1 Declaration

I, Maximilian Jacob Kerr Winter, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has been indicated
in the thesis.

0.2 Abstract

In this thesis, I present my work on the emergence of self-organised structure within cellular
systems, with a particular emphasis on the formation of fluid filled cavities. Self-organisation
is a striking hallmark of living systems, and plays a particularly import role in developmental
biology. To study such systems, I develop a novel hydrodynamic theory of cells in a background
fluid of water and solutes. The solutes and water can move passively across the membrane of
the cells. Furthermore, solutes can be actively transported in or out of the cell both isotropi-
cally and along a polar axis. Within this theory I demonstrate the existence of two potential
mechanisms for cavity formation: spinodal phase separation driven by cell-cell adhesions, and
an instability driven by active pumping of solutes into defects in the polarity field. This theory
is general in scope, i.e. it is a framework to describe a variety of behaviours of any system
consisting of adhering cells that can polarise and actively pump fluid.

I also present a study of a specific experimental system: mouse embryonic stem cell (mESC)
aggregates. When grown from wild type cells, these aggregates form a spherical structure
with cells polarised towards the centre. Fluid is pumped into the centre and a cavity opens.
Such aggregates are the simplest example of mESC organoids that recapitulate key in vivo
developmental processes in vitro. In order to quantify the growth of mESC aggregates, I develop
an image segmentation and analysis pipeline. This pipeline allows me to extract meaningful,
structured information from noisy 3D experimental time series data. In order to model the
growth of mESC aggregates in silico, I develop a novel 2D model of polarised, deformable cells
with continuous boundaries, called the Spline Model. Using the Spline Model as a prototype,
I recapitulate key features of the experiments. Finally, I develop a 3D model of polarised,
deformable cells. I demonstrate quantitative agreement between cell shapes produced by this
model and in experiment. I study the dynamics of cell aggregates for the case where adhesion
forces are coupled to apicobasal polarity, and make quantitative comparisons between these
simulations and experiments. I find a positive correlation between the measured polarity of E-
cadherin and predictions based on integration of extracellular matrix signalling. Furthermore,
by coupling polarity to increased apical adhesion, I demonstrate the ability of extended cellular
aggregates to undergo a transition to a compact state. When the coupling is removed, the
transition no longer occurs. This behaviour is reminiscent of β1-KO cells, in which polarity
alignment mechanisms are disrupted, that fail to form compact, organised aggregates.

0.3 Impact Statement

The work described in this thesis advances the fields of active matter hydrodynamics, biological
image analysis, and tissue mechanics in a number of ways. The hydrodynamic theory presented
in Chapter 4 is a significant addition to the growing field of active matter. It introduces several
novel ideas (covered in more detail in the Discussion) to a growing subfield of physics trying to
understand the behaviour of matter outside of thermodynamic equilibrium. My theory exists
at the applied end of the spectrum of research in active matter, hence contributes to efforts to
apply more theoretical developments in the field to a major class of active matter experiments,
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namely aggregates of cells.

The novel computational tools I have built to analyse experimental movies of cell aggregates
(Chapter 5), and simulate the mechanics of cell aggregates (Chapter 6), address ongoing ob-
stacles to understanding the mechanics of cell growth and self-organisation. The analysis tools
greatly simplify the quantification of complex, 3D time series data. The mechanical simulations
include novel mechanisms for describing physics not easily included in existing computational
models of cells. Both projects are quite general, and could be easily applied to a broad range of
cell systems. Quantifying cellular systems and recapitulating them in silico is a common theme
across many areas of biology, not just the embryonic stem cell aggregates I study in Chapter 7.
As such, I hope my work will be impactful to many researchers in the biophysics community.

Beyond my own field of biophysics, my work contributes both to more distant academic
communities and, through its contribution to medical research, society as a whole. The hydro-
dynamic theory of Chapter 4 describes a mixture of membrane bound vesicles in a binary fluid
mixture. This could be applied to experimental systems in synthetic biology, where artifical
“cells” are created by using lipid bilayers to compartmentalise chemical reactions. Furthermore,
my theory could be applied to problems in chemical engineering involving mixtures of fluids
with very different particle sizes, or to colloidal diffusion problems. These applications have
wide ranging industrial applicability.

The broad theme of the work in this thesis is the study of tissue mechanics. The medical
implications of this field are broad. Tumour metastasis, where growing cancer cells displace and
then invade the surrounding healthy tissue, is one particularly impactful example. The question
of whether a tumour will grow as a single colony or branch into many is partly down to the
mechanics of growing tissues, and is a process that is not fully understood. Tissue mechanics
also plays an important, and poorly understood, role in embryo development. Whether an
embryo produced by IVF will implant successfully in the womb, or whether a zygote will divide
to form twins, are important unanswered medical questions. The sort of quantitative, predictive
methods described in this thesis may make a modest contribution towards answering them.

0.4 Breakdown of contributions

Chapters 1, 2, and 3 are entirely my own work. Chapter 4 is the work of my supervisor Prof.
Guillaume Salbreux and myself. We were both involved in all aspects of the work. Chapter 5 is
the work of Prof. Guillaume Salbreux, Dr. Alejandro Torres-Sanchéz, and myself. The theory of
the Spline Model was developed by Prof. Salbreux and myself, and the source code was written
by me. The Interacting Active Surfaces Model was developed by Dr. Torres-Sanchéz. Chapter
6 is the work of Ms. Antonia Weberling, Dr. Matteo Molé, Prof. Magdalena Zernicka-Goetz,
Dr. Matthew Smith, Dr. Alejandro Torres-Sanchéz, Prof. Guillaume Salbreux, and myself. The
project was conceptualised and planned by all of us. All experimental data was produced by Ms.
Weberling and Dr. Molé under the supervision of Prof. Zernicka-Goetz. The Polar Interacting
Active Surfaces Model was developed by Dr. Torres-Sanchéz and myself. The segmentation
pipeline was developed by Dr. Smith and myself. The data analysis and comparison between
simulations and experiments was done by me. Throughout the thesis I include more detailed
attributes where appropriate.
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Chapter 1

Introduction

1.1 A physicist’s perspective on morphogenesis

Morphogenesis, the umbrella term for the emergence of a structured, adult organism from a
single fertilised egg cell, is the central object of study in developmental biology. The emer-
gence of such a high degree of complexity and self-organisation from a simple starting point is
a remarkable hallmark of life. Disentangling distinct processes from the more general term of
‘morphogenesis’ is an imprecise art, particularly given the complex feedbacks and interactions
between different components in a growing embryo. However, in order for an adult organism to
grow correctly, cells must reach the correct differentiated state, at the correct time and in the
correct place. As such, developmental biology is particularly interested in cell fate specification
[15], and tissue patterning [200] [111] [96].

Adult organisms are topologically complex, containing many enclosed cavities, networks of
tubes, and often at least one hole through the entire body. In contrast, zygotes are topologically
simple, as they are, to a good approximation, a ball. Consequently, topological transitions must
play an important, and common, role in morphogenesis. Furthermore, the language of topology
lends itself to the noisy and complex world of biology. Topologically identical objects can vary
greatly in the details of their shape while maintaining a key property (e.g. genus). As such,
a topological description captures the invariant (and hopefully important) nature of a system,
while allowing a lot of flexibility in other parameters. This is reminiscent of embryogenesis: to
be viable, it is necessary for a mouse embryo to develop a proamniotic cavity. However, exactly
when and where the cavity forms, how many cells the embryo consists of at the time, or the
precise shape and orientation of the cells can vary considerably. There is great variability in the
dynamic trajectories of different components of a growing embryo, and yet a precisely organised
adult organism eventually emerges. It is a challenge to the physicist to produce descriptions of
biological systems that are quantitative and precise where necessary, but flexible otherwise.

The relationship between physics and biology is symbiotic. Biology provides a near endless
variety of complex systems and phenomena that have no analogy in the non-living world. The
study of morphogenesis is an excellent example of this: self-organisation, spontaneous symme-
try breaking, and changes in topological state are all central concepts of physics, that play a
key role in embryo growth. Similarly, physicists have made a significant contribution to biology.
Two particularly prominent examples of theoretical contributions to biology from researchers in
the mathematical sciences are Turing’s description of how diffusion can counterintuitively drive
pattern formation [200], and the neuronal action potential model of Hodgkin and Huxley [79].
Both examples demonstrate the power of systems of coupled differential equations to describe
biological systems - an approach used heavily in this thesis. Despite being less mathematically
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involved, Wolpert’s French Flag Model of tissue patterning, and Thompson’s On Growth and
Form have both been influential in the subfield of biophysics applied to development [212] [193].
As well as theoretical contributions, physicists have played a crucial role both in developing
modern experimental tools (e.g. super resolution microscopes [18] [161]), and in developing the
computational and statistical techniques necessary to translate the increasingly large and com-
plex datasets into meaningful insight. This wealth of high quality data forms the foundation
upon which we can continue to build a body of theory to describe biology in a quantitative and
predictive way.

In this thesis, I address the question of self-organisation both theoretically and computa-
tionally. Both approaches are inspired by the experimental work of the Zernicka-Goetz Group,
at the University of Cambridge, on mouse embryology, mouse stem cell biology, and mouse
embryonic organoids. In order to describe these systems, it was necessary to develop novel
theoretical and computational tools to describe the intricate, 3D, cellular growth dynamics,
and to develop image analysis tools capable of extracting quantitative information from noisy,
complex data. The mouse stem cell systems I study maintain some of the simplicity of in vitro
cell cultures, while displaying some of the self-organising behaviour of mouse embryos. As such
they fulfil the maxim of being “as simple as possible, but no simpler”.

8



Chapter 2

Cavity formation as a morphogenetic
process

Cavity formation is a morphogenetic process that is particularly amenable to a physical analysis.
It often has a simple and well defined geometry and topology, which can be can be recapitulated
by cell models in vitro, and involves a combination of tissue and fluid mechanics. Across species,
the formation of cavities is crucial during early development to ensure proper morphogenesis,
and is typically crucial to the viability of the embryo. Here, I will concentrate only on mouse
and human embryogenesis, and only on the early stages. In addition, I will also review the
literature on cavity formation in cell culture and embryonic organoid systems, as these have
proved to be very successful at isolating mechanisms of cavity formation, while maintaining
some of the complexity of real embryos.

2.1 Mouse embryogenesis

Mus musculus, the laboratory mouse, is by far the most common model organism for studying
mammalian development, thanks to its small size, fast reproduction rate, and similarity to
humans. The mouse gestation period lasts 20 days, however here I will only consider the first
7 days up to gastrulation. In these 7 days, the embryo transitions from a single cell zygote to
a blastocyst that implants in the maternal endometrium of the uterine wall. The blastocyst
further develops into a gastrula containing three distinct embryonic tissue layers, as well as two
extra-embryonic tissues, and becomes implanted in the maternal tissue of the uterine wall [16].

The pre-implantation embryo undergoes several major developmental changes. Upon fertili-
sation, the embryo undergoes a series of cleavage divisions while undergoing critical genetic and
morphogenetic steps. At the 2 cell stage is the transition from maternal to zygotic transcription
[218]. At the 8 cell stage, the embryo compacts and thereby specifies the first anatomically
distinct cell populations, with some cells forming an outer layer, fully enclosing an inner group
of cells. There follows a round of asymmetric cell divisions at the transition from the 8 to 16 cell
stage, with some cells contributing both daughters to the outer layer, and some contributing
one to the outer layer, and one to the inner [129]. The inner cells maintain pluripotency by
the activity of the transcription factors OCT4, SOX2 and NANOG. The outer cells form the
trophectoderm (TE), an extra-embryonic lineage that gives rise to the placenta [97] [218]. The
final pre-implantation event is the formation of the blastocyst, where the embryo swells up and
forms a fluid filled cavity. This cavity, the blastocoel, further segregates the pluripotent Inner
Cell Mass (ICM) from the TE, and breaks the (approximate) spherical rotational symmetry of
the embryo [55]. The blastocoel is formed by the external, polarised, cells of the TE pumping
fluid into the centre of the embryo. This pumping process opens up microlumens along the in-
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ner cell interfaces, which eventually drain into a single, large cavity, with the ICM on one side.
The ICM then undergoes the second lineage segregation into the embryonic epiblast (EPI),
which gives rise to the baby mouse, and the primitive endoderm (PE), which gives rise to the
yolk sac [66]. The developmental steps the embryo undertakes from zygote to maturation of
the blastocyst at E4.5 (Embryonic Day 4.5) are summarised in Fig. 2.1.

Figure 2.1: The development of a mouse embryo from Oocyte (unfertilised egg cell) to blasto-
cyst, taken from Zernicka-Goetz et al. [218].

The next stage in mouse development is the implantation of the blastocyst into the maternal
uterine wall [47]. During this process, the peri-implantation embryo undergoes significant mor-
phological changes. The polar TE proliferates, and develops into the extra-embryonic ectoderm
(ExE). Proliferation and invagination of the ExE causes the ExE and EPI to fill the blastocoel.
The PE develops into the visceral endoderm (VE) and forms an epithelium surrounding the EPI
and ExE. At the same time, the EPI cells transition from naive to primed pluripotency [175].
The EPI cells organise into a rosette, where the cells polarise with their apical domains pointed
toward the centre of the EPI, forming a hedgehog defect-like structure [16]. The EPI cells then
pump fluid into the centre of the rosette, which opens to form a cavity. A further cavity opens
in the ExE, which then expands and fuses with the EPI cavity to form the pro-amniotic cavity
[35]. This completes the transition of the embryo into an egg cylinder. The formation of these
cavities by polar pumping of fluid overturned a previous hypothesis which held that apoptosis
of cells in the centre of the embryo hollowed out the cavities. The apoptosis hypothesis was
developed as a result of experiments on embryoid bodies, large aggregates of embryonic stem
cells (ESCs), that do indeed form cavities in this way [38]. Bedzhov and Zernicka-Goetz [16]
were able to directly observe the remodelling of the peri-implantation embryo in vitro by de-
veloping novel culturing techniques to simulate implantation [128]. By using a fluorescent cell
death reporter, SYTOX, they observed the capability of EPI cells to form a cavity without
apoptosis. Development of the peri-implantation embryo is summarised in Fig. 2.2.

The embryonic cells in the egg cylinder all belong to a single lineage, the epiblast, surrounded
by the visceral endoderm. The final major event in the first 7 days of mouse development is
gastrulation, where the epiblast differentiates into two lineages: the ectoderm and the mesoderm
(which goes on to produce the definitive endoderm). Gastrulation initiates in the mouse embryo
at the boundary between EPI and ExE cells, where a subpopulation of EPI cells express the
signalling protein FGF and form the primitive streak [188]. The cells of the primitive streak
undergo an epithelial-to-mesenchymal transition and start to migrate between the EPI and the
VE. This process continues until there is a continuous cell layer, the mesoderm, lying between
the ectoderm (EPI) and endoderm (VE) [77]. The mesoderm then gives rise to the definitive
endoderm, resulting in the three germ layers of the adult mouse body: definitive endoderm,
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Figure 2.2: The development of a mouse embryo from blastocyst to egg cylinder, with EPI
(yellow), ExE (grey) and VE (white), taken from Bedzhov and Zernicka-Goetz [16].

mesoderm and ectoderm [108]. It is a peculiarity of mouse development that the three cell
lineages are inverted: ectoderm on the inside of the egg cylinder, and endoderm on the outside.
The ectoderm goes on to differentiate into the skin and neural tube, the endoderm into the gut,
and the mesoderm into muscles, bones and connective tissue. Gastrulation is a fundamental
developmental milestone as it is the first major division of cell lineages within the body of
the embryo, as opposed to the division of embryonic and extra-embryonic lineages that occurs
pre-implantation.

2.2 Human embryogenesis

The study of human embryogenesis is beset by significantly more ethical and practical obstacles
than that of the mouse, and consequently a less detailed picture is known. However, develop-
ment up to the stage of the human blastocyst has been well studied, particularly in relation
to in vitro fertilisation treatment [57]. Similar to mouse embryogenesis, the human embryo
undergoes a series of cleavage divisions, which, after seven days, results in a blastocyst with the
same structure as the mouse, and containing the same three lineages of EPI, TE and PE (called
the hypoblast in humans) [21]. Although anatomically similar, Fogarty et al. have shown that
genetic fate specification, controlled by OCT4, occurs earlier in human embryos than mice [63].
Studying human development beyond the blastocyst stage was previously based on the Carnegie
Collection of Embryos [144]. However, post-blastocyst growth has recently been achieved in
vitro by adaption of the culturing techniques of Morris et al. [128] [174]. The peri and post
implantation human embryo is structurally quite different from the mouse, consisting of two
lineages, the epiblast and hypoblast (equivalent of the mouse PE), surrounding the proamniotic
cavity. This structure is shown in Fig. 2.3.

Compared with the mouse, very little is known about human gastrulation. Unlike the blas-
tocyst, the gastrulating mouse and human embryos look very different, as shown in Fig. 2.4.
Around day 9 an endodermal layer forms around the inside of the blastocyst. Some of these
cells differentiate into mesoderm cells. A primitive streak forms, and mesodermal cells gen-
erated in the primitive streak replace some or all of the endoderm derived mesoderm [157].
Although we do not have a detailed picture of human gastrulation, the end result is an embryo
with three embryonic cell lineages, the endoderm, ectoderm and mesoderm, encompassing two
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Figure 2.3: The development of the human embryo during the peri-implantation stage, taken
from Shahbazi et al. [174].

cavities [188].

A) B)

Figure 2.4: A) The human embryo at 11 days, before the onset of gastrulation [174]. B) The
mouse embryo at 6 days, before the onset of gastrulation [35].

The formation of the blastocoel and proamniotic cavities are major events in the early
development of mice and humans, allowing the embryo to specify cell fates, symmetry, and
topology. This pattern is replicated across developmental biology where cavity forming events
are common place. The vertebrate neural tube forms by both the folding of an epithelium, and
the hollowing out of mesenchymal cells [110]; vascular lumens form as precursors to the heart
in the zebrafish [84]; and a network of lumens gives rise to the Drosophila tracheal system [17].
These examples demonstrate not only the ubiquity of cavity formation, but also the wide range
of mechanisms life has evolved to open up spaces within tissues. These include the folding of
epithelia, hollowing out by apoptosis, organised polar pumping of fluid, and the hollowing of
individual cells [111]. Disentangling these mechanisms is experimentally challenging as they
are occurring inside delicate, growing embryos, often in conjunction with many other cellular
processes. However, the recent development of complex organoids has become a powerful
tool for studying cavity formation, and morphogenesis in general, in a controlled and isolated
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environment.

2.3 Organoids

Culturing cells in isolation is common place in modern biology. However, the utility of cell
culture in studying the self-organised complexity central to embryogenesis is limited. We are
left with the difficult situation where an entire embryo is too complex to understand, whereas
isolated cells are too simple to be of interest. An exciting middle ground between these two
extremes has recently been developed in the form of organoids. Organoids are cell cultures,
consisting of several cell types, that self-organise in such a way as to recapitulate at least some
of the structure and function those cells exhibit in vivo [100]. In 1987, Li et al. observed that
mouse mammary cells organise into ducts when cultured on a reconstituted basement mem-
brane from Engelbreth-Holm-Swarm tumors [109]. Since then, more and more sophisticated
structures have been grown. Sato et al. have grown gut organoids, that form budding crypts,
with local stem cell populations at their tips, around a central lumen, as shown in Fig. 2.5
[167]. Takasato et al. have grown kidney organoids with early nephrons [192]. Both of these
examples start with stem cells, in the case of Takasato et al. embryonic stem cells, that are
then induced to differentiate into the correct cell types, thus highlighting the significant role
fate specification plays in determining the structural organisation of the resulting tissue.

A B

C D

Figure 2.5: Gut organoids grown in culture for A) 5 and B) 14 days. C) A confocal image
after 3 weeks. Stem cells are marked in green. D) A schematic demonstrating the structure of
the organoid. These images were taken from Sato et al. [167].

Organoids have not only been shown to recapitulate in vivo structures, they also exhibit
functional processes. Cerebral organoids are self-organising neuronal aggregates that recapitu-
late many of the structures seen in the mammalian brain, including networked neuron layers,
genetically distinct forebrain regions, and enclosed cavities [154]. Cerebral organoids have been
shown to generate spontaneous neuronal activity, that becomes synchronous across large pop-
ulations of neurons. This neuronal activity is sufficient to induce contractions in connected
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mouse muscle [67].

Organoids are proving to be valuable tools for studying morphogenetic processes in em-
bryos. Culturing both human and mouse EPI stem cells in 3D matrigel can produce spherical
aggregates that form a central rosette, which then forms a cavity, recapitulating the behaviour
of EPI cells in vivo [174]. This system acts as a minimal model of morphogenesis: it consists
of only one cell type, in a simple spherical geometry, and demonstrates a single morphogenetic
process in isolation. Aggregates of EPI cells are not classed as organoids, however embryonic
organoids can be grown by combining more cell types from the early embryo. Harrison, Sozen et
al. have grown embryonic organoids by combining ESCs from the mouse EPI, and trophoblast
stem cells from the ExE [74]. The resulting organoids recapitulate normal morphogenesis to
a striking degree, as shown in Fig. 2.6. The two cell types segregate into an EPI-like region
and an ExE-like region, cavities grow in each, and eventually fuse to form a proamniotic cav-
ity. Furthermore, the organoids undergo the first stage of gastrulation, with a group of cells
expressing mesoderm markers, hence breaking the rotational symmetry of the organoid. In
Sozen et al., organoids grown from all three cell types of the post-implantation mouse embryo
(EPI, ExE and PE) again form aggregates with very similar structure to natural embryos: two
segregated regions of EPI and ExE cells, surrounded by an epithelium of PE. These organoids
go further in the gastrulation process by exhibiting an epithelial-to-mesenchymal transition,
and the growth of definitive endoderm [185]. Sozen et al. have also shown that organoids can
be grown that mimic the mouse blastocyst, including all three cell types, that then undergo
the peri-implantation remodelling of the embryo into an egg cylinder [186].

Figure 2.6: A comparison of embryonic organoids grown from two cell types (ETS-embryo,
upper panel) and a post-implantation mouse embryo (lower panel), taken from Harrison, Sozen
et al. [74].

Embryonic organoids provide a compelling new tool for investigating the causal mechanisms
of embryogenesis. It is also an approach that chimes with that of physics: the embryo is broken
down into its constituent parts, which can then be combined in ever more complex structures.
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This hierarchical rebuilding of the embryo allows different morphogenetic mechanisms to be
isolated, and hence addresses the question of what is a necessary and sufficient set of mech-
anisms for successful embryogenesis. Organoid experiments also highlight how complexity is
an emergent, self-organised property of embryogenesis. This self-organisation is robust to the
significant disruption to the normal developmental procedure caused by removing stem cells
from an embryo and recombining them in vitro.

In this chapter I have briefly reviewed the literature on early mouse and human develop-
ment. I have also reviewed the growing field of organoid research, with an emphasis on the
recapitulation of mammalian developmental processes in embryonic organoids. In Chapter 4 I
will detail my development of a theory of cavity formation in pumping cell aggregates, inspired
by the pumping phenomena exhibited at various stages in the mouse embryo, and in EPI de-
rived embryonic stem cell (ESC) aggregates. In Chapters 5 I will also present a computational
study of the growth of ESC aggregates. But first, I will review the physics literature that
provides the starting point for my own work.
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Chapter 3

Continuum and computational models
of biology

Biology offers a rich variety of systems, consisting of many microscopic, constituent particles,
interacting with each other in a viscous, fluid environment, that broadly fall under the remit of
fluid dynamics, thermodynamics and soft matter physics. The major departure of biophysics
from these earlier fields of study is the role of out-of-equilibrium, or active, processes. Although
such processes are not unique to the living world, they are ubiquitous in biology, and provide the
driving force for much of the novel phenomena of life. Passive theories of complex systems still
provide powerful tools to study biological systems, and key concepts such as coarse graining,
order parameters, phase transitions and pattern forming instabilities are widely used in the
study of active systems. In this chapter I will give a broad overview of the various elements
of fluid dynamics, thermodynamics and soft matter physics that form the foundation of my
work. As of yet, there is no unifying theory of active matter playing a role analogous to that
of the Boltzmann distribution in equilibrium thermodynamics. Consequently, when describing
the physics of living systems, a wide variety of methods and ideas are used. I will begin by
reviewing the literature of passive soft matter systems.

3.1 Passive models of complex fluids

A single component, incompressible fluid can be described by the Navier-Stokes equation and
incompressibility condition [32]

ρDtv = η∇2v −∇P +∇ · σ (3.1)

∇ · v = 0, (3.2)

where v is the fluid velocity, ρ the density, η the viscosity, and P the pressure. It is convention
to write any other forces (e.g. gravity) as the divergence of a stress, ∇·σ. Dt = ∂t+v ·∇ is the
material time derivative, which includes the effect of quantities being advected by the fluid flow.
These two equations, with a suitable set of boundary conditions, determines the 3 components
of v, and P . Implicit in this description is the assumption that the fluid can be coarse grained,
i.e. that the microscopic velocities of the constituent particles can be averaged over volume
elements that are large enough to contain many molecules. This average velocity, discretised
over volume elements, can then be approximated by a continuous, smooth velocity field, 〈vi〉 →
v. Coarse graining replaces a large number of experimentally inaccessible microscopic variables,
obeying highly stochastic dynamics, with a few macroscopic variables, obeying equations that
are (hopefully) amenable to either analytical interrogation or efficient numerical integration.
Typically, real life systems, and in particular biological systems, are more complicated than
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that described by Eq. 3.1. In the following I will give an overview of a few common extensions
to the Navier-Stokes equation.

3.1.1 Binary fluids

Binary fluid models have been used to describe a wide variety of systems, including polymer-
solvent mixtures [62], colloidal suspensions [1], and biological tissues consisting of cells and
interstitial fluid [166]. A binary fluid is a mixture of two fluid species, A and B. In order to
describe the relative composition of the fluid, a macroscopic order parameter, φ, is defined as

φ =
〈nA − nB〉
〈nA + nB〉

, (3.3)

where nA,B are the number densities of the two species, and averages are taken over volume
elements containing many particles [80]. This order parameter is conserved, hence obeys a
continuity equation φ̇ = −∇·J, for some current J. The free energy of the system is a functional
of the order parameter, F [φ]. Although different authors use forms of the φ dynamics and free
energy that differ in their details (e.g. to include size asymmetries [160], surface tensions
[28], or hard sphere effects [105]), the archetypal binary fluid models are Model B and Model
H [80]. The naming convention of Hohenberg and Halperin is not particularly informative
or memorable, however Cates and Tjhung note that Model B is a diffusive theory driven by
Brownian motion, and Model H is an extension of Model B including hydrodynamic effects,
hence B for Brownian and H for Hydrodynamic.

Models B and H

Model B describes a binary fluid where there is no net flow, v = 0. As such, the dynamics are
governed by diffusion. The free energy is

F [φ] =

∫
dV

{
α

2
φ2 +

β

4
φ4 +

κ

2
(∇φ)2

}
. (3.4)

What is the justification for this free energy? The true free energy will be a function of the
microscopic variables of the constituent particles. Coarse graining this function will in general
be difficult or impossible. Instead, we can take a phenomenological approach, expanding the
free energy as a power series in the order parameter, and including terms up to a particular
order sufficient to describe the physics of interest. This approach is based on the concept of
universality in statistical physics: the observation that close to critical points a wide range
of systems, that differ from each other microscopically, behave in a similar way and can be
described by order parameter expansions [61]. Such a phenomonological approach was used by
Ginzburg and Landau [101] to describe superconductivity, and hence Eq. 3.4 is known as a
Ginzburg-Landau, or just Landau, free energy. In the literature on binary fluid mixtures, the
gradient term, κ

2
(∇φ)2, is attributed to Cahn and Hilliard [28], and in this document I will

refer to it as such. The parameters α and β describe a free energy density of the form shown in

Fig. 3.1. The ground state of F can be shifted from 0, when α > 0 and β > 0, to φ = ±
√
−α
β

,

when α < 0 and β > 0.

The exchange chemical potential, the change in free energy on the exchange of a B particle
for an A particle, is defined

µ =
δF

δφ
= αφ+ βφ3 − κ∇2φ. (3.5)
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Figure 3.1: A schematic of the Landau free energy density, described in Eq. 3.4, where
F =

∫
fdV . When α > 0, the ground state is at φ = 0. When α < 0, the ground state is at

φ = ±
√
−α
β

.

The order parameter current is taken to be linearly proportional to the gradient of the chemical
potential, and hence the continuity equation for φ is

∂tφ = −∇ · (−M∇µ), (3.6)

for some mobility M . The linear relationship between J and ∇µ assumes gradients in the
chemical potential are small, hence higher order terms allowed by symmetry (e.g. proportional
to ∇3φ) can be neglected. Eq. 3.5 and 3.6 form a closed set of equations for φ and constitute
Model B.

The dynamics of Model B are driven solely by the diffusive processes described by the
chemical potential. Model H is an extension of Model B that also includes fluid flows. As such,
Eq. 3.5 and 3.6 must be supplemented by an equation for the fluid velocity v. This is simply
Eq. 3.1, with an additional force due to the order parameter φ (see Cates and Tjhung [32],
Section 3.3 for more details). Consequently, Model H reads

ρDtv = η∇2v −∇P − φ∇µ (3.7)

∇ · v = 0 (3.8)

Dtφ = −∇ · (−M∇µ) (3.9)

µ = αφ+ βφ3 − κ∇2φ. (3.10)

Binary phase separation

A central object of study in statistical physics is the phenomenon of phase transitions. Phase
transitions constitute a macroscopic, qualitative, and typically dramatic change in the proper-
ties of a system, often with a corresponding change in the symmetry and structure [61]. A phase
transition of particular relevance to biophysics, and which serves as an archetypal example, is
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the phase separation of binary fluids. Listing again the equations of Model B,

∂tφ = −∇ · J (3.11)

J = −M∇µ = −M∇δF
δφ

(3.12)

F =

∫
fdV =

∫
dV

{
α

2
φ2 +

β

4
φ4 +

κ

2
(∇φ)2

}
, (3.13)

it is clear that the dynamics act to minimise the free energy along a steepest gradient trajectory.
By varying the parameter α, F can transition from a state with a single minimum, to one with
two minima, as shown in Fig. 3.1. As such, the system transitions from a single stable state,
to two stable states as α crosses zero (a so called “quench”). The existence of this behaviour in
Eq. 3.13 is, in part, the motivation for truncating the Landau free energy at O(φ4). Physically,
the transition from a single groundstate to two, corresponds to a binary fluid that initially
exists in a mixed state of A and B molecules, spontaneously separating into two phases of A
and B rich fluid, with order parameters φA and φB. At equilibrium, i.e. when the system exists
in the global energy minimum, the two phases are balanced in their chemical potentials, and
pressures. These two constrains are

µA = µB (3.14)

f(φA)− φAµA = f(φB)− φBµB, (3.15)

respectively [32]. There is a graphical interpretation of these constraints, which is that at equi-
librium, the two phases exist on a common tangent line. Eq. 3.14 states the gradient of the
free energy density is the same at phases φA and φB. Eq. 3.15 states that they have the same
intercept of the f axis. The values of φA and φB that satisfy Eq. 3.14 and 3.15 are called the
binodals.

Whether, and how, this separation can occur depends on the initial composition of the
system. For α < 0, consider the shape of the free energy about an initial composition φ = 0.
Thermal fluctuations will cause small scale inhomogeneities in φ, resulting in some regions with
an excess of A, and some regions with an excess of B. The total free energy is then the sum
of the free energies of these two regions, weighted by their relative abundance. The abundance
of the two phases will be constrained by conservation of particle number. As such, the total
free energy lies somewhere on a straight line connecting the two new phases. If the connecting
line lies below the free energy curve, the phase separation is energetically favourable, and the
phases will remain separate. There will follow a flux of A and B molecules into their respective
regions, driven by an imbalance of chemical potentials and pressure, until φA and φB reach
their binodal values, satisfying Eq. 3.14 and 3.15. This is the case for Region I in Fig. 3.2.
The process of thermally driven local phase separation is called spinodal deomposition [27].
Outside of the binodals, the system cannot reduce its free energy by phase separation, and will
remain in the initial mixed state. A system initialised in Region II of Fig. 3.2 lies within the
binodals, but in a concave region of the free energy curve. Consequently, a line connecting two
infinitesimally separated phases will lie above the free energy, but the overall free energy would
be minimised by reaching the binodals. This scenario corresponds to a metastable state, where
there is an energy barrier to phase separation. After some time, thermal fluctuations nucleate
a phase separation above a critical size, which then progresses to the binodals. The boundary
of Region II, the spinodal values of φ, are the points at which the curve becomes concave, i.e.

∂2f

∂φ2
= 0. (3.16)
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Spinodal decomposition is the dominant mechanism of phase separation on short times, and
results in a system that has separated A rich and B rich regions. The long time behaviour of
this separated system is for matter to flow from the smaller separated regions to the bigger ones,
by the mechanism of Ostwald ripening [205]. Variations on Model B spinodal phase separation
have been applied to a wide variety of phase separating systems, including polymer melts [199]
[43], metal alloys [127], and colloidal suspensions [11] [159], as well as serving as a basis for
extensions to active fluids [194] [211].
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Figure 3.2: The phase separation behaviour is different in the three regions of this schematic
free energy density. In Region I, the line connecting two phases lies below the free energy
curve, hence local phase separation is energetically favourable. This region is unstable. In
Region II, the connecting line lies above the free energy curve, hence local phase separation is
unfavourable. However, the system can reduce its free energy by reaching the binodals, as such
this region is metastable. Region III is stable, as the free energy cannot be reduced by phase
separation.

