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Abstract

This thesis studies the problem of regularizing and optimizing generative models,

often using insights and techniques from kernel methods. The work proceeds in

three main themes.

Conditional score estimation

We propose a method for estimating conditional densities based on a rich class

of RKHS exponential family models. The algorithm works by solving a convex

quadratic problem for fitting the gradient of the log density, the score, thus avoiding

the need for estimating the normalizing constant. We show the resulting estimator to

be consistent and provide convergence rates when the model is well-specified.

Structuring and regularizing implicit generative models

In a first contribution, we introduce a method for learning Generative Adversarial

Networks, a class of Implicit Generative Models, using a parametric family of

Maximum Mean Discrepancies (MMD). We show that controlling the gradient of

the critic function defining the MMD is vital for having a sensible loss function.

Moreover, we devise a method to enforce exact, analytical gradient constraints.

As a second contribution, we introduce and study a new generative model

suited for data with low intrinsic dimension embedded in a high dimensional space.

This model combines two components: an implicit model, which can learn the low-

dimensional support of data, and an energy function, to refine the probability mass

by importance sampling on the support of the implicit model. We further introduce

algorithms for learning such a hybrid model and for efficient sampling.
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Optimizing implicit generative models

We first study the Wasserstein gradient flow of the Maximum Mean Discrepancy in a

non-parametric setting and provide smoothness conditions on the trajectory of the

flow to ensure global convergence. We identify cases when this condition does not

hold and propose a new algorithm based on noise injection to mitigate this problem.

In a second contribution, we consider the Wasserstein gradient flow of generic

loss functionals in a parametric setting. This flow is invariant to the model’s pa-

rameterization, just like the Fisher gradient flows in information geometry. It has

the additional benefit to be well defined even for models with varying supports,

which is particularly well suited for implicit generative models. We then introduce a

general framework for approximating the Wasserstein natural gradient by leveraging

a dual formulation of the Wasserstein pseudo-Riemannian metric that we restrict to a

Reproducing Kernel Hilbert Space. The resulting estimator is scalable and provably

consistent as it relies on Nyström methods.



Impact Statement

Powerful generative models for high dimensional data have found application in a

wide variety of domains, notably in computer imaging, with GANs being a particular

success story. In the entertainment industry, GANs have been successful in image

painting and style transfer. In medicine, GANs have been used to augment datasets

to improve generalization performance in supervised learning for medical image

classification, which can improve ML-based medical diagnosis tools. In climate

science, GANs have been used to visualize the effects of climate change: seeing the

effect of rising sea levels on one’s own city can bring home the impact of global

warming in a more accessible way than abstract figures.

Given that, all else being equal, the quality of images generated by our General-

ized Energy Based Model (GEBM) improves over images generated by a GAN with

the same generator and critic networks, we anticipate that GEBMs will be broadly

applicable in improving generative modeling across a range of applications.
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Chapter 1

Introduction

This thesis addresses the problem of learning an unknown probability distribution

from data. More specifically, we are interested in modeling, regularizing, and

optimizing generative models, often using insights and techniques from kernel

methods.

Modeling unknown probability distributions from data is one of the most gen-

eral problems in machine learning. Once an estimator of a probability distribution is

learned, it can be used to solve various problems such as classification, regression,

matrix completion, and other prediction tasks. Framing those prediction tasks as

a distribution estimation problem can account for multiple effects, such as multi-

modality or heteroscedasticity of the data, which are increasingly common given the

diversity and complexity of modern machine learning problems.

At a high level, a generative model defines a probability distribution Qθ from a

class of models Q. The goal is to select a distribution from the set Q that minimizes

some discrepancy measure between the data distribution and the model. In a high

dimensional setting, successful models need to incorporate additional knowledge

about the data to overcome the curse of dimensionality [Donoho, 2000]. Such

knowledge can be, for instance, in the form of independence assumptions between

variables (a graphical model) or a low intrinsic dimensionality of their support.

We first show how to incorporate independence structure in an expressive class

of non-parametric generative models based on Reproducing Kernel Hilbert Spaces

(RKHS). Those models fall in the category of explicit models since they directly
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specify a density model over the data, and can thus be estimated using methods such

as Maximum Likelihood or Score Matching [Hyvärinen, 2005]. We show how to

learn them using a score matching approach, which results in a convex quadratic

optimization problem. Unlike Maximum likelihood estimation, this method avoids

the need for estimating the normalizing constant.

In the second part of this thesis, we turn to another class of models, implicit gen-

erative models (IGMs), which enforce a low dimensional structure in the sampling

mechanism. Implicit models do not necessarily admit a density defined over the

whole data-space. Consequently, learning these models is challenging since likeli-

hood methods or score matching cannot be used. We introduce a method for learning

them, using a family of Maximum Mean Discrepancies (MMD) parametrized by a

reproducing kernel. We show that constraining the smoothness of the parametric

kernel results in a sensible loss for training IGMs. In a second contribution, we

introduce a new class of models that combines both implicit and explicit models.

The implicit model is in charge of learning the low-dimensional support of the data.

The explicit model then provides importance weights used to refine the mass on the

support defined by the implicit model, thus capturing effects such as multimodality.

We propose a method for learning this hybrid model, and derive sampling schemes

that exploit the model’s latent structure to increase efficiency.

Once a model is specified, and a loss is selected, there remains the question

of effectively optimizing such models. In many situations, the resulting loss is

non-convex, making the optimization more likely reach unsatisfactory local optima.

Moreover, usual optimization procedures might be sensitive to the parameterization

of the generative model. When such parametrization is less favorable, this can

result in a more challenging optimization problem. In the third part of this thesis,

we propose optimizers for implicit models to address such challenges using the

Wasserstein geometry.
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1 Conditional score estimation

In Chapter 3, we consider the problem of density estimation for high dimensional data.

A classical approach assumes the density belongs to a suitable hypothesis class and

then defines a learning rule for selecting a suitable estimator within such class.The

choice of the hypothesis class impacts both the generalization and optimization

properties of the learning algorithm.

When choosing a parametric model pθ with finite-dimensional parameter θ, the

density estimation task consists of estimating an optimal parameter θ that best fits

the data, using, for instance, maximum likelihood estimation. The first challenge

with many such models comes from the normalizing constant’s intractability, making

learning with maximum likelihood particularly challenging. Thus, various methods

propose either to estimate the gradient of the log-likelihood such as contrastive diver-

gence [Hinton, 2002] or to bypass the need for estimating the normalizing constant

[Hyvärinen, 2005, Gutmann and Hyvärinen, 2012]. Despite those developments, the

non-convexity of the resulting losses can lead to sub-optimal local minima even in

simple cases such as Mixtures of Gaussians [Jin et al., 2016]. One notable exception

is the class of exponential families described by a finite-dimensional parameter

vector T called the natural parameter and a predetermined function φ(x) called the

sufficient statistic. An exponential model’s density is proportional to exp(〈T, φ(x)〉)

and generally yields a concave log-likelihood, thus suitable for maximum likelihood

estimation. Unfortunately, when the data distribution does not belong to such a

parametric class, there is no possibility to control the bias introduced by the model.

To increase the estimator’s expressivity, one could turn to non-parametric

estimation. One popular setting is to consider hypothesis classes as large as β-

Sobolev or β-Hölder classes with some smoothness parameter β. In this setting,

and provided the correct smoothness parameter β is known, estimators as simple as

Kernel Density Estimation (KDE) achieve the minimax optimal rate of O(n−
2β

2β+d )

over those classes [Tsybakov, 2009]. When the smoothness parameter β is unknown,

it is still possible to construct adaptive estimators, for instance, using the method of

aggregation [Rigollet and Tsybakov, 2007]. However, in either case, the estimator’s
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convergence rate exhibits an exponential dependence on the dimension of the data.

This dependence is a consequence of a large hypothesis class, making any systematic

’search’ intractable in large dimensions.

Luckily, the data often exhibits additional structure and, if encoded in the hy-

pothesis class, one can construct estimators that have improved rates of convergence

on these restricted classes. Kernel methods offer a general framework for encoding

a priori structure while still retaining flexibility and tractability of the estimation

[Shawe-Taylor and Cristianini, 2000, 2004, Steinwart and Christmann, 2008]. To

achieve this in the context of density estimation, several works proposed to extend

the exponential family models to the case where the natural parameter T is a function

in a Reproducing Kernel Hilbert SpaceH with a reproducing kernel k [Gu and Qiu,

1993, Barron and Sheu, 1991, Pistone and Sempi, 1995, Canu and Smola, 2006,

Fukumizu, 2009]. The sufficient statistic φ(x) is then given by the feature map

k(x, .). Although the normalizing constant becomes intractable in general, Sripe-

rumbudur et al. [2017] proposed to use the score matching approach introduced in

Hyvärinen [2005] to circumvents the need for estimating the normalizing constant.

The natural parameter can then be estimated in closed-form using a generalized Rep-

resenter Theorem [Sriperumbudur et al., 2017, Theorem A.1] and solving a strongly

convex quadratic problem. The estimator’s convergence rate depends only on the

smoothness of the solution. However, there is still a hidden curse of dimensionality

since the smoothness requirement becomes more stringent as the dimension increases

[Sriperumbudur et al., 2017, Example 3].

Contribution We introduce a method for density estimation using non-parametric

exponential families. To reduce the complexity of the modeling task, we allow the

method to take advantage of a graphical model [Pearl, 2001, Jordan, 1999] where

each variable depends only on a subset of parent variables. This graphical model

imposes a factorization of the density into a product of conditional densities. To

estimate each factor independently, we extend the non-parametric family framework

of Sriperumbudur et al. [2017] to conditional distributions p(x|z) conditionally on

an observed variable z. The natural parameter Tz is still an element of an RKHS
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H. However, to include information from samples in the neighborhood of z, we

require the map T : z 7→ Tz to belong to a vector-valued RKHS [Micchelli and

Pontil, 2005]. This space contains functions of z that take values in the RKHS H

while still having some smooth dependence on z. The goal becomes to estimate

the map T . For this purpose, we extend the score matching framework proposed

in Hyvärinen [2005] to the vector-valued kernel setting. This approach results in a

strongly convex optimization problem in the vector-valued RKHS space that can be

solved in closed form by duality using the Representer theorem.

We then establish consistency of the estimator of T in the well-specified case

by generalizing the arguments of Sriperumbudur et al. [2017] to the vector-valued

setting. The distance between the estimator and the true unknown natural parameter

provably converge at a rate of O(n−
1
4

min(1, 2γ
γ+1

)) where γ is a parameter controlling

the smoothness of the true unknown natural parameter. While our proof allows for

general vector-valued RKHSs, we provide a practical algorithm for a specific case,

which takes the form of a linear system of size n× dx with dx being the dimension

of x. Hence, given a factorization of the joint density into a product of conditional

densities, the proposed method can estimate the joint density by first estimating each

conditional density independently and then combining the estimates.

2 Structuring and regularizing implicit generative

models
In Chapters 4 and 5, we consider the problem of modeling data supported on a

set with a low intrinsic dimension. This notion of dimension can be formalized

in the Minkowski sense without necessarily requiring a tangent structure for the

data support, such as a smooth manifold structure [Nakada and Imaizumi, 2020].

One significant implication for the data distribution is the absence of a well-defined

density w.r.t. the Lebesgue measure. In this setting, explicit models tend to spread

mass over the different dimensions of the data-space since, by construction, they

possess a density.

Unlike explicit models, Implicit Generative Models (IGMs), popularized by
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Goodfellow et al. [2014], do not directly specify a density function. Instead, they

assume each observation x to be generated by a possibly low-dimensional latent

variable z with a pre-defined distribution η. Producing a sample from an IGM

requires mapping a latent sample z to the data space using a function Gθ selected

from some parametric family: x = Gθ(z). When the latent variable is lower-

dimensional, the support of the IGM is also lower-dimensional and thus does not

admit a density w.r.t. Lebesgue measure on the data-space [Arjovsky and Bottou,

2017]. Consequently, IGMs seem natural to use when the data support has a small

intrinsic dimension as they can concentrate the mass where the data is supported.

As a first contribution, we will consider the challenge of learning IGMs. The

absence of a density in IGMs makes likelihood methods ill-suited for learning them,

opening the way to other methods, such as Adversarial training [Goodfellow et al.,

2014]. Those methods often require approximately solving a challenging bilevel

optimization problem [Liang, 2017]. In a second contribution, we will consider the

problem of expressiveness of IGMs. Such models often rely on a pre-determined

simple latent distribution η, such as a gaussian, that is transformed by the generator

G into a potentially multi-modal high-dimensional distribution. This restriction often

requires high modeling and learning complexity for the generator function [Cornish

et al., 2020].

2 .1 Optimized MMD under gradient constraints

In Chapter 4, we consider the problem of learning IGMs. In the absence of a density,

adversarial training [Goodfellow et al., 2014] offers an alternative to maximum

likelihood methods for leaning IGMs. This method introduces an auxiliary model

called the critic function E that is selected from a model class E to maximize a

discrepancy L between samples from the data distribution P and samples from the

Qθ:

E?(θ) ∈ arg max
E∈E
L(E,P,Qθ). (1.1)
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Goodfellow et al. [2014] considered a particular choice for the discrepancy L which

results in the Jensen-Shanon divergence when the set E consists in all measurable

functions, a computationally intractable case. For general choices of discrepan-

cies, their maximum value over a class E results in other divergences, such as

f -divergences [Nowozin et al., 2016]. Those divergences can be minimized with

respect to the parameters θ of the IGM Qθ:

θ? ∈ arg min
θ∈Θ
L(E?(θ),P,Qθ). (1.2)

A notable class of symmetric divergences called Integral Probability Metrics (IPMs)

are obtained when the discrepancy L(E,P,Qθ) is the difference in moments∫
E dP −

∫
E dQθ [Müller, 1997]. IPMs are thus only determined by the set E .

All those methods have the common property of approximately solving the bilevel

optimization defined by (1.1) and (1.2) and have yielded impressive empirical re-

sults, particularly for image generation, that are far beyond the quality of samples

seen from most earlier generative models [Karras et al., 2018, Radford et al., 2016,

Gulrajani et al., 2017, Huang et al., 2018a, Jin et al., 2017]. Despite this success, the

earliest attempts in training IGMs resulted in instabilities, and pathological behavior

[Liang, 2017].

These challenges inspired further research to stabilize training by adding various

regularizations to the optimization [Nagarajan and Kolter, 2017, Kodali et al., 2017].

Alternatively, Arjovsky et al. [2017] proposed to use the 1-Wasserstein distance as a

loss function for training IGMs. This distance is an IPM with the set E consisting of

all 1-Lipschitz functions. It metrizes the weak topology [Villani, 2009, Theorem 6.9],

unlike the Kullback-Leibler or Jensen-Shanon divergence, which define a stronger

topology. This property implies the continuity of the loss in the parameters of the

IGMs despite its density being ill-defined [Arjovsky and Bottou, 2017]. Unfortu-

nately, estimating the Wasserstein distance suffers from the curse of dimensionality

[Weed et al., 2019]. In practice, Arjovsky et al. [2017] proposed to approximate it

by restricting the set E to a parametric subset of neural networks under a Lipschitz

constraint. To approximately enforce this constraint, subsequent work developed
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regularization techniques such as the gradient penalty [Gulrajani et al., 2017] and

the spectral normalization [Miyato et al., 2018].

Another line of work proposes losses for which the inner optimization (1.1)

can be solved, at least partially, in closed form, thus simplifying the bilevel opti-

mization and allowing for easier control over its smoothness. The Maximum Mean

Discrepancy (MMD) is one particular instance that falls in the category of IPMs

with the critic class E being a unit ball of Reproducing Kernel Hilbert Space with

kernel k [Gretton et al., 2012]. It is appealing since it admits tractable unbiased

estimators. However, using MMDs with simple kernels, such as a Gaussian ker-

nel, does not achieve state-of-the-art performance on high dimensional data such

as images [Li et al., 2017]. Bińkowski* et al. [2018] proposed to overcome this

limitation by using features of the samples as inputs to the kernel k. Those features

are computed using a neural network φ(x) and define a parametric family of kernels

kφ(x, y) = k(φ(x), φ(y)). The network parameters are optimized so as to maximize

the MMD between the data distribution and the IGM, thus falling back to the original

bi-level optimization problem. Indeed, in this case, the model class E consists of

a union of unit balls from different RKHS’s each corresponding to a kernel kφ.

The optimization problem in (1.1) can no longer be solved in closed form over E .

However, it can be solved on each RKHS ball, resulting in an MMD with a particular

choice for the kernel. This kernel’s parameters are then selected to maximize the

MMD between the data and the model Qθ. This approach yields good results when

using an additional gradient penalty as a training trick, even though such penalty was

originally introduced so as to approximate Wasserstein distances [Arjovsky et al.,

2017, Gulrajani et al., 2017].

Contribution We introduce a new loss for training IGMs using a family of MMDs

parametrized by reproducing kernels. This loss is obtained by choosing the model

class E to be a union of RKHS balls. However, unlike in Bińkowski* et al. [2018],

we allow the radii of those balls to adjust to the kernel’s smoothness. This flexibility

favors critic functions that are flat in regions where the data distribution P has high

mass. The proposed method takes inspiration from an approach widely used in
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semi-supervised learning [Bousquet et al., 2004, Section 2]. In such approaches, a

classifier/critic E is encouraged to be smooth on the data support by constraining

the sum of its variance and expected gradient norm under the data distribution. In

our case, this constraint is encoded in the radii of the RKHS balls. We show that the

resulting loss is continuous in the weak topology, thus providing a sensible loss for

learning IGMs.

2 .2 Generalized energy based models

By defining low-dimensional support that can vary during training, implicit models

are well suited for modeling data with low-intrinsic dimensionality and often result in

impressivly sharp samples. However, IGMs still suffer from at least three limitations

related to their capacity and the efficiency of their training methods.

As discussed in Section 2 .1, the success of IGMs comes at the cost of intro-

ducing auxiliary models, in the form of critic functions E, that are solely used for

training and are not part of the final model. This waste in modeling motivated further

research to use the critic model during sampling in order to improve the sample

quality of the IGM [Azadi et al., 2019, Turner et al., 2019, Neklyudov et al., 2019].

These earlier approaches interpreted the critic function as defining a density ratio

between the IGM and the data distribution. This ratio is then used in sampling

algorithms such as rejection sampling or the Hasting-Metropolis algorithm, with

the IGM acting as a proposal distribution. However, the critic’s interpretation as

a density ratio becomes problematic when the IGM and the data distribution do

not share the same support, which is the usual scenario when the generator maps

low-dimensional noise into a high dimensional sample space.

A second limitation of IGMs is the use of pre-determined simple latent distribu-

tions η, such as a Gaussian, that are transformed by the generator G into a potentially

multi-modal high-dimensional distribution. This choice often requires high model-

ing complexity for the generator function, especially when the data distribution is

multi-modal [Cornish et al., 2020]. On the other hand, explicit models can easily

capture multi-modality using mixture-models, for instance.

Finally, as discussed earlier in Section 2 .1, when it comes to learning IGMs,
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the losses need to be sensitive to the mismatch between the support of the model and

the data distribution. This requirement can be satisfied when the divergences used for

training are continuous in the topology of weak convergence of probability measures.

However, with this requirement, the benefits of using stronger topologies, such as the

topology induced by likelihood methods, are not guaranteed anymore. For instance,

statistical efficiency is a crucial property of estimators obtained using likelihood

methods [Daniels, 1961]. Consequently, explicit models trained by maximum likeli-

hood benefit from favorable statistical properties, unlike IGMs, which require weaker

training losses. A natural question is whether implicit and explicit models can be

combined in a way that exploits both of their complementary strengths.

Contribution In Chapter 5, we introduce a new class of models that combines both

implicit and explicit models. The implicit model is in charge of learning the low-

dimensional support of the data. The explicit model, called the energy by analogy to

statistical physics models, provides importance weights used to refine mass on the

implicit model’s support, therefore capturing multi-modality. Crucially, both parts of

the model are trained together without the need for additional modeling. The energy

is learned by maximizing a generalized relative likelihood to the support of the

implicit model. This energy allows computing a provably weak divergence between

the data and the implicit model. We further show that the resulting divergence is

smooth enough in the parameters of the IGM so that stochastic gradient methods are

guaranteed to converge to a local optimum. Hence, the explicit part of the model

benefits from the strong topology, while the implicit part relies on the weak topology

to capture the data support. Additionally, we show that sampling from such a model

can be achieved by leveraging the latent structure and performing MCMC in the

lower dimensional latent space. This model results in a framework that generalizes

and unifies two classes of models a priori orthogonal to each other.

3 Optimizing implicit generative models

Characterizing and finding optimal solutions for IGMs is of particular importance to

better understand their generalization properties and devise more efficient optimiza-
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tion algorithms.

Central to this question is the choice of the geometry used to study this problem.

Using the euclidean geometry defined by the parameters of the IGM does not account

for the probabilistic structure of the problem. As a result, optimization algorithms

such as usual gradient descent or even adaptive optimizers [Kingma and Ba, 2015]

are still sensitive to the model’s parameterization. Alternatively, Amari [1985]

introduced the Fisher natural gradient to account for the probabilistic structure of the

problem. This gradient relies on the geometry defined by the Fisher-Rao metric on

the space of probability distributions [Holbrook et al., 2017], and can thus result in

methods robust to parameterization. The geometry defined by the Fisher-Rao metric

requires the model to have a well-defined density and is thus well adapted to explicit

models. However, it does not apply to IGMs since they usually include mutually

singular distributions.

An alternative geometry in probability space, the Wasserstein geometry, relies

on optimal transport between probability distributions and was first introduced in

Jordan et al. [1998] and Otto and Villani [2000]. It remains well-defined even for mu-

tually singular distributions and is therefore well suited for implicit models [Mroueh

et al., 2019]. This geometry was formalized in Jordan et al. [1998], Otto and Villani

[2000], Ambrosio et al. [2004] using the idea of a minimizing movement scheme

of a loss functional ρ 7→ L(ρ) defined over the set P2 of probability distributions

with finite second order moments. This scheme constructs a sequence of probability

distributions ρk by iteratively solving the minimization problem:

ρk+1 ∈ arg min
ρ∈P2

L(ρ) +
1

2τ
W 2

2 (ρ, ρk) (1.3)

with τ being a step-size parameter controlling how close the next iterate ρk+1 must be

to ρk in terms of the Wasserstein-2 distance. Under mild assumption on the functional

L and formally taking the limit of infinitely small step-size (τ → 0) results in

continuous time path in probability space ρt known as the Wasserstein gradient flow

of L. This gradient flow describes the variations of probability distributions in terms

of displacement of the probability mass from a location in space to another, also
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called horizontal movement [Santambrogio, 2010]. This gradient flow shares some

similarities with the optimization trajectories of implicit models in probability space.

Indeed training IGMs requires producing samples from the model and transporting

them to a new location by varying the model’s parameters, hence mimicking a

horizontal movement.

In Chapter 6, we will study the convergence properties of the gradient flow of the

Maximum Mean Discrepancy functional in a non-parametric setting. In Chapter 7,

we will propose an efficient optimizer that approximates the Wasserstein gradient

flow when constrained to a family of parametric models.

3 .1 Wasserstein gradient flow of the MMD

Despite the empirical success of IGMs, providing a complete description of their

generalization properties remains a challenge. Part of this challenge is related to

the highly non-convex nature of the optimization problem. Here, our goal is to

investigate further some properties of the optimization trajectories that result from

learning IGMs.

An interesting starting point is the non-parametric setting, where the model

consists of a (potentially infinite) set of particles free to move in space. Thus, the

goal becomes to minimize a loss functional over a non-parametric class of probability

distributions over those particles. The trajectory of those particles can be described by

a Wasserstein gradient flow of the functional in probability space [Chizat and Bach,

2018a, Mroueh et al., 2019]. The parametric setting used in practice is a constrained

version of the Wasserstein gradient flow where the set of probability distributions

is restricted to a parametric family. This constraint causes a departure from a pure

particle flow. Despite this fact, we anticipate that the theoretical study of particle flow

convergence will provide helpful insights into conditions for convergence of IGMs,

and ultimately, improvements to their training algorithms. The Wasserstein flow of

the MMD functional is of particular interest since it yields competitive empirical

results when used for training IGMs [Bińkowski* et al., 2018]. Although those

works rely on optimized kernels, considering the MMD with a fixed kernel results in

a closed-form expression and makes a mathematical analysis more accessible.
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Several works studied the Wasserstein flows of functionals similar to the MMD.

Carrillo et al. [2006] studied such flows under convexity assumptions of the functional

and proved their convergence to a global minimum. However, these convexity

assumptions are unlikely to hold in the case of the MMD because of the opposing

terms resulting from the attractive and repulsive forces that will typically not be

simultaneously convex. More recently, Mei et al. [2018] proved that adding entropic

regularization to functionals similar to the MMD results in global convergence of

the particle flow. In this case, the optimal distribution is in general different from the

one obtained without adding entropic regularization. In the context of optimization

of neural networks, Rotskoff and Vanden-Eijnden [2018] viewed the parameters of a

one hidden layer network as particles that are drawn from a probability distribution

and considered the infinite width limit of such networks. They provided an informal

global convergence result of the gradient flow of a representative particle. The

work of Chizat and Bach [2018a] generalized and provided rigorous proofs of

global convergence using the Wasserstein geometry formalism. Their results rely

on a homogeneity structure of the loss function, which holds systematically in

the context of deep neural networks. In the case of the MMD, this structure can

hold for kernels that are linear in at least one of their variables. However, this

requirement is incompatible with the MMD being a strict distance since the kernel is

not characteristic anymore [Sriperumbudur et al., 2009].

Contribution In Chapter 6, we study the Wasserstein gradient flow of the MMD

functional in a setting that is agnostic to the specific form of the kernel. We provide

a smoothness condition on the trajectory path in probability space that guarantees

convergence to a global minimum. This condition states that the negative Sobolev

distance between the current particles’ distribution and the global minimizer remains

finite. While this condition is trajectory dependent, it indicates that a common reason

for failure to attain global optimality is when the particles’ support collapses. We

exhibit simple cases when this condition does not hold, thus resulting in patholog-

ical trajectories. We then propose a modified algorithm for the particle flow that

adds a Gaussian perturbation to the particles’ location when evaluating its gradient.
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This procedure maintains the global optimum as a stationary point, unlike entropic

regularization, and is shown empirically to mitigate the collapse problem.

3 .2 Scalable Wasserstein natural gradient

Usually, when optimizing generative models, the probability distributions matter

more than the particular parameters used to describe them. This principle is central

to natural gradient methods which construct optimization algorithm based on a

proximity measure between probability distributions [Amari, 1985, 1998]. When the

Kullback-Leibler (KL) is used as a proximity measure, this results in the so-called

Fisher Natural Gradient (FNG) descent, which received particular attention in the

context of variational inference [Khan and Lin, 2017, Zhang et al., 2018]. This

approach has the particular advantage that the resulting optimization trajectory in

probability space is invariant to parametrization in the continuous-time limit [Ollivier

et al., 2011]. Because of its close connection to the KL, this method is only applicable

when the generative model has a well-defined probability density relative to some

reference measure. Unfortunately, this is rarely the case in the context of IGMs.

On the other hand, the Wasserstein distance remains well-defined for IGMs

and appears to be a viable alternative proximity measure to the KL. This amounts

to considering a parametric Wasserstein Gradient flow ρθt . Such a flow would be

obtained by taking the continuous-time limit of a proximal scheme similar to (1.3),

albeit constrained to the parametric set of IGMs:

ρθk+1
∈ arg min

ρθ∈Q
L(ρθ) +

1

2τ
W 2

2 (ρθ, ρθk). (1.4)

By doing so, Li and Montufar [2018a,b], Li [2018] introduce the notion of Wasser-

stein natural gradient (WNG) which drives the dynamics of the parameter θt describ-

ing the trajectory ρθt . Operating directly on the parametric ’manifold’ of probability

distributions defined by the IGMs, the Wasserstein Natural gradient flow yields

the same trajectory in probability space regardless of the model’s parameterization.

Similarly to the FNG, the WNG can also be computed by pre-conditioning the usual

euclidean gradient with the inverse a symmetric positive matrix: the Wasserstein
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Information matrix. Because of this inversion, direct estimation of either FNG or

WNG becomes quickly infeasible for current large models with typically millions of

parameters.

So far, prior works focused on finding efficient algorithms to estimate the Fisher

natural gradient thus achieving a good trade-off between computation and empirical

performance [Martens and Grosse, 2015, Grosse and Martens, 2016, George et al.,

2018, Heskes, 2000, Bernacchia et al., 2018]. However, these methods exploit

the particular structure of the FNG and do not apply to estimating the Wasserstein

Natural gradient, to the best of our knowledge. Recently, Li et al. [2019] proposed to

use a proximal scheme similar to (1.4) to compute approximate updates of the WNG

flow without directly estimating the WNG. They propose to replace the Wasserstein

penalty in (1.4) by its non-parametric linearization known as the Negative Sobolev

Distance ‖ρθ − ρθk‖2
H−1(ρθk ) [Peyre, 2018, Villani, 2003]. While such penalty is

still intractable to compute, Li et al. [2019] express it as the optimal value of some

convex functional optimization problem obtained by duality and approximated in

practice using a finite set of basis functions. However, the Negative Sobolev Distance

between two probability distributions can be infinite, in theory, when the supports

of those distributions do not overlap, limiting the applicability to IGMs. However,

this pathology disappears when directly considering the infinitesimal limit of (1.4)

as described by the Wasserstein Natural Gradient.

Contribution. In Chapter 7, we introduce a scalable and provably consistent esti-

mator of the Wasserstein Natural Gradient. To achieve this, we first provide a dual

formulation of the Wasserstein Information Matrix (WIM) as the optimal value of

some convex functional optimization problem. Unlike in Li et al. [2019], this formu-

lation is provably well-defined since the WIM represents only elements that are in the

tangent space of the current probability distribution ρθ. The gradient of the optimal

solution provides a vector field φu allowing to perform an infinitesimal transport of

mass from ρθ in a parameter direction u. We then express the Wasserstein Natural

Gradient as the optimal solution of some convex-concave saddle problem using the

dual formulation used to express the WIM. This formulation allows us to derive an
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estimator of the WNG by restricting the functional space to a Reproducing Kernel

Hilbert Space. The WNG may then be approximated using a Nyström method. We

provide a convergence rate for the estimator in two settings: a well-specified and a

misspecified setting. The well-specified setting considers the case when the optimal

vector field φu is a gradient of a function in the RKHS space. The misspecified case

assumes that the vector field can be approximated to arbitrary precision in L2(ρθ)

by the gradient of a function in the RKHS. The RKHS norm of the approximating

function is allowed to grow polynomially with the precision. This growth is pre-

cisely what determines the estimator’s convergence rate. An experimental evaluation

confirms that our kernel approach can accurately estimate the WNG while being

scalable and robust to the model’s parametrization.

4 Structure of the Thesis
The five main thesis chapters are based on the following publications. Source code

for all proposed methods in this is publicly available.

1. Chapter 3: Conditional score estimation

Arbel, Michael and Arthur Gretton. Kernel Conditional Exponential Family.

In AISTATS, 2018

Code: https://github.com/MichaelArbel/KCEF

2. Chapter 4: Optimized MMD under gradient constraints

Arbel*, Michael, Sutherland*, Danica J., Mikołaj Bińkowski, and Arthur

Gretton. On gradient regularizers for MMD GANs. In NeurIPS, 2018

Code: https://github.com/MichaelArbel/Scaled-MMD-GAN

3. Chapter 5: Generalized energy based models

Arbel, Michael, Liang Zhou, and Arthur Gretton. Generalized energy based

models. In ICLR, 2021

Code: https://github.com/MichaelArbel/GeneralizedEBM

https://github.com/MichaelArbel/KCEF
https://github.com/MichaelArbel/Scaled-MMD-GAN
https://github.com/MichaelArbel/GeneralizedEBM
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4. Chapter 6: Wasserstein gradient flow of the Maximum Mean Discrepancy

Arbel, Michael, Anna Korba, Adil Salim, and Arthur Gretton. Maximum

Mean Discrepancy Gradient Flow. In NeurIPS, 2019a

Code: https://github.com/MichaelArbel/MMD-gradient-flow

5. Chapter 7: Scalable Wasserstein natural gradient

Arbel, Michael, Arthur Gretton, Wuhen Li, and Guido Montufar. Kernelized

Wasserstein Natural Gradient. In ICLR, 2019b

Code: https://github.com/MichaelArbel/KWNG

Other Contributions Works published over the course of this thesis that are not

included are

• Moskovitz*, Ted, Arbel*, Michael, Ferenc Huszar, and Arthur Gretton. Ef-

ficient wasserstein natural gradients for reinforcement learning. In ICLR,

2021

• Mikołaj Bińkowski*, Danica J. Sutherland*, Arbel, Michael, and Arthur

Gretton. Demystifying MMD GANs. In International Conference on Learning

Representations, 2018

Code: https://github.com/mbinkowski/MMD-GAN

• Danica Sutherland, Heiko Strathmann, Arbel, Michael, and Arthur Gretton.

Efficient and principled score estimation with Nystrom kernel exponential

families. In International Conference on Artificial Intelligence and Statistics,

pages 652–660, March 2018

Code: https://github.com/karlnapf/nystrom-kexpfam

• Tolga Birdal, Arbel, Michael, Umut Simsekli, and Leonidas J Guibas. Syn-

chronizing probability measures on rotations via optimal transport. In In

CVPR, 2020

Code: https://synchinvision.github.io/probsync

https://github.com/MichaelArbel/MMD-gradient-flow
https://github.com/MichaelArbel/KWNG
https://github.com/mbinkowski/MMD-GAN
https://github.com/karlnapf/nystrom-kexpfam
https://synchinvision.github.io/probsync
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• Anna Korba, Adil Salim, Arbel, Michael, Giulia Luise, and Arthur Gretton.

A non-asymptotic analysis for stein variational gradient descent. In NeurIPS,

2020

• Louis Thiry, Arbel, Michael, Eugene Belilovsky, and Edouard Oyallon. The

unreasonable effectiveness of patches in deep convolutional kernels methods.

In ICLR, 2021

• Samuel Cohen, Arbel, Michael, and Marc Peter Deisenroth. Estimating

barycenters of measures in high dimensions. Under review, 2020



Chapter 2

Background

We introduce some concepts used throughout the rest of the thesis. We define

X ⊂ Rd as the closure of a convex open set, and P2(X ) as the set of probability

distributions on X with finite second moment, equipped with the 2-Wassertein metric

denoted W2. For any ν ∈ P2(X ), L2(ν) is the set of square integrable functions w.r.t.

ν.

1 Reproducing Kernel Hilbert Spaces
We recall here some fundamental definitions and properties of reproducing kernel

Hilbert spaces (RKHS) (see Smola and Scholkopf [1998]). Given a positive semi-

definite kernel (x, y) 7→ k(x, y) ∈ R defined for all x, y ∈ X , we denote by H its

corresponding RKHS (see Smola and Scholkopf [1998]). The spaceH is a Hilbert

space with inner product 〈., .〉H and corresponding norm ‖.‖H. A key property of

H is the reproducing property: for all f ∈ H, f(x) = 〈f, k(x, .)〉H. Moreover,

if k is m-times differentiable w.r.t. each of its coordinates, then any f ∈ H is

m-times differentiable and ∂αf(x) = 〈f, ∂αk(x, .)〉H where α is any multi-index

with α ≤ m [Steinwart and Christmann, 2008, Lemma 4.34]. When k has at most

quadratic growth, then for all µ ∈ P2(X ),
∫
k(x, x) dµ(x) < ∞. In that case,

for any µ ∈ P2(X ), φµ :=
∫
k(., x) dµ(x) is a well defined element in H called

the mean embedding of µ. The kernel k is said to be characteristic when such

mean embedding is injective, that is any mean embedding is associated to a unique

probability distribution.
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Maximum Mean Discrepancy When k is characteristic, it is possible to define a

distance between distributions in P2(X ) called the Maximum Mean Discrepancy:

MMD(µ, ν) = ‖φµ − φν‖H ∀ µ, ν ∈ P2(X ).

The difference between the mean embeddings of µ and ν is an element inH called

the unnormalised witness function between µ and ν: fµ,ν = φν − φµ. The MMD can

also be seen as an Integral Probability Metric:

MMD(µ, ν) = sup
g∈B

{∫
g dµ−

∫
g dν

}

where B = {g ∈ H : ‖g‖H ≤ 1} is the unit ball in the RKHS.

2 2-Wasserstein geometry

For two given probability distributions ν and µ in P2(X ), we denote by Π(ν, µ)

the set of possible couplings between ν and µ. In other words Π(ν, µ) contains all

possible distributions π on X × X such that if (X, Y ) ∼ π then X ∼ ν and Y ∼ µ.

The 2-Wasserstein distance on P2(X ) is defined by means of an optimal coupling

between ν and µ in the following way:

W 2
2 (ν, µ) := inf

π∈Π(ν,µ)

∫
‖x− y‖2 dπ(x, y) ∀ν, µ ∈ P2(X )

It is a well established fact that such optimal coupling π∗ exists Villani [2009],

Santambrogio [2015] . Moreover, it can be used to define a path (ρt)t∈[0,1] between ν

and µ in P2(X ). For a given time t in [0, 1] and given a sample (x, y) from π∗, it is

possible to construct a sample zt from ρt by taking the convex combination of x and

y: zt = st(x, y) where st is given by:

st(x, y) = (1− t)x+ ty ∀x, y ∈ X , ∀t ∈ [0, 1].
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The function st is well defined since X is a convex set. More formally, ρt can be

written as the projection or push-forward of the optimal coupling π∗ by st:

ρt = (st)#π
∗ (2.1)

We recall that for any T : X × X → X a measurable map, and any ρ ∈ P(X × X ),

the push-forward measure T#ρ is characterized by:

∫
y∈X

φ(y) dT#ρ(y) =

∫
x,x′∈X×X

φ(T (x, x′)) dρ(x, x′),

for every measurable and bounded function φ. It is easy to see that (2.1) satisfies the

following boundary conditions at t = 0, 1:

ρ0 = ν ρ1 = µ. (2.2)

Paths of the form of (2.1) are called displacement geodesics. They can be seen as the

shortest paths from ν to µ in terms of mass transport (Santambrogio [2015] Theorem

5.27).

2 .1 Dynamical formulation

It can be shown that there exists a velocity vector field (t, x) 7→ φt(x) with values in

Rd such that ρt satisfies the continuity equation:

∂tρt + div(ρtφt) = 0 ∀t ∈ [0, 1]. (2.3)

While there could be multiple vector fields φt satisfying (2.3), it is possible to

consider only those that are in the closure in L2(ρt) of gradient of smooth compactly

supported functions:

φt ∈ {∇f, f ∈ C∞c }L2(ρt)
. (2.4)

This additional condition ensures uniqueness of the vector field φt [Ambrosio et al.,

2004, Section 3.2].
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Equation (2.3) expresses two facts, the first one is that −div(ρtφt) reflects

the infinitesimal changes in ρt as dictated by the vector field (also referred to as

velocity field) φt, the second one is that the total mass of ρt does not vary in time

as a consequence of the divergence theorem. Equation (2.3) is well defined in the

distribution sense even when ρt does not have a density. At each time t, φt can be

interpreted as a tangent vector to the curve (ρt)t∈[0,1] so that the length l((ρt)t∈[0,1])

of the curve (ρt)t∈[0,1] would be given by:

l((ρt)t∈[0,1])
2 =

∫ 1

0

‖φt‖2
L2(ρt) dt where ‖φt‖2

L2(ρt)
=

∫
‖φt(x)‖2 dρt(x)

This perspective allows to provide a dynamical interpretation of the W2 as the length

of the shortest path from ν to µ and is summarized by the celebrated Benamou-

Brenier formula (Benamou and Brenier [2000]):

W 2
2 (ν, µ) = inf

ρt,φt

∫ 1

0

∫
‖φl(x)‖2 dρl(x) dl (2.5)

where the infimum is taken over all couples ρ and φ satisfying (2.3) with boundary

conditions given by (2.2). If (ρt, φt)t∈[0,1] satisfies (2.3) and (2.2) and realizes the

infimum in (2.5), it is then simply called a geodesic between ν and µ; moreover it

is called a constant-speed geodesic if, in addition, the norm of φt is constant for all

t ∈ [0, 1]. As a consequence, (2.1) is a constant-speed displacement geodesic.

2 .2 Pseudo-Riemannian structure

The formulation in (2.5) suggests that W2(ν, µ) corresponds in fact to the shortest

path from ν to µ. Indeed, given a path ρl from µ to ν, the infinitesimal displacement

direction is given by the distribution ∂lρl. The length |∂lρl| of this direction is mea-

sured by: |∂lρl|2 :=
∫
‖φl(x)‖2 dρl(x). It is therefore possible to express W 2

2 (ν, µ)

as:

W 2
2 (ν, µ) = inf

ρl

∫ 1

0

|∂lρl|2 dl.

In fact, ∂lρl can be seen as an element in the tangent space TρlP2 to P2 at point ρl.

To ensure that (2.3) is well defined, TρlP2 can be taken as the set of distributions σ
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satisfying σ(1) = 0.

|σ(f)| ≤ C‖∇f‖L2(ρ), ∀f ∈ C∞c (Ω) (2.6)

for some positive constant C. Indeed, the condition in (2.6) guarantees the existence

of a vector field φσ in (2.4) that is a solution to the PDE: σ = −div(ρlφσ).

Moreover, |∂lρl|2 can be seen as an inner product of ∂lρl with itself in TρlP2.

This inner product defines in turn a metric tensor gW on P2 called the Wasserstein

metric tensor (see Otto and Villani [2000], Ambrosio et al. [2004]):

Definition 1. The Wasserstein metric gW is defined for all ρ ∈ P2 as the inner

product over TρP2 of the form:

gWρ (σ, σ′) :=

∫
φσ(x)>φσ′(x) dρ(x), ∀σ, σ′ ∈ TρP2

where φσ and φσ′ are solutions to the partial differential equations:

σ = −div(ρφσ), σ′ = −div(ρφσ′).

Moreover, φσ and φσ′ are required to be in the closure of gradient of smooth and

compactly supported functions w.r.t. L2(ρ)d.

Definition 1 allows to endow P2 with a pseudo-Riemannian1 structure with W2

being its geodesic distance:

W 2
2 (ρ, ρ′) = inf

ρl

∫ 1

0

gρl(∂lρl, ∂lρl) dl,

where the infimum is taken over absolutely continuous paths ρl : [0, 1]→ P2 with

boundary conditions ρ0 = ρ and ρ1 = ρ′.

1We used the term pseudo since the geometric structure is not exactly Riemannian, as discussed
extensively in [Ambrosio et al., 2004, Section 3.2]
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2 .3 Gradient flows on the space of probability measures

Consider a real valued functional F defined over P2(X ). We call ∂F
∂ν

if it exists,

the unique (up to additive constants) function such that d
dε
F(ν + ε(ν ′ − ν))|ε=0 =∫

∂F
∂ν

(ν)(dν ′ − dν) for any ν ′ ∈ P2(X ). The function ∂F
∂ν

is called the first variation

of F evaluated at ν. We consider here functionals F of the form:

F(ν) =

∫
U(ν(x))ν(x)dx+

∫
V (x)ν(x)dx+

∫
W (x, y)ν(x)ν(y)dxdy

where U is the internal potential, V an external potential and W an interaction

potential. The formal gradient flow equation associated to such functional can be

written (see Carrillo et al. [2006], Lemma 8 to 10):

∂ν

∂t
= div(ν∇∂F

∂ν
) = div(ν∇(U ′(ν) + V +W ∗ ν)) (2.7)

where div is the divergence operator and ∇∂F
∂ν

is the strong subdifferential of F

associated to the W2 metric (see Ambrosio et al. [2008], Lemma 10.4.1). Indeed,

for some generalized notion of gradient∇W2 , and for sufficiently regular ν and F ,

the r.h.s. of (2.7) can be formally written as −∇W2F(ν). The dissipation of energy

along the flow is then given by:

dF(νt)

dt
= −D(νt) with D(ν) =

∫
‖∇∂F(νt(x))

∂ν
‖2νt(x)dx (2.8)

Such expression can be obtained by the following formal calculations:

dF(νt)

dt
=

∫
∂F(νt)

∂νt

∂νt
∂t

=

∫
∂F(νt)

∂ν
div(νt∇

∂F(νt)

∂ν
) = −

∫
‖∇∂F(νt)

∂ν
‖2dνt.

2 .4 Displacement convexity

Just as for Euclidian spaces, an important criterion to characterize the convergence of

the Wasserstein gradient flow of a functional F is given by displacement convexity

(see [Villani, 2004, Definition 16.5 (1st bullet point)])):

Definition 2. [Displacement convexity] We say that a functional ν 7→ F(ν) is
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displacement convex if for any ν and ν ′ and a constant speed geodesic (ρt)t∈[0,1]

between ν and ν ′ with velocity vector field (φt)t∈[0,1] as defined by (2.3), the following

holds:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1) ∀ t ∈ [0, 1].

Definition 2 can be relaxed to a more general notion of convexity called Λ-

displacement convexity (see [Villani, 2009, Definition 16.5 (3rd bullet point)]). We

first define an admissible functional Λ:

Definition 3. [Admissible Λ functional] Consider a functional (ρ, v) 7→ Λ(ρ, v) ∈ R

defined for any probability distribution ρ ∈ P2(X ) and any square integrable vector

field v w.r.t ρ. We say that Λ is admissible, if it satisfies:

• For any ρ ∈ P2(X ), v 7→ Λ(ρ, v) is a quadratic form.