Hard sphere models

More physically realistic models of single component and binary fluids have been developed by
considering microscopic ensembles of hard spheres [12]. The entropy of hard sphere models is
typically calculated by using a lattice based model as a way to enumerate the configurations of
the system [160] [145]. Corrections to this idealised picture are then included by using various
techniques to approximate the Virial expansion of real, or computer simulated, fluids [131].
The most popular of these theories is that of Carnahan and Starling [30] [121].

The behaviour of binary hard sphere models that are asymmetric, i.e. consisting of particles
A and B that differ in size, has been studied in depth [64] [19] [106], in particular in relation
to their tendency to phase separate via the Asakura-Oosawa effect [8] [107] [204]. This effect
occurs in binary hard sphere mixtures with a diameter ratio less than about 0.2. Although there
are no attractive forces in hard sphere models, once two of the larger particles get sufficiently
close, the smaller particles are excluded from the volume in between. This results in a pressure
imbalance between the inter-particle space and the surrounding medium, which pushes the two
larger particles together.
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3.1.2 Ternary and polydisperse fluids

A natural extension of the binary Models B and H is to include more fluid species. Ternary
systems, consisting of three species, have been studied in the context of polymer melts (e.g.
two polymer species and a solvent [95], or a polymer, solvent and non-solvent [195]), metal
alloys [127], and as a simple test case for non-equilibrium thermodynamics [213] [124]. The free
energy of multicomponent systems can be derived phenomenologically, similar to the binary
case, Eq. 3.4, or by calculating the configurational entropy from lattice based models [208].
Including multiple species requires multiple order parameters, e.g. for a ternary fluid of A, B
and C particles, we can use the volume fractions φA, φB and φC . Multiple chemical potentials
can then be defined as

µA =
δF

δφA
(3.17)

µB =
δF

δφB
(3.18)

µC =
δF

δφC
. (3.19)

For conserved particle numbers, A, B and C obey continuity equations of the form φ̇i = −∇·Ji.
Once again assuming a linear relationship between diffusive fluxes and gradients of chemical
potential, the most general linear flux equations areJA

JB
JC

 = L

−∇µA−∇µB
−∇µC

 , (3.20)

where L is a matrix of diffusion coefficients. The off-diagonal elements of L correspond to cross
coupling effects between the different chemical species. These cross diffusion effects are a novel
feature of ternary and higher fluid mixtures, that are not present in the binary case. The fluxes
are defined with respect to some reference frame. The reference frame can be defined such that
one of the fluxes can be eliminated via the constraint∑

i

aiJi = 0, (3.21)

for a choice of coefficients ai [124]. Common reference frames are [94] [123] [213]:

• the centre of mass, or “mass fixed” frame. ai = mi, the mass of the particles. This is a
reference frame being freely advected by the fluid.

• the rest frame of the solvent, or “solvent fixed” frame. asolvent = 1 and ai = 0 for all other
species.

• the “volume fixed” frame. ai = vi, the volume of the particles. This corresponds to the
experimental scenario of a container open at one end.

An alternative, though equivalent, framework of multicomponent diffusion is Maxwell-Stefan
theory [22] [37]. In this framework, force balance equations are written between pairs of species.
Consider a three component fluid, consisting of species with number density nA, nB and nC .
The force driving a flux of A is the gradient in the chemical potential of A. This force is
balanced by friction between A and B, and between A and C, which is taken to be linear in
the difference in velocities between the two species. The resulting force balance equation is

∇µA
RT

= −nAjB − nBjA
nAD̄AB

− nAjC − nCjA
nAD̄AC

, (3.22)
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where D̄ij is the Maxwell-Stefan diffusion coefficient between species i and j. D̄ij is inversely
proportional to the friction between i and j.

Taking the number of distinct fluid species to infinity, we reach the polydisperse limit [183].
In polydisperse systems the individual fluid species are replaced by a distribution σ(x) over the
polydisperse variable, x. The free energy then becomes a functional of this distribution, F [σ(x)].
Polydispersity is exhibited in a number of experimental systems, and in a number of observables.
Colloidal systems often contain a range of colloid sizes, that vary in an approximately continuous
way [10], petrochemical processes produce hydrocarbons with a distribution of chain lengths
[23], and copolymers can be made up of random sequences of two different monomers [49].

3.1.3 Liquid crystals

Increasing the number of fluid species is not the only way that fluids can become more complex
than the situation described in Eq. 3.1. Liquid crystals are liquids made of molecules with com-
plex shapes. Typical examples are polar liquid crystals, made up of molecules with a preferred
direction, nematic liquid crystals, made up of molecules with a preferred orientation but not a
distinct front and back, and hexatic smectic liquid crystals, made up of molecules which form
layers, within which they have six fold rotational symmetry [45]. The concept of describing
states of matter with underlying symmetry constraints has been borrowed extensively by the
biophysics community to describe cellular chemical polarity patterns [147] [138], shape polarity
patterns [75] [146], and locomotion [196] [14]. The study of the physics of liquid crystals is
extensive, so I will restrict myself to considering only the polar case as this is most relevant to
my own work.

The archetypal polar liquid crystal consists of polar molecules, i.e. molecules with a distinct
head and tail, described by a vector pi pointing from the tail to the head. Coarse graining such
a fluid, the average molecular direction can be approximated with a continuous vector order
parameter, p(r) = 〈pi(ri)〉, the polarity. How does p contribute to the free energy of the fluid?
Let this contribution be Fp, and assume that Fp is a constant, that we can define as 0, when
∇p = 0. In the continuum limit, variations in p will occur across length scales much larger
than the molecular scale, hence we can expand Fp about the uniform state in gradients of p,
resulting in the Frank free energy,

Fp =

∫
dV

{
K1

2
(∇ · p)2 +

K2

2
[p · (∇× p)]2 +

K3

2
[p× (∇× p)]2

}
. (3.23)

A detailed argument of why these are the lowest order terms allowed by symmetry is given
in Section 3.1.2 of de Gennes and Prost [45]. The three Frank constants correspond to the
three different deformation modes of splay (K1), twist (K2), and bend (K3), shown in Fig. 3.3.
A common simplification is to take these three constants to be equal, K1 = K2 = K3 = K,
resulting in

Fp =

∫
dV

{
K

2
∂αpβ∂αpβ

}
, (3.24)

where the Einstein summation convention has been used for clarity.

Liquid crystals can form topological defects, where the polar order parameter is discon-
tinuous. Example topological defects in a 2D polar fluid are shown in Fig. 3.4. Topological
defects can be classified using the theory of homotopy groups applied to closed loops or surfaces
enclosing the defects [119]. Loops that can be continuously deformed onto each other form a
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Figure 3.3: Polar fluid distortions in the splay, twist and bend configurations.

homotopy class. The complete set of homotopy classes for a particular system has a group
structure, and is referred to as the fundamental group of the order parameter space. For a 2D
polar fluid, with |p| = 1, the order parameter space is the unit circle, which can be parame-
terised by an angle θ ∈ [0, 2π). Closed loops can go round the unit circle an integer number
of times. Loops that go round the same number of times can be continuously deformed onto
each other, and loops that go round different numbers of times cannot. As such, the number
of times a loop goes round the unit circle, called the winding number, classifies loops into
homotopy classes. The winding number is the number of times the polarity field undergoes a
complete turn when traversing a loop around a defect in the physical space of the polar fluid.
Topological defects play an important role in the mechanics of liquid crystals [176], as well as
attempts to engineer them [132] [137], and it has been suggested that they play a role in the
mechanics of polarised tissues [169] [52]. A wider range of defects are possible in 3D liquid
crystals, including hedgehog defects and disclination loops [4]. Recent advances in microscopy
and image segmentation have made possible the observation and classification of such defects
experimentally [50].

Multiple fluid species, and anisotropic effects are just a handful of the ways in which the
single component incompressible fluid of Eq. 3.1 has been extended to describe complex soft
matter systems. However, fundamental to all of them is the assumption of thermodynamic
equilibrium. The relaxation of this assumption is the major difference between living systems,
and the systems that have traditionally been studied in soft matter and statistical physics. In
the next section I will give a brief introduction to the physics of non-equilibrium, or active,
matter.

3.2 Active matter

Thermodynamic equilibrium is defined as any state obeying detailed balance. For a set of
microstates, where the probability distribution of state i is Pi, and the transition rate between
state i and state j is ωij, detailed balance is defined as the condition

Piωij = Pjωji ∀i, j. (3.25)

Systems in equilbrium obey the Boltzmann distribution

P (Ei) ∝ e−
Ei
kT , (3.26)

where P (Ei) is the probability of the system occupying microstate i with energy Ei, k is the
Boltzmann constant, and T the temperature [177]. Although the fields of thermodynamics, and
later statistical physics, have been wildly successful at describing systems in equilibrium, they
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Figure 3.4: A) An example polar field with a +1 defect. Traversing the red path, the polar
vector undergoes 1 full turn, hence the winding number is 1. B) Another example of a polar
+1 defect. C) The smooth deformation of the first vector field onto the second. This is possible
because they have the same winding number, hence belong to the same homotopy class.

are limited in their applicability to living organisms by the fact that life exists in a state out of
equilibrium. Organisms continually absorb energy from their surroundings and convert it into
mechanical and chemical work. At the cellular level this typically occurs by the hydrolysis of
adenosine triphosphate (ATP) to adenosine diphosphate (ADP), releasing a few kT of energy
[207]. It is also worth noting that there are non-living non-equilibrium systems, e.g. Janus
particles, which are maintained out of equilibrium by a chemical bath [31], and the Earth’s
climate system, maintained out of equilibrium by the influx of solar radiation [115]. Active
matter is the umbrella term applied to these non-equilibrium systems. Naturally, there is a
great deal of interest in extending statistical physics to describe active matter [151] [34] [210]
[136]. However, to date the only general theory of non-equilibrium thermodynamics is the
near-to-equilibrium framework of Onsager [143].

3.2.1 Non-equilibrium physics

Equilibrium systems are defined by the property of detailed balance: the probability for a
system to transition from microstate i to microstate j is equal to the transition probability
from j to i. Much of the novel physics exhibited by living systems arises from the violation of
this basic assumption. Providing a general description of non-equilibrium statistical systems
is a major open problem. However, a broad class of non-equilibrium theories are derived from
the work of Lars Onsager.

Onsager theory

The second law of thermodynamics states that the entropy of a macroscopic system cannot
decrease,

dS ≥ 0. (3.27)

Furthermore, at equilibrium, dS = 0 [102]. The second law enforces a distinct arrow of time, in
contrast to the time reversible microscopic dynamics of the constituent particles of the statisti-
cal system. The breaking of time reversal symmetry is recognised as a hallmark of active matter
[136], and the rate at which entropy is produced as a measure of broken detailed balance [34].
Onsager’s approach to non-equilibrium thermodynamics is to start with the known equilibrium
state, then describe non-equilibrium states by a power series expansion about equilibrium in
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some appropriate variables.

Dynamical equations for non-equilibrium processes can be derived by considering the rate
of entropy production in a system. For a continuous system, the entropy density, s, obeys a
continuity equation

∂ts+ ∂αJ
s
α = σ, (3.28)

where J s
α is a flux of entropy density, and σ an entropy source term. For an isolated, adiabatic

system this equation reduces to

∂ts = σ ≥ 0, (3.29)

where the inequality is due to the second law of thermodynamics. Two assumptions are inherent
in Eq. 3.28. Firstly, it is assumed that the entropy of an infinitesimal volume element can be
written as a fraction of the total element, like sdV . This is justifiable if the volume elements
of the continuous system are large enough to contain many microscopic particles. Secondly, it
is assumed the volume elements are in a state of “local equilibrium”, hence the entropy can be
defined in the same way as for an equilibrium system. Mazur and de Groot show [46] that the
entropy production rate can be written as a sum of pairs of thermodynamic fluxes and forces

σ =
∑
i

JiFi, (3.30)

where Fi are the thermodynamic forces. Both the forces and fluxes disappear at equilibrium.
The fluxes can then be written as a series expansion about the equilibrium state in terms of
the forces

Ji =
∑
j

LijFj, (3.31)

where Lij are the Onsager coefficients. Lij obey the Onsager reciprocal relations Lij = Lji
(up to a change in sign that is not discussed here), and by the requirement that σ ≥ 0,
LiiLjj ≥ 1

4
(Lij + Lji)

2, where there is no sum over repeated indices.

What is the rationale for writing a series expansion of the fluxes in terms of thermodynamic
forces? Consider the example of an incompressible ternary fluid, consisting of species A, B and
C. The continuity equations are

∂tnA = −∂αjAα (3.32)

∂tnB = −∂αjBα , (3.33)

and C has been eliminated by incompressibility. jAα and jBα must be expressed as functions of
na and nB in order to form a closed set of equations. This can be achieved by writing jA,Bα as
a series expansion in a suitable set of variables, around a known state. In our case, the known
state is that of thermodynamic equilibrium. Equilibrium in the ternary fluid is defined by the
requirement that the chemical potentials for A and B are uniform,

∂αµA = 0 (3.34)

∂αµB = 0. (3.35)

As such, ∂αµA and ∂αµB suggest themselves as appropriate expansion variables as they are
0 at equilibrium, and small close to equilibrium. Hence, to linear order in gradients of the
chemical potentials the fluxes are

jAα = L00∂αµA + L01∂αµB (3.36)

jBα = L10∂αµA + L11∂αµB, (3.37)
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for some coefficients Lij. Using the Einstein summation convention over Greek indices, the
entropy production can be written

σ = −(∂αµA)jAα − (∂αµB)jBα , (3.38)

i.e. as a sum of pairs of thermodynamic fluxes and forces. We can then identify ∂αµA,B as the
conjugate thermodynamic forces to jA,Bα , and Lij as the Onsager coefficients, obeying L01 = L10.
As long as the functions µA,B(nA, nB) are known, Eq. 3.32 and Eq. 3.33 can then be solved.

In general all fluxes can couple to all forces, potentially resulting in large constitutive equa-
tions. However, some couplings can be ruled out on symmetry grounds. Consider the entropy
production of a generic system, with fluxes Ji, and forces Fi,

σ =
∑
i

JiFi. (3.39)

In general, there will be fluxes and forces of different tensorial order. The Curie Principle [40]
states that for an isotropic system, there can be no couplings between fluxes and forces of
different tensorial order. The general principle is described by Mazur and de Groot [46]. For
brevity, the simplified case of scalar and vector forces is outlined here. Consider an entropy
production rate

σ = JsFs + Jv · Fv, (3.40)

where Js and Fs are scalars, and Jv and Fv are vectors. To linear order, the constitutive
equations are

Js = LssFs + Lsv · Fv (3.41)

Jv = LvsFs + LvvFv. (3.42)

Any symmetry property of the system must leave the Onsager coefficients, Lij, unchanged. An
isotropic system has arbitrary rotational symmetry, hence Lij will remain unchanged by an
arbitrary rotation, R. The scalar Onsager coefficients are trivially unchanged by a rotation.
The vector coefficients must satisfy

RLsv = Lsv (3.43)

RLvs = Lvs. (3.44)

As R is an arbitrary rotation, these equations can only be satisfied by

Lsv = 0 (3.45)

Lvs = 0. (3.46)

As such, the couplings between scalar and vector fluxes and forces disappear, and the
constitutive equations simplify to

Js = LssFs (3.47)

Jv = LvvFv. (3.48)

The validity of Onsager’s non-equilibrium approach has been verified experimentally in a
wide range of systems [122] [123]. The existence of linear flux-force relations was known before
Onsager in particular systems, e.g. Fick’s law of diffusion, and Fourier’s law of heat. Further-
more, reciprocal relations had also been observed before Onsager’s theory, e.g. Lord Kelvin’s
observation of symmetric cross coupling between gradients of temperature and gradients of
electrical potential difference [184].
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Stochastic thermodynamics

In the past few decades significant work has been done to develop a rigorous basis for the ther-
modynamics of active matter, by considering the behaviour of meso- and microscopic systems
along fluctuating trajectories in phase space [172] [36]. This emerging field is called stochastic
thermodynamics, and has been applied to a range of non-equilibrium systems, e.g. a colloidal
particle in a laser trap [87], and ATP driven biomolecules [171]. By considering a system with
mesostates {I}, the entropy production rate, averaged over trajectories through the space of
mesostates is [170]

〈Ṡ(t)〉 =
∑
I<J

(PI(t)KIJ − PJ(t)KJI) log

(
PI(t)KIJ

PJ(t)KJI

)
, (3.49)

where PI(t) is the probability the system is in mesostate I at time t, and KIJ is the transition
rate from mesostate I to J . The mesostates are ordered chronologically along the trajectory,
hence I < J refers to states I that are visited prior to state J . Eq. 3.49 results in the second
law of thermodynamics,

〈Ṡ(t)〉 ≥ 0, (3.50)

as (x − y) log(x/y) ≥ 0 for all x, y ≥ 0. Eq. 3.50 differs from the classical description of
the second law as it recognises entropy only increases on average. At the level of individual
trajectories, it is perfectly possible for thermal fluctuations to decrease the entropy of a sys-
tem. Stochastic thermodynamics also provides a quantitative link between entropy production
and the breaking of time reversal symmetry in non-equilibrium steady states. Denoting the
probability of following a certain trajectory through the space of mesostates as P (I), and the
probability of following the trajectory traversing the same path but backwards in time as P (Ĩ),
the following condition holds [173]

P (Ĩ)

P (I)
= e−

∆S
k , (3.51)

where ∆S is the entropy produced along I. Eq. 3.51 demonstrates that entropy producing
(i.e. non-equilibrium) processes are far more likely to happen than their time reversed opposites.

Stochastic thermodynamics aims to understand the fundamental physics of active matter
at a microscopic level. In parallel to this effort, many researches are studying the impact of
including active terms in the dynamics of coarse grained, macroscopic variables, by developing
hydrodynamic theories of active matter.

3.2.2 Hydrodynamic theories of active matter

Hydrodynamics, considering systems in the limit of long length scales and slow time scales,
is a powerful tool in fluid dynamics and condensed matter physics. The most famous early
examples of hydrodynamic theories in biophysics are the Vicsek Model [203], and its continuous
counterpart, the Toner-Tu Model [196].

Vicsek Model

The Vicsek Model describes a set of self propelling particles, each with fixed speed |vi| = v.
The model evolves by taking discrete timesteps. At each timestep, each particle adopts the
average direction of motion of all other particles within some radius, plus a random directional
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perturbation. In 2D, the direction of motion is described by a single angle, θ, and the update
rule is written

θ(t+ 1) = 〈θ(t)〉r + ∆θ. (3.52)

∆θ is a random number drawn from a uniform distribution in [−η
2
, η

2
], hence the parameter η

acts qualitatively like a temperature. At zero fixed speed, this model reduces to the XY model
of ferromagnets. At infinite fixed speed, the particles become completely mixed. However,
at finite fixed speeds, Vicsek et al. computationally demonstrate interesting behaviour as a
function of η. At high η, the system is mixed, and there is no net flow of particles. As η is
decreased, the system undergoes a phase transition to a state where all particles are moving
in the same direction. The direction of net motion is random, and spontaneously breaks the
rotational symmetry of the initial condition. This result is significant as the 2D XY model does
not exhibit such a transition, and indeed such a transition would be forbidden in equilibrium
systems by the Mermin-Wagner theorem [120]. Consequently this is an example of a genuinely
non-equilibrium phase transition. The average velocity of the particles is defined as

v =
1

Nv

N∑
i

vi. (3.53)

Although the discretised velocities of the Viscek Model are not hydrodynamic variables, the
average velocity is. The modulus of the average velocity is used as the order parameter of the
phase transition.

The underlying mechanism of the Vicsek Model is very simple, yet it captures the key
behaviour of flocking organisms: collective motion. A recent study of starling flocks in Rome
has demonstrated that collective motion does indeed propagate through flocks by neighbour
alignment, and that changes in direction are typically initiated by the more variable trajectories
of birds at the edge of the flock [9].

Toner-Tu Model

The Toner-Tu Model is the continuum limit of the Vicsek Model. The particles (or birds, in the
nomenclature of the paper) are described by a coarse grained number density ρ, which obeys
the continuity equation

∂tρ+∇ · (ρv) = 0, (3.54)

i.e. birds are conserved. The flow field, v, obeys the compressible fluid equation

∂tv + (v · ∇)v = −αv − β|v|2v −∇P +DL∇(∇ · v) +D1∇2v +D2(v · ∇)2v + f . (3.55)

α and β are parameters from a Landau style free energy, where α > 0, β > 0 describes a
disordered phase with 〈v〉 = 0, and α < 0, β > 0 describes an ordered phase with |〈v〉| > 0.
P is the pressure of the system, and DL, D1 and D2 are diffusion constants. f is a Gaussian
random noise term. Toner and Tu demonstrate analytically that this system exhibits phase
transitions that are different from the equilibrium XY model in dimensions less than 4, that
the system undergoes spontaneous symmetry breaking in 2D, and that their equations describe
a universality class to which the Vicsek model belongs.
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3.2.3 Pattern formation

Pattern formation plays a central role in morphogenesis. Consequently, pattern forming, and
more generally collective ordering, phenomena have been studied extensively by biophysicists.
Phase transitions like those seen in the Toner-Tu Model, or Model B, can be thought of as the
simplest form of collective ordering, where long range correlations dominate. However, to make
an organism from a single cell, more complex spatial patterning is required.

Fluid instabilities

There are many different pattern forming mechanisms in fluid systems, which typically arise due
to linear instabilities. Cross and Hohenberg [39] classify these instabilities into stationary and
oscillatory, and Types I, II and III. Type I instabilities are unstable at zero wavevector, hence
describe non-conserved variables. Type II instabilities have a band of unstable wavevectors
starting at zero. Type III instabilities have a band of unstable wavevectors starting at some
non-zero value, and hence have an associated characteristic length scale where exactly one mode
is unstable. For example, the Rayleigh-Bénard instability occurs when a fluid in a gravitational
field is heated from below. In this scenario, the governing equations are the Navier-Stokes equa-
tion, and a conservation law for heat, which have a Type Is instability resulting in convection
cells. The exact pattern of convection cells is determined by the parameters of the model (e.g.
temperature gradient, buoyancy), and also the boundary conditions. Other commonly studied
fluid pattern formation mechanisms are the Saffman-Taylor fingering instability along a fluid
boundary [191], and front propagation in the Ginzburg-Landau equations [201].

Turing instabilities

The most famous example of pattern formation in biophysics, and one that was hypothesised
very early on in the development of the field, is the Turing Instability [200]. Turing proposed
a mechanism by which diffusion can drive an otherwise stable, homogeneous system into an
unstable state. He proposes this mechanism as a specifically morphogenetic one, where two
species of morphogen form a spontaneous pattern in order to organise a growing tissue. Consider
two species of morphogen, X and Y , obeying the following dynamics:

∂tX = aX + bY +DX∂
2
αX, (3.56)

∂tY = cX + dY +DY ∂
2
αY, (3.57)

where DX and DY are diffusion constants, and a, b, c, and d are parameters describing the
chemical reactions between species X and Y . In the limit of no diffusion, this system is stable
when a + d < 0 and ad − bc > 0. Introducing non-zero diffusion can then push the system
into an unstable state when (aDY + dDX)2 > 4DXDY (ad − bc). This condition results in a
Type IIIs instability, hence there is a characteristic length scale associated with the Turing
pattern. Turing patterns, and related reaction-diffusion instabilities, have had a major impact
in developmental biology. Experimental examples of Turing and Turing-like mechanisms have
been found in a wide range of contexts, including chemical reaction networks [54], bacterial
populations [90], the growing mouse limb bud [153], and the early C. elegans embryo [70], to
name a few. Example Turing patterns are shown in Fig. 3.5. Turing patterns result from Type
III instabilities (both stationary and oscillatory) in the Cross and Hohenberg nomenclature, i.e.
they exhibit a band of unstable wavenumbers. The onset of instability occurs at one non-zero
critical wavenumber. This results in a pattern with a characteristic length scale.
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Figure 3.5: Examples of experimentally realised Turing patterns. A) A chemical reaction
network, taken from Dulos et al. [54]. B) The BMP pattern in the mouse limb bud, taken from
Raspopovic et al. [153]. C) The establishment of PAR polarity in the early C. elegans embryo,
taken from Goehring et al. [70].

3.2.4 Active matter models of tissues

A major theme of recent biophysics research has been to apply theories of active matter to
biological systems in greater and greater detail [113] [88]. Some models are quite general, e.g.
Active Model B Plus [194], a non-equilibrium extension of the binary fluid Model B, whereas
others contain more detailed descriptions of biological activity from the scale of proteins [99] to
cells [149] to flocks of organisms [196]. Of particular interest to developmental biology are the
cell cortex, made up of actin filaments and myosin motors, and tissues made up of collectively
moving cells.

The acto-myosin cortex

The acto-myosin cortex is a force generating network of filamentous actin lying beneath the cell
membrane. Stress in the network is generated by ATP driven myosin molecular motors. The
actin filaments range in length from around 0.1 µm to 10 µm [148] and, with a persistence length
of ≈15 µm [65], are stiff on cellular length scales. Due to the highly anisotropic shape of actin
filaments, the actin cortex can be modelled as either an active nematic or active polar fluid
depending on whether the actin fibres are aligned or not [98] [155]. Such a description can be
made more realistic by taking into account the de/polymerisation kinetics between filamentous
F actin and globular G actin monomers, and the presence of myosin motors, as in Kruse et
al. [99], as well as the presence of a passive solvent, as in Joanny et al. [85], and Callan-Jones
and Jülicher [29]. These active hydrodynamic theories of the cortex, and active gel physics in
general [150], have been successfully applied to a variety of systems, for example: Joanny et
al. [86] show that the structure of the cortex as a thin sub-membrane layer can be explained
as the result of active wetting phenomena; Salbreux et al. use the theory of active nematics
to describe the formation of a contractile actin ring during cytokinesis [165]; and Marth et al.
[116] develop a model of cell motility by including bending rigidity.
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Cells as an active fluid

Whereas the cortex determines mechanics at the scale of individual cells, morphogenesis typ-
ically takes place on the scale of tissues consisting of many cells. As such, there have been
multiple examples of hydrodynamic descriptions of tissues. Cells can polarise, both in terms
of their shape, and in terms of the distribution of chemicals within them, hence they can be
described by active nematic, and active polar models [51]. The importance of topological de-
fects in cell models has been emphasised by Beng Saw et al. [169], where they correlate defects
with cell deaths and extrusions in epithelia. The interplay between the mechanical properties
of cells, and their proliferation rates, as a driver of morphogenesis has been explored in e.g.
Shraiman [179], Yeh and Chen [215], and Sarkar et al. [166]. Epithelial tissue dynamics has
also been explored in detail by Popović et al. [149], where they include the novel contribution
of topological rearrangements between neighbouring cells. Epithelia are particularly amenable
to comparison between theory and experiment as they are essentially 2D, hence (compara-
tively) easy to image and analyse. In Merkel et al. [118], the deformation of an epithelium is
quantitatively broken down into cellular growth, rotations, topological transitions and elonga-
tions. Active hydrodynamics has also been applied to the problem of cavity growth in Duclut
et al. [53], where a spherical shell of polarised cells grows by active flows of fluid into the centre.

So far this chapter has summarised a range of ways in which relevant theory from fluid
dynamics, soft matter, and statistical physics has proved relevant to, and formed a basis for,
physical descriptions of biological systems. Analytical theories, and more specifically hydrody-
namics, are powerful tools for predicting novel phenomena, and extending physical intuition.
However, they tend to drastically simplify the complexity of real organisms, and in striving for
generality tend to become less applicable to any one experimental system. In some ways this is
a strength, but often a more detailed description of a specific situation is required. For this we
must turn to computational methods. There is a vast literature on computational models in
biology [168] [5] [125], so in the next section I will only consider common models in the subfield
of tissue mechanics.

3.3 Computational models of tissues

Computational models of tissue mechanics aim to describe the dynamics of an aggregate of
many cells with a simplified representation that is computationally tractable. Here I will give a
brief overview of three common models: the Vertex Model, the Cellular Potts Model, and the
Phase Field Model.

3.3.1 The Vertex Model

Vertex Models describe a tissue as a set of vertices and edges that partition the 2D plane into
tessellating polygons [134] [59]. The positions of the vertices are then updated by calculating
the forces acting on them due to pressure and line tension. This approach is particularly well
suited to epithelia, which are close to 2D. The reduction of the tissue to a finite number of
vertices allows the dynamics to be calculated efficiently. Alt et al. have generalised the Vertex
Model to a 3D representation of the epithelium, with the constraint that the apical and basal
surfaces have the same topology [5]. Generalising the Vertex Model further to generic (i.e. non-
epithelial) 3D tissues has proven to be a significant challenge, due mainly to the wide variety of
topological transitions that can take place between neighbouring polyhedra in 3D space [140]
[76]. Although appropriate for confluent tissues, it is difficult to modify the Vertex Model for
situations where lumens open. Furthermore, cell-cell adhesions are included implicitly in the
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shared edge between neighbouring cells, which is a representation that does not lend itself to
explicitly including adhesion mediated phenomena. The discrete nature of the Vertex Model
representation makes it difficult to describe complex cell shapes, though a notable exception is
the example of scutoids in curved epithelia described by Gomez-Galvez et al. [71]. The lack of
smooth surface derivatives is an obstacle to including more complex active surface physics [164].
Despite these drawbacks, Vertex Models have been successful at describing tissue mechanics
in a wide range of systems. Bielmeier et al. use a Vertex Model to describe cyst formation at
the onset of cancer [20], Okuda et al. demonstrate the growth of 3D epithelial tubes [142], and
Okuda et al. combine a Vertex Model with Turing Patterns to model a variety of morphogenetic
processes [141].

3.3.2 The Cellular Potts Model

An alternative framework for tissue mechanics is the Cellular Potts Model [69]. The Cellular
Potts Model is defined on an N dimensional square lattice, much like the Ising Model. One
of a finite number of values is associated with each lattice site, representing a set of cellular
species, and the extracellular medium. A free energy is defined for the lattice, describing cell-
cell adhesions, line tensions, and pressure. Further complexity can be included, e.g. morphogen
gradients, by adding terms to the system’s Hamiltonian [41]. The dynamics are typically de-
scribed by a Monte Carlo update algorithm, where lattice values are assigned a new, random
value, and this change is accepted or rejected with a certain probability, dependent on the
resulting change in free energy. The Cellular Potts Model is popular for a number of reasons: it
is trivially generalised to 3D, Monte Carlo solvers are common, efficient, and well understood,
and there is no need to explicitly include topological transitions. However, there is a disadvan-
tage in that the dynamics are not the result of physical forces. The model does minimise its
free energy, but the trajectory it takes is not the steepest gradient path. The Cellular Potts
Model has been used by Graner and Glazier to model cell sorting by differential adhesion [72],
by Marée et al. to model cell movement [114], and by Szabó to model cancer [190], to name
but a few examples.

3.3.3 The Phase Field Model

The Phase Field Model describes cell boundaries as the level sets of a so called “phase field”
[139]. Phase Field Models are common in materials science, where they are used to describe
the dynamics of grain boundaries [187]. Dynamical equations for the evolution of the phase
field include cell level processes like line tensions, adhesions and pressure. Multiple cell species
can be included by using multiple phase fields. Generalisation of the model to 3D is trivial,
and in contrast to the Cellular Potts Model, the dynamics are due to physical forces. Phase
Field Models are a more recent introduction to the field of tissue mechanics than the Cellular
Potts Model or Vertex Model, however they have been used to study cell migration by Najem
et al. [135], and spindle positioning by Akiyama et al. [3]. There have also been extensions
to the basic Phase Field Model to include auxiliary fields describing e.g. extracellular fluid
with hydrodynamic reactions, or surface bound molecules [104]. Phase Field Models can be
computationally expensive as the phase field equations are solved on the whole of a space filling
grid in order to resolve mechanics that only occur at the cell surface. The abstraction of the
cell surface as the level set of a higher dimensional function is also an obstacle to including
more complex phenomena (e.g. diffusion of chemical species on the surface) and it remains to
be seen whether this obstacle can be overcome.
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3.4 Summary

In this chapter, I have summarised the existing literature on theoretical and computational
work relevant to my own. Hydrodynamic theories of complex fluids (e.g. multi species fluid
mixtures, or liquid crystals) have been extended to non-equilibrium scenarios by using On-
sager’s theory of non-equilibrium thermodynamics. This synthesis has resulted in a plethora
of theories and models describing biology at scales ranging from individual proteins to flocks
of organisms. The novel physics of these active matter system is beginning to be explored
and understood in specific systems, though no general theory, analogous to equilibrium sta-
tistical physics, yet exists. The significant increase in modern computing power has opened
the door for computational models of biological systems, which are becoming more and more
complex and realistic. These models are still restricted to representations of tissues that are
computationally efficient, and hence limited in their realism. However, they have been shown
to demonstrate biologically relevant processes like tissue deformations and cell locomotion, and
recent developments by Torres-Sánchez et al. on a continuous representation of cell surfaces
provides an exciting step forward [197].
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Chapter 4

The hydrodynamics of pumping cell
aggregates

In this chapter I discuss our hydrodynamic theory of pumping cell aggregates. Our aim with
this work was to describe cells in the hydrodynamic limit, with an emphasis on fluid pumping
phenomena, and in the hope of ultimately describing the formation of a fluid filled cavity
surrounded by tissue. In order to study the cavity forming behaviour of such cell aggregates,
we begin by describing, in the continuum limit, a system consisting of cells, water and generic
solute molecules.

4.1 Derivation of the hydrodynamic equations

4.1.1 Continuity equations

We consider a ternary fluid consisting of cells, water and solute molecules, as shown in Fig.
4.1. The solutes and water can pass through the cell membrane passively. Solutes can also
be pumped across the cell membrane by active transport. This active pumping can occur
both isotropically and along the polarity axis of the cell. As we are concerned with pumping
phenomena, we treat the cells as simply a membrane bound volume containing a binary fluid
of solutes and water. We neglect all other internal structure and complexity. By considering
volume elements that are large enough to contain many cells, the cells, solutes, water, polarity
and centre of mass velocity of the fluid can all be described by smooth, continuous fields.

In the following equations, nsm denotes the number density of the solutes in the medium,
nwm the number density of water molecules in the medium, and c(X) the number density of
cells with some internal state variable X. Note that nwm is the number of water molecules in
the medium of a volume element, divided by the volume of the volume element. The “local”
number density of water in the medium is n̄wm, i.e. the number of water molecules in the
medium of a volume element, divided by the extra-cellular volume of the volume element. The
volume of a water molecule is vw and the volume of a solute molecule is vs. We make the
approximation that cells are entirely described by the state variable X = {ns, nw, vc, ξ}, where
ns and nw are the total number of solute and water molecules in a cell, and vc is the volume of
the cell. The variable ξ quantifies the gradient of solutes in the cell, and is defined by taking the
first term in a moment expansion of the solute density within the cell. Let N s be the number
density of solutes inside the cell. ξ is then defined as

ξ =
1

vc

∫
vc

(r− r0)N sdV, (4.1)
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Figure 4.1
A ternary fluid consisting of cells, solutes (red) and water (blue).

where r is a point inside the cell, and r0 is the centre of the cell.

Throughout this chapter, greek indices are used to denote spatial coordinates. In the fol-
lowing, we use the Einstein summation convention over all repeated indices. For brevity, we
use n, nm, ν as vectorial notation for {ns, nw}, {nsm, nwm}, and {vs, vw} respectively. With
these conventions in place, the cells obey the following continuity equation,

∂tc+ ∂ns (J sc) + ∂nw (Jwc) + ∂v (Jvc) + ∂ξ
(
Jξc
)

+ ∂α (Vαc) = 0, (4.2)

where Vα is the velocity of the cells. The continuity equation can be written more succinctly
using the vector flux JX = {J s, Jw, Jv, Jξα}, as

∂tc+ ∂X
(
JXc
)

+ ∂α (Vαc) = 0. (4.3)

The solutes and water obey

∂tn
sm + ∂αJ

sm
α = −

∫
dXJ sc, (4.4)

∂tn
wm + ∂αJ

wm
α = −

∫
dXJwc. (4.5)

The limits of the integrals are
∫
dX =

∫∞
0
dns
∫∞

0
dnw

∫∞
0
dv
∫∞
−∞ dξ. For brevity these lim-

its will not be written explicitly. J sm
α , Jwm

α , and Vαc are the spatial fluxes of solutes, water and
cells respectively. J sc and Jwc are source terms in the solute and water continuity equations,
describing solute and water molecules crossing the cell membrane. J sc and Jwc also enter in
the cell equation as fluxes in the (unnormalised) probability density c, i.e. when a solute leaves
a cell with total internal solutes ns, c(ns) decreases, unless a solute also leaves a cell with total
internal solutes ns +1. The cell density must be positive, hence the fluxes J sc, Jwc, Jvc and Jξαc
vanish when ns = 0, nw = 0 or vc = 0. We also assume they vanish when ns → ∞, nw → ∞,
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vc →∞, ξ → −∞ or ξ →∞.

The local total number density of cells is given by integrating over all cell states

n =

∫
dXc(X). (4.6)

Using Eq. 4.2, the continuity equation for n is

∂tn+ ∂αJα = 0, (4.7)

with the total flux of cells

Jα = n〈Vα〉 =

∫
dXVαc. (4.8)

Here we have used the averaging operator for quantities that depend on the local density of
internal cell states:

〈f〉 =

∫
dXf(X)c(X)

n
. (4.9)

Eq. 4.7 demonstrates that n is conserved, i.e. we do not include any birth or death processes
for cells. The density of the fluid is

ρ = msnsm +mwnwm +

∫
dvcdn(msns +mwnw)c, (4.10)

where ms and mw are the mass of solute and water molecules respectively, and the centre of
mass velocity is

uα =
msJ sm

α +mwJwm
α +

∫
dvcdn(msns +mwnw)Vαc

ρ
. (4.11)

The density obeys the continuity equation

∂tρ+ ∂α(ρuα) = 0. (4.12)

The spatial fluxes in Equations 4.3 - 4.5 can be decomposed into centre of mass terms, and
fluxes relative to the centre of mass:

Vα = vα + uα, (4.13)

Jα = jα + uαn = (vα + uα)n, (4.14)

J sm
α = jsm

α + uαn
sm = (vsm

α + uα)nsm, (4.15)

Jwm
α = jwm

α + uαn
wm = (vwm

α + uα)nwm, (4.16)

where vα, vsm
α and vwm

α are the velocity of cells, solute and water molecules relative to the centre
of mass motion. Consequently, the continuity equations become

∂tc+ ∂α(uαc) + ∂X
(
JXc
)

+ ∂α (vαc) = 0 (4.17)

∂tn
sm + ∂α(uαn

sm) + ∂α(vsm
α nsm) = −

∫
dXJ sc, (4.18)

∂tn
wm + ∂α(uαn

wm) + ∂α(vwm
α nwm) = −

∫
dXJwc. (4.19)
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Substituting the relative fluxes jα, jsm
α , and jwm

α into the definition of uα, Eq. 4.11, we
deduce that they are not independent and verify the condition

n〈(msns +mwnw)v〉+msjsm +mwjwm = 0. (4.20)

We further assume that the fluid inside and outside of cells is incompressible, such that

nsmvs + nwmvw +

∫
dXvcc = 1 (4.21)

nsvs + nwvw = vc. (4.22)

The condition 4.21 results in a constraint on the divergence of the flow,

∂αuα +

(
vs − msvw

mw

)
∂α

(
jsm
α +

∫
dXcnsuα

)
= 0, (4.23)

where the second term depends on the difference in densities between solute and water
molecules. What does this term represent intuitively? Consider the case where solute and
water molecules have the same volume, but different masses. Enforcing Eq. 4.21, there can
be a net flow of mass into or out of a region of pure water, and hence a non-zero divergence
in uα, if water and solute molecules swap places. When the density of water and solutes are
approximated to be equal, we recover the familiar incompressibility condition ∂αuα = 0. Eq.
4.22 also results in the additional incompressibility constraint

Jv = vsJ s + vwJw, (4.24)

i.e. cell volume changes are due to the movement of solutes and water across the membrane.
Momentum is conserved, hence the centre of mass flow obeys

∂t(ρvα)− ∂βσtot
αβ = 0 (4.25)

where σtot
αβ is the stress tensor. In the low Reynolds number limit the inertial term can be

neglected and this becomes

∂βσ
tot
αβ = 0. (4.26)

By averaging over c, we derive the following equations for the average number of solutes in
a cell, the average cell volume, and the average ξ,

d〈ns〉
dt

= 〈J s〉+
〈ns〉
n
∂αuα −

∂α(〈uαns〉n)

n
(4.27)

d〈v〉
dt

= 〈Jv〉+
〈v〉
n
∂αuα −

∂α(〈uαv〉n)

n
(4.28)

d〈ξ〉
dt

= 〈Jξ〉+
〈ξ〉
n
∂αuα −

∂α(〈uαξ〉n)

n
. (4.29)

In the above equations we have introduced the convected time derivative, d
dt

= ∂t + uα∂α.

In order to solve the above continuity equations for cells, solutes, water and momentum
density, it is necessary to derive expressions for the various fluxes involved. The processes
driving these fluxes can be separated into passive and active terms. The passive processes
can be described by considering an equilibrium description of the fluid. The active terms can
be described near to equilibrium by using the theory of non-equilibrium thermodynamics to
write a series expansion of the fluxes in terms of thermodynamic forces. We first consider the
equilibrium case.
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4.1.2 Thermodynamic equilibrium

The equilibrium processes can be described using classical thermodynamics, starting with the
free energy of a ternary fluid of water, solutes and passive “cells”. This passive limit is similar
to synthetic biology experiments where enzymatic reactions take place within lipid vesicles [58]
[78].

The free energy

We write the free energy of a volume V of this fluid as F =
∫
V dV f

tot, with f tot and f the free
energy densities

f =

∫
dX [f c(X) + P c(n · ν − vc)] c+ fF(nF) + fm(nm, n, 〈vc〉) + Pm (nm · ν + n〈vc〉 − 1)

(4.30)

f tot = f + kT

∫
dXc ln

( c
n

)
. (4.31)

f c(X) is the free energy of an individual cell with internal state X. Pc is the pressure in the
cell, introduced as a Lagrange multiplier enforcing incompressibility of the intracellular fluid.
fF is the free energy associated with a fuel molecule (e.g. ATP) with number density nF. Here
we will simply write fF = ∆µnF where ∆µ, the change in free energy due to the hydrolysis of
one ATP, is a constant in time and space. fm is the contribution to the free energy density
arising from mixing of cells and species in the medium, and interactions between cells. For
simplicity we assume here that it depends on the average cell volume 〈vc〉 and total density
n, rather than on the full cell density c(X). Furthermore, we assume there are no interactions
(e.g. electrostatic forces) between solute and water molecules. Pm is the extracellular pressure,
enforcing incompressibility in the extracellular fluid. Finally, the term in ∼ c ln c/n is an en-
tropic term associated with the probability distribution c/n. The Gibbs entropy of a single cell
drawn from the probability distribution c/n is scell = −k c

n
ln
(
c
n

)
, hence the contribution to the

free energy density of a volume element containing n cells is −Tn
∫
dXscell = kT

∫
dXc ln

(
c
n

)
.

We postulate the following simple form for the free energy of an individual cell,

f c(X) =kT

[
ns ln

(
ns

ns + nw

)
+ nw ln

(
nw

ns + nw

)]
+
K

2
ξ2 + f c

0(vc), (4.32)

where the first term arises from the mixing entropy of an ideal solution of ns solutes molecules
and nw water molecules [68]. In general the free energy of a cell will have some contribution
from ξ. For simplicity we only consider the lowest order term in an expansion in small ξ, K

2
ξ2.

This term penalizes gradients of concentration in the cell. The third term contains additional
contributions to the cell free energy. We assume that this contribution depends only on the cell
volume vc, e.g. arising from the surface tension of an idealised spherical cell.

We postulate the following free energy density of the extracellular medium fm:

fm =kT

(
nsm ln

nsm

nsm + nwm
+ nwm ln

nwm

nsm + nwm

)
+ kTnZ̃(φ) +

Kc

2
(∂αn)2. (4.33)

where φ = n〈vc〉 is the cell volume fraction. The first term is a contribution coming from
mixing of extracellular solutes and water. The second term corresponds to a contribution to
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the free energy coming from the entropy of mixing and interactions of cells in the medium.
kT Z̃(φ) is the excess free energy of a cell that was not already taken into account in f c. The
non-dimensional function Z̃(φ) satisfies Z̃(φ) = lnφ for φ → 0, such that the free energy re-
duces to the ideal gas entropy of mixing at infinite dilution. The precise form of Z̃(φ) away
from the φ→ 0 limit depends on the exact cell shapes and the nature of their interactions. To
model the effect of inhomogeneities in the fluid, we follow the approach of Cahn and Hilliard
[28], and include a term Kc

2
(∂αn)2 in the medium free energy, which penalises gradients in the

cell density field.

What form can we hypothesise for the cellular contribution Z̃(φ)? We obtain it from the
following approximate calculation: We consider that cells are positioned on a lattice, where the
volume of a lattice site is equal to the volume occupied by one water molecule. We assume
that cells can take any shape but can not overlap. Starting with a volume V corresponding to
a lattice of M = V/vw sites, the number of ways N = nV cells, each occupying m = 〈vc〉/vw

lattice sites, can be placed consecutively is Ω = M(M−m)(M−2m)...(M−(N−1)m)/(N !). By
enumerating the microstates in this way we neglect jamming effects at high packing fraction, as
well as the configurational entropy of individual cells that can take any shape. The contribution
to the entropy density of mixing cells in the extracellular medium is then given in the large

volume limit by s = k
V

ln(Ω) ' k
〈vc〉

[
φ ln

(
〈vc〉
vw

)
− φ lnφ− (1− φ) ln(1− φ)

]
, where V is the

total volume of the system and k the Boltzmann constant. A similar approach has been
introduced to estimate the mixing entropy of macroemulsions [160]. A more detailed expression
for the entropy of a liquid, modelled as an asymmetric binary hard sphere fluid, was derived
by Carnahan and Starling by taking the equation of state of an ideal gas and adding an
approximation of the Virial expansion [30, 12]. We have chosen not to use the more complicated
Carnahan-Starling formula as it does not change the qualitative behaviour of the entropy [121],
and we recognise that treating cells as hard spheres is itself an approximation. Consequently,
the entropic contribution of cells to the free energy is

f entropic =
kT

〈vc〉

[
φ ln

(
vwφ

〈vc〉

)
+ (1− φ) ln(1− φ)

]
(4.34)

Finally, adhesion forces are taken into account via a pairwise cell interaction term − εφ2

2〈vc〉 , where

ε is the adhesion energy of a single cell-cell bond. Consequently, the function Z̃ is

Z̃(φ) =

(
ln

(
φvw

vc

)
+

1− φ
φ

ln(1− φ)

)
− ε

2kT
φ, (4.35)

and the free energy of the medium is

fm =
kT

vs

(
φsm ln

nsm

nsm + nwm
+
vs

vw
φwm ln

nwm

nsm + nwm

)
+

kT

〈vc〉φ
(

ln

(
φvw

vc

)
+

1− φ
φ

ln(1− φ)

)
− ε

2kT
φ+

Kc

2
(∂αn)2. (4.36)

To compare the order of magnitude of different contributions to fm, we note that the typical
cell volume is vc ≈ 4× 103 µm3 and the molecular volume of water, vw ≈ 10−11 µm3. Relevant
biological solute volumes range from ions (vs ≈ 10−11 µm3), to proteins (vs ≈ 10−6 µm3, though
this varies greatly between proteins and folding states). Therefore the term starting kT/〈vc〉
is between 9 and 14 orders of magnitude smaller than the term starting kT/vs (the logarithm

of the large quantity 〈v
c〉
vw is still a relatively small number of order 1). This corresponds to our

intuition that cells, being macroscopic objects, do not contribute a significant mixing entropy
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Figure 4.2
The free energy density surface of the passive, ternary system described in Eq. 4.64, with

Z̃(φ) given by Eq. 4.35. The surface is shown below (A), and above (B), the critical adhesion
energy Eq. 4.66. These plots were made with vs = vw and unrealistic numerical values of the

parameters for improved visualisation.

to the system. Nevertheless, we introduce this term here for completeness.

The form of Z̃ in Eq. 4.35 is only valid when φ is not close to 1. When the cells become
densely packed, elastic effects will dominate over the balance of entropy and adhesion described
above. As such, we will continue to work with the function Z̃, as opposed to the explicit
expression in Eq. 4.35, where possible.

Chemical potentials and osmotic pressures

From the expression for the free energy density, Eq. 4.30, we introduce the chemical potentials
associated to different concentrations as:

µ ≡ δf

δc
=f c + Pc(n · ν − vc) + Pmvc +

∂fm

∂n
+
vc − 〈v〉

n

∂fm

∂〈vc〉 (4.37)

µsm ≡ ∂f

∂nsm
=
∂fm

∂nsm
+ Pmvs (4.38)

µwm ≡ ∂f

∂nwm
=
∂fm

∂nwm
+ Pmvw. (4.39)

We denote ∆µ ≡ ∂fF/∂nF, i.e. the difference in free energy between ATP and ADP. With
the free energies f c and fm introduced in Eqs. 4.32 and 4.33, the explicit expressions for the
chemical potentials are:

µsm = kT ln

(
nsm

nsm + nwm

)
+ Pmvs (4.40)

µwm = kT ln

(
nwm

nsm + nwm

)
+ Pmvw , (4.41)

and

40



µ =kT

{
ns ln

(
ns

nw + ns

)
+ nw ln

(
nw

nw + ns

)}
+
K

2
ξ2 + f c

0(vc) + P c(n · ν − vc) + Pmvc

+ kT

(
Z̃ +

vc

〈vc〉φZ̃
′(φ)

)
−Kc∂2

αn (4.42)

µtot =µ+ kT ln
c

n
. (4.43)

At equilibrium, the free energy is constrained by the condition of conservation of the number
of molecules ∫

V
dV

(
δnm +

∫
dXnδc

)
= 0, (4.44)

and the constraint of a fixed total number of cells
∫
V dV n = NTot. Minimising the constrained

free energy with respect to both c and nm, and eliminating one Lagrange multiplier between
the two results in the balance condition:

µtot = µm · n + λ, (4.45)

with λ the other Lagrange multiplier. Substituting Eqs. 4.40 and 4.41 for the chemical poten-
tials in the medium, and Eq. 4.43 for the cell chemical potential, into Eq. 4.45 gives rise to the
equilibrium distribution:

c = n
exp

[
−µ−µm·n

kT

]∫
dX exp

[
−µ−µm·n

kT

] , (4.46)

where the Lagrange multiplier is absorbed into the normalisation condition in the denominator
of Eq. 4.46.

It is informative to consider the limit where this distribution is narrowly peaked. In the
limit T → 0, the equilibrium value of X is found by minimizing µ− µm · n with respect to vc,
n, and ξ:

∂vµ = 0

∂nµ = µm

∂ξµ = 0. (4.47)

As the contribution to the free energy from intra-cellular solute gradients is K
2
ξ2, the third

equation states that the intracellular gradient of solutes vanishes at equilibrium. Using the
explicit expressions for the chemical potentials 4.40-4.43, the first two equilibrium conditions
above can be written

Pm − P c = −f c
0
′(vc)− kTnZ̃ ′(φ) (4.48)

Pm − P c =
kT

vs

[
ln

(
ns

ns + nw

)
− ln

(
nsm

nsm + nwm

)]
(4.49)

Pm − P c =
kT

vw

[
ln

(
nw

ns + nw

)
− ln

(
nwm

nsm + nwm

)]
. (4.50)

Eq. 4.48 corresponds to a mechanical balance equation. Modelling the cell as a sphere
with surface tension γ, f c0(vc) = γ(36πvc2)

1
3 and f c0

′(vc) = γ(4π/(3vc))
1
3 = 2γ/r with r the cell

radius. Therefore, this term corresponds to the Law of Laplace applied to a spherical surface
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under tension, P c − Pm = 2γH, for mean curvature H. With a typical cell surface tension
γ ∼ 102 pN µm−1 [60], and cell radius 10µm, the corresponding difference of pressure is ∼ 20Pa.
The second term corresponds to the effect of cell-cell interactions on the cell volume. In the
dilute cell limit φ→ 0, Z̃ → ln(φ), and φZ̃ ′(φ)→ 1 and the corresponding pressure correction
is kT/〈vc〉, of order ∼ 10−6Pa, and therefore generally negligible compared to other terms in
the equation.

In the limit of dilute solutes in both the cell and the extracellular medium, nsm � nwm and
ns � nw, Eq. 4.50 further simplifies:

Pm − P c ' kT

(
nsm

1− φ −
ns

vc

)
. (4.51)

This equation corresponds to the balance of hydrostatic and osmotic pressure across the cell
interface, Pm − P c = πm − πc, where

πm =kT
nsm

1− φ, (4.52)

πc =
kTns

vc
. (4.53)

These expressions are in agreement with the van’t Hoff law [202], as ns

vc and nsm

1−φ are the local
solute concentrations inside and outside of the cell.

Introducing polarity

In general, cells can polarise. Consequently we introduce the polarity field pα, with free energy

F p =

∫
dV

{
a

2
p2
α +

b

4
p4
α +

Kp

2
(∂αpβ)2

}
, (4.54)

where Kp is the Frank constant (here we approximate bend, twist and splay constants to be
equal). The constants a and b determine the internal polarity dynamics of each cell. When
a, b > 0, the ground state of an isolated cell is unpolarised. When a < 0, b > 0, the groundstate

polarity vector has norm |p| =
√
|a|
b

, and the direction is unconstrained. b provides a non-linear

penalty to polarising, hence limits the growth of polarised states. The molecular field, hα, is
defined

hα = −δF
p

δpα
. (4.55)

The equilibrium stress

The equilibrium stress can be calculated from the Gibbs-Duhem relation. Perturbing the fluid
with a uniform translation x′ = x + δx results in a change of the free energy

δF =

∫
V
dV

[[
− µsm∂αn

sm − µwm∂αn
wm −∆µ∂αn

F −
∫
dXµtot∂αc

]
δxα + hα(∂βpα)δxβ

]
+

∫
S
dSα

[
f totδxα −

∂f

∂(∂αpγ)
(∂βpγ)δxβ

]
(4.56)
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The volume integral corresponds to the variation of F in V , whereas the surface integral is
due to the free energy density swept out by the volume when it is translated. Integrating by
parts,

δF =

∫
V
dV

[[
(∂αµ

sm)nsm + (∂αµ
wm)nwm + (∂α∆µ)nF +

∫
dX(∂αµ

tot)c
]
δxα + hα(∂βpα)δxβ

]
+

∫
S
dSα

[(
f tot − µsmnsm − µwmnwm −∆µnF −

∫
dXµtotc)δαβ −

∂f

∂(∂αpγ)
(∂βpγ

)]
δxβ

(4.57)

The work done on a fluid with equilibrium stress tensor σe
αβ undergoing a deformation described

by sheer tensor ∂αδxβ is [103] [32]

δF =

∫
dV σe

αβ∂αδxβ

=

∫
dSασ

e
αβδxβ −

∫
dV δxβ∂ασ

e
αβ. (4.58)

By comparing Eq. 4.57 and Eq. 4.58, we can identify the equilibrium stress tensor

σe
αβ =

(
f tot − µsmnsm − µwmnwm −∆µnF −

∫
dXµtotc

)
δαβ −

∂f

∂(∂αpγ)
(∂βpγ) (4.59)

= −P eδαβ −
∂f

∂(∂αpγ)
(∂βpγ), (4.60)

where P e is the equilibrium fluid pressure. The final term in Eq. 4.59 is a standard result
from liquid crystal physics [45]. Evaluating Eq. 4.59 results in the equilibrium pressure:

P e = Pm + kTnZ(φ)−Kc

(
(∂αn)2

2
+ n∂2

αn

)
−Kp(∂αpγ)(∂βpγ −

1

3
(∂δpγ)

2) . (4.61)

The first two terms correspond to the sum of the pressure in the medium Pm, and to an excess
pressure that arises from cellular interactions. The function Z(φ) = φZ̃ ′(φ) can be seen as the
equation of state of the cellular aggregate. For translationally invariant systems, there can be
no change in free energy due to the translation δxα, hence δF = 0. This allows us to identify
the Gibbs-Duhem relation from Eq. 4.57 as

−∂βσeαβ = (∂αµ
sm)nsm + (∂αµ

wm)nwm + hβ∂αpβ + (∂α∆µ)nF +

∫
dX(∂αµ

tot)c. (4.62)

Spinodal phase separation

We discuss here whether the formation of a cavity in a tissue can be modelled as a phase sepa-
ration event, similar to spinodal decomposition in binary fluid mixtures [27], where an initially
uniform system transitions to cell dense (tissue) and cell poor (cavity) phases. To describe
such a process, we consider apolar cells, that maintain a constant volume, vc. Furthermore,
the total number of cells, and the total number of extracellular solutes, is conserved. We then
consider the stability of a homogeneous system with respect to perturbations in the cell and
solute profiles. In this scenario, the free energy is

F =

∫
dV fm + λsm

(∫
dV (1− φ)φ̄sm − vsN sm

)
, (4.63)
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where φ̄sm = nsmvs

1−φ is the volume fraction of solutes in the extra cellular medium, N sm is the
total number of solutes in the extra cellular medium, and λsm is a Lagrange multiplier enforcing
solute conservation. The medium free energy density, fm (Eq. 4.33) can be written:

fm =− kT

vs
(1− φ)

[
φ̄sm ln

(
1 +

vs

vw

1− φ̄sm

φ̄sm

)
+
vs

vw
(1− φ̄sm) ln

(
1 +

vw

vs

φ̄sm

1− φ̄sm

)]
+
kT

vc
φZ̃(φ) +

Kc

2vc2
(∂αφ)2. (4.64)

Evaluating the equilibrium condition δF
δφ̄sm = 0 with the above free energy results in a φ̄sm that is

spatially uniform: solutes are homogeneously distributed in the extracellular medium. This is
not unexpected as the solute contribution to fm is entirely entropic, hence favours a maximally
mixed state. Consequently, when considering the stability of the mixture, we can set φ̄sm to a
constant. Since the extracellular volume,

∫
dV (1− φ), is also fixed, the first term in Eq. 4.64

is also a constant. The free energy in Eq. 4.64 then reduces, up to a constant, to the last two
terms in Eq. 4.64. Example free energy surfaces of the kind described by Eq. 4.64, are shown
in Fig. 4.2. Enforcing a constant φ̄sm is equivalent to considering the free energy along a line
φc = 1− φsm

φ̄sm
0

, for some constant φ̄sm
0 . An example of the free energy along such a line is shown

in Fig. 4.3. An instability of the homogeneous state arises when ∂2fm

∂φ2 < 0, i.e. there exists
some concave region of the free energy curve. This condition corresponds to

Z(φ) + φZ ′(φ) < 0 , (4.65)

with Z(φ) = φZ̃ ′(φ).
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Figure 4.3
The free energy curve along a line φ̄sm = const. The binodals, φB, lie on a common tangent.
The spinodals, φS, are at the inflection points of the curve. This plot was made with vs = vw

and unrealistic numerical values of the parameters for improved visualisation.

Substituting the explicit expression for Z̃ in Eq. 4.35, the instability condition becomes

ε > ε∗ =
kT

φ(1− φ)
. (4.66)

How does this critical adhesion strength compare to biologically realistic adhesions? To
estimate ε, we rely on previous studies of binding affinities and energy of homo and heterotypic
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cadherin junctions [33, 91]. These studies estimate the number of cadherin dimers across a
cell-cell junction at ∼ 100, and the binding energy of a single cadherin bond ∼ 4× 10−20 J.
Hence we obtain ε ∼ 4× 10−18 J. The adhesion energy above which spinodal phase separation
will occur is ε∗ ≈ 10−20J for φ = 1

2
. We conclude that cadherin mediated adhesion is in principle

large enough to overcome the entropic mixing of cells.

The phase separation of the system into cell rich and cell dense phases proceeds in a similar
manner to standard binary fluid spinodal decomposition [32]. Below the critical adhesion
energy, the curve is entirely convex, and hence stable. Above the critical adhesion energy, the
curve develops two minima, a region becomes convex, and hence unstable. The binodals, φB,
are the values of φ for the two separated phases that minimise the overall energy of the system,
while satisfying the conservation of solutes and cells. They lie on a common tangent, as shown
in Fig. 4.3. The spinodals are the inflection points of the curve, satisfying

∂2fm

∂φ2
= 0. (4.67)

Above the critical adhesion energy, the system can exhibit three different behaviours, de-
pending on the initial proportions of cells and extra cellular fluid. For φ outside of the binodals,
the system is stable, and will remain in a mixed state. Between the binodals and spinodals,
the system is metastable and phase separation will progress via nucleation. Within the spin-
odals, it is energetically favourable for the fluid to locally separate into cell over-dense and cell
under-dense regions, hence the system is unstable and undergoes spinodal phase separation.
Although this analysis demonstrates that the system will phase separate for ε > ε∗, it does not
address the timescale on which phase separation will occur. The speed of phase separation will
be dealt with below when dynamic equations for the system are introduced.

4.1.3 Non-equilibrium phenomena

Entropy production and the Onsager theory of non-equilibrium thermodynamics

The previous analysis treated the system as a passive ensemble of solutes, water and vesicles in
equilibrium. However, many biological processes occur out of equilibrium, driven by the hydrol-
ysis of ATP. In order to describe these processes, we follow the formalism of non-equilibrium
thermodynamics first proposed by Onsager [143], and widely used in the study of irreversible
processes [46] [117] [83] and active matter [88] [113]. We start by deriving the rate of free energy
production.

4.1.4 Free energy production

The free energy differential is

df tot = −µsmdnsm − µwmdnwm −∆µdnF −
∫
dXµtotδc+ hαdpα. (4.68)

Including the rate of change of kinetic energy, the rate of change of the free energy reads

dF

dt
=

∫
V
dV

[
d

dt

(
1

2
ρu2

)
+ µsm∂tn

sm + µwm∂tn
wm + ∆µ∂tn

F +

(∫
dXµtot∂tc

)
− hα∂tpα

]
.

(4.69)
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Using mass conservation (Eq. 4.12), force balance (Eq. 4.25), and performing an integration
by parts, we find

dF

dt
=

∫
V
dV

{
− (σ̃αβ − σ̃eαβ)ũαβ + (P − P e)vγγ − hα

Dpα
Dt

+ (∂αµ
sm)jsm

α + (∂αµ
wm)jwm

α − r∆µ

+

∫
dXc[(∂nsµ− µsm) J s + (∂nwµ− µwm) Jw + (∂vµ)Jv + (∂ξµ) · Jξ + (∂αµ

tot)vα]

}
(4.70)

where σαβ = σtot
αβ+ρvαvβ, and we have used the Gibbs-Duhem relation (Eq. 4.62). Furthermore,

we have introduced the corotational time derivative
Dpα
Dt

= ∂tpα + uβ∂βpα + ωαβpβ , (4.71)

with ωαβ = 1
2
(∂αuβ − ∂βuα) the antisymmetric part of the gradient of flow. In addition,

r = −∂tnF is the rate of consumption of the fuel molecule, and ∆µ is the change in chemical
potential between the fuel molecule and its products, which we have taken here to be uniform
for simplicity. In the result above we do not write explicitly a surface term that would appear
for the entropy production of a closed volume. The difference of non-equilibrium pressure
P = −1

3
σγγ, and equilibrium pressure P e = −1

3
σeγγ, is coupled to the divergence of the flow

uγγ = ∂γuγ. The traceless symmetric part of the stress tensor σ̃αβ = 1
2
(σαβ + σβα) − 1

3
σγγδαβ,

relative to its equilibrium counterpart, is coupled to the traceless symmetric part of the gradient
of flow, ũαβ = 1

2
(∂αuβ + ∂βuα)− 1

3
uγγδαβ. To arrive at the result above, we also have used that

angular momentum conservation implies here [88]:

σaαβ − σe,aαβ =
1

2
(pαhβ − pβhα) (4.72)

where Aa denotes the antisymmetric part of the tensor A.

The relative fluxes jα, jsm
α , jwm

α are not independent (Eq. 4.20). We use this constraint to
eliminate the relative flux of water in the medium jwm

α . Using the incompressibility conditions
Eqs. 4.23 and 4.24 to eliminate the flow divergence uγγ and the flux of water across cell
membranes Jw, we further obtain

dF

dt
=

∫
V
dV

{
− (σ̃αβ − σ̃eαβ)ũαβ − hα

Dpα
Dt
− r∆µ+

(
∂α

(
µ̃sm −

(
vs − msvw

mw

)
(P − P e)

))
jsm
α

+

∫
dXc

[(
∂nsµ̃− µ̃sm − vs

vw
∂nw µ̃

)
J s +

(
∂vµ+

∂nw µ̃

vw

)
Jv + (∂ξµ) · Jξ

+

(
∂α

(
µ̃−

(
vs − msvw

mw

)
(P − P e)ns

))
vα

]}
, (4.73)

where again we do not write surface terms after performing an integration by parts. Finally,
this expression can be written in a compact form as

dF

dt
=

∫
V
dV

{
− (σ̃αβ − σ̃eαβ)ũαβ − hα

Dpα
Dt

+ (∂αµ̄
sm) jsm

α − r∆µ

+

∫
dXc

[
−∆µsJ s −∆ΠJv − χαJξα + (∂αµ̄) vα

]}
, (4.74)

where we have defined χ = −∂ξµ. We have also introduced the effective chemical potentials

µ̄sm = µsm − ms

mw
µwm −

(
vs − msvw

mw

)
(P − P e), (4.75)

µ̄ = µ+ kT ln
c

n
− msns +mwnw

mw
µwm −

(
vs − msvw

mw

)
(P − P e)ns, (4.76)
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and the effective chemical potential difference and pressure

∆µs = ∂nsµ− µsm − vs

vw
(∂nwµ− µwm), (4.77)

∆Π = ∂vµ+
∂nwµ− µwm

vw
. (4.78)

In the limit of dilute solutes in the cells and in the extracellular medium, the effective
chemical potential and effective pressure difference have the form:

∆µs ' kT ln

(
vcnsm

ns(1− φ)

)
, (4.79)

∆Π ' kT

(
ns

vc
− nsm

1− φ

)
− kTnZ̃ ′(φ)− f c

0
′(vc)

= ∆P −∆π . (4.80)

where ∆P is the equilibrium difference of pressure between the medium and fluid inside the
cells, as defined in Eq. 4.48; and ∆π = πm − πc with πm amd πc the osmotic pressure in the
extracellular medium and in the cell, as defined in Eq. 4.53-4.52. It is convenient to introduce
the local concentration of solutes in the cell, n̄s = ns/vc, and in the medium n̄sm = nsm/(1−φ).
In Eq. 4.80, we have identified πc = kT n̄s and πm = kT n̄sm as the osmotic pressures in the cell
and in the medium, as given by the van’t Hoff law.

The first four terms in Eq. 4.74 are standard pairs of fluxes and forces which appear
in hydrodynamic theories of active polar fluids [88]. They describe, respectively, dissipation
associated to the fluid deformation, changes in the polar order, flux of solutes and consumption
of the fuel molecule. The last term, which integrates over the distribution of cell states X,
describes dissipation associated to changes in the number of solutes, cell volumes, and internal
solute gradients within the fluid, and to the flow of cells across fluid elements.