• For any geodesic (ρt)0≤t≤1 between two distributions ν and ν ′ with correspond-

ing vector fields (φt)t∈[0,1] it holds that inf0≤t≤1 Λ(ρt, φt)/‖φt‖2
L2(ρt)

> −∞

We can now define the notion of Λ-convexity:

Definition 4. [Λ convexity] We say that a functional ν 7→ F(ν) is Λ-convex if for

any ν, ν ′ ∈ P2(X )2 and a constant speed geodesic (ρt)t∈[0,1] between ν and ν ′ with

velocity vector field (φt)t∈[0,1] as defined by (2.3), the following holds:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1)−
∫ 1

0

Λ(ρs, φs)G(s, t)ds ∀ t ∈ [0, 1]. (2.9)

where (ρ, v) 7→ Λ(ρ, v) satisfies Definition 3, and G(s, t) = s(1 − t)I{s ≤ t} +

t(1− s)I{s ≥ t}. A particular case is when Λ(ρ, v) = λ
∫
‖v(x)‖2 dρ(x) for some

λ ∈ R. In that case, (2.9) becomes:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1)− λ

2
t(1− t)W 2

2 (ν0, ν1) ∀ t ∈ [0, 1]. (2.10)

Definition 2 is a particular case of Definition 4, where in (2.10) one has λ = 0.



3 . Fisher-Rao Statistical Manifold 38

3 Fisher-Rao Statistical Manifold
In this section we briefly introduce the non-parametric Fisher-Rao metric defined

over the set P of probability distributions with positive density. More details can be

found in Holbrook et al. [2017]. By abuse of notation, an element ρ ∈ P will be

identified with its density which will also be denoted by ρ. Consider Tρ, the set of

real valued functions f defined over Ω and satisfying

∫
f(x)2

ρ(x)
dx <∞;

∫
f(x)ρ(x) dx = 0.

We have the following definition for the Fisher-Rao metric:

Definition 5 (Fisher-Rao metric). The Fisher-Rao metric gF is defined for all ρ ∈ P

as an inner product over Tρ of the form:

gFρ (f, g) :=

∫
1

ρ(x)
f(x)g(x) dx, ∀f, g ∈ Tρ

Note that the choice of the set Tρ is different from the one considered in

Holbrook et al. [2017] which replaces the integrability condition by a smoothness

one. In fact, it can be shown that these choices result in the same metric by a density

argument.
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Chapter 3

Conditional score estimation

A nonparametric family of conditional distributions is introduced, which generalizes

conditional exponential families using functional parameters in a suitable RKHS. An

algorithm is provided for learning the generalized natural parameter, and consistency

of the estimator is established in the well specified case. In experiments, the new

method generally outperforms a competing approach with consistency guarantees,

and is competitive with a deep conditional density model on datasets that exhibit

abrupt transitions and heteroscedasticity.

1 Introduction
Distribution estimation is one of the most general problems in machine learning.

Once an estimator for a distribution is learned, in principle, it allows to solve a

variety of problems such as classification, regression, matrix completion and other

prediction tasks. With the increasing diversity and complexity of machine learning

problems, regressing the conditional mean of y knowing x may not be sufficiently

informative when the conditional density p(y|x) is multimodal. In such cases, one

would like to estimate the conditional distribution itself to get a richer characterization

of the dependence between the two variables y and x. In this work, we address

the problem of estimating conditional densities when x and y are continuous and

multi-dimensional.

Our conditional density model builds on a generalisation of the exponential

family to infinite dimensions [Gu and Qiu, 1993, Barron and Sheu, 1991, Pistone and
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Sempi, 1995, Canu and Smola, 2006, Fukumizu, 2009], where the natural parameter

is a function in a reproducing kernel Hilbert space (RKHS): in this sense, like the

Gaussian and Dirichlet processes, the kernel exponential family (KEF) is an infinite

dimensional analogue of the finite dimensional case, allowing to fit a much richer

class of densities. While the maximum likelihood solution is ill-posed in infinite

dimensions, [Sriperumbudur et al., 2017] have demonstrated that it is possible to fit

the KEF via score matching [Hyvärinen, 2005], which entails solving a linear system

of size n × d, where n is the number of samples and d is the problem dimension.

It is trivial to draw samples from such models using Hamiltonian Monte Carlo

[Neal, 2010], since they directly return the required potential energy [Rasmussen,

2003, Strathmann et al., 2015]. In high dimensions, fitting a KEF model to samples

becomes challenging, however: the computational cost rises as d3, and complex

interactions between dimensions can be difficult to model.

The complexity of the modelling task can be significantly reduced if a directed

graphical model can be constructed over the variables, [Pearl, 2001, Jordan, 1999],

where each variable depends on a subset of parent variables (ideally much smaller

than the total, as in e.g. a Markov chain). In the present study, we extend the non-

parametric family of Sriperumbudur et al. [2017] to fit conditional distributions. The

natural parameter of the conditional infinite exponential family is now an operator

mapping the conditioning variable to a function space of features of the conditioned

variable: for this reason, the score matching framework must be generalised to

the vector-valued kernel regression setting of Micchelli and Pontil [2005]. We

establish consistency in the well specified case by generalising the arguments of

Sriperumbudur et al. [2017] to the vector-valued RKHS. While our proof allows for

general vector-valued RKHSs, we provide a practical implementation for a specific

case, which takes the form of a linear system of size n× d.

A number of alternative approaches have been proposed to the problem of

conditional density estimation. Sugiyama et al. [2010] introduced the Least-Square

Conditional Density Estimation (LS-CDE) method, which provides an estimate of

a conditional density function p(y|x) as a non-negative linear combination of basis
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functions. The method is proven to be consistent, and works well on reasonably

complicated learning problems, although the optimal choice of basis functions for

the method is an open question (in their paper, the authors use Gaussians centered

on the samples). Earlier non-parametric methods such as variants of Kernel Density

Estimation (KDE) may also be used in conditional density estimation [Fan et al.,

1996, Hall et al., 1999]. These approaches also have consistency guarantees, however

their performance degrades in high-dimensional settings [Nagler and Czado, 2016].

Sugiyama et al. [2010] found that kernel density approaches performed less well in

practice than LS-CDE.

It is possible to represent and learn conditional probabilities without speci-

fying probability densities, via conditional mean embeddings [Song et al., 2010,

Grunewalder et al., 2012]. These are conditional expectations of (potentially in-

finitely many) features in an RKHS, which can be used in obtaining conditional

expectations of functions in this RKHS. Such expected features are complementary

to the infinite dimensional exponential family, as they can be thought of as condi-

tional expectations of an infinite dimensional sufficient statistic. This statistic can

completely characterise the conditional distribution if the feature space is sufficiently

rich [Sriperumbudur et al., 2010], and has consistency guarantees under appropriate

smoothness assumptions. Drawing samples given a conditional mean embedding

can be challenging: this is possible via the Herding procedure [Chen et al., 2010,

Bach et al., 2012], as shown in [Kanagawa et al., 2016], but requires a non-convex

optimisation procedure to be solved for each sample.

A powerful and recent deep learning approach to modelling conditional densities

is the Neural Autoregressive Network (Uria et al. [2013], Raiko et al. [2014] and

Uria et al. [2016]). These networks can be thought of as a generalization of the

Mixture Density Network introduced by Bishop [2006]. In brief, each variable is

represented by a mixture of Gaussians, with means and variances depending on the

parent variables through a deep neural network. The network is trained on observed

data using stochastic gradient descent. Neural autoregressive networks have shown

their effectiveness for a variety of practical cases and learning problems. Unlike the
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earlier methods cited, however, consistency is not guaranteed, and these methods

require non-convex optimization, meaning that locally optimal solutions are found

in practice.

We begin our presentation in Section 2 , where we briefly present the Kernel

Exponential Family. We generalise this model to the conditional case, in our first

major contribution: this requires the introduction of vector-valued RKHSs and

associated concepts. We then show that a generalisation of score matching may be

used to fit the conditional density models for general vector valued RKHS, subject to

appropriate conditions. We call this model the kernel conditional exponential family

(KCEF).

Our second contribution, in Section 3 , is an empirical estimator for the natural

parameter of the KCEF (Theorem 1), with convergence guarantees in the well-

specified case (Theorem 2). In our experiments (Section 4 ), we empirically validate

the consistency of the estimator and compare it to other methods of conditional

density estimation. Our method generally outperforms the leading alternative with

consistency guarantees (LS-CDE). Compared with the deep approach (RNADE)

which lacks consistency guarantees, our method has a clear advantage at small

training sample sizes while being competitive at larger training sizes.

2 Kernel Exponential Families

In this section we first present the kernel exponential family, which we then extend

to a class of conditional exponential families. Finally, we provide a methodology for

unnormalized density estimation within this class.

2 .1 Kernel Conditional Exponential Family

We consider the task of estimating the density p(y) of a random variable Y with

support Y ⊆ Rd from i.i.d samples (Yi)
n
i=1. We propose to use a family of densities

parametrized by functions belonging to a Reproducing Kernel Hilbert Space (RKHS)

HY with positive semi-definite kernel k [Canu and Smola, 2006, Fukumizu, 2009,

Sriperumbudur et al., 2017]. This exponential family of density functions takes the
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form

{
p(y) := q0(y)

exp 〈f, k(y, .)〉HY
Z(f)

∣∣∣∣f ∈ F} , (3.1)

where q0 is a base density function on Y and F is the set of functions in the RKHS

space HY such that Z(f) :=
∫
Y exp 〈f, k(y, .)〉HYq0(y)dx < ∞. In what follows,

we call this family the kernel exponential family (KEF) by analogy to classical

exponential family. f plays the role of the natural parameter while k(y, .) is the

sufficient statistic. Note that with an appropriate choice of the base distribution q0 and

a finite dimensional RKHSHY , one can recover any finite dimensional exponential

family. When HY is infinite-dimensional, however, the family can approximate

a much broader class of densities on Rd: under mild conditions, it is shown in

Sriperumbudur et al. [2017] that the KEF approximates all densities of the form

{q0(y) exp (f(y)− A)|f ∈ C0(Y)}, A being the normalizing constant and C0(Y)

the set of continuous functions with vanishing tails.

Given two subsets Y and X of Rd and Rp respectively, we now propose to

extend the KEF to a family of conditional densities p(y|x). We modify equation (3.1)

by making the function f depend on the conditioning variable x. The parameter f is

a function of two variables x and y, f : X × Y → R such that y 7→ f(x, y) belongs

to the RKHSHY for all x in X . In all that follows, we will denote by T the mapping

T : X → HY x 7→ Tx

such that Tx(y) = f(x, y) for all y in Y

We next consider how to enforce a smoothness requirement on T to make

the conditional density estimation problem well-posed. To achieve this, we will

require that the mapping T belongs to a vector valued RKHS H: we now briefly

review the associated theory, following [Micchelli and Pontil, 2005]. A Hilbert space

(H, 〈., .〉H) of functions T : X → HY taking values in a vector space HY is said

to be a vector valued RKHS if for all x ∈ X and h ∈ HY , the linear functional

T 7→ 〈h, Tx〉HY is continuous. The reproducing property for vector-valued RKHSs
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follows from this definition. By the Riesz representation theorem, for each x ∈ X

and h ∈ HY , there exists a linear operator Γx fromHY toH such that for all T ∈ H,

〈h, Tx〉HY = 〈T,Γxh〉H (3.2)

Considering the dual operator Γ∗x fromH toHY , we also get

Γ∗xT = Tx.

We can define a vector-valued reproducing kernel by composing the operator Γx

with its dual,

Γ(x, x′) = Γ∗xΓx′ ,

where for all x and x′ , Γ(x, x
′
) is a bounded linear operator from HY to HY , i.e.,

Γ(x, x
′
) ∈ L(HY). The space H is said to be generated by an operator valued

reproducing kernel Γ. One practical choice for Γ is to define it as:

Γ(x, x
′
) = kX (x, x

′
)IHY ∀x, x′ ∈ X , (3.3)

where IHY the identity operator on HY and kX is now a real-valued kernel which

generates a real valued RKHSHX on X [as in the conditional mean embedding; see

Grunewalder et al., 2012]. A simplified form of the estimator of T will be presented

in Section 3 for this particular choice for Γ and will be used in the experimental

setup in Section 4 .

We will now express Tx(y) in a convenient form that will allow to extend

the KEF. For a given x, recalling that Tx belongs to HY , one can write Tx(y) =

〈Tx, k(y, .)〉HY for all y in Y . Using the reproducing property in (3.2), one further

gets Tx(y) = 〈T,Γxk(y, .)〉H. By considering the subset T of elements T inH such
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that for all x in X the integral

Z(Tx) :=

∫
Y
q0(y) exp(〈T,Γxk(y, .)〉H)dy <∞

is finite, we define the kernel conditional exponential family (KCEF) as the set of

conditional densities

{
pT (y|x) := q0(y)

exp 〈T,Γxk(y, .)〉H
Z(Tx)

∣∣∣∣T ∈ T } . (3.4)

Here T plays the role of the natural parameter while Γxk(y, .) is the sufficient

statistic. When T is restricted to be constant with respect to x, we recover the

kernel exponential family (KEF). The KCEF is therefore an extension of the KEF

introduced in Sriperumbudur et al. [2017]. It is also a special case of the family

introduced in Canu and Smola [2006]. In the latter, the inner product is given by

〈T, φ(x, y)〉H where φ is a general feature of x and y. In the present work, φ has

the particular form φ(x, y) = Γxk(y, .). This allows to further express pT (y|x) for a

given x as an element in a KEF with sufficient statistic k(y, .), by using the identity

〈T,Γxk(y, .)〉H = 〈Tx, k(y, .)〉HY . This is desirable since pT (y|x) remains in the

same KEF family as x varies and only the natural parameter Tx changes.

2 .2 Unnormalized density estimation

Given i.i.d samples (Xi, Yi)
n
i=1 in X × Y following a joint distribution π(x)p0(y|x),

where π defines a marginal distribution over X and p0(y|x) is a conditional density

function, we are interested in estimating p0 from the samples (Xi, Yi)
n
i=1. Our goal

is to find the optimal conditional density pT in the KCEF that best approximates p0.

The intractability of the normalizing constant Z(Tx) makes maximum likelihood

estimation difficult. Sriperumbudur et al. [2017] used a score-matching approach

(see Hyvärinen [2005]) to avoid this normalizing constant; in the case of the KCEF,

however, the score function between π(x)p0(y|x) and π(x)pT (y|x) contains addi-

tional terms that involve the derivatives of the log-partition function logZ(Tx) with

respect to x. Instead, we now propose a different approach with a modified version

of the score-matching objective.
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We define the expected conditional score between two conditional densities

p0(y|x) and q(y|x) under a marginal density π on x to be:

J(p0|q) :=

∫
X
π(x)J (p0(.|x)||q(.|x))dx

where:

J (p0(.|x)‖q(.|x)) =
1

2

∫
Y
p0(y|x)

∥∥∥∥∇y log
p0(y|x)

q(y|x)

∥∥∥∥2

dy.

For a fixed value x in X , J (p0(.|x)||q(.|x)) is the score-matching function

between p0(.|x) and q(.|x) as defined by Hyvärinen [2005]. We further take the

expectation over x to define a divergence over conditional densities. The normalizing

constant of q(y|x), which is a function of x, is never involved in this formulation, as

we take the gradient of the log-densities over y only. For a conditional density p0(y|x)

that is supported on the whole domain Y for all x in X , the expected conditional

score is well behaved in the sense that J(p0|q) is always non-negative, and reaches

0 if and only if the two conditional distributions p0(y|x) and q(y|x) are equal for

π-almost all x. The goal is then to find a conditional distribution pT in the KCEF for

a given T ∈ T that minimizes this score over the whole family.

Under mild regularity conditions on the densities [see Hyvärinen, 2005, Sripe-

rumbudur et al., 2017, and below], the score can be rewritten

J(p0||pT ) =E
[ d∑
i=1

∂2
i Tx(y) +

1

2
(∂iTx(y))2

]
+E
[ d∑
i=1

∂iTx(y)∂i log q0(y)
]

+ J(p0||q0)

where J(p0||q0) is a constant term for the optimization problem and the expectation

is taken over π(x)p0(y|x). All derivatives are with respect to y, and we used the

notation ∂if(y) = ∂
∂yi
f(y). In the case of KCEF, conditions to obtain this expression

are satisfied under assumptions in Section A .4, as proved in Theorem 3 of Section B
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.1 . The expression is further simplified using the reproducing property for the

derivatives of functions in an RKHS (Lemma 11 of Section C ),

∂iTx(y) = 〈T,Γx∂ik(y, .)〉H

∂2
i Tx(y) = 〈T,Γx∂2

i k(y, .)〉H

which leads to:

J(T ) =E
[ d∑
i=1

1

2

〈
T,Γx∂ik(y, .)

〉2

H +
〈
T,Ξi(x, y)

〉
H

]
with:

Ξi(x, y) = Γx(∂
2
i k(y, .) + ∂i log q0(y)∂ik(y, .)). (3.5)

We introduced the notation J(T ) := J(p0||pT ) − J(p0||q0) for convenience. This

formulation depends on p0(y|x) only through an expectation, therefore a Monte

Carlo estimator of the score can be derived as a quadratic functional of T in the

RKHSH,

Ĵ(T ) =
1

n

∑
b∈[n]
i∈[d]

1

2

〈
T,ΓXb∂ik(Yb, .)

〉2

H + 〈T,Ξi(Xb, Yb)
〉
H.

Note that the objective functions J(T ) and Ĵ(T ) can be defined over the whole space

H, whereas J(p0|pT ) is meaningful only if T belongs to T .

3 Empirical KCEF and consistency
In this section, we will first estimate the optimal T ∗ = argminT∈H J(T ) over the

whole spaceH by minimizing a regularized version of the quadratic form in equation

Ĵ(T ), then we will state conditions under which all of the obtained solutions belong

to T defining therefore conditional densities in the KCEF.

Following Sriperumbudur et al. [2017], we define the kernel ridge estimator to

be Tn,λ = argminT∈H Ĵ(T ) + λ
2
‖T‖2

H where ‖T‖H is the RKHS norm of T . Tn,λ
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is then obtained by solving a linear system of nd variables as shown in the next

theorem:

Theorem 1. Under assumptions listed in Section A .4, and in particular if

‖Γ(x, x)‖Op is uniformly bounded on X for the operator norm, then the minimizer

Tn,λ exists, is unique, and is given by

Tn,λ = −1

λ
Ξ̂ +

∑
b∈[n];i∈[d]

β(b,i)ΓXb∂ik(Yb, ·),

where

Ξ̂ =
1

n

∑
b∈[n];i∈[d]

Ξi(Xb, Yb),

and Ξi are given by (3.5). β(b,i) denotes the (b− 1)d+ i entry of a vector β in Rnd,

obtained by solving the linear system

(G+ nλI)β =
h

λ
,

where G is an nd by nd Gram matrix, and h is a vector in Rnd,

(G)(a,i),(b,j) =〈ΓXa∂ik(Ya, ·),ΓXb∂jk(Yb, ·)〉H

(h)(b,i) =〈Ξ̂,ΓXb∂ik(Ya, ·)〉H.

The result is proved in Theorem 4 of Section B .2.

For the particular choice of Γ in (3.3), the estimator takes a simplified form

Tn,λ(x, y) =− 1

λ
Ξ̂(x, y) +

∑
b∈[n]
i∈[d]

β(b,i)kX (Xb, x)∂ik(Yb, y),
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with

Ξ̂(x, y) =
1

n

∑
b∈[n];i∈[d]

kX (Xb, x)∂2
i k(Yb, y)

+
1

n

∑
b∈[n];i∈[d]

kX (Xb, x)∂i log q0(Yb)∂ik(Yb, y)

The coefficients β are obtained by solving the same system (G+ nλI)β = h
λ

,

where G and h reduce to

(G)(a,i),(b,j) =kX (Xa, Xb)∂i∂j+dk(Ya, Yb),

(h)(b,i) =∂iΞ̂(Xb, Yb),

and all derivatives are taken with respect to y.

The above estimator generalizes the estimator in Sriperumbudur et al. [2017]

to conditional densities. In fact, if one choses the kernel kX to be a constant kernel,

then one exactly recovers the setting of the KEF.

This linear system has a complexity ofO(n3d3) in time andO(n2d2) in memory,

which can be problematic for higher dimensions d as n grows. However, in practice,

if the goal is to estimate a density of the form p(x1, ..., xd), one can use the general

chain rule for distributions, p(x1)p(x2|x1)....p(xd|x1, ..., xd−1), and estimate each

conditional density p(xi|x1, ..., xi−1) using the KCEF in (3.4). While this strategy

requires the stonger assumption that each conditional density to be in a KCEF,

this reduces the complexity of the algorithm to O(n3d). A reduction to the cubic

complexity in the number of data points n could be managed via a Nyström-like

approximation [Sutherland et al., 2018].

In the well-specified case where the true conditional density p0(y|x) is assumed

to be in (3.4) (i.e. p0(y|x) = pT0(y|x)), we analyze the parameter convergence of

the estimator Tn,λ to T0 and the convergence of the corresponding density pTn,λ(y|x)

to the true density p0(y|x). First, we consider the covariance operator C of the joint

feature Γxk(y, ·) under the joint distribution of x and y, as introduced in Theorem 3

of Section B .1, and we denote by R(Cγ) the range space of the operator Cγ . We
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then have the following consistency result:

Theorem 2. Let γ > 0 be a positive parameter and define α = max( 1
2(γ+1)

, 1
4
) ∈

(1
4
, 1

2
). Under the conditions in Section A .4, for λ = n−α, and if T0 ∈ R(Cγ), then

‖Tn,λ − T0‖ = Op0(n−
1
2

+α).

Furthermore, if supy∈Y k(y, y) <∞, then

KL(p0||pTn,λ) = Op0(n−1+2α).

These asymptotic rates match those obtained for the unconditional density

estimator in Sriperumbudur et al. [2017]. The smoother the parameter T0, the closer

α gets to 1
4
, which in turns leads to a convergence rate in KL divergence of the order

of 1√
n

. The worst case scenario happens when the range-space parameter γ gets

closer to 0, in which case convergence in KL divergence happens at a rate close to
1
nγ

. A more technical formulation of this theorem along with a proof is presented in

Section B .3 (see Theorems 5 and 6).

The regularity of the conditional density p(y|x) with respect to x is captured by

the boundedness assumption on the operator valued kernel Γ; i.e., ‖Γ(x, x)‖op ≤ κ

for all x ∈ X in Assumption (E). This assumption allows to control the vari-

ations of the conditional distribution p(y|x) as x changes. Roughly speaking,

we may estimate the conditional density p(y|x0) at a given point x0 from sam-

ples (Yi, Xi) whenever there are Xi sufficiently close to x0. The uniformly

bounded kernel Γ allows to express the objective function J(T ) as a quadratic

form J(T ) = 1
2
〈T,CT 〉H + 〈T,Ξ〉H + c0 for constant c0, where C is the covariance

operator introduced in Theorem 3. Furthermore, this boundedness assumption en-

sures that C is a "well-behaved" operator, namely a positive semi-definite trace-class

operator. The population solution of the regularized score objective is then given

by Tλ = (C + λI)−1CT0 while the estimator is given by: T̂λ,n = −(Ĉ + λI)−1Ξ̂

where Ĉ and Ξ̂ are empirical estimators for C and Ξ.

The proof of consistency makes use of ideas from Sriperumbudur et al. [2017],
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Caponnetto and De Vito [2007], exploiting the properties of trace-class operators.

The main idea is to first control the error ‖T0− T̂λ,n‖H by introducing the population

solution Tλ,

‖T0 − T̂λ,n‖H ≤ ‖T0 − Tλ‖H + ‖Tλ − T̂λ,n‖H

The first term ‖T0 − Tλ‖H represents the regularization error which is introduced by

adding a regularization term λI to the operator C. This term doesn’t depend on n,

and can be shown to decrease as the amount of regularization goes to 0 with a rate

λmin(1,γ). The second term represents the estimation error due to the finite number of

samples n. This term decreases as n→ 0 but also increases when λ→ 0, therefore a

trade-off needs to be made between decreasing the first term ‖T0 − Tλ‖H by setting

λ → 0 and keeping the term ‖Tλ − T̂λ,n‖H small enough. Using decompositions

similar to those of Sriperumbudur et al. [2017], Caponnetto and De Vito [2007], we

apply concentration inequalities on the general Hilbert spaceH to get a probabilistic

bound on the estimation error of order O( 1
λ
√
n
).

Concerning the convergence in KL divergence, the requirement that the real-

valued kernel k is bounded implies that T is in fact equal toH. Therefore, minimizing

the expected score J(pT0||pT ) is equivalent to minimizing the quadratic form J(T )

over the whole RKHSH. Finally, the rates in KL divergence are obtained from the

error rate of T̂λ,n.

4 Experiments
We perform a diverse set of experiments, on both synthetic and real data, in order

to validate our model empirically. In all experiments, the data are centered and

rescaled such that the standard deviation for every dimension is equal to 1. Given

(X
(n)
1 , ..., X

(n)
d )Nn=1 i.i.d. samples of dimension d we are interested in approximating

the joint distribution p0(X1, ..., Xd) of data using different methods:

• The KEF model from Sriperumbudur et al. [2017] approximates p by a

distribution pf that belongs to the KEF (3.1) by minimizing the score loss between p

and pf to find the optimal parameter f .



4 . Experiments 53

• The KCEF model of Theorem 1 approximates p by a distribution p̂ that is

assumed to factorize according to some Directed Acyclic Graphical model (DAG):

p̂(X1, ..., Xd) = Πd
i=1p̂(xi|xπ(i)) where π(i) are the parent nodes of i. Note that

we do not necessarily make independence assumptions, as the graph can be fully

connected. We will consider in particular two graphs, the Full graph (F) of the

form p̂(X1, ..., Xd) = p̂(X1)Πd
i=2p̂(Xi|X1, ..., Xi−1) and the Markov graph (M) of

the form p̂(X1, ..., Xd) = p̂(X1)Πd
i=2p̂(Xi|Xi−1). Each of the factors is assumed

to belong to the KCEF in (3.4), and is estimated independently from the others

by minimizing the empirical loss Ĵ(T ) to find the optimal operator Ti such that

p̂(Xi|Xπ(i)) = pTi(Xi|Xπ(i)).

• The Orderless RNADE model in Uria et al. [2016], where we train a 2

Layer Neural Autoregressive model with 100 units per layer. The model consists

of a product of conditional densities of the form Πd
i=1p(Xoi|Xo<i , θ, o), where o is a

permutation of the dimensions [1, ..., d] and θ is a set of parameters that are shared

across the factors regardless of the chosen permutation o. RNADE is trained by

minimizing the empirical expected negative log-likelihood, where the expectation is

taken over all possible permutations and data,

L(θ) = Eo∈DEX∈Rd
[
− log p(Xoi |Xo<i , θ, o)

]
.

• The LSCDE model in Sugiyama et al. [2010] where we also used the 2 fac-

torizations of the joint distribution (F, M) and solve a least-squares problem to

estimate each of the conditional densities. The approximate densities are of the form

αTφ(Xi, Xπ(i)) where φ is a vector of m known non-negative functions and α is

obtained by minimizing the squared error between p(Xi, Xπ(i)) and αTφ(Xi, Xπ(i)).

Only the non-negative component of the solution α is used.

For all variants of our model, we take the base density q0 to be a centered

gaussian with a standard deviation of 2. The kernel function used for both predicted

variable y and conditioning variable x is the anisotropic radial basis function (RBF)

with per-dimension bandwidths. The bandwidths and the regularization parameter λ

are tuned by gradient descent on the cross validated score.
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4 .1 Synthetic data

We consider the ’grid’ dataset, which is a d-dimensional distribution with a tractable

density that factorizes in the form

p(xi|xi−1) = Ci(1 + sin(2πwai xi) sin(2πwbixi−1))

for all i ∈ [d]. Ci is a tractable normalizing constant. Samples are generated using

rejection sampling for each dimension. To study the effect of sample size on the

estimator, we generate n training points with n varying from 200 to 2000 and d = 3,

and estimate the log-likelihood on 2000 newly generated points. To compare the

effect of dimension, we generate 2000 datapoints of dimension d varying from 2 to

20, and estimate the log-likelihood on 2000 test points. Unlike in [Sriperumbudur

et al., 2017, Sutherland et al., 2018], the score function Ĵ(T ) cannot be used as

a metric to compare different factorizations of the estimated distribution, as it is

dependent on the specific factorization of the joint distribution. Instead, we estimated

the log-likelihood for our proposed model KCEF, where the normalizing constants

are computed using importance sampling. We discarded the KEF in this experiment,

since estimating the normalizing constant in high dimensions becomes impractical.

In Figure 3.1(left), we plot the log-likelihood as the number of samples increases.

Both variants of KCEF (F, M) performed slightly better than the other methods in

terms of speed of convergence as sample size increases. The variants that exploit

the Markov structure of data M lead to the best performance for both KCEF and

LSCDE as expected. The NADE method has comparable performance for large

sample sizes, but the performance drops significantly for small sample sizes. This

behaviour will also be observed in subsequent experiments on real data. The figure

on the right shows the evolution of the log-likelihood per dimension as the dimension

increases. In the F case, our approach is comparable to LSCDE with an advantage in

small dimensions. The F approaches both use an anisotropic RBF kernel with tuned

per-dimension bandwidth which end up performing a kind of automatic relevance

determination. This helps getting comparable performance to the M methods. A

drastic drop in performance can happen when an isotropic kernel is used instead
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Figure 3.1: Experimental comparison of proposed method KCEF and other methods (
LSCDE and NADE ) on synthetic grid dataset. LEFT: log-likelihood vs training
samples size, (d = 3). RIGHT: log-likelihood per dimension vs dimension,
N = 2000. The log-likelihood is evaluated on a separate test set of size 2000.
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Figure 3.2: Experimental comparison of proposed method KCEF using an isotropic kernel
and other methods ( LSCDE and NADE ) on synthetic grid dataset. Log-
likelihood per dimension vs dimension, N = 2000. The log-likelihood is
evaluated on a separate test set of size 2000.

as confirmed by Figure 3.2. Finally, NADE, which is also agnostic to the Markov

structure of data, seems to achieve comparable performance to the F methods with a

slight disadvantage in higher dimensions.

4 .2 Real data

We applied the proposed and existing methods to the R package benchmark datasets

[Team, 2008] (see Table 3.1) as well as three UCI datasets previously used to study

the performance of other density estimators (see Uria et al. [2013], Sil [2011], Tang

et al. [2012]). In all cases data are centered and normalized.
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First, the R benchmark datasets are low dimensional with few samples, but with

a relatively complex conditional dependence between the variables. This setting

allows to compare the methods in terms of data efficiency and overfitting. Each

dataset was randomly split into a training and a test set of equal size. The models are

trained to estimate the conditional density of a one dimensional variable y knowing

x using samples (xi, yi)
n
i=1 form the training set. The accuracy is measured by the

negative log-likelihood for the test samples (x̃i, ỹi)
n
i=1 averaged over 20 random

splits of data. We compared the proposed method with NADE and LSCDE on 14

datasets. For NADE we used CV over the number of units per layer {2, 10, 100} and

number of mixture components {1, 2, 5, 10} for a 2 layer network. We also used CV

to chose the hyper-parameters for LSCDE and the proposed method on a 20× 20

grid (for λ and σ).

The experimental results are summmarized in Table 3.1. LSCDE worked well in

general as claimed in the original paper, however the proposed method substantially

improves the results. On the other hand, NADE performed rather poorly due to the

small sample size of the training set, despite our attempts to improve its performance

by reducing the number of parameters to train and by introducing early stopping.

The UCI datasets (Red Wine, White Wine and Parkinsons) represent challenging

datasets with non-linear dependencies and abrupt transitions between high and low

density regions. This makes the densities difficult to model using standard tools such

as mixtures of Gaussians or factor analysis. They also contain enough training sample

points to allow a stronger performance by NADE. All discrete-valued variables were

eliminated as well as one variable from every pair of variables that are highly

correlated (Pearson correlation greater than 0.98). Following Uria et al. [2013], 90%

of the data were used for training while 10% were held-out for testing. Two different

graph factorizations (F, M ) were used for the proposed method and for LSCDE.

In Table 3.2, we report the performance of the different models. Our method

was among the statistically significant group of best models on Parkinsons dataset

according to the two-sided paired t − test at significance level of 5%. On the

remaining datasets, it achieved the second best performance after NADE.
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KCEF NADE LSCDE

caution 0.99± 0.01 4.12± 0.02 1.19± 0.02
ftcollinssnow 1.46± 0.0 3.09± 0.02 1.56± 0.01
highway 1.17± 0.01 11.02± 1.05 1.98± 0.04
heights 1.27± 0.0 2.71± 0.0 1.3± 0.0
sniffer 0.33± 0.01 1.51± 0.04 0.48± 0.01
snowgeese 0.72± 0.02 2.9± 0.15 1.39± 0.05
GAGurine 0.46± 0.0 1.66± 0.02 0.7± 0.01
geyser 1.21± 0.04 1.43± 0.07 0.7± 0.01
topo 0.67± 0.01 4.26± 0.02 0.83± 0.0
BostonHousing 0.3± 0.0 3.46± 0.1 1.13± 0.01
CobarOre 3.42± 0.03 4.7± 0.02 1.61± 0.02
engel 0.18± 0.0 1.46± 0.02 0.76± 0.01
mcycle 0.56± 0.01 2.24± 0.01 0.93± 0.01
BigMac2003 0.59± 0.01 13.8± 0.13 1.63± 0.03

Table 3.1: Mean and std. deviation of the negative log-likelihood on benchmark data over 20
runs, with different random splits. In all cases dy = 1. Best method in boldface
(two-sided paired t-test at 5%).

white -wine parkinsons red wine

KCEF-F 13.05± 0.36 2.86± 0.77 11.8± 0.93
KCEF-M 14.36± 0.37 5.53± 0.79 13.31± 0.88
LSCDE-F 13.59± 0.6 15.89± 1.48 14.43± 1.5
LSCDE-M 14.42± 0.66 10.22± 1.45 14.06± 1.36
NADE 10.55± 0.0 3.63± 0.0 9.98± 0.0

Table 3.2: UCI results: average and standard deviation of the negative log-likelihood over
5 runs with different random splits. Best method in boldface (two-sided paired
t-test at 5%).

4 .3 Sampling

We compare samples generated from the approximate distribution obtained using

different methods (KEF, KCEF, NADE). To get samples (X1, ..., Xd) from the

joint distribution of KCEF we performed ancestral sampling, where a sample from

the parents π(i) of node i is first generated, and then Xi is sampled according

to p(Xi|Xπ(i)). We used the methodology and code in Strathmann et al. [2015] to

sample from each conditional distribution p(Xi|Xπ(i)) using an HMC proposal, since

we have access to the gradient of the conditional densities and their un-normalized

values. We trained the 3 models on Red Wine and Parkinsons datasets as described
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Figure 3.3: Scatter plot of 2-d slices of red wine and parkinsons data sets. Black points are
real data, red are samples from the KCEF.

HKEF<KCEF HNADE<KCEF

parkinsons 0.523506 0.011467
red-wine 0.000791 0.326109

Table 3.3: p-values for the relative similarity test. Columns represents the p-values for
testing whether samples from KEF ( resp. KCEF) model are closer to the data
than samples from the KCEF (resp. NADE).

previously, and generated joint samples from two-dimensional slices of data (see

Figure 3.3). Since each conditional distribution is low-dimensional, we assumed an

idealized scenario where the burn-in is completed after 100 iterations of the HMC

sampler. We then run 20 samplers for 1000 and thin by a factor 10, which results

in 2000 samples. As shown in Figure 3.3, KCEF is able to capture challenging

properties of the target distribution, such as heteroscedasticity and sharp thresholds.

We also performed a test of relative similarity between the generated samples

and the ground truth data following the methodology and code of Bounliphone et al.

[2016]. Given samples from data Xm and generated samples Yn and Zr from two

different methods, we test the hypothesis that Px is closer to Pz than Py according to

the MMD metric. The null hypothesis

Hy<z : MMD(Px, Py) ≤MMD(Px, Pz)
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is tested against the alternative at a significance level α = 5% (see Bounliphone

et al. [2016] for details). Table 3.3 shows the p-value for testing KCEF vs KEF

and NADE vs KCEF. We see that KCEF significantly outperforms NADE with

high confidence for the parkinsons dataset, consistent with Table 3.2. Performance

of the two methods is not statistically distinguishable for the red-wine data. See

the scatter plots in Figure 3.4 which visually confirm the result for the Red Wine

and Parkinsons datasets. KCEF gives significantly better samples than KEF on

red-wine: indeed, KCEF generally outperforms KEF on distributions where the

densities exhibit abrupt transitions, as is clear by inspection of the plots in Figure 3.4

.
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Figure 3.4: Scatter plot of 2-d slices of red wine and parkinsons data sets, the dimensions are
(x6, x7) for red wine and (x15, x16) for parkinsons. The black points represent
1000 data points from the data sets. In red, 1000 samples from each of the three
models KEF, KCEF and NADE.



Supplementary

In this section we prove Theorem 1 and Theorem 2.

A Preliminaries

A .1 Notation

We first introduce some relevant concepts from functional analysis. If E is Hilbert

space we denote by 〈., .〉E and ‖.‖E its corresponding inner product and norm,

respectively. If E and F are two Hilbert spaces, we use ‖.‖ to denote the operator

norm ‖A‖ = supf :‖f‖≤1 ‖Af‖, where A is an operator from E to F . We denote by

A∗ the adjoint of A.

If E is separable with an orthonormal basis {ek}k, then ‖.‖1 and ‖.‖2 are the

trace norm and Hilbert-Schmidt norm on E and are given by:

‖A‖1 =
∑
k

〈(A∗A)
1
2 ek, ek〉

‖A‖2 = ‖A∗A‖1.

where A is an operator from E to E. λmax(A) is used to denote the algebraically

largest eigenvalue of A. For f in E and g in F we denote by g⊗ f the tensor product

viewed as an application from E to F with (g ⊗ f)h = g〈f, h〉E for all h in E.

C1(Ω) denotes the space of continuously differentiable functions on Ω and Lr(Ω)

the space of r-power Lebesgues-integrable function. Finally for any vector β in Rnd,

we use the notation β(a,i) = β(a−1)d+i for a ∈ [n] and i ∈ [d].
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A .2 Operator valued kernels and feature map derivatives

Let X and Y be two open subsets of Rp and Rd . HY is a reproducing kernel Hilbert

space of functions f : Y → R with kernel kY . We denote by H a vector-valued

reproducing kernel Hilbert space of functions T : x 7→ Tx from X to HY and we

introduce the feature operator Γ : x 7→ Γx from X to L(HY ,H) where L(HY ,H)

is the set of bounded operators fromHY toH. For every x ∈ X , Γx is an operator

defined fromHY toH.

The following reproducing properties will be used extensively:

• Reproducing property of the derivatives of a function inHY ( Steinwart and

Christmann [2008], Lemma 4.34): provided that the kernel kY is differentiable

m-times with respect to each coordinate, then all f ∈ HY are differentiable

for every multi-index α ∈ Nd
0 such that α ≤ m, and

∂αf(y) = 〈f, ∂αk(y, .)〉HY ∀y ∈ Y ,

where ∂αky(y, y
′
) = ∂αk(y,y

′
)

∂αy
. In particular we will use the notation

∂ik(y, y
′
) =

∂k(y, y
′
)

∂yi
, ∂i+dk(y, y

′
) =

∂k(y, y
′
)

∂y
′
i

.

• Reproducing property in the vector-valued spaceH: For any f ∈ HY and any

T ∈ H we have the following:

〈Tx, f〉HY = 〈T,Γxf〉H

In particular for every y ∈ Y we get:

〈Tx, k(y, ·)〉HY = 〈T,Γxk(y, ·)〉H

Using now the reproducing property inHY we get:

T (x, y) := Tx(y) = 〈T,Γxk(y, ·)〉H
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A .3 The conditional infinite dimensional exponential family

Let q0 be a base density function of a probability distribution over Y and π a

probability distribution over X . π and q0 are fixed and are assumed to be supported

in the whole spaces X and Y , respectively.

We introduce the following functions Z : HY → R∗+, such that for every

f ∈ HY we have

Z(f) :=

∫
Y

exp (〈f, k(y, .)〉HY )q0(dy).

We consider now the following family of operators

T = {T ∈ H : Z(Tx) <∞,∀x ∈ X}.

This allows to introduce the Kernel Conditional Exponential Family as the

family of conditional distributions satisfying

P =

{
pT (x|y) = q0(y)

e(〈T,Γxk(y,·)〉H)

Z(Tx)

∣∣∣∣T ∈ T } .
Given samples (Xi, Yi)

n
i=1 ∈ X ×Y following a joint distribution p0 the goal is

to approximate the conditional density function p0(y|x) in the case where p0(y|x) ∈

P (i.e. ∃T0 ∈ T such that p0(y|x) = pT0(y|x) ). To this end, we introduce the

expected conditional score function between two conditional distributions p(.|x) and

q(.|x) under π,

J(p||q) =
1

2

∫
x

∫
y

d∑
i=1

[
∂i log p(y|x)− ∂i log q(y|x)

]2
p(dy|x)π(dx).

This function has the nice property that J(p||q) ≥ 0 and that J(p||q) = 0 ⇔

q = p, which makes it a good candidate as a loss function.

The marginal distribtion p0(x) doesn’t have to match π(x) in general as long

as they have the same support. For purpose of simplicity we will assume that

p0(x) = π(x).
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A .4 Assumptions

We make the following assumptions:

(A) (well specified) The true conditional density p0(y|x) = pT0(y|x) ∈ P for some

T0 in T .

(B) Y is a non-empty open subset of of the form Rd with a piecewise smooth

boundary ∂Y := Y \ Y , where Y denotes the closure of Y .

(C) k is twice continuously differentiable on Y × Y and ∂α,αk is continuously

extensible to Y × Y for all |α| ≤ 2.

(D) For all x ∈ X and all i ∈ [d], as y approaches ∂Y : ‖∂ik(y, ·)‖Yp0(y|x) =

o(‖y‖1−d)

(E) The operator Γ is continuous in x and is uniformly bounded for the operator

norm ‖Γx‖Op ≤ κ for all x ∈ X .

(F) (Integrability) for some ε ≥ 1 and all i ∈ [d]:

‖∂ik(y, ·)‖Y ∈ L2ε(Y , p0),

‖∂2
i k(y, ·)‖Y ∈ Lε(Y , p0),

‖∂ik(y, ·)‖Y∂i log q0(y) ∈ Lε(Y , p0).

Remark 1. The continuity of the kernel k on the separable set Y ensures that HY
is also separable by [Steinwart and Christmann, 2008, Lemma 4.33]. Moreover,

since x 7→ Γx is continuous it follows that the vector valued RKHS H consists

of continuous functions with values in HY . Again, the separability of X and HY
ensures thatH is also separable by [Carmeli et al., 2006, Corollary 5.2.].

B Proofs
In this section, we prove the main theorems of the document, by extending the

proofs of Sriperumbudur et al. [2017] to the case of the vector-valued RKHS. We

provide complete steps for all the proofs, including those that carry over from the
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earlier work, to make the presentation self-contained; the reader may compare with

[Sriperumbudur et al., 2017, Section 8] to see the changes needed in the conditional

setting.

B .1 Score Matching

Theorem 3 (Score Matching). Under Assumptions (A) to (F), the following holds:

1. J(pT0||pT ) < +∞ for all T ∈ T

2. For all T ∈ H define

J(T ) =
1

2
〈T − T0, C(T − T0)〉H, (3.6)

where

C :=

∫
X×Y

d∑
i=1

[
Γx∂ik(y, ·)⊗ Γx∂ik(y, ·)

]
︸ ︷︷ ︸

Cx,y

p0(dx, dy) = Ep0 [CX,Y ]. (3.7)

then C a trace-class positive operator on H and for all T ∈ T J(T ) =

J(pT0||PT ).

3. Alternatively,

J(T ) =
1

2
〈T,CT 〉H + 〈T,Ξ〉H + J(pT0||q0).

where

H 3 Ξ : =

∫
X×Y

d∑
i=1

Γx
[
∂i log q0(y)∂ik(y, ·) + ∂2

i k(y, ·)
]

︸ ︷︷ ︸
Ξx,y

p0(dx, dy)

= Ep0 [ΞX,Y ]

Moreover, T0 satisfies CT0 = −Ξ

4. For any λ > 0, a unique minimizer Tλ of Jλ(T ) := J(T ) + λ
2
‖T‖2

H over H
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exists and is given by:

Tλ = −(C + λI)−1Ξ = (C + λI)−1CT0.

Proof. We prove the results in the same order as stated in the theorem:

Proof of (1). By the reproducing property of the real valued space HY we have:

T (x, y) = 〈Tx, k(y, ·)〉HY . Using the reproducing property for the derivatives of real

valued functions in an RKHS in Lemma 11, we get

∂iT (x, y) = ∂i〈Tx, k(y, ·)〉HY = 〈Tx, ∂ik(y, ·)〉HY ∀i ∈ [d].