4.1.5 Constitutive equations

From the expression for the rate of change of the free energy, we identify the generalised
thermodynamic flux/force pairs:

Flux Force
σ̃αβ − σ̃eαβ ũαβ

Dpα
Dt

hα
jsm
α - ∂αµ̄

sm

r ∆µ
vα -∂αµ̄
J s ∆µs

Jv ∆Π
Jξα χα

Writing the fluxes as a power series expansion of the forces to linear order, we obtain the
following set of constitutive equations:
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σ̃αβ − σ̃eαβ =2ηũαβ + ν1 [̃pαhβ] + qαβζ∆µ− νsm ˜[pα∂βµ̄sm]

+

∫
dX
[
−νc(X) ˜[pα∂βµ̄c] + νs(X)qαβ∆µs + νv(X)qαβ∆Π + νξ(X)[̃pαχβ]

]
(4.81)

Dpα
Dt

=
1

γ1

hα − ν1pβũαβ + λpα∆µ+ κsm∂αµ̄
sm

+

∫
dX[κc(X)∂αµ̄

c + κs(X)pα∆µs + κv(X)pα∆Π + κξ(X)χα] (4.82)

jsm
α =− γs∂αµ̄

sm + νsmpβũαβ + pαλ
sa∆µ− κsmhα

+

∫
dX[−Λsm,c(X)∂αµ̄

c + Λsm,s(X)pα∆µs + Λsm,v(X)pα∆Π + Λsm,ξ(X)χα]

(4.83)

vα =− γ(X)∂αµ̄
c − νc(X)pβũαβ + pαλ

ca(X)∆µ− κc(X)hα

− Λsm,c(X)∂αµ̄
sm + Λc,s(X)pα∆µs + Λc,v(X)pα∆Π + Λc,ξ(X)χα

(4.84)

J s =Λs(X)∆µs − νs(X)qαβũαβ + Λsa(X)∆µ+ κs(X)pαhα

− Λc,s(X)pα∂αµ̄
c − Λsm,s(X)pα∂αµ̄

sm + Λs,v(X)∆Π + Λs,ξ(X)pαχα
(4.85)

Jv =Λv(X)∆Π− νv(X)qαβũαβ + Λva(X)∆µ+ κv(X)pαhα

− Λc,v(X)pα∂αµ̄
c − Λsm,v(X)pα∂αµ̄

sm + Λs,v(X)∆µs + Λv,ξ(X)pαχα
(4.86)

Jξα =Λξ(X)χα − νξ(X)pβũαβ + Λξa(X)pα∆µ+ κξ(X)hα

− Λc,ξ(X)∂αµ̄
c − Λsm,ξ(X)∂αµ̄

sm + Λs,ξ(X)pα∆µs + Λv,ξ(X)pα∆Π
(4.87)

r =Λ∆µ− ζqαβũαβ + λpαhα − λsapα∂αµ̄
sm

+

∫
dX
[
− λca(X)pα∂αµ̄

c + Λsa(X)∆µs + Λva(X)∆Π + Λξa(X)pαχα
]
.

(4.88)

Here we have introduce the nematic tensor qαβ = pαpβ − 1
3
pγpγδαβ. Ã denotes the traceless,

symmetric part of a tensor A. These constitutive equations are linear flux-force relationships
that can be written Jm = OmnFn for fluxes Jm and forces Fm. They can be split into dissipative
and reactive parts, Jm = Od

mnFn + Or
mnFn. The dissipative couplings are between fluxes and

forces with opposite time reversal symmetry, and obey Od
mn = Od

nm. These terms contribute
to entropy production. The reactive couplings are between fluxes and forces with the same
time reversal symmetry, and obey Or

mn = −Or
nm [88]. All coupling constants are, in principle,

functions of the variables n, nsm, 〈ns〉, 〈vc〉, and pα, characterising the state around which the
non-equilibrium theory is expanded. In addition, some coupling constants depend on the cell
state X; here this dependency has been made explicit. However, the Onsager theory places no
constraints on how the coupling constants depend on the state variables.

In the above, all possible linear couplings between fluxes and forces have been written,
resulting in equations which contain a large number of terms and coupling coefficients. Fur-
thermore, the assumption of being near to equilibrium that enforces the Onsager symmetry
relations is not necessarily appropriate for biological cells. Therefore, we propose consti-
tutive equations which retain specific couplings, guided by the physical process of cell ag-
gregation, and we make a number of simplifications: we consider flows occurring at low
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Reynolds number. We restrict ourselves to a strongly peaked cell distribution c(ns, nw, vc, ξ) =
nδ(ns− 〈ns〉)δ(vc− 〈vc〉)δ(nw − 〈nw〉)δ(ξ− 〈ξ〉), where 〈ns〉, 〈nw〉, 〈vc〉 and 〈ξ〉 are the average
number of internal solutes, water molecules, cell volume, and intracellular solute gradient, and
n is the total cell number density, in a given volume element (we now drop the 〈·〉 notation
for convenience). Contributions from the entropic term ∼ c ln c are also neglected. We further
consider that the fuel chemical potential ∆µ is uniform in space.

We write constitutive equations for the deviatoric stress tensor and polarity dynamics,
analogous to the theory of active fluids [85]:

σ̃αβ − σ̃eαβ =2ηũαβ + 2ηṽαβ + ζ∆µqαβ (4.89)

Dpα
Dt

=
1

γ1

hα − κ∂αn (4.90)

where η is the fluid viscosity, ζ∆µqαβ is the active anisotropic stress, 1/γ1 describes dissipation
associated to polarity changes, and κ is a coupling between the gradient of cell density and
polarity. Here we do not enforce the Onsager symmetry relations, as these equations describe
cellular processes which we do not expect to be close to equilibrium. Equation 4.89 describes
the contribution to the stress tensor from the passive shear viscosity, η, and from an active
stress due to the polarity. We assume that viscous stresses arise mostly within cells, and there-
fore have introduced the tensor vαβ = 1

2
(∂αvβ + ∂βvα); such that uαβ + vαβ is the gradient of

flow in the cell phase. Eq. 4.90 describes the evolution of the polarity. The molecular field, hα,
acts to minimise the polarity free energy in Eq. 4.54. The coupling constant κ determines the
response of the polarity to gradients in the cell density n, which will be particularly strong at
tissue boundaries.

We next write three constitutive equations for the rate of change of the cell state variables:

J s =Λs∆µs + Λsa∆µ (4.91)

Jv =vsJ s + Λw∆Π + Λwa∆µ (4.92)

Jξα =Λξχα + Λsm,ξ∂αµ̄
sm (4.93)

Eq. 4.91 describes the movement of solutes across the membrane by passive and active
transport, with Λs the passive membrane permeability to solutes. ∆µs ' kT ln n̄sm

n̄s , where
the approximation is in the limit of dilute solutes, is the driving thermodynamic force for the
passive movement of solutes across the membrane due to any imbalance of chemical potentials
inside and outside of the cell. A membrane permeability coefficient λm can be defined for
a given species by relating the flux of molecules through the membrane Jm to the difference
of concentration across the membrane ∆c, Jm = λm∆c. What are the typical values of this
quantity? The permeability of an artificial lipid bilayer is λm = 10−10 µm s−1 [214]. The per-
meability of real cell membranes is greatly increased by the presence of ion channels. Cahalan
et al. state that single ion channels typically transport more than 106 molecules per second
[26], and Ritchie et al. report sodium channel densities of ≈ 200 µm−2 [156]. For a cell of
radius 10 µm, this results in an order of magnitude estimate of λm ≈ 1 µm s−1. At the other
end of the size spectrum, proteins are transported in and out of the cell by exocytotic vesicles.
Sheetz et al. report the rate at which material is added to the cell membrane by vesicles is
1 µm2 s−1 [178]. Proteins in the cell can have a typical radius of 10 nm (e.g. ATP-ase [130]),
vesicles have a typical radius of a few hundred nanometres [189], and vesicles typically contain
between 1 and 10 proteins [133]. Consequently, approximately 10 proteins leave the cell by
exocytosis per second, corresponding to λm = 10−8 µm s−1. Consequently, values for λm are in
the range 10−8 − 1 µm s−1. For a spherical cell the coefficient Λs is related to the membrane
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permeability coefficient (at small difference of concentration across the cell membrane) through
ΛskT/n̄s = 4πR2λm; hence ΛskT/n̄s ∼ 10−5 − 103µm3/s

−1
with R = 10µm. Λsa∆µ is the flux

describing active transport of solutes across the cell membrane.

Equation 4.92 describes changes in volume due to the flux of solutes and water across
the membrane, where we have followed the incompressible decomposition of volume change
4.24. For ∆µ = 0, the flux of water is driven by the balance of hydrostatic pressure, ∆P ,
and osmotic pressure, ∆π, with ∆Π = ∆P − ∆π. The difference in pressure between the
extracellular medium and the cell, ∆P , is the result of both passive surface tension and bulk
effects. The coefficient Λw is related to the permeability to water of the cell membrane, Lp, for
a spherical cell with radius R by Λw = 4πR2Lp. With Lp ∼ 10−6 µm s−1 Pa−1 [56], one obtains
Λw ∼ 10−3 µm3 s−1Pa−1. In the non-equilibrium case, the flux of water across the membrane
gains an active contribution Λva∆µ, coming for instance, from the tension in the actomyosin
cortex.

We then consider constitutive equations for the cell and solute velocities v and vsm. We
first split the total solute velocity into three parts, arising respectively from passive motion of
solutes in the extracellular medium, passive motion of solutes through cells, and active pumping
by cells:

vsm
α = vsm0

α − φΛsm,ξ

nsm

(
∂αµ̄

sm +
kT

Kn̄smvc
2
3

χα

)
+ λsa∆µnpα. (4.94)

For a cell with an internal solute concentration gradient there will be more solutes passing
through the membrane on one side of the cell than the other. This flux is described by the
term in Λsm,ξ. The exact form of this term is chosen so as to reproduce the diffusion equation
in n̄sm in the limit of infinitely permeable cells, as detailed in Section 4.2.3. We have taken the
flux due to active pumping proportional to the density of cells performing active pumping, and
to the amount of external solutes available for pumping. λsa∆µ is a characteristic velocity of
pumping per cell. We expect λsansm∆µ ∼ rJ with r a characteristic cell size and J a charac-
teristic molecular secretion rate. A typical length scale is r ∼ 10µm, and there is a wide range
of typical secretion rates, J ∼ 1−109 molecules/s [73, 93]; hence λsa0nsm∆µ ∼ 10−1×1011µm/s.

In principle, a similar decomposition can be written for the cell flux and solute flux; al-
though we assume here that the active contribution to these two fluxes can be neglected. Then
to determine the cell flux, water flux, and the passive part of the solute flux we follow an
approach similar to the Maxwell-Stefan constitutive equations for a multicomponent system.
The Maxwell-Stefan framework is an alternative to the Onsager approach of writing all possible
couplings between diffusion fluxes and gradients in chemical potentials, like so jiα = Lij∂αµ

j.
The disadvantage of using the Onsager coefficients, Lij, is that although they are functions of
the variables of the system, we have no information about what those functional relationships
look like. Maxwell-Stefan allows us to relate diffusion constants to friction forces between the
fluid species.

We start by considering the balance of forces between the divergence of the stress in the three
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fluid components, and the friction between them. Hence we write, at low Reynolds number:

n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ =− nφ̄smξs
(
vα − vsm0

α

)
− n(1− φ̄sm)ξ (vα − vwm

α ) ,
(4.95)

nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e) =− nφ̄smξs

(
vsm0
α − vα

)
− nsm(1− φ̄sm)ξsw

(
vsm0
α − vwm

α

)
,

(4.96)

nwm∂αµ
wm + (1− φ)(1− φ̄sm)∂α(P − P e) =− n(1− φ̄sm)ξ (vwm

α − vα)− nsm(1− φ̄sm)ξsw
(
vwm
α − vsm0

α

)
,

(4.97)

where φ̄sm = vsnsm

vsnsm+vwnwm is the volume fraction of solutes in the extracellular medium. Here
we have introduced 3 friction coefficients between system components: ξ is the friction coef-
ficient between cells and solvent (here water), ξs between cells and solutes, and ξsm between
solutes and solvent. The left hand sides are driving force densities which can be written as
−∂βσc

αβ, −∂βσsm
αβ , and −∂βσwm

αβ ; the gradients of stress in cells, solutes and water. The driving
force density for cells −∂βσc

αβ is opposed by friction against cell motion relative to water (with

friction coefficient per cell (1− φ̄sm)ξ) and against cell motion relative to solutes (with friction
coefficient per cell ξsφ̄sm). Similarly, the driving force density for solutes −∂βσs

αβ is opposed by
friction against the motion of solutes relative to the cells, and friction against the motion of
solutes relative to water (with friction coefficient per solute molecule (1− φ̄sm)ξsm). The order
of magnitude of friction coefficients is discussed in Section 4.2.2.

In the equations above we have assumed that the non-equilibrium force densities hβ∂αpβ
and ∂βσ̃αβ arise only within the cells, as motion in the extracellular environment is assumed
to occur only through passive effects. Adding up Eqs. 4.95-4.97 leads to cancellation of the
left-hand side due to the Gibbs-Duhem relation (Eq. 4.62) and force balance (Eq. 4.25) at low
Reynolds number; and the friction terms on the right-hand side also cancel in this summation.
As a result one of the 3 equations can be removed, and we choose here to eliminate the equation
for the solvent flux Eq. 4.97. Using the condition for mass conservation of fluxes (Eq. 4.20) to
eliminate the solvent velocity vwm, Eqs. 4.95 and 4.96 allow us to determine the cell and solute
velocities v and vsm. This is done in Eqs. 4.108 and A.8.

An additional constitutive equation can be written for the fuel consumption rate r, which
we do not discuss here. The total pressure P is fixed by the incompressibility condition 4.23.

In the following, we make additional simplifying assumptions. We take the limit where
solutes are dilute both inside the cells and in the extracellular medium, nsm � nwm and ns �
nw. We also assume that the solutes and water have the same mass density, vs/vw = ms/mw.
Consequently, the incompressibility condition reduces to the familiar expression ∂αuα = 0.
With these simplifications the effective chemical potentials of solutes and cells defined in Eqs.
4.75 and 4.76 take the form:

µ̄sm 'kT ln
nsmvw

1− φ , (4.98)

µ̄ 'kT
(
ns ln

vwns

vc
+
vcnsm

1− φ + Z̃(φ) +
vc

〈vc〉φZ̃
′(φ)

)
+ f c0(vc) +

K

2
ξ2 −Kc∂2

αn . (4.99)

and the gradients of cell and solute chemical potentials entering Eqs. 4.95 and 4.96 read:

∂αµ =vc∂αP
m + kTφ

(
2Z̃ ′(φ) + φZ̃ ′′(φ)

) ∂αn
n

+ kTφ
(
Z̃ ′(φ) + φZ̃ ′′(φ)

) ∂αvc

vc
, (4.100)

∂αµ
sm =vs∂αP

m +
kT (1− φ)

nsm
∂α

nsm

1− φ . (4.101)
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To summarise, in the dilute limit, and assuming the mass densities of solutes and water are
equal, the constitutive equations are

σ̃αβ − σ̃eαβ =2ηũαβ + 2ηṽαβ + ζ∆µqαβ (4.102)

Dpα
Dt

=
1

γ1

hα − κ∂αn (4.103)

J s =Λs∆µs + Λsa∆µ (4.104)

Jv =vsJ s + Λw∆Π + Λwa∆µ (4.105)

Jξα =Λξχα + Λsm,ξ∂αµ̄
sm (4.106)

vsm
α =vsm0

α − φΛsm,ξ

nsm

(
∂αµ̄

sm +
kT

Kn̄smvc
2
3

χα

)
+ λsa∆µnpα (4.107)

vsm,0
α =

vc(1− φ)(ξswvc − ξsvs)

ξ(ξsφvs + vcξsw(1− φ))
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

− 1− φ
nsm

[
ξsw(1− φ) + ξsφ v

s

vc

] [nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e)

]
(4.108)

vα =− (1− φ)

nξ
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

+
vsφ(1− φ)(ξ − ξs)

ξn [ξsφvs + vcξsw(1− φ)]

[
nsm∂αµ

sm + (1− φ)φ̄sm∂α(P − P e)
]

(4.109)

4.2 Solving the hydrodynamic equations

We now use the constitutive equations above to solve the hydrodynamic equations in various
scenarios.

4.2.1 The Young-Laplace Law for a spherical shell of cells

We first consider the scenario of a spherical shell of cells enclosing a fluid filled cavity. It is well
known that there is a pressure imbalance between the inside and outside of a bubble or cavity
in a fluid, due to the coupling of surface tension to curvature [44]. For a spherical cavity of
radius R and surface tension γ, the Laplace pressure is

∆p = pexternal − pinternal = −2γ

R
. (4.110)

This quantity plays an important role in the growth and persistence of a cavity. How does it
arise in our theory? Consider a spherical shell of cells, of thickness 2d, with radius R

φ(r) =


0 if r < R− d
φ0 if R− d < r < R + d

0 if r > R + d

(4.111)

and a spherically symmetric polarity field p = pr̂. If there is no flow of cells, the stress tensor
can be written

σαβ = σe
αβ + σa

αβ =

−P e + 2ζ∆µp2

3
0 0

0 −P e − ζ∆µp2

3
0

0 0 −P e − ζ∆µp2

3

 , (4.112)
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where σe
αβ = −P eδαβ is the passive, equilibrium stress calculated with the Gibbs-Duhem rela-

tion, and σa
αβ is the active part of the stress from Eq. 4.89. We set the norm of the polarity to

1, and the φ dependence of ζ to ζ(φ) = −φζ0, for positive ζ0. This form of ζ represents some
active stress generating contractile tension in the shell of cells, e.g. by intercellular adhesions.
The force balance equation, ∂βσ

tot
αβ = 0, in the r̂ direction is

d

dr

(
−Pm − 2

3
ζ0∆µφ

)
=

2ζ0∆µφ

r
. (4.113)

Integrating over the shell of cells results in

∆P = −4ζ0∆µdφ0

R
, (4.114)

where ∆P = P e(r > R + d)− P e(r < R − d) = Pm(r > R + d)− Pm(r < R − d). This is the
familiar Young-Laplace Law, with active surface tension 2ζ0∆µdφ0.

At steady state, the difference in pressure across the spherical shell is balanced by an
imbalance of osmotic pressure, due to differences in solute concentration inside and outside of
the shell. Although the solutes are being actively transported across the shell by the cells, the
water flows by passive osmosis. Hence we can apply the equilibrium constraint on the chemical
potential of water, ∂αµ

wm = 0. In spherical polar coordinates this reads

d

dr
(kT log(1− φ̄sm) + Pmvw) = 0. (4.115)

Integrating over the shell, we recover (in the dilute limit φ̄sm << 1) the balance of osmotic
and hydrostatic pressure

kT
∆φsm

1− φc
= vs∆Π = vw∆Pm, (4.116)

as expected from the van’t Hoff law [202].

4.2.2 Passive, apolar, impermeable cells

Here we assume that cells are passive and apolar, are impermeable to solutes and water
(Λs = Λw = Λsmξ = 0) and have a fixed volume vc (Fig. 4.4). We then take ∆µ = 0,
such that the force balance equation 4.25, constitutive equation 4.89 and incompressibility con-
dition give ∂αuα = 0 and P = ∂αvα.

Using the balance equations for the number of cells and extracellular solutes, Eqs. 4.3
and 4.4, together with the constitutive equations 4.95 and 4.96 and the expression for the
equilibrium pressure 4.61, we obtain (details of this calculation are given in Appendix A.1):

dn

dt
=− ∂α(nvα) (4.117)

dnsm

dt
=− ∂αjsm

α (4.118)

vα −
1− φ
φ

ηvc

ξ

(
4

3
− φ
)
∂2
βvα =−D(1− φ)2z(φ)

∂αn

n
−Dsvs

(
ξs

ξ
− 1

)
(1− φ)∂α

(
nsm

1− φ

)
(4.119)

jsm
α =−Ds(1− φ)∂α

(
nsm

1− φ

)
+ nsmDs ξ

swvc − ξsvs

ξ

(
(1− φ)z(φ)∂αn

− η

kT

(
φ− 4

3

)
∂2
βvα

)
(4.120)
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(a) (b)

(c) (d) Figure 4.4
A schematic of passive, apolar, impermeable cells.

where we have introduced the single cell diffusion coefficient D = kT/ξ, the solute diffu-

sion coefficient Ds = kT/
(
ξsw + φξsvs

(1−φ)vc

)
, the non-dimensional modified compressibility factor

z(φ) = Z(φ) + φZ ′(φ) and we have set Kc = 0 for this section. The function z(φ) satisfies
z(0) = 1, corresponding to the limit of infinite cell dilution. Several points can be drawn from
these equations.

First, a permeation length `p =
√(

4
3
− φ
)

(1− φ)ηvc/(ξφ) appears. What does this cor-

respond to intuitively? Consider moving a cell through the fluid at a constant velocity. The
motion of the cell would cause a distortion of the fluid that decays over length scales ∼ `p. Its
value strongly depends on the cell volume fraction φ, as we expect that η depends strongly on
φ. For φ → 0, we expect η ∼ φ2, corresponding to the probability of two cells coming into
contact, and therefore the permeation length goes to 0. In that case dissipation is dominated
by relative motion between cells and the fluid, rather than by relative motion between cells.
In the converse limit where φ → 1, we expect that relative flows with velocity of magnitude
v between cells and the solvent, occuring on the intercellular distance `, will result in a total
force ∼ 4πr2vcηw/` on the surface of the cell. Therefore, the friction coefficient ξ ∼ r2ηw/`
where `/r ∼ (1−φ)/3 for spherical cells of radius r; so that ξ ∼ rηw/(1−φ). Therefore in this
limit `p ∼ `

√
η/ηw. Even if ` is small, this distance can become large if the cellular viscosity

is high. Taking as a typical order of magnitude in a dense tissue ` ∼ 100 nm, ηw ∼ 10−3 Pa s,
and η ∼ 103 Pa s [126], one finds `p ∼ 100 µm, of the order of about 10 cells.

Second, we can consider the linear stability of a system of impermeable cells. Here we expand
Eqs. 4.117-4.120 around a homogeneous state. We denote n, nsm the homogeneous density of
cells and solutes and δn, δnsm perturbations from this density. We perform a Fourier transform
in space of these perturbations, with δñ(q) =

∫
dxδne−iq·x and δñsm(q) =

∫
dxδnsme−iq·x.
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Truncating to linear order in the perturbations, we obtain:

∂tδñ =− q2

1 + `2
pq

2

[
D(1− φ)2z(φ)δñ−Dsvsn

(
ξs

ξ
− 1

)
δñsm

]
(4.121)

∂tñ
sm =− q2

[
Dsδñsm + nsmDs ξ

swvc − ξsvs

ξ(1− φ)

(
z(φ)(1− φ)2δñ+O(q2)

)]
(4.122)

These equations are linearly unstable for z(φ) < 0. This instability is of Type II according
to the Cross and Hohenberg classification [39], i.e. there exists a band of unstable wavevectors
starting at q2 = 0. The instability corresponds to the spinodal decomposition instability dis-
cussed in Section 4.1.2 and Eq. 4.66. In this case we had z(φ) = 1− ε

kT
φ(1−φ), corresponding

to Eq. 4.35, i.e. the cells contribute to the free energy an entropic mixing term, and an adhe-
sion energy. We can now estimate the growth rate of this instability. Writing Eq. 4.121 with
homogeneous solutes,

∂tδñ =− D(1− φ)2
(
1− ε

kT
φ(1− φ)

)
q2

1 +
(

4
3
− φ
)

1−φ
φ

ηvc

ξ
q2

δñ. (4.123)

Well above the instability threshold (ε >> ε∗), a perturbation of size L (where L is suffi-
ciently large) grows in a time τ ∼ L2kT/(Dε(1−φ)3φ); taking the diffusion coefficient of cells in
the dilute limit φ→ 0, D = kT/(6πrηm) with r the cell radius and ηm the extracellular medium
viscosity, τ ∼ 6π(L/r)2r3ηm/(ε(1− φ)3φ). With L/r = 10, r ∼ 10 µm, φ = 1/2, ηm ∼ 10−3 Pa s
and ε ∼ 4× 10−18 J (section 4.1.2), this corresponds to τ ∼ 1 hour, a timescale compatible with
biological developmental processes. We conclude that passive spinodal decomposition driven
by cell-cell adhesion could, in principle, drive cell aggregation. This timescale however diverges
for φ→ 0 (dilute cell limit) and for φ→ 1 (dense cell limit); in which case stability is restored.

Third, we study the effect of gradients of solutes on the cell number density. We consider a
cell moving in a solute gradient. According to Eq. 4.119, the cellular velocity is then given by

vα = −Dsvs

(
ξs

ξ
− 1

)
∂αn

sm, (4.124)

where we have neglected the cell viscosity term η as we are working in the limit φ → 0. This
corresponds to a process of diffusiophoresis, whereby colloid particles move in a concentration
gradient [6]. This contribution vanishes for ξs = ξ. This is to be expected since no cell motion
should occur from a solute gradient if the solute molecules have the same physical properties as
the solvent molecules. In the limit of isolated spherical cells of radius r and dilute extracellular
solutes, φ̄sm → 0, the friction coefficients ξ → 6πrηw and (1 − φ̄sm)ξ + φ̄smξs → 6πrηm with
ηw the viscosity of pure water and ηm the viscosity of the extracellular solution. The ratio
ξs/ξ − 1 = (ηm − ηw)/(ηwφ̄sm) ≡ [ηm] is the intrinsic viscosity of the solution, and is generally
positive [7]; implying that cells move against the solute gradient. For the special case where
solutes are spherical particles of radius a, sufficiently large compared to water molecules, the
friction coefficient of solutes in water is ξsw = 6πaηw and the intrinsic viscosity is 5

2
[162]. With

these relations, the cellular velocity given in Eq. 4.124 becomes −10kTa2/ (18ηw) ∂αn
sm, which

agrees with results on diffusiophoresis by steric interactions, up to a numerical prefactor [6]. To
estimate the order of magnitude of this velocity, we can consider a gradient of macromolecules
of size ∼ 5nm (a typical protein size), and a gradient of 10mM across a cell size 2r = 20 µm;
we find a velocity of 1 µm h−1.

In the converse limit φ → 1, the velocity of a “flock” of cells depends strongly on the fric-
tion coefficient between cells and solutes ξs. Assuming the distance between cells is still large
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compared to the size of a single solute, a � `, and no specific intercellular structures such as
tight junctions stop solutes from moving in the extracellular fluid, one still has ξs = ξ(1+[ηm]).
Evaluating the ratio in the denominator of Ds with the expressions for ξs and ξsw above, we
find φξsvs

(1−φ)ξswvc ∼ a2

`2
which is small. Hence Ds ≈ kT

ξsw , as in the φ → 0 case, and |v| ≈ 1 µm h−1

still applies.

Finally, we consider the case where tight junctions or other intercellular structures impede
the movement of solutes past the cells. This corresponds to ξs → ∞, hence Ds → 0, and
|v| → 0, as expected.

4.2.3 Passive, apolar, infinitely permeable cells

(a) (b)

(c) (d)Figure 4.5
A schematic of passive, apolar, infinitely permeable cells. The solutes and water behave as if

the cells were not there.

In this Section we consider the simple case where cells behave as passive apolar objects
(∆µ = 0, p = 0), that on hydrodynamic length scales are uniformly distributed in space, and
are also infinitely permeable (Fig. 4.5). In this case we expect solutes to diffuse as if the cells
were absent. The dynamics of internal solutes, internal solute gradients, and external solutes
are

dns

dt
= ΛskT ln

(
n̄sm

n̄s

)
− ∂α(〈uαns〉n)

n
, (4.125)

dξα
dt

= Λξχα + Λsm,ξ∂αµ̄
sm − ∂β(〈uβξα〉n)

n
, (4.126)

dnsm

dt
= −∂α

{
−Ds(1− φ)∂αn̄

sm − φΛsm,ξ

(
∂αµ̄

sm +
kT

Kn̄sm
χα

)}
− nΛskT ln

(
n̄sm

n̄s

)
.

(4.127)

Once again, we consider the evolution of perturbations about a steady state (ns = ns,0 + δns

etc.), and truncate to linear order. It is instructive to write the equation in ξα as a sum of bulk
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and boundary terms, like so

∂tδξα =
Λsm,ξkT

n̄sm

(
∂αδn̄

sm − δξα

vc
2
3

)
−
(

ΛξK − Λsm,ξkT

n̄smvc
2
3

)
δξα (4.128)

Taking the limit Λs → ∞, Λsm,ξ → ∞ and Λξ → ∞, while keeping ΛξK − Λsm,ξkT

n̄smvc
2
3

finite,

Eq. 4.125 implies δn̄s = δn̄sm, and Eq. 4.126 implies δξα = vc 2
3∂αδn̄

sm. The equation in nsm

becomes

∂tδn
sm =

[
Ds(1− φ) + φvc 2

3

(
ΛξK − Λsm,ξkT

n̄smvc
2
3

)]
∂2
αδn

sm + φvc 2
3∂t∂

2
αn̄

sm. (4.129)

In the hydrodynamic limit, gradients in n̄sm occur on length scales much greater than v
1
3 , hence

the final term can be neglected. Identifying the relationship between Λξ, Λsm,ξ, and Ds,

ΛξK − Λsm,ξkT

n̄smvc
2
3

=
Ds

vc
2
3

, (4.130)

we recover the solute diffusion equation, as expected:

∂tδn
sm = Ds∂2

αδn
sm. (4.131)

This result justifies the form of the passive flux of solutes through cells given in Eq. 4.94.

4.2.4 Cell volume regulation

(a) (b)

(c) (d)

Figure 4.6
A schematic of a cell actively pumping solutes across its membrane in order to maintain its

volume.

Here we discuss a cell volume regulation mechanism represented by the coefficients Λs, Λw,
Λsa, shown in Fig. 4.6. We assume that cells actively pump solutes in order to maintain their cell
volume [25]. This process reflects physiological observations of cell regulatory volume increase
and decrease, whereby cells react to a change in extracellular osmolarity by pumping ions to
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restore their volumes, on a time scale of roughly 10 minutes. We assume that this behaviour
can be captured by postulating the following relation for the active solute flux Λsa∆µ:

Λsa = −Λsa0(vc − vT) (4.132)

with vT the target volume and Λsa0 > 0.

We consider the situation where the cell density n and extracellular solute density nsm are
fixed, and we also assume that cells are not polarized, pα = 0. The remaining equations for the
cell volume and number of cell solutes read:

dns

dt
=ΛskT ln

n̄sm

n̄s
− Λsa0(vc − vT)∆µ (4.133)

dv

dt
=Λw

(
kT (n̄s − n̄sm)− 2γ

R

)
+ vsΛskT ln

n̄sm

n̄s
− vsΛsa0(vc − vT)∆µ. (4.134)

The surface tension, γ, contains both active and passive contributions. In the regime
Λsa0 = 0 where the cell does not perform volume regulation, there exist no steady states
for γ 6= 0. When we neglect the surface tension (as is biologically realistic) the steady-state is
set by n̄s = n̄sm, i.e. equal concentrations of solutes in the cell and in the extracellular medium.
In that case the volume of the cell is set by the initial condition.

Now considering the realistic regime for biological cells where the contribution of cell surface
tension 2γ/R can be neglected, and Λsa0 6= 0, a steady-state equilibrium is reached for n̄s = n̄sm,
vc = vT. A sudden small change in external osmolarity n̄sm + δn̄sm away from this steady state
gives rise to a linear response described by:

∂tδn
s =ΛskT

(
δn̄sm

n̄sm
− δn̄s

n̄s

)
− Λsa0δvc∆µ (4.135)

∂tδv
c =ΛwkT (δn̄s − δn̄sm)− vsΛsa0δvc∆µ, (4.136)

where we have neglected the logarithmic contribution to Eq. 4.134. In Cadart et al. [25],
cells are subjected to an osmotic shock that increases their volume by approximately 30%.
The active volume control response is measured and found to have a typical relaxation time
of approximately 10 minutes. This measurement allows the value of Λsa0∆µ to be estimated
from the linear response time of Eqs. 4.133 and 4.134. In the strong volume control limit,
Λsa0 >> Λs, this results in Λsa0∆µ = 1026 m−3 s−1. How does this value compare to known
pumping rates? Considering only the dominant active pumping term, the active flux of solutes
in response to a 30% increase in volume is

−Λsa0∆µ(vc − vT) ≈ −1010 s−1. (4.137)

For comparison, Grosell reports a Na+ pumping flux of approximately 10−6 mol m−2 s−1, which
corresponds to a pumping rate of of 109 s−1 for a spherical cell of radius 10 µm [73]. From this
we conclude that the assumption of strong volume control is reasonable. We do not consider
the effect of impermeant solutes within the cell. This is in contrast to the Pump and Leak
Mechanism (PLM) [198] [92]. In the PLM, the osmotic pressure generated by impermeant
solutes is countered by the active transport of Sodium and Potassium ions by the Na+/K+

ATP-ase pump.
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4.2.5 Instability of active, polar aggregates

(a) (b)

(c) (d)

Figure 4.7
A schematic cells actively pumping solutes along their polar axis.