Finally, using the reproducing property in the vector-valued spaceH,

∂iT (x, y) = 〈T,Γx∂ik(y, ·)〉H, ∀i ∈ [d].

it is easy to see that

J(pT0||pT ) =
1

2

∫
X×Y

d∑
i=1

〈T0 − T,Γx∂ik(y, .)〉2Hp0(dx, dy). (3.8)

By Assumptions (E) and (F),

‖Γx∂ik(y, ·)‖H ≤ ‖Γx‖Op‖∂ik(y, ·)‖HY ≤ κ
√
∂i∂i+dk(y, y) ∈ L2(p0),

and therefore by Cauchy-Schwarz inequality,

J(T ) = J(pT0 ||pT )

≤ 1

2
‖T0 − T‖2

H

∫
X×Y

d∑
i=1

‖Γx∂ik(y, ·)‖2
Hp0(dx, dy) < +∞.

which means that J(T ) <∞ for all T ∈ T .
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Proof of (2). Starting from (3.8), it is easy to see that:

J(T ) =
1

2

∫
X×Y

d∑
i=1

〈T0 − T,Γx∂ik(y, ·)⊗ Γx∂ik(y, ·)(T0 − T )〉Hp0(dx, dy)

=
1

2

∫
X×Y
〈T0 − T,Cx,y(T0 − T )〉Hp0(dx, dy)

.

In the first line, we used the fact that 〈a, b〉2H = 〈a, b〉H〈a, b〉H = 〈a, b⊗ ba〉H for any

a and b in a Hilbert spaceH. By further observing that Cx,y and (T0−T )⊗ (T0−T )

are Hilbert-Schmidt operators as ‖Cx,y‖HS ≤ κ2
∑d

i=1 ‖∂ik(y, ·)‖ <∞ by Lemma 7

and ‖(T0 − T )⊗ (T0 − T )‖HS = ‖(T0 − T )‖2
H <∞ we get that:

J(T ) =
1

2

∫
X×Y
〈(T0 − T )⊗ (T0 − T ), Cx,y〉HSp0(dx, dy)

Using Assumption (F) we have by Lemma 10 thatCx,y is p0-integrable in the Bochner

sense [Retherford, 1978, Definition 1]) and that the inner product and integration

may be interchanged:

J(T ) =
1

2

〈
(T0 − T )⊗ (T0 − T ),

∫
X

∫
Y
Cx,yp0(dx, dy)

〉
HS

=
1

2
〈T0 − T,C(T0 − T )〉H

Proof of (3). From (3.6) we have J(T ) = 1
2
〈T,CT 〉H − 〈T,CT0〉H + 1

2
〈T0, CT0〉H.

Recalling that: ∂iT (x, y) = 〈T,Γx∂ik(y, ·)〉H for all i ∈ [d], and using ∂iT0(x, y) =
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∂i log p0(y|x)− ∂i log q0(y|x) one gets:

〈T,CT0〉H =

∫
X×Y

[ d∑
i=1

∂iT (x, y)∂iT0(x, y)
]
p0(dx, dy)

=

∫
X×Y

[ d∑
i=1

∂iT (x, y)∂i log p0(y|x)
]
p0(dx)dy

−
∫
X×Y

[ d∑
i=1

∂iT (x, y)∂i log q0(y|x)
]
p0(dx, dy)

(a)
=

∫
X
p0(dx)

∫
∂Y
p0(y|x)∇yT (x, y). ~dS

−
∫
X×Y

[ d∑
i=1

∂2
i T (x, y) + ∂iT (x, y)∂i log q0(y|x)

]
p0(dx, dy).

(a) is obtained using the first Green’s identity, where ∂Y is the boundary of Y and ~dS

is the oriented surface element. The first term
∫
X π(dx)

∫
∂Y p0(y|x)∇yT (x, y). ~dS

vanishes by Lemma 8, which relies on Assumption (D). The second term can be

written as:
∫
X×Y〈T,Ξx,y〉Hp0(dx, dy).

By Assumptions (E) and (F) Ξx,y is Bochner p0-integrable, therefore:

∫
X×Y
〈T,Ξx,y〉Hp0(dx, dy) =

〈
T,

∫
X×Y

Ξx,yp0(dx, dy)
〉
H

= 〈T,Ξ〉H.

Hence 〈T,CT0〉H = −〈T,Ξ〉H and Ξ = −CT0. Moreover, one can clearly see that:

〈T0, CT0〉H =

∫
X×Y

d∑
i=1

(∂iT0(x, y))2p0(dx, dy) = J(pT0 ||q0).

And the result follows.

Proof of (4). For λ > 0, (C + λI) is invertible as C is a symmetric trace-class

operator. Moreover, (C + λI)
1
2 is well defined and one can easily see that:

Jλ(T ) =
1

2
‖(C + λI)

1
2T + (C + λI)−

1
2 Ξ‖2

H −
1

2
〈Ξ, (C + λI)−1Ξ〉H + c0

with c0 = J(pT0||q0). Jλ(T ) is minimized if and only if (C+λI)
1
2T = (C+λI)−

1
2 Ξ

and therefore T = (C + λI)−1Ξ is the unique minimizer of Jλ(T ).
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B .2 Estimator of T0

Given samples (Xa, Ya)
n
a=1 drawn i.i.d. from p0 and λ > 0, we define the empirical

score function as

Ĵ(T ) :=
1

2
〈T, ĈT 〉H + 〈T, Ξ̂〉H + J(pT0||q0).

where:

Ĉ :=
1

n

n∑
a=1

d∑
i=1

ΓXa∂ik(Ya, ·)⊗ ΓXa∂ik(Ya, ·)

Ξ̂ : =
1

n

n∑
a=1

d∑
i=1

ΓXa
[
∂i log q0(Ya)∂ik(Ya, ·),+∂2

i k(Ya, ·)
]
.

are the empirical estimators of C and Ξ respectively.

Theorem 4 (Estimator of T0). For and any λ > 0, we have the following:

1. The unique minimizer Tλ,n of Ĵλ(T ) := Ĵ(T ) + λ
2
‖T‖2

H overH exists and is

given by

Tλ,n = −(Ĉ + λI)−1Ξ̂.

2. Moreover, Tλ,n is of the form

Tλ,n = −1

λ
Ξ̂ +

n∑
b=1

d∑
i=1

β(b−1)d+iΓXb∂ik(Yb, ·),

where (βb) are obtained by solving the following linear system:

(G+ nλI)β =
h

λ

with:

(G)(a−1)d+i,(b−1)d+j = 〈ΓXa∂ik(Ya, .),ΓXb∂jk(Yb, .) 〉H.
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and:

(h)(a−1)d+i = 〈Ξ̂,ΓXa∂ik(Ya, .)〉H.

Proof. Proof of (1). The same proof as in Theorem 3 holds with C and Ξ replaced

by Ĉ and Ξ̂.

Proof of (2). We will use the general representer theorem stated in Lemma 13.

We have that:

Tλ,n = arginf
T∈H

1

2
〈TĈT 〉H + 〈T, Ξ̂〉H +

λ

2
‖T‖2

H

= arginf
T∈H

1

2

n∑
a=1

d∑
i=1

〈T,ΓXa∂ik(Ya, .)〉2H + 〈T, Ξ̂〉H +
λ

2
‖T‖2

H

= arginf
T∈H

V (〈T, φ1〉H, ..., 〈T, φnd+1〉H) +
λ

2
‖T‖2

H.

Where V (θ1, ..., θnd+1) := 1
2n

∑n
a=1

∑d
i=1 θ

2
(a−1)d+i+θnd+1 is a convex differen-

tiable function and φ(a−1)d+i := ΓXa∂ik(Ya, .) where a ∈ [n], i ∈ [d] and φnd+1 = Ξ̂.

Therefore, it follows from Lemma 13 that:

Tλ,n = δΞ̂ +
n∑
a=1

d∑
i=1

β(a−1)d+iφ(a−1)d+i.

where δ and β satisfy:

λ(β, δ) +∇V (K(β, δ)) = 0

with K =

G h

hT ‖Ξ̂‖2
H

.

The gradient ∇V of V is given by ∇V (z, t) = ( 1
n
z, 1). The above equation

reduces then to λδ + 1 = 0 and λβ + 1
n
Gβ + δ

n
h = 0 which yields δ = − 1

λ
and

( 1
n
G+ λI)β = 1

nλ
h.
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B .3 Consistency and convergence

Theorem 5 (Consistency and convergence rates for Tλ,n). Let γ > 0 be a positive

number and define α = max( 1
2(γ+1)

, 1
4
) ∈ (1

4
, 1

2
), under Assumptions (A) to (F):

1. if T0 ∈ R(C) then ‖Tn,λ − T0‖ → 0 when λ
√
n→∞, λ→ 0 and n→∞.

2. if T0 ∈ R(Cγ) for some γ > 0 then ‖Tn,λ − T0‖ = Op0(n−
1
2

+α) for λ = n−α

Proof. Recalling that Tλ,n = −(Ĉ + λI)−1Ξ̂ We consider the following decomposi-

tion:

Tλ,n − Tλ =− (Ĉ + λI)−1(Ξ̂ + (Ĉ + λI)Tλ)

(∗)
= − (Ĉ + λI)−1(Ξ̂ + ĈTλ + C(T0 − Tλ))

=(Ĉ + λI)−1(C − Ĉ)(Tλ − T0)− (Ĉ + λI)−1(Ξ̂ + ĈT0)

=(Ĉ + λI)−1(C − Ĉ)(Tλ − T0)− (Ĉ + λI)−1(Ξ̂− Ξ)

+ (Ĉ + λI)−1(C − Ĉ)T0.

We used the fact that λTλ = C(T0 − Tλ) in (∗). Define now

S1 := ‖(Ĉ + λI)¯1(C − Ĉ)(Tλ − T0)‖H

S2 := ‖(Ĉ + λI)−1(Ξ̂− Ξ)‖H

S3 := ‖(Ĉ + λI)−1(C − Ĉ)T0‖H

A0(λ) := ‖Tλ,n − T0‖H.

it comes then:

‖Tλ − T0‖H ≤ ‖Tλ,n − Tλ‖H + ‖Tλ − T0‖H

≤ S1 + S2 + S2 +A0(λ),

Using Lemma 16 we can bound S1, S2 and S3. Note that Cx,y as defined in
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(3.7) is a positive, self-adjoint trace-class operator by Lemma 7 , we therefore have:

‖Cx,y‖2
HS =

d∑
i,j=1

〈Γx∂ik(y, ·),Γx∂jk(y, ·)〉2H ≤
d∑

i,j=1

‖Γx∂ik(y, ·)‖2
H‖Γx∂jk(y, ·)‖2

H

≤ (
d∑
i=1

‖Γx∂ik(y, ·)‖2
H)2 ≤ d

d∑
i=1

‖Γx∂ik(y, ·)‖4
H ≤ dκ4

d∑
i=1

‖∂ik(y, ·)‖4
HY .

The last inequality is obtained using Assumption (E). Using now Assumption (F)

for ε = 2 one can get:

∫
X×Y
‖Cx,y‖2

HSp0(dx, dy) ≤ dκ4

d∑
i=1

∫
X×Y
‖∂ik(y, ·)‖4

HYp0(dx, dy) < +∞.

Lemma 16 can then be applied to get the following inequalities:

S1 ≤‖(Ĉ + λI)−1‖‖(C − Ĉ)(Tλ − T0)‖H = Op0(
A(λ)

λ
√
n

)

S3 ≤‖(Ĉ + λI)−1‖‖(C − Ĉ)T0‖ = Op0(
1

λ
√
n

)‖H

‖(C + λI)−1‖ ≤ 1

λ

To bound S2 we need to show that ‖Ξ̂− Ξ‖H = Op0(n−
1
2 ). The same argument as

in Sriperumbudur et al. [2017] holds:

Ep0‖Ξ̂− Ξ‖2
H =

1

n

(∫
X×Y
‖Ξx,y‖2

Hp0(dx, dy)− ‖Ξ‖2

)
≤ 1

n

∫
X×Y
‖Ξx,y‖2

Hp0(dx, dy)

By Assumption (F) for ε = 2 we have that
∫
X×Y ‖Ξx,y‖2

Hp0(dx, dy) <∞. One

can therefore apply Chebychev inequality to get the results. It comes that:

S2 ≤ ‖(Ĉ + λI)−1‖‖Ξ̂− Ξ‖H = Op0(
1

λ
√
n

)
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Using the bounds on S1, S2 and S3 we get:

‖Tλ,n − T0‖H = Op0(
1

λ
√
n

+
A0(λ)

λ
√
n

) +A0(λ) (3.9)

1. By Lemma 15 we have A0(λ) → 0 as λ → 0 if T0 ∈ R(C). Therefore it

follows from (3.9) that ‖Tλ,n − T0‖ → 0 as λ→ 0, λ
√
n→∞ and n→∞.

2. We have by Lemma 15 that if T0 ∈ R(Cγ) for γ > 0 then:

A0(λ) ≤ max{1, ‖C‖γ−1}‖C−γT0‖Hλmin{1,γ}.

The result follows by choosing λ = n−max{ 1
4
, 1
2(γ+1)

} = n−α.

We denote by KL(pT0||pT ) the expected KL divergence between pT0 and pT

under the marginal p0(x).

Theorem 6 (Consistency and convergence rates for pTλ,n ). Assuming Assump-

tions (A) to (F), and ‖k‖∞ := supy∈Y k(y, y) <∞ and that pT0(y|x) is supported

on Y for all x ∈ X then the following holds:

1. KL(pT0||pTλ,n)→ 0 as λ
√
n→∞, λ→ 0 and n→∞.

2. If T0 ∈ R(Cγ) for some γ > 0 then by defining α = max( 1
2(γ+1)

, 1
4
) ∈ (1

4
, 1

2
),

and choosing λ = n−α we have that KL(p0||pTn,λ) = Op0(n−1+2α)

Proof. By Lemma 9, we have that T = H and we can assume without loss of

generality that T0 ∈ R(C). Using Lemma 14 (also see [van der Vaart and van

Zanten, 2008, Lemma 3.1] ), one can see that for a given x :

KL(pT0(Y |x)||pTλ,n(Y |x))

≤‖T0(x)− Tλ,n(x)‖2
∞ exp ‖T0(x)− Tλ,n(x)‖∞(1 + ‖T0(x)− Tλ,n(x)‖∞) (3.10)

Moreover, using Assumption (E) and the fact that ‖k‖∞ <∞ one can see that
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|T0(x, y)− Tλ,n(x, y)|HY = 〈T0 − Tλ,n,Γxk(y, ·)〉H

≤ ‖T0 − Tλ,n‖H‖Γxk(y, ·)‖H

which gives after taking the supremum:

‖T0(x)− Tλ,n(x)‖∞ ≤ κ‖k‖∞‖T0 − Tλ,n‖H (3.11)

for all x ∈ X . Using (3.11) in (3.10) and taking the expectation with respect to

x, one can conclude using Theorem 5.

Lemma 7. Under Assumptions (C), (E) and (F) we have that:

1. Cx,y is a trace-class positive and symmetric operator for all (x, y) ∈ X × Y

2. Cx,y is Bochner-integrable for all (x, y) ∈ X × Y

3. C is a trace-class positive and symmetric operator

Proof. Recall that C =
∫
X×Y Cx,yp0(dx, dy) where Cx,y =

∑d
i=1 Γx∂ik(y, ·) ⊗

Γx∂ik(y, ·) is a positive self-adjoint operator. Recalling thatH is a separable Hilbert

space, the trace norm of Cx,y satisfies:

‖Cx,y‖1 ≤
d∑
i=1

‖Γx∂ik(y, ·)⊗ Γx∂ik(y, ·)‖1

(a)
=

d∑
i=1

‖Γx∂ik(y, ·)‖2
H ≤

d∑
i=1

‖Γx‖2
Op‖∂ik(y, ·)‖2

HY

(b)

≤ κ2

d∑
i=1

‖∂ik(y, ·)‖2
HY <∞.

(a) follows from the definition of the trace-norm of the outer product of a vector

inH with itself. (b) comes from Assumption (E). This implies that Cx,y is trace-class.

Moreover, by Assumption (F) for ε = 1 : ‖∂ik(y, ·)‖HY ∈ L2ε(Y , p0) which leads
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to:

∫
X×Y
‖Cx,y‖1p0(dx, dy) <∞.

This means that Cx,y is p0-integrable in the Bochner sense [Retherford, 1978, Defini-

tion 1 and Theorem 2] and its integral C is trace-class with:

‖C‖1 =
∥∥∥∫
X×Y

Cx,yp0(dx, dy)
∥∥∥

1
≤
∫
X×Y
‖Cx,y‖1p0(dx, dy) <∞.

Lemma 8. Under Assumptions (B) to (D) we have the following:

∫
X
π(dx)

∫
∂Y
p0(y|x)∇yT (x, y). ~dS = 0 ∀T ∈ T

where ∂Y is the boundary of Y and ~dS is an oriented surface element of ∂Y .

Proof. First let’s prove that ‖∇yT (x, y)‖p0(y|x) = o(‖y‖1−d) for all x ∈ X . Where

the norm used is the euclidian norm in Rd. Using the reproducing property and

Cauchy-Schwarz inequality one can see that:

‖∇yT (x, y)‖2 =
d∑
i=1

(∂iT (x, y))2 =
d∑
i=1

〈Tx, ∂ik(y, .)〉2

≤ ‖Tx‖2
( d∑
i=1

‖∂ik(y, .)‖2
)

By Assumption (D), one can see that
√∑d

i=1‖∂ik(y, .)‖2p0(y|x) = o(‖x‖1−d),

therefore it comes that ‖∇yT (x, y)‖p0(y|x) = o(‖y‖1−d). Using Lemma 12 one

gets that
∫
∂Y p0(y|x)∇yT (x, y). ~dS = 0 for all x ∈ X which leads to the result.

Lemma 9 (Similar to Lemma 14 in Sriperumbudur et al. [2017]). Suppose

supy∈Y k(y, y) < ∞ and supp(q0) = Y . Then T = H and for any T0 there
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exists T̃O ∈ R(C) such that pT̃0
= p0.

Proof. The proof follows the same approach as in [Sriperumbudur et al., 2017,

Lemma 14]. Since ‖k‖∞ < ∞ then Z(Tx) ≤ exp ‖Tx‖‖k‖∞ < ∞ for all

T ∈ H, therefore T = H. Moreover, since supp(pT0)(y|x) = Y for all x

in X , this implies that the null space of C N (C) can either be the set of func-

tions T (x, y) = m(x) or {0}. Indeed, for T ∈ N (C) we have 〈T,CT 〉 = 0

which leads to
∫
X×Y‖∇yT‖2

2p0(dx, dy) = 0 which means that p0-almost surely,

Tx(y) = m(x) a constant function of y if the set of constant functions belong

to HY , or Tx(y) = 0 otherwise. Let T̃0 be the orthogonal projection of T0 onto

R(C) = N (C)⊥ then T0 can be written in the form T0(x, y) = m(x) + T̃0(x, y). It

comes that
∫
Y expT0(x, y)q0(dy) = expm(x)

∫
Y exp T̃0(x, y)q0(dy) almost surely

in x. And we finally get p0-almost surely:

pT0(y|x) =
expT0(x, y)

Z(T0(x))
=

expT0(x, y) +m(x)

expm(x)Z(T0(x))
= pT0(y|x)

C Known results
Lemma 10. Let X be a topological space endowed with a probability distribution

P. Let B be a separable Banach space. Define R to be an B-valued measurable

function on X in the Bochner sense ( Retherford [1978] Definition 1 ), satisfying∫
X ‖R(x)‖BdP(x) < ∞, then R is P-integrable in the Bochner sense (Retherford

[1978] Definition 1, Theorem 6) and for any continuous linear operator T from B to

another Banach space A, then TR is also P-integrable in the Bochner sense and:

∫
X
TR(x)dP(x) = T

∫
X
R(x)dP(x)

For a proof of this result see Retherford [1978], Definition 1, Therorem 6 and 7.

Lemma 11 (RKHS of differentiable kernels (Steinwart and Christmann [2008]

Chap 4.4, Corollary 4.36)). Let X ∈ Rd be an open subset, m ≥ 0, and k be an
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m-times continuously differentiable kernel on X with RKHSH. Then every function

f ∈ H is m-times continuously differentiable, and for α ∈ Nd
0 with |α| ≤ m we

have:

|∂αf(x)| ≤ ‖f‖2
H(∂α,αk(x, x))

1
2

∂αf(x) = 〈f, ∂αk(x, ·)〉H

A proof of this result can be found in Steinwart and Christmann [2008] (Chap

4.4, Corollary 4.36)

Lemma 12. Let Ω be an open set in Rd with piece-wise smooth boundary ∂Ω. Let u

be a real valued function defined over Ω and v : Rd → Rd a vector valued function.

We assume that u and v are measurable and that ‖v(x)‖|u(x)| = o(‖x‖1−d). Then

the following surface integral is null:

∫
∂Ω

u(x)v(x). ~dS = 0

where ~dS is an element of the surface ∂Ω.

Lemma 13 (Generalized representer theorem). Let H be a vector-valued Hilbert

space and let (φi)
m
i=1 ∈ Hm. Suppose J : H → R is such that J(T ) =

V (〈T, φ1〉H, ..., 〈T, φm〉H) for T ∈ H, where V : Rm → R is a convex and gâteaux-

differentiable function. Define:

Tλ = arginf
T∈H

J(T ) +
λ

2
‖T‖2

H

where λ > 0. Then there exists (αi)
m
i=1 ∈ Rm such that Tλ =

∑m
i=1 αiφi where

α := (α1, ..., αm) satisfies the following equation:

(λI + (∇V ) ◦K)α = 0,

with (K)i,j = 〈φi, φj〉H, i ∈ [m], j ∈ [m]

Proof. Define A : H → Rm, T 7→ (〈T, φi〉H)mi=1. Then Tλ = arginfT∈H V (AT ) +



C . Known results 78

λ
2
‖T‖2

H. Taking the gâteaux-differential at T , the optimality condition yields:

0 = A∗∇V (ATλ) + λTλ ⇔ A∗
(
− 1

λ
∇V (ATλ)

)
= Tλ

⇔ (∃α ∈ Rm)Tλ = A∗α, α = −1

λ
∇V (ATλ)

⇔ (∃α ∈ Rm)Tλ = A∗α, α = −1

λ
∇V (AA∗α)

where A∗ : Rm → H is the adjoint of A which can be obtained as follows. Note that:

(∀T ∈ H) (∀α ∈ Rm) 〈AT, α〉 =
m∑
i=1

αi〈T, φ〉H =
〈
T,

m∑
i=1

αiφi

〉
H

thus A∗α =
∑m

i=1 αiφi. Therefore AA∗α =
∑m

i=1 αjAφj =
∑m

j=1 αj(〈φj, φi〉H)

and hence AA∗ = K.

Lemma 14 (Bound on KL divergence between pf and pg ( van der Vaart and van

Zanten [2008] Lemma 3.1 )). Assume that ‖k‖∞ <∞ and let f and g inHY such

that Z(f) and Z(g) are finite, then: KL(pf ||qg) ≤ ‖f − g‖2
∞ exp ‖f − g‖∞(1 +

‖f − g‖∞)

Lemma 15 (Proposition A.3 in Sriperumbudur et al. [2017]). Let C be a bounded,

positive self-adjoint compact operator on a separable Hilbert spaceH. For λ > 0

and T ∈ H, define Tλ := (C + λI)−1CT and Aθ(λ) := ‖Cθ(Tλ − T )‖H for θ ≥ 0.

Then the following hold.

1. For any θ > 0, Aθ(λ) → 0 as λ → 0 and if T ∈ R(C), then A0(λ) → 0 as

λ→ 0.

2. If T ∈ R(Cβ) for β ≥ 0 and β + θ > 0, then

Aθ(λ) ≤ max{1, ‖C‖β+θ−1}λmin{1,β+θ}‖C−βT‖H

Lemma 16 (Proposition A.4 in Sriperumbudur et al. [2017]). Let X be a topo-

logical space, H be a separable Hilbert space and L+
2 (H) be the space of posi-
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tive, self-adjoint Hilbert-Schmidt operators on H. Define R :=
∫
X r(x)dP(x) and

R̂ := 1
n

∑m
a=1 r(Xa) where P ∈ M1

+(X ) is a positive measure with finite mean,

(Xa)
m
a=1 ∼ P and r is an L+

2 (H)-valued measurable function on X satisfying∫
X ‖r(x)‖2

HSdP(x) < ∞. Define gλ := (R + λI)−1Rg for g ∈ H, λ > 0 and

A0(λ) := ‖gλ − g‖H. Let α ≥ 0 and θ ≥ 0. Then the following hold:

1. ‖(R̂−R)(gλ − g)‖H = OP(A0(λ)√
m

)

2. ‖Rα(R + λI)−θ‖ ≤ λα−θ.

3. ‖R̂α(R̂ + λI)−θ‖ ≤ λα−θ.

4. ‖(R + λI)−θ(R̂−R)‖ = OP( 1√
mλ2θ

).
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Structuring and regularizing implicit

generative models
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Chapter 4

Optimized MMD under gradient

constraints

We propose a principled method for gradient-based regularization of the critic of

GAN-like models trained by adversarially optimizing the kernel of a Maximum Mean

Discrepancy (MMD). We show that controlling the gradient of the critic is vital to

having a sensible loss function, and devise a method to enforce exact, analytical gra-

dient constraints at no additional cost compared to existing approximate techniques

based on additive regularizers. The new loss function is provably continuous, and

experiments show that it stabilizes and accelerates training, giving image generation

models that outperform state-of-the art methods on 160× 160 CelebA and 64× 64

unconditional ImageNet.

1 Introduction
There has been an explosion of interest in implicit generative models (IGMs) over

the last few years, especially after the introduction of generative adversarial networks

(GANs) Goodfellow et al. [2014]. These models allow approximate samples from

a complex high-dimensional target distribution P, using a model distribution Qθ,

where estimation of likelihoods, exact inference, and so on are not tractable. GAN-

type IGMs have yielded very impressive empirical results, particularly for image

generation, far beyond the quality of samples seen from most earlier generative

models [e.g. Karras et al., 2018, Radford et al., 2016, Gulrajani et al., 2017, Huang
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et al., 2018a, Jin et al., 2017].

These excellent results, however, have depended on adding a variety of methods

of regularization and other tricks to stabilize the notoriously difficult optimization

problem of GANs [Salimans et al., 2016, Radford et al., 2016]. Some of this

difficulty is perhaps because when a GAN is viewed as minimizing a discrepancy

DGAN(P,Qθ), its gradient ∇θDGAN(P,Qθ) does not provide useful signal to the

generator if the target and model distributions are not absolutely continuous, as is

nearly always the case Arjovsky and Bottou [2017].

An alternative set of losses are the integral probability metrics (IPMs) [Müller,

1997], which can give credit to models Qθ “near” to the target distribution P [Ar-

jovsky et al., 2017, Gneiting and Raftery, 2007] and [Bottou et al., 2018, Section 4].

IPMs are defined in terms of a critic function: a “well behaved” function with large

amplitude where P and Qθ differ most. The IPM is the difference in the expected

critic under P and Qθ, and is zero when the distributions agree. The Wasserstein

IPMs, whose critics are made smooth via a Lipschitz constraint, have been partic-

ularly successful in IGMs [Arjovsky et al., 2017, Gulrajani et al., 2017, Genevay

et al., 2018]. But the Lipschitz constraint must hold uniformly, which can be hard to

enforce. A popular approximation has been to apply a gradient constraint only in

expectation [Gulrajani et al., 2017]: the critic’s gradient norm is constrained to be

small on points chosen uniformly between P and Q.

Another class of IPMs used as IGM losses are the Maximum Mean Discrep-

ancies (MMDs) [Gretton et al., 2012], as in [Li et al., 2015, Dziugaite et al., 2015].

Here the critic function is a member of a reproducing kernel Hilbert space (except

in Unterthiner et al. [2018], who learn a deep approximation to an RKHS critic).

Better performance can be obtained, however, when the MMD kernel is not based

directly on image pixels, but on learned features of images. Wasserstein-inspired

gradient regularization approaches can be used on the MMD critic when learning

these features: [Li et al., 2017] uses weight clipping [Arjovsky et al., 2017], and

[Bińkowski* et al., 2018, Bellemare et al., 2017] use a gradient penalty [Gulrajani

et al., 2017].
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The recent Sobolev GAN [Mroueh et al., 2018] uses a similar constraint on

the expected gradient norm, but phrases it as estimating a Sobolev IPM rather than

loosely approximating Wasserstein. This expectation can be taken over the same

distribution as [Gulrajani et al., 2017], but other measures are also proposed, such

as (P + Qθ) /2. A second recent approach, the spectrally normalized GAN [Miyato

et al., 2018], controls the Lipschitz constant of the critic by enforcing the spectral

norms of the weight matrices to be 1. Gradient penalties also benefit GANs based

on f -divergences [Nowozin et al., 2016]: for instance, the spectral normalization

technique of [Miyato et al., 2018] can be applied to the critic network of an f -

GAN. Alternatively, a gradient penalty can be defined to approximate the effect of

blurring P and Qθ with noise [Roth et al., 2017], which addresses the problem of non-

overlapping support Arjovsky and Bottou [2017]. This approach has recently been

shown to yield locally convergent optimization in some cases with non-continuous

distributions, where the original GAN does not Mescheder et al. [2018].

In this work, we introduce a novel regularization for the MMD GAN critic of

[Bellemare et al., 2017, Li et al., 2017, Bińkowski* et al., 2018], which directly

targets generator performance, rather than adopting regularization methods intended

to approximate Wasserstein distances Arjovsky et al. [2017], Gulrajani et al. [2017].

The new MMD regularizer derives from an approach widely used in semi-supervised

learning [Bousquet et al., 2004, Section 2], where the aim is to define a classification

function f which is positive on P (the positive class) and negative on Qθ (negative

class), in the absence of labels on many of the samples. The decision boundary

between the classes is assumed to be in a region of low density for both P and Qθ:

f should therefore be flat where P and Qθ have support (areas with constant label),

and have a larger slope in regions of low density. Bousquet et al. [2004] propose as

their regularizer on f a sum of the variance and a density-weighted gradient norm.

We adopt a related penalty on the MMD critic, with the difference that we only

apply the penalty on P: thus, the critic is flatter where P has high mass, but does

not vanish on the generator samples from Qθ (which we optimize). In excluding

Qθ from the critic function constraint, we also avoid the concern raised by [Miyato
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et al., 2018] that a critic depending on Qθ will change with the current minibatch –

potentially leading to less stable learning. The resulting discrepancy is no longer an

integral probability metric: it is asymmetric, and the critic function class depends on

the target P being approximated.

We first discuss in Section 2 how MMD-based losses can be used to learn

implicit generative models, and how a naive approach could fail. This motivates

our new discrepancies, introduced in Section 3 . Section 4 demonstrates that these

losses outperform state-of-the-art models for image generation.

2 Learning implicit generative models with MMD-

based losses

An IGM is a model Qθ which aims to approximate a target distribution P over a space

X ⊆ Rd. We will define Qθ by a generator function Gθ : Z → X , implemented

as a deep network with parameters θ, where Z is a space of latent codes, say R128.

We assume a fixed distribution on Z , say Z ∼ Uniform ([−1, 1]128), and call Qθ the

distribution of Gθ(Z). We will consider learning by minimizing a discrepancy D

between distributions, with D(P,Qθ) ≥ 0 and D(P,P) = 0, which we call our loss.

We aim to minimize D(P,Qθ) with stochastic gradient descent on an estimator of D.

In the present work, we will build losses D based on the Maximum Mean

Discrepancy,

MMDk(P,Q) = sup
f : ‖f‖Hk≤1

EX∼P[f(X)]− EY∼Q[f(Y )], (4.1)

an integral probability metric where the critic class is the unit ball within Hk, the

reproducing kernel Hilbert space with a kernel k. The optimization in (4.1) admits a

simple closed-form optimal critic, f ∗(t) ∝ EX∼P[k(X, t)]− EY∼Q[k(Y, t)]. There

is also an unbiased, closed-form estimator of MMD2
k with appealing statistical

properties Gretton et al. [2012] – in particular, its sample complexity is independent

of the dimension of X , compared to the exponential dependence Weed et al. [2019]
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of the Wasserstein distance

W(P,Q) = sup
f : ‖f‖Lip≤1

EX∼P[f(X)]− EY∼Q[f(Y )]. (4.2)

The MMD is continuous in the weak topology for any bounded kernel with

Lipschitz embeddings [Sriperumbudur, 2016, Theorem 3.2(b)], meaning that if Pn
converges in distribution to P, Pn

D−→ P, then MMD(Pn,P)→ 0. (W is continuous

in the slightly stronger Wasserstein topology [Villani, 2009, Definition 6.9]; Pn
W−→ P

implies Pn
D−→ P, and the two notions coincide if X is bounded.) Continuity means

the loss can provide better signal to the generator as Qθ approaches P, as opposed to

e.g. Jensen-Shannon where the loss could be constant until suddenly jumping to 0

[e.g. Arjovsky et al., 2017, Example 1]. The MMD is also strict, meaning it is zero

iff P = Qθ, for characteristic kernels Sriperumbudur et al. [2011]. The Gaussian

kernel yields an MMD both continuous in the weak topology and strict. Thus in

principle, one need not conduct any alternating optimization in an IGM at all, but

merely choose generator parameters θ to minimize MMDk.

Despite these appealing properties, using simple pixel-level kernels leads to

poor generator samples Dziugaite et al. [2015], Li et al. [2015], Sutherland et al.

[2017], Bottou et al. [2018]. More recent MMD GANs Li et al. [2017], Bellemare

et al. [2017], Bińkowski* et al. [2018] achieve better results by using a parameterized

family of kernels, {kψ}ψ∈Ψ, in the Optimized MMD loss previously studied by

Sriperumbudur et al. [2009], Sriperumbudur [2016]:

DΨ
MMD(P,Q) := sup

ψ∈Ψ
MMDkψ(P,Q). (4.3)

We primarily consider kernels defined by some fixed kernel K on top

of a learned low-dimensional representation φψ : X → Rs, i.e. kψ(x, y) =

K(φψ(x), φψ(y)), denoted kψ = K ◦ φψ. In practice, K is a simple character-

istic kernel, e.g. Gaussian, and φψ is usually a deep network with output dimension

say s = 16 [Bińkowski* et al., 2018] or even s = 1 (in our experiments). If φψ is

powerful enough, this choice is sufficient as soon as φψ is optimized and we need
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not try to ensure each kψ is characteristic, as did Li et al. [2017].

Proposition 17. Suppose k = K ◦ φψ, with K characteristic and {φψ} rich enough

that for any P 6= Q, there is a ψ ∈ Ψ for which φψ#P 6= φψ#Q.1 Then if P 6= Q,

DΨ
MMD(P,Q) > 0.

Proof. Let ψ̂ ∈ Ψ be such that φψ̂(P) 6= φψ̂(Q). Then, since K is characteristic,

DΨ
MMD(P,Q) = sup

ψ∈Ψ
MMDK(φψ#P, φψ#Q) ≥ MMDK(φψ̂#P, φψ̂#Q) > 0.

To estimate DΨ
MMD, one can conduct alternating optimization to estimate a ψ̂

and then update the generator according to MMDkψ̂
, similar to the scheme used in

GANs and WGANs. (This form of estimator is justified by an envelope theorem

[Milgrom and Segal, 2002], although it is invariably biased Bińkowski* et al. [2018].)

Unlike DGAN orW , fixing a ψ̂ and optimizing the generator still yields a sensible

distance MMDkψ̂
.

Early attempts at minimizing DΨ
MMD in an IGM, though, were unsuccessful

[Sutherland et al., 2017, footnote 7]. This could be because for some kernel classes,

DΨ
MMD is stronger than Wasserstein or MMD.

Example 1 (DiracGAN [Mescheder et al., 2018]). We wish to model a point mass

at the origin of R, P = δ0, with any possible point mass, Qθ = δθ for θ ∈ R. We

use a Gaussian kernel of any bandwidth, which can be written as kψ = K ◦ φψ with

φψ(x) = ψx for ψ ∈ Ψ = R and K(a, b) = exp
(
−1

2
(a− b)2

)
. Then

MMD2
kψ

(δ0, δθ) = 2
(
1− exp

(
−1

2
ψ2θ2

))
, DΨ

MMD(δ0, δθ) =


√

2 θ 6= 0

0 θ = 0

.

Considering DΨ
MMD(δ0, δ1/n) =

√
2 6→ 0, even though δ1/n

W−→ δ0, shows

that the Optimized MMD distance is not continuous in the weak or Wasserstein

topologies.

1 f#P denotes the pushforward of a distribution: if X ∼ P, then f(X) ∼ f#P.
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Figure 4.1: The setting of Example 1. (a, b): parameter-space gradient fields for the MMD
and the SMMD (Section 3 .3); the horizontal axis is θ, and the vertical 1/ψ. (c):
optimal MMD critics for θ = 20 with different kernels. (d): the MMD and the
distances of Section 3 optimized over ψ.

This also causes optimization issues. Figure 4.1 (a) shows gradient vector fields

in parameter space, v(θ, ψ) ∝
(
−∇θ MMD2

kψ
(δ0, δθ),∇ψ MMD2

kψ
(δ0, δθ)

)
. Some

sequences following v (e.g. A) converge to an optimal solution (0, ψ), but some (B)

move in the wrong direction, and others (C) are stuck because there is essentially no

gradient. Figure 4.1 (c, red) shows that the optimal DΨ
MMD critic is very sharp near P

and Q; this is less true for cases where the algorithm converged.

We can avoid these issues if we ensure a bounded Lipschitz critic:2

Proposition 18. Define the critic function fψ(x) as:

fψ(x) = (EX∼Pkψ(X, x)− EY∼Qkψ(Y, x))/MMDkψ(P,Q).

Assume the critics fψ(x) are uniformly bounded and have a common Lipschitz

2[Li et al., 2017, Theorem 4] makes a similar claim to Proposition 18, but its proof was incorrect:
it tries to uniformly bound MMDkψ ≤ W

2, but the bound used is for a Wasserstein in terms of
‖kψ(x, ·)− kψ(y, ·)‖Hkψ

.
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constant: supx∈X ,ψ∈Ψ|fψ(x)| < ∞ and supψ∈Ψ‖fψ‖Lip < ∞. In particular, this

holds when kψ = K ◦ φψ and

sup
a∈Rs

K(a, a) <∞, ‖K(a, ·)−K(b, ·)‖HK ≤ LK‖a− b‖Rs ,

sup
ψ∈Ψ
‖φψ‖Lip ≤ Lφ <∞.

ThenDΨ
MMD is continuous in the weak topology: if Pn

D−→ P, thenDΨ
MMD(Pn,P)→ 0.

Proof. The main result is [Dudley, 2002, Corollary 11.3.4]. To show the claim for

kψ = K ◦ φψ, note that |fψ(x)− fψ(y)| ≤ ‖fψ‖Hkψ‖kψ(x, ·)− kψ(y, ·)‖Hkψ , which

since ‖fψ‖Hkψ = 1 is

‖K(φψ(x), ·)−K(φψ(y), ·)‖HK ≤ LK‖φψ(x)− φψ(y)‖Rs ≤ LKLφ‖x− y‖Rd .

Indeed, if we put a box constraint on ψ Li et al. [2017] or regularize the gradient

of the critic function Bińkowski* et al. [2018], the resulting MMD GAN generally

matches or outperforms WGAN-based models. Unfortunately, though, an additive

gradient penalty doesn’t substantially change the vector field of Figure 4.1 (a), as

shown in Figure 4.10 (Section D .1). We will propose distances with much better

convergence behavior.

3 New discrepancies for learning implicit generative

models
Our aim here is to introduce a discrepancy that can provide useful gradient infor-

mation when used as an IGM loss. Proofs of results in this section are deferred to

Section A .

3 .1 Lipschitz Maximum Mean Discrepancy

Proposition 18 shows that an MMD-like discrepancy can be continuous under the

weak topology even when optimizing over kernels, if we directly restrict the critic
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functions to be Lipschitz. We can easily define such a distance, which we call the

Lipschitz MMD: for some λ > 0,

LipMMDk,λ(P,Q) := sup
f∈Hk : ‖f‖2Lip+λ‖f‖2Hk≤1

EX∼P [f(X)]− EY∼Q [f(Y )] . (4.4)

For a universal kernel k, we conjecture that limλ→0 LipMMDk,λ(P,Q) →

W(P,Q). But for any k and λ, LipMMD is upper-bounded by W , as (4.4)

optimizes over a smaller set of functions than (4.2). Thus DΨ,λ
LipMMD(P,Q) :=

supψ∈Ψ LipMMDkψ ,λ
(P,Q) is also upper-bounded byW , and hence is continuous

in the Wasserstein topology. It also shows excellent empirical behavior on Example 1

(Figure 4.1 (d), and Figure 4.10 in Section D .1). But estimating LipMMDk,λ, let

alone DΨ,λ
LipMMD, is in general extremely difficult (Section B ), as finding ‖f‖Lip

requires optimization in the input space. Constraining the mean gradient rather than

the maximum, as we will do next, is far more tractable.

3 .2 Gradient-Constrained Maximum Mean Discrepancy

We define the Gradient-Constrained MMD for λ > 0 and using some measure µ as

GCMMDµ,k,λ(P,Q) := sup
f∈Hk : ‖f‖S(µ),k,λ≤1

EX∼P [f(X)]− EY∼Q [f(Y )] , (4.5)

where ‖f‖2
S(µ),k,λ := ‖f‖2

L2(µ) + ‖∇f‖2
L2(µ) + λ‖f‖2

Hk . (4.6)

‖·‖2
L2(µ) =

∫
‖·‖2 µ(dx) denotes the squared L2 norm. Rather than directly constrain-

ing the Lipschitz constant, the second term ‖∇f‖2
L2(µ) encourages the function f to

be flat where µ has mass. In experiments we use µ = P, flattening the critic near

the target sample. We add the first term following Bousquet et al. [2004]: in one

dimension and with µ uniform, ‖·‖S(µ),·,0 is then an RKHS norm with the kernel

κ(x, y) = exp(−‖x− y‖), which is also a Sobolev space. The correspondence to a

Sobolev norm is lost in higher dimensions [Wendland, 2005, Ch. 10], but we also

found the first term to be beneficial in practice.

We can exploit some properties of Hk to compute (4.5) analytically. Call the

difference in kernel mean embeddings η := EX∼P[k(X, ·)]− EY∼Q[k(Y, ·)] ∈ Hk;
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recall MMD(P,Q) = ‖η‖Hk .

Proposition 19. Let µ̂ =
∑M

m=1 δXm be an empirical measure of M points. Let

η(X) ∈ RM have mth entry η(Xm), and ∇η(X) ∈ RMd have (m, i)th entry
3 ∂iη(Xm). Then under Assumptions (A) to (D) in Section A .1, the Gradient-

Constrained MMD is

GCMMD2
µ̂,k,λ(P,Q) =

1

λ

(
MMD2(P,Q)− P̄ (η)

)
P̄ (η) =

 η(X)

∇η(X)

TK GT

G H

+MλIM+Md

−1  η(X)

∇η(X)

 ,
where K is the kernel matrix Km,m′ = k(Xm, Xm′), G is the matrix of left deriva-

tives G(m,i),m′ = ∂ik(Xm, Xm′), and H that of derivatives of both arguments

H(m,i),(m′,j) = ∂i∂j+dk(Xm, Xm′).

As long as P and Q have integrable first moments, and µ has second moments,

Assumptions (A) to (D) are satisfied e.g. by a Gaussian or linear kernel on top of a

differentiable φψ. We can thus estimate the GCMMD based on samples from P, Q,

and µ by using the empirical mean η̂ for η.

This discrepancy indeed works well in practice: Section 4 .1.2 shows that opti-

mizing our estimate of Dµ,Ψ,λGCMMD = supψ∈Ψ GCMMDµ,kψ ,λ yields a good generative

model on MNIST. But the linear system of size M + Md is impractical: even on

28×28 images and using a low-rank approximation, the model took days to converge.

We therefore design a less expensive discrepancy in the next section.

The GCMMD is related to some discrepancies previously used in IGM train-

ing. The Fisher GAN [Mroueh and Sercu, 2017] uses only the variance constraint

‖f‖2
L2(µ) ≤ 1. The Sobolev GAN [Mroueh et al., 2018] constrains ‖∇f‖2

L2(µ) ≤ 1,

along with a vanishing boundary condition on f to ensure a well-defined solution

(although this was not used in the implementation, and can cause very unintuitive

critic behavior; see Section D .2). The authors considered several choices of µ,

3We use (m, i) to denote (m − 1)d + i; thus ∇η(X) stacks ∇η(X1), . . . , ∇η(XM ) into one
vector.
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including the WGAN-GP measure [Gulrajani et al., 2017] and mixtures (P + Qθ) /2.

Rather than enforcing the constraints in closed form as we do, though, these models

used additive regularization. We will compare to the Sobolev GAN in experiments.

3 .3 Scaled Maximum Mean Discrepancy

We will now derive a lower bound on the Gradient-Constrained MMD which retains

many of its attractive qualities but can be estimated in time linear in the dimension d.

Proposition 20. Make Assumptions (A) to (D). For any f ∈ Hk, ‖f‖S(µ),k,λ ≤

σ−1
µ,k,λ‖f‖Hk , where

σµ,k,λ := 1
/√√√√λ+

∫
k(x, x)µ(dx) +

d∑
i=1

∫
∂2k(y, z)

∂yi∂zi

∣∣∣
(y,z)=(x,x)

µ(dx).

Depending on the choice of the kernel, σµ,k,λ can have a simple expression. For

instance, if kψ = K ◦ φψ and K(a, b) = g(−‖a− b‖2), then

σ−2
k,µ,λ = λ+ g(0) + 2|g′(0)|Eµ

[
‖∇φψ(X)‖2

F

]
.

Estimating these terms based on samples from µ is straightforward, giving a natural

estimator for σµ,k,λ. We then define the Scaled Maximum Mean Discrepancy based

on Proposition 20:

SMMDµ,k,λ(P,Q) : = sup
f :σ−1

µ,k,λ‖f‖H≤1

EX∼P [f(X)]− EY∼Q [f(Y )]

= σµ,k,λ MMDk(P,Q). (4.7)

While the GCMMD is obtained by constraining the witness function to be within

an ellipsoid of the RKHS to control its smoothness, The SMMD is obtained by

imposing a stronger constrain on the witness function compared to the GCMMD.

Indeed, the latter controls the smoothness of the witness function by constraining in

an ellipsoid of the RKHS. However, such constraint requires solving a linear system

(Proposition 19) which can be computationally demanding. Instead, the SMMD
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further constrains the witness function to be in a ball inside the ellipsoid defined by

GCMMD, thus controlling the smoothness of the witness function while having a

simpler expression.

Because the constraint in the optimization of (4.7) is more restrictive than in

that of (4.5), we have that SMMDµ,k,λ(P,Q) ≤ GCMMDµ,k,λ(P,Q). The Sobolev

norm ‖f‖S(µ),λ, and a fortiori the gradient norm under µ, is thus also controlled for

the SMMD critic. Of course, if µ and k are fixed, the SMMD is simply a constant

times the MMD, and so behaves in essentially the same way as the MMD. But

optimizing the SMMD over a kernel family Ψ gives a distance Dµ,Ψ,λSMMD(P,Q) that is

very different from DΨ
MMD defined in (4.3).

Dµ,Ψ,λSMMD(P,Q) := sup
ψ∈Ψ

SMMDµ,kψ ,λ(P,Q).

Figure 4.1 (b) shows the vector field for the Optimized SMMD loss in Ex-

ample 1, using the WGAN-GP measure µ = Uniform(0, θ). The optimization

surface is far more amenable: in particular the location C, which formerly had an ex-

tremely small gradient that made learning effectively impossible, now converges very

quickly by first reducing the critic gradient until some signal is available. Figure 4.1

(d) demonstrates that Dµ,Ψ,λSMMD, like Dµ,Ψ,λGCMMD and DΨ,λ
LipMMD but in sharp contrast to

DΨ
MMD, is continuous with respect to the location θ and provides a strong gradient

towards 0.

Comparison of Gradient-Constrained MMD to Scaled MMD. Figure 4.2 shows

the behavior of the MMD, the Gradient-Constrained SMMD, and the Scaled MMD

when comparing Gaussian distributions. We can see that MMD ∝ SMMD and the

Gradient-Constrained MMD behave similarly in this case, and that optimizing the

SMMD and the Gradient-Constrained MMD is also similar. Optimizing the MMD

would yield an essentially constant distance.

Continuity of Dµ,Ψ,λSMMD in the Wasserstein topology. We can establish that Dµ,Ψ,λSMMD

is continuous in the Wasserstein topology under some conditions:

Theorem 21. Let kψ = K ◦ φψ, with φψ : X → Rs a fully-connected L-layer
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Figure 4.2: Plots of various distances between one dimensional Gaussians, where P =
N (0, 0.12), and the colors show logD(P,N (µ, σ2)). All distances use λ = 1.
Top left: MMD with a Gaussian kernel of bandwidth ψ = 0.1. Top right:
MMD with bandwidth ψ = 10. Middle left: Gradient-Constrained MMD with
bandwidth ψ = 0.1. Middle right: Gradient-Constrained MMD with bandwidth
ψ = 10. Bottom left: Optimized SMMD, allowing any ψ ∈ R. Bottom right:
Optimized Gradient-Constrained MMD.
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network with Leaky-ReLUα activations whose layers do not increase in width, and

K satisfying mild smoothness conditions QK < ∞ (Assumptions (II) to (V) in

Section A .2). Let Ψκ be the set of parameters where each layer’s weight matrices

have condition number cond(W l) = ‖W l‖/ σmin(W l) ≤ κ <∞. If µ has a density

(Assumption (I)), then

Dµ,Ψ
κ,λ

SMMD(P,Q) ≤ QKκ
L/2

√
dLαL/2

W(P,Q).

Thus if Pn
W−→ P, then Dµ,Ψ

κ,λ
SMMD(Pn,P)→ 0, even when µ depends on P and Q.

The assumptions are discussed in more detail in Section A .2; in particular,

they require that the network layers never increase in width, as well as requiring

µ to have a density on X . The proof gives some insight about the choice of critic

family, highlighting the importance of controlling the condition number of the weight

matrices per layer for the critic, and requiring that the layers be decreasing in width:

dl ≤ dl−1. It also requires Leaky-ReLU activations rather than just ReLU in the

critic, as previously suggested empirically [Radford et al., 2016]. Section A .2.1

shows counterexamples when the condition number is unbounded or with networks

that get wider.

Uniform bounds vs bounds in expectation Controlling the squared L2(µ) norm of

∇fψ(X), i.e.: ‖∇fψ‖2
L2(µ) := Eµ‖∇fψ(X)‖2 does not necessarily imply a bound

on ‖f‖Lip ≥ supx∈X‖∇fψ(X)‖, and so does not in general give continuity via

Proposition 18. However, Theorem 21 implies that when the network’s weights are

well-conditioned, it is sufficient to only control ‖∇fψ‖2
L2(µ), which is far easier in

practice than controlling ‖f‖Lip.

If we instead tried to directly controlled ‖f‖Lip with e.g. spectral normalization

(SN) [Miyato et al., 2018], we could significantly reduce the expressiveness of

the parametric family. In Example 1, constraining ‖φψ‖Lip = 1 limits us to only

Ψ = {1}. Thus D{1}MMD is simply the MMD with an RBF kernel of bandwidth 1,

which has poor gradients when θ is far from 0 (Figure 4.1 (c), blue). The Cauchy-

Schwartz bound of Proposition 20 allows jointly adjusting the smoothness of kψ and
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the critic f , while SN must control the two independently. Relatedly, limiting ‖φ‖Lip

by limiting the Lipschitz norm of each layer could substantially reduce capacity,

while ‖∇fψ‖L2(µ) need not be decomposed by layer. Another advantage is that µ

provides a data-dependent measure of complexity as in Bousquet et al. [2004]: we

do not needlessly prevent ourselves from using critics that behave poorly only far

from the data.

Spectral parametrization When the generator is near a local optimum, the critic

might identify only one direction on which Qθ and P differ. If the generator pa-

rameterization is such that there is no local way for the generator to correct it, the

critic may begin to single-mindedly focus on this difference, choosing redundant

convolutional filters and causing the condition number of the weights to diverge. If

this occurs, the generator will be motivated to fix this single direction while ignoring

all other aspects of the distributions, after which it may become stuck. We can help

avoid this collapse by using a critic parameterization that encourages diverse filters

with higher-rank weight matrices. Miyato et al. [2018] propose to parameterize

the weight matrices as W = γW̄/‖W̄‖op, where ‖W̄‖op is the spectral norm of W̄ .

This parametrization works particularly well with Dµ,Ψ,λSMMD; Figure 4.3 (b) shows

the singular values of the second layer of a critic’s network (and Figure 4.5, in

Section 4 .1.1, shows more layers), while Figure 4.3 (d) shows the evolution of the

condition number during training. The conditioning of the weight matrix remains

stable throughout training with spectral parametrization, while it worsens through

training in the default case.

4 Experiments

4 .1 Image generation

We evaluated unsupervised image generation on three datasets: CIFAR-10

Krizhevsky [2009] (60 000 images, 32 × 32), CelebA Liu et al. [2015a] (202 599

face images, resized and cropped to 160× 160 as in Bińkowski* et al. [2018]), and

the more challenging ILSVRC2012 (ImageNet) dataset Russakovsky et al. [2014]

(1 281 167 images, resized to 64× 64).
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Losses All models are based on a scalar-output critic network φψ : X → R,

except MMDGAN-GP where φψ : X → R16 as in Bińkowski* et al. [2018]. We

didn’t notice major differences by choosing different output dimensions for φψ. The

WGAN and Sobolev GAN use a critic f = φψ, while the GAN uses a discriminator

Dψ(x) = 1/(1 + exp(−φψ(x))). The MMD-based methods use a kernel kψ(x, y) =

exp(−(φψ(x) − φψ(y))2/2), except for MMDGAN-GP which uses a mixture of

RQ kernels as in Bińkowski* et al. [2018]. Increasing the output dimension of

the critic or using a different kernel didn’t substantially change the performance

of our proposed method. We also consider SMMD with a linear top-level kernel,

k(x, y) = φψ(x)φψ(y); because this becomes essentially identical to a WGAN

(Section C ), we refer to this method as SWGAN. SMMD and SWGAN use µ = P;

Sobolev GAN uses µ = (P + Q)/2 as in Mroueh et al. [2018]. We choose λ and an

overall scaling to obtain the losses:

SMMD:
M̂MD

2

kψ
(P,Qθ)

1 + 10EP̂ [‖∇φψ(X)‖2
F ]
,

SWGAN:
EP̂ [φψ(X)]− EQ̂θ [φψ(X)]√

1 + 10 (EP̂ [|φψ(X)|2] + EP̂ [‖∇φψ(X)‖2
F ])

.

Architecture For CIFAR-10, we used the CNN architecture proposed by Miy-

ato et al. [2018] with a 7-layer critic and a 4-layer generator. For CelebA, we used a

5-layer DCGAN discriminator and a 10-layer ResNet generator as in Bińkowski*

et al. [2018]. For ImageNet, we used a 10-layer ResNet for both the generator

and discriminator. In all experiments we used 64 filters for the smallest convolu-

tional layer, and double it at each layer (CelebA/ImageNet) or every other layer

(CIFAR-10). The input codes for the generator are drawn from Uniform ([−1, 1]128)

as commonly used in the prior works. Note that the dimension of the latent is

typically orders of magnitude smaller than the dimension of the image 32 ∗ 32 and

thus the model is assuming a small intrinsic dimension of the data. We consider

two parameterizations for each critic: a standard one where the parameters can

take any real value, and a spectral parametrization (denoted SN-) as above Miyato

et al. [2018]. Models without explicit gradient control (SN-GAN, SN-MMDGAN,
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SN-MMGAN-L2, SN-WGAN) fix γ = 1, for spectral normalization; others learn γ,

using a spectral parameterization.

Training All models were trained for 150 000 generator updates on a single

GPU, except for ImageNet where the model was trained on 3 GPUs simultaneously.

To limit communication overhead we averaged the MMD estimate on each GPU,

giving the block MMD estimator Zaremba et al. [2013]. We always used 64 samples

per GPU from each of P and Q, and 5 critic updates per generator step. We used

initial learning rates of 0.0001 for CIFAR-10 and CelebA, 0.0002 for ImageNet, and

decayed these rates using the KID adaptive scheme of Bińkowski* et al. [2018]:

every 2 000 steps, generator samples are compared to those from 20 000 steps ago,

and if the relative KID test Bounliphone et al. [2016] fails to show an improvement

three consecutive times, the learning rate is decayed by 0.8. We used the Adam

optimizer Kingma and Ba [2015] with β1 = 0.5, β2 = 0.9.

Evaluation To compare the sample quality of different models, we considered

three different scores based on the Inception network Szegedy et al. [2016] trained

for ImageNet classification, all using default parameters in the implementation of

Bińkowski* et al. [2018]. The Inception Score (IS) Salimans et al. [2016] is based on

the entropy of predicted labels; higher values are better. Though standard, this metric

has many issues, particularly on datasets other than ImageNet [Barratt and Sharma,

2018, Heusel et al., 2017, Bińkowski* et al., 2018]. The FID Heusel et al. [2017]

instead measures the similarity of samples from the generator and the target as the

Wasserstein-2 distance between Gaussians fit to their intermediate representations.

It is more sensible than the IS and becoming standard, but its estimator is strongly

biased Bińkowski* et al. [2018]. The KID Bińkowski* et al. [2018] is similar to

FID, but by using a polynomial-kernel MMD its estimates enjoy better statistical

properties and are easier to compare. (A similar score was recommended by Huang

et al. [2018b].)

Results Table 4.1a presents the scores for models trained on both CIFAR-10

and CelebA datasets. On CIFAR-10, SN-SWGAN and SN-SMMDGAN performed

comparably to SN-GAN. But on CelebA, SN-SWGAN and SN-SMMDGAN dramat-
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Figure 4.3: The training process on CelebA. (a) KID scores. We report a final score for SN-
GAN slightly before its sudden failure mode; MMDGAN and SN-MMDGAN
were unstable and had scores around 100. (b) Singular values of the second layer,
both early (dashed) and late (solid) in training. (c) σ−2

µ,k,λ for several MMD-
based methods. (d) The condition number in the first layer through training. SN
alone does not control σµ,k,λ, and SMMD alone does not control the condition
number.

ically outperformed the other methods with the same architecture in all three metrics.

It also trained faster, and consistently outperformed other methods over multiple

initializations (Figure 4.3 (a)). It is worth noting that SN-SWGAN far outperformed

WGAN-GP on both datasets. Table 4.1b presents the scores for SMMDGAN and

SN-SMMDGAN trained on ImageNet, and the scores of pre-trained models using

BGAN [Berthelot et al., 2017] and SN-GAN [Miyato et al., 2018].4 The proposed

methods substantially outperformed both methods in FID and KID scores. Fig-

ure 4.4 shows samples on ImageNet and CelebA. Spectrally normalized WGANs /

MMDGANs To control for the contribution of the spectral parametrization to the

4These models are courtesy of the respective authors and also trained at 64× 64 resolution. SN-
GAN used the same architecture as our model, but trained for 250 000 generator iterations; BS-GAN
used a similar 5-layer ResNet architecture and trained for 74 epochs, comparable to SN-GAN.
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Table 4.1: Mean (standard deviation) of score estimates, based on 50 000 samples from each
model.

(a) CIFAR-10 and CelebA.

CIFAR-10 CelebA
Method IS FID KID×103 IS FID KID×103

WGAN-GP 6.9±0.2 31.1±0.2 22.2±1.1 2.7±0.0 29.2±0.2 22.0±1.0
MMDGAN-GP-L2 6.9±0.1 31.4±0.3 23.3±1.1 2.6±0.0 20.5±0.2 13.0±1.0
Sobolev-GAN 7.0±0.1 30.3±0.3 22.3±1.2 2.9±0.0 16.4±0.1 10.6±0.5
SMMDGAN 7.0±0.1 31.5±0.4 22.2±1.1 2.7±0.0 18.4±0.2 11.5±0.8
SN-GAN 7.2±0.1 26.7±0.2 16.1±0.9 2.7±0.0 22.6±0.1 14.6±1.1
SN-SWGAN 7.2±0.1 28.5±0.2 17.6±1.1 2.8±0.0 14.1±0.2 7.7±0.5
SN-SMMDGAN 7.3±0.1 25.0±0.3 16.6±2.0 2.8±0.0 12.4±0.2 6.1±0.4

(b) ImageNet.

Method IS FID KID×103

BGAN 10.7±0.4 43.9±0.3 47.0±1.1
SN-GAN 11.2±0.1 47.5±0.1 44.4±2.2
SMMDGAN 10.7±0.2 38.4±0.3 39.3±2.5
SN-SMMDGAN 10.9±0.1 36.6±0.2 34.6±1.6

performance, we evaluated variants of MMDGANs, WGANs and Sobolev-GAN

using spectral normalization (in Table 4.2, Section 4 .1.1). WGAN and Sobolev-

GAN led to unstable training and didn’t converge at all (Figure 4.7) despite many

attempts. MMDGAN converged on CIFAR-10 (Figure 4.7) but was unstable on

CelebA (Figure 4.6). The gradient control due to SN is thus probably too loose for

these methods. This is reinforced by Figure 4.3 (c), which shows that the expected

gradient of the critic network is much better-controlled by SMMD, even when SN is

used. We also considered variants of these models with a learned γ while also adding

a gradient penalty and an L2 penalty on critic activations [Bińkowski* et al., 2018,

footnote 19]. These generally behaved similarly to MMDGAN, and didn’t lead to

substantial improvements. We ran the same experiments on CelebA, but aborted the

runs early when it became clear that training was not successful.

Rank collapse We occasionally observed the failure mode for SMMD where

the critic becomes low-rank, discussed in Section 3 .3, especially on CelebA; this

failure was obvious even in the training objective. Figure 4.3 (b) is one of these

examples. Spectral parametrization seemed to prevent this behavior. We also found
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GP+L2

Figure 4.4: Samples from various models. Top: 64 × 64 ImageNet; bottom: 160 × 160
CelebA.

one could avoid collapse by reverting to an earlier checkpoint and increasing the

RKHS regularization parameter λ, but did not do this for any of the experiments

here.

4 .1.1 Spectral normalization and Scaled MMD

Figure 4.5 shows the distribution of critic weight singular values, like Figure 4.3, at

more layers. Figure 4.7 and Table 4.2 show results for the spectral normalization

variants considered in the experiments. MMDGAN, with neither spectral normaliza-

tion nor a gradient penalty, did surprisingly well in this case, though it fails badly in

other situations.

Figure 4.5 compares the decay of singular values for layer of the critic’s network

at both early and later stages of training in two cases: with or without the spectral

parametrization. The model was trained on CelebA using SMMD. Figure 4.7 shows

the evolution per iteration of Inception score, FID and KID for Sobolev-GAN,
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Figure 4.5: Singular values at different layers, for the same setup as Figure 4.3.

Table 4.2: Mean (standard deviation) of score evaluations on CIFAR-10 for different meth-
ods using Spectral Normalization.

IS FID KID×103

Method

MMDGAN 5.5±0.0 73.9±0.1 39.4±1.5
SN-WGAN 2.2±0.0 208.5±0.2 178.9±1.5
SN-WGAN-GP 2.5±0.0 154.3±0.2 125.3±0.9
SN-Sobolev-GAN 2.9±0.0 140.2±0.2 130.0±1.9
SN-MMDGAN-GP 4.6±0.1 96.8±0.4 59.5±1.4
SN-MMDGAN-L2 7.1±0.1 31.9±0.2 21.7±0.9
SN-MMDGAN 6.9±0.1 31.5±0.2 21.7±1.0
SN-MMDGAN-GP-L2 6.9±0.2 32.3±0.3 20.9±1.1
SN-SMMDGAN 7.3±0.1 25.0±0.3 16.6±2.0

MMDGAN and variants of MMDGAN and WGAN using spectral normalization. It

is often the case that this parametrization alone is not enough to achieve good results.

4 .1.2 IGMs with Optimized Gradient-Constrained MMD loss

We implemented the estimator of Proposition 19 using the empirical mean estimator

of η, and sharing samples for µ = P. To handle the large but approximately low-rank

matrix system, we used an incomplete Cholesky decomposition [Shawe-Taylor and
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Figure 4.6: Evolution of various quantities per generator iteration on CelebA during train-
ing. 4 models are considered: (SMMDGAN, SN-SMMDGAN, MMDGAN,
SN-MMDGAN). (a) Loss: SMMD2 = σ2

µ,k,λMMD2
k for SMMDGAN and

SN-SMMDGAN, and MMD2
k for MMDGAN and SN-MMDGAN. The loss sat-

urates for MMDGAN (green); spectral normalization allows some improvement
in loss, but training is still unstable (orange). SMMDGAN and SN-SMMDGAN
both lead to stable, fast training (blue and red). (b) SMMD controls the critic
complexity well, as expected (blue and red); SN has little effect on the complex-
ity (orange). (c) Ratio of the highest singular value to the smallest for the first
layer of the critic network: σmax/σmin. SMMD tends to increase the condition
number of the weights during training (blue), while SN helps controlling it (red).
(d) KID score during training: Only variants using SMMD lead to stable training
in this case.
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Figure 4.7: Evolution per iteration of different scores for variants of methods, mostly using
spectral normalization, on CIFAR-10.
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Cristianini, 2004, Algorithm 5.12] to obtain R ∈ R`×M(1+d) such that

K GT

G H

 ≈
RTR. Then the Woodbury matrix identity allows an efficient evaluation:

(
RTR +MλI

)−1
=

1

Mλ

(
I −R(RRT +MλI)−1R

)
.

Even though only a small ` is required for a good approximation, and the full matrices

K, G, and H need never be constructed, backpropagation through this procedure is

slow and not especially GPU-friendly; training on CPU was faster. Thus we were

only able to run the estimator on MNIST, and even that took days to conduct the

optimization on powerful workstations.

The learned models, however, were reasonable. Using a DCGAN architecture,

batches of size 64, and a procedure that otherwise agreed with the setup of Section 4 ,

samples with and without spectral normalization are shown in Figures 4.8a and 4.8b.

After the points in training shown, however, the same rank collapse as discussed in

Section 4 occurred. Here it seems that spectral normalization may have delayed the

collapse, but not prevented it. Figure 4.8c shows generator loss estimates through

training, including the obvious peak at collapse; Figure 4.8d shows KID scores based

on the MNIST-trained convnet representation [Bińkowski* et al., 2018], including

comparable SMMD models for context. The fact that SMMD models converged

somewhat faster than Gradient-Constrained MMD models here may be more related

to properties of the estimator of Proposition 19 rather than the distances; more work

would be needed to fully compare the behavior of the two distances.
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(a) Without
spectral
normaliza-
tion; 32 000
generator
iterations.

(b) With spectral
normaliza-
tion; 41 000
generator
iterations.
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(d) KID scores.

Figure 4.8: The MNIST models with Optimized Gradient-Constrained MMD loss.



Supplementary

A Proofs
We first review some basic properties of Reproducing Kernel Hilbert Spaces. We

consider here a separable RKHSH with basis (ei)i∈I , where I is either finite ifH is

finite-dimensional, or I = N otherwise. We also assume that the reproducing kernel

k is continuously twice differentiable.

We use a slightly nonstandard notation for derivatives: ∂if(x) denotes the ith

partial derivative of f evaluated at x, and ∂i∂j+dk(x, y) denotes ∂2k(a,b)
∂ai∂bj

|(a,b)=(x,y).

Then the following reproducing properties hold for any given function f in H

[Steinwart and Christmann, 2008, Lemma 4.34]:

f(x) =〈f, k(x, .)〉H (4.8)

∂if(x) =〈f, ∂ik(x, .)〉H. (4.9)

We say that an operator A : H 7→ H is Hilbert-Schmidt if ‖A‖2
HS =∑

i∈I ‖Aei‖2
H is finite. ‖A‖HS is called the Hilbert-Schmidt norm of A. The

space of Hilbert-Schmidt operators itself a Hilbert space with the inner product

〈A,B〉HS =
∑

i∈I〈Aei, Bei〉H. Moreover, we say that an operator A is trace-class if

its trace norm is finite, i.e. ‖A‖1 =
∑

i∈I〈ei, (A∗A)
1
2 ei〉H <∞. The outer product

f ⊗ g for f, g ∈ H gives anH → H operator such that (f ⊗ g)v = 〈g, v〉Hf for all

v inH.

Given two vectors f and g inH and a Hilbert-Schmidt operator A we have the

following properties:
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(i) The outer product f ⊗ g is a Hilbert-Schmidt operator with Hilbert-Schmidt

norm given by: ‖f ⊗ g‖HS = ‖f‖H‖g‖H.

(ii) The inner product between two rank-one operators f ⊗ g and u⊗ v is 〈f ⊗

g, u⊗ v〉HS = 〈f, u〉H〈g, v〉H.

(iii) The following identity holds: 〈f, Ag〉H = 〈f ⊗ g, A〉HS.

Define the following covariance-type operators:

Dx = k(x, ·)⊗ k(x, ·) +
d∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·)

Dµ = EX∼µDX Dµ,λ = Dµ + λI; (4.10)

these are useful in that, using (4.8) and (4.9) it follows:

〈f,Dxg〉 = f(x)g(x) +
d∑
i=1

∂if(x) ∂ig(x).

A .1 Definitions and estimators of the new distances

We will need the following assumptions about the distributions P and Q, the measure

µ, and the kernel k:

(A) P and Q have integrable first moments.

(B)
√
k(x, x) grows at most linearly in x: for all x in X ,

√
k(x, x) ≤ C(‖x‖+ 1)

for some constant C.

(C) The kernel k is twice continuously differentiable.

(D) The functions x 7→ k(x, x) and x 7→ ∂i∂i+dk(x, x) for 1 ≤ i ≤ d are µ-

integrable.

When k = K ◦ φψ, Assumption (B) is automatically satisfied by a K such as the

Gaussian; when K is linear, it is true for a quite general class of networks φψ

[Bińkowski* et al., 2018, Lemma 1].
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We will first give a form for the Gradient-Constrained MMD (4.5) in terms of

the operator (4.10):

Proposition 22. Under Assumptions (A) to (D), the Gradient-Constrained MMD is

given by

GCMMDµ,k,λ(P,Q) =
√
〈η,D−1

µ,λη〉H.

Proof of Proposition 22. Let f be a function inH. We will first express the squared

λ-regularized Sobolev norm of f (4.6) as a quadratic form in H. Recalling the

reproducing properties of (4.8) and (4.9), we have:

‖f‖2
S(µ),k,λ =

∫
〈f, k(x, ·)〉2H µ(dx) +

d∑
i=1

∫
〈f, ∂ik(x, ·)〉2H µ(dx) + λ‖f‖2

H.

Using Property (ii) and the operator (4.10), one further gets

‖f‖2
S(µ),k,λ =

∫
〈f ⊗ f,Dx〉HS µ(dx) + λ‖f‖2

H.

Under Assumption (D), and using Lemma 24, one can take the integral inside the

inner product, which leads to ‖f‖2
S(µ),k,λ = 〈f ⊗ f,Dµ〉HS + λ‖f‖2

H. Finally, using

Property (iii) it follows that

‖f‖2
S(µ),k,λ = 〈f,Dµ,λf〉H.

Under Assumptions (A) and (B), Lemma 24 applies, and it follows that k(x, ·)

is also Bochner integrable under P and Q. Thus

EP [〈f, k(x, ·)〉H]− EQ [〈f, k(x, ·)〉H] = 〈f,EP [k(x, ·)]− EP [k(x, ·)]〉H = 〈f, η〉H,

where η is defined as this difference in mean embeddings.

Since Dµ,λ is symmetric positive definite, its square-root D
1
2
µ,λ is well-defined

and is also invertible. For any f ∈ H, let g = D
1
2
µ,λf , so that 〈f,Dµ,λf〉H = ‖g‖2

H.

Note that for any g ∈ H, there is a corresponding f = D
− 1

2
µ,λg. Thus we can re-express
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the maximization problem in (4.5) in terms of g:

GCMMDµ,k,λ(P,Q) := sup
f∈H

〈f,Dµ,λf〉H≤1

〈f, η〉H = sup
g∈H
‖g‖H≤1

〈D−
1
2

µ,λg, η〉H

= sup
g∈H
‖g‖H≤1

〈g,D−
1
2

µ,λη〉H = ‖D−
1
2

µ,λη‖H =
√
〈η,D−1

µ,λη〉H.

Proposition 22, though, involves inverting the infinite-dimensional operator

Dµ,λ and thus doesn’t directly give us a computable estimator. Proposition 19 solves

this problem in the case where µ is a discrete measure:

Before proving Proposition 19, we note the following interesting alternate form.

Let ēi be the ith standard basis vector for RM+Md, and define T : H → RM+Md as

the linear operator

T =
M∑
m=1

ēm ⊗ k(Xm, ·) +
M∑
m=1

d∑
i=1

ēm+(m,i) ⊗ ∂ik(Xm, ·).

Then

 η(X)

∇η(X)

 = Tη, and

K GT

G H

 = TT ∗. Thus we can write

GCMMD2
µ̂,k,λ =

1

λ

〈
η,
(
I − T ∗(TT ∗ +MλI)−1T

)
η
〉
H .

Proof of Proposition 19. Let g ∈ H be the solution to the regression problem

Dµ,λg = η:

1

M

M∑
m=1

[
g(Xm)k(Xm, ·) +

d∑
i=1

∂ig(Xm)∂ik(Xm, ·)

]
+ λg = η

g =
1

λ
η − 1

λM

M∑
m=1

[
g(Xm)k(Xm, ·) +

d∑
i=1

∂ig(Xm)∂ik(Xm, ·)

]
. (4.11)

Taking the inner product of both sides of (4.11) with k(Xm′ , ·) for each 1 ≤ m′ ≤M
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yields the following M aligns:

g(Xm′) =
1

λ
η(Xm′)−

1

λM

M∑
m=1

[
g(Xm)Km,m′ +

d∑
i=1

∂ig(Xm)G(m,i),m′

]
.

(4.12)

Doing the same with ∂jk(Xm′ , ·) gives Md aligns:

∂jg(Xm′) =
1

λ
∂jη(Xm′)−

1

λM

M∑
m=1

[
g(Xm)G(m′,j),m +

d∑
i=1

∂ig(Xm)H(m,i),(m′,j)

]
.

(4.13)

From (4.11), it is clear that g is a linear combination of the form:

g(x) =
1

λ
η(x)− 1

λM

M∑
m=1

[
αmk(Xm, x) +

d∑
i=1

βm,i∂ik(Xm, x)

]
,

where the coefficients α := (αm = g(Xm))1≤m≤M and β := (βm,i = ∂ig(Xm))1≤m≤M
1≤i≤d

satisfy the system of aligns (4.12) and (4.13). We can rewrite this system asK +MλIM GT

G H +MλIMd

α
β

 = M

 η(X)

∇η(X)

 ,
where IM , IMd are the identity matrices of dimension M , Md. Since K and H must

be positive semidefinite, an inverse exists. We conclude by noticing that

GCMMDµ̂,k,λ(P,Q)2 = 〈η, g〉H =
1

λ
‖η‖2

H−
1

λM

M∑
m=1

[
αmη(Xm) +

d∑
i=1

βm,i∂iη(Xm)

]
.

The following result was key to our definition of the SMMD in Section 3 .3.

Proposition 23. Under Assumptions (A) to (D), we have for all f ∈ H that

‖f‖S(µ),k,λ ≤ σ−1
µ,k,λ‖f‖Hk ,

where σk,µ,λ := 1/
√
λ+

∫
k(x, x)µ(dx) +

∑d
i=1

∫
∂i∂i+dk(x, x)µ(dx).
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Proof of Proposition 23. The key idea here is to use the Cauchy-Schwarz inequality

for the Hilbert-Schmidt inner product. Letting f ∈ H, ‖f‖2
S(µ),k,λ is

∫
f(x)2 µ(dx) +

∫
‖∇f(x)‖2 µ(dx) + λ‖f‖2

H

(a)
=

∫
〈f, k(x, ·)⊗ k(x, ·)f〉H µ(dx)

+
d∑
i=1

∫
〈f, ∂ik(x, ·)⊗ ∂ik(x, ·)f〉H µ(dx) + λ‖f‖2

H

(b)
=

∫
〈f ⊗ f, k(x, ·)⊗ k(x, ·)〉HS µ(dx)

+
d∑
i=1

∫
〈f ⊗ f, ∂ik(x, ·)⊗ ∂ik(x, ·)〉HS µ(dx) + λ‖f‖2

H

(c)

≤‖f‖2
H

[∫
k(x, x)µ(dx) +

d∑
i=1

∫
∂i∂i+dk(x, x)µ(dx) + λ

]
.

(a) follows from the reproducing properties (4.8) and (4.9) and Property (ii). (b) is

obtained using Property (iii), while (c) follows from the Cauchy-Schwarz inequality

and Property (i).

Lemma 24. Under Assumption (D), Dx is Bochner integrable and its integral Dµ

is a trace-class symmetric positive semi-definite operator with Dµ,λ = D + λI

invertible for any positive λ. Moreover, for any Hilbert-Schmidt operator A we have:

〈A,Dµ〉HS =
∫
〈A,Dx〉HS µ(dx).

Under Assumptions (A) and (B), k(x, ·) is Bochner integrable with respect to

any probability distribution P with finite first moment and the following relation

holds: 〈f,EP [k(x, ·)]〉H = EP [〈f, k(x, ·)〉H] for all f inH.

Proof. The operator Dx is positive self-adjoint. It is also trace-class, as by the

triangle inequality

‖Dx‖1 ≤ ‖k(x, ·)⊗ k(x, ·)‖1 +
d∑
i=1

‖∂ik(x, ·)⊗ ∂ik(x, ·)‖1

= ‖k(x, ·)‖2
H +

d∑
i=1

‖∂ik(x, ·)‖2
H <∞.
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By Assumption (D), we have that
∫
‖Dx‖1 µ(dx) <∞ which implies that Dx is µ-

integrable in the Bochner sense [Retherford, 1978, Definition 1 and Theorem 2]. Its

integral Dµ is trace-class and satisfies ‖Dµ‖1 ≤
∫
‖Dx‖1 µ(dx). This allows to have

〈A,Dµ〉HS =
∫
〈A,Dx〉HS µ(dx) for all Hilbert-Schmidt operators A. Moreover,

the integral preserves the symmetry and positivity. It follows that Dµ,λ is invertible.

The Bochner integrability of k(x, ·) under a distribution P with finite mo-

ment follows directly from Assumptions (A) and (B), since
∫
‖k(x, ·)‖P(dx) ≤

C
∫

(‖x‖ + 1)P(dx) < ∞. This allows us to write 〈f,EP[k(x, ·)]〉H =

EP[〈f, k(x, ·)〉H].

A .2 Continuity of the Optimized Scaled MMD in the Wasser-

stein topology

To prove Theorem 25, we we will first need some new notation. We assume the

kernel is k = K ◦ φψ, i.e. kψ(x, y) = K(φψ(x), φψ(y)), where the representation

function φψ is a network φψ(X) : Rd → RdL consisting of L fully-connected layers:

h0
ψ(X) = X

hlψ(X) = W lσl−1(hl−1
ψ (X)) + bl for 1 ≤ l ≤ L

φψ(X) = hLψ(X).

The intermediate representations hlψ(X) are of dimension dl, the weights W l are

matrices in Rdl×dl−1 , and biases bl are vectors in Rdl . The elementwise activation

function σ is given by σ0(x) = x, and for l > 0 the activation σl is a leaky ReLU

with leak coefficient 0 < α < 1:

σl(x) = σ(x) =

x x > 0

αx x ≤ 0

for l > 0. (4.14)

The parameter ψ is the concatenation of all the layer parameters:

ψ =
(
(WL, bL), (WL−1, bL−1), . . . , (W 1, b1)

)
.
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We denote by Ψ the set of all such possible parameters, i.e. Ψ = RdL×dL−1 × RdL ×

· · · × Rd1×d × Rd1 . Define the following restrictions of Ψ:

Ψκ :=
{
ψ ∈ Ψ | ∀1 ≤ l ≤ L, cond(W l) ≤ κ

}
Ψκ

1 :=
{
ψ ∈ Ψκ | ∀1 ≤ l ≤ L, ‖W l‖ = 1

}
. (4.15)

Ψκ is the set of those parameters such that W l have a small condition number,

cond(W ) = σmax(W )/σmin(W ). Ψκ
1 is the set of per-layer normalized parameters

with a condition number bounded by κ.

Recall the definition of Scaled MMD, (4.7), where λ > 0 and µ is a probability

measure:

SMMDµ,k,λ(P,Q) := σµ,k,λ MMDk(P,Q)

σk,µ,λ := 1/

√√√√λ+

∫
k(x, x)µ(dx) +

d∑
i=1

∫
∂i∂i+dk(x, x)µ(dx).

The Optimized SMMD over the restricted set Ψκ is given by:

Dµ,Ψ
κ,λ

SMMD(P,Q) := sup
ψ∈Ψκ

SMMDµ,kψ ,λ .

The constraint to ψ ∈ Ψκ is critical to the proof. In practice, using a spectral

parametrization helps enforce this assumption, as shown in Figures 4.3 and 4.5.

Other regularization methods, like orthogonal normalization Brock et al. [2017], are

also possible.

We will use the following assumptions:

(I) µ is a probability distribution absolutely continuous with respect to the

Lebesgue measure.

(II) The dimensions of the weights are decreasing per layer: dl+1 ≤ dl for all

0 ≤ l ≤ L− 1.

(III) The non-linearity used is Leaky-ReLU, (4.14), with leak coefficient α ∈ (0, 1).
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(IV) The top-level kernel K is globally Lipschitz in the RKHS norm: there exists a

positive constant LK > 0 such that ‖K(a, .)−K(b, .)‖ ≤ LK‖a− b‖ for all

a and b in RdL .

(V) There is some γK > 0 for which K satisfies

∇b∇cK(b, c)
∣∣
(b,c)=(a,a)

� γ2I for all a ∈ RdL .

Assumption (I) ensures that the points where φψ(X) is not differentiable are

reached with probability 0 under µ. This assumption can be easily satisfied e.g. if

we define µ by adding Gaussian noise to P.

Assumption (II) helps ensure that the span of W l is never contained in the null

space of W l+1. Using Leaky-ReLU as a non-linearity, Assumption (III), further

ensures that the network φψ is locally full-rank almost everywhere; this might not be

true with ReLU activations, where it could be always 0. Assumptions (II) and (III)

can be easily satisfied by design of the network.

Assumptions (IV) and (V) only depend on the top-level kernelK and are easy to

satisfy in practice. In particular, they always hold for a smooth translation-invariant

kernel, such as the Gaussian, as well as the linear kernel.

We are now ready to prove Theorem 25.

Theorem 25. Under Assumptions (I) to (V),

Dµ,Ψ
κ,λ

SMMD(P,Q) ≤ LK κ
L/2

γ
√
dL αL/2

W(P,Q),

which implies that if Pn
W−→ P, then Dµ,Ψ

κ,λ
SMMD(Pn,P)→ 0.

Proof. Define the pseudo-distance corresponding to the kernel kψ

dψ(x, y) = ‖kψ(x, ·)− kψ(y, ·)‖Hψ =
√
kψ(x, x) + kψ(y, y)− 2kψ(x, y).

Denote byWdψ(P,Q) the optimal transport metric between P and Q using the cost
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dψ, given by

Wdψ(P,Q) = inf
π∈Π(P,Q)

E(X,Y )∼π [dψ(X, Y )] .

where Π is the set of couplings with marginals P and Q. By Lemma 26,

MMDψ(P,Q) ≤ Wdψ(P,Q).

Recall that φψ is Lipschitz, ‖φψ‖Lip <∞, so along with Assumption (IV) we have

that

dψ(x, y) ≤ LK‖φψ(x)− φψ(y)‖ ≤ LK‖φψ‖Lip‖x− y‖.

Thus

Wdψ(P,Q) ≤ inf
π∈Π(P,Q)

E(X,Y )∼π [LK‖φψ‖Lip‖X − Y ‖] = LK‖φψ‖LipW(P,Q),

whereW is the standard Wasserstein distance (4.2), and so

MMDψ(P,Q) ≤ Lk‖φψ‖LipW(P,Q).

We have that:

∂i∂i+dk(x, y) = [∂iφψ(x)]T
[
∇a∇bK(a, b)

∣∣
(a,b)=(φψ(x),φψ(y))

]
[∂iφψ(y)] ,

where the middle term is a dL × dL matrix and the outer terms are vectors of length

dL. Thus Assumption (V) implies that ∂i∂i+dk(x, x) ≥ γ2
K‖∂iφψ(x)‖2, and hence

σ−2
µ,k,λ ≥ γ2

KE[‖∇φψ(X)‖2
F ]

so that

SMMD2
ψ(P,Q) = σ2

µ,k,λ MMD2
ψ(P,Q) ≤

L2
K‖φψ‖2

Lip

γ2
KE [‖∇φψ(X)‖2

F ]
W2(P,Q).

Using Lemma 27, we can write φψ(X) = α(ψ)φψ̄(X) with ψ̄ ∈ Ψκ
1 . Then we
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have

‖φψ‖2
Lip

Eµ
[
‖∇φψ(X)‖2

F

] =
α(ψ)2‖φψ̄‖2

Lip

α(ψ)2Eµ
[∥∥∇φψ̄(X)

∥∥2

F

] ≤ 1

Eµ
[∥∥∇φψ̄(X)

∥∥2

F

] ,
where we used ‖φψ̄‖Lip ≤

∏L
l=1‖W̄ l‖ = 1. But by Lemma 28, for Lebesgue-almost

all X , ‖∇φψ̄(X)‖2
F ≥ dL(α/κ)L. Using Assumption (I), this implies that

‖φψ‖2
Lip

Eµ
[
‖∇φψ(X)‖2

F

] ≤ 1

Eµ
[
‖∇φψ̄(X)‖2

F ]
] ≤ κL

dLαL
.

Thus for any ψ ∈ Ψκ,

SMMDψ(P,Q) ≤ LK κ
L/2

γK
√
dL αL/2

W(P,Q).

The desired bound on Dµ,Ψ
κ,λ

SMMD follows immediately.

Lemma 26. Let (x, y) 7→ k(x, y) be the continuous kernel of an RKHS H defined

on a Polish space X , and define the corresponding pseudo-distance dk(x, y) :=

‖k(x, ·)− k(y, ·)‖H. Then the following inequality holds for any distributions P and

Q on X , including when the quantities are infinite:

MMDk(P,Q) ≤ Wdk(P,Q).

Proof. Let P and Q be two probability distributions, and let Π(P,Q) be the set

of couplings between them. Let π∗ ∈ argmin(X,Y )∼π[ck(X, Y )] be an optimal

coupling, which is guaranteed to exist [Villani, 2009, Theorem 4.1]; by definition

Wdk(P,Q) = E(X,Y )∼π∗ [dk(X, Y )]. WhenWdk(P,Q) =∞ the inequality trivially

holds, so assume thatWdk(P,Q) <∞.

Take a sample (X, Y ) ∼ π? and a function f ∈ H with ‖f‖H ≤ 1. By the

Cauchy-Schwarz inequality,

‖f(X)− f(Y )‖ ≤ ‖f‖H‖k(X, ·)− k(Y, ·)‖H ≤ ‖k(X, ·)− k(Y, ·)‖H.
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Taking the expectation with respect to π?, we obtain

Eπ? [|f(X)− f(Y )|] ≤ Eπ? [‖k(X, ·)− k(Y, ·)‖H].

The right-hand side is just the definition ofWdk(P,Q). By Jensen’s inequality, the

left-hand side is lower-bounded by

|Eπ∗ [f(X)− f(Y )]| = |EX∼P[f(X)]− EY∼Q[f(Y )]|

since π? has marginals P and Q. We have shown so far that for any f ∈ H with

‖f‖H ≤ 1,

|EP[f(X)]− EQ[f(Y )]| ≤ Wck(P,Q);

the result follows by taking the supremum over f .

Lemma 27. Let ψ = ((WL, bL), (WL−1, bL−1), . . . , (W 1, b1)) ∈ Ψκ. There exists a

corresponding scalar α(ψ) and ψ̄ = ((W̄L, b̄L), (W̄L−1, b̄L−1), . . . , (W̄ 1, b̄1)) ∈ Ψκ
1 ,

defined by (4.15), such that for all X ,

φψ(X) = α(ψ)φψ̄(X).

Proof. Set W̄ l = 1
‖W l‖W

l, b̄l = 1∏l
m=1‖Wm‖b

l, and α(ψ) =
∏L

l=1‖W l‖. Note that

the condition number is unchanged, cond(W̄ l) = cond(W l) ≤ κ, and ‖W̄ l‖ = 1,

so ψ̄ ∈ Φκ
1 . It is also easy to see from (4.14) that

hlψ̄(X) =
1∏l

m=1‖Wm‖
hlψ(X)

so that

α(ψ)hLψ̄(X) =

∏L
l=1‖W l‖∏L
l=1‖W l‖

hLψ(X) = φψ(X).

Lemma 28. Make Assumptions (II) and (III), and let ψ ∈ Ψκ
1 . Then the set of inputs
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for which any intermediate activation is exactly zero,

Nψ =
L⋃
l=1

dl⋃
k=1

{
X ∈ Rd |

(
hlψ(X)

)
k

= 0
}
,

has zero Lebesgue measure. Moreover, for any X /∈ N ψ, ∇Xφψ(X) exists and

‖∇Xφψ(X)‖2
F ≥

dLα
L

κL
.

Proof. First, note that the network representation at layer l is piecewise affine.

Specifically, define M l
X ∈ Rdl by, using Assumption (III),

(M l
X)k = σ′l(h

l
k(X)) =

1 hlk(X) > 0

α hlk(X) < 0

;

it is undefined when any hlk(X) = 0, i.e. when X ∈ N ψ. Let V l
X :=

W l diag
(
M l−1

X

)
. Then

hlψ(X) = W lσl−1(hl−1
ψ (X)) + bl = V l

XX + bl,

and thus

hlψ(X) = Wl
XX + blX ,

where b0
X = 0, blX = V l

Xbl−1 + bl, and Wl
X = V l

XV
l−1
X · · ·V 1

X , so long as X /∈ N ψ.

Because ψ ∈ Ψκ
1 , we have ‖W l‖ = 1 and σmin(W l) ≥ 1/κ; also, ‖M l

X‖ ≤ 1,

σmin(M l
X) ≥ α. Thus ‖Wl

X‖ ≤ 1, and using Assumption (II) with Lemma 29 gives

σmin(Wl
X) ≥ (α/κ)l. In particular, each Wl

X is full-rank.

Next, note that blX and Wl
X each only depend on X through the activation

patternsM l
X . LettingH l

X = (M l
X ,M

l−1
X , . . . ,M1

X) denote the full activation patterns

up to level l, we can thus write

hlψ(X) = WHl
XX + bH

l
X .
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There are only finitely many possible values for H l
X ; we denote the set of such values

asHl. Then we have that

Nψ ⊆
L⋃
l=0

dL⋃
k=1

⋃
Hl∈Hl

{
X ∈ Rd |WHl

k X + bH
l

k = 0
}
.