In this section we consider whether the system is unstable with respect to the polar, active
pumping of solutes. First, it is convenient to write the dynamic equation for ξα in terms of
boundary and bulk effects, like so

Jξα =
Λsm,ξkT

n̄sm

(
∂αn̄

sm − ξα

vc
2
3

)
− Ds

vc
2
3

ξα. (4.138)

Using the explicit form of Z̃(φ) given in Eq. 4.35 (mixing entropy and adhesion), and again
making the simplification that the mass density of solutes and water are equal, the hydrody-

59



namic equations for cells, cell volume, internal and external solutes, and polarity, are

dn

dt
=− ∂α(nvα) (4.139)

dv

dt
=Λw

(
kT (n̄s − n̄sm)− kTnZ̃ ′(φ)− f c

0
′(vc) +

Λwa

Λw
∆µ

)
+ vsΛskT ln

n̄sm

n̄s
− vsΛsa0(vc − vT)∆µ

(4.140)

dns

dt
=ΛskT ln

n̄sm

n̄s
− Λsa0(vc − vT)∆µ (4.141)

dξα
dt

=
Λsm,ξkT

n̄sm

(
∂αn̄

sm − ξα

vc
2
3

)
− Ds

vc
2
3

ξα (4.142)

dnsm

dt
=∂α

(
−nsmvsm0

α + φΛsm,ξ

(
∂αµ̄

sm +
kT

Kn̄smvc
2
3

χα

)
− λsa0∆µnnsmpα

)
− ΛsnkT ln

n̄sm

n̄s
+ Λsa0(vc − vT)n∆µ (4.143)

Dpα
Dt

=− 1

τp
pα −

b

γ1

pβpβpα +K∂2
βpα − κ∂αn (4.144)

vsm,0
α =

vc(1− φ)(ξswvc − ξsvs)

ξ(ξsφvs + vcξsw(1− φ))
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

− 1− φ
nsm

[
ξsw(1− φ) + ξsφ v

s

vc

] [nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e)

]
(4.145)

vα =− (1− φ)

nξ
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

+
vsφ(1− φ)(ξ − ξs)

ξn [ξsφvs + vcξsw(1− φ)]

[
nsm∂αµ

sm + (1− φ)φ̄sm∂α(P − P e)
]

(4.146)

Note that the non-linear terms from Eqs. 4.27 - 4.29 have been neglected, as they do not
affect the linear stability. The parameter τp = γ1

a
is the autonomous relaxation time of the

polarity field. In order to simplify the equations we take the limit of strong cell volume control.
The limit of strong volume control corresponds to Λs, Λsa0, Λw, Λsm,ξ → ∞. This results in
n̄s = n̄sm, vc = vT, and vc 2

3∂αn̄
sm = ξα. By taking this limit we can exploit a separation of

timescales between the variables ns and vc, which equilibriate quickly, and the slow dynamics
of n, nsm, and pα. Eq. 4.143, the dynamics of the solutes in the medium, can be rewritten as

d

dt
(nsm + nns − φ∂αξα) =− ∂α

{
nsmvsm0

α + λsa0nnsm∆µpα −
φDs

vc
2
3

ξα + nsφvα

}
+ φvα∂αn

s + ∂αξα∂β(φvβ). (4.147)

This eliminates all terms in the permeabilities that we take to infinity. Perturbing about
a steady state, truncating to linear order in the perturbations, and lowest order in q2, the
hydrodynamic equations become

∂tδñ =− zD(1− φ)2q2δñ+Dsvsn(1− φ)

(
ξs

ξ
− 1

)
q2δñsm (4.148)

∂tδñ
sm =

{
Dszφsm(1− φ)

ξswvc − ξsvs

vsξ
+ nszD(1− φ)2

}
q2δñ

−
{

1− nsnvs(1− φ)

(
ξs

ξ
− 1

)}
Dsq2δñsm + λsa0nnsm∆µδρ̃ (4.149)

∂tδρ̃ =− 1

τp
δρ̃−Kq2δρ̃+ κq2δñ. (4.150)
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where ρ̃ is the Fourier transform in space of ∂αpα. Note that more details of this calculation
are given in Appendix A.2. The first two terms of Eq. 4.148 and Eq. 4.149 correspond to
cross diffusion between cells and solutes. The third term in Eq. 4.149 is the flux of actively
pumped solutes. The first term in Eq. 4.150 is the relaxation of the polarity to its unpolarised
groundstate, the second term is the Frank term which encourages alignment in the polarity
field, and the third term is the response to gradients in the cell number density.

Choosing parameters such that the system is spinodally stable (i.e. there is no instability
due to the cross diffusion of cells and solutes), an instability arises at sufficiently high λsa0 (see
Appendix A.2). This instability corresponds to the mechanism shown in Fig. 4.8. Inhomo-
geneities in the cell density field induce perturbations in the polarity field, as described by the
final term in Eq. 4.150. The cells then actively pump solutes along their polarity axes, as
described by the final term in Eq. 4.149. The resulting flux of solutes, and osmotic flows of
water, into topological defects in the polarity field force a flow of cells out of these regions due
to incompressibility. Consequently the inhomogeneity of the cell density is increased, and a
feedback loop is established. This mechanism of positive reinforcement results in a fluid filled
cavity surrounded by a cell-dense tissue phase, with the cells polarised toward the centre of the
cavity. The instability is Type II, i.e. there exists a band of unstable wavevectors starting at 0.

Figure 4.8
A schematic of the polar pumping instability. Inhomogeneities in the cell density induce a

topological defect in the polarity field. Active pumping of solutes, and the resulting osmotic
flows of water drive cells out of the central region, which in turn reinforces the inhomogeneity

of the cell density.

Eqs. 4.148-4.150 become unstable when

λsa0∆µ >

(
1

τp
+Kq2

)
Φ

κ
, (4.151)

where

Φ =
z(φ)

vsn2nsm
(
ξs

ξ
− 1
){D(1− φ)

[
1− nsnvs(1− φ)

(
ξs

ξ
− 1

)]

− vsn

(
ξs

ξ
− 1

)[
Dsφsm(1− φ)

(
ξswvc − ξsvs

ξvs

)
+ nsD(1− φ)2

]}
(4.152)

There are various points we note about the form of Eqs. 4.151 and 4.152. First, z > 0
corresponds to a spinodally stable system. Consequently, a positive pumping rate is necessary
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to induce an instability, as expected. Secondly, the pumping rate at which the system becomes
unstable diverges for ξs = ξ, as this limit corresponds to the solutes and water being physically
indistinguishable. Thirdly, it becomes increasingly difficult for the system to become unstable
as q2 increases. This is because K penalises gradients in the polarity field.

For a more intuitive interpretation of this stability criterion, we relate Eq. 4.151 to an
approximate solute pumping rate per cell by considering the pumping flux jp

α in response
to a step function tissue boundary. Neglecting the Frank term, the polarity dynamics are
∂tpα = −1

τp pα − κ
vc∂αφ. The polarity, p̄, induced by a 1D tissue boundary that goes from φ ≈ 1

to φ ≈ 0 across a length scale of one cell is

p̄ =
κτp

vc
4
3

. (4.153)

The flux of solutes pumped by a single cell is σ|jp| = σλsa0∆µnnsmp̄ = Np, where σ is the cross
sectional area of the cell. Hence,

Np =
πλsa0∆µnnsmκτp

vc
2
3

. (4.154)

To evaluate Np we must make some choices about parameter values. Reasonable particle
volumes and diffusion constants are given in Table 4.1. The diffusion constants are calculated
using the Stokes-Einstein relation. We choose ξs = 3ξ, corresponding to the viscosity quoted by
Applebey [7] for a solute:water ratio of 1:9. ξ and ξsw are evaluated using the Stokes-Einstein

relation as ξ = 6πηwvc 1
3 and ξsw = 6πηwvs 1

3 . We choose the incompressibility factor z = 0.1,
where z > 0 is the boundary of spinodal stability. The volume fractions are chosen to be
φ = 0.5, φsm = 0.1, φ̄s = n̄svs = 0.1. Consequently, in the limit q2 → 0, we get

Np >
πnnsmΦ

vc
2
3

≈ 109 s−1. (4.155)

Grosell reports a Na+ pumping flux of approximately 109 s−1 for a spherical cell of radius 10 µm
[73]. Consequently, the single cell pumping rate above is at the upper end of biological plausi-
bility.

Parameter Value
vc 10−15 m3

vs 10−29 m3

D 10−14 m2 s−1

Ds 10−10 m2 s−1

ηw 10−3 Pa s

Table 4.1

It is to be expected that the onset of instability occurs at relatively high pumping rates,
as this calculation was performed with a low concentration of solutes and a system that is
only half filled with cells. I expect Np to fall as φ increases, as it should be easier for cells
to form a cavity by active pumping in a dense tissue. This can be seen in the form of Eq.
4.152, where Φ decreases if D decreases, as would be expected at high cell volume fraction. In
order to realistically evaluate Φ as φ → 1, we would need to hypothesise a new form for z, as
the treatment of cells as large, deformable particles floating in a binary mixture of solutes and
water would no longer be valid.
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4.2.6 Summary

In this chapter we have derived a hydrodynamic theory of cells, in a background fluid of solutes
and water. We study the equilibrium behaviour of this system by writing down the free energy,
and minimising it subject to particle conservation constraints. From this analysis we deduce
the system exhibits spinodal phase separation above a critical cell-cell adhesion strength. To
study the non-equilibrium behaviour, we derive constitutive equations for the various fluxes
in the system. These constitutive equations allow us to write down and solve hydrodynamic
equations for the dynamics of the system. We demonstrate a number of results.

First, a spherical shell of cells surrounding a fluid filled cavity reproduces the Young-Laplace
Law, with an active surface tension. Second, we derive diffusion constants for the case of
impermeable cells. This allows us to calculate a spinodal phase separation time of roughly
1 hour, which is biologically plausible. Third, we demonstrate that in the limit of infinitely
permeable cells, we recover the diffusion equation of solutes in a background of water, as
expected. Fourth, we demonstrate that cells can control their volume by actively pumping
solutes across their membranes. This results in a volume response to an osmotic shock on a
timescale of roughly 10 minutes. Finally, we demonstrate the existence of a Type II instability
due to the active pumping of solutes by cells along their polar axes. This instability allows
an initially uniform system to evolve into cell dense (tissue) and cell poor (cavity) phases, and
occurs at biologically plausible pumping rates.
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Chapter 5

Quantifying the growth of mouse stem
cell aggregates

Aggregates of mouse embryonic stem cells, when grown in vitro, recapitulate key morphogenetic
processes. The simplest example of such a system is described by Shahbazi et al. [175]. In this
work, a single cell is taken from the mouse epiblast, and grown for up to 72 hours. The resulting
cells grow into a spherical aggregate, a spheroid, form a rosette where all of the cells polarise
towards the centre, and eventually pump fluid into the centre to form a cavity. Examples of
the resulting spheroids are shown in Figure 5.1.

Figure 5.1: Example spheroids grown from a single epiblast cell. F-actin is shown in green,
DAPI in red, and podocalyxin in blue [209].

More complex aggregates, so called embryonic organoids, can be grown by combining more
cell types. In Harrison et al., cells from the epiblast and extra-embryonic trophoblast are com-
bined to form aggregates that are structurally similar to post implantation embryos [74]. In
Sozen et al., cells from the epiblast, trophoblast and extra-embryonic endoderm are combined
to form embryonic organoids [185]. Both examples undergo the rotational symmetry break-
ing that is a hallmark of gastrulation, with the organoids in Sozen et al. also undergoing an
epithelial to mesenchymal transition. These organoid systems demonstrate the remarkable self-
organising capabilities of embryonic stem cells. They are also an excellent reductionist tool for
studying embryo development, allowing us to separate the embryo into its constituent parts,
then observe structure emerging as we recombine them.

In my work, I have focused on the simplest example of in vitro morphogenesis: the formation
of rosettes, and hence cavities, in aggregates of ESCs taken from the mouse epiblast. I contrast
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these growth processes with the failure of rosette formation in β1-integrin knock outs. As the
formation of a cavity is straightforward once a rosette has formed, I focus on the transition
from a single cell to a rosette. The study of these spheroids has been done in collaboration with
the group of Prof. Magdalena Zernicka-Goetz. The experiments that provided data for my
work were performed by Ms. Antonia Weberling and Dr. Matteo Mòle. Ms. Weberling and Dr.
Mòle have produced movies of spheroid growth from a single cell for 24-48 hours. They have
used both wild type cells, and β1-KO cells. β1-KOs do not express the protein β1-integrin,
a key component in the correct positioning of the apicobasal axis [112]. As shown in Figure
5.2, β1-KOs fail to form rosettes. In this chapter I will describe my work quantifying and
contrasting the growth of WT and β1-KO mESC aggregates, with a particular emphasis on
rosette formation.

Figure 5.2: Examples of the resulting aggregates from WT (left) and β1-KO (right) cells. The
fluorescence is E-cadherin. The WT cells form a clear rosette, with their apical polarity vectors
forming a hedgehog defect. The β1-KO cells fail to form a rosette [209].

5.1 Segmentation pipeline

The raw data produced by the Zernicka-Goetz Group is in the form of 3D movies, produced by
confocal microscope, where fluorescent tags have been attached to either E-cadherin or F-actin.
In order to segment the cells both proteins are viable, though E-cadherin gives cleaner cell
boundaries. A typical movie is shown in the upper panels of Figure 5.6. In order to quantify
the growth and rearrangements of the cells in these movies I have developed a movie segmenta-
tion pipeline in collaboration with Dr. Matthew Smith. Dr. Smith has developed Convolutional
Neural Networks (CNNs), based on the U-Net architecture [158], that apply a distance trans-
form to the raw movies. The value of a distance transformed image at any point is the distance
from that point to the nearest cell membrane. The CNNs also mask the aggregate, i.e. voxel
values outside of the aggregate are set to 0. The effect of this transformation is shown in Figure
5.3. A noisy and complicated image of cells is replaced by a distance transform consisting of a
few well separated regions of high intensity. The CNNs were trained on a dataset of segmenta-
tions I produced using the active mesh plug-in described below, which were converted to ground
truth distance transforms by an exhaustive search algorithm. Although the dataset presented
in this thesis (4 E-cadherin WT movies, 2 F-actin WT movies, and 3 β1-KO movies) appears
small, the distance transform is a pixel-wise mapping. Each movie contains many pixels from
which the distance transform value can be measured, hence a deep learning approach was viable.

I then segment the distance transformed movies using the active mesh ImageJ plugin de-
scribed in Smith et al. [181] and Smith et al. [182]. The active mesh plugin works by placing
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Figure 5.3: An example demonstrating the effect of the distance transform. Complex and
noisy raw data is transformed into a simplified, cleaner, representation [180].

an approximately spherical mesh in the centre of a cell. The mesh is then deformed so as to
minimise an energy that is the sum of internal and external components. The external energy
is taken to be the negative of the pixel intensities at each vertex of the mesh. Consequently, it
is energetically favourable for the mesh to colocalise with regions of high intensity. The internal
energy describes line tensions between all neighbouring vertices, and a pressure that expands
the mesh. The effect of evolving the vertex positions according to an energy minimisation rou-
tine is demonstrated in Figure 5.4. The balance of external energy, pressure and surface tension
causes the mesh to deform onto the surface of the cell, while maintaining a degree of smoothness.

The boundary of the distance transformed regions is only an approximation of the cell sur-
face. Consequently, in the final segmentation step I take the meshes that have deformed onto
the distance transform, and deform them onto a blurred version of the original image. This
process is demonstrated in Figure 5.5.

The segmentation process can be summarised as follows:

1. Distance transform the raw movies

2. Deform meshes onto the distance transform

3. Deform meshes onto the raw movies

Using the CNNs to apply the distance transform reduces the time it takes to segment a 300
frame movie from approximately 22 hours to 6 hours. A typical WT movie and segmentation
are shown in Figure 5.6. A typical β1-KO movie and segmentation are shown in Figure 5.7.
The failure of rosette formation in the β1-KO is clear. It is also important to note that the
fluorescence of β1-KOs is significantly worse than WTs. Futhermore, β1-KOs suffer a far higher
rate of cell death. As such, accurate β1-KO segmentations are much harder to produce than
WTs.
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Figure 5.4: An example demonstrating the effect of the active mesh plugin. A spherical mesh
is initialised at the centre of each cell. In the distance transformed image, the boundary of the
cells has the lowest intensity. Consequently, the external energy of the mesh is inverted, and
the mesh deforms towards regions of low intensity, i.e. the boundaries of the cells [181].
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Figure 5.5: An example demonstrating meshes that have been deformed to the distance trans-
form of an image (left) and then to the image itself (right).

The resulting segmentations are stored as meshes, i.e. lists of vertices, edge connections,
and triangle connections, within a custom python class, track. A track consists of a list of
consecutive meshes, tracking a particular cell over its lifetime. These meshes are then passed
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t=0h t=22h t=36h t=46h

Figure 5.6: A typical WT movie. Top panels: maximum intensity projections of E-cadherin.
Bottom panels: the resulting segmentation.

t=0h t=4h t=17h t=17h

A) B)

Figure 5.7: A typical β1-KO movie. A) Top panels: maximum intensity projections of E-
cadherin. Bottom panels: the resulting segmentation. B) The segmentation at 17 hours,
rotated to clearly display the failure of rosette formation.

to a suite of analysis tools I wrote in Python. This mesh representation of the cell surfaces is
both memory efficient and convenient for calculating the variety of variables described in the
next section.

5.2 Data quantification and analysis

In segmenting movies of aggregate growth, my goals were threefold. First, I aimed to extract
quantitative insight from the raw experimental movies. Second, I aimed to quantitatively de-
scribe the growth of a single cell into a rosette, and compare this with the failure of rosette
formation in β1-KOs. Third, I wanted to gain insight, and justification, for design decisions I
made while developing the computational model of cell aggregate growth described in Chapter
6. The growth of an aggregate can be quantified with a number of meaningful variables. Some
are descriptors of the state of the cells, either individually or as an aggregate. Others are par-
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ticularly useful for distinguishing between the rosette forming behaviour of WT cells, and that
of β1-KOs. My dataset of segmentations consists of 6 WT movies, of which 4 form rosettes
within the timeframe of the movie, and 3 β1-KOs.

5.2.1 Cell volume

Plots of the evolution of cell volume in representative WT and β1-KO examples are shown in
Figure 5.8. These demonstrate that both WT and β1-KO cells approximately double their vol-
ume over their lifetimes. Furthermore, cell cycle times are closely synchronised between cells.
Further plots are shown in Fig. C.1.
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Figure 5.8: Representative examples of the evolution of cell volume in WT (left) and β1-KO
(right) cells.

5.2.2 Sphericity

The sphericity of a 3D object is a measure of its deviation from a sphere. It is calculated as the
ratio of the surface area of a sphere with the same volume as the object, to the surface area of
the object itself.

Ψ =
π

1
3 (6V )

2
3

A
(5.1)

where Ψ is the sphericity, V the volume, and A the surface area of the object. A sphere has
Ψ = 1, whereas a cube has Ψ = (π

6
)

1
3 ≈ 0.806. Some example cells with varying sphericities are

shown in Fig. 5.9.
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 = 0.99  = 0.92  = 0.88

Figure 5.9: Examples of cells with differing sphericities.

Plots of the evolution of cell sphericity in representative WT and β1-KO examples are
shown in Figure 5.10. The WT cells are initially very close to spheres. However, as they form a
close packed aggregate, and ultimately a rosette, the cells deform away from spheres and their
sphericity falls. No such transition occurs for the β1-KOs as they do not form close packed
aggregates or rosettes. Further plots are shown in Fig. C.2.
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Figure 5.10: Representative examples of the evolution of cell sphericity in WT (left) and β1-KO
(right) cells.

5.2.3 Division symmetry

A measure of the symmetry of cell divisions is the ratio of the volumes of the two daughter
cells, v1−v2

v1+v2
, where v1 < v2. Schematics of a symmetric, and an asymmetric division are shown

in Fig. 5.11. The distribution of this variable, for WTs and β1-KOs, is shown in Figure 5.12.
Divisions tend to be close to symmetric, and there is no significant difference between the two
cell populations.
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Figure 5.11: A) A schematic of a symmetric division. Both daughters have equal volume. B)
A schematic of an asymmetric division, where one daughter is larger than the other.
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Figure 5.12: The asymmetry in daughter cells with volumes v1 and v2, where v1 < v2.

5.2.4 Division orientation

Are there correlations between the orientation of division from one generation to the next? In
order to answer this question the angle of the division normal was measured with respect to the
line connecting the centre of the aggregate to the centre of the dividing cell, as demonstrated
in Fig. 5.13.
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✓

Figure 5.13: A schematic showing the division angle, θ, between the normal of the division
plane (dotted line) and the line connecting the centre of the aggregate with the centre of the
dividing cell (white line).

This angle is compared between mother and daughter cells in Fig. 5.14. There is no clear
correlation. With WT movies, there is enough data to split the divisions between the 2 cell
to 4 cell transition, and the 4 cell to 8 cell transition. Again, there is no obvious structure in
either population, as shown in Fig. 5.15. However, there is a bias in division angles towards
90◦. The distribution of division angles for WT and β1-KO movies is shown in Fig. 5.16. The
count of division angles is divided by sin(θ) in Fig. 5.16 (which comes from integrating over
the φ direction), resulting in a normalised count that is proportional to the probability density
function of the division angle. There is a clear bias towards cells dividing around 90◦, though
interestingly this bias exists for both WT and β1-KO movies, so does not explain their different
end states.
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Figure 5.14: The division angle of daughter cells vs the division angle of their mother, for WT
(left) and β1-KO (right) movies. The division angle is the angle between the normal of the
division plane and the line connecting the centre of the aggregate to the centre of the dividing
cell.
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Figure 5.15: The division angle of daughter cells vs the division angle of their mother. The
blue dots correspond to pairs of cells where the mother is one of the two cell stage cells. The
red triangles correspond to pairs of cells where the mother is one of the four cell stage cells.
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Figure 5.16: The distribution of division angles for WT (left) and β1-KO (right) movies. The
actual count of division angles is divided by sin(θ), resulting in a normalised count that is
proportional to the probability density.

5.2.5 Number of neighbours

Two cells are defined as neighbours if any of their vertices lie within a cutoff radius rc of each
other, as demonstrated in Fig. 5.17. The dependence of the neighbour count on rc is shown
for a particular aggregate in Fig. 5.18. The optimum choice of rc is subjective. However, we
conclude from Fig. 5.18 that it should be between 0.01 and 0.1 of the cell diameter (taken to
be the longest axis of the cell), hence we choose rc = 0.05 of the cell diameter.

rc

Figure 5.17: Two cells are neighbours if any of their vertices lie within rc of each other.
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Figure 5.18: The sensitivity of the neighbour count to the cutoff radius, for the meshes shown
on the left.

Plots of the number of neighbours of each cell in representative WT and β1-KO examples
are shown in Figure 5.19. As a WT cell grows into a rosette, each cell gains a large number of
neighbours (typically 4 or more). Cells with very few neighbours are rare. In contrast, β1-KO
cells typically have fewer neighbours, and cells with < 2 neighbours are common. The presence
of β1-KO cells with few neighbours is a result of the extended, branching structures β1-KOs
form, e.g. in Fig. 5.7. Fig. 5.19 is a good example of the power of our 3D segmentation
and analysis pipeline. Cell neighbour count is a conceptually simple variable that is almost
impossible to measure from 2D representations of the experimental data, but easy to measure
with segmented meshes. Further plots are shown in Fig. C.3.
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Figure 5.19: The number of neighbours each cell has as a function of time.

5.2.6 Ratio of areas

An important characteristic of a rosette is the large interfaces between neighbouring cells. The
interfacial area is defined as any region of the cell surface within some cutoff length of any other
cell. A schematic of this is shown in Fig. 5.20.
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Figure 5.20: Φ is the ratio of the interfacial area (blue) to the total area of the cell.

Plots of the ratio of interface area to total area are shown for four movies of rosette formation
in Fig. 5.21. In three of the four movies the interface area increases. In the fourth movie
(bottom right), the cells have an unusually large interface at the 2 cell stage, and an unusually
loose packing up to the 8 cell stage. I expect the ratio would increase at later times, however
due to photobleaching it becomes difficult to segment the movie beyond the timepoints shown.
Plots of this ratio for three β1-KO movies are shown in Fig. 5.22. In none of these movies does
the ratio increase.
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Figure 5.21: The ratio of interface area to total area for WT movies that form rosettes.
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Figure 5.22: The ratio of interface area to total area for β1-KO movies.

The ratio of interface to total area combines two effects: changes in the number of neighbours
a cell has, and changes in the size of the interface between neighbours. To disentangle these
two, I measure the ratio of the interface area to total area of a cell, averaged over all neighbours.
Writing this explicitly, for a cell with N neighbours, indexed by i, I measure

Φ =
1

N

∑
i

AInt
i

ATot
(5.2)

where AInt
i is the interfacial area between the cell and neighbour i, and ATot is the total area

of the cell. Plots of Φ for 4 WT rosettes (top two rows) and 3 β1-KO movies (bottom row) are
shown in Fig. 5.23. These plots demonstrate that the increase in interfacial area in the WT
movies is due to an increase in the number of neighbours each cell has.
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Figure 5.23: The ratio of interface area to total surface area, averaged over all neighbours.
The top two rows are WT movies that form rosettes. The bottom row is β1-KOs.

The ratio Φ can be compared between WT and β1-KO movies at the two cell stage. This
comparison is made for all two cell time points in Fig. 5.24. This figure demonstrates that
β1-KOs tend to have a larger interface at the doublet stage.
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Figure 5.24: A) A typical example of a WT doublet. B) A typical example of a β1-KO doublet.
C) The comparison of the ratio Φ, equal to the ratio of the interface area to total area of a cell,
between WT and β1-KO movies.

5.2.7 Cell centres

The motion of the cell centres is plotted in Fig. 5.25 from the 6 cell stage onward, for represen-
tative examples of WT and β1-KO movies. Both examples demonstrate the dynamic nature of
the aggregates. The cells are very mobile, as well as frequently changing shape and changing
neighbours. The plots in Fig. 5.25 serve to illustrate the complex and noisy nature of the mESC
system. The lack of a spherical, densely packed configuration is clear in the β1-KO example.
More examples are shown in Fig. C.4. As well as highlighting the dynamic and stochastic
nature of this system, these plots also highlight the lack of organised circular orbits observed
in lumen forming aggregates of MDCK cells [206].
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Figure 5.25: Representative examples of the cell centre trajectories from the 6 cell stage onward,
for WT (left) and β1-KO (right) movies. The β1-KO movie is less compact and organised than
the WT. Both plots demonstrate that the cells rearrange frequently.
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5.2.8 Long axes

The long axis of a cell is defined as a line segment between the two most distant points on the
cell surface. This is a variable with nematic symmetry, i.e. it has no front and back. It can be
used as a measure of cell orientation. The long axis of a cell can be approximated by the long
axis of its mesh, i.e. the line segment between the two mesh vertices that are furthest apart.
An example of a segmented movie with overlayed long axes is shown in Fig. 5.26.

t=0h t=23h t=31h t=53h

Figure 5.26: Stills from a segmented WT movie with long axes marked in blue.

The evolution of the distribution of long axes can be characterised by measuring their
angular distribution with respect to the centre of the aggregate, as shown in Fig. 5.27. The
evolution of the mean long axis angle (i.e. averaged over all cells in the aggregate) is shown for
4 WT movies that go from a single cell to a rosette in Fig. 5.28. The standard deviation of the
long axis angle of these movies is shown in Fig. 5.29.

✓
✓

✓

P( )✓

✓

P( )✓A) B)

Figure 5.27: A schematic demonstrating the distribution of long angle axes. A) θ is defined as
the angle between the long axis of the cell and the line connecting the centre of the cell with the
centre of the aggregate. B) Schematic distributions for two aggregates. A random aggregate of
cells will have an approximately uniform distribution, as shown on the left. A spheroid where
the cells form a columnar epithelium, with the cell bodies elongated toward the centre, will
have a narrower distribution peaked near 0, as shown on the right.
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Figure 5.28: The evolution of the mean long axis angle of four movies that go from a single
cell to a rosette.
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Figure 5.29: The evolution of the standard deviation of the long axis angle of four movies that
go from a single cell to a rosette.

The mean and standard deviation of the long axis angle for three β1-KO movies is shown
in Fig. 5.30 and Fig. 5.31, respectively. Qualitatively, WT cells grow into an ordered state,
whereas β1-KOs grow into a disordered state. This is weakly on display in the long axis mean
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and standard deviation plots. The WT mean angles either start at or transition to roughly 90◦.
In three of the four examples, there is also a decrease in the variation of the mean over time,
and of the standard deviation between the first and second half of the movies. In contrast, the
mean angle of the β1-KOs does not undergo any transition, varying between ≈ 60 − 120◦. In
all three β1-KO examples, the standard deviation fails to decrease. More data is necessary to
strongly support the claim that the WT movies undergo a transition from disordered to ordered
state whereas the β1-KOs do not.
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Figure 5.30: The evolution of the mean long axis angle of three β1-KO movies that fail to
form rosettes.
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Figure 5.31: The evolution of the standard deviation of the long axis angle of three β1-KO
movies that fail to form rosettes.

5.2.9 Polarity axes

For a cell with some scalar field, φ, defined on its surface (e.g. a chemical species number
density), a polarity vector can be defined by

p =
1

A

∮
dA {φr̂} , (5.3)

where r̂α is a unit vector pointing from the centre of the cell to a point on the surface, and A is
the total surface area of the cell. The integral is taken over the entire surface of the cell. As such,
it is possible to measure a polarity vector from the fluorescence in a raw movie, assuming the
fluorophore is attached to the chemical species of interest with a spatially uniform probability.
However, in order to apply Eq. 5.3, systematic errors in the measurement of fluorescence
intensity must be taken into account. Consider a movie, i.e. an array of intensity values, and a
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set of vertices describing a time series of meshes, where the intensity values at the vertices are
{ρ(x, y, z, t)}. The intensity curves in Fig. 5.32 are defined by

Ix(x
′) = 〈ρ(x = x′, y, z, t)〉 (5.4)

Iy(y
′) = 〈ρ(x, y = y′, z, t)〉 (5.5)

Iz(z
′) = 〈ρ(x, y, z = z′, t)〉 (5.6)

where in the first line the average is taken over all y, z, and t, etc. In other words, Fig. 5.32
shows the fluorescence intensity as a function of x, y and z, averaged over all vertices in each
x, y or z slice, and time averaged over a single WT movie. There is a clear bias in the z
measurement: the fluorescence intensity at vertices in the upper half of the aggregate is higher
than in the lower half. This is not unexpected, as the aggregate and the surrounding medium
have some level of opacity. I assume the Ix and Iy curves are representative of the true signal.
Consequently, I construct a scaling function, φ, by fitting an exponential to the ratio

Ix(r) + Iy(r)

2Iz(r)
(5.7)

where r is the distance away from the centre of the aggregate. An example of the above ratio,
and the fitted scaling function, is shown in Fig. 5.33. I rescale the fluorescence intensities
by φ(z). I.e., a movie F (x, y, z, t), is scaled like φ(z)F (x, y, z, t). The curves described in Eq.
5.4-5.6 are shown for a scaled movie in Fig. 5.34. The z bias is removed.
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Figure 5.32: The intensity curves Ix(x), Iy(y) and Iz(z) defined in Eq. 5.4-5.6. The time
averaged centre of the aggregate is shown in red.

An alternative measure of the intensity bias in the z direction is the distribution of angles
the polarity vector makes with the x, y, and z axes. A representative example from an unscaled
movie is shown in Fig. 5.35. The polarity is strongly aligned with the z axis. The same distri-
butions after scaling by φ are shown in Fig. 5.36, demonstrating that the z bias is significantly
reduced. Further examples are shown in Appendix C.0.5.

Having corrected for z bias in the fluorescence intensities, polarity vectors can be calculated
with Eq. 5.3. An example of a segmented WT E-cadherin movie with superposed polarity is
shown in Fig. 5.37. In this, and all plots involving polarity, the arrow points from the basal
to the apical domain. An example of a segmented β1-KO E-cadherin movie with superposed
polarity is shown in Fig. 5.38. The WT polarities form a rosette, all pointing into the centre of
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Figure 5.33: The intensity scaling function. In blue is the ratio in Eq. 5.7, and in red is the
exponential curve fitted to the data points. The dashed red line marks the time averaged centre
of the aggregate.
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Figure 5.34: The intensity curves Ix(x), Iy(y) and Iz(z) defined in Eq. 5.4-5.6, for a scaled
movie. The time averaged centre of the aggregate is shown in red.

the aggregate. The β1-KO polarities do not. A polarity angle can be defined in the same way
as with the long axes (see Fig. 5.27).
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Figure 5.35: The distribution of angles between the polarity of an unscaled movie, measured
by Eq. 5.3, and the x, y and z axes. There is a clear bias resulting in alignment with the z
axis.
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Figure 5.36: The distribution of angles between the polarity of a scaled movie, measured by
Eq. 5.3, and the x, y and z axes. The z bias in Fig. 5.35 is gone.

t=5h t=23h t=31h t=53h

Figure 5.37: A segmented WT movie with E-cadherin polarity shown in red.
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t=0h t=4h t=13h t=17h

Figure 5.38: A segmented β1-KO movie with E-cadherin polarity shown in red.

A polarity angle can be defined with respect to the centre of the aggregate in the same way
as the long axis angle described in Fig. 5.27. The evolution of this angle, averaged over all
cells in the aggregate, is shown for 4 rosette forming WT movies in Fig. 5.39. The standard
deviation of the polarity angle for the same movies is shown in Fig. 5.40. The mean and
standard deviation of the polarity angle of 3 β1-KO movies are shown in Fig. 5.41, and Fig.
5.42. Both the mean and standard deviation of the β1-KOs increases near the end of the
movies. This trend is absent in the WTs. It is difficult to observe any strong trends in the
plots of the WT mean angle, however in 3 of the 4 examples the WT standard deviation either
transitions from high to low values, or is initially low and stays that way. Much like the long
axis angle, these plots weakly support my qualitative assertion that the WTs transition from a
disordered to ordered state, whereas the β1-KOs fail to do so.
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Figure 5.39: The evolution of the mean polar angle of four WT movies that go from a single
cell to a rosette. The top two plots are E-cadherin movies, the bottom two are F-actin movies.
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Figure 5.40: The evolution of the standard deviation of the polar angle of four movies that go
from a single cell to a rosette. The top two plots are E-cadherin movies, the bottom two are
F-actin movies.
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Figure 5.41: The evolution of the mean polar angle of three β1-KO movies that fail to form
rosettes. All three are E-cadherin movies.