Because each WHl

k is of rank dl, each set in the union is either empty or an affine

subspace of dimension d− dl. As each dl > 0, each set in the finite union has zero

Lebesgue measure, and Nψ also has zero Lebesgue measure.

We will now show that the activation patterns are piecewise constant, so that

∇Xh
l
ψ(X) = WHl

X for all X /∈ N ψ. Because ψ ∈ Ψκ
1 , we have ‖hlψ‖Lip ≤ 1, and in

particular ∣∣∣(hlψ(X)
)
k
−
(
hlψ(X ′)

)
k

∣∣∣ ≤ ‖X −X ′‖.
Thus, take some X /∈ N ψ, and find the smallest absolute value of its activations, ε =

minl=1,...,L mink=1,...,dl

∣∣∣(hlψ(X)
)
k

∣∣∣; clearly ε > 0. For any X ′ with ‖X −X ′‖ < ε,

we know that for all l and k,

sign
((
hlψ(X)

)
k

)
= sign

((
hlψ(X ′)

)
k

)
,

implying that H l
X = H l

X′ as well as X ′ /∈ N ψ. Thus for any point X /∈ N ψ,

∇φψ(X) = WHL
X . Finally, we obtain

‖∇φψ(X)‖2
F = ‖WHL

X‖2
F ≥ dL σmin

(
WHL

X

)2

≥ dLα
L

κL
.

Lemma 29. Let A ∈ Rm×n, B ∈ Rn×p, with m ≥ n ≥ p. Then σmin(AB) ≥

σmin(A)σmin(B).

Proof. A more general version of this result can be found in [Güngör, 2007, Theorem

2]; we provide a proof here for completeness.

If B has a nontrivial null space, σmin(B) = 0 and the inequality holds. Other-
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wise, let Rn
∗ denote Rn \ {0}. Recall that for C ∈ Rm×n with m ≥ n,

σmin(C) =
√
λmin(CTC) =

√
inf
x∈Rn∗

xTCTCx

xTx
= inf

x∈Rn∗

‖Cx‖
‖x‖

.

Thus, as Bx 6= 0 for x 6= 0,

σmin(AB) = inf
x∈Rp∗

‖ABx‖
‖x‖

= inf
x∈Rp∗

‖ABx‖‖Bx‖
‖Bx‖‖x‖

≥
(

inf
x∈Rp∗

‖ABx‖
‖Bx‖

)(
inf
x∈Rp∗

‖Bx‖
‖x‖

)
≥
(

inf
y∈Rn∗

‖Ay‖
‖y‖

)(
inf
x∈Rp∗

‖Bx‖
‖x‖

)
= σmin(A)σmin(B).

A .2.1 Necessity of some assumptions

Here we analyze through simple examples what happens when the condition number

can be unbounded, and when Assumption (II), about decreasing widths of the

network, is violated.

Condition Number: We start by a first example where the condition number can be

arbitrarily high. We consider a two-layer network on R2, defined by

φα(X) =
[
1 −1

]
σ(WαX) Wα =

1 1

1 1 + α

 (4.16)

where α > 0. As α approaches 0 the matrix Wα becomes singular which means that

its condition number blows up. We are interested in analyzing the behavior of the

Lipschitz constant of φ and the expected squared norm of its gradient under µ as α

approaches 0.
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One can easily compute the squared norm of the gradient of φ which is given by

‖∇φα(X)‖2 =



α2 X ∈ A1

γ2α2 X ∈ A2

(1− γ)2 + (1 + α− γ)2 X ∈ A3

(1− γ)2 + (γα + γ − 1)2 X ∈ A4

Here A1, A2, A3 and A4 are defined by (4.17) and are represented in Figure 4.9:

A1 := {X ∈ R2|X1 +X2 ≥ 0 X1 + (1 + α)X2 ≥ 0}

A2 := {X ∈ R2|X1 +X2 < 0 X1 + (1 + α)X2 < 0}

A3 := {X ∈ R2|X1 +X2 < 0 X1 + (1 + α)X2 ≥ 0}

A4 := {X ∈ R2|X1 +X2 ≥ 0 X1 + (1 + α)X2 < 0}

(4.17)

Figure 4.9: Decomposition of R2 into 4 regions A1, A2, A3 and A4 as defined in (4.17). As
α approaches 0, the area of sets A3 and A4 becomes negligible.

It is easy to see that whenever µ has a density, the probability of the sets A3

and A4 goes to 0 are α → 0. Hence one can deduce that Eµ[‖∇φα(X)‖2] → 0

when α → 0. On the other hand, the squared Lipschitz constant of φ is given by

(1−γ)2 +(1+α−γ)2 which converges to 2(1−γ)2. This shows that controlling the

expectation of the gradient doesn’t allow to effectively control the Lipschitz constant

of φ.
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Monotonicity of the dimensions: We would like to consider a second example

where Assumption (II) doesn’t hold. Consider the following two layer network

defined by:

φ(X) =
[
−1 0 1

]
σ(WβX) Wβ :=


1 0

0 1

1 β


for β > 0. Note that Wβ is a full rank matrix, but Assumption (II) doesn’t hold.

Depending on the sign of the components of WβX one has the following expression

for ‖∇φα(X)‖2:

‖∇φα(X)‖2 =



β2 X ∈ B1

γ2β2 X ∈ B2

β2 X ∈ B3

(1− γ)2 + γ2β2 X ∈ B4

(1− γ)2 + β2 X ∈ B5

γ2β2 X ∈ B6

where (Bi)1≤i≤6 are defined by (4.18)

B1 := {X ∈ R2|X1 ≥ 0 X2 ≥ 0}

B2 := {X ∈ R2|X1 < 0 X2 < 0}

B3 := {X ∈ R2|X1 ≥ X2 < 0 X1 + βX2 ≥ 0}

B4 := {X ∈ R2|X1 ≥ X2 < 0 X1 + βX2 < 0}

B5 := {X ∈ R2|X1 > 0 X2 ≥ 0 X1 + βX2 ≥ 0}

B6 := {X ∈ R2|X1 > 0 X2 ≥ 0 X1 + βX2 < 0}

(4.18)



B . An estimator for Lipschitz MMD 122

The squared Lipschitz constant is given by ‖φ‖2
L(1− γ)2 + β2 while the expected

squared norm of the gradient of φ is given by:

Eµ[‖φ(X)‖2] = 3β2(p(B1 ∪B3 ∪B5) + γ2p(B2 ∪B4 ∪B6)) + (1− γ)2p(B4 ∪B5).

Again the set B4 ∪ B5 becomes negligible as β approaches 0 which implies that

Eµ[‖φ(X)‖2]→ 0. On the other hand ‖φ‖2
L converges to (1− γ)2. Note that unlike

in the first example in (4.16), the matrix Wβ has a bounded condition number. In this

example, the columns of W0 are all in the null space of
[
−1 0 1

]
, which implies

∇φ0(X) = 0 for all X ∈ R2, even though all matrices have full rank.

B An estimator for Lipschitz MMD

We now describe briefly how to estimate the Lipschitz MMD in low dimensions.

Recall that

LipMMDk,λ(P,Q) = sup
f∈Hk : ‖f‖2Lip+λ‖f‖2Hk≤1

EX∼P[f(X)]− EX∼Q[f(Y )].

For f ∈ Hk, it is the case that

‖f‖2
Lip = sup

x∈Rd
‖∇f(x)‖2 = sup

x∈Rd

d∑
i=1

〈∂ik(x, ·), f〉2Hk

= sup
x∈Rd

〈
f,

d∑
i=1

[∂ik(x, ·)⊗ ∂ik(x, ·)] f

〉
Hk

.

Thus we can approximate the constraint ‖f‖2
Lip + λ‖f‖2

Hk ≤ 1 by enforcing the

constraint on a set of m points {Zi} reasonably densely covering the region around

the supports of P and Q, rather than enforcing it at every point in X . An estimator of

the Lipschitz MMD based on X ∼ PnX and Y ∼ QnY is

̂LipMMDk,λ (X, Y, Z) ≈ sup
f∈Hk

1

nX

nX∑
j=1

f(Xj)−
1

nY

nY∑
j=1

f(Yj)

s.t. ∀j, ‖∇f(Zj)‖2 + λ‖f‖2
Hk ≤ 1 (4.19)
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By the generalized representer theorem, the optimal f for (4.19) will be of the form

f(·) =

nX∑
j=1

αjk(Xj, ·) +

nY∑
j=1

βjk(Yj, ·) +
d∑
i=1

m∑
j=1

γ(i,j)∂ik(Zj, ·).

Writing δ = (α, β, γ), the objective function is linear in δ,

[
1
nX
· · · 1

nX
− 1
nY
· · · − 1

nY
0 · · · 0

]
= δ.

The constraints are quadratic, built from the following matrices, where the X and Y

samples are concatenated together, as are the derivatives with each dimension of the

Z samples:

K :=


k(X1, X1) · · · k(X1, YnY )

... . . . ...

k(YnX , X1) · · · k(YnY , YnY )



B :=


∂1k(Z1, X1) · · · ∂1k(Z1, YnY )

... . . . ...

∂dk(Zm, X1) · · · ∂dk(Zm, YnY )



H :=


∂1∂1+dk(Z1, Z1) · · · ∂1∂d+dk(Z1, Zm)

... . . . ...

∂d∂1+dk(Zm, Z1) · · · ∂d∂d+dk(Zm, Zm)

 .

Given these matrices, and letting Oj =
∑d

i=1 e(i,j)e
T
(i,j) where e(i,j) is the (i, j)th

standard basis vector in Rmd, we have that

‖f‖2
Hk = δT

K BT

B H

 δ
‖∇f(Zj)‖2 =

d∑
i=1

(∂if(Zj))
2 = δT

BTOjB BTOjH

HOjB HOjH

 δ.
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Thus the optimization problem (4.19) is a linear problem with convex quadratic

constraints, which can be solved by standard convex optimization software. The

approximation is reasonable only if we can effectively cover the region of interest

with densely spaced {Zi}; it requires a nontrivial amount of computation even for

the very simple 1-dimensional toy problem of Example 1.

One advantage of this estimator, though, is that finding its derivative with

respect to the input points or the kernel parameterization is almost free once we

have computed the estimate, as long as our solver has computed the dual variables

µ corresponding to the constraints in (4.19). We just need to exploit the envelope

theorem and then differentiate the KKT conditions, as done for instance in Amos

and Kolter [2017]. The differential of (4.19) ends up being, assuming the optimum

of (4.19) is at δ̂ ∈ RnX+nY +md and µ̂ ∈ Rm,

d ̂LipMMDk,λ(X, Y, Z) =δ̂T

dK

dB

[ 1
nX
· · · 1

nX
− 1
nY
· · · − 1

nY

]T
−

m∑
j=1

µ̂j δ̂
T(dPj)δ̂

with Pj defined as:

Pj :=

(dB)TOjB +BTOj(dH) (dB)TOjH +BTOj(dH)

(dH)OjB +HOj(dB) (dH)OjH +HOj(dH)


+ λ

dK dBT

dB dH

 .

C Near-equivalence of WGAN and linear-kernel

MMD GANs

For an MMD GAN-GP with kernel k(x, y) = φ(x)φ(y), we have that

MMDk(P,Q) = |EPφ(x)− EQφ(Y )|
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and the corresponding critic function is

η(t)

‖η‖H
=

EX∼Pφ(X)φ(t)− EY∼Qφ(Y )φ(t)

|EPφ(X)− EQφ(Y )|

= sign (EX∼Pφ(X)− EY∼Qφ(Y ))φ(t).

Thus if we assume EX∼Pφ(X) > EY∼Qφ(Y ), as that is the goal of our critic training,

we see that the MMD becomes identical to the WGAN loss, and the gradient penalty

is applied to the same function.

(MMD GANs, however, would typically train on the unbiased estimator of

MMD2, giving a very slightly different loss function. Bińkowski* et al. [2018] also

applied the gradient penalty to η rather than the true critic η/‖η‖.)

The SMMD with a linear kernel is thus analogous to applying the scaling

operator to a WGAN; hence the name SWGAN.

D Experiments on synthetic data

D .1 DiracGAN vector fields for more losses

Figure 4.10 shows parameter vector fields, like those in Figure 4.1, for Example 1

and for a variety of different losses:

MMD: −MMD2
ψ

MMD-GP: −MMD2
ψ +λEP[(‖∇f(X)‖ − 1)2]

MMD-GP-Unif: −MMD2
ψ +λEX̃'µ∗ [(‖∇f(X̃)‖ − 1)2]

SN-MMD: − 2 MMD1(P,Q)2

Sobolev-MMD: −MMD2
ψ +λ(E(P+Q)/2[‖∇f(X)‖2]− 1)2

CenteredSobolev-MMD: −MMD2
ψ +λ(E(P+Q)/2[‖∇f(X)‖2])2

LipMMD: − LipMMD2
kψ ,λ

GC-MMD: −GCMMD2
N (0,102),kψ ,λ

SMMD: − SMMD2
kψ ,P,λ

(4.20)
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Figure 4.10: Vector fields for different losses with respect to the generator parameter θ and
the feature representation parameter ψ; the losses use a Gaussian kernel, and
are shown in (4.20). Following Mescheder et al. [2018], P = δ0, Q = δθ and
φψ(x) = ψx. The curves show the result of taking simultaneous gradient steps
in (θ, ψ) beginning from three initial parameter values.

The squared MMD between δ0 and δθ under a Gaussian kernel of bandwidth 1/ψ and

is given by 2(1− e−ψ
2θ2

2 ). MMD-GP-unif uses a gradient penalty as in Bińkowski*

et al. [2018] where each samples from µ∗ is obtained by first sampling X and Y

from P and Q and then sampling uniformly between X and Y . MMD-GP uses the

same gradient penalty, but the expectation is taken under P rather than µ∗. SN-MMD

refers to MMD with spectral normalization; here this means that ψ = 1. Sobolev-

MMD refers to the loss used in Mroueh et al. [2018] with the quadratic penalty only.

GCMMDµ,k,λ is defined by (4.5), with µ = N (0, 102).

D .2 Vector fields of Gradient-Constrained MMD and Sobolev

GAN critics

Mroueh et al. [2018] argue that the gradient of the critic (...) defines a transportation

plan for moving the distribution mass (from generated to reference distribution) and

present the solution of Sobolev PDE for 2-dimensional Gaussians. We observed that
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(a) Gradient-Constrained MMD critic gradi-
ent.
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(b) Sobolev IPM critic gradient.

Figure 4.11: Vector fields of critic gradients between two Gaussians. The grey arrows show
normalized gradients, i.e. gradient directions, while the black ones are the
actual gradients. Note that for the Sobolev critic, gradients norms are orders of
magnitudes higher on the right hand side of the plot than in the areas of high
density of the given distributions.

in this simple example the gradient of the Sobolev critic can be very high outside

of the areas of high density, which is not the case with the Gradient-Constrained

MMD. Figure 4.11 presents critic gradients in both cases, using µ = (P + Q)/2

for both. This unintuitive behavior is most likely related to the vanishing boundary

condition, assummed by Sobolev GAN. Solving the actual Sobolev PDE, we found

that the Sobolev critic has very high gradients close to the boundary in order to

match the condition; moreover, these gradients point in opposite directions to the

target distribution.



Chapter 5

Generalized energy based models

We introduce the Generalized Energy Based Model (GEBM) for generative mod-

elling. These models combine two trained components: a base distribution (generally

an implicit model), which can learn the support of data with low intrinsic dimension

in a high dimensional space; and an energy function, to refine the probability mass

on the learned support. Both the energy function and base jointly constitute the

final model, unlike GANs, which retain only the base distribution (the "generator").

GEBMs are trained by alternating between learning the energy and the base. We

show that both training stages are well-defined: the energy is learned by maximising

a generalized likelihood, and the resulting energy-based loss provides informative

gradients for learning the base. Samples from the posterior on the latent space of

the trained model can be obtained via MCMC, thus finding regions in this space

that produce better quality samples. Empirically, the GEBM samples on image-

generation tasks are of much better quality than those from the learned generator

alone, indicating that all else being equal, the GEBM will outperform a GAN of the

same complexity. When using normalizing flows as base measures, GEBMs succeed

on density modelling tasks, returning comparable performance to direct maximum

likelihood of the same networks.

1 Introduction
Energy-based models (EBMs) have a long history in physics, statistics and machine

learning [LeCun et al., 2006]. They belong to the class of explicit models, and
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can be described by a family of energies E which define probability distributions

with density proportional to exp(−E). Those models are often known up to a

normalizing constant Z(E), also called the partition function. The learning task

consists of finding an optimal function that best describes a given system or target

distribution P. This can be achieved using maximum likelihood estimation (MLE),

however the intractability of the normalizing partition function makes this learning

task challenging. Thus, various methods have been proposed to address this [Hinton,

2002, Hyvärinen, 2005, Gutmann and Hyvärinen, 2012, Dai et al., 2019a,b]. All

these methods estimate EBMs that are supported over the whole space. In many ap-

plications, however, P is believed to be supported on an unknown lower dimensional

manifold. This happens in particular when there are strong dependencies between

variables in the data, and suggests incorporating a low-dimensionality hypothesis in

the model.

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are a

particular way to enforce low dimensional structure in a model. They rely on an

implicit model, the generator, to produce samples supported on a low-dimensional

manifold by mapping a pre-defined latent noise to the sample space using a trained

function. GANs have been very successful in generating high-quality samples on

various tasks, especially for unsupervised image generation [Brock et al., 2017].

The generator is trained adversarially against a discriminator network whose goal

is to distinguish samples produced by the generator from the target data. This has

inspired further research to extend the training procedure to more general losses

[Nowozin et al., 2016, Arjovsky et al., 2017, Li et al., 2017, Bińkowski* et al., 2018]

and to improve its stability [Miyato et al., 2018, Gulrajani et al., 2017, Nagarajan

and Kolter, 2017, Kodali et al., 2017]. While the generator of a GAN has effectively

a low-dimensional support, it remains challenging to refine the distribution of mass

on that support using pre-defined latent noise. For instance, as shown by Cornish

et al. [2020] for normalizing flows, when the latent distribution is unimodal and the

target distribution possesses multiple disconnected low-dimensional components,

the generator, as a continuous map, compensates for this mismatch using steeper
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slopes. In practice, this implies the need for more complicated generators.

In the present work, we propose a new class of models, called Generalized

Energy Based Models (GEBMs), which can represent distributions supported on

low-dimensional manifolds, while offering more flexibility in refining the mass on

those manifolds. GEBMs combine the strength of both implicit and explicit models

in two separate components: a base distribution (often chosen to be an implicit

model) which learns the low-dimensional support of the data, and an energy function

that can refine the probability mass on that learned support. We propose to train

the GEBM by alternating between learning the energy and the base, analogous to

f -GAN training [Goodfellow et al., 2014, Nowozin et al., 2016]. The energy is

learned by maximizing a generalized notion of likelihood which we relate to the

Donsker-Varadhan lower-bound [Donsker and Varadhan, 1975] and Fenchel duality,

as in [Nguyen et al., 2010, Nowozin et al., 2016]. Although the partition function

is intractable in general, we propose a method to learn it in an amortized fashion

without introducing additional surrogate models, as done in variational inference

[Kingma and Welling, 2014, Rezende et al., 2014] or by Dai et al. [2019a,b]. The

resulting maximum likelihood estimate, the KL Approximate Lower-bound Estimate

(KALE), is then used as a loss for training the base. When the class of energies is

rich and smooth enough, we show that KALE leads to a meaningful criterion for

measuring weak convergence of probabilities. Following recent work by Chu et al.

[2020], Sanjabi et al. [2018], we show that KALE possesses well defined gradients

w.r.t. the parameters of the base, ensuring well-behaved training. We also provide

convergence rates for the empirical estimator of KALE when the variational family

is sufficiently well behaved, which may be of independent interest.

The main advantage of GEBMs becomes clear when sampling from these

models: the posterior over the latents of the base distribution incorporates the learned

energy, putting greater mass on regions in this latent space that lead to better quality

samples. Sampling from the GEBM can thus be achieved by first sampling from

the posterior distribution of the latents via MCMC in the low-dimensional latent

space, then mapping those latents to the input space using the implicit map of the
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base. This is in contrast to standard GANs, where the latents of the base have a

fixed distribution. We focus on a class of samplers that exploit gradient information,

and show that these samplers enjoy fast convergence properties by leveraging the

recent work of Eberle et al. [2017]. While there has been recent interest in using the

discriminator to improve the quality of the generator during sampling [Azadi et al.,

2019, Turner et al., 2019, Neklyudov et al., 2019, Grover et al., 2019, Tanaka, 2019,

Wu et al., 2019a], our approach emerges naturally from the model we consider.

We begin in Section 2 by introducing the GEBM model. In Section 3 , we

describe the learning procedure using KALE, then derive a method for sampling

from the learned model in Section 4 . In Section 5 we discuss related work. Finally,

experimental results are presented in Section 6 .

2 Generalized Energy-Based Models

Figure 5.1: Data generating distribution supported on a line and with higher density at the
extremities. Models are learned using either a GAN, GEBM, or EBM. More
details are provided in Section B .1.

In this section, we introduce generalized energy based models (GEBM), that combine

the strengths of both energy-based models and implicit generative models, and admit

the first of these as a special case. An energy-based model (EBM) is defined by a set

E of real valued functions called energies, where each E ∈ E specifies a probability

density over the data space X ⊂ Rd up to a normalizing constant,

Q(dx) = exp (−E(x)− A) dx, A = log

(∫
exp(−E(x)) dx

)
. (5.1)

While EBMs have been shown recently to be powerful models for representing

complex high dimensional data distributions, they still unavoidably lead to a blurred

model whenever data are concentrated on a lower-dimensional manifold. This is

the case in Figure 5.1(a), where the ground truth distribution is supported on a 1-D
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line and embedded in a 2-D space. The EBM in Figure 5.1(d) learns to give higher

density to a halo surrounding the data, and thus provides a blurred representation.

That is a consequence of EBM having a density defined over the whole space, and

can result in blurred samples for image models.

An implicit generative model (IGM) is a family of probability distributions Gθ

parametrized by a learnable generator function G : Z 7→ X that maps latent samples

z from a fixed latent distribution η to the data space X . The latent distribution η is

required to have a density over the latent space Z and is often easy to sample from.

Thus, Sampling from G is simply achieved by first sampling z from η then applying

G,

x ∼ G ⇐⇒ x = G(z), z ∼ η. (5.2)

GANs are popular instances of these models, and are trained adversarially [Good-

fellow et al., 2014]. When the latent space Z has a smaller dimension than the

input space X , the IGM will be supported on a lower dimensional manifold of X ,

and thus will not possess a Lebesgue density on X [Bottou et al., 2018]. IGMs are

therefore good candidates for modelling low dimensional distributions. While GANs

can accurately learn the low-dimensional support of the data, they can have limited

power for representing the distribution of mass on the support. This is illustrated in

Figure 5.1(b).

A generalized energy-based model (GEBM) Q is defined by a combination

of a base G and an energyE defined over a subset X of Rd. The base component can

typically be chosen to be an IGM as in (5.2). The generalized energy component

can refine the mass on the support defined by the base. It belongs to a class E of

real valued functions defined on the input space X , and represents the negative

log-density of a sample from the GEBM with respect to the base G,

Q(dx) = exp (−E(x)− AG,E)G(dx), (5.3)
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where AG,E is the logarithm of the normalizing constant of the model w.r.t. G:

AG,E = log

(∫
exp(−E(x))G(dx)

)
.

Thus, a GEBM Q re-weights samples from the base according to the un-normalized

importance weights exp(−E(x)). Using the latent structure of the base G, this

importance weight can be pulled-back to the latent space to define a posterior latent

distribution ν,

ν(z) := η(z) exp (−E (G(z))− AG,E) . (5.4)

Hence, the posterior latent ν can be used instead of the latent noise η for sampling

from Q, as summarized by Proposition 30:

Proposition 30. Sampling from Q requires sampling a latent z from ν (5.4) then

applying the map G,

x ∼ Q ⇐⇒ x = G(z), z ∼ ν. (5.5)

In order to hold, Proposition 30 does not need the generator G to be invertible.

We provide a proof in Section A .2 which relies on a characterization of probability

distribution using generalized moments. We will see later in Section 4 how equation

(5.5) can be used to provide practical sampling algorithms from the GEBM. Next we

discuss the advantages of GEBMs.

Advantages of Generalized Energy Based Models. The GEBM defined by (5.3)

can be related to exponential tilting (re-weighting) [Siegmund, 1976, Xie et al., 2016]

of the base G. The important difference over classical EBMs is that the base G is

allowed to change its support and shape in space. By learning the base G, GEBMs

can accurately learn the low-dimensional support of data, just like IGMs do. They

also benefit from the flexibility of EBMs for representing densities using an energy

E to refine distribution of mass on the support defined by G, as seen in Figure 5.1(c).
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Compared to EBMs , that put mass on the whole space by construction (positive

density), GEBMs have the additional flexibility to concentrate the probability mass

on a low-dimensional support learned by the base G, provided that the dimension

of the latent space Z is smaller than the dimension of the ambient space X : see

Figure 5.1(c) vs Figure 5.1(d). In the particular case when the dimension of Z is

equal to the ambient dimension and G is invertible, the base G becomes supported

over the whole space X , and GEBM recover usual EBMs. The next proposition

further shows that any EBM can be viewed as a particular cases of GEBMs, as

proved in Section A .2.

Proposition 31. Any EBM with energy E (as in (5.1)) can be expressed as a GEBM

with base G given as a normalizing flow with density exp(−r(x)) and a generalized

energy Ẽ(x) = E(x)− r(x). In this particular case, the dimension of the latent is

necessarily equal to the data dimension, i.e. dim(Z) = dim(X ).

Compared to IGMs , that rely on a fixed pre-determined latent noise distribution η,

GEBMs offer the additional flexibility of learning a richer latent noise distribution.

This is particularly useful when the data is multimodal. In IGMs, such a GANs,

the latent noise η is usually unimodal thus requiring a more sophisticated generator

to distort a unimodal noise distribution into a distribution with multiple modes, as

shown by Cornish et al. [2020]. Instead, GEBMs allow to sample from a posterior

ν over the latent noise defined in (5.4). This posterior noise can be multimodal in

latent space (by incorporating information from the energy) and thus can put more

or less mass in specific regions of the manifold defined by the base G. This allows

GEBMs to capture multimodality in data, provided the support of the base is broad

enough to subsume the data support Figure 5.1(c). This additional flexibility comes

at no additional training cost compared to GANs. Indeed, GANs still require another

model during training, the discriminator network, but do not use it for sampling.

Instead, GEBMs avoid this waste since the base and energy can be trained jointly,

with no other additional model, and then both are used for sampling.
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3 Learning GEBMs

In this section we describe a general procedure for learning GEBMs. We decompose

the learning procedure into two steps: an energy learning step and a base learning

step. The overall learning procedure alternates between these two steps, as done in

GAN training [Goodfellow et al., 2014].

3 .1 Learning the energy

When the base G is fixed, varying the energy E leads to a family of models that all

admit a density exp(−E−AG,E) w.r.t. G. When the base G admits a density exp(−r)

defined over the whole space, it is possible to learn the energy E by maximizing the

likelihood of the model −
∫

(E + r) dP−AG,E . However, in general G is supported

on a lower-dimensional manifold so that r is ill-defined and the usual notion of

likelihood cannot be used. Instead, we introduce a generalized notion of likelihood

which does not require a well defined density exp(−r) for G:

Definition 6 (Generalized Likelihood). The expected G-log-likelihood under a target

distribution P of a GEBM model Q with base G and energy E is defined as

LP,G(E) := −
∫
E(x)dP(x)− AG,E. (5.6)

To provide intuitions about the generalized likelihood in Definition 6, we start

by discussing the particular case where KL(P||G) < +∞. We then present the

training method in the general case where P and G might not share the same support,

i.e. KL(P||G) = +∞.

Special case of finite KL(P||G). When the Kullback-Leibler divergence between P

and G is well defined, (5.6) corresponds to the Donsker-Varadhan (DV) lower bound

on the KL [Donsker and Varadhan, 1975], meaning that KL(P||G) ≥ LP,G(E) for

all E. Moreover, the following proposition holds:

Proposition 32. Assume that KL(P||G) < +∞ and 0 ∈ E . If, in addition, E?
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maximizes (5.6), then:

KL(P||Q) ≤ KL(P||G). (5.7)

In addition, we have that KL(P||Q) = 0 when E? is the negative log-density ratio

of P w.r.t. G.

We refer to Section A .2 for a proof. According to (5.7), the GEBM systemati-

cally improves over the IGM defined by G, with no further improvement possible

in the limit case when G = P. Hence as long as there is an error in mass on the

common support of P and G, the GEBM improves over the base G.

Estimating the likelihood in the General setting. Definition 6 can be used to learn

a maximum likelihood energy E? by maximizing LP,G(E) w.r.t. E even when the

KL(P||G) is infinite and when P and G don’t necessarily share the same support.

The GEBM defined by the base G and optimal energy E? is the best model for the

data, as measured by the generalized KL, within the family of models supported on

G and with energies E in E . However, if the base is far away from the support of the

data, this is still not a good model. This already suggests the importance of learning

a good base as we discuss in Section 3 .2.

The optimal solution E? is well defined whenever the set of energies is suitably

constrained. This is the case if the energies are parametrized by a compact set Ψ

with ψ 7→ Eψ continuous over Ψ. Estimating the likelihood is then achieved using

i.i.d. samples (Xn)1:N , (Ym)1:M from P and G [Tsuboi et al., 2009, Sugiyama et al.,

2012, Liu et al., 2017]:

L̂P,G(E) = − 1

N

N∑
n=1

E(Xn)− log

(
1

M

M∑
m=1

exp(−E(Ym))

)
. (5.8)

In the context of mini-batch stochastic gradient methods, however, M typically

ranges from 10 to 1000, which can lead to a poor estimate for the log-partition

function AG,E . Moreover, (5.8) doesn’t exploit estimates of AG,E from previous

gradient iterations. Instead, we propose an estimator which introduces a variational
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parameter A ∈ R meant to estimate AG,E in an amortized fashion. The key idea

is to exploit the convexity of the exponential which directly implies −AG,E ≥

−A − exp(−A + AG,E) + 1 for any A ∈ R, with equality only when A = AG,E .

Therefore, (5.6) admits a lower-bound of the form

LP,G(E) ≥ −
∫

(E + A) dP−
∫

exp(−(E + A)) dG + 1 := FP,G(E + A),

where we introduced the functional FP,G for concision. Maximizing FP,G(E + A)

over A recovers the likelihood LP,G(E). Moreover, jointly maximizing over E and

A yields the maximum likelihood energy E? and its corresponding log-partition

function A? = AG,E? . This optimization is well-suited for stochastic gradient

methods using the following estimator Kanamori et al. [2011]:

F̂P,G(E + A) =− 1

N

N∑
n=1

(E(Xn) + A) (5.9)

− 1

M

M∑
m=1

exp(−(E(Ym) + A)) + 1.

Estimating the log-partition function. Optimizing (5.9) exactly overA yields (5.8),

with the optimal A equal to Ã = log( 1
M

∑M
m=1 exp(−E(Ym))). However, to main-

tain an amortized estimator of the log-partition we propose to optimize (5.9) itera-

tively using second order updates:

Ak+1 = Ak − λ(exp(Ak − Ãk+1)− 1), A0 = Ã0 (5.10)

where λ is a learning rate and Ãk+1 is the empirical log-partition function estimated

from a batch of new samples. By leveraging updates from previous iterations, A

can yield much more accurate estimates of the log-partition function as confirmed

empirically in Figure 5.7 of Section 6 .

3 .2 Learning the base

Unlike in Section 3 .1, varying the base G does not need to preserve the same support.

Thus, it is generally not possible to use maximum likelihood methods for learning G.
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Instead, we propose to use the generalized likelihood (5.6) evaluated at the optimal

energy E? as a meaningful loss for learning G, and refer to it as the KL Approximate

Lower-bound Estimate (KALE),

KALE(P||G) = sup
(E,A)∈E×R

FP,G(E + A). (5.11)

From Section 3 .1, KALE(P||G) is always a lower bound on KL(P,G). The bound

becomes tight whenever the negative log density of P w.r.t. G is well-defined and

belongs to E (Section C of the supplementary material). Moreover, Proposition 33

shows that KALE is a reliable criterion for measuring convergence, and is a conse-

quence of [Zhang et al., 2017, Theorem B.1], with a proof in Section A .1.1 of the

supplementary material:

Proposition 33. Assume all energies in E are L-Lipschitz and that any continuous

function can be well approximated by linear combinations of energies in E (Assump-

tions (A) and (B) of Section A .1), then KALE(P||G) ≥ 0 with equality only if P = G

and KALE(P||Gn)→ 0 iff Gn → P in distribution.

The universal approximation assumption holds in particular when E contains

feedforward networks. In fact networks with a single neuron are enough, as shown in

[Zhang et al., 2017, Theorem 2.3]. The Lipschitz assumption holds when additional

regularization of the energy is enforced during training by methods such as spectral

normalization [Miyato et al., 2018] or additional regularization I(ψ) on the energy

Eψ such as the gradient penalty [Gulrajani et al., 2017] as done in Section 6 .

Estimating KALE. According to Arora et al. [2017], accurate finite sample esti-

mates of divergences that result from an optimization procedures (such as in (5.11))

depend on the richness of the class E ; and richer energy classes can result in slower

convergence. Unlike divergences such as Jensen-Shannon, KL and the Wasserstein

distance, which result from optimizing over a non-parametric and rich class of func-

tions, KALE is restricted to a class of parametric energies Eψ. Thus, [Arora et al.,

2017, Theorem 3.1] applies, and guarantees good finite sample estimates, provided

optimization is solved accurately. In Section C .1 of the supplementary material,
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we provide an analysis for the more general case where energies are not necessarily

parametric but satisfy some further smoothness properties; we emphasize that our

rates do not require the strong assumption that the density ratio is bounded above

and below as in [Nguyen et al., 2010].

Smoothness of KALE. Learning the base is achieved by minimizing K(θ) :=

KALE(P||Gθ) over the set of parameters Θ of the generator Gθ. This requires K(θ)

to be smooth enough so that gradient methods converge to local minima and avoid

instabilities during training [Chu et al., 2020]. Ensuring smoothness of losses that

result from an optimization procedure, as in (5.11), can be challenging. Results for

the regularized Wasserstein are provided by Sanjabi et al. [2018], while more general

losses are considered by Chu et al. [2020], albeit under stronger conditions than for

our setting.Theorem 34 shows that when E, Gθ and their gradients are all Lipschitz

then K(θ) is smooth enough.We provide a proof for Theorem 34 in Section A .1.1.

Theorem 34. Under Assumptions (I) to (III) of Section A .1, sub-gradient methods

onK converge to local optima. Moreover,K is Lipschitz and differentiable for almost

all θ ∈ Θ with:

∇K(θ) = exp(−AGθ,E?)
∫
∇xE

?(Gθ(z))∇θGθ(z) exp(−E?(Gθ(z)))η(z) dz.

(5.12)

Estimating the gradient in (5.12) is achieved by first optimizing over Eψ and A

using (5.9), with additional regularization I(ψ). The resulting estimators Ê? and Â?

are plugged in (5.13) to estimate∇K(θ) using samples (Zm)1:M from η. Unlike for

learning the energy E?, which benefits from using the amortized estimator of the

log-partition function, we found that using the empirical log-partition for learning

the base was more stable.

∇̂K(θ) =
exp(−Â?)

M

M∑
m=1

∇xÊ
?(Gθ(Zm))∇θGθ(Zm) exp(−Ê?(Gθ(Zm))).

(5.13)
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Training We summarize the training procedure in Algorithm 1, which alternates

between learning the energy and the base in a similar fashion to adversarial train-

ing. An additional regularization, denoted by I(ψ) is used to ensure conditions of

Proposition 33 and Theorem 34 hold. I(ψ) can include L2 regularization over the

parameters ψ, a gradient penalty as in Gulrajani et al. [2017] or Spectral normaliza-

tion Miyato et al. [2018]. The energy can be trained either using the estimator in

(5.8) (KALE-DV) or the one in (5.9) (KALE-F) depending on the variable C.

Algorithm 1 Training GEBM
1: Input P, N ,M , nb, ne
2: Output Trained generator Gθ and energy Eψ.
3: Initialize θ , ψ and A.
4: for k = 1, . . . , nb do
5: for j = 1, . . . , ne do
6: Sample {Xn}1:N ∼ P and {Yn}1:N ∼ Gθ

7: gψ ← −∇ψF̂P,Gθ(Eψ + A) + I(ψ)

8: Ã← log
(

1
M

∑M
m=1 exp(−Eψ(Ym))

)
9: gA ← exp(A− Ã)− 1

10: Update ψ and A using gψ and gA.
11: end for
12: Set Ê? ← Eψ and Â? ← A.
13: Update θ using ∇̂K(θ) from (5.13)
14: end for

4 Sampling from GEBMs
A simple estimate of the empirical distribution of observations under the GEBM

is via importance sampling (IS). This consists in first sampling multiple points

from the base G, and then re-weighting the samples according to the energy E.

Although straightforward, this approach can lead to highly unreliable estimates, a

well known problem in the Sequential Monte Carlo (SMC) literature which employs

IS extensively [Doucet et al., 2001, Del Moral et al., 2006]. Other methods such

as rejection sampling are known to be inefficient in high dimensions Haugh [2017].

Instead, we propose to sample from the posterior ν using MCMC. Recall from

(5.5) that a sample x from Q is of the form x = G(z) with z sampled from the

posterior latent ν of (5.4) instead of the prior η. While sampling from η is often
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straightforward (for instance if η is a Gaussian), sampling from ν is generally harder,

due to dependence of its density on complex functions E and G. It is still possible

to use MCMC methods to sample from ν, however, since we have access to its

density up to a normalizing constant (5.4). In particular, we are interested in methods

that exploit the gradient of ν, and consider two classes of samplers: Overdamped

samplers and Kinetic samplers.

Overdamped samplers are obtained as a time-discretization of the Overdamped

Langevin dynamics:

dzt = (∇z log η(zt)−∇zE(G(zt))) +
√

2 dwt, (5.14)

where wt is a standard Brownian motion. The simplest sampler arising from (5.14)

is the Unadjusted Langevin Algorithm (ULA):

Zk+1 = Zk + λ (∇z log η(Zk)−∇zE(G(Zk))) +
√

2λWk+1, Z0 ∼ η,

where (Wk)k≥0 are i.i.d. standard Gaussians and λ is the step-size. For large k, Zk

is an approximate sample from ν [Raginsky et al., 2017, Proposition 3.3]. Hence,

setting X = G(Zk) for a large enough k provides an approximate sample from the

GEBM Q, as summarized in Algorithm 2.

Algorithm 2 Overdamped Langevin Algorithm
1: Input λ, γ, u,η,E,G
2: Ouput XT

3: Z0 ∼ η
4: for t = 0, . . . , T do
5: Yt+1 ← ∇z log η(Zt)−∇zE ◦B(Zt)
6: Wt+1 ∼ N (0, I)
7: Zt+1 ← Zt + λYt+1 +

√
2λWt+1

8: end for
9: XT ← G(ZT )
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Kinetic samplers arise from the Kinetic Langevin dynamics which introduce a

momentum variable:dzt = vt dt

dvt = −γvt dt+ u (∇ log η(zt)−∇E(G(zt))) dt+
√

2γu dwt.

(5.15)

with friction coefficient γ ≥ 0, inverse mass u ≥ 0, momentum vector vt and

standard Brownian motion wt. When the mass u−1 becomes negligible compared to

the friction coefficient γ, i.e. uγ−2 ≈ 0, standard results show that (5.15) recovers

the Overdamped dynamics (5.14).

Algorithm 3 Kinetic Langevin Algorithm
1: Input λ, γ, u,η,E,G
2: Ouput XT

3: Z0 ∼ η
4: for t = 0, . . . , T do
5: Zt+1 ← Zt + λ

2
Vt

6: Yt+1 ← ∇z log η(Zt+1)−∇zE ◦B(Zt+1)
7: Vt+1 ← Vt + uλ

2
Yt+1.

8: Wt+1 ∼ N (0, I)
9: Ṽt+1 ← exp(−γλ)Vt+ 1

2
+
√
u (1− exp(−2γλ))Wt+1

10: Vt+1 ← Ṽt+1 + uλ
2
Yt+1

11: Zt+1 ← Zt+1 + λ
2
Vt+1

12: end for
13: XT ← G(ZT )

Discretization in time of (5.15) leads to Kinetic samplers similar to Hamiltonian

Monte Carlo [Cheng et al., 2017, Sachs et al., 2017]. We consider a particular

algorithm from Sachs et al. [2017] which we call Kinetic Langevin Algorithm

(KLA) Algorithm 3. Kinetic samplers were shown to better explore the modes

of the invariant distribution ν compared to Overdamped ones (see [Neal, 2010,

Betancourt et al., 2017] for empirical results and [Cheng et al., 2017] for theory), as

also confirmed empirically in Section 6 .1 for image generation tasks using GEBMs.

Next, we provide the following convergence result:

Proposition 35. Assume that log η(z) is strongly concave and has a Lipschitz gradi-

ent, that E, G and their gradients are all L-Lipschitz. Set xt = G(zt), where zt is
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given by (5.15) and call Pt the probability distribution of xt. Then Pt converges to Q

in the Wasserstein sense,

W2(Pt,Q) ≤ LCe−cγt,

where c and C are positive constants independent of t, with c = O(exp(−dim(Z))).

Proposition 35 is proved in Section A .2 using [Eberle et al., 2017, Corollary

2.6], and implies that (xt)t≥0 converges at the same speed as (zt)t≥0. When the

dimension q of Z is orders of magnitude smaller than the input space dimension d,

the process (xt)t≥0 converges faster than typical sampling methods on X , for which

the exponent controlling the convergence rate is of order O(exp(−d)).

Tempered GEBM. It can be preferable to sample from a tempered version of

the model by rescaling the energy E by an inverse temperature parameter β, thus

effectively sampling from exp−βE(x) dQ(x). High temperature regimes (β → 0)

recover the base model G while low temperature regimes (β → ∞) essentially

sample from minima of the energy E. As shown in Section 6 , low temperatures

tend to produce better sample quality for natural image generation tasks.

5 Related work
Energy based models. Usually, energy based models are required to have a density

w.r.t. to a Lebesgue measure, and do not use a learnable base measure; in other words,

models are supported on the whole space. Various methods have been proposed in

the literature to learn EBMs. Contrastive Divergence [Hinton, 2002] approximates

the gradient of the log-likelihood by sampling from the energy model with MCMC.

More recently, [Belanger and McCallum, 2016, Xie et al., 2016, 2017, 2018a, 2019,

Tu and Gimpel, 2018, Du and Mordatch, 2019, Deng et al., 2020] extend the idea

using more sophisticated models and MCMC sampling strategies that lead to higher

quality estimators. Score Matching [Hyvärinen, 2005] calculates an alternative

objective (the score) to the log-likelihood which is independent of the partition

function, and was recently used in the context non-parametric energy functions to

provide estimators of the energy that are provably consistent as in Chapter 3 and
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[Sriperumbudur et al., 2017, Sutherland et al., 2018, Wenliang et al., 2019]). In

Noise-Contrastive Estimation [Gutmann and Hyvärinen, 2012], a classifier is trained

to distinguish between samples from a fixed proposal distribution and the target P.

This provides an estimate for the density ratio between the optimal energy model and

the proposal distribution. In a similar spirit, Cranmer et al. [2016] uses a classifier

to learn likelihood ratios. Conversely, Grathwohl et al. [2020] interprets the logits

of a classifier as an energy model obtained after marginalization over the classes.

The resulting model is then trained using Contrastive Divergence. In more recent

work, Dai et al. [2019a,b] exploit a dual formulation of the logarithm of the partition

function as a supremum over the set of all probability distributions of some functional

objective. Yu et al. [2020] explore methods for using general f-divergences, such as

Jensen-Shannon, to train EBMs.

Generative Adversarial Networks. Recent work proposes using the discriminator

of a trained GAN to improve the generator quality. Rejection sampling [Azadi et al.,

2019] and Metropolis-Hastings correction [Turner et al., 2019, Neklyudov et al.,

2019] perform sampling directly on the high-dimensional input space without using

gradient information provided by the discriminator. Moreover, the data distribution is

assumed to admit a density w.r.t. the generator. Ding et al. [2019] perform sampling

on the feature space of some auxiliary pre-trained network; while Lawson et al.

[2019] treat the sampling procedure as a model on its own, learned by maximizing

the ELBO. In our case, no auxiliary model is needed. In the present work, sampling

doesn’t interfere with training, in contrast to recently considered methods to optimize

over the latent space during training Wu et al. [2019a,b]. In Tanaka [2019], the

discriminator is viewed as an optimal transport map between the generator and the

data distribution and is used to compute optimized samples from latent space. This is

in contrast to the diffusion-based sampling that we consider. In [Xie et al., 2018b,c],

two independent models, a full support EBM and a generator network, are trained

cooperatively using MCMC. By contrast, in the present work, the energy and base

are part of the same model, and the model support is lower-dimensional than the

target space X . While we do not address the mode collapse problem, Xu et al. [2018],
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Nguyen et al. [2017] showed that KL-based losses are resilient to it thanks to the

zero-avoiding property of the KL, a good sign for KALE which is derived from KL

by Fenchel duality.

The closest related approach appears in a study concurrent to the present work

[Che et al., 2020], where the authors propose to use Langevin dynamics on the latent

space of a GAN generator, but with a different discriminator to ours (derived from

the Jensen-Shannon divergence or a Wasserstein-based divergence). Our theory

results showing the existence of the loss gradient (Theorem 34), establishing weak

convergence of distributions under KALE (Proposition 33), and demonstrating

consistency of the KALE estimator (Section C .1) should transfer to the JS and

Wasserstein criteria used in that work. Subsequent to the present work, an alternative

approach has been recently proposed, based on normalising flows, to learn both the

low-dimensional support of the data and the density on this support [Brehmer and

Cranmer, 2020]. This approach maximises the explicit likelihood of a data projection

onto a learned manifold, and may be considered complementary to our approach.

6 Experiments

Figure 5.2: Samples at different iterations of the MCMC chain of Algorithm 3 (left to right).

6 .1 Image generation.

Experimental setting. We train a GEBM on unsupervised image generation tasks,

and compare the quality of generated samples with other methods using the FID

score [Heusel et al., 2017] computed on 5 × 104 generated samples. We consider

CIFAR-10 [Krizhevsky, 2009], LSUN [Yu et al., 2015], CelebA [Liu et al., 2015b]

and ImageNet [Russakovsky et al., 2014] all downsampled to 32x32 resolution
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to reduce computational cost. We consider two network architectures for each of

the base and energy, a smaller one (SNGAN ConvNet) and a larger one (SNGAN

ResNet), both of which are from Miyato et al. [2018]. For the base we used the

SNGAN generator networks from Miyato et al. [2018] with a 100-dimensional

Gaussian for the latent noise η. For the energy we used the SNGAN discriminator

networks from Miyato et al. [2018]. (Details of the networks in Section B .2). We

train the models for 150000 generator iterations using Algorithm 1. After training is

completed, we rescale the energy by β = 100 to get a colder version of the GEBM

and sample from it using either Algorithm 2 (ULA) or Algorithm 3 (KLA) with

parameters (γ = 100, u = 1). We perform 1000 MCMC iterations with initial step-

size of λ = 10−4 decreased by 10 every 200 iterations. As a baseline we consider

samples generated from the base of the GEBM only (without using information from

the energy) and call this KALE-GAN. More details are given in Section B .

Results: Table 5.1 shows that GEBM outperforms both KALE and standard GANs

when using the same networks for the base/generator and energy/critic. Moreover,

KALE-GAN matches the performance of a standard GAN (with Jensen-Shannon

critic), showing that the improvement of GEBM cannot be explained by the switch

from Jensen-Shannon to a KALE-based critic. Rather, the improvement is largely due

to incorporating the energy function into the model, and sampling using Algorithm 3.

This finding experimentally validates our claim that incorporating the energy

improves the model, and that all else being equal, a GEBM outperforms a GAN

with the same generator and critic architecture. Indeed, if the critic is not zero at

convergence, then by definition it contains information on the remaining mismatch

between the generator (base) and data mass, which the GEBM incorporates, but the

GAN does not. The GEBM also outperforms an EBM even when the latter was

trained using a larger network (ResNet) with supervision (S) on ImageNet, which is

an easier task ( Chen et al. [2019]). More comparisons on Cifar10 and ImageNet are

provided in Table 5.2.

Table 5.3 shows different sampling methods using the same trained networks

(generator and critic), with KALE-GAN as a baseline. All energy-exploiting methods
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SNGAN (ConvNet) SNGAN (ResNet)

GEBM KALE-GAN GAN GEBM KALE-GAN GAN EBM

Cifar10 23.02 32.03 29.9 19.31 20.19 21.7 38.2
ImageNet 13.94 19.37 20.66 20.33 21.00 20.50 14.31 (S)

Table 5.1: FID scores for two versions of SNGAN from [Miyato et al., 2018] on Cifar10 and
ImageNet. GEBM: training using Algorithm 1 and sampling using Algorithm 3.
KALE-GAN: Only the base of a GEBM is retained for sampling. GAN: training
as in [Miyato et al., 2018] with q = 128 for the latent dimension as it worked
best. EBM: results from Du and Mordatch [2019] with supervised training on
ImageNet (S).

Model FID

Cifar10 Unsupervised

PixelCNN Oord et al. [2016] 65.93
PixelIQN Ostrovski et al. [2018] 49.46
EBM Radford et al. [2016] 38.2
WGAN-GP Gulrajani et al. [2017] 36.4
NCSN Ho and Ermon [2016] 25.32
SNGAN Miyato et al. [2018] 21.7
GEBM (ours) 19.31

Cifar10 Supervised

BigGAN Donahue and Simonyan [2019] 14.73
SAGAN Zenke et al. [2017] 13.4

ImageNet Supervised

PixelCNN 33.27
PixelIQN 22.99
EBM 14.31

ImageNet Unsupervised

SNGAN 20.50
GEBM (ours) 13.94

Table 5.2: FID scores on ImageNet and CIFAR-10.

outperform the unmodified KALE-GAN with the same architecture. That said, our

method (both ULA and KLA) outperforms both (IHM) [Turner et al., 2019] and

(DOT) [Tanaka, 2019], which both use the energy information.

Effect of the temperature and sampler convergence. Using a colder temperature

leads to an improved FID score, and needs relatively few MCMC iterations, as shown
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Cifar10 LSUN CelebA ImageNet

KALE-GAN 32.03 21.67 6.91 19.37
IHM 30.47 20.63 6.39 18.15
DOT 26.35 20.41 5.93 16.21
GEBM (ULA) 23.02 16.23 5.21 14.00
GEBM (KLA) 24.29 15.25 5.38 13.94

Table 5.3: FID scores for different sampling methods using the same trained SNGAN
(ConvNet): KALE-GAN as a baseline w/o critic information.
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Figure 5.3: Relative FID score: ratio between FID score of the GEBM QG,E and its base G.
(Left) Evolution of the ratio for increasing temperature on the 4 datasets after
1000 iterations of (5.15). (Right) Evolution of the same ratio during MCMC
iteration using (5.15) for β = 100.

in Figure 5.3. Sampler convergence to visually plausible modes at low temperatures

is demonstrated in Figure 5.2.

Mode exploration: KLA vs ULA sampler. In Table 5.3, KLA was used in the high

friction regime γ = 100 and thus behaves like ULA. This allows to obtain sharper

samples concentrated around the modes of the GEBM thus improving the FID score.

If, instead, the goal is to encourage more exploration of the modes of the GEBM,

then KLA with a smaller γ is a better alternative than ULA. Figures 5.4 and 5.5 show

sample trajectories using Algorithm 3 with no friction γ = 0 for the 4 datasets. It

is clear that along the same MCMC chain, several image modes are explored. We

also notice the transition from a mode to another happens almost at the same time

for all chains and corresponds to the gray images. This is unlike Langevin or when

the friction coefficient γ is large as in Figure 5.6. In that case each chain remains
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within the same mode.

Figure 5.4: Samples from the GEBM at different stages of sampling using Algorithm 3
and inverse temperature β = 1, on CelebA (Left), Imagenet (Right). Each row
represents a sampling trajectory from early stages (leftmost images) to later
stages (rightmost images). The samples were obtained in the low friction regime
of Algorithm 3 γ ' 0 which yields a near conservation of the total hamiltonian
and thus exhibits near periodic trajectories within the chains as illustrated by the
samples jumping between two modes.

6 .2 Density Estimation

Motivation. We next consider the particular setting where the likelihood of the

model is well-defined, and admits a closed form expression. This is intended

principally as a sanity check that our proposed training method in Algorithm 1

succeeds in learning maximum likelihood solutions. Outside of this setting, closed

form expressions of the normalizing constant are not available for generic GEBMs.

While this is not an issue (since the proposed method doesn’t require a closed form

expression for the normalizing constant), in this experiment only, we want to have

access to closed form expressions, as they enable a direct comparison with other

density estimation methods.
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Figure 5.5: Samples from the GEBM at different stages of sampling using Algorithm 3 and
inverse temperature β = 1, on Cifar10 and LSUN (Right). Each row represents a
sampling trajectory from early stages (leftmost images) to later stages (rightmost
images).

Experimental setting. To have a closed-form likelihood, we consider the case

where the dimension of the latent space is equal to data-dimension, and choose the

base G of the GEBM to be a Real NVP (Ding et al. [2019] ) with density exp(−r(x))

and energy E(x) = h(x) − r(x). Thus, in this particular case, the GEBM has a

well defined likelihood over the whole space, and we are precisely in the setting

of Proposition 31, which shows that this GEBM is equal to an EBM with density

proportional to exp(−h). We further require the EBM to be a second Real NVP

so that its density has a closed form expression. We consider 5 UCI datasets for

which we use the same pre-processing as in [Wenliang et al., 2019]. For comparison,

we train the EBM by direct maximum likelihood (ML) and contrastive divergence

(CD). To train the GEBM, we use Algorithm 1, which doesn’t directly exploit the

closed-form expression of the likelihood (unlike direct ML). We thus use either (5.8)

(KALE-DV) or (5.9) (KALE-F) to estimate the normalizing constant. More details
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Figure 5.6: Samples from the tempered GEBM at different stages of sampling using langevin
and inverse temperature β = 100, on Cifar10 (Left), Imagenet (Middle-left),
CelebA (Middle-Right) and LSUN (Right). Each row represents a sampling
trajectory from early stages (leftmost images) to later stages (rightmost images).

are given in Section B .3.

Results. Table 5.4 reports the Negative Log-Likelihood (NLL) evaluated on the test

set and corresponding to the best performance on the validation set. Training the

GEBM using Algorithm 1 leads to comparable performance to (CD) and (ML).

Amortized estimation of the normalizing constant. Figure Figure 5.7 (left) shows

the error in the estimation of the log-partition function using both methods (KALE-
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RedWine
d = 11

N ∼ 103

Whitewine
d = 11

N ∼ 103

Parkinsons
d = 15

N ∼ 103

Hepmass
d = 22

N ∼ 105

Miniboone
d = 43

N ∼ 104

NVP w ML 11.98 13.05 14.5 24.89 42.28
NVP w CD 11.88 13.01 14.06 22.89 39.36
NVP w KALE (DV) 11.6 12.77 13.26 26.56 46.48
NVP w KALE (F) 11.19 12.66 13.26 24.66 38.35

Table 5.4: UCI datasets: Negative log-likelihood computed on the test set and corresponding
to the best performance on the validation set. Best method in boldface.

DV and KALE-F). (KALE-F) leads to more accurate estimates of the log-partition

function, with a relative error of order 0.1% compared to 10% for (KALE-DV).

This result illustrates the advantage of performing an amortized estimation of the

log-partition function (KALE-F) rather than directly estimating it on small batch

sizes (KALE-DV).

Figure Figure 5.7 (right) shows the evolution of the negative log-likelihood

(NLL) on both training and test sets per epochs for RedWine and Whitewine datasets.

The error decreases steadily in the case of KALE-DV and KALE-F while the error

gap between the training and test set remains controlled. Larger gaps are observed

for both direct maximum likelihood estimation and Contrastive divergence although

the training NLL tends to decrease faster than for KALE.
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Figure 5.7: (Left): Relative error |ĉ−c
?|

|ĉ|+|c?| on the estimation of the ground truth log-partition
function c∗ by ĉ using either KALE-DV or KALE-F vs training Epochs on
RedWine (Top) and WhiteWine (Bottom) datasets. In both cases the batch-size
is 100. (Right): Negative log likelihood vs training epochs on both training and
test set for 4 different learning methods (KALE-DV,KALE-F, CD and ML) on
RedWine dataset.



Supplementary

A Proofs

A .1 Topological and smoothness properties of KALE

Topological properties of KALE. Denseness and smoothness of the energy class E

are the key to guarantee that KALE is a reliable criterion for measuring convergence.

We thus make the following assumptions on E :

(A) For all E ∈ E ,−E ∈ E and there is CE > 0 such that cE ∈ E for 0 ≤ c ≤ CE .

For any continuous function g, any compact support K in X and any precision

ε > 0, there exists a finite linear combination of energies G =
∑r

i=1 aiEi such

that supx∈K |f(x)−G(x)| ≤ ε.

(B) All energiesE in E are Lipschitz in their input with the same Lipschitz constant

L > 0.

Assumption (A) holds in particular when E contains feedforward networks with a

given number of parameters. In fact networks with a single neuron are enough, as

shown in [Zhang et al., 2017, Theorem 2.3]. Assumption (B) holds when additional

regularization of the energy is enforced during training by methods such as spectral

normalization Miyato et al. [2018] or gradient penalty Gulrajani et al. [2017] as

done in Section 6 . Proposition 33 states the topological properties of KALE ensuring

that it can be used as a criterion for weak convergence. A proof is given in Section A

.1.1 and is a consequence of [Zhang et al., 2017, Theorem B.1].

Proposition 36. Under Assumptions (A) and (B) it holds that:

1. KALE(P||G) ≥ 0 with KALE(P||G) = 0 if and only if P = G.
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2. KALE(P||Gn)→ 0 if and only if Gn → P under the weak topology.

A .1.1 Topological properties of KALE

In this section we prove Proposition 33. We first start by recalling the required

assumptions and make them more precise:

Assumption 1. Assume the following holds:

• The set X is compact.

• For allE ∈ E ,−E ∈ E and there isCE > 0 such that cE ∈ E for 0 ≤ c ≤ CE .

For any continuous function g, any compact support K in X and any precision

ε > 0, there exists a finite linear combination of energies G =
∑r

i=1 aiEi such

that |f(x)−G(x)| ≤ ε on K.

• All energiesE in E are Lipschitz in their input with the same Lipschitz constant

L > 0.

For simplicity we consider the set H = E + R, i.e.: H is the set of functions

h of the form h = E + c where E ∈ E and c ∈ R. In all what follows P1 is the set

of probability distributions with finite first order moments. We consider the notion

of weak convergence on P1 as defined in [Villani, 2009, Definition 6.8] which is

equivalent to convergence in the Wasserstein-1 distance W1.

Proof of Proposition 33 . We proceed by proving the separation properties (1st

statement), then the metrization of the weak topology (2nd statement).

Separation. We have by Assumption 1 that 0 ∈ E , hence by definition

KALE(PP ||G) ≥ FP,G(0) = 0. On the other hand, whenever P = G, it holds

that:

FP,G(h) = −
∫

(exp(−h) + h− 1) dP, ∀h ∈ H.

Moreover, by convexity of the exponential, we know that exp(−x) + x− 1 ≥ 0 for

all x ∈ R. Hence, FP,G(h) ≤ FP,G(0) = 0 for all h ∈ H. This directly implies that

KALE(P|G) = 0. For the converse, we will use the same argument as in the proof
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of [Zhang et al., 2017, Theorem B.1]. Assume that KALE(P|G) = 0 and let h be in

H. By Assumption 1, there exists Ch > 0 such that ch ∈ H and we have:

F(ch) ≤ KALE(P||G) = 0.

Now dividing by c and taking the limit to 0, it is easy to see that−
∫
h dP+

∫
h dG ≤

0. Again, by Assumption 1, we also know that−h ∈ H, hence,
∫
h dP−

∫
h dG ≤ 0.

This necessarily implies that
∫
h dP−

∫
h dG = 0 for all h ∈ H. By the density of

H in the set continuous functions on compact sets, we can conclude that the equality

holds for any continuous and bounded function, which in turn implies that P = G.

Metrization of the weak topology. We first show that for any P and G with finite

first moment, it holds that KALE(P|G) ≤ LW1(P,G), where W1(P,G) is the

Wasserstein-1 distance between P and G. For any h ∈ H the following holds:

F(h) =−
∫
hdP−

∫
exp(−h)dG + 1

=

∫
h(x)dG(x)− h(x′)dP(x′)

−
∫

(exp(−h) + h− 1)︸ ︷︷ ︸
≥0

dG

≤
∫
h(x)dG(x)− h(x′)dP(x′) ≤ LW1(P,G)

The first inequality results from the convexity of the exponential while the last one is

a consequence of h being L-Lipschitz. This allows to conclude that KALE(P||G) ≤

LW1(P,G) after taking the supremum over all h ∈ H. Moreover, since W1 metrizes

the weak convergence on P1 [Villani, 2009, Theorem 6.9], it holds that whenever a

sequence Gn converges weakly towards P in P1 we also have W1(P,Gn)→ 0 and

thus KALE(P||Gn)→ 0. The converse is a direct consequence of [Liu et al., 2017,

Theorem 10] since by assumption X is compact.

A .1.2 Smoothness properties of KALE

We will now prove Theorem 34. We begin by stating the assumptions that will be

used in this section:
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(I) E is parametrized by a compact set of parameters Ψ.

(II) Functions in E are jointly continuous w.r.t. (ψ, x) and are L-lipschitz and

L-smooth w.r.t. the input x:

‖Eψ(x)− Eψ(x′)‖ ≤ Le‖x− x′‖,

‖∇xEψ(x)−∇xEψ(x′)‖ ≤ Le‖x− x′‖.

(III) (θ, z) 7→ Gθ(z) is jointly continuous in θ and z, with z 7→ Gθ(z) uniformly

Lipschitz w.r.t. z:

‖Gθ(z)−Gθ(z
′)‖ ≤ Lb‖z − z′‖, ∀z, z′ ∈ Z, θ ∈ Θ.

There exists non-negative functions a and b defined from Z to R such that

θ 7→ Gθ(z) are a-Lipschitz and b-smooth in the following sense:

‖Gθ(z)−Gθ′(z)‖ ≤ a(z)‖θ − θ′‖,

‖∇θGθ(z)−∇θGθ′(z)‖ ≤ b(z)‖θ − θ′‖.

Moreover, a and b are integrable in the following sense:

∫
a(z)2 exp(2LeLb‖z‖)dη(z) <∞,

∫
exp(LeLb‖z‖)dη(z) <∞,∫

b(z) exp(LeLb‖z‖)dη(z) <∞.

To simplify notation, we will denote by Lθ(f) the expected Gθ log-likelihood under

P. In other words,

Lθ(E) := LP,Gθ(E) = −
∫
EdP− log

∫
exp(−E)dGθ.
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We also denote by pE,θ the density of the model w.r.t. Gθ,

pE,θ =
exp(−E)

ZGθ,E
, ZGθ,E =

∫
exp(−E)dGθ.

We write K(θ) := KALE(P||Gθ) to emphasize the dependence on θ.

Proof of Theorem 34. To show that sub-gradient methods converge to local optima,

we only need to show that K is Lipschitz continuous and weakly convex. This

directly implies convergence to local optima for sub-gradient methods, according to

Davis and Drusvyatskiy [2018], Thekumparampil et al. [2019]. Lipschitz continuity

ensures that K is differentiable for almost all θ ∈ Θ, and weak convexity simply

means that there exits some positive constant C ≥ 0 such that θ 7→ K(θ) +C‖θ‖2 is

convex. We now proceed to show these two properties.

We will first prove that θ 7→ K(θ) is weakly convex in θ. By Lemma 37, we

know that for any E ∈ E , the function θ 7→ Lθ(E) is M -smooth for the same

positive constant M . This directly implies that it is also weakly convex and the

following inequality holds:

Lθt(E) ≤ tLθ(E) + (1− t)Lθ′(E) +
M

2
t(1− t)‖θ − θ′‖2.

Taking the supremum w.r.t. E, it follows that

K(θt) ≤ tK(θ) + (1− t)K(θ′) +
M

2
t(1− t)‖θ − θ′‖2.

This means precisely that K is weakly convex in θ.

To prove that K is Lipschitz, we will also use Lemma 37, which states that

Lθ(E) is Lipschitz in θ uniformly on E . Hence, the following holds:

Lθ(E) ≤ Lθ(E) + LC‖θ − θ′‖.
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Again, taking the supremum over E, it follows directly that

K(θ) ≤ K(θ′) + LC‖θ − θ′‖.

We conclude that K is Lipschitz by exchanging the roles of θ and θ′ to get the other

side of the inequality. Hence, by the Rademacher theorem, K is differentiable for

almost all θ.

We will now provide an expression for the gradient of K. By Lemma 38

we know that ψ 7→ Lθ(Eψ) is continuous and by Assumption (I) Ψ is compact.

Therefore, the supremum supE∈E Lθ(E) is achieved for some functionE?
θ . Moreover,

we know by Lemma 37 that Lθ(E) is smooth uniformly on E , therefore the family

(∂θLθ(E))E∈E is equi-differentiable. We are in position to apply Milgrom and Segal

[2002](Theorem 3) which ensures that K(θ) admits left and right partial derivatives

given by

∂+
e K(θ) = lim

t>0
t→0

∂θLθ(E?
θ+te)

>e,

∂−e K(θ) = lim
t<0
t→0

∂θLθ(E?
θ+te)

>e,
(5.16)

where e is a given direction in Rr. Moreover, the theorem also states that K(θ)

is differentiable iff t 7→ E?
θ+te is continuous at t = 0. Now, recalling that K(θ)

is actually differentiable for almost all θ, it must hold that E?
θ+te →t→0 E

?
θ and

∂+
e K(θ) = ∂−e K(θ) for almost all θ. This implies that the two limits in (5.16) are

actually equal to ∂θLθ(E?
θ )
>e. The gradient of K, whenever defined, in therefore

given by

∇θK(θ) = Z−1
Gθ,E?θ

∫
∇xE

?
θ (Gθ(z))∇θGθ(z) exp(−E?

θ (Gθ(z)))η(z) dz.

Lemma 37. Under Assumptions (I) to (III), the functional Lθ(E) is Lipschitz and
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smooth in θ uniformly on E:

|Lθ(E)− Lθ′(E)| ≤ LC‖θ − θ′‖,

‖∂θLθ(E)− ∂θLθ′(E))‖ ≤ 2CL(1 + L)‖θ − θ′‖.

Proof. By Lemma 38, we have that Lθ(E) is differentiable, and that

∂θLθ(E) :=

∫
(∇xE ◦Gθ)∇θGθ (pE,θ ◦Gθ) dη.

Lemma 38 ensures that ‖∂θLθ(E)‖ is bounded by some positive constant C that is

independent from E and θ. This implies in particular that Lθ(E) is Lipschitz with a

constant C. We will now show that it is also smooth. For this, we need to control the

difference

D := ‖∂θLθ(E)− ∂θLθ′(E)‖.

We have by triangular inequality:

D ≤
∫
‖∇xE ◦Gθ −∇xE ◦Gθ′‖ ‖∇θGθ‖ (pE,θ ◦Gθ) dη︸ ︷︷ ︸

I

+

∫
‖∇xE ◦Gθ‖‖∇θGθ −∇θGθ′‖ (pE,θ ◦Gθ) dη︸ ︷︷ ︸

II

+

∫
‖∇xE ◦Gθ∇θGθ‖|pE,θ ◦Gθ − pE,θ′ ◦Gθ′ |dη︸ ︷︷ ︸

III

.

The first term can be upper-bounded using Le-smoothness of E and the fact that Gθ

is Lipschitz in θ:

I ≤ Le‖θ − θ′‖
∫
|a|2(pE,θ ◦Gθ)dη

≤ LeC‖θ − θ′‖.

The last inequality was obtained by Lemma 39. Similarly, using that ∇θGθ is
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Lipschitz, it follows by Lemma 39 that

II ≤ Le‖θ − θ′‖
∫
|b|(pE,θ ◦Gθ)dη

≤ LeC‖θ − θ′‖.

Finally, for the last term III , we first consider a path θt = tθ+(1−t)θ′ for t ∈ [0, 1],

and introduce the function s(t) := pE,θt ◦Gθt . We will now control the difference

pE,θ ◦Gθ − pE,θ′ ◦Gθ′ , also equal to s(1)− s(0). Using the fact that st is absolutely

continuous we have that s(1) − s(0) =
∫ 1

0
s′(t)dt. The derivative s′(t) is simply

given by s′(t) = (θ − θ′)>(Mt − M̄t)s(t) where Mt = (∇xE ◦ Bθt)∇θGθt and

M̄t =
∫
MtpE,θt ◦Gθtdη. Hence,

s(1)− s(0) =(θ − θ′)>
∫ 1

0

(Mt − M̄t)s(t)dt.

We also know that Mt is upper-bounded by La(z), which implies

III ≤ L2
e‖θ − θ′‖

∫ 1

0

(∫
|a(z)|2s(t)(z)dη(z) +

(∫
a(z)s(t)(z)dη(z)

)2
)

≤ L2
e(C + C2)‖θ − θ′‖,

where the last inequality is obtained using Lemma 39. This allows us to conclude

that Lθ(E) is smooth for any E ∈ E and θ ∈ Θ.

Lemma 38. Under Assumptions (II) and (III), it holds that ψ 7→ Lθ(Eψ) is contin-

uous, and that θ 7→ Lθ(Eψ) is differentiable in θ with gradient given by

∂θLθ(E) :=

∫
(∇xE ◦Gθ)∇θGθ (pE,θ ◦Gθ) dη.

Moreover, the gradient is bounded uniformly in θ and E:

‖∇θLθ(E)‖ ≤ Le

(∫
exp(−LeLb‖z‖) dη(z)

)−1 ∫
a(z) exp(LeLb‖z‖) dη(z).

Proof. To show that ψ 7→ Lθ(Eψ) is continuous, we will use the dominated conver-
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gence theorem. We fix ψ0 in the interior of Ψ and consider a compact neighborhood

W of ψ0. By assumption, we have that (ψ, x) 7→ Eψ(x) and (ψ, z) 7→ Eψ(Gθ(z))

are jointly continuous. Hence, |Eψ(0)| and |Eψ(Gθ(0))| are bounded on W by some

constant C. Moreover, by Lipschitz continuity of x 7→ Eψ, we have

|Eψ(x)| ≤ |Eψ(0)|+ Le‖x‖ ≤ C + Le‖x‖,

exp(−E(Gθ(z))) ≤ exp(−E(Gθ(0))) exp(LeLb‖z‖) ≤ exp(C) exp(LeLb‖z‖).

Recalling that P admits a first order moment and that by Assumption (III),

exp(LeLb‖z‖) is integrable w.r.t. η, it follows by the dominated convergence theo-

rem and by composition of continuous functions that ψ 7→ Lθ(Eψ) is continuous in

ψ0.

To show that θ 7→ Lθ(Eψ) is differentiable in θ, we will use the differentiation

lemma in [Klenke, 2008, Theorem 6.28]. We first fix θ0 in the interior of Θ, and

consider a compact neighborhood V of θ0. Since θ 7→ |E(Gθ(0))| is continuous on

the compact neighborhood V it admits a maximum value C; hence we have using

Assumptions (II) and (III) that

exp(−E(Gθ(z))) ≤ exp(−E(Gθ(0))) exp(LeLb‖z‖) ≤ exp(C) exp(LeLb‖z‖).

Along with the integrability assumption in Assumption (III), this ensures that

z 7→ exp(−E(Gθ(z))) is integrable w.r.t η for all θ in V . We also have that

exp(−E(Gθ(z))) is differentiable, with gradient given by

∇θ exp(−E(Gθ(z))) = ∇xE(Gθ(z))∇θGθ(z) exp(−E(Gθ(z))).

Using that E is Lipschitz in its inputs and Gθ(z) is Lipschitz in θ, and combining

with the previous inequality, it follows that

‖∇θ exp(−E(Gθ(z)))‖ ≤ exp(C)Lea(z) exp(LeLb‖z‖),

where a(z) is the location dependent Lipschitz constant introduced in Assump-
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tion (III). The r.h.s. of the above inequality is integrable by Assumption (III) and

is independent of θ on the neighborhood V . Thus [Klenke, 2008, Theorem 6.28]

applies, and it follows that

∇θ

∫
exp(−E(Gθ0(z))) dη(z) =

∫
∇xE(Gθ0(z))∇θGθ0(z) exp(−E(Gθ0(z))) dη(z).

We can now directly compute the gradient of Lθ(E),

∇θLθ(E) =

(∫
exp(−E(Gθ0)) dη

)−1 ∫
∇xE(Gθ0)∇θGθ0 exp(−E(Gθ0)) dη.

Since E and Gθ are Lipschitz in x and θ respectively, it follows that

‖∇xE(Gθ0(z))‖ ≤ Le and ‖∇θGθ0(z)‖ ≤ a(z). Hence, we have

‖∇θLθ(E)‖ ≤ Le

∫
a(z)(pE,θ ◦Gθ(z))dη(z).

Finally, Lemma 39 allows us to conclude that ‖∇θLθ(E)‖ is bounded by a positive

constant C independently from θ and E.

Lemma 39. Under Assumptions (II) and (III), there exists a constant C independent

from θ and E such that

∫
ai(z)(pE,θ ◦Gθ(z))dη(z) < C, (5.17)∫
b(z)(pE,θ ◦Gθ(z))dη(z) < C,

for i ∈ 1, 2.

Proof. By Lipschitzness ofE andGθ, we have exp(−LeLb‖z‖) ≤ exp(E(Gθ(0))−

E(Gθ(z)) ≤ exp(LeLb‖z‖), thus introducing the factor exp(E(Gθ(0)) in (5.17) we

get

E
[
ai(Z)(pE,θ ◦Gθ(Z))

]
≤ Le (E [exp(−LeLb‖Z‖)])−1 E

[
a(Z)i exp(LeLb‖Z‖)

]
,

E [b(Z)(pE,θ ◦Gθ(Z))] ≤ Le (E [exp(−LeLb‖Z‖)])−1 E [b(Z) exp(LeLb‖Z‖)] .
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where the expectation is taken w.r.t. Z ∼ η. The r.h.s. of both inequalities is indepen-

dent of θ and E, and finite by the integrability assumptions in Assumption (III).

A .2 Latent space sampling

Here we prove Proposition 35 for which we make the assumptions more precise:

Assumption 2. We make the following assumption:

• log η is strongly concave and admits a Lipschitz gradient.

• There exists a non-negative constant L such that for any x, x′ ∈ X and

z, z′ ∈ Z:

|E(x)− E(x′)| ≤ ‖x− x′‖, ‖∇xE(x)−∇xE(x′)‖ ≤ ‖x− x′‖

|G(z)−G(z′)| ≤ ‖z − z′‖, ‖∇zG(z)−∇zG(z′)‖ ≤ ‖z − z′‖

Throughout this section, we introduce U(z) := − log(η(z)) + E(G(z)) for

simplicity.

Proof of Proposition 30 . To sample from QG,E , we first need to identify the poste-

rior latent distribution νG,E used to produce those samples. We rely on (5.18) which

holds by definition of QG,E for any test function h on X :

∫
h(x) dQ(x) =

∫
h(G(z))f(G(z))η(z) dz, (5.18)

Hence, the posterior latent distribution is given by ν(z) = η(z)f(G(z)), and samples

from GEBM are produced by first sampling from νG,E , then applying the implicit

map G,

X ∼ Q ⇐⇒ X = G(Z), Z ∼ ν.

Proof of Proposition 31. the base distribution G admits a density on the whole space

denoted by exp(−r(x)) and the energy Ẽ is of the form Ẽ(x) = E(x) − r(x) for
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some parametric function E, it is easy to see that Q has a density proportional to

exp(−E) and is therefore equivalent to a standard EBM with energy E.

The converse holds as well, meaning that for any EBM with energy E, it is

possible to construct a GEBM using an importance weighting strategy. This is

achieved by first choosing a base G, which is required to have an explicit density

exp(−r) up to a normalizing constant, then defining the energy of the GEBM to be

Ẽ(x) = E(x)− r(x) so that:

dQ(x) ∝ exp(−Ẽ(x)) dGθ(x) ∝ exp(−E(x)) dx (5.19)

Equation (5.19) effectively depends only on E(x) and not on G since the factor

exp(r) exactly compensates for the density of G. The requirement that the base also

admits a tractable implicit map G can be met by choosing G to be a normalizing

flow [Rezende and Mohamed, 2015] and does not restrict the class of possible EBMs

that can be expressed as GEBMs.

Proof of Proposition 35. Let πt be the probability distribution of (zt, vt) at time t of

the diffusion in (5.15), which we recall that

dzt = vtdt, dvt = − (γvt + u∇U(zt)) +
√

2λudwt,

We call π∞ its corresponding invariant distribution given by

π∞(z, v) ∝ exp

(
−U(z)− 1

2
‖v‖2

)

By Lemma 40 we know that U is dissipative, bounded from below, and has a

Lipschitz gradient. This allows to directly apply [Eberle et al., 2017](Corollary 2.6.)

which implies that

W2(πt, π∞) ≤ C exp(−tc),

where c is a positive constant and C only depends on π∞ and the initial distribution
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π0. Moreover, the constant c is given explicitly in [Eberle et al., 2017, Theorem 2.3]

and is of order 0(e−q) where q is the dimension of the latent space Z .

We now consider an optimal coupling Πt between πt and π0. Given joints

samples ((zt, vt), (z, v)) from Πt, we consider the following samples in input space

(xt, x) := (G(zt), G(z)). Since zt and z have marginals πt and π∞, it is easy to see

that xt ∼ Pt and x ∼ Q. Therefore, by definition of the W2 distance, we have the

following bound:

W 2
2 (Pt,Q) ≤ E

[
‖xt − x‖2

]
≤
∫
‖G(zt)−G(z)‖2dΠt(zt, z)

≤ L2

∫
‖zt − z‖2dΠt(zt, z)

≤ L2W 2
2 (πt, π∞) ≤ C2L2 exp(−2tc).

The second line uses the definition of (xt, x) as joint samples obtained by mapping

(zt, z). The third line uses the assumption that B is L-Lipschitz. Finally, the last line

uses that Πt is an optimal coupling between πt and π∞.

Lemma 40. Under Assumption 2, there exists A > 0 and λ ∈ (0, 1
4
] such that

1

2
z>t∇U(z) ≥ λ

(
U(z) +

γ2

4u
‖z‖2

)
− A, ∀z ∈ Z, (5.20)

where γ and u are the coefficients appearing in (5.15). Moreover, U is bounded

bellow and has a Lipschitz gradient.

Proof. For simplicity, let’s call u(z) = − log η(z), w(z) = E? ◦Bθ?(z), and denote

by M an upper-bound on the Lipschitz constant of w and∇w which is guaranteed to

be finite by assumption. Hence U(z) = u(z) + w(z). Equation (5.20) is equivalent

to having

z>∇u(z)− 2λu(z)− γ2

2u
‖z‖2 ≥ 2λw(z)− z>∇w(z)− 2A. (5.21)
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Using that w is Lipschitz, we have that w(z) ≤ w(0) + M‖z‖ and −z>∇w(z) ≤

M‖z‖. Hence, 2λw(z)−z>∇w(z)−2A ≤ 2λw(0)+(2λ+1)M‖z‖−2A. Therefore,

a sufficient condition for (5.21) to hold is

z>∇u(z)− 2λu(z)− γ2

2u
‖z‖2 ≥ +(2λ+ 1)M‖z‖ − 2A+ 2λw(0). (5.22)

We will now rely on the strong convexity of u, which holds by assumption, and

implies the existence of a positive constant m > 0 such that

−u(z) ≥ −u(0)− z>∇u(z) +
m

2
‖z‖2,

z>∇u(z) ≥ −‖z‖‖∇u(0)‖+m‖z‖2.

This allows to write the following inequality,

z>∇u(z)− 2λu(z)− γ2

2u
≥(1− 2λ)z>∇u(z) + λ(m+

γ2

2u
)‖z‖2 − 2λu(0)

≥(1− λ(m+
γ2

2u
))‖z‖2 − 2λu(0)

− (1− 2λ)‖z‖‖∇u(0)‖.

Combining the previous inequality with (5.22) and denoting M ′ = ‖∇u(0)‖ , it is

sufficient to find A and λ satisfying

ξ1‖z‖2 − ξ2‖z‖+ ξ3 ≥ 0. (5.23)

with ξ1, ξ2 and ξ3 being real number defined by:

ξ1 =

(
1− λ

(
m+

γ2

2u

))
ξ2 = (M +M ′ + 2λ(M −M ′))

ξ3 = 2A− 2λ(u(0) + w(0))

The l.h.s. in (5.23) is a quadratic function in ‖z‖ and admits a global minimum when



B . Experimental details 168

λ <
(
m+ γ2

2u

)−1

. The global minimum is always positive provided that A is large

enough.

To see that U is bounded below, it suffice to note, by Lipschitzness of w, that

w(z) ≥ w(0)−M‖z‖ and by strong convexity of u that

u(z) ≥ u(0) +M ′‖z‖+
m

2
‖z‖2.

Hence, U is lower-bounded by a quadratic function in ‖z‖ with positive leading

coefficient m
2

, hence it must be lower-bounded by a constant. Finally, by assumption,

u and w have Lipschitz gradients, which directly implies that U has a Lipschitz

gradient.

Proof of Proposition 32. By assumption KL(P||G) < +∞, this implies that P

admits a density w.r.t. G which we call r(x). As a result P admits also a density w.r.t.

Q given by:

Z exp(E?(x))r(x).

We can then compute the KL(P||Q) explicitly:

KL(P||Q) = EP[E] + log(Z) + EP[log(r)]

= −LP,G(E?) +KL(P||G).

Since 0 belongs to E and by optimality ofE?, we know thatLP,G(E?) ≥ LP,G(0) = 0.

The result then follows directly.

B Experimental details
In all experiments, we use regularization which is a combination of L2 norm and a

variant of the gradient penalty Gulrajani et al. [2017]. For the image generation tasks,

we also employ spectral normalization Miyato et al. [2018]. This is to ensure that the

conditions in Proposition 33 and Theorem 34 hold. We pre-condition the gradient

as proposed in Simsekli et al. [2020] to stabilize training, and to avoid taking large
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noisy gradient steps due to the exponential terms in (5.8) and (5.9). We also use the

second-order updates in (5.10) for the variational constant c whenever it is learned.

B .1 Illustrative example in Figure 5.1

The ground truth distribution P in Figure 5.1(a) follows a simple generative process

where each data point X = (X1, X2) is obtained as follows:

Z ∼ Uniform[0, 1]

X1 = h1(Z), X2 = h2(h1(Z))

We choose h1 and h2 to be of the form:

h1(z) =
1

2

(
z +

1

1 + exp(−9(tan(π(z − 1
2
)))

)
,

h2(x) = sin(8πx)/(1 + 4πx),

Hence, the data is supported on a line defined by the equation X2 = h2(X1) and

possesses two modes due to the effect of the distortion introduced by the function h1.

We provide the details of the models used in Figure 5.1.

GAN For the generator we sample Z uniformly from [0, 1] then generate a sample

(X1, X2) = (G
(1)
θ (Z), G

(2)
θ (Z)):

G
(1)
θ (z) = 4πW1x+ b1, G

(2)
θ (z) = sin(8πW2z)/(1 + 4πb2z).

The goal is to learn θ = (W1, b1,W2, b2). For the discriminator, we used an

MLP with 6 layers and 10 hidden units.

GEBM For the base we use the same generator as in the GAN model. For the energy

we use the same MLP as discriminator of the GAN model.

EBM To ensure tractability of the likelihood, we use the following model:

X2|X1 ∼ N (G
(2)
θ (X1), σ0)

X1 ∼MoG((µ1, σ1), (µ2, σ2))
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z ∈ R100 ∼ N (0, I)
dense→Mg ×Mg × 512

4× 4, stride= 2 deconv. BN 256 ReLU
4× 4, stride= 2 deconv. BN 128 ReLU
4× 4, stride= 2 deconv. BN 64 ReLU

3× 3, stride= 1 conv. 3 Tanh

Table 5.5: Base/Generator of
SNGAN ConvNet:
Mg = 4.

RGB image x ∈ RM×M×3

3× 3, stride= 1 conv 64 lReLU
4× 4, stride= 2 conv 64 lReLU
3× 3, stride= 1 conv 128 lReLU
4× 4, stride= 2 conv 128 lReLU
3× 3, stride= 1 conv 256 lReLU
4× 4, stride= 2 conv 256 lReLU
3× 3, stride= 1 conv 512 lReLU

dense→ 1.

Table 5.6: Energy / Discrimina-
tor of SNGAN Con-
vNet: M = 32.

MoG((µ1, σ1), (µ2, σ2)) refers to a Mixture of two gaussians with mean and vari-

ances µi and σi. We learn each of the parameters (θ, σ0, µ1, σ1, µ2, σ2) by maximiz-

ing the likelihood.

Both GAN and GEBM have the capacity to recover the the exact support by

finding the optimal parameter θ?. For the EBM, when θ = θ?, the mean Gθ?(X1) of

the conditional gaussian X2|X1 draws a line which matches the data support exactly,

i.e.: X2 = G
(2)
θ? (X1).

B .2 Image generation

Network Architecture Table 5.5 and Table 5.6 show the network architectures used

for the GEBM in the case of SNGAN ConvNet. Table 5.5 and Table 5.6 show the net-

work architectures used for the GEBM in the case of SNGAN ResNet. The residual

connections of each residual block consists of two convolutional layers proceeded by

a BatchNormalization and ReLU activation: BN+ReLU+Conv+BN+ReLU+Conv

as in [Miyato et al., 2018, Figure 8].

Training: We train both base and energy by alternating 5 gradient steps to learn the

energy vs 1 gradient step to learn the base. For the first two gradient iterations and

after every 500 gradient iterations on base, we train the energy for 100 gradient steps

instead of 5. We then train the model up to 150000 gradient iterations on the base

using a batch-size of 128 and Adam optimizer with initial learning rate of 10−4 and

parameters (0.5, .999) for both energy and base.



B . Experimental details 171

RGB image x ∈ RM×M×3

ResBlock down 128
ResBlock down 128

ResBlock 128
ResBlock 128

ReLu
Global sum pooling

dense→ 1

Table 5.7: Energy / Dis-
criminator
of SNGAN
ResNet.

z ∈ R100 ∼ N (0, I)
dense, 4× 4× 256
ResBlock up 256
ResBlock up 256
ResBlock up 256
BN, ReLu, 3× 3 conv, Tanh

Table 5.8: Base/Generator
of SNGAN
ResNet.

Scheduler: We decrease the learning rate using a scheduler that monitors the FID

score in a similar way as in Chapter 4 and Bińkowski* et al. [2018]. More precisely,

every 2000 gradient iterations on the base, we evaluate the FID score on the training

set using 50000 generated samples from the base and check if the current score is

larger than the score 20000 iterations before. The learning rate is decreased by a

factor of 0.8 if the FID score fails to decrease for 3 consecutive times.

Sampling: For (DOT) Tanaka [2019], we use the following objective:

z 7→ ‖z − zy + ε‖+
1

keff
E ◦G(z) (5.24)

where zy is sampled from a standard Gaussian, ε is a perturbation meant to stabilize

sampling and keff is the estimated Lipschitz constant of E ◦ B. Note that (5.24)

uses a flipped sign for the E ◦ B compared to Tanaka [2019]. This is because E

plays the role of −D where D is the discriminator in Tanaka [2019]. Introducing

the minus sign in (5.24) leads to a degradation in performance. We perform 1000

gradient iterations with a step-size of 0.0001 which is also decreased by a factor

of 10 every 200 iterations as done for the proposed method. As suggested by the

authors of Tanaka [2019] we perform the following projection for the gradient before

applying it:

g ← g − (g>z)
√
q
z.
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We set the perturbation ε to 0.001 and keff to 1 which was also shown in Tanaka

[2019] to perform well. In fact, we found that estimating the Lipschitz constant by

taking the maximum value of ‖∇E ◦G(z)‖ over 1000 latent samples according to

η lead to higher values for keff : ( Cifar10: 9.4, CelebA : 7.2, ImageNet: 4.9, Lsun:

3.8). However, those higher values did not perform as well as setting keff = 1.

For (IHM) Turner et al. [2019] we simply run the MCMC chain for 1000

iterations.

B .3 Density estimation

Pre-processing We use code and pre-processing steps from Wenliang et al. [2019]

which we describe here for completeness. For RedWine and WhiteWine, we added

uniform noise with support equal to the median distances between two adjacent

values. That is to avoid instabilities due to the quantization of the datasets. For

Hepmass and MiniBoone, we removed ill-conditioned dimensions as also done in

Papamakarios et al. [2017]. We split all datasets, except HepMass into three splits.

The test split consists of 10% of the total data. For the validation set, we use 10%

of the remaining data with an upper limit of 1000 to reduce the cost of validation at

each iteration. For HepMass, we used the sample splitting as done in Papamakarios

et al. [2017]. Finally, the data is whitened before fitting and the whitening matrix

was computed on at most 10000 data points.

Regularization: We set the regularization parameter to 0.1 and use a combination

of L2 norm and a variant of the gradient penalty Gulrajani et al. [2017]:

I(ψ)2 =
1

dψ
‖ψ‖2 + E

[
‖∇xfψ(X̃)‖2

]
Network Architecture. For both base and energy, we used an NVP Dinh et al.

[2016] with 5 NVP layers each consisting of a shifting and scaling layer with two

hidden layers of 100 neurons. We do not use Batch-normalization.

Training: In all cases we use Adam optimizer with learning rate of 0.001 and

momentum parameters (0.5, 0.9). For both KALE-DV and KALE-F, we used a

batch-size of 100 data samples vs 2000 generated samples from the base in order to
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reduce the variance of the estimation of the energy. We alternate 50 gradient steps

on the energy vs 1 step on the base and further perform 50 additional steps on the

energy for the first two gradient iterations and after every 500 gradient iterations on

base. For Contrastive divergence, each training step is performed by first producing

100 samples from the model using 100 Langevin iterations with a step-size of 10−2

and starting from a batch of 100 data-samples. The resulting samples are then used

to estimate the gradient of the of the loss.