87



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time/hours

0

10

20

30

40

S
T
D
 
(
d
e
g
r
e
e
s
)

St dev of chemical polarity angle

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time/hours

0

10

20

30

40

50

S
T
D
 
(
d
e
g
r
e
e
s
)

St dev of chemical polarity angle

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time/hours

0

10

20

30

40

50

S
T
D
 
(
d
e
g
r
e
e
s
)

St dev of chemical polarity angle

Figure 5.42: The evolution of the standard deviation of the polar angle of three β1-KO movies
that fail to form rosettes. All three are E-cadherin movies.

5.2.10 The alignment of polarity with centre of mass connections

The relationship between polarity and the rearrangement of cells can be quantified with the
angle, θ, between the polarity of a cell, and the line connecting the cell centre with the centre
of its neighbour, as demonstrated in Fig. 5.43. The dynamics of θ are shown in Fig. 5.44 for
an example WT movie where an extended configuration of cells transitions to a densely packed
configuration. The trend is for angles greater than 90◦ to decrease, i.e. the polarity and centre
of mass connection become more aligned as the cells rearrange.

✓

Figure 5.43: A schematic demonstrating the angle θ between the polarity of a cell, and the
line connecting the centre of one cell to that of another. Low values of θ correspond to polarity
aligned with the centre of mass connection.

As a concrete example of this process, consider the lower two cells in Fig. 5.45. At 6 hours,
θ ≈ 180◦ for the lower two cells, i.e. the polarity of the central cell is close to anti-parallel with
the centre connection to the lower cell. At 10 hours, the cells have started to rearrange and θ
decreases. By 15 hours, the cells have formed a ball, and θ ≈ 45◦ for the left hand cell and its
connection to the bottom cell.

88



0 2 4 6 8 10

Time since contact initiation/hours

0

25

50

75

100

125

150

175

A
n
g
l
e
/
d
e
g
r
e
e
s

Polarity angle with respect to CoM connection: aligned start

Figure 5.44: The angle between polarity and the line connecting neighbouring cell centres, for
all neighbouring cells in a WT movie.

t=0h t=6h t=8h t=10h t=12h t=15h

Figure 5.45: The segmented line to ball transition, with measured E-cadherin polarity in red.

How does θ evolve in the rest of my dataset? Measuring θ between all pairs of cells that
come into contact with each other, across all WT and β1-KO movies, the trajectories can be
categorised into 4 groups: those that start above 90◦ and end above 90◦, those that start above
90◦ and end below, those that start below 90◦ and end above, and those that start start below
90◦ and end below. The proportions, and absolute numbers, of trajectories in each category
for WT and β1-KOs are listed in Table 5.1. This summary shows that the majority of WT
trajectories that start with θ > 90◦ transition to θ < 90◦. In contrast, the majority of β1-KO
trajectories that start with θ > 90 end with θ > 90. This contrast reflects the failure of β1-KOs
to transition to a densely packed rosette. Table 5.1 suggests an “error correction mechanism”
that is absent in β1-KOs. Randomness in the orientation of cell divisions can place cells in an
extended configuration away from the main body of the aggregate. In WT aggregates, this er-
ror is then corrected, and the cell brought into the densely packed structure. Such a correction
does not take place in β1-KOs.
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WT β1-KO No. of WT trajectories No. of β1-KO trajectories
θ > 90◦ → θ > 90◦ 0.25 0.67 31 14
θ > 90◦ → θ < 90◦ 0.75 0.33 94 7
θ < 90◦ → θ > 90◦ 0.09 0.21 72 38
θ < 90◦ → θ < 90◦ 0.91 0.79 753 141

Table 5.1

5.2.11 Summary of measurements

To summarise, the different growth dynamics of WT and β1-KO cells have been quantified
by a number of variables. WT cells grow into aggregates that are densely packed, their cells
undergo a transition from more to less spherical, and at late times they have high numbers of
neighbours, organised long axes, and organised polarity vectors. The cells rearrange so as to
decrease the angle between their polarity and the line connecting their centres to those of their
neighbours. In contrast, β1-KO cells grow into extended aggregates, their cells do not change
shape significantly, and at late times they have fewer neighbours, disorganised long axes, and
disorganised polarity vectors. The cells do not reorganise to align their polarity with the line
connecting their centre to that of their neighbours.

5.3 Summary

In this chapter I have described the methods used to quantify the movies resulting from mESC
aggregate experiments performed by Ms. Weberling and Dr. Molé. I segmented the movies
using the CNNs and active mesh plug-in developed by Dr. Smith. I then analysed the segmen-
tations with a suite of Python analysis tools. This process has allowed me to make detailed
measurements, at the single cell level, of the growth of mESC aggregates, for both WT and
β1-KO cells. These measurements demonstrate the power of the segmentation and analysis
pipeline developed by Dr. Smith and myself. The measurement of variables such as the number
of neighbours each cell has, the size of cell-cell interfaces, or the trajectories of the cell centres,
is hugely simplified by our mesh representation.
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Chapter 6

A computational model of adhering
cells

Computational models play a major role in biophysics, allowing researchers to study the be-
haviour of systems where analytic approaches are intractable (i.e. the vast majority of exper-
iments). Three popular computational models of tissue mechanics are the Vertex Model, the
Cellular Potts model, and the Phase Field Model. These three have been reviewed in Chapter
3. The cells in mESC aggregates are highly deformable, and pack together in dynamic 3D
structures. Consequently, in order to accurately describe this system, and to be able to make
quantitative comparisons with experiments, a new approach was necessary: one that could
describe 3D cells with smooth surfaces, that could deform according to realistic dynamics, and
that explicitly modelled adhesion forces.

6.1 The Spline Model: a 2D prototype

To address the mechanics of cellular aggregates, it was necessary to develop a computational
model that was flexible with respect to the cells’ geometry and topology, and explicitly included
adhesion forces. Furthermore, in order to include the active surface physics described in Sal-
breux and Jülicher, we required the cell boundaries to have continuous second derivatives [164].
As a first step towards a general model, I developed the 2D Spline Model, so called because
the cell boundaries are described as continuous spline curves.

6.1.1 An introduction to splines

A basis spline, or B-spline, of order d, is a parameterised curve C(u) of the form

C(u) =
n∑
i

PiBi,d(u), (6.1)

where u ∈ R, {Bi,d} are the set of order d B-spline basis functions, and {Pi} are a set of n
vectors, referred to as control points. The curve and all its derivatives up to d−1 are continuous
[42]. Bi,d are piecewise polynomials of order d. A 0th order spline is simply the set of control
points. A 1st order spline is a linear interpolation between the control points. Higher order
splines produce a smooth curve that approximately follows the control points, as shown in Fig.
6.1.
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The parameterisation u is partitioned by an ordered set of “knots”, {u0, u1, ..., um} where
0 ≤ ui ≤ 1, and m = n + d. The basis functions can then be calculated recursively using the
Cox-de Boor relation

Bi,0(u) = 1 ui 6 u 6 ui+1

= 0 otherwise (6.2)

Bi,j(u) =
u− ui
ui+j − ui

Bi,j−1(u) +
ui+j+1 − u
ui+j+1 − ui+1

Bi+1,j−1(u) (6.3)

where j = 1, 2, ..d.

Figure 6.1: An example B-spline. The control points are shown in red, a linear interpolation
between them in black, and the third order B-spline in blue.

C(u) has the desirable locality property that the position of the curve at any point is de-
pendent on only the nearest d+1 control points. The “cardinal B-spline”, Bc

d(u), is constructed
by selecting a uniformly spaced set of knots and applying the Cox-de Boor relation. Writing
the 3rd order cardinal B-spline explicitly, we get

Bc
3(u) =

{ 32u3

3
0 ≤ u < 1

4
1
3
(−2) (48u3 − 48u2 + 12u− 1) 1

4
≤ u < 1

2
2
3

(48u3 − 96u2 + 60u− 11) 1
2
≤ u < 3

4
1
3
(−32) (u3 − 3u2 + 3u− 1) 3

4
≤ u ≤ 1

0 otherwise

(6.4)

Using Bc
d(u) it is possible to construct a closed curve

X(u) =
n∑
i

PiB
p
i,d(u), (6.5)

where Bp
i,d(u), the periodic B-spline, is defined

Bp
i,d(u) = Bc

d

(
nu− (i− 1)

d+ 1

)
d < i < n− d+ 1 (6.6)

Bp
i,d(u) = Bc

d

(
nu− (i− 1)

d+ 1

)
+Bc

d

(
nu− (i+ n− 1)

d+ 1

)
1 6 i 6 d (6.7)

Bp
i,d(u) = Bc

d

(
nu− (i− 1)

d+ 1

)
+Bc

d

(
nu− (i− n− 1)

d+ 1

)
n− d+ 1 6 i 6 n (6.8)

92



Intuitively, the periodic B-spline is constructed by wrapping d control points around the be-
ginning/end of the curve. In the central region of the curve, a periodic spline is dependent on
the control points in an identical way to an open spline, as described in Eq. 6.6. Near the
beginning or end of the curve, the periodic spline combines control points from the beginning
and end of the list of control points, as demonstrated in Eq. 6.7 and 6.8. An example of such
a closed curve is shown in Fig. 6.2.

Figure 6.2: An example periodic B-spline. The control points are shown in red, a linear
interpolation between them in black, and the third order periodic B-spline in blue.

6.1.2 Geometric properties of splines

Various geometric properties of the curve X(u) can be written in terms of Bp
i,d and the control

points. Note that from here on the subscript d = 3 on Bp
i,d will be implicit. The length of the

curve is given by

L =

∫ L

0

ds =

∫ 1

0

ds

du
du. (6.9)

The variable s is the proper length along the curve, whereas u is a parameterisation running
from 0 to 1. The two are linked by

ds

du
= |∂uX| =

∣∣∣∣∣
n∑
i=1

PiB
p
i
′(u)

∣∣∣∣∣
=

[∑
i,j

Pi ·PjB
p
i
′(u)Bp

j
′(u)

] 1
2

. (6.10)

The function

g 1
2
(u) =

ds

du
=

[∑
i,j

Pi ·PjB
p
i
′(u)Bp

j
′(u)

] 1
2

, (6.11)

is related to the metric g(u) by g(u) =
(
g 1

2
(u)
)2

. Consequently, the length of the curve can be

written

L =

∫ 1

u=0

du

[∑
i,j

Pi ·PjB
p
i
′(u)Bp

j
′(u)

] 1
2

. (6.12)
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The area enclosed by the spline is given by

A =
1

2

∮
dsX(s) · n̂(s), (6.13)

where n̂(s) is the normal vector. Eq. 6.13 is the summation of triangular area elements with
one side of length ds and one side of length X(s) · n̂(s). The normal vector can be related to
the tangent vector, t̂ = ∂sX, by nα = εαβtβ, where εαβ is the Levi-Civita tensor. Consequently,
the area is

A =
1

2
εαβ
∑
ij

PiβPjα

[∫ 1

u=0

Bp
i
′(u)Bp

j (u)

]
. (6.14)

Having written the length and area of the curve in terms of the spline basis functions and
control points, it is now possible to construct a physical model of a cell with boundary X(u).

6.1.3 A physical model of a single cell

Let X(u) describe the boundary of a cell. The motion of the boundary is determined by the
dynamics of the control points, which in the low Reynolds number limit read,

γp
dP i

α

dt
= f iα = −∂W

∂P i
α

, (6.15)

where γp is a drag coefficient, and f iα is the force acting on the ith control point. The effective
work function, W , is

W =
K

2
(A− A0)2 + γL, (6.16)

where γ is the line tension of the boundary, and K is a bulk compressibility. A0 is a preferred
cell area. Eq. 6.15 and 6.16 are very similar to the description of a Vertex Model [5]. The Spline
Model retains the computational efficiency of a Vertex Model in that the positions of a finite
number of points are updated at each timestep, while allowing for a more flexible description
of the cell boundary as a smooth curve.

There are two major simplifications inherent in this description of a cell. The various drag
forces on the boundary of the cell, from the surrounding fluid, and internal cellular processes,
are approximated as a single, constant drag coefficient on each control point, γp. Secondly, the
role of pressure is overlooked, in favour of a phenomenological preference for an area A0, with
strength K.

6.1.4 Adhesion forces

A key goal of developing the Spline Model was to explicitly include adhesion forces, in contrast
to the Vertex Model. In biological cells, adhesion forces are mediated by the formation of
intercellular bonds between cadherin proteins, which obey a catch-bond force law [91] [24].
In order to avoid a complex and computationally expensive description of cadherin dynamics,
adhesion forces are included in the Spline Model via the phenomenological Morse potential.
For two particles separated by a distance r, the Morse potential is defined

u(r) = D(1− e−a(r−rm))2 −D, (6.17)
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with parameters D, a and rm. The force between the particles is f int
α = −du

dr
. The Morse

potential, plotted in Fig. 6.3, results in long range attractive, and short range repulsive forces.
As such, u(r) describes both adhesion forces and steric repulsion between neighbouring cells.
D determines the strength of the forces, a the width of the potential well, and rm the minimum
of the potential, i.e. the preferred distance between the two particles.

2 4 6 8 10

-1.0

-0.5

0.5

D
a

r
rm

u(r)

Figure 6.3: The Morse potential, with parameters labelled.

Consider two cells, with control points {Pi} and {Qi}, with boundaries

X1(u) =
n∑
i=1

PiB
p
i (u) (6.18)

X2(u′) =
n∑
j=1

QjB
p
j (u
′), (6.19)

and point-wise interaction potential u(r), where r = |X1(u)−X2(u′)|. The force acting on
control point Pi is

f iα = −
∫ L

0

∫ L

0

dsds′
{
du(s, s′)

dP i
α

}
(6.20)

= −
∫ 1

0

∫ 1

0

dνdν ′

{
g 1

2
(ν)g 1

2
(ν ′)

2aD

r

(
e−a(r−rm) − e−2a(r−rm)

)∑
j

[
P j
αB

p
i (ν)Bp

j (ν)−Qj
αBi(ν)Bj(ν

′)
]}

(6.21)

A set of adhering cells can be simulated by combining the internal forces described by Eq.
6.16 and the above adhesion force. However, there is a question of stability. Consider the
doublet of cells shown in Fig. 6.4. The distance between the interfacial surfaces is ≈ rm, and
the interaction potential is negligible outside of this region. Consequently, the effective work is

W = −DL2
Int +

2∑
i=1

{
K

2
(Ai − A0)2 + γLiECM + γLInt

}
. (6.22)

It becomes energetically favourable for the interface to grow indefinitely if γ −DLInt < 0,
i.e. the interface will buckle. Biological cell doublets demonstrate a wide variety of shapes,
with large interfaces, without buckling. There are two realistic options for stabilising interfaces
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in the Spline Model: including either elasticity, or bending rigidity, in the description of the
cell boundary. The actin cortex is known to demonstrate both elasticity and bending rigidity
[163]. We chose to include elasticity only. It is unphysical for the cortex to exhibit elasticity
on timescales longer than the actin turnover time of approximately 10s, i.e. much shorter than
the timescale of cell shape deformations. However, we made the decision to include elasticity
and not bending rigidity for two reasons. Firstly, the extent to which the cell boundaries are
elastic or rigid will have a secondary impact on the cell shapes, compared with the surface
tension and adhesion strength. The main impact of elasticity or rigidity is to stabilise the
buckling instability. Secondly, the 2D Spline Model is a prototype. Our goal in developing it
was to demonstrate the plausibility of a model where cells had smooth boundaries and explicit
adhesion forces. As such, simplicity and speed of development were prioritised over realism in
this instance. Modelling the cell boundary as an elastic material has a further computational
benefit in that it stops the control points getting too close together. Without elastic forces,
gradients in the surface tension result in a flow of control points from regions of low tension to
regions of high tension. Consequently, in regions of low tension, the spline has very few control
points, with a resulting loss of fine control of the curve shape.

LECM

LInt

A) B)

Figure 6.4: A) the geometry of a stable doublet, with the interfacial length LInt, and length
of boundary in contact with the ECM, LECM, labelled. B) the buckling instability that arises
when 2γ −DLint < 0.

6.1.5 An elastic cell boundary

The elastic energy of a curve parameterised by u is defined with respect to a reference state.
This state is taken to be a curve of length L with uniformly spaced control points. The metric
of the reference state is g0 = L2. The elastic energy of a curve with metric g is then

Fel =

∫ 1

0

feldu =

∫ 1

0

du

{
κ
√
g

2

(
g − g0

g0

)2
}
, (6.23)

where κ is the elastic constant. The elastic force on a control point is

fiα = − dFel

dPiα
= −

∫ 1

0

du

{
2PkαB

p
k
′(u)Bp

i
′(u)

[
κ
√
g

g0

(
g − g0

g0

)
+

κ

4g
1
2

(
g − g0

g0

)2
]}

. (6.24)

6.1.6 Cell divisions

Cell divisions are included by choosing a random angle θ ∈ [0, 2π), and splitting the cell along a
line through the centre with θ the angle of orientation to an arbitrary axis. New control points
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are placed on either side of this line, separated by a distance rm. The cell lifetime is chosen
from a normal distribution, truncated at zero.

Figure 6.5: A schematic demonstrating the process of cell division. A random division line is
selected, and new control points placed along either side of it. The two semi-circular cells are
then allowed to relax.

6.1.7 Cell-cell intersection

The short range repulsive forces due to the Morse potential do not diverge as r → 0. Con-
sequently, it is possible for the cells to intersect. In order to push two cells apart when they
have intersected, it is necessary to determine both the distance between two interacting points,
and whether the cells are intersecting. Consider the force between two points on different cells,
x1 and x2, separated by a distance r. It is necessary to determine whether x2 lies within the
boundary of cell 1. This can be achieved by the method of ray casting: draw a straight line
from x2 to infinity in any direction. Count how many times this line crosses the boundary of
cell 1. If it crosses an even number of times, x2 lies outside of cell 1. If it crosses an odd number
of times, x2 lies within cell 1.

6.1.8 Improving computational efficiency

Pairwise interactions

Consider a set of cells, the surfaces of which are discretised into a total of N points. Calculat-
ing interactions between all pairs of points requires O(N2) operations. This is the most costly
process in each timestep of the Spline Model. We have introduced a number of methods to
improve the efficiency of the calculation.

First, we approximate the force between any points separated by a distance r > rc to 0. The
cut off rc was typically chosen to be approximately rm+3a. Second, all points are assigned “grid
coordinates” as well as their actual coordinates. Grid coordinates are a coarse discretisation of
the 2D plane, where the size of a grid cell is taken to be rc, as demonstrated in Fig. 6.6 [217]. If
two points’ x or y grid coordinates differ by more than 1 the interaction force between them is
taken to be 0. The grid coordinates of every point are recalculated once at least one point has
moved a distance 0.9rc. Evaluating the difference in grid coordinates is quicker than evaluating
the true distance between points, and needs to be done only once between each recalculation of
the grid. All pairwise distances must be calculated between points that lie within one grid cell
of each other. We increase the efficiency of this calculation by storing the identity of nearest
neighbours. If at time t a set of points s = {xi} are within rc of the point x1, at time t + ∆t
we update s by conducting a search only over points that are in the vicinity of the points in s.
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(0, 0) (1, 0) (2, 0)

Figure 6.6: A schematic of the grid coordinate system, with cells (0, 0), (1, 0) and (2, 0) labelled.
The system is divided into a coarse set of discrete cells. Interactions are only calculated between
points that lie within one grid cell of each other.

Detecting interpenetration

The main drawback to ray tracing is that it is computationally inefficient. An exhaustive search
over all the points in the discretised boundary of cell 1 is necessary to determine the crossing
number of the ray. Calculating interactions between all points on all cell surfaces takes O(N2)
operations, where N is the number of points in the system. Calculating a ray crossing number
for each pair of points increases the number of operations to O(N3).

Instead of using ray tracing for all pairs of points, we instead use a heuristic measure of
interpenetration for the majority of cases. We assume that in most instances the cells will be
convex. In most cases where the cells do not interpenetrate, the vector between two points, x1

and x2 that lie within rc of each other, lies within 90◦ of the outward normals at x1 and x2,
i.e. the vector x2 − x1 is within 90◦ of the normal at x1, and the vector x1 − x2 lies within 90◦

of the normal at x2. This situation is demonstrated in Fig. 6.7 A. An example of when this
measure fails is shown in Fig. 6.7 B. If x2 − x1 is within 90◦ of the normal at x1, and x1 − x2

is within 90◦ of the normal at x2, we consider the cells to be separated. This is the case in
the vast majority of point pairs. If either condition fails, we check for interpenetration by ray
tracing.

Parallelisation

We achieved further improvements to the speed of the code by using the shared memory parallel
computing library OpenMP. OpenMP enables the creation of multi-threaded C++ programmes,
i.e. programmes where multiple processing units can perform calculations on variables stored
in shared memory. Such programmes benefit from the significant performance improvement
afforded by parallelisation, while avoiding the complex programming obstacles of writing truly
parallelised code with distributed memory. The simplicity of programming with OpenMP is
demonstrated in the code snippet below, where adding a single line pragma command paral-
lelises the for loop.

// Standard C++ for loop

for(int i=0; i<100; i++)

{
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x1

x2 x1

x2
A) B)

Figure 6.7: A schematic of the heuristic method of determining whether two cells interpene-
trate. As demonstrated in A), if the vector x2−x1 makes an angle less than 90◦with the normal
at x1, and vice versa, the two points are (probably) not interpenetrating. An example of when
this method fails is shown in B).

// Do something

}

// C++ for loop parallelised with OpenMP

#pragma omp parallel for private(i)

for(int i=0; i<100; i++)

{

// Do something

}

Calculating the forces on N control points can be parallelised into up to N threads. The
nodes of the Crick computing cluster can handle up to 32 threads, hence the performance ben-
efits from OpenMP are significant.

To summarise, the 2D Spline Model consists of a set of cells, the boundaries of which evolve
due to forces acting on their control points. The forces are the gradients of an effective work
function, which contains line tension and bulk compressibility (Eq. 6.16), elasticity (Eq. 6.23),
and adhesions (Eq. 6.21). The cells can divide by placing new control points along a randomly
oriented division line. The evolution of the system is calculated with a fixed time step Euler
integration routine, that makes use of the various performance improvement techniques detailed
above.

6.2 Results of the 2D Spline Model

The steady state shape of a system of Nc cells is given by minimising the effective work

W =
Nc∑
i

{
K

2
(A− A0)2 + γL+

∫ 1

0

du

[
κ
√
g

2

(
g − g0

g0

)2
]

+

1

2

∫ 1

0

dν

∫ 1

0

dν ′
[
g 1

2
(ν)g 1

2
(ν ′)u(r(ν, ν ′))

]}
. (6.25)

A dimensionless parameter, Ξ = Da
γ

, can be constructed that controls the shape of the cell
aggregate. The effect of varying Ξ on the shape of a doublet is shown in Fig. 6.8. At large Ξ,
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adhesion forces dominate and the cells become more semi-circular. At low Ξ, surface tension
dominates and the cells round up. As a rough measure of the computational efficiency of the
Spline Model, each simulation in Fig. 6.8 took approximately 5 minutes to reach steady state
on a personal laptop. Cell aggregates can be grown by starting with a single cell, and allowing
repeated rounds of cell division. Such a simulation is shown in Fig 6.9. This simulation took
approximately 10 hours on a node of the Crick computing cluster.

⌅ = 101⌅ = 102 ⌅ = 1

Figure 6.8: The effect of increasing Ξ. At low Ξ, surface tension dominates and the cells stay
close to circular. At high Ξ, adhesion dominates and a large interface forms.

Figure 6.9: A single cell undergoing multiple rounds of cell divisions. Each cell doubles in area
over its lifetime. The full list of parameters used is given in Appendix B.

Our goal with the 2D Spline Model was to test the efficacy of a new computational approach
to tissue simulations: one that included smooth cell boundaries, while maintaining computa-
tional efficiency by only storing (and updating) a small number of points. Furthermore, we
wished to explicitly include adhesion forces, and to do so in an efficient manner. We were suc-
cessful in achieving these goals. In order to realistically model the behaviour of cell aggregates,
and make quantitative comparisons between experiments and simulations, a 3D generalisa-
tion of the 2D Spline Model was necessary. This was provided by the work of Dr. Alejandro
Torres-Sánchez, in the form of the Interacting Active Surfaces Model.

6.3 The Interacting Active Surfaces Model: a 3D Finite

Elements Method cell simulation

The Interacting Active Surfaces (IAS) Model is a 3D description of cells that have surface
tension, pressure, bending rigidity, and adhesion forces. It uses the Finite Elements Method
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(FEM) to solve the dynamic equations determining the position and shape of the cells. The
IAS Model was developed by Dr. Alejandro Torres-Sanchéz. I briefly outline the model here as
it forms the basis of some of my work in the following chapter.

Figure 6.10: A schematic of the IAS Model. The mechanical equations of continuous active
surfaces are discretised on a triangulated mesh, and solved using the Finite Elements Method.
Reprinted with permission from the author, Dr. Torres-Sanchéz.

6.3.1 Mechanics of a single cell

In the IAS Model, the surface of a cell S is described by a function xα(s1, s2, t), with coordinates
s1 and s2. Note that in this section I will use superscript Greek indices for contravariant
quantities and subscript for covariant quantities. The tangent plane to S is spanned by two
basis vectors e1 and e2, defined by eαi = ∂ix

α. The metric tensor on the surface can then be
defined gij = eαi ejα. The curvature tensor on the surface can be defined Cij = −(∂ie

α
j )nα, where

the normal vector is n = (e1 × e2)/|e1 × e2|. The dynamics of a single cell are given by the
force balance equations (at low Reynolds number),

∇jt
ji + f i = 0, (6.26)

−Cijt
ij + fn = 0. (6.27)

tij is the tension tensor, and fα = f ieαi + fnn
α are the external forces. The covariant derivative

is defined for a vector vb as ∇av
b = ∂av

b + Γbacv
c, with Christoffel symbols Γijk = eiα∂je

α
k . Eq.

6.26 describes the balance of forces tangential to the surface. Eq. 6.27 describes the balance
of forces normal to the surface. Constitutive equations for the tension and external forces are
needed in order to solve Eqs. 6.26 and 6.27. The tension can be written as a sum of active and
viscous parts,

tij = tijact + tijvis. (6.28)

The active part is written

tijact = γgij (6.29)
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where γ is an active tension generated by e.g. myosin. The viscous stress is

tijvis = 2ηvij, (6.30)

where η is the viscosity, and vij = 1
2
∂tgij = 1

2

(
(∂ivα)eαj + (∂jvα)eαi

)
, where vα is the velocity of

the surface. The effect of bending rigidity can be combined with the external forces resulting
in

f i = −µvi, (6.31)

fn = p+ κ

(
∇2H +

H − C
2

(
H2 − 4K

))
. (6.32)

The first equation describes friction with the surrounding medium, with friction coefficient
µ. The second equation describes the forces in the normal direction due to internal cell pressure,
and rigidity of the cell boundary with bending modulus κ. H = Cijg

ij is the total curvature,
and K = det(C) det(g−1) is the Gaussian curvature.

6.3.2 Cell-cell interactions

The interaction between two cells, SI and SJ , can be described by the free energy

Fint[x
I ,xJ ] =

∑
I,J

∫
SI

∫
SJ
ϕIJ

(
xIJ
)
dSIdSJ , (6.33)

where ϕIJ(xIJ) is the free energy density, and xIJ = ||xIJ || is the distance between two points
on the two cells, with xIJ = xI − xJ . Calculating δFint/δx

I , leads to an additional force and
tension on cell I given by

f I,int,α = −
∑
J

∫
SJ

∂ϕ

∂xIJ
xIJα

xIJ
dSJ , (6.34)

γI,int =
∑
J

∫
SJ
ϕIJdSJ . (6.35)

As with the 2D Spline model, interactions are modelled with the Morse potential,

ϕ(r) = D(1− e−a(r−rm))2 −D (6.36)

6.3.3 Cell divisions

Cells divide in an analogous way to the 2D Spline Model. A division plane is selected with a
random orientation, and the cell is cut along this plane. New surfaces are added to the two
daughter cells parallel to this plane, and separated by the equilibrium distance of the Morse
potential, rm.

6.3.4 Summary

The velocity field on each cell surface is calculated by solving Eqs. 6.26 and 6.27 using the
Finite Elements Method (more details are given in Appendix D). The positions of the mesh
vertices are then updated using only the normal component of the velocity field, in order to
avoid tangential distortions of the mesh.
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6.4 Results of Interacting Active Surfaces

A dimensionless parameter, D̂ = Da2

γ
, can be constructed that controls the shape of cells in

an aggregate. The effect of varying D̂ on the shape of a doublet is shown in Fig. 6.11. At
large D̂, the adhesion forces dominate and the cells become more hemispherical. At small D̂,
surface tension dominates and the cells round up. This is analogous to the parameter Ξ in the
2D Spline Model.

D̂ = 1D̂ = 101D̂ = 102

Figure 6.11: The effect of increasing D̂. At low D̂, surface tension dominates and the cells
stay close to spherical. At high D̂, adhesion dominates and a large interface forms.

6.4.1 Summary

The IAS Model was developed by Dr. Torres-Sanchéz. My own contribution has been to extend
the model to polarised cells, the results of which are detailed in Chapter 7. As such, this section
is necessarily brief. I have outlined the derivation and implementation of the IAS Model. I
have also shown how the non-dimensional parameter D̂ controls the ratio of interface to free
area. At high D̂ the cells have large interfaces, whereas at low D̂ they have small interfaces.
This behaviour is in agreement with the analogous 2D parameter Ξ.
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Chapter 7

A computational model of the growth
of mouse stem cell aggregates

In this chapter we use the novel computational methods developed in the previous chapter,
the 2D Spline Model and the 3D Interacting Active Surfaces Model, to model the growth of
mouse stem cell aggregates. My model does not include the opening of the lumen - we restrict
ourselves to describing the deformation and rearrangement of the cells. Including the opening
of the lumen would involve the further complexity of describing the flow of the surrounding
fluid, and its interactions with the cell surface. Furthermore, once an aggregate has formed a
rosette, with apicobasal polarity forming a hedgehog defect, and tight junctions at the apical
domains making the central region impermeable to water, the subsequent opening of a lumen
is unsurprising. As such, we decided that excluding the surrounding fluid from our model was
an acceptable simplification.

7.1 Modelling

Disrupting polarity, as in the β1-KOs, disrupts morphogenesis. As such, in order to build
a predictive model of rosette formation, I have taken the computational models described in
Chapter 6, and modified them with the addition of a dynamic polarity vector that couples to
the cell-cell adhesions.

7.1.1 Polarity dynamics

The orientation of the apicobasal polarity vector is determined by the sensing of collagen in the
extra cellular matrix (in vivo) or matrigel (in vitro) by β1-integrin [216]. The effect of collagen
sensing is to place the basal domain in contact with the external environment. Cell signalling
and polarity establishment are complex process that are not fully understood. Attempting to
model them explicitly would be challenging. As such, I propose the following phenomenological
polarity dynamics:

∂tpα = − 1

γ1

∂F

∂pα
+ ξ, (7.1)

where γ1 is a friction parameter, and ξ some noise. The free energy F is given by

F =
χ

A

∫
S

H(r̂)p · r̂dA+ λ(|p| − 1)2, (7.2)

where S is the surface of a cell, r̂ is a unit vector pointing from the centre of the cell to a point
on the surface, and H is an indicator function that is 0 over any region of the cell that is in
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contact with another cell, and 1 otherwise. The parameter χ determines how susceptible the
cell is to the external signal of its surroundings, and λ describes the strength of the preference
for a norm of 1. For simplicity, I set χ = λ = 1. The form of F is chosen to approximate
the behaviour of a cell sensing its environment. The integral in Eq. 7.2 acts as a weighted
average of p · r̂ across the surface of the cell, with H the weights. Consequently, F is minimised
when p lies anti-parallel to the regions of the surface where H = 1. In other words, F is
minimised when the basal domain overlaps with the ECM. The second term in Eq. 7.2 favours
|p| = 1. This choice has been made based on the reasonable assumption that the cells have
some favoured polarity state, and in the absence of any more detailed model for the dynamics
of |p|. The action of these polarity dynamics is demonstrated in Fig. 7.1. On the left, the
apical domain points towards the interface, and the basal domain is in contact with the ECM.
This is energetically favourable. The plot below shows the two parts of the integrand in Eq.
7.2, H and p · r̂. The correct positioning of the basal domain (negative part of p · r̂) in contact
with the ECM (non-zero part of H) results in a negative integral. On the right, the apical
domain is pointing towards the ECM, hence the basal domain is not in contact with the ECM.
This is energetically unfavourable. The positive part of p · r̂ overlaps with the non-zero part of
H, resulting in a positive integral.

✓

�������� -π -π
2

π
2

π

-1

1

�������� -π -π
2

π
2

π
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H(✓)
p · r̂

H(✓)
p · r̂✓ ✓

Figure 7.1: A schematic demonstrating the effect of the polarity free energy, Eq. 7.2, in two
scenarios. On the left is the energetically favourable scenario with the basal domain in contact
with the ECM. On the right is the unfavourable scenario with the basal domain pointing towards
the interface.