For (CD), we used 100 Langevin iterations for each learning step to sample from

the EBM. This translates into an improved performance at the expense of increased

computational cost compared to the other methods. All methods are trained for 2000

epochs with batch-size of 100 (1000 on Hepmass and Miniboone datasets) and fixed

learning rate 0.001, which was sufficient for convergence.

C The KL Approximate Lower-bound Estimate

We discuss the relation between KALE (5.11) and the Kullback-Leibler divergence

via Fenchel duality. Recall that a distribution P is said to admit a density w.r.t. G

if there exists a real-valued measurable function r0 that is integrable w.r.t. G and

satisfies dP = r0dG. Such a density is also called the Radon-Nikodym derivative of

P w.r.t. G. In this case, we have:

KL(P||G) =

∫
r0 log(r0)dG. (5.25)

Nguyen et al. [2010], Nowozin et al. [2016] derived a variational formulation for the

KL using Fenchel duality. By the duality theorem [Rockafellar, 1970], the convex

and lower semi-continuous function ζ : u 7→ u log(u) that appears in (5.25) can be

expressed as the supremum of a concave function:

ζ(u) = sup
v
uv − ζ?(v).

The function ζ? is called the Fenchel dual and is defined as ζ?(v) = supu uv − ζ(u).

By convention, the value of the objective is set to −∞ whenever u is outside of the
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domain of definition of ζ?. When ζ(u) = u log(u), the Fenchel dual ζ?(v) admits a

closed form expression of the form ζ?(v) = exp(v − 1). Using the expression of ζ

in terms of its Fenchel dual ζ?, it is possible to express KL(P||G) as the supremum

of the variational objective (5.26) over all measurable functions h.

F(h) := −
∫
hdP−

∫
exp(−h)dG + 1. (5.26)

Nguyen et al. [2010] provided the variational formulation for the reverse KL using

a different choice for ζ: (ζ(u) = − log(u)). We refer to [Nowozin et al., 2016]

for general f -divergences. Choosing a smaller set of functionsH in the variational

objective (5.26) will lead to a lower bound on the KL. This is the KL Approximate

Lower-bound Estimate (KALE):

KALE(P||G) = sup
h∈H
F(h) (5.27)

In general, KL(P||G) ≥ KALE(P||G). The bound is tight whenever the negative

log-density h0 = − log r0 belongs to H; however, we do not require r0 to be well-

defined in general. Equation (5.27) has the advantage that it can be estimated using

samples from P and G. Given i.i.d. samples (X1, ..., XN) and (Y1, ..., YM) from P

and G, we denote by P̂ and Ĝ the corresponding empirical distributions. A simple

approach to estimate KALE(P||G) is to use an M -estimator. This is achieved by

optimizing the penalized objective

ĥ := arg max
h∈H
F̂(h)− λ

2
I2(h), (5.28)

where F̂ is an empirical version of F and I2(h) is a penalty term that prevents

overfitting due to finite samples. The penalty I2(h) acts as a regularizer favoring

smoother solutions while the parameter λ determines the strength of the smoothing

and is chosen to decrease as the sample size N and M increase. The M -estimator

of KALE(P||G) is obtained simply by plugging in ĥ into the empirical objective
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F̂(h):

K̂ALE(P||G) := F̂(ĥ). (5.29)

We defer the consistency analysis of (5.29) to Section C .1 where we provide

convergence rates in a setting where the set of functionsH is a Reproducing Kernel

Hilbert Space and under weaker assumptions that were not covered by the framework

of Nguyen et al. [2010].

C .1 Convergence rate of KALE

In this section, we provide a convergence rate for the estimator in (5.29) when

H is an RKHS. The theory remains the same whether H contains constants or

not. With this choice, the Representer Theorem allows us to reduce the potentially

infinite-dimensional optimization problem in (5.28) to a convex finite-dimensional

one. We further restrict ourselves to the well-specified case where the density r0

of P w.r.t. G is well-defined and belongs to H, so that KALE matches the KL.

While Nguyen et al. [2010] (Theorem 3) provides a convergence rate of 1/
√
N for a

related M -estimator, this requires the density r0 to be lower-bounded by 0 as well

as (generally) upper-bounded. This can be quite restrictive if, for instance, r0 is the

density ratio of two gaussians. In Theorem 41, we provide a similar convergence

rate for the estimator defined in (5.29) without requiring r0 to be bounded. We start

by briefly introducing some notations, the working assumptions and the statement of

the convergence result and defer the proofs to Section C .2.

We recall that an RKHSH of functions defined on a domain X ⊂ Rd and with

kernel k is a Hilbert space with dot product 〈., .〉, such that y 7→ k(x, y) belongs to

H for any x ∈ X , and

k(x, y) = 〈k(x, .), k(y, .)〉, ∀x, y ∈ X .

Any function h in H satisfies the reproducing property f(x) = 〈f, k(x, .)〉 for any

x ∈ X .
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Recall that KALE(P||G) is obtained as an optimization problem

KALE(P||G) = sup
h∈H
F(h) (5.30)

where F is given by:

F(h) := −
∫
hdP−

∫
exp(−h)dG + 1.

Since the negative log density ratio h0 is assumed to belong to H, this directly

implies that the supremum of F is achieved at h0 and F(h0) = KALE(P||G). We

are interested in estimating KALE(P||G) using the empirical distributions P̂ and Ĝ,

P̂ :=
1

N

N∑
n=1

δXn , Ĝ :=
1

N

N∑
n=1

δYn ,

where (Xn)1≤n≤N and (Yn)1≤n≤N are i.i.d. samples from P and G. For this purpose

we introduce the empirical objective functional,

F̂(h) := −
∫
hdP̂−

∫
exp(−h)dĜ + 1.

The proposed estimator is obtained by solving a regularized empirical problem,

sup
h∈H
F̂(h)− λ

2
‖h‖2, (5.31)

with a corresponding population version,

sup
h∈H
F(h)− λ

2
‖h‖2. (5.32)

Finally, we introduce D(h, δ) and Γ(h, δ):

D(h, δ) =

∫
δ exp(−h)dG−

∫
δdP,

Γ(h, δ) = −
∫ ∫ 1

0

(1− t)δ2 exp(−(h+ tδ))dG.
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The empirical versions ofD(h, δ) and Γ(h, δ) are denoted D̂(h, δ) and Γ̂(h, δ). Later,

we will show that D(h, δ) D̂(h, δ) are in fact the gradients of F(h) and F̂(h) along

the direction δ.

We state now the working assumptions:

(i) The supremum of F overH is attained at h0.

(ii) The following quantities are finite for some positive ε:

∫ √
k(x, x) dP(x),∫ √
k(x, x) exp((‖h0‖+ ε)

√
k(x, x)) dG(x),∫

k(x, x) exp((‖h0‖+ ε)
√
k(x, x)) dG(x).

(iii) For any h ∈ H, if D(h, δ) = 0 for all δ then h = h0.

Theorem 41. Fix any 1 > η > 0. Under Assumptions (i) to (iii), and provided that

λ = 1√
N

, it holds with probability at least 1− 2η that

|F̂(ĥ)−F(h0)| ≤ M ′(η, h0)√
N

for a constant M ′(η, h0) that depends only on η and h0.

The assumptions in Theorem 41 essentially state that the kernel associated to

the RKHSH needs to satisfy some integrability requirements. That is to guarantee

that the gradient δ 7→ ∇F(h)(δ) and its empirical version are well-defined and

continuous. In addition, the optimality condition ∇F(h) = 0 is assumed to char-

acterize the global solution h0. This will be the case if the kernel is characteristic

Simon-Gabriel and Scholkopf [2018]. The proof of Theorem 41, in Section C .2,

takes advantage of the Hilbert structure of the setH, the convexity of the functional

F and the optimality condition ∇F̂(ĥ) = λĥ of the regularized problem, all of

which turn out to be sufficient for controlling the error of (5.29).
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C .2 Proofs

We state now the proof of Theorem 41 with subsequent lemmas and propositions.

Proof of Theorem 41. We begin with the following inequalities:

λ

2
(‖ĥ‖2 − ‖h0‖2) ≤ F̂(ĥ)− F̂(h0) ≤ 〈∇F̂(h0), ĥ− h0〉.

The first inequality is by definition of ĥ while the second is obtained by concavity

of F̂ . For simplicity we write B = ‖ĥ− h0‖ and C = ‖∇F̂(h0)− L(h0)‖. Using

Cauchy-Schwarz and triangular inequalities, it is easy to see that

−λ
2

(
B2 + 2B‖h0‖

)
≤ F̂(ĥ)− F̂(h0) ≤ CB.

Moreover, by triangular inequality, it holds that

B ≤ ‖hλ − h0‖+ ‖ĥ− hλ‖.

Lemma 45 ensures that A(λ) = ‖hλ − h0‖ converges to 0 as λ→ 0. Furthermore,

by Proposition 46, we have ‖ĥ− hλ‖ ≤ 1
λ
D where D(λ) = ‖∇F̂(hλ)−∇L(hλ)‖.

Now choosing λ = 1√
N

and applying Chebychev inequality in Lemma 42, it follows

that for any 1 > η > 0, we have with probability greater than 1− 2η that both

D(λ) ≤ C(‖h0‖η)√
N

, C ≤ C(‖h0‖, η)√
N

,

where C(‖h0‖, η) is defined in Lemma 42. This allows to conclude that for any

η > 0, it holds with probability at least 1−2η that |F̂(ĥ)−F̂(h0)| ≤ M ′(η,h0)√
N

where

M ′(η, h0) depends only on η and h0.

We proceed using the following lemma, which provides an expression for

D(h, δ) and D̂(h, δ) along with a probabilistic bound:

Lemma 42. Under Assumptions (i) and (ii), for any h ∈ H such that ‖h‖ ≤ ‖h0‖+ε,
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there exists D(h) inH satisfying

D(h, δ) = 〈δ,D(h)〉,

and for any h ∈ H, there exists D̂(h) satisfying

D̂(h, δ) = 〈δ, D̂(h)〉.

Moreover, for any 0 < η < 1 and any h ∈ H such that ‖h‖ ≤ ‖h0‖ + ε := M , it

holds with probability greater than 1− η that

‖D(h)− D̂(h)‖ ≤ C(M, η)√
N

,

where C(M, η) depends only on M and η.

Proof. First, we show that δ 7→ D(h, δ) is a bounded linear operator. Indeed,

Assumption (ii) ensures that k(x, .) and k(x, .) exp(−h(x)) are Bochner integrable

w.r.t. P and G (Retherford [1978]), hence D(h, δ) is obtained as

D(h, δ) := 〈δ, µexp(−h)G − µP〉,

where µexp(−h)G =
∫
k(x, .) exp(−h(x))dG and µP =

∫
k(x, .)dP. Defining D(h)

to be = µexp(−h)G−µP leads to the desired result. D̂(h) is simply obtained by taking

the empirical version of D(h).

Finally, the probabilistic inequality is a simple consequence of Chebychev’s

inequality.

The next lemma states that F(h) and F̂(h) are Frechet differentiable.

Lemma 43. Under Assumptions (i) and (ii) , h 7→ F(h) is Frechet differentiable

on the open ball of radius ‖h0‖+ ε while h 7→ F̂(h) is Frechet differentiable onH.

Their gradients are given by D(h) and D̂(h) as defined in Lemma 42,

∇F(h) = D(h), ∇F̂(h) = D̂(h)
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Proof. The empirical functional F̂(h) is differentiable since it is a finite sum of

differentiable functions, and its gradient is simply given by D̂(h). For the population

functional, we use second order Taylor expansion of exp with integral remainder,

which gives

F(h+ δ) = F(h)−D(h, δ) + Γ(h, δ).

By Assumption (ii) we know that Γ(h,δ)
‖δ‖ converges to 0 as soon as ‖δ‖ → 0. This

allows to directly conclude that F is Frechet differentiable, with differential given by

δ 7→ D(h, δ). By Lemma 42, we conclude the existence of a gradient∇F(h) which

is in fact given by∇F(h) = D(h).

From now on, we will only use the notation ∇F(h) and∇F̂(h) to refer to the

gradients of F(h) and F̂(h). The following lemma states that (5.31) and (5.32) have

a unique global optimum, and gives a first order optimality condition.

Lemma 44. The problems (5.31) and (5.32) admit unique global solutions ĥ and hλ

inH. Moreover, the following first order optimality conditions hold:

λĥ = ∇F̂(ĥ), λhλ = ∇F(hλ).

Proof. For (5.31), existence and uniqueness of a minimizer ĥ is a simple consequence

of continuity and strong concavity of the regularized objective. We now show the

existence result for (5.32). Let’s introduce Gλ(h) = −F(h) + λ
2
‖h‖2 for simplicity.

Uniqueness is a consequence of the strong convexity of Gλ. For the existence,

consider a sequence of elements fk ∈ H such that Gλ(fk)→ infh∈H Gλ(h). If h0 is

not the global solution, then it must hold for k large enough that Gλ(fk) ≤ Gλ(h0).

We also know that F(fk) ≤ F(h0), hence, it is easy to see that ‖fk‖ ≤ ‖h0‖ for

k large enough. This implies that fk is a bounded sequence, therefore it admits a

weakly convergent sub-sequence by weak compactness. Without loss of generality

we assume that fk weakly converges to some element hλ ∈ H and that ‖fk‖ ≤ ‖h0‖.

Hence, ‖hλ‖ ≤ lim infk ‖fk‖ ≤ ‖h0‖. Recall now that by definition of weak
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convergence, we have fk(x)→k hλ(x) for all x ∈ X . By Assumption (ii), we can

apply the dominated convergence theorem to ensure that F(fk)→ F(hλ). Taking

the limit of Gλfk, the following inequality holds:

sup
h∈H
Gλ(h) = lim sup

k
Gλ(fk) ≤ Gλ(hλ).

Finally, by Lemma 43 we know that F is Frechet differentiable, hence we can use

Ekeland and Témam [1999] (Proposition 2.1) to conclude that∇F(hλ) = λhλ. We

use exactly the same arguments for (5.31).

Next, we show that hλ converges towards h0 inH.

Lemma 45. Under Assumptions (i) to (iii) it holds that:

A(λ) := ‖hλ − h0‖ → 0.

Proof. We will first prove that hλ converges weakly towards h0, and then conclude

that it must also converge strongly. We start with the following inequalities:

0 ≥ F(hλ)−F(h0) ≥ λ

2
(‖hλ‖2 − ‖h0‖2).

These are simple consequences of the definitions of hλ and h0 as optimal solutions to

(5.30) and (5.31). This implies that ‖hλ‖ is always bounded by ‖h0‖. Consider now

an arbitrary sequence (λm)m≥0 converging to 0. Since ‖hλm‖ is bounded by ‖h0‖, it

follows by weak-compactness of balls in H that hλm admits a weakly convergent

sub-sequence. Without loss of generality we can assume that hλm is itself weakly

converging towards an element h∗. We will show now that h∗ must be equal to h0.

Indeed, by optimality of hλm , it must hold that

λmhλm = ∇F(hm).

This implies that ∇F(hm) converges weakly to 0. On the other hand, by Assump-

tion (ii), we can conclude that∇F(hm) must also converge weakly towards∇F(h∗),
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hence ∇F(h∗) = 0. Finally by Assumption (iii) we know that h0 is the unique

solution to the equation∇F(h) = 0 , hence h∗ = h0. We have shown so far that any

subsequence of hλm that converges weakly, must converge weakly towards h0. This

allows to conclude that hλm actually converges weakly towards h0. Moreover, we

also have by definition of weak convergence that:

‖h0‖ ≤ lim inf
m→∞

‖hλm‖.

Recalling now that ‖hλm‖ ≤ ‖h0‖ it follows that ‖hλm‖ converges towards ‖h0‖.

Hence, we have the following two properties:

• hλm converges weakly towards h0,

• ‖hλm‖ converges towards ‖h0‖.

This allows to directly conclude that ‖hλm − h0‖ converges to 0.

Proposition 46. We have that:

‖ĥ− hλ‖ ≤
1

λ
‖∇F̂(hλ)−∇F(hλ)‖

Proof. By definition of ĥ and hλ the following optimality conditions hold:

λĥ = ∇F̂(ĥ), λhλ = ∇F(hλ).

We can then simply write:

λ(ĥ− hλ)− (∇F̂(ĥ)−∇F̂(hλ)) = ∇F̂(hλ)−∇F(hλ).

Now introducing δ := ĥ−hλ and E := ∇F̂(ĥ)−∇F̂(hλ) for simplicity and taking

the squared norm of the above equation, it follows that

λ2‖δ‖2 + ‖E‖2 − 2λ〈δ, E〉 = ‖∇F̂(hλ)−∇F(hλ)‖2.
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By concavity of F̂ onH we know that −〈ĥ− hλ, E〉 ≥ 0. Therefore:

λ2‖ĥ− hλ‖2 ≤ ‖∇F̂(hλ)−∇F(hλ)‖2.
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Chapter 6

Wasserstein gradient flow of the

Maximum Mean Discrepancy

We construct a Wasserstein gradient flow of the maximum mean discrepancy (MMD)

and study its convergence properties. The MMD is an integral probability metric

defined for a reproducing kernel Hilbert space (RKHS), and serves as a metric on

probability measures for a sufficiently rich RKHS. We obtain conditions for conver-

gence of the gradient flow towards a global optimum, that can be related to particle

transport when optimizing neural networks. We also propose a way to regularize

this MMD flow, based on an injection of noise in the gradient. This algorithmic

fix comes with theoretical and empirical evidence. The practical implementation

of the flow is straightforward, since both the MMD and its gradient have simple

closed-form expressions, which can be easily estimated with samples.

1 Introduction
We address the problem of defining a gradient flow on the space of probability distri-

butions endowed with the Wasserstein metric, which transports probability mass from

a starting distribtion ν to a target distribution µ. Our flow is defined on the maximum

mean discrepancy (MMD) Gretton et al. [2012], an integral probability metric Müller

[1997] which uses the unit ball in a characteristic RKHS Sriperumbudur et al. [2010]

as its witness function class. Specifically, we choose the function in the witness class

that has the largest difference in expectation under ν and µ: this difference constitutes
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the MMD. The idea of descending a gradient flow over the space of distributions can

be traced back to the seminal work of Jordan et al. [1998], who revealed that the

Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its

time-discretization leads to the celebrated Langevin Monte Carlo algorithm, which

comes with strong convergence guarantees (see Durmus et al. [2018], Dalalyan and

Karagulyan [2019]), but requires the knowledge of an analytical form of the target µ.

A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD)

Liu [2017], also leverages this analytical µ.

The study of particle flows defined on the MMD relates to two important topics

in modern machine learning. The first is in training Implicit Generative Models,

notably generative adversarial networks Goodfellow et al. [2014]. Integral probability

metrics have been used extensively as critic functions in this setting: these include the

Wasserstein distance Arjovsky and Bottou [2017], Gulrajani et al. [2017], Genevay

et al. [2018] and the maximum mean discrepancy used in Chapter 4 and in Dziugaite

et al. [2015], Li et al. [2015, 2017], Bellemare et al. [2017], Bińkowski* et al. [2018].

In [Mroueh et al., 2019, Section 3.3], a connection between IGMs and particle

transport is proposed, where it is shown that gradient flow on the witness function of

an integral probability metric takes a similar form to the generator update in a GAN.

The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD), which has an

additional gradient norm constraint on the witness function compared with the MMD.

It is intended as an approximation to the negative Sobolev distance from the optimal

transport literature Otto and Villani [2000], Villani [2009], Peyre [2018]. There

remain certain differences between gradient flow and GAN training, however. First,

and most obviously, gradient flow can be approximated by representing ν as a set of

particles, whereas in a GAN ν is the output of a generator network. The requirement

that this generator network be a smooth function of its parameters causes a departure

from pure particle flow. Second, in modern implementations as in Chapter 4 and

Li et al. [2017], Bińkowski* et al. [2018], the kernel used in computing the critic

witness function for an MMD GAN critic is parametrized by a deep network, and an

alternating optimization between the critic parameters and the generator parameters
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is performed. Despite these differences, we anticipate that the theoretical study

of MMD flow convergence will provide helpful insights into conditions for GAN

convergence, and ultimately, improvements to GAN training algorithms.

Regarding the second topic, we note that the properties of gradient descent for

large neural networks have been modeled using the convergence towards a global

optimum of particle transport in the population limit, when the number of particles

goes to infinity Rotskoff and Vanden-Eijnden [2018], Chizat and Bach [2018a], Mei

et al. [2018], Sirignano and Spiliopoulos [2018]. In particular, Rotskoff et al. [2019]

show that gradient descent on the parameters of a neural network can also be seen as

a particle transport problem, which has as its population limit a gradient flow of a

functional defined for probability distributions over the parameters of the network.

This functional is in general non-convex, which makes the convergence analysis

challenging. The particular structure of the MMD allows us to relate its gradient

flow to neural network optimization in a well-specified regression setting similar to

Rotskoff et al. [2019], Chizat and Bach [2018a] (we make this connection explicit in

Section C ).

Our main contribution in this work is to establish conditions for convergence

of MMD gradient flow to its global optimum. We give detailed descriptions of

MMD flow for both its continuous-time and discrete instantiations in Section 2 .

In particular, the MMD flow may employ a sample approximation for the target

µ: unlike e.g. Langevin Monte Carlo or SVGD, it does not require µ in analytical

form. Global convergence is especially challenging to prove: while for functionals

that are displacement convex, the gradient flow can be shown to converge towards a

global optimum Ambrosio et al. [2008], the case of non-convex functionals, like the

MMD, requires different tools. A modified gradient flow is proposed in Rotskoff

et al. [2019] that uses particle birth and death to reach global optimality. Global

optimality may also be achieved simply by teleporting particles from ν to µ, as

occurs for the Sobolev Discrepancy flow absent a kernel regulariser [Mroueh et al.,

2019, Theorem 4, Appendix D]. Note, however, that the regularised Kernel Sobolev

Discrepancy flow does not rely on teleportation.
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Our approach takes inspiration in particular from Bottou et al. [2018], where it is

shown that although the 1-Wasserstein distance is non-convex, it can be optimized up

to some barrier that depends on the diameter of the domain of the target distribution.

Similarly to Bottou et al. [2018], we provide in Section 3 a barrier on the gradient

flow of the MMD, although the tightness of this barrier in terms of the target diameter

remains to be established. We obtain a further condition on the evolution of the flow

to ensure global optimality, and give rates of convergence in that case, however the

condition is a strong one: it implies that the negative Sobolev distance between the

target and the current particles remains bounded at all times.

We thus propose a way to regularize the MMD flow, based on a noise injection

(Section 4 ) in the gradient, with more tractable theoretical conditions for conver-

gence. Encouragingly, the noise injection is shown in practice to ensure convergence

in a simple illustrative case where the original MMD flow fails. Finally, while our

emphasis has been on establishing conditions for convergence, we note that MMD

gradient flow has a simple O(MN +N2) implementation for N ν-samples and M

µ-samples, and requires only evaluating the gradient of the kernel k on the given

samples.

2 Gradient flow of the MMD in W2

2 .1 Construction of the gradient flow

In this section we introduce the gradient flow of the Maximum Mean Discrepancy

(MMD) and highlight some of its properties. We start by briefly reviewing the MMD

introduced in Gretton et al. [2012]. We define X ⊂ Rd as the closure of a convex

open set, and P2(X ) as the set of probability distributions on X with finite second

moment, equipped with the 2-Wassertein metric denoted W2. For any ν ∈ P2(X ),

L2(ν) is the set of square integrable functions w.r.t. ν.

Maximum Mean Discrepancy. Given a characteristic kernel k : X × X → R, we

denote byH its corresponding RKHS (see Smola and Scholkopf [1998]). The space

H is a Hilbert space with inner product 〈., .〉H and norm ‖.‖H. We will rely on

specific assumptions on the kernel which are given below:
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(A) k is continuously differentiable on X with L-Lipschitz gradient: ‖∇k(x, x′)−

∇k(y, y′)‖ ≤ L(‖x− y‖+ ‖x′ − y′‖) for all x, x′, y, y′ ∈ X .

(B) k is twice differentiable on X .

(C) ‖Dk(x, y)‖ ≤ λ for all x, y ∈ X , where Dk(x, y) is an Rd2×Rd2 matrix with

entries given by ∂xi∂xj∂x′i∂x′jk(x, y).

(D)
∑d

i=1 ‖∂ik(x, .)− ∂ik(y, .)‖2
H ≤ λ2‖x− y‖2 for all x, y ∈ X .

In particular, Assumption (A) states that the gradient of the kernel, ∇k, is Lipschitz

with constant L. For such kernels, it is possible to define the Maximum Mean

Discrepancy as a distance on P2(X ). The MMD can be written as the RKHS norm

of the unnormalised witness function fµ,ν between µ and ν, which is the difference

between the mean embeddings of ν and µ,

MMD(µ, ν) = ‖fµ,ν‖H (6.1)

fν,µ(z) =

∫
k(x, z) dν(x)−

∫
k(x, z) dµ(x) ∀z ∈ X

Throughout this chapter, µ will be fixed and ν can vary, hence we will only consider

the dependence in ν and denote by F(ν) = 1
2
MMD2(µ, ν). A direct computation

[Mroueh et al., 2019, Appendix B] shows that for any finite measure χ such that

ν + εχ ∈ P2(X ), we have

lim
ε→0

ε−1(F(ν + εχ)−F(ν)) =

∫
fµ,ν(x)dχ(x). (6.2)

This means that fµ,ν is the differential of F(ν) . Interestingly, F(ν) admits a free-

energy expression:

F(ν) =

∫
V (x) dν(x) +

1

2

∫
W (x, y) dν(x) dν(y) + C. (6.3)
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where V is a confinement potential, W an interaction potential and C a constant

defined by:

V (x) = −
∫
k(x, x′) dµ(x′), W (x, x′) = k(x, x′) (6.4)

C =
1

2

∫
k(x, x′) dµ(x) dµ(x′).

Formulation (6.3) and the simple expression of the differential in (6.2) will be key

to construct a gradient flow of F(ν), to transport particles. In (6.4), V reflects the

potential generated by µ and acting on each particle, while W reflects the potential

arising from the interactions between those particles.

Gradient flow of the MMD. We consider now the problem of transporting mass

from an initial distribution ν0 to a target distribution µ, by finding a continuous path

νt starting from ν0 that converges to µ while decreasing F(νt). Such a path should be

physically plausible, in that teleportation phenomena are not allowed. For instance,

the path νt = (1− e−t)µ+ e−tν0 would constantly teleport mass between µ and ν0

although it decreases F since F(νt) = e−2tF(ν0) [Mroueh et al., 2019, Section 3.1,

Case 1]. The physicality of the path is understood in terms of classical statistical

physics: given an initial configuration ν0 of N particles, these can move towards

a new configuration µ through successive small transformations, without jumping

from one location to another.

Optimal transport theory provides a way to construct such a continuous path by

means of the continuity equation. Given a vector field Vt onX and an initial condition

ν0, the continuity equation is a partial differential equation which defines a path νt

evolving under the action of the vector field Vt, and reads ∂tνt = −div(νtVt) for all

t ≥ 0. The reader can find more detailed discussions in Definition 1 or Santambrogio

[2015]. Following Ambrosio et al. [2008], a natural choice is to choose Vt as the

negative gradient of the differential of F(νt) at νt, since it corresponds to a gradient

flow of F associated with the W2 metric (see Section 2 .3). By (6.2), we know that

the differential of F(νt) at νt is given by fµ,νt , hence Vt(x) = −∇fµ,νt(x).1 The

1Also, Vt = ∇V +∇W ? νt (see Section 2 .3) where ? denotes the classical convolution.
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gradient flow of F is then defined by the solution (νt)t≥0 of

∂tνt = div(νt∇fµ,νt). (6.5)

Equation (6.5) is non-linear in that the vector field depends itself on νt. This type of

equation is associated in the probability theory literature to the so-called McKean-

Vlasov process Kac [1956], McKean Jr [1966],

dXt = −∇fµ,νt(Xt)dt X0 ∼ ν0. (6.6)

In fact, (6.6) defines a process (Xt)t≥0 whose distribution (νt)t≥0 satisfies (6.5),

as shown in Proposition 47. (Xt)t≥0 can be interpreted as the trajectory of a single

particle, starting from an initial random position X0 drawn from ν0. The trajectory

is driven by the velocity field −∇fµ,νt , and is affected by other particles. These

interactions are captured by the velocity field through the dependence on the current

distribution νt of all particles. Existence and uniqueness of a solution to (6.5)

and (6.6) are guaranteed in the next proposition, whose proof is given Section A .1.1.

Proposition 47. Let ν0 ∈ P2(X ). Then, under Assumption (A), there exists a unique

process (Xt)t≥0 satisfying the McKean-Vlasov equation in (6.6) such that X0 ∼ ν0.

Moreover, the distribution νt of Xt is the unique solution of (6.5) starting from ν0,

and defines a gradient flow of F .

Besides existence and uniqueness of the gradient flow of F , one expects F to

decrease along the path νt and ideally to converge towards 0. The first property,

stated in the next proposition, is rather easy to get and is the object of Proposition 48,

similar to the result for KSD flow in [Mroueh et al., 2019, Section 3.1].

Proposition 48. Under Assumption (A), F(νt) is decreasing in time and satisfies:

dF(νt)

dt
= −

∫
‖∇fµ,νt(x)‖2 dνt(x). (6.7)

This property results from (6.5) and the energy identity in [Ambrosio et al.,

2008, Theorem 11.3.2] and is proved in Section A .1.1. From (6.7), F can be seen
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as a Lyapunov functional for the dynamics defined by (6.5), since it is decreasing

in time. Hence, the continuous-time gradient flow introduced in (6.5) allows to

formally consider the notion of gradient descent on P2(X ) with F as a cost function.

A time-discretized version of the flow naturally follows, and is provided in the next

section.

2 .2 Euler scheme

We consider here a forward-Euler scheme of (6.5). For any T : X → X a measurable

map, and ν ∈ P2(X ), we denote the pushforward measure by T#ν (see Section 2 ).

Starting from ν0 ∈ P2(X ) and using a step-size γ > 0, a sequence νn ∈ P2(X ) is

given by iteratively applying

νn+1 = (I − γ∇fµ,νn)#νn. (6.8)

For all n ≥ 0, equation (6.8) is the distribution of the process defined by

Xn+1 = Xn − γ∇fµ,νn(Xn) X0 ∼ ν0. (6.9)

The asymptotic behavior of (6.8) as n → ∞ will be the object of Section 3 . For

now, we provide a guarantee that the sequence (νn)n∈N approaches (νt)t≥0 as the

step-size γ → 0.

Proposition 49. Let n ≥ 0. Consider νn defined in (6.8), and the interpolation path

ργt defined as: ργt = (I − (t − nγ)∇fµ,νn)#νn, ∀t ∈ [nγ, (n + 1)γ). Then, under

Assumption (A), ∀ T > 0,

W2(ργt , νt) ≤ γC(T ) ∀t ∈ [0, T ]

where C(T ) is a constant that depends only on T .

A proof of Proposition 49 is provided in Section A .1.2 and relies on standard

techniques to control the discretization error of a forward-Euler scheme. Proposi-

tion 49 means that νn can be linearly interpolated giving rise to a path ργt which
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gets arbitrarily close to νt on bounded intervals. Note that as T → ∞ the bound

C(T ) it is expected to blow up. However, this result is enough to show that (6.8) is

indeed a discrete-time flow of F . In fact, provided that γ is small enough, F(νn) is

a decreasing sequence, as shown in Proposition 50.

Proposition 50. Under Assumption (A), and for γ ≤ 2/3L, the sequence F(νn) is

decreasing, and

F(νn+1)−F(νn) ≤ −γ(1− 3γ

2
L)

∫
‖∇fµ,νn(x)‖2 dνn(x), ∀n ≥ 0.

Proposition 50, whose proof is given in Section A .1.2, is a discrete analog of

Proposition 48. In fact, (6.8) is intractable in general as it requires the knowledge

of ∇fµ,νn (and thus of νn) exactly at each iteration n. Nevertheless, we present in

Section 4 .2 a practical algorithm using a finite number of samples which is provably

convergent towards (6.8) as the sample-size increases. We thus begin by studying the

convergence properties of the time discretized MMD flow (6.8) in the next section.

3 Convergence properties of the MMD flow
We are interested in analyzing the asymptotic properties of the gradient flow of F .

Although we know from Propositions 48 and 50 that F decreases in time, it can very

well converge to local minima. One way to see this is by looking at the equilibrium

condition for (6.7). As a non-negative and decreasing function, t 7→ F(νt) is

guaranteed to converge towards a finite limit l ≥ 0, which implies in turn that the

r.h.s. of (6.7) converges to 0. If νt happens to converge towards some distribution

ν∗, it is possible to show that the equilibrium condition (6.10) must hold [Mei et al.,

2018, Prop. 2] ,

∫
‖∇fµ,ν∗(x)‖2 dν∗(x) = 0. (6.10)

Condition (6.10) does not necessarily imply that ν∗ is a global optimum. Thus

convergence to a global optimum is not guaranteed unless suitable initial conditions

hold and if the loss function has a particular structure Chizat and Bach [2018b].
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For instance, the homogeneity condition on the loss function from Chizat and Bach

[2018b] would hold if the kernel is linear in at least one of its dimensions. However,

when a characteristic kernel is required (to ensure the MMD is a distance), such a

structure can’t be exploited. Similarly, the claim that KSD flow converges globally,

[Mroueh et al., 2019, Prop. 3, Appendix B.1], requires an assumption [Mroueh et al.,

2019, Assump. A] that excludes local minima which are not global (see Section D ;

recall KSD is related to MMD). Global convergence of the flow is harder to obtain,

and will be the topic of this section. The main challenge is the lack of convexity

of F w.r.t. the Wassertein metric. We show that F is merely Λ-convex, and that

standard optimization techniques only provide a loose bound on its asymptotic value.

We next exploit a Lojasiewicz type inequality to prove convergence to the global

optimum provided that a particular quantity remains bounded at all times.

3 .1 Optimization in a (W2) non-convex setting

The displacement convexity of a functional F is an important criterion in charac-

terizing the convergence of its Wasserstein gradient flow. Displacement convexity

states that t 7→ F(ρt) is a convex function whenever (ρt)t∈[0,1] is a path of minimal

length between two distributions µ and ν (see Definition 2). Displacement convexity

should not be confused with mixture convexity, which corresponds to the usual

notion of convexity. As a matter of fact, F is mixture convex in that it satisfies:

F(tν + (1− t)ν ′) ≤ tF(ν) + (1− t)F(ν ′) for all t ∈ [0, 1] and ν, ν ′ ∈ P2(X ) (see

Lemma 67). Unfortunately, F is not displacement convex. Instead, F only satisfies

a weaker notion of displacement convexity called Λ-displacement convexity, given

in Definition 4 (Section 2 .4).

Proposition 51. Under Assumptions (A) to (C), F is Λ-displacement convex, and

satisfies

F(ρt) ≤ (1− t)F(ν) + tF(ν ′)−
∫ 1

0

Λ(ρs, vs)G(s, t) ds

for all ν, ν ′ ∈ P2(X ) and any displacement geodesic (ρt)t∈[0,1] from ν to ν ′ with

velocity vectors (vt)t∈[0,1]. The functional Λ is defined for any pair (ρ, v) with
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ρ ∈ P2(X ) and ‖v‖ ∈ L2(ρ),

Λ(ρ, v) =

∥∥∥∥∫ v(x).∇xk(x, .) dρ(x)

∥∥∥∥2

H
−
√

2λdF(ρ)
1
2

∫
‖v(x)‖2 dρ(x), (6.11)

where (s, t) 7→ G(s, t) = s(1− t)1{s ≤ t}+ t(1− s)1{s ≥ t} and λ is defined in

Assumption (C).

Proposition 51 can be obtained by computing the second time derivative of

F(ρt), which is then lower-bounded by Λ(ρt, vt) (see Section A .2.1). In (6.11), the

map Λ is a difference of two non-negative terms: thus
∫ 1

0
Λ(ρs, vs)G(s, t) ds can

become negative, and displacement convexity does not hold in general. [Carrillo et al.,

2006, Theorem 6.1] provides a convergence when only Λ-displacement convexity

holds as long as either the potential or the interaction term is convex enough. In fact,

as mentioned in [Carrillo et al., 2006, Remark 6.4], the convexity of either term could

compensate for a lack of convexity of the other. Unfortunately, this cannot be applied

for MMD since both terms involve the same kernel but with opposite signs. Hence,

even under convexity of the kernel, a concave term appears and cancels the effect of

the convex term. Moreover, the requirement that the kernel be positive semi-definite

makes it hard to construct interesting convex kernels. However, it is still possible

to provide an upper bound on the asymptotic value of F(νn) when (νn)n∈N are

obtained using (6.8). This bound is given in Theorem 52, and depends on a scalar

K(ρn) :=
∫ 1

0
Λ(ρns , v

n
s )(1− s) ds, where (ρns )s∈[0,1] is a constant speed displacement

geodesic from νn to the optimal value µ, with velocity vectors (vns )s∈[0,1] of constant

norm.

Theorem 52. Let K̄ be the average of (K(ρj))0≤j≤n. Under Assumptions (A) to (C)

and if γ ≤ 1/3L,

F(νn) ≤ W 2
2 (ν0, µ)

2γn
− K̄.

Theorem 52 is obtained using techniques from optimal transport and optimiza-

tion. It relies on Proposition 51 and Proposition 50 to prove an extended variational

inequality (see Proposition 61), and concludes using a suitable Lyapunov function.
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A full proof is given in Section A .2.2. When K̄ is non-negative, one recovers the

usual convergence rate as O( 1
n
) for the gradient descent algorithm. However, K̄ can

be negative in general, and would therefore act as a barrier on the optimal value that

F(νn) can achieve when n→∞. In that sense, the above result is similar to [Bottou

et al., 2018, Theorem 6.9]. Theorem 52 only provides a loose bound, however. In

Section 3 .2 we show global convergence, under the boundedness at all times t of a

specific distance between νt and µ.

3 .2 A condition for global convergence

The lack of convexity of F , as shown in Section 3 .1, suggests that a finer analysis

of the convergence should be performed. One strategy is to provide estimates

for the dynamics in Proposition 48 using differential inequalities which can be

solved using the Gronwall’s lemma (see Oguntuase [2001]). Such inequalities are

known in the optimization literature as Lojasiewicz inequalities (see Blanchet and

Bolte [2018]), and upper-bound F(νt) by the absolute value of its time derivative∫
‖∇fµ,νt(x)‖2 dνt(x). The latter is the squared weighted Sobolev semi-norm of fµ,νt

(see Section A .2.3), also written ‖fµ,νt‖Ḣ(νt)
. Thus one needs to find a relationship

between F(νt) = 1
2
‖fµ,νt‖2

H and ‖fµ,νt‖Ḣ(νt)
. For this purpose, we consider the

weighted negative Sobolev distance on P2(X ), defined by duality using ‖.‖Ḣ(ν) (see

also Peyre [2018]).

Definition 7. Let ν ∈ P2(X ), with its corresponding weighted Sobolev semi-norm

‖.‖Ḣ(ν). The weighted negative Sobolev distance ‖p− q‖Ḣ−1(ν) between any p and q

in P2(X ) is defined as

‖p− q‖Ḣ−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣∣∣∫ f(x) dp(x)−
∫
f(x) dq(x)

∣∣∣∣ (6.12)

with possibly infinite values.

Equation (6.12) plays a fundamental role in dynamic optimal transport. It can

be seen as the minimum kinetic energy needed to advect the mass ν to q (see Mroueh
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et al. [2019]). It is shown in Section A .2.3 that

‖fµ,νt‖2
H ≤ ‖fµ,νt‖Ḣ(νt)

‖µ− νt‖Ḣ−1(νt)
. (6.13)

Provided that ‖µ− νt‖Ḣ−1(νt)
remains bounded by some positive constant C at all

times, (6.13) leads to a functional version of Lojasiewicz inequality for F . It is then

possible to use the general strategy explained earlier to prove the convergence of the

flow to a global optimum:

Proposition 53. Under Assumption (A),

(i) If ‖µ− νt‖2
Ḣ−1(νt)

≤ C, for all t ≥ 0, then: F(νt) ≤ C
CF(ν0)−1+4t

,

(ii) If ‖µ− νn‖2
Ḣ−1(νn)

≤ C for all n ≥ 0, then: F(νn) ≤ C
CF(ν0)−1+4γ(1− 3

2
γL)n

.

Proofs of Proposition 53 (i) and (ii) are direct consequences of Propositions 48

and 50 and the bounded energy assumption: see Section A .2.3. The fact that (6.12)

appears in the context of Wasserstein flows of F is not a coincidence. Indeed, (6.12)

is a linearization of the Wasserstein distance (see Peyre [2018], Otto and Villani

[2000] and Section E ). Gradient flows of F defined under different metrics would

involve other kinds of distances instead of (6.12). For instance, Rotskoff et al. [2019]

consider gradient flows under a hybrid metric (a mixture between the Wasserstein

distance and KL divergence), where convergence rates can then be obtained provided

that the chi-square divergence χ2(µ‖νt) remains bounded. As shown in Section E

, χ2(µ‖νt)
1
2 turns out to linearize KL(µ‖νt)

1
2 when µ and νt are close. Hence, we

conjecture that gradient flows of F under a metric d can be shown to converge when

the linearization of the metric remains bounded. This can be verified on simple

examples for ‖µ− νt‖Ḣ−1(νt)
as discussed in Section B . However, it remains hard

to guarantee this condition in general. One possible approach could be to regularize

F using an estimate of (6.12). Indeed, Mroueh et al. [2019] considers the gradient

flow of a regularized version of the negative Sobolev distance which can be written

in closed form, and shows that this decreases the MMD. Combing both losses

could improve the overall convergence properties of the MMD, albeit at additional
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computational cost. In the next section, we propose a different approach to improve

the convergence, and a particle-based algorithm to approximate the MMD flow in

practice.

4 A practical algorithm to descend the MMD flow

4 .1 A noisy update as a regularization

We showed in Section 3 .1 that F is a non-convex functional, and derived a condition

in Section 3 .2 to reach the global optimum. We now address the case where such

a condition does not necessarily hold, and provide a regularization of the gradient

flow to help achieve global optimality in this scenario. Our starting point will be the

equilibrium condition in (6.10). If an equilibrium ν∗ that satisfies (6.10) happens

to have a positive density, then fµ,ν∗ would be constant everywhere. This in turn

would mean that fµ,ν∗ = 0 when the RKHS does not contain constant functions, as

for a gaussian kernel [Steinwart and Christmann, 2008, Corollary 4.44]. Hence, ν∗

would be a global optimum since F(ν∗) = 0. The limit distribution ν∗ might be

singular, however, and can even be a dirac distribution [Mei et al., 2018, Theorem 6].

Although the gradient∇fµ,ν∗ is not identically 0 in that case, (6.10) only evaluates

it on the support ν∗, on which ∇fµ,ν∗ = 0 holds. Hence a possible fix would be to

make sure that the unnormalised witness gradient is also evaluated at points outside

of the support of ν∗. Here, we propose to regularize the flow by injecting noise into

the gradient during updates of (6.9),

Xn+1 = Xn − γ∇fµ,νn(Xn + βnUn), n ≥ 0, (6.14)

where Un is a standard gaussian variable and βn is the noise level at n. Compared to

(6.8), the sample here is first blurred before evaluating the gradient. Intuitively, if

νn approaches a local optimum ν∗, ∇fµ,νn would be small on the support of νn but

it might be much larger outside of it, hence evaluating ∇fµ,νn outside the support

of νn can help in escaping the local minimum. The stochastic process (6.14) is

different from adding a diffusion term to (6.5). The latter case would correspond to
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regularizing F using an entropic term as in Mei et al. [2018], Şimşekli et al. [2019]

and was shown to converge to a global optimum that is in general different from

the global minmum of the un-regularized loss. Eq. (6.14) is also different from

Craig and Bertozzi [2016], Carrillo et al. [2019], where F (and thus its associated

velocity field) is regularized by convolving the interaction potential W in (6.4) with

a mollifier. The optimal solution of a regularized version of the functional F will be

generally different from the non-regularized one, however, which is not desirable in

our setting. Eq. (6.14) is more closely related to the continuation methods Gulcehre

et al. [2016a,b], Chaudhari et al. [2017] and graduated optimization Hazan et al.

[2016] used for non-convex optimization in Euclidian spaces, which inject noise

into the gradient of a loss function F at each iteration. The key difference is the

dependence of fµ,νn of νn, which is inherently due to functional optimization. We

show in Proposition 54 that (6.14) attains the global minimum of F provided that

the level of the noise is well controlled, with the proof given in Section A .2.4.

Proposition 54. Let (νn)n∈N be defined by (6.14) with an initial ν0. Denote

Dβn(νn) = Ex∼νn,u∼g[‖∇fµ,νn(x+ βnu)‖2] with g the density of the standard gaus-

sian distribution. Under Assumptions (A) and (D), and for a choice of βn such

that

8λ2β2
nF(νn) ≤ Dβn(νn), (6.15)

the following inequality holds:

F(νn+1)−F(νn) ≤ −γ
2

(1− 3γL)Dβn(νn), (6.16)

where λ and L are defined in Assumptions (A) and (D) and depend only on the

choice of the kernel. Moreover if
∑n

i=0 β
2
i →∞, then

F(νn) ≤ F(ν0)e−4λ2γ(1−3γL)
∑n
i=0 β

2
i .