7.1.2 Coupling between polarity and mechanics

Adhesions between cells are mediated by E-cadherin [91]. E-cadherin colocalises with the apical
domain [175], hence I propose that apical adhesion forces are increased compared to the basal
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domain. I achieve this by modifying the adhesion strength, D, according to

D(θ) =

{
D if θ < θ∗

D(1−∆D) otherwise
(7.3)

where θ is the angle between the polarity vector and a point on the cell surface, θ∗ controls
the width of the apical domain, and ∆D controls the difference between apical and basal ad-
hesion strengths. Two interacting points on neighbouring cells at positions with angles θ1 and
θ2 interact with a strength D =

√
D(θ1)D(θ2). The effect of varying θ∗ on interface size is

demonstrated in Fig. 7.2.

✓⇤ = 57◦ ✓⇤ = 80◦ ✓⇤ = 108◦

Figure 7.2: The effect of varying the apical angle, θ∗, on the size of cell-cell interfaces.

The coupling between polarity dynamics and adhesion forces described in Eq. 7.3 allows
cells to crawl over each other. This effect is demonstrated in Fig. 7.3. In this simulation, a
constant angular offset is artificially added to the polarity of one of the cells. This results in a
net torque, and the doublet rotates.

Figure 7.3: A constant angular offset is added to the polarity of the lower cell. This results in
the doublet rotating.

In summary, the polarity evolves to point away from the ECM, as described in Eq. 7.1.
Having established the apicobasal axis, the polarity couples to the cell mechanics by increasing

106



the adhesion forces in the apical domain, as described in Eq. 7.3. This model of polarity-
adhesion coupling has the following parameters, in addition to those that determine the shape
of the cells as described in Chapter 6:

• γ1 - the drag on the polarity dynamics.

• ∆D - the difference in adhesion strength between apical and basal domains.

• θ∗ - the size of the apical domain.

• ξ - the noise on the polarity dynamics.

We refer to the IAS Model with the addition of a polarity vector and polarity-adhesion
coupling as the Polar IAS Model.

7.2 2D results

It is possible to draw qualitative comparisons between the 2D Spline Model and the experi-
ments. There are two scenarios that are particularly interesting. First, the transition of a line
of cells to a ball, as shown in Fig. 7.15. Implementing the adhesion dynamics described in Eq.
7.1, and the polarity-adhesion coupling described in Eq. 7.3, the Spline Model recapitulates
the line to ball transition, as shown in Fig. 7.4.

Figure 7.4: A line of cells reorganises into a “ball” in the 2D Spline Model. The apical polarity
vector is shown in red, and evolves to position the basal domain in contact with the ECM
according to Eq. 7.1. Adhesion forces are increased in the apical domain according to Eq. 7.3.
The parameters used are listed in Appendix B.

The second scenario of interest is a single cell growing into a rosette. In the following
simulations, the cells grow to double their initial area over their lifetime, in agreement with
the experimental volume measurements shown in Fig. 5.8. Futhermore, the division angle is
chosen from a normal distribution with mean 90◦, and standard deviation 30◦, approximating
the experimental division angle distributions in Fig. 5.16. An example simulation of a single
cell undergoing three rounds of division is shown in Fig. 7.5. Despite the random orientation
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of divisions, the cells form a dense clump. To demonstrate the causal effect of the polarity-
adhesion coupling, another simulation was run with ∆D = 0 (isotropic adhesions). The result
is shown in Fig. 7.6. The 8 cell aggregate is much more branched than the one in Fig. 7.5.
More examples of such aggregates are shown in Fig. 7.7.

Figure 7.5: A single cell undergoes three rounds of division, resulting in a dense aggregate of
cells. The parameters used are listed in Appendix B.

Figure 7.6: A single cell undergoes three rounds of division, with ∆D = 0 (isotropic adhesions).
The resulting structure is not densely packed. The parameters used are listed in Appendix B.

It is difficult to say whether the cells in the bottom right of the aggregate in Fig. 7.5 count
as a rosette. It is more difficult to pack cells round a central point in 2D than in 3D, hence it
is unreasonable to expect 8 or more cells to polarise towards a central point as is seen in the
experiments. Although there is a clear difference in packing density between the aggregates with
∆D = 0.9 and∆D = 0, as demonstrated in Fig. 7.7, we cannot make quantitative comparisons
with experiments, due to the 2D nature of the Spline Model. In order to quantitatively address
the mechanics of mESC aggregates, we turn to the 3D Polar IAS Model.

7.3 3D Results

7.3.1 Polarity dynamics

We are able to make quantitative comparisons between the polarity predicted by the steady
state of Eq. 7.1, and that measured according to Eq. 5.3. In the experiment shown in Fig.
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Figure 7.7: Examples of aggregates formed with ∆D = 0.9 (left), and ∆D = 0 (right). The
parameters used are listed in Appendix B.

7.8, three cells form an approximate line. Consider the evolution of the polarity of the middle
cell. The polarity is initially pointed upward. Then as the lower cell forms an interface with
the middle cell, the polarity rotates to point sidewise. This motion is in agreement with the
polarity dynamics described in Eq. 7.1 and 7.2. The cell is initially polarised upward because
the lower region is exposed to ECM at the two cell stage. As the interface forms with the lower
cell, the dominant ECM signal to the middle cell comes from the left hand side, hence the
polarity rotates to point right. The angle between the measured polarity, and that predicted
by the steady state of Eq. 7.1 is shown in Fig. 7.9. The left hand panel shows the relaxation of
the polarity of the middle cell to the predicted value, after the disruption of cell division. The
right hand panel shows the good agreement between measurement and prediction for all cells
in the movie. Fig. 7.9 A) also demonstrates how the polarity dynamics are fast. Relaxation
occurs on a timescale of roughly 10s of minutes.

How closely does the predicted polarity follow the measured polarity across my whole
dataset? The predicted polarity vs measured polarity for a particular WT movie is shown
in Fig. 7.10, demonstrating the correlation between the two. The Product Moment Correlation
Coefficient, r, is calculated for each panel, according to the formula

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
, (7.4)

for measured polarity components xi, and predicted polarity components yi. x̄ is the mean of
xi, and similarly for yi. More plots of the correlation between predicted and measured polarity
are shown in Appendix E.1 - E.9.

Is there a significant difference in the correlation between measurement and prediction be-
tween WT and β1-KO cells? In Fig. 7.11, r is plotted for the x, y, and z components of all
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t0=6h t0+28m t0+42m

Figure 7.8: The polarity dynamics of the middle cell at the beginning of the three cell stage.
Initially the polarity points towards the upper cell. As an interface is formed between middle
and lower cells, the polarity of the middle cell rotates to point right. This is what is expected
from the polarity model described in Eq. 7.1.
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Figure 7.9: The angle between the measured and predicted polarity of the movie in Fig. 7.15.
A) The angle of the polarity of the middle cell, over the time period shown in Fig. 7.8 when
the middle polarity is rotating. B) The angle of the polarity of all cells in the movie. There is
good agreement between measurement and prediction (i.e. an angle close to 0) except for the
peaks at 6 hours and 8 hours. These correspond to two cell divisions.

the segmented movies. There is no significant difference between WT and β1-KOs. This is in
agreement with unpublished work by the Zernicka-Goetz Group demonstrating the disruption
of actomyosin polarity in β1-KOs, while E-cadherin polarity remains unaffected [209]. It is also
noteworthy that the correlation between prediction and measurement for the F-actin movies is
poor, as shown in Fig. 7.12. From this I conclude that the F-actin polarity is not well predicted
by the position of the ECM. Visually, the F-actin polarity is weak, hence the orientation of the
polarity vector will be dominated by noise. I propose that this leads to the poor correlation in
Fig. 7.12, although I do not quantify this hypothesis here.

An alternative measure of how well the polarity predicted by Eq. 7.2 agrees with the mea-
sured polarity is the angle between the two. This angle is plotted for 3 WT and 3 β1-KO movies
in Fig. 7.13. The mean value is around 50◦, which raises the question: is this good? This is a
subjective judgement. Aggregates of mESCs are a noisy and complex system. Furthermore, the
model of polarity given in Eq. 7.2 is extremely simple, and with respect to the direction of the

110



1.5 1.0 0.5 0.0 0.5 1.0

Measured px

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ca
lcu

la
te

d 
p x

r = 0.84

1.5 1.0 0.5 0.0 0.5 1.0

Measured py

r = 0.89

1.5 1.0 0.5 0.0 0.5 1.0

Measured pz

r = 0.86

Scaled measured polarity vs calculated polarity, E-cadherin movie

Figure 7.10: Measured vs predicted polarity for a WT movie. The x, y, and z components of
each polarity vector are plotted against each other.
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Figure 7.11: The Product Moment Correlation Coefficient values between measured and pre-
dicted polarity, in the x, y, and z directions, for WT E-cadherin (green), WT F-actin (red),
and β1-KO E-cadherin (blue) movies. There is no significant difference between the three types
of movie.

polarity, has no parameters. Consequently, I would be satisfied with any agreement between
the model and experiments within ≈ 90◦.

7.3.2 Cell shapes

The cell shapes in Fig. 7.2 can be quantified using the tools described in Chapter 5. Measure-
ments of the ratio of total interface area to free area, the ratio of interface area to free area
averaged over neighbouring cells, and the sphericity are shown in Fig. 7.14, as these cells evolve
from an initially spherical state placed at the vertices of a cube. For the WT movie shown in
Fig. 5.6, these three variables are shown in Fig. 5.21 (top left), Fig. 5.23 (top left), and Fig.
5.10 (left), respectively. These plots give a final value of the ratio of total interface area to
free area of approximately 0.45, a final value of the ratio of interface area to free area averaged
over neighbours of approximately 0.06, and a final sphericity of approximately 0.85. The two
experimental ratios of interface to free area lie between those for the θ∗ = 80◦ and θ∗ = 108◦
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Figure 7.12: Measured vs predicted polarity for a WT F-actin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure 7.13: The angle between the measured and predicted polarity for 3 WT (top row) and
3 β1-KO (bottom row) movies. The mean is plotted as the dashed, black curve.

simulations. The experimental value of the sphericity is lower (i.e. more extreme) than that
for the simulation with θ∗ = 108◦. From these measurements I conclude that the Polar IAS
Model can achieve cell shapes that are comparable to experiment.
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Figure 7.14: Quantification of the cell shapes in an 8 cell aggregate with θ∗ = 57◦ (left
column), θ∗ = 80◦ (middle column), θ∗ = 108◦ (right column). The cell shapes are quantified
by measuring the ratio of total interfacial area to free area (top row), the ratio of interfacial
area to free area averaged over all neighbouring cells (middle row), and the sphericity (bottom
row).
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7.3.3 The line to ball transition

Increased adhesion in an apical domain that is positioned away from the ECM allows cells in
an extended configuration to transition into a compact configuration. Such transitions are nec-
essary to ultimately achieve a rosette. The clearest example of such a configurational change
is shown in Figure 7.15. In this movie, 2 cells divide so as to form an extended line of 4 cells.
This line of cells then transitions into a compact ball-like configuration.

t=0h t=6h t=8h t=10h t=12h t=15h

Figure 7.15: In this WT movie the cells divide into an extended line of four. They then undergo
a transition from a line configuration into a densely packed ball.

Segmenting the above movie, it is possible to track the E-cadherin polarity as measured by
Eq. 5.3. The result is shown in Fig. 7.16.

t=0h t=6h t=8h t=10h t=12h t=15h

Figure 7.16: The segmented line to ball transition, with measured E-cadherin polarity in red.

By including the coupling between polarity and adhesion described in Eq. 7.3, the line to
ball transition is recapitulated in my simulations, as shown in Fig. 7.17. In this simulation, I
initialise the system as a line of 4 unpolarised, spherical cells.
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Figure 7.17: A simulation of the line to ball transition, recapitulating the behaviour in Fig.
7.16. The parameters used are listed in Appendix B.

The dynamics of both experiments and simulations can be quantified using the analysis
tools developed in Chapter 5. The action of the polarity-adhesion coupling is to move the
cells such that the line connecting their centres lies close to parallel/anti-parallel with their
polarities. This can be quantified with the angle, θ, between the polarity of a cell, and the
line connecting the cell centre with the centre of its neighbour, as demonstrated in Fig. 7.18
(repeating the measurement of Fig. 5.44). Typically θ does not reach zero, due to the presence
of other cells, as demonstrated in the final structure in Fig. 7.17 for example. The dynamics
of θ are shown in Fig. 7.19 for the experimental line to ball transition shown in Fig. 7.15 (left
hand plot), and the line to ball simulation shown in Fig. 7.17 (right hand plot). The trend is
for angles greater than 90◦ to decrease, i.e. the polarity and centre of mass connection become
more aligned as the extended configuration transitions into a densely packed configuration.
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✓

Figure 7.18: A schematic demonstrating the angle θ between the polarity of a cell, and the
line connecting the centre of one cell to that of another. Low values of θ correspond to polarity
aligned with the cell neighbour connection.
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Figure 7.19: The dynamics of angles, θ, between polarity and cell neighbour connections, for
all pairs of cells that come into contact with each other, in the experimental line to ball movie
in Fig. 7.15 (left), and the simulation in Fig. 7.17 (right). The curves have been aligned to the
time where the cells first come into contact. Different colours correspond to different cell pairs.

The causal link between polarity-adhesion coupling and the successful transition from a line
to a ball is demonstrated by the control simulation shown in Figure 7.20. In this simulation,
there is no coupling between polarity and adhesion, i.e. the adhesion forces are isotropic. The
transition fails to occur.

116



Figure 7.20: A simulation with no coupling between polarity and adhesion, i.e. ∆D = 0 in
Eq. 7.3. The transition to a ball does not occur. Note that the polarities become misaligned
due to the noise term in Eq. 7.1.

When initialised in a line, the model displays a variety of behaviours depending on the adhe-
sion strength, adhesion anisotropy, and noise. The different resulting configurations are shown
in Figure 7.21 for a low level of noise, and in Figure 7.22 for a high level of noise. Although I do
not rigorously categorise the behaviour of the model in different regions of parameter space, the
two diagrams demonstrate some intuitive behaviour, as well as raising some unanswered ques-
tions. At low noise, it is to be expected that the cells will more easily get stuck in metastable
states, i.e. the square arrangement at D = 20, ∆D = 0.5, in Fig. 7.21. The separation of the
line into two doublets at D = 20, ∆D = 0.9 is a result of the fact that the middle cells polarise
away from each other, resulting in very low adhesion forces at the centre of the line where their
basal domains face each other. I do not have an explanation as to why, at D = 15, ∆D = 0.9,
the line configuration is metastable. In the high noise diagram, Fig. 7.22, when ∆D = 0.9,
the line transforms into a tetrahedron. This is to be expected from the point of view of the
cells maximising their interfacial area, hence minimising their adhesion energy. What is more
mysterious is why, when ∆D = 0.5, the cells adopt a planar arrangement. I do not have an
explanation for this.
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Figure 7.21: The shape diagram for an initial line of 4 cells, with low levels of noise.
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Figure 7.22: The shape diagram for an initial line of 4 cells, with high levels of noise.

To summarise, the polarity dynamics described in Eq. 7.1 recapitulate the behaviour of the
experimental polarity, as measured by Eq. 5.3. By increasing the adhesion forces in the apical
domain, as described in Eq. 7.3, I am able to recapitulate the line to ball transition observed
experimentally. The movie shown in Fig. 7.15 is particularly useful for analysis as the cells
divide into a line. This gives a very clear topological transition where the dynamics of polarity
and cell rearrangements can be studied.

7.3.4 Further polarity-adhesion transitions

Polarity-adhesion coupling can transform a variety of initial conditions into densely packed
aggregates resembling rosettes. In Fig. 7.23, a line of 8 unpolarised cells folds into a densely
packed aggregate with all the cells polarised towards the centre. In Fig. 7.24, a grid of 8
unpolarised cells makes a similar transition.
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Figure 7.23: A line of 8 initially unpolarised cells transitions into a densely packed aggregate,
reminiscent of a rosette.

Figure 7.24: A 2×4 grid of 8 initially unpolarised cells transitions into a densely packed
aggregate, reminiscent of a rosette.

The simulations shown in Fig. 7.23 and Fig. 7.24 can be quantified using the analysis tools
of Chapter 5. The number of neighbours, mean polarity angle, and standard deviation of the
polarity angle are shown for both simulations in Fig. 7.25. Similar to the WT experiments,
and in contrast to the β1-KOs, the aggregates transition to a densely packed state where each
cell has three or more neighbours. The polarity vectors start in an organised state (the line
or grid), transition to disordered states, and finally reach a different ordered state, the rosette.
These transitions can be observed in both polarity mean angle and standard deviation where
the trajectories start at low values, increase to a maximum, then decrease again. The first half
of these simulations is not comparable to the experiments, as they start with 8 cells, not 1.
However, the second half, when the cells organise into a rosette is comparable. The decrease in
the mean and standard deviation of the experimental polar angle can be observed in Fig. 5.39
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and Fig. 5.40.
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Figure 7.25: The number of neighbours, the mean polarity angle, and the standard deviation
of the polarity angle, plotted for the two simulations above.

The mean and standard deviation of the long axis angle is shown in Fig. 7.26. These
measurements do not show a transition to a final ordered state. This is because the simulation
parameters are such that the cells remain close to spherical. Hence there is a large degree
of randomness to the orientation of their long axes. The shapes of the cells are quantified in
Fig. 7.27, where the ratio of total interfacial to free area, the ratio of interfacial area to free
area averaged over neighbours, and the sphericity are plotted. The simulations have a ratio of
total interfacial to free area of approximately 0.25 (compared with 0.45 for a WT movie), a
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ratio of interfacial to free area averaged over neighbours of approximately 0.03 (compared with
0.05 for a WT movie), and a sphericity of approximately 0.99 (compared with 0.85 for a WT
movie). The choice of parameters resulting in very spherical cells was a practical decision made
to increase the speed of the simulations. Smaller interfaces result in faster code, as the inter-
actions are the most computationally expensive part of the Polar IAS Model. The simulation
in Fig. 7.23 took approximately 3 days to run, using 8 cores on the Crick computing cluster.
I estimate computing a similar length of simulation time with θ∗ = 108◦ would take at least
a week. Furthermore, large interfaces are more robust to the buckling behaviour required to
transition from a line to a ball, hence take even longer to simulate.
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Figure 7.26: The mean long axis angle, and the standard deviation of the long axis angle,
plotted for the two simulations above.
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Figure 7.27: The ratio of total interfacial to free area, the ratio of interfacial to free area
averaged over neighbours, and the sphericity, plotted for the two simulations above.

The evolution of the angle θ between cell polarity and cell neighbour connections is plotted
for both simulations in Fig. 7.28. These plots show that θ trajectories that start above 90◦

tend to decrease. This is to be expected as a result of polarity-adhesion coupling, which drives
the transition from an extended initial configuration to a rosette. This trend is in agreement
with the experimental findings in Fig. 5.44 and Table 5.1.
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Figure 7.28: The angle between polarity and the connection between cell centres, plotted for
all pairs of cells that come into contact in the above simulations. The trajectories have been
aligned to the time at which contact is initiated between the cells.

7.4 Summary

In this chapter, I have developed a model of mESC aggregate growth. I hypothesise that the
apicobasal polarity vector is positioned with the basal domain in contact with the ECM, and
cell-cell adhesions are increased in the apical domain. I incorporate these mechanisms into the
2D Spline Model and 3D IAS Model. Using the Spline Model, I demonstrate in 2D that a line
of 4 cells can transition into a ball. I also demonstrate that a single cell can grow into a densely
packed aggregate with polarity-adhesion coupling, and into an extended structure without it.

In 3D, I demonstrate that there is a positive correlation between the polarity predicted by
my model, and that measured from the experimental data. By allowing a set of 8 spherical
cells, positioned at the vertices of a cube, to adhere and deform onto each other, I quantify the
shape of cells in the Polar IAS Model. These measurements demonstrate quantitative agree-
ment between the simulated and experimental cell shapes. I also demonstrate that a line of 4
cells can transition into a ball. Quantifying the dynamics of the angle between cell polarity and
cell neighbour connections, I demonstrate a trend for this angle to decrease, in agreement with
experiments. Finally, I demonstrate that both a line of 8 cells, and a 2×4 grid of cells, can tran-
sition into a dense aggregate, reminiscent of a rosette. Unlike the simulations where 8 cells are
placed at the corners of a cube, the shapes of the cells in the line and grid simulations are dis-
similar to experiments, as the shape parameters were chosen to minimise computing time. For
example, the strength of the adhesion forces was chosen so that the cells form small interfaces,
which reduces the number of pairwise calculations at each timestep. These 8 cell simulations
also recapitulate the trend for the angle between polarity and neighbour connections to decrease.

These simulations recapitulate several aspects of the experiments. There are two key pre-
dictions. First, that the orientation of the polarity is set by where the cell is in contact with
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the ECM. This is in agreement with the biological literature. This claim is born out by my
analyses in the case of E-cadherin, but not F-actin. From my analysis it is not clear why the
F-actin polarity is poorly predicted by the ECM. The second prediction is that adhesion forces
are increased in the apical domain. This is a novel hypothesis that has not yet been suggested
in the literature, however it does lead to cell and polarity rearrangements in agreement with
the data. The extent to which this represents the true biological mechanism is discussed in
Section 9.4.
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Chapter 8

Conclusion

In this thesis I have studied the formation of fluid filled cavities in cellular systems, both in a
general hydrodynamic theory, and with a specific study of the growth of mESC aggregates. In
conducting this work I have developed, and then used, a novel theoretical description of pump-
ing cells, as well as novel computational tools for the analysis and simulation of cellular systems.

8.1 The hydrodynamics of pumping cell aggregates

Cell with    
molecules

per unit volume

ux of 
cells 

         molecules
per unit volume

ux of 
extracellular
molecules

per unit volume
molecules

(a) (b)

(c) (d)

(a) (b)

(c) (d)(A) (B) (C)

n cells

Figure 8.1: A) The system described by the hydrodynamic theory of pumping cells. B) The
active transport of solutes across the cell membrane. C) Polar active pumping of solutes.

In the hydrodynamic theory I describe the system depicted in Fig. 8.1: a ternary fluid, con-
sisting of cells in a background fluid of water and solutes. The cells can polarise, and actively
transport solutes across their membranes. Within this theory I have studied various aspects
of the equilibrium and non-equilibrium behaviour of the system. Driven by cell-cell adhesions,
the system can undergo spinodal phase separation into a cell rich region (the tissue) and a cell
poor region (a fluid filled cavity). This separation process occurs on a timescale of roughly 1
hour, which is plausible for developmental processes. In order to describe the dynamics of this
system, I have derived constitutive equations for the various fluxes in the dynamic equations for
cells, cell volumes, solutes, and polarity (the water having been removed by incompressibility).
A tractable set of constitutive equations are derived by selecting a subset of couplings predicted
by a fully symmetric Onsager theory.

I solve the dynamic equations in a number of situations. First, I show that a spherical
shell of cells enclosing a fluid filled cavity reproduces the Young-Laplace Law with an active
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surface tension. Second, in the limit of impermeable cells, I demonstrate the system under-
goes diffusion with the diffusion constants linked to drag coefficients by the Maxwell-Stefan
framework of multi-component diffusion. This analysis also predicts a percolation length for
the fluid. Third, in the limit of infinitely permeable cells I recover the diffusion equation for
solutes, as expected. Fourth, I consider the linear stability of cells that actively pump solutes
across their membranes in order to maintain a target volume. This is shown schematically in
Fig. 8.1 B). This volume control mechanism results in cell volume relaxation in response to an
osmotic shock on timescales of roughly 10 minutes. Finally, I have demonstrated the existence
of an instability due to active, polar pumping of the solutes by the cells. Active polar pumping
is shown schematically in Fig. 8.1 C). The cells pump solutes into defects in their polarity
field, water flows into these regions by osmosis, and cells are consequently forced out, forming
a cavity. The system becomes unstable with respect to this mechanism at biologically plausible
pumping rates.

These analyses demonstrate that the hydrodynamic theory makes realistic predictions for
the behaviour of cellular aggregates in a range of biologically relevant scenarios.

8.2 Segmentation and analysis pipeline

I have been provided with a dataset consisting of 3D movies of growing mESC aggregates by
the group of Prof. Zernicka-Goetz. The movies consist of either WT or β1-KO cells with either
E-cadherin or F-actin fluorescently tagged. In order to extract meaningful insight from this
dataset, I have developed and used a segmentation and analysis pipeline. Cell segmentation
requires a number of steps. First, the raw movies are passed through Convolutional Neural
Networks (CNNs) developed by Dr. Matthew Smith, and trained on manual segmentations
produced by me. The CNNs calculate a distance transform from the original images. The
value of the distance transform at any point is equal to the distance between that point and
the nearest cell membrane. As such, the CNNs are applying a pixel-wise transformation. The
training set consists of manually segmented 3D movies, of which each pixel is a training exam-
ple. As such, the training set is sufficiently large to achieve good performance. Furthermore, as
I segmented more and more movies by combining the CNNs and active mesh plug-in, I fed the
completed segmentations back into the training set. The distance transform gives a simplified,
noise free representation of the original image. Second, I segment the distance transforms using
the active mesh FIJI plug-in described by Smith et al. [181]. This plug-in allows a 3D mesh to
be deformed onto objects within a 3D image. Finally, I deform the distance transform meshes
onto the cell membranes of the (blurred) original movies. The segmentations are stored in a
3D mesh format, i.e. as an object containing arrays of vertex coordinates, pairs of points that
share an edge, and triplets of points that form a triangle.

These meshes are passed to a suite of Python analysis tools. With these tools I measure a
range of variables about the meshes, e.g. volume, sphericity, number of neighbours, interfacial
area, and long axis orientation, to name but a few. I also calculate a polarity vector by mea-
suring the distribution of fluorescence on the surface of the cells. These meshes allow me to
compare and contrast the growth of WT and β1-KO aggregates. Both cell types roughly dou-
ble their volume over the cell cycle, and both have a bias in their division orientation towards
tangential divisions. WT aggregates grow into structured rosettes whereas β1-KOs grow into
loosely packed and disorganised aggregates. This is reflected in several of my quantifications.
At late times, WT cells typically have 4 or more neighbours, whereas β1-KOs can have as few
as 1. The angular distribution of WT cell long axes transitions to an organised state with the
long axis angle ≈ 90◦ (the angle is defined with respect to the radial direction of the aggregate
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as described in Fig. 5.27). In contrast, the long axes of β1-KO cells remains disorganised. A
similar transition occurs with the WT polarity angles tending to 0◦, while the β1-KO polarity
angles remain disorganised.

The segmentation and analysis pipeline developed by Dr. Smith and myself allows mean-
ingful insight to be extracted from complex 3D + time data. I have used this pipeline to
quantitatively describe the growth of WT mESC aggregates into organised rosettes, and the
failure of rosette formation in β1-KOs.

8.3 Computational tissue mechanics

I have developed a novel 2D model of tissue mechanics where cell boundaries are described
by periodic B-spline curves. The shape of this curve is determined by a set of control points.
The cells evolve in time according to the steepest gradient descent of a free energy function
combining surface tension, pressure, and pair-wise interaction forces. The interaction forces are
mediated by a Morse potential that results in long range attractive and short range repulsive
forces. The cells also experience tangential elastic forces. Including elastic effects stabilises
cell-cell interfaces at high adhesion strengths, and stops tangential surface flows that cause the
control points to bunch together. The Spline Model was inspired by the Vertex Model, but
with several modifications designed to model non-epithelial cells. The flexibility of periodic
B-splines allows the Spline Model to describe a wide range of cell shapes, not just approximate
polygons. Furthermore, third order B-splines are continuous in their second derivative, which
allows the Spline Model to be extended to include active torques [164]. Finally, by explicitly
including adhesion forces between cells, the Spline Model is well placed to describe situations
where cells are pulled apart or come together.

I use various techniques to increase the computational efficiency of the model. First, the
number of pair-wise interactions calculated is reduced by using grid coordinates to segregate
the system into macroscopic regions that do not interact. Second, within each grid cell, the
calculation of pair-wise interactions is sped up by storing lists of nearest neighbours. Finally,
I use the shared memory parallelisation library OpenMP to calculate the forces on different
control points in parallel.

The cell shapes produced by the model can be controlled by varying the dimensionless pa-
rameter Ξ, as shown in Fig. 6.8. At high Ξ, adhesion forces dominate and the cells form large
interfaces. At low Ξ, surface tension dominates and the cells are close to circular. The Spline
Model is capable of simulating 10s of cells, as demonstrated in Fig. 6.9, where a single cell
undergoes multiple rounds of division.

8.4 Modelling mESC aggregates

In order to model the growth of mESC aggregates I build upon the 3D Interacting Active
Surfaces (IAS) Model of Dr. Torres-Sanchéz. The IAS Model is similar to the Spline Model
in so much as the cells are described by a continuous surface over a discrete mesh. The cells
experience forces from surface tension, pressure, and interactions mediated by a Morse poten-
tial. However, in contrast to the Spline Model, the cell surfaces are treated as a viscous fluid.
Interfaces are stabilised with respect to adhesion induced buckling by the inclusion of bending
rigidity. The mesh vertices are updated along the direction of the normal of the surface only,
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to avoid tangential distortion of the mesh.

I modify the IAS Model by including a polarity vector associated to each cell, describing the
apicobasal axis (specifically the direction from basal to apical domains). The polarity evolves
in order to minimise the free energy described in Eq. 7.2. Typically this results in a polarity
that is of norm 1 and with a basal domain maximally overlapping with the surrounding ECM.
The polarity couples to the mechanics by decreasing the adhesion forces outside of the apical
domain. The IAS Model with polar vector and polarity-adhesion coupling is referred to as the
Polar IAS Model. This coupling generates torques between neighbouring cells, allowing them
to rotate around each other. In 2D, the inclusion of polarity-adhesion coupling causes a line of
cells to rearrange into a ball (Fig. 7.4), replicating a transition observed experimentally (Fig.
7.15). Polarity-adhesion coupling also results in 2D cell aggregates that are densely packed, as
demonstrated in Fig. 7.7.

Using the image analysis tools developed in Chapter 5, quantitative comparisons can be
drawn between experiments and the Polar IAS Model. I have compared the measured polarity
of segmented movies with that predicted by the steady state of Eq. 7.1, and found a positive
correlation in both WT and β1-KO E-cadherin movies, as shown in Fig. 7.10 and Fig. E.7,
with typical correlation values of r ≈ 0.8. Eq. 7.1 makes poorer predictions of the F-actin
polarity, as shown in Fig. 7.12, with typical correlation values of r ≈ 0.6.

In 3D, when 8 cells are placed at the vertices of a cube and allowed to deform onto each
other, the resulting cell shapes are comparable to WT experiments, as quantified in Fig. 7.14.
With polar-adhesion coupling, the Polar IAS Model reproduces the transition of a line of 4 cells
to a ball, as shown in Fig. 7.17. The angle between polarity and cell neighbour connections
tends to decrease, in agreement with WT experiments. Similar transitions, where a line of 8
cells, and a 2×4 grid of cells form rosettes, are shown in Fig. 7.23 and Fig. 7.24 respectively.
In both cases, the polarity angles transition to an ordered state, replicating the behaviour of
WT experiments. The cell shapes are dissimilar to those in the experiments, and the long axes
do not organise into an ordered state. This is due to the model parameters being chosen to
minimise computing time. Finally, the angle between polarity and neighbour connections also
tends to decrease, again in agreement with WT experiments.
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Chapter 9

Discussion

9.1 The hydrodynamics of pumping cell aggregates

With the hydrodynamic theory of pumping cells we set out to derive a theory that describes
cells capable of moving material across their membranes, and to demonstrate that this could
give rise to realistic cavity forming mechanisms. In this we have been successful. The deriva-
tion includes several simplifying assumptions. First, the number densities are all treated as
smooth fields as a result of coarse-graining over volume elements much larger than the con-
stituent particles. Such a description is only representative of systems containing large numbers
of cells. We do not analyse the scale at which finite particle size effects begin to invalidate this
smoothness assumption. Second, we derive constitutive equations using the Onsager theory of
non-equilibrium thermodynamics, i.e. by writing the entropy production as a sum of pairs of
thermodynamic fluxes and forces, and expanding the fluxes to linear order in the forces. This
approach, being perturbative, is only valid close to equilibrium. Furthermore, in writing the
entropy as an integral over a smooth entropy density field, we implicitly assume a condition
of local equilibrium. This means that within each volume element the microscopic degrees of
freedom relax quickly to thermodynamic equilibrium, and are slaved to hydrodynamic variables
that evolve slowly, and vary over length scales much larger than a volume element. It is unlikely
that a biological system will be close to equilibrium or satisfy local equilibrium.

Either or both simplifications, the assumption of smoothness and the use of Onsager the-
ory, are ubiquitous in the field of active matter hydrodynamics [85] [99] [29] [89] [113]. In the
case of the smoothness assumption, the ability to write down a theory in terms of differential
equations, and hence to make use of the vast array of analytical and numerical tools developed
to analyse differential equations, outweighs the disadvantage of restricting ourselves to large
systems. The use of Onsager theory is more contentious, as cells are not close to equilibrium.
One good argument in favour of Onsager theory is the lack of an alternative. We address the
far from equilibrium nature of living systems by not simply using the full constitutive equa-
tions predicted by Onsager theory, and instead choosing particular couplings that we think will
dominate based on physical arguments. A further disadvantage to Onsager theory is it gives
no information as to the functional dependence of the coefficients on the state variables of the
system. We address this, at least in the case of the diffusive fluxes, by using the Maxwell-Stefan
framework. This framework allows us to relate diffusion constants to drag coefficients, for which
we can predict the behaviour in certain limits.

Our theory is an addition to the existing field of active matter hydrodynamics. Kruse et
al. derive the hydrodynamic equations of a polar active fluid [99], and Joanny et al. consider
active multi component fluids [85]. In Ranft et al., hydrodynamic equations for a tissue are
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derived, where the cells and ECM are treated as an elastic solid (in the absence of cell division),
with permeating interstitial fluid [152]. Duclut et al. use the tissue model of Ranft et al. to
model the growth of a lumen in a spherical shell of cells [53]. Our theory introduces several
novel ideas. First, we apply the Maxwell-Stefan framework of multi component diffusion to
a three component active fluid. This allows us to make reasonable arguments about how the
diffusion constants depend on the volume fractions. Second, the solutes and water can move in
and out of the cells. This is novel in itself, and also introduces the cell volume, internal solute
number, and first moment of the internal solute distribution as dynamic variables. By explicitly
describing membrane transport processes we can describe phenomena like cell volume control.
Our theory allows the active pumping of solutes, and resultant osmotic flows, to be described in
the hydrodynamic limit. Furthermore, these processes are described in a sufficiently simplified
manner (e.g. including only one solute species) so that biologically realistic scenarios can be
analysed analytically.

In what direction could this research be developed? There are several interesting options.
First, there are values of the adhesion strength and pumping rate that result in the system
being simultaneously unstable with respect to both spinodal phase separation and polar pump-
ing. In the linear regime the evolution of the system will be dominated by whichever instability
is faster. However, it would be interesting to study how the two instabilities would interact
in the non-linear regime. This question has particular relevance given the recent experiments
of Dumortier et al. [55]. In this work the mouse blastocoel cavity is shown to open when the
pumping of fluid into the centre of the embryo by polarised cells overcomes cell-cell adhesions.
This occurs by the opening of microlumens which then drain into one central lumen, as shown
in Fig. 9.1, in a process reminiscent of the coarsening of domains by Ostwald ripening in binary
fluid phase separation [205]. This scenario has strong parallels with the combination of spinodal
and polar pumping instabilities in our hydrodynamic theory. The strong volume control limit,
where the dynamics of the cell volume and internal solutes are eliminated by exploiting a sepa-
ration of timescales, suggests itself as a simplified theory within which to study the interaction
of both instabilities.

Figure 9.1: The formation of microlumens in the mouse blastocyst. The microlumens even-
tually drain into a single, large cavity (the purple star). This image is from Dumortier et al.
[55].

One of the novelties of our theory is that the cells have a dynamic volume. This does not
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significantly affect most of the calculations we perform. It would be interesting to find biological
examples where spatial variation in the cell volume plays a major role, and model them with
our theory. For example, in Ainslie et al., a population of small cells replaces a population of
large cells in the fly abdomen [2].

A key simplification in our theory is only including a single solute species. In reality, there
are many different solutes in cellular systems, e.g. ions, fats, and proteins, all differing dra-
matically in their size, charge, and biochemistry. It would be interesting to include a range
of different solutes, thus describing the extra-cellular fluid as a polydisperse, as opposed to
binary, fluid. This would also allow us to describe the electrochemical interactions of different
ion species, for example in the exchange of sodium, potassium and calcium ions in various
transmembrane pumps and channels.

Finally, the modelling of microbial communities would be a natural application of our theory.
It would be very interesting to add some genetic dynamics on top of the spatial dynamics of the
theory and study the evolution of spatially distributed populations of microbes. Our generic
solute molecules could describe nutrients, drugs, viruses, or any other biomolecule that could
impact the fitness of the microbes. This would combine ecological dynamics (e.g. the movement
of populations) with evolutionary dynamics, and would be a continuum analogue to the discrete
models of spatially distributed evolution in e.g. Dobramysl [48].

9.2 Segmentation and analysis pipeline

Our goal in developing the segmentation and analysis pipeline was to be able to convert 3D
experimental movies into accurate segmentations, and from the segmentations measure physi-
cally relevant variables. Furthermore, we wanted to be able to do this in a reasonable amount
of time, with a minimum of manual intervention. We have been successful in addressing the
first goal. We can indeed take an experimental movie, segment it, and extract useful quantifi-
cations. The sort of measurements I have made, e.g. changes in the number of neighbours each
cell has, the ratio of interfacial to free surface area, or the polarity resulting from an anisotropic
distribution of fluorescence on the cell surface, would be very difficult to do without the tools
Dr. Smith and I have built. I believe my segmentations to be accurate. It is difficult to quantify
how accurate the segmentations are, as there is no “ground truth” with which to compare.

The second part of our goal was to be able to process a movie in a reasonable amount of
time, and with a minimum of manual intervention. It takes me roughly 8 hours to segment a
300 frame movie of a single cell growing into 10 cells. With the aim of studying rosette forma-
tion in mESC aggregates, this does indeed count as a reasonable amount of time. However, to
study larger structures, e.g. the embryonic organoids in Harrison et al., which consist of ≈ 100
cells, further work would be necessary to speed up the segmentation process [74]. Speeding
up this process, and decreasing the amount of manual intervention need to go hand in hand.
Currently, I place an initial guess of a mesh, deform it, then transplant the deformed mesh
to the next frame where it serves as the new initial guess. It would not be hard to automate
this process, with manual error correction. A nice aspect of the pipeline is that each finished
segmentation is added to the training set of the neural networks. Consequently, the distance
transforms are getting iteratively more accurate. This will reduce the amount of manual error
correction necessary.

Beyond improvements to the software, improvements will have to be made to the imaging
process if we are to apply these tools to larger structures, on longer timescales. The movies pro-
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vided by Ms. Weberling and Dr. Molé were produced by confocal microscope. Consequently,
the signal to noise ratio was often low, and the frame rate and movie length was limited by
phototoxicity and bleaching. More advanced microscopy techniques, e.g. Selective Plane Il-
lumination Microscopy (SPIM) [82], would greatly reduce the exposure of the sample to laser
light. This would allow us to increase the signal to noise ratio, and take longer movies.

The segmentation and analysis pipeline tells us several things that we could not see by eye
alone. Firstly, it allows us to quantify results that we could observe qualitatively in 2D slices or
projections, e.g. measuring the actual volume of the cells over time, instead of just observing
that they grow. Secondly, with the pipeline we can rule out observables that we might have
expected to be informative based on qualitative analyses. For example, by eye we expected
the sphericity of the cells to differ between WT and KO movies, but when quantified we found
this to be untrue. Finally, we have performed measurements that could only be done with our
pipeline. For example, calculating the polarity of a cell by integrating the fluorescence over its
surface is a non-trivial calculation that would be very difficult to do without our novel tools.

9.3 Computational tissue mechanics

The vast majority of experimentally relevant tissue mechanics problems cannot be solved an-
alytically. As such, there is a pressing need for realistic computational methods, with the
competing demand that they must be efficient. The major inspiration for the 2D Spline Model
(and to a lesser extent for Dr. Torres-Sanchéz’s Interacting Active Surfaces Model) was the
Vertex Model. The Vertex Model is a popular and effective model of epithelial dynamics, which
achieves computational efficiency by describing cells with only a few points forming the vertices
of polygons. In our work, we borrow the idea of describing cell boundaries with a few points,
while changing two of the Vertex Model’s assumptions, that cells are polygonal and confluent,
in order to describe non-epithelial cells. By describing cell boundaries as continuous curves
with sufficient smoothness, the Spline Model has the attractive capability of including active
bending moments, which play an important role in the physics of active surfaces [81] [164]
[197]. Furthermore, the Spline Model can describe a much broader range of cell morphologies.
In replacing the confluent cells of the Vertex Model with separate cells that interact via ad-
hesion and steric repulsion forces, we can model processes inaccessible to the Vertex Model,
e.g. the separation of cells during cavity formation. However, interactions incur a major cost
in that they are a pairwise operation, hence scale quadratically with the size of the system. A
significant part of the development of the Spline Model was devoted to finding efficient ways
to compute the interaction forces.

The resulting simulations successfully address the aims of the project. The Spline Model
can simulate large numbers of interacting cells, with flexible morphologies, in a reasonable
amount of time (≈ 10 hours on a 32 core computing node). However, the model is less effi-
cient than a similar Vertex Model, due to the costly calculation of pairwise interactions. The
obvious next step in modelling cell aggregates was to build a 3D model. This was done by Dr.
Torres-Sanchéz with the IAS Model. The IAS Model has similar design principles to the Spline
Model, namely describing a smooth surface as the summation of basis functions over a set of
discrete points. The cells experience adhesion and steric repulsion forces via a Morse potential,
just like the Spline Model. The move from a confluent tissue to interacting cells pays dividends
in 3D, where we are able to sidestep the major obstacle of 3D topological transitions. In fact,
the need to avoid 3D topological transitions was one of the key motivations for the conception
of the Spline Model.
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I believe both the Spline Model and IAS Model have very broad applicability to problems in
biophysics. Whether the Spline Model will be useful for modelling pseudo-2D systems (e.g. cell
monolayers), or will mainly serve as a prototyping tool for simulations that will eventually be run
in the IAS Model, remains to be seen. What work now needs to be done? The most important
next step is to encourage uptake of our models by the biophysics community. This will be done
by releasing our models as open source code, in conjunction with a publication (in preparation).
We can maximise uptake by presenting the models in a format that is easy to use, and easy to
modify. In addition to this, it is always beneficial to improve computational efficiency. Building
techniques from the Spline Model, e.g. grid coordinates, or storing nearest neighbours, into the
parallelised FEM framework of the IAS Model would speed up the 3D simulations. Another
interesting extension to both models would be adding an explicit description of flows in the
surrounding fluid, and concentration fields to the cell surfaces. This would allow the models to
include signalling and pattern formation mechanisms described by reaction-diffusion equations.

9.4 Modelling mESC aggregates

Although biophysical models are greatly simplified representations of reality, when successful
they allow us to identify a minimal set of mechanisms necessary to recapitulate experimentally
observed phenomena. This is what we are trying to achieve in studying the growth of mESC
aggregates. We have been successful in reproducing several aspects of mESC aggregate growth:
apicobasal polarity dynamics, cell shape deformations, and cell rearrangements. We have also
been able to use the analysis tools developed in Chapter 5 to make detailed, quantitative com-
parisons between simulations and experiments. This is an important achievement. However,
a key goal of this project is to build a simulation that starts with a single cell, divides several
times, and forms a rosette. I have not yet achieved this. Cell divisions have proven to be
particularly challenging to model in 3D, as they are a large and rapid change in the cell shape.
This results in large forces which either cause numerical errors, or an unfeasibly small time step.
However, other than this practical difficulty, I believe I have all of the ingredients necessary
to simulate a rosette. I have shown that the polarity dynamics that place the basal domain
in contact with the ECM are believable, that the Polar IAS Model is capable of reproducing
realistic cell shapes, and that polarity-adhesion coupling is capable of transforming an extended
configuration of cells (e.g. a line of 8) into a rosette. Furthermore, the 2D simulations which do
include cell division show a clear difference between compact aggregates with polarity-adhesion
coupling, and extended aggregates without.

A further challenge remains in that even if I produce a simulation of a single cell growing
into a rosette as a result of polarity-adhesion coupling, I will have demonstrated a mechanism.
How do I then provide evidence that it is the mechanism that occurs in nature? Making a range
of quantitative comparisons between the simulations and experiments, and reproducing the be-
haviour of perturbation experiments (e.g. the β1-KOs) are two important ways. Furthermore,
I could make predictions about new experimental scenarios (e.g. mixing cells with differential
adhesion strengths, a WT-KO chimera being one possibility) and compare these with exper-
iments. Testing and eliminating alternative mechanisms (e.g. coupling between polarity and
surface tension, or cells rearranging randomly) could also play an important role, however this
comes with the challenge that there will always be alternative mechanisms to test.

Looking to the future, I hope that this project will demonstrate the utility of the Polar IAS
Model, and the analysis pipeline, in building quantitative models of tissue mechanics. I would
be excited to extend this work to the more complex embryonic organoids of Harrison et al.
[74], and Sozen et al. [185]. In principle, the parallelised nature of the IAS Model will allow
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it to model the roughly 100 cells in such aggregates. Gaining a quantitative, and causative,
understanding of the self organisation of mESC aggregates will be greatly beneficial to the
engineering of increasingly complex embryonic organoids.

9.5 Concluding remarks

In this thesis, I have summarised my efforts in studying the self organisation of cellular systems,
with a particular emphasis on mESC aggregates. I hope I have made a small contribution to
improving the state of the art in the fields of active matter hydrodynamics, image analysis and
computational tissue mechanics. I also hope that my work demonstrates the utility of concepts
from theoretical physics for understanding biological systems.
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Appendix A

Hydrodynamics

Here I include details of calculations referred to in the main body of the text.

A.1 Linear stability of passive, apolar, impermeable cells

Impermeable cells are described by the limit Λs = Λsm,ξ = Λw = 0. The passive limit corre-
sponds to ∆µ = 0. The incompressibility condition is

∂αuα = 0. (A.1)

The force balance equation is

∂βσ
Tot
αβ = 0 (A.2)

=⇒ ∂2
αP = ∂2

α∂βvβ. (A.3)

With appropriate boundary conditions this can be integrated to P = ∂βvβ. The equilibrium
pressure is given in Eq. 4.61 as

P e = Pm + kTnZ(φ), (A.4)

where we have set Kc = 0. Hence, the hydrodynamic equations are

dn

dt
=− ∂α(nvα) (A.5)

dnsm

dt
=− ∂α(nsmvsm0

α ) (A.6)

vsm,0
α =

vc(1− φ)(ξswvc − ξsvs)

ξ(ξsφvs + vcξsw(1− φ))
[n∂αµ+ φ∂α(P − P e)− ∂βσ̃αβ]

− 1− φ
nsm

[
ξsw(1− φ) + ξsφ v

s

vc

] [nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e)

]
(A.7)

vα =− (1− φ)

nξ
[n∂αµ+ φ∂α(P − P e)− ∂βσ̃αβ]

+
vsφ(1− φ)(ξ − ξs)

ξn [ξsφvs + vcξsw(1− φ)]

[
nsm∂αµ

sm + (1− φ)φ̄sm∂α(P − P e)
]

(A.8)

The cell stress can be written

−∂βσcαβ = n∂αµ+ φ∂α(P − P e)− ∂βσ̃αβ (A.9)

= (1− φ)kTz∂αn+ φη∂α∂βvβ − η∂2
βuα − 2η∂β ṽαβ. (A.10)
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The solute stress can be written

−∂βσsαβ = nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e) (A.11)

= kT (1− φ)∂αn̄
sm + φsmη∂α∂βvβ − kTzφsm∂αn, (A.12)

where the compressibility z(φ) = Z(φ) +φZ ′(φ) = 2φZ̃ ′+φ2Z̃ ′′. Consequently, the divergences
of the cell and solute flux are

∂αj
sm
α =−Ds(1− φ)∂2

αn̄
sm +Dszφsm

{
1 +

ξswvc − ξsvs

vsξ
(1− φ)

}
∂2
αn

+
Dsηφsm

kT

{
−1 +

ξswvc − ξsvs

vsξ

(
φ− 4

3

)}
∂2
α∂βvβ (A.13)

∂α(nvα) =
zkT

ξ

{
−(1− φ)2 − vsn(ξ − ξs)Dsφsm

kT

}
∂2
αn+

Dsvsn(1− φ)(ξ − ξs)

ξ
∂2
αn̄

sm

+
η

ξ

{
−(1− φ)

(
φ− 4

3

)
+
vsn(ξ − ξs)Dsφsm

kT

}
∂2
α∂βvβ (A.14)

These expressions can be simplified by noting

vsn(ξ − ξs)Dsφsm

kT
' a2

r2
� 1, (A.15)

ξswvc − ξsvs

ξvs
' r2

a2
� 1. (A.16)

where a is the size of a solute, and r the size of a cell. Hence,

∂αj
sm
α =−Ds(1− φ)∂2

αn̄
sm +Dszφsm ξ

swvc − ξsvs

vsξ
(1− φ)∂2

αn+
Dsηφsm

kT

ξswvc − ξsvs

vsξ

(
φ− 4

3

)
∂2
α∂βvβ

(A.17)

∂α(nvα) =− zkT

ξ
(1− φ)2∂2

αn+
Dsvsn(1− φ)(ξ − ξs)

ξ
∂2
αn̄

sm − η

ξ
(1− φ)

(
φ− 4

3

)
∂2
α∂βvβ.

(A.18)

This brings us to the equations in the main body of the text.
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A.2 Polar pumping instability

The hydrodynamic equations are

dn

dt
=− ∂α(nvα) (A.19)

dv

dt
=Λw

(
kT (n̄s − n̄sm)− kTnZ̃ ′(φ)− f c

0
′(vc) +

Λwa

Λw
∆µ

)
+ vsΛskT ln

n̄sm

n̄s
− vsΛsa0(vc − vT)∆µ

(A.20)

dns

dt
=ΛskT ln

n̄sm

n̄s
− Λsa0(vc − vT)∆µ (A.21)

dξα
dt

=
Λsm,ξkT

n̄sm

(
∂αn̄

sm − ξα

vc
2
3

)
− Ds

vc
2
3

ξα (A.22)

dnsm

dt
=∂α

(
−nsmvsm0

α + φΛsm,ξ

(
∂αµ̄

sm +
kT

Kn̄smvc
2
3

χα

)
− λsa0∆µnnsmpα

)
− ΛsnkT ln

n̄sm

n̄s
+ Λsa0(vc − vT)n∆µ (A.23)

Dpα
Dt

=− 1

τp
pα − βpβpβpα +K∂2

βpα − κ∂αn (A.24)

vsm,0
α =

Ds(ξswvc − ξsvs)

ξkT
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

− Ds

nsmkT

[
nsm∂αµ

sm + (1− φ)φ̄sm∂α(P − P e)
]

(A.25)

vα =− D(1− φ)

nkT
[n∂αµ+ hβ∂αpβ + φ∂α(P − P e)− ∂βσ̃αβ]

+
Dsvs(ξ − ξs)

ξkT

[
nsm∂αµ

sm + (1− φ)φ̄sm∂α(P − P e)
]

(A.26)

It is convenient to construct the following equation

d

dt
(nsm + nns − φ∂αξα) =− ∂α

{
nsmvsm0

α + λsa0nnsm∆µpα −
φDs

vc
2
3

ξα + nsnvα

}
+ nvα∂αn

s + ∂αξα∂β(φvβ). (A.27)

In the limit of fast volume control, this becomes

d

dt

(
n̄sm − φ`2∂2

αn̄
sm
)

=− ∂α
{
nsmvsm0

α + λsa0nnsm∆µpα − φDs∂αn̄
sm + nsnvα

}
+ nvα∂αn

s + ∂αξα∂β(φvβ). (A.28)

In the hydrodynamic limit gradients in n̄sm occur on length scales much larger than `, so we
can neglect the second term on the left. Perturbing about a steady state and truncating to
linear order, the hydrodynamic equations then become

∂tδn = −n∂αδvα (A.29)

∂tδn̄
sm = −∂α

{
nsmδvsm0

α + λsa0nnsm∆µδpα − φDs∂αδn̄
sm + nsnδvα

}
(A.30)

∂tδpα =
−1

τp
δpα +K∂2

βδpα − κ∂αδn (A.31)
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Next we calculate the fluxes of cells and solutes. To linear order, the divergence of the cell
stress is

−∂βσcαβ = n∂αµ+ φ∂α(P − P e)− ∂βσ̃αβ (A.32)

= (1− φ)kTz∂αn+ φη∂α∂βvβ − η∂2
βuα − 2η∂β ṽαβ. (A.33)

To linear order the divergence of the solute stress is

−∂βσsαβ = nsm∂αµ
sm + (1− φ)φ̄sm∂α(P − P e) (A.34)

= kT (1− φ)∂αn̄
sm + φsmη∂α∂βvβ − kTzφsm∂αn. (A.35)

Note that we have neglected Kc as it does not affect the stability at low wave number. These
expressions are identical to those in the impermeable cell calculation. Following the same steps
as the impermeable cell calculation, we get, to linear order,

∂α(nsmvsm0
α ) =−Ds(1− φ)∂2

αn̄
sm +Dszφsm ξ

swvc − ξsvs

vsξ
(1− φ)∂2

αn

+
Dsηφsm

kT

ξswvc − ξsvs

vsξ

(
φ− 4

3

)
∂2
α∂βvβ (A.36)

n∂α(vα) + n`2
p∂

2
α∂βvβ =− zkT

ξ
(1− φ)2∂2

αn+
Dsvsn(1− φ)(ξ − ξs)

ξ
∂2
αn̄

sm, (A.37)

where `2
p = ηvc

ξφ
(1− φ)

(
φ− 4

3

)
is the permeation length. Fourier transforming in space like so,

δñ = 1√
2π

∫
e−iq·rδndr, δñsm = 1√

2π

∫
e−iq·rδn̄smdr, δρ̃ = 1√

2π

∫
e−iq·rδ∂αpαdr, perturbing about

a steady state, and truncating to linear order, we get

∂tδñ =
1

1− `2
pq

2

{
−zD(1− φ)2q2δñ+Dsvsn(1− φ)

(
ξs

ξ
− 1

)
q2δñsm

}
(A.38)

∂tδñ
sm =−

{
Ds +

(Aq2 + nsn)

n− n`2
pq

2

Dsvsn(1− φ)(ξ − ξs)

ξ

}
q2δñsm

+

{
B +

Aq2 + nsn

n− n`2
pq

2
zD(1− φ)2

}
q2δñ+ λsa0nnsm∆µδρ̃ (A.39)

∂tδρ̃ =− 1

τp
δρ̃−Kq2δρ̃+ κq2δñ. (A.40)

The polarity relaxation timescale τp = γ1

α
, and the modified Frank constant K = Kp

γ1
.

For readability, we have introduced the constants A = Dsηφsm(ξswvc−ξsvs)
kTvsξ

(
φ− 4

3

)
, and B =

Dszφsm(1 − φ) ξ
swvc−ξsvs

vsξ
. At λsa0 = 0, the system has three negative eigenvalues. One cor-

responds to the relaxation dynamics of the polarity field. The other two correspond to the
diffusion of cells and solutes. As λsa0 increases, one of the diffusion eigenvalues becomes posi-
tive. However, at q2 = 0, both diffusion eigenvalues remain zero. Consequently this system of
equations has a Type II instability at high λsa0, hence we can consider the behaviour at small
q2. Truncating to lowest order in q2, we get

∂tδñ =− zD(1− φ)2q2δñ+Dsvsn(1− φ)

(
ξs

ξ
− 1

)
q2δñsm (A.41)

∂tδñ
sm =−

{
1− nsnvs(1− φ)

(
ξs

ξ
− 1

)}
Dsq2δñsm +

{
B + nszD(1− φ)2

}
q2δñ+ λsa0nnsm∆µδρ̃

(A.42)

∂tδρ̃ =− 1

τp
δρ̃−Kq2δρ̃+ κq2δñ. (A.43)

139



Substituting a trial solution of the form δñ(q, t) = eλtδñ(q), etc., these equations can be
written as the eigenvalue problem

λ

 δñ
δñsm

δρ̃

 =

a b 0
c d e
f 0 g

 δñ
δñsm

δρ̃

 , (A.44)

where the elements of the matrix can be read from Eq. A.41 - A.43. The eigenvalues are given
by the roots of the characteristic polynomial

P (λ) = bef + (g − λ)(ad− bc− (a+ d)λ+ λ2) (A.45)

= bef +Q(λ) (A.46)

= 0. (A.47)

A positive eigenvalue exists for −bef < Q(0). This condition is equivalent to

λsa0∆µ >

(
1

τp
+Kq2

)
Φ

κ
(A.48)

where

Φ =
z(φ)

vsn2nsm
(
ξs

ξ
− 1
){D(1− φ)

[
1− nsnvs(1− φ)

(
ξs

ξ
− 1

)]

− vsn

(
ξs

ξ
− 1

)[
Dsφsm(1− φ)

(
ξswvc − ξsvs

ξvs

)
+ nsD(1− φ)2

]}
.

(A.49)

A.2.1 Numerical evaluation of the pumping instability

This expression can be related to an approximate solute pumping rate per cell by considering
the pumping flux jp

α in response to a step function tissue boundary. Neglecting the Frank
term, the polarity dynamics are ∂tpα = −1

τp pα − κ
v
∂αφ. The polarity, p̄, induced by a 1D tissue

boundary that goes from φ ≈ 1 to φ ≈ 0 across a length scale of one cell is

p̄ =
κτp

vc
4
3

. (A.50)

The flux of solutes pumped by a single cell is σ|jp| = σλsa0∆µnnsmp̄ = Np, where σ is the cross
sectional area of the cell. Hence,

Np =
πλsa0∆µnnsmκτp

vc
2
3

. (A.51)

To evaluate Np we use the following parameter values

Parameter Value
vc 10−15 m3

vs 10−29 m3

D 10−14 m2 s−1

Ds 10−10 m2 s−1

ηw 10−3 Pa s
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Furthermore we take ξs = 3ξ, ξ = 6πηwvc 1
3 , and ξsw = 6πηwvs 1

3 . For the volume fractions
we use φ = 0.5, φsm = 0.1, φ̄s = nsvs

v
= 0.1. For the incompressibility factor, we take z = 0.1,

where z = 0 is the boundary of spinodal stability. Consequently, the boundary of stability in
the limit |q| → 0 is

Np >
πnnsmΦ

vc
2
3

≈ 109 s−1. (A.52)
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Appendix B

Parameter sets

B.1 The 2D Spline Model

Note that the parameter values for the 2D Spline Model were chosen for demonstration purposes
only, hence are in some cases wildly unphysical.

B.1.1 Simulation in Fig. 6.8

Parameter Value
K 0.1 kg µm−2 s−2

A0 6.5× 103 µm2

γ 10, 100, 1000 kg µm s−2

κ 5× 10−2 kg µm s−2

D 5 kg s−2

a 1.84 µm−1

rm 1.9 µm

B.1.2 Simulation in Fig. 6.9

Parameter Value
K 0.1 kg µm−2 s−2

A0 6.5× 103 µm2

γ 1 kg µm s−2

κ 5× 10−2 kg µm s−2

D 2 kg s−2

a 2 µm−1

rm 4 µm
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B.1.3 Simulation in Fig. 7.4

Parameter Value
K 0.1 kg µm−2 s−2

A0 6.5× 103 µm2

γ 1 kg µm s−2

κ 5× 10−2 kg µm s−2

D 2 kg s−2

a 2 µm−1

rm 4 µm
∆D 0.9
θ∗ π

4
rad

B.1.4 Simulation in Fig. 7.5

Parameter Value
K 0.1 kg µm−2 s−2

A0 6.5× 103 µm2

γ 1 kg µm s−2

κ 5× 10−2 kg µm s−2

D 2 kg s−2

a 2 µm−1

rm 4 µm
∆D 0.9
θ∗ π

4
rad

B.1.5 Simulation in Fig. 7.7

Parameter Value
K 0.1 kg µm−2 s−2

A0 6.5× 103 µm2

γ 1 kg µm s−2

κ 5× 10−2 kg µm s−2

D 2 kg s−2

a 2 µm−1

rm 4 µm
∆D 0.9, 0
θ∗ 1.4 rad

B.1.6 Simulation in Fig. 7.17

Parameter Value

D̂ 0.56
∆D 0.5
θ∗ 45◦
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Appendix C

Quantification of mESC aggregate
growth

Here I list plots of the various variables detailed in Chapter 5, for all movies in my segmented
dataset. This consists of 6 WT movies, 4 of which form rosettes, and 3 β1-KO movies.
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C.0.1 Cell volume
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145



C.0.2 Sphericity
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C.0.3 Neighbour count
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C.0.4 Cell centres
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C.0.5 Polar angle distribution
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Appendix D

Computational methods

D.1 The Finite Element Method

The Finite Element Method (FEM) is a method of finding approximate solutions to partial
differential equations. I will describe the method in the context of solving the Poisson equation.
Our goal is to find a solution, u, that satisfies

∇2u = f, (D.1)

on some domain, Ω, with Neumann boundary conditions, ∇u · ν = q, on some subset of the
boundary of the domain, ∂ΩN , with normal ν, and Dirichlet boundary conditions on the rest
of the boundary, ∂ΩD. Instead of solving this problem, FEM aims to solve a “weak form” of
the problem, i.e. finding some u that satisfies

v∇2u = vf, (D.2)

for all v in a set of test functions {v}, where v = 0 on ∂ΩD. Integrating by parts over Ω, we
get ∫

Ω

v∇2udV =

∫
Ω

vfdV (D.3)

−
∫

Ω

∇v · ∇udV +

∫
∂ΩN

vqdS =

∫
Ω

vfdV. (D.4)

A function can be approximated over a discretised domain by interpolating with a set of
basis functions, like so

uapprox(x) =
∑
I

NI(x)uI , (D.5)

where {NI} are the basis functions, and {uI} are the values of the function at discrete points.
In our case we discretise the surface of a cell with a triangular mesh, defining the uI at the
vertices. We take as basis functions the so called tent functions,

N1 = 1− ξ1 − ξ2, (D.6)

N2 = ξ1, (D.7)

N3 = ξ2, (D.8)

where ξi are coordinates running along two sides of each triangle. The Galerkin FEM is where
we choose {NI} as the test functions. Making this substitution in Eq. D.4, we get

−
∑
J

∫
Ω

∇NI · ∇NJdV uJ =

∫
Ω

NIfdV −
∫
∂ΩN

NIqdS. (D.9)
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Eq. D.9 is a linear problem of the form AIJuJ = bI , which can be solved by standard
numerical methods. As the mesh size is decreased, uapprox tends to a solution of the Poisson
Equation [13]. Similar steps are used to discretise and solve the force balance equations for the
surface of a cell in the Interacting Active Surfaces Model.
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Appendix E

Modelling mESC aggregates

Here I list further plots referred to in the main text.

E.0.1 Measured vs predicted polarity: WT E-cadherin movies

1.5 1.0 0.5 0.0 0.5 1.0
Measured px

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ca
lcu

la
te

d 
p x

r = 0.80

1.5 1.0 0.5 0.0 0.5 1.0
Measured py

Ca
lcu

la
te

d 
p y

r = 0.76

1.5 1.0 0.5 0.0 0.5 1.0
Measured pz

Ca
lcu

la
te

d 
p z

r = 0.56

Scaled measured polarity vs calculated polarity, E-cadherin movie

Figure E.1: Measured vs predicted polarity for a WT E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure E.2: Measured vs predicted polarity for a WT E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure E.3: Measured vs predicted polarity for a WT E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure E.4: Measured vs predicted polarity for a WT E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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E.0.2 Measured vs predicted polarity: β1-KO E-cadherin movies
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Figure E.5: Measured vs predicted polarity for a β1-KO E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure E.6: Measured vs predicted polarity for a β1-KO E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.
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Figure E.7: Measured vs predicted polarity for a β1-KO E-cadherin movie. The x, y, and z
components of each polarity vector are plotted against each other.

E.0.3 Measured vs predicted polarity: WT F-actin movies
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Figure E.8: Measured vs predicted polarity for a F-actin movie. The x, y, and z components
of each polarity vector are plotted against each other.
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Figure E.9: Measured vs predicted polarity for a F-actin movie. The x, y, and z components
of each polarity vector are plotted against each other.
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bridge the scales: Quantifying cellular contributions to tissue deformation. Physical
Review E, 95(3):1–24, 2017.

[119] N. D. Mermin. The topological theory of defects in ordered media. Reviews of Modern
Physics, 51(3):591–648, 1979.

[120] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-
or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17(22):1133–
1136, 1966.

[121] A. Meroni, A. Pimpinelli, and L. Reatto. On the entropy of mixing of a binary mixture
of hard spheres. The Journal of Chemical Physics, 87(6):3644–3646, 1987.

[122] D. G. Miller. Thermodynamics of irreversible processes. Chemical Reviews, 60(1):15–37,
1960.

[123] D. G. Miller. Explicit relations of velocity correlation coefficients to Onsager lij’s, to
experimental quantities, and to infinite dilution limiting laws for binary electrolyte solu-
tions. Journal of Physical Chemistry, 85(9):1137–1146, 1981.

168



[124] D. G. Miller, V. Vitagliano, and R. Sartorio. Some comments on multicomponent diffu-
sion: Negative main term diffusion coefficients, second law constraints, solvent choices,
and reference frame transformations. Journal of Physical Chemistry, 90(8):1509–1519,
1986.

[125] Z. G. Mills, W. Mao, and A. Alexeev. Mesoscale modeling: Solving complex flows in
biology and biotechnology. Trends in Biotechnology, 31(7):426–434, 2013.

[126] H. Morita, S. Grigolon, M. Bock, S. F. Krens, G. Salbreux, and C. P. Heisenberg. The
Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation. Developmental
Cell, 40(4):354–366.e4, 2017.

[127] J. E. Morral and J. W. Cahn. Spinodal decomposition in ternary systems. Acta Metal-
lurgica, 19(10):1037–1045, 1971.

[128] S. A. Morris, S. Grewal, F. Barrios, S. N. Patankar, B. Strauss, L. Buttery, M. Alexander,
K. M. Shakesheff, and M. Zernicka-Goetz. Dynamics of anteriorposterior axis formation
in the developing mouse embryo. Nature Communications, 3:673, 2012.

[129] S. A. Morris, R. T. Teo, H. Li, P. Robson, D. M. Glover, and M. Zernicka-Goetz. Origin
and formation of the first two distinct cell types of the inner cell mass in the mouse
embryo. Proceedings of the National Academy of Sciences of the United States of America,
107(14):6364–6369, 2010.

[130] S. P. Muench, J. Trinick, and M. A. Harrison. Structural divergence of the rotary ATPases.
Quarterly Reviews of Biophysics, 44(3):311–356, 2011.

[131] A. Mulero, C. A. Galán, and F. Cuadros. Equations of state for hard spheres. A review of
accuracy and applications. Physical Chemistry Chemical Physics, 3(22):4991–4999, 2001.
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