A particular case where
∑n

i=0 β
2
i →∞ holds is when βn decays as 1/

√
n while

still satisfying (6.15). In this case, convergence occurs in polynomial time. At each
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iteration, the level of the noise needs to be adjusted such that the gradient is not

too blurred. This ensures that each step decreases the loss functional. However, βn

does not need to decrease at each iteration: it could increase adaptively whenever

needed. For instance, when the sequence gets closer to a local optimum, it is helpful

to increase the level of the noise to probe the gradient in regions where its value is not

flat. Note that for βn = 0 in (6.16) , we recover a similar bound to Proposition 50.

4 .2 The sample-based approximate scheme

We now provide a practical algorithm to implement the noisy updates in the previous

section, which employs a discretization in space. The update (6.14) involves com-

puting expectations of the gradient of the kernel k w.r.t the target distribution µ and

the current distribution νn at each iteration n. This suggests a simple approximate

scheme, based on samples from these two distributions, where at each iteration n, we

model a system of N interacting particles (X i
n)1≤i≤N and their empirical distribution

in order to approximate νn. More precisely, given i.i.d. samples (X i
0)1≤i≤N and

(Y m)1≤m≤M from ν0 and µ and a step-size γ, the approximate scheme iteratively

updates the i-th particle as

X i
n+1 = X i

n − γ∇fµ̂,ν̂n(X i
n + βnU

i
n), (6.17)

where U i
n are i.i.d standard gaussians and µ̂, ν̂n denote the empirical distributions

of (Y m)1≤m≤M and (X i
n)1≤i≤N , respectively. It is worth noting that for βn = 0,

(6.17) is equivalent to gradient descent over the particles (X i
n) using a sample based

version of the MMD. Implementing (6.17) is straightforward as it only requires to

evaluate the gradient of k on the current particles and target samples. Pseudocode

is provided in Algorithm 4. The overall computational cost of the algorithm at

each iteration is O((M +N)N) with O(M +N) memory. The computational cost

becomes O(M + N) when the kernel is approximated using random features, as

is the case for regression with neural networks (Section C ). This is in contrast to

the cubic cost of the flow of the KSD Mroueh et al. [2019], which requires solving

a linear system at each iteration. The cost can also be compared to the algorithm
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in Şimşekli et al. [2019], which involves computing empirical CDF and quantile

functions of random projections of the particles.

The approximation scheme in (6.17) is a particle version of (6.14), so one would

expect it to converge towards its population version (6.14) as M and N goes to

infinity. This is shown below.

Theorem 55. Let n ≥ 0 and T > 0. Let νn and ν̂n defined by (6.8) and (6.17)

respectively. Suppose Assumption (A) holds and that βn < B for all n, for some

B > 0. Then for any T
γ
≥ n:

E [W2(ν̂n, νn)] ≤ 1

4

(
1√
N

(B + var(ν0)
1
2 )e2LT +

1√
M
var(µ)

1
2 )

)
(e4LT − 1)

Theorem 55 controls the propagation of the chaos at each iteration, and uses

techniques from Jourdain et al. [2007]. Notice also that these rates remain true when

no noise is added to the updates, i.e. for the original flow when B = 0. A proof is

provided in Section A .3.

5 Experiments

5 .1 Student-Teacher networks

Experimental setting. We consider a student-teacher network setting similar to

Chizat and Bach [2018b]. More precisely, using the notation from Section C , we

denote by Ψ(z, ν) the neural network of the form: Ψ(z, ν) =
∫
ψ(z, x) dν(x) where

z is an input vector in Rp and ν is a probability distribution over the parameters x.

Hence Ψ is an expectation over sub-networks ψ(z, x) with parameters x. Here, we

choose ψ of the form:

ψ(z, x) = G
(
b1 +W 1σ(W 0z + b0)

)
.

where x is obtained as the concatenation of the parameters (b1,W 1, b0,W 0) ∈ X ,

σ is the ReLU non-linearity while G is a fixed function and is defined later. Note

that using x to denote the parameters of a neural network is unusual, however, we
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prefer to keep a notation which is consistent with the rest of this chapter. We will

only consider the case when ν is given by an empirical distribution of N particles

X = (x1, ...xN) for some N ∈ N. In that case, we denote by νX such distribution

to stress the dependence on the particles X , i.e.: ν := νX = 1
N

∑N
i=1 δxi . The

teacher network ΨT (z, νΞ) is given by M particles Ξ = (Ξ1, ...,ΞM) which are fixed

during training and are initially drawn according to a normal distribution N (0, 1).

Similarly, the student network ΨS(z, νX) has N particles X = (x1, ..., xN) that are

initialized according to a normal distribution N (10−3, 1). Here we choose M = 1

and N = 1000. The inputs z are drawn from a uniform distribution S on the sphere

in Rp as in Chizat and Bach [2018b] with p = 50. The number of hidden layers H is

set to 3 and the output dimension is 1. The parameters of the student networks are

trained to minimize the risk in (6.18) using SGD with mini-batches of size nb = 102

and optimal step-size γ selected from: {10−3, 10−2, 10−1}.

min
X

Ez∼S
[
(ΨT (z, νΞ)−ΨS(z, νX))2

]
(6.18)

When G is simply the identity function and no bias is used, one recovers the setting

in Chizat and Bach [2018a]. In that case the network is partially 1-homogeneous

and [Chizat and Bach, 2018a, Theorem 3.5] applies ensuring global optimality.

Here, we are interested in the case when global optimality is not guaranteed by the

homogeneity structure, hence we choose G to be a gaussian with fixed bandwidth

σ = 2. As shown in Section C , performing gradient descent to minimize (6.18) can

be seen as a particle version of the gradient flow of the MMD with a kernel given by

k(x, x′) = Ez∼S[ψ(z, x)ψ(z, x′)] and target distribution µ given by µ = νΞ. Hence

one can use the noise injection algorithm defined in (6.17) to train the parameters of

the student network. Since k is defined through an expectation over the data, it can

be approximated using nb data samples {z1, ..., zB}:

k̂(x, x′) =
1

nb

nb∑
b=1

ψ(zb, x)ψ(zb, x
′). (6.19)

Such approximation of the kernel leads to a simple expression for the gradient
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of the un-normalised witness function between νΞ and νX defined for any x ∈ X :

∇f̂νΞ,νX (x) =
1

nb

nb∑
b=1

(
1

M

M∑
j=1

ψ(zb,Ξ
j)− 1

N

N∑
i=1

ψ(zb, x
i)

)
∇xψ(zb, x).

Algorithm 5, provides the main steps to train the parameters of the student network

using the noisy gradient flow of the MMD proposed in (6.17). It can be easily

implemented using automatic differentiation packages like PyTorch. Indeed, one

only needs to compute an auxiliary loss function Faux instead of the actual MMD

loss F and perform gradient descent using Faux. Such function is given by:

Faux =
1

nb

N∑
i=1

nb∑
b=1

(
NoGrad

(
ybS
)
− ybT

)
ψ(zb, x̃in)

To compute Faux, two forward passes on the student network are required. A first

forward pass using the current parameter values Xn = (x1
n, ..., x

N
n ) of the student

network is used to compute the predictions ybS given an input zb. For such forward

pass, the gradient w.r.t to the parameters Xn is not used. This is enforced, here,

formally by calling the function NoGrad. The second forward pass is performed

using the noisy parameters x̃in = xin+βnu
i
n and requires implementing special layers

which can inject noise to the weights. This second forward pass will be used to

provide a gradient to update the particles using back-propagation. Indeed, it is easy

to see that∇xin
Faux gives exactly the gradient∇f̂νΞ,νX (x̃in) used in Algorithm 5.

Results. Figure 6.1 illustrates the behavior of the proposed algorithm (6.17) in

a simple setting and compares it with three other methods: MMD without noise

injection (blue traces), MMD with diffusion (green traces) and KSD (purple traces,

Mroueh et al. [2019]). Here, a student network is trained to produce the outputs of a

teacher network using gradient descent. More details on the experiment are provided

in Section 5 .1. As discussed in Section C , this setting can be seen as a stochastic

version of the MMD flow since the kernel is estimated using random features at each

iteration ((6.19) in Section 5 .1). Here, the MMD flow fails to converge towards

the global optimum. Such behavior is consistent with the observations in Chizat
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Figure 6.1: Comparison between different training methods for student-teacher ReLU net-
works with gaussian output non-linearity and synthetic data uniform on a hyper-
sphere. In blue, (6.17) is used without noise βn = 0 while in red noise is added
with the following schedule: β0 > 0 and βn is decreased by half after every 103

epochs. In green, a diffusion term is added to the particles with noise level kept
fixed during training (βn = β0). In purple, the KSD is used as a cost function
instead of the MMD. In all cases, the kernel is estimated using random features
(RF) with a batch size of 102. Best step-size was selected for each method from
{10−3, 10−2, 10−1} and was used for 104 epochs on a dataset of 103 samples
(RF). Initial parameters of the networks are drawn from i.i.d. gaussians: N (0, 1)
for the teacher and N (10−3, 1) for the student. Results are averaged over 10
different runs.

and Bach [2018b] when the parameters are initialized from a gaussian noise with

relatively high variance (which is the case here). On the other hand, adding noise to

the gradient seems to lead to global convergence. Indeed, the training error decreases

below 10−5 and leads to much better validation error. While adding a small diffusion

term (green) help convergence, the noise-injection (red) still outperforms it. This

also holds for KSD (purple) which leads to a good solution (b) although at a much

higher computational cost (a). Our noise injection method (red) is also robust to the

amount of noise and achieves best performance over a wide region (c). On the other

hand, MMD + diffusion (green) performs well only for much smaller values of noise

that are located in a narrow region. This is expected since adding a diffusion changes

the optimal solution, unlike the injection where the global optimum of the MMD

remains a fixed point of the algorithm.

Another illustrative experiment on a simple flow between Gaussians is given in

Section 5 .2.
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Figure 6.2: Gradient flow of the MMD from a gaussian initial distributions ν0 ∼
N (10, 0.5) towards a target distribution µ ∼ N (0, 1) using N = M = 1000
samples from µ and ν0 and a gaussian kernel with bandwidth σ = 2. (6.17) is
used without noise βn = 0 in red and with noise βn = 10 up to n = 5000, then
βn = 0 afterwards in blue. The left figure shows the evolution of the MMD at
each iteration. The middle figure shows the initial samples (black for µ), and the
right figure shows the final samples after 105 iterations with step-size γ = 0.1.

5 .2 Learning gaussians

Figure 6.2 illustrates the behavior of the proposed algorithm (6.17) in a simple setting,

and compares it with the gradient flow of the MMD without noise injection. In this

setting, the MMD flow fails to converge to the global optimum. Indeed, as shown

in Figure 6.2(right), some of the final samples (in red) obtained using noise-free

gradient updates tend to get further away from the target samples (in black). Most

of the remaining samples collapse to a unique point at the center near the origin.

This can also be seen from Figure 6.2(left) where the training error fails to decrease

below 10−3. On the other hand, adding noise to the gradient seems to lead to global

convergence, as seen visually from the samples. The training error decreases below

10−4 and oscillates between 10−8 and 10−4. The oscillation is due to the step-size,

which remained fixed while the noise was set to 0 starting from iteration 5000. It is

worth noting that adding noise to the gradient slows the speed of convergence, as one

can see from Figure 6.2(left). This is expected since the algorithm doesn’t follow

the path of steepest descent. The noise helps in escaping local optima, however, as

illustrated here.



Supplementary

A Proofs

A .1 Construction of the W2 gradient flow of the MMD

A .1.1 Existence of the continuous time flow

Existence and uniqueness of a solution to (6.5) and (6.6) is guaranteed under Lips-

chitz regularity of∇k.

Proof of Proposition 47. [Existence and uniqueness] Under Assumption (A), the

map (x, ν) 7→ ∇fµ,ν(x) =
∫
∇k(x, .)dν −

∫
∇k(x, .)dµ is Lipschitz continuous

on X × P2(X ) (endowed with the product of the canonical metric on X and W2

on P2(X )), see Proposition 63. Hence, we benefit from standard existence and

uniqueness results of McKean-Vlasov processes (see Jourdain et al. [2007]). Then,

it is straightforward to verify that the distribution of (6.6) is solution of (6.5) by

ItÃŽ’s formula (see Itô [1951]). The uniqueness of the gradient flow, given a starting

distribution ν0, results from the λ-convexity of F (for λ = 3L) which is given by

Lemma 59, and [Ambrosio et al., 2008, Theorem 11.1.4]. The existence derive from

the fact that the sub-differential of F is single-valued, as stated by (6.2), and that

any ν0 in P2(X ) is in the domain of F . One can then apply [Ambrosio et al., 2008,

Theorem 11.1.6 and Corollary 11.1.8].

Proof of Proposition 48. [Decay of the MMD] Recalling the discussion in Section 2

.3, the time derivative of F(νt) along the flow is formally given by (2.8)

dF(νt)

dt
= −D(νt) with D(ν) =

∫ ∥∥∥∥∇∂F(νt(x))

∂ν

∥∥∥∥2

νt(x)dx.
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But we know from (6.2) that the strong differential∇ δF(ν)
δν

is given by∇fµ,ν . There-

fore, one formally obtains the desired expression by exchanging the order of deriva-

tion and integration, performing an integration by parts and using the continuity

equation (see (2.7)) that we recall here:

∂ν

∂t
= div(ν∇∂F

∂ν
) = div(ν∇(U ′(ν) + V +W ∗ ν)).

We refer to Mroueh et al. [2019] for similar calculations. One can also obtain directly

the same result using the energy identity in [Ambrosio et al., 2008, Theorem 11.3.2]

which holds for λ-displacement convex functionals. The result applies here since, by

Lemma 59, we know that F is λ-displacement convex with λ = 3L.

A .1.2 Time-discretized flow

We prove that (6.8) approximates (6.5). To make the dependence on the step-size γ

explicit, we will write: νγn+1 = (I − γ∇fµ,νγn)#ν
γ
n (so νγn = νn for any n ≥ 0). We

start by introducing an auxiliary sequence ν̄γn built by iteratively applying∇fµ,νγn
where νγn is the solution of (6.5) at time t = γn:

ν̄γn+1 = (I − γ∇fµ,νγn)#ν̄
γ
n (6.20)

with ν̄0 = ν0. Note that the latter sequence involves the continuous-time process

νt of (6.5) with t = γn. Using νγn , we also consider the interpolation path ργt =

(I − (t− nγ)∇fµ,νγn)#ν
γ
n for all t ∈ [nγ, (n + 1)γ) and n ∈ N, which is the same

as in Proposition 49.

Proof of Proposition 49. Let π be an optimal coupling between νγn and νγn, and

(x, y) a sample from π. For t ∈ [nγ, (n+1)γ) we write yt = ynγ−
∫ t
nγ
∇fµ,νs(yu) du

and xt = x−(t−nγ)∇fµ,νγn(x) where ynγ = y. We also introduce the approximation

error E(t, nγ) := yt − y + (t − nγ)∇fµ,νγn(y) for which we know by Lemma 58

that E(t, nγ) := E[E(t, nγ)2]
1
2 is upper-bounded by (t− nγ)2C for some positive

constant C that depends only on T and the Lipschitz constant L. This allows to
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write:

W2(ργt , νt) ≤ E
[∥∥y − x+ (t− nγ)(∇fµ,νγn(x)−∇fµ,νγn(y)) + E(t, nγ)

∥∥2
] 1

2

≤ W2(νγn, νγn) + 4L(t− nγ)W2(νγn, νγn) + E(t, nγ)

≤ (1 + 4γL)W2(νγn, νγn) + (t− γn)2C

≤ (1 + 4γL) (W2(νγn, ν̄
γ
n) +W2(νγn, ν̄

γ
n)) + γ2C

≤ γ [(1 + 4γL)M(T ) + γC]

The second line is obtained using that ∇fµ,νγn(x) is jointly 2L-Lipschitz in x and ν

(see Proposition 63) and by the fact that W2(νγn, νγn) = Eπ[‖y − x‖2]
1
2 . The third

one is obtained using t − nγ ≤ γ. For the last inequality, we used Lemmas 56

and 57 where M(T ) is a constant that depends only on T . Hence for γ ≤ 1
4L

we get

W2(ργt , νt) ≤ γ( C
4L

+ 2M(T )).

Lemma 56. For any n ≥ 0:

W2(νγn, ν̄
γ
n) ≤ γ

C

2L
(enγ2L − 1)

Proof. Let π be an optimal coupling between ν̄γn and νγn and (x̄, x) a joint

sample from π. Consider also the joint sample (ȳ, y) obtained from (x̄ ,x) by

applying the gradient flow of F in continuous time to get y := x(n+1)γ =

xnγ −
∫ (n+1)γ

nγ
∇fµ,νs(xu) du with xnγ = x and by taking a discrete step from

x̄ to write ȳ = x̄ − γ∇fµ,νγn(x̄). It is easy to see that y ∼ νγ(n+1) (i.e. a

sample from the continous process (6.5) at time t = (n + 1)γ) and ȳ ∼ ν̄γn+1

(i.e. a sample from (6.20)). Moreover, we introduce the approximation error

E((n + 1)γ, nγ) := y − x + γ∇fµ,νγn(x) for which we know by Lemma 58 that

E((n+ 1)γ, nγ) := E[E((n+ 1)γ, nγ)2]
1
2 is upper-bounded by γ2C for some posi-

tive constant C that depends only on T and the Lipschitz constant L. Denoting by
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an = W2(νγn, ν̄
γ
n), one can therefore write:

an+1 ≤Eπ
[∥∥x− γ∇fµ,νγn(x)− x̄+ γ∇fµ,νγn(x̄) + E((n+ 1)γ, nγ)

∥∥2
] 1

2

≤Eπ
[
‖x− x̄‖2] 1

2 + γEπ
[∥∥∇fµ,νγn(x)−∇fµ,νγn(x̄))

∥∥2
] 1

2
+ γ2C

Using that ∇fµ,νγn is 2L-Lipschitz by Proposition 63 and recalling that

Eπ [‖x− x̄‖2]
1
2 = W2(νγn, ν̄

γ
n), we get the recursive inequality an+1 ≤ (1 +

2γL)an + γ2C. Finally, using Lemma 68 and recalling that a0 = 0, since by

definition ν̄γ0 = νγ0 , we conclude that an ≤ γ C
2L

(enγ2L − 1).

Lemma 57. For any T > 0 and n such that nγ ≤ T

W2(νγn, ν̄
γ
n) ≤ γ

C

8L2
(e4TL − 1)2

Proof. Consider now an optimal coupling π between ν̄γn and νγn . Similarly to

Lemma 56, we denote by (x̄, x) a joint sample from π and (ȳ, y) is obtained

from (x̄, x) by applying the discrete updates : ȳ = x̄ − γ∇fµ,νγn(x̄) and y =

x − γ∇fµ,νγn(x). We again have that y ∼ νγn+1 (i.e. a sample from the time dis-

cretized process (6.8)) and ȳ ∼ ν̄γn+1 (i.e. a sample from (6.20)). Now, denoting by

bn = W2(νγn, ν̄
γ
n), it is easy to see from the definition of ȳ and y that we have:

bn+1 ≤ Eπ
[∥∥x− γ∇fµ,νγn(x)− x̄+ γ∇fµ,νγn(x̄)

∥∥2
] 1

2

≤ (1 + 2γL)Eπ
[
‖x− x̄‖2] 1

2 + 2γLW2(νγn, νγn))

≤ (1 + 4γL)bn + γLW2(ν̄γn, νγn)

The second line is obtained recalling that ∇fµ,ν(x) is 2L-Lipschitz in both x and

ν by Proposition 63. The third line follows by triangular inequality and using

Eπ
[
‖x− x̄‖2] 1

2 = W2(νγn, ν̄
γ
n) = bn, since π is an optimal coupling between ν̄γn and

νγn . By Lemma 56, we have W2(ν̄γn, νγn) ≤ γ C
2L

(e2nγL − 1), hence, for any n such

that nγ ≤ T we get the recursive inequality

bn+1 ≤ (1 + 4γL)bn + (C/2L)γ2(e2TL − 1).
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Finally, using again Lemma 68, it follows that bn ≤ γ C
8L2 (e4TL − 1)2.

Lemma 58. [Taylor expansion] Consider the process ẋt = −∇fµ,νt(xt), and denote

by E(t, s) = E[‖xt − xs + (t− s)∇fµ,νs(xs)‖2]
1
2 for 0 ≤ s ≤ t ≤ T . Then one has:

E(t, s) ≤ 2L2r0e
LT (t− s)2

with r0 = E(x,z)∼ν0⊗µ[‖x− z‖]

Proof. By definition of xt and E(t, s) one can write:

E(t, s) = E

[∥∥∥∥∫ t

s

(∇fµ,νs(xs)−∇fµ,νu(xu)) du

∥∥∥∥2
] 1

2

≤
∫ t

s

E
[
‖(∇fµ,νs(xs)−∇fµ,νu(xu))‖2] 1

2 du

≤ 2L

∫ t

s

E
[
(‖xs − xu‖+W2(νs, νu))

2
] 1

2 du ≤ 4L

∫ t

s

E
[
‖xs − xu‖2] 1

2 du

Where we used an integral expression for xt in the first line then applied a tri-

angular inequality for the second line. The last line is obtained recalling that

∇fµ,ν(x) is jointly 2L-Lipschitz in x and ν by Proposition 63 and that W2(νs, νu) ≤

E
[
‖xs − xu‖2] 1

2 . Now we use again an integral expression for xu which further

gives:

E(t, s) ≤4L

∫ t

s

E

[∥∥∥∥∫ u

s

∇fµ,νl(xl) dl

∥∥∥∥2
] 1

2

du

≤4L

∫ t

s

∫ u

s

E
[
‖E [∇1k(xl, x

′
l)−∇1k(xl, z)]‖2

] 1
2

dl du

≤4L2

∫ t

s

∫ u

s

E [‖x′l − z‖] dl du

Again, the second line is obtained using a triangular inequality and recalling the

expression of∇fµ,ν(x) from Proposition 63. The last line uses that∇k isL-Lipschitz

by Assumption (A). Now we need to make sure that ‖x′l − z‖ remains bounded at

finite times. For this we will first show that rt = E[‖xt − z‖] satisfies an integro-
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differential inequality:

rt ≤E
[∥∥∥∥x0 − z −

∫ t

0

∇fµ,νs(xs) ds

∥∥∥∥]
≤r0 +

∫ t

0

E [‖∇1k(xs, x
′
s)−∇1k(xs, z)‖] ds ≤ r0 + L

∫ t

0

rs ds

Again, we used an integral expression for xt in the first line, then a triangular

inequality recalling the expression of ∇fµ,νs . The last line uses again that ∇k is

L-Lipschitz. By Gronwall’s lemma it is easy to see that rt ≤ r0e
Lt at all times.

Moreover, for all t ≤ T we have a fortiori that rt ≤ r0e
LT . Recalling back the

upper-bound on E(t, s) we have finally:

E(t, s) ≤ 4L2r0e
LT

∫ t

s

∫ u

s

dl du = 2L2r0e
LT (t− s)2

We show now that (6.8) decreases the functional F . In all the proofs, the

step-size γ is fixed.

Proof of Proposition 50. Consider a path between νn and νn+1 of the form ρt =

(I − γt∇fµ,νn)#νn. We know by Proposition 63 that ∇fµ,νn is 2L Lipschitz, thus

by Lemma 64 and using φ(x) = −γ∇fµ,νn(x), ψ(x) = x and q = νn it follows that

F(ρt) is differentiable and hence absolutely continuous. Therefore one can write:

F(ρ1)−F(ρ0) = Ḟ(ρ0) +

∫ 1

0

Ḟ(ρt)− Ḟ(ρ0)dt. (6.21)

Moreover, Lemma 64 also allows to write:

Ḟ(ρ0) = −γ
∫
‖∇fµ,νn(x)‖2dνn(x);

|Ḟ(ρt)− Ḟ(ρ0)| ≤ 3Ltγ2

∫
‖∇fµ,νn(X)‖2dνn(X).

where t ≤ 1. Hence, the result follows directly by applying the above expression to

(6.21).
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A .2 Convergence of the W2 gradient flow of the MMD

A .2.1 Λ-displacement convexity of the MMD

We provide now a proof of Proposition 51:

Proof of Proposition 51. [Λ- displacement convexity of the MMD] To prove that

ν 7→ F(ν) is Λ-convex we need to compute the second time derivative F̈(ρt) where

(ρt)t∈[0,1] is a displacement geodesic between two probability distributions ν0 and ν1

as defined in (2.1):

ρt = (st)#π
∗, st(x, y) = (1− t)x+ ty.

Such geodesic always exists and can be written as ρt = (st)#π with st = x+t(y−x)

for all t ∈ [0, 1] and π is an optimal coupling between ν0 and ν1 (Santambrogio

[2015], Theorem 5.27). We denote by Vt the corresponding velocity vector defined

by the continuity equation:

∂tρt + div(ρtVt) = 0 ∀t ∈ [0, 1].

Recall that F(ρt) = 1
2
‖fµ,ρt‖2

H, with fµ,ρt defined in (6.1). We start by computing

the first derivative of t 7→ F(ρt). Since Assumptions (A) and (B) hold, Lemma 65

applies for φ(x, y) = y − x, ψ(x, y) = x and q = π, thus we know that F̈(ρt) is

well defined and given by:

F̈(ρt) =E
[
(y − x)T∇1∇2k(st(x, y), st(x

′, y′))(y′ − x′)
]

+ E
[
(y − x)T (H1k(st(x, y), st(x

′, y′))−H1k(st(x, y), z))(y − x)
](6.22)

Moreover, Assumption (C) also holds which means by Lemma 65 that the second

term in (6.22) can be lower-bounded by −
√

2λdF(ρt)E[‖y − x‖2] so that:

F̈(ρt) = E
[
(y − x)T∇1∇2k(st(x, y), st(x

′, y′))(y′ − x′)
]
−
√

2λdF(ρt)E[‖y−x‖2]

Recall now that (ρt)t∈[0,1] is a constant speed geodesic with velocity vector (Vt)t∈[0,1]
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thus by a change of variable, one further has:

F̈(ρt) ≥
∫ [

V T
t (x)∇1∇2k(x, x′)Vt(x

′)
]

dρt(x)−
√

2λdF(ρt)

∫
‖Vt(x)‖2 dρt(x).

Now we can introduce the function Λ(ρ, v) = 〈v, (Cρ −
√

2λdF(ρ)
1
2 I)v〉L2(ρ)

which is defined for any pair (ρ, v) with ρ ∈ P2(X ) and v a square integrable

vector field in L2(ρ) and where Cρ is a non-negative operator given by (Cρv)(x) =∫
∇x∇x′k(x, x′)v(x′)dρ(x′) for any x ∈ X . This allows to write F̈(ρt) ≥ Λ(ρt, Vt).

It is clear that Λ(ρ, .) is a quadratic form on L2(ρ) and satisfies the requirement

in Definition 3. Finally, using Lemma 66 and Definition 4 we conclude that F

is Λ-convex. Moreover, by the reproducing property we also know that for all

ρ ∈ P2(X ):

Eρ
[
v(x)T∇1∇2k(x, x′)v(x′)

]
= Eρ

[〈
v(x)T∇1k(x, .), v(x′)T∇1k(x′, .)

〉
H

]
.

By Bochner integrability of v(x)T∇1k(x, .) it is possible to exchange the order of

the integral and the inner-product [Retherford, 1978, Theorem 6]. This leads to the

expression ‖E[v(x)T∇1k(x, .)]‖2
H. Hence Λ(ρ, v) has a second expression of the

form:

Λ(ρ, v) =
∥∥Eρ [v(x)T∇1k(x, .)

]∥∥2

H −
√

2λdF(ρ)
1
2Eρ

[
‖v(x)‖2] .

We also provide a result showing Λ convexity for F only under Assumption (A):

Lemma 59 (Λ-displacement convexity). Under Assumption (A), for any ν, ν ′ ∈

P2(X ) and any constant speed geodesic ρt from ν to ν ′, F satisfies for all 0 ≤ t ≤ 1:

F(ρt) ≤ (1− t)F(ν) + tF(ν ′) + 3LW 2
2 (ν, ν ′)

Proof. Let ρt be a constant speed geodesic of the form ρt = st#π where π is an

optimal coupling between ν and ν ′ and st(x, y) = x+t(y−x). Since Assumption (A)
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holds, one can apply Lemma 64 with ψ(x, y) = x, φ(x, y) = y − x and q = π.

Hence, one has that F(ρt) is differentiable and its differential satisfies:

|Ḟ(ρt)− Ḟ(ρs)| ≤ 3L|t− s|
∫
‖y − x‖2 dπ(x, y)

This implies that Ḟ(ρt) is Lipschitz continuous and therefore is differentiable for

almost all t ∈ [0, 1] by Rademacher’s theorem. Hence, F̈(ρt) is well defined for

almost all t ∈ [0, 1]. Moreover, from the above inequality it follows that F̈(ρt) ≥

−3L
∫
‖y−x‖2 dπ(x, y) = −3LW 2

2 (ν, ν ′) for almost all t ∈ [0, 1]. Using Lemma 66

it follows directly that F satisfies the desired inequality.

A .2.2 Descent up to a barrier

To provide a proof of Theorem 52, we need the following preliminary results. Firstly,

an upper-bound on a scalar product involving ∇fµ,ν for any µ, ν ∈ P2(X ) in

terms of the loss functional F , is obtained using the Λ-displacement convexity of

F in Lemma 60. Then, an EVI (Evolution Variational Inequality) is obtained in

Proposition 61 on the gradient flow of F in W2. The proof of the theorem is given

afterwards.

Lemma 60. Let ν be a distribution in P2(X ) and µ the target distribution such

that F(µ) = 0. Let π be an optimal coupling between ν and µ, and (ρt)t∈[0,1] the

displacement geodesic defined by (2.1)

ρt = (st)#π
∗, st(x, y) = (1− t)x+ ty.

Let (Vt)t∈[0,1] be the velocity vector corresponding to ρt as defined by the continuity

equation

∂tρt + div(ρtVt) = 0 ∀t ∈ [0, 1].

Finally let ∇fν,µ(X) be the gradient of the unnormalised witness function between
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µ and ν. The following inequality holds:

∫
∇fµ,ν(x).(y − x)dπ(x, y) ≤ F(µ)−F(ν)−

∫ 1

0

Λ(ρs, Vs)(1− s)ds

where Λ is defined Proposition 51.

Proof. Recall that for all t ∈ [0, 1], ρt is given by ρt = (st)#π with st = x+t(y−x).

By Λ-convexity of F the following inequality holds:

F(ρt) ≤ (1− t)F(ν) + tF(µ)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds

Hence by bringing F(ν) to the l.h.s and dividing by t and then taking its limit at 0 it

follows that:

Ḟ(ρt)|t=0 ≤ F(µ)−F(ν)−
∫ 1

0

Λ(ρs, Vs)(1− s)ds. (6.23)

where Ḟ(ρt) = dF(ρt)/dt and since limt→0G(s, t) = (1 − s). Moreover, under

Assumption (A), Lemma 64 applies for φ(x, y) = y − x, ψ(x, y) = x and q =

π. It follows therefore that Ḟ(ρt) is differentiable with time derivative given by:

Ḟ(ρt) =
∫
∇fµ,ρt(st(x, y)).(y − x) dπ(x, y). Hence at t = 0 we get: Ḟ(ρt)|t=0 =∫

∇fµ,ν(x).(y−x) dπ(x, y) which shows the desired result when used in (6.23).

Proposition 61. Consider the sequence of distributions νn obtained from (6.8). For

n ≥ 0, consider the scalar K(ρn) :=
∫ 1

0
Λ(ρns , V

n
s )(1 − s) ds where (ρns )0≤s≤1

is a constant speed displacement geodesic from νn to the optimal value µ with

velocity vectors (V n
s )0≤s≤1. If γ ≤ 1/L, where L is the Lispchitz constant of ∇k in

Assumption (A), then:

2γ(F(νn+1)−F(µ)) ≤ W 2
2 (νn, µ)−W 2

2 (νn+1, µ)− 2γK(ρn).

Proof. Let Πn be the optimal coupling between νn and µ, then the optimal transport
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between νn and µ is given by:

W 2
2 (µ, νn) =

∫
‖X − Y ‖2dΠn(νn, µ)

Moreover, consider Z = X − γ∇fµ,νn(X) where (X, Y ) are samples from πn. It is

easy to see that (Z, Y ) is a coupling between νn+1 and µ, therefore, by definition of

the optimal transport map between νn+1 and µ it follows that:

W 2
2 (νn+1, µ) ≤

∫
‖X − γ∇fµ,νn(X)− Y ‖2dπn(νn, µ) (6.24)

By expanding the r.h.s in (6.24), the following inequality holds:

W 2
2 (νn+1, µ) ≤ W 2

2 (νn, µ)− 2γ

∫
〈∇fµ,νn(X), X − Y 〉dπn(νn, µ) + γ2D(νn)

where D(νn) =
∫
‖∇fµ,νn(X)‖2dνn. By Lemma 60 it holds that:

−2γ

∫
∇fµ,νn(X).(X − Y )dπ(ν, µ) ≤ −2γ (F(νn)−F(µ) +K(ρn))

where (ρnt )0≤t≤1 is a constant-speed geodesic from νn to µ and K(ρn) :=∫ 1

0
Λ(ρns , v

n
s )(1 − s)ds. Note that when K(ρn) ≤ 0 it falls back to the convex

setting. Therefore, the following inequality holds:

W 2
2 (νn+1, µ) ≤ W 2

2 (νn, µ)− 2γ (F(νn)−F(µ) +K(ρn)) + γ2D(νn)

Now we introduce a term involving F(νn+1). The above inequality becomes:

W 2
2 (νn+1, µ) ≤W 2

2 (νn, µ)− 2γ (F(νn+1)−F(µ) +K(ρn))

+ γ2D(νn)− 2γ(F(νn)−F(νn+1)) (6.25)

It is possible to upper-bound the last two terms on the r.h.s. by a negative quantity

when the step-size is small enough. This is mainly a consequence of the smoothness

of the functional F and the fact that νn+1 is obtained by following the steepest
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direction of F starting from νn. Proposition 50 makes this statement more precise

and enables to get the following inequality:

γ2D(νn)− 2γ(F(νn)−F(νn+1) ≤ −γ2(1− 3γL)D(νn), (6.26)

where L is the Lispchitz constant of∇k. Combining (6.25) and (6.26) we finally get:

2γ(F(νn+1)−F(µ)) + γ2(1− 3γL)D(νn) ≤W 2
2 (νn, µ)−W 2

2 (νn+1, µ)

− 2γK(ρn).

and under the condition γ ≤ 1/(3L) we recover the desired result.

We can now give the proof of the Theorem 52.

Proof of Theorem 52. Consider the Lyapunov function Lj = jγ(F(νj)− F(µ)) +

1
2
W 2

2 (νj, µ) for any iteration j. At iteration j + 1, we have:

Lj+1 =jγ(F(νj+1)−F(µ)) + γ(F(νj+1)−F(µ)) +
1

2
W 2

2 (νj+1, µ)

≤jγ(F(νj+1)−F(µ)) +
1

2
W 2

2 (νj, µ)− γK(ρj)

≤jγ(F(νj)−F(µ)) +
1

2
W 2

2 (νj, µ)− γK(ρj)

− jγ2(1− 3

2
γL)

∫
‖∇fµ,νj(X)‖2dνj

≤Lj − γK(ρj).

where we used Proposition 61 and Proposition 50 successively for the two first

inequalities. We thus get by telescopic summation:

Ln ≤ L0 − γ
n−1∑
j=0

K(ρj)

Let us denote K̄ the average value of (K(ρj))0≤j≤n over iterations up to n. We can
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now write the final result:

F(νn)−F(µ) ≤ W 2
2 (ν0, µ)

2γn
− K̄

A .2.3 Lojasiewicz type inequalities

Given a probability distribution ν, the weighted Sobolev semi-norm is defined for all

squared integrable functions f in L2(ν) as ‖f‖Ḣ(ν) =
(∫
‖∇f(x)‖2 dν(x)

) 1
2 with

the convention ‖f‖Ḣ(ν) = +∞ if f does not have a square integrable gradient. The

Negative weighted Sobolev distance ‖.‖Ḣ−1(ν) is then defined on distributions as the

dual norm of ‖.‖Ḣ(ν). For convenience, we recall the definition of ‖.‖Ḣ−1(ν):

Definition 8. Let ν ∈ P2(X ), with its corresponding weighted Sobolev semi-norm

‖.‖Ḣ(ν). The weighted negative Sobolev distance ‖p− q‖Ḣ−1(ν) between any p and q

in P2(X ) is defined as

‖p− q‖Ḣ−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣∣∣∫ f(x) dp(x)−
∫
f(x) dq(x)

∣∣∣∣
with possibly infinite values.

There are several possible choices for the set of test functions f . While it is

often required that f vanishes at the boundary (see Mroueh et al. [2019]), we do not

make such restriction and rather use the definition from Peyre [2018]. We refer to

Shestakov and Shlapunov [2009] for more discussion on the relationship between

different choices for the set of test functions.

We provide now a proof for Proposition 53.

Proof of Proposition 53. This proof follows simply from the definition of the neg-

ative Sobolev distance. Under Assumption (A), the kernel has at most quadratic

growth hence, for any µ, ν ∈ P2(X )2, fµ,ν ∈ L2(ν). Consider g = ‖fµ,νt‖−1

Ḣ(νt)
fµ,νt ,
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then g ∈ L2(νt) and ‖g‖Ḣ(νt)
≤ 1. Therefore, we directly have:

∣∣∣∣∫ g dνt −
∫
g dµ

∣∣∣∣ ≤ ‖νt − µ‖Ḣ−1(νt)
(6.27)

Now, recall the definition of g, which implies that∣∣∣∣∫ g dνt −
∫
g dµ

∣∣∣∣ = ‖∇fµ,νt‖
−1
L2(νt)

∣∣∣∣∫ fµ,νt dνt −
∫
fµ,νt dµ

∣∣∣∣ . (6.28)

Moreover, we have that
∫
fµ,νt dνt −

∫
fµ,νt dµ = ‖fµ,νt‖2

H, since fµ,νt is the unnor-

malised witness function between νt and µ. Combining (6.27) and (6.28) we thus

get the desired Lojasiewicz inequality on fµ,νt:

‖fµ,νt‖2
H ≤ ‖fµ,νt‖Ḣ(νt)

‖µ− νt‖Ḣ−1(νt)

where ‖fµ,νt‖Ḣ(νt)
= ‖∇fµ,νt‖L2(νt) by definition. Then, using Proposition 48 and

recalling by assumption that: ‖µ− νt‖2
Ḣ−1(νt)

≤ C, we have:

Ḟ(νt) = −‖∇fµ,νt‖2
L2(νt) ≤ −

1

C
‖fµ,νt‖4

H = − 4

C
F(νt)

2 (6.29)

It is clear that if F(ν0) > 0 then F(νt) > 0 at all times by uniqueness of the solution.

Hence, one can divide by F(νt)
2 and integrate the inequality from 0 to some time t.

The desired inequality is obtained by simple calculations.

Then, using Proposition 50 and (6.29) where νt is replaced by νn it follows:

F(νn+1)−F(νn) ≤ −γ
(

1− 3

2
Lγ

)
‖∇fµ,νn‖2

L2(νn) ≤ −
4

C
γ

(
1− 3

2
γL

)
F(νn)2.

Dividing by both sides of the inequality by F(νn)F(νn+1) and recalling that

F(νn+1) ≤ F(νn) it follows directly that:

1

F(νn)
− 1

F(νn+1)
≤ − 4

C
γ

(
1− 3

2
γL

)
.

The proof is concluded by summing over n and rearranging the terms.
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A .2.4 Noisy Gradient flow of the MMD

Proof of Proposition 54. To simplify notations, we write Dβn(νn) =
∫
‖V (x +

βnu)‖2g(u) dνn du where V := ∇fµ,νn and g is the density of a standard gaus-

sian. The symbol ⊗ denotes the product of two independent probability distributions.

Recall that a sample xn+1 from νn+1 is obtained using xn+1 = xn − γV (xn + βnun)

where xn is a sample from νn and un is a sample from a standard gaussian distri-

bution that is independent from xn. Moreover, by assumption βn is a non-negative

scalar satisfying:

8λ2β2
nF(νn) ≤ Dβn(νn) (6.30)

Consider now the map (x, u) 7→ st(x) = x−γtV (x+βnu) for 0 ≤ t ≤ 1, then νn+1

is obtained as a push-forward of νn ⊗ g by s1: νn+1 = (s1)#(νn ⊗ g). Moreover,

the curve ρt = (st)#(νn ⊗ g) is a path from νn to νn+1. We know by Proposition 63

that ∇fµ,νn is 2L-Lipschitz, thus using φ(x, u) = −γV (x+ βnu), ψ(x, u) = x and

q = νn ⊗ g in Lemma 64 it follows that F(ρt) is differentiable in t with:

Ḟ(ρt) =

∫
∇fµ,ρt(st(x)).(−γV (x+ βnu))g(u) dνn(x) du

Moreover, Ḟ(ρ0) is given by Ḟ(ρ0) = −γ
∫
V (x).V (x + βnu)g(u) dνn(x) du and

the following estimate holds:

|Ḟ(ρt)− Ḟ(ρ0)| ≤ 3γ2Lt

∫
‖V (x+ βnu)‖2g(u) dνn(x) du = 3γ2LtDβn(νn).

(6.31)

Using the absolute continuity of F(ρt), one has F(νn+1) − F(νn) = Ḟ(ρ0) +∫ 1

0
Ḟ(ρt)− Ḟ(ρ0) dt. Combining with (6.31) and using the expression of Ḟ(ρ0), it

follows that:

F(νn+1)−F(νn) ≤ −γ
∫
V (x).V (x+ βnu)g(u) dνn(x) du+

3

2
γ2LDβn(νn).

(6.32)
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Adding and subtracting γDβn(νn) in (6.32) it follows directly that:

F(νn+1)−F(νn) ≤− γ(1− 3

2
γL)Dβn(νn)

+ γ

∫
(V (x+ βnu)− V (x)).V (x+ βnu)g(u) dνn(x) du

(6.33)

We shall control now the last term in (6.33). Recall now that for all 1 ≤ i ≤ d,

Vi(x) = ∂ifµ,νn(x) = 〈fµ,νn , ∂ik(x, .)〉 where we used the reproducing property

for the derivatives of fµ,νn in H (see Section 1 ). Therefore, it follows by Cauchy-

Schwartz inH and using Assumption (D):

‖V (x+ βnu)− V (x)‖2 ≤ ‖fµ,νn‖2
H

(
d∑
i=1

‖∂ik(x+ βnu, .)− ∂ik(x, .)‖2
H

)
≤ λ2β2

n‖fµ,νn‖2
H‖u‖2

for all x, u ∈ X . Now integrating both sides w.r.t. νn and g and recalling that g is a

standard gaussian, we have:

∫
‖V (x+ βnu)− V (x)‖2g(u) dνn(x) du ≤ λ2β2

n‖fµ,νn‖2
H

Getting back to (6.33) and applying Cauchy-Schwarz in L2(νn ⊗ g) it follows:

F(νn+1)−F(νn) ≤− γ(1− 3

2
γL)Dβn(νn) + γλβn‖fµ,νn‖HD

1
2
βn

(νn)

It remains to notice that ‖fµ,νn‖2
H = 2F(νn) and that βn satisfies (6.30) to get:

F(νn+1)−F(νn) ≤ −γ
2

(1− 3

2
γL)Dβn(νn).

We introduce now Γ = 4γ(1 − 3
2
γL)λ2 to simplify notation and prove the second

inequality. Using (6.30) again in the above inequality we directly have: F(νn+1)−

F(νn) ≤ −Γβ2
nF(νn). One can already deduce that Γβ2

n is necessarily smaller than
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1. Hence, taking F(νn) to the r.h. side and iterating over n it follows that:

F(νn) ≤ F(ν0)
n−1∏
i=0

(1− Γβ2
n)

Simply using that 1 − Γβ2
n ≤ e−Γβ2

n leads to the desired upper-bound F(νn) ≤

F(ν0)e−Γ
∑n−1
i=0 β2

n .

A .3 Asymptotic properties of the particle algorithms

Proof of Theorem 55. Let (uin)1≤i≤N be i.i.d standard gaussian variables and

(xi0)1≤i≤N i.i.d. samples from ν0. We consider (xin)1≤i≤N the particles obtained

using the approximate scheme (6.17): xin+1 = xin − γ∇fµ̂,ν̂n(xin + βnu
i
n) starting

from (xi0)1≤i≤N , where ν̂n is the empirical distribution of these N interacting parti-

cles. Similarly, we denote by (x̄in)1≤i≤N the particles obtained using the exact update

equation (6.14): x̄in+1 = x̄in − γ∇fµ,νn(x̄in + βnu
i
n) also starting from (xi0)1≤i≤N .

By definition of νn we have that (x̄in)1≤i≤N are i.i.d. samples drawn from νn with

empirical distribution denoted by ν̄n. We will control the expected error cn defined

as c2
n = 1

N

∑N
i=1 E [‖xin − x̄in‖2]. By recursion, we have:

cn+1 =
1√
N

(
N∑
i=1

E
[∥∥xin − x̄in − γ (∇fµ̂,ν̂n(xin + βnu

i
n)−∇fµ,νn(x̄in + βnu

i
n)
)∥∥2
]) 1

2

≤cn +
γ√
N

[
N∑
i=1

Ei

] 1
2

+
γ√
N

[
N∑
i=1

Gi

] 1
2

+
γ√
N

(
N∑
i=1

E
[∥∥∇fµ,ν̂n (xin + βnu

i
n

)
−∇fµ,ν̄n

(
x̄in + βnu

i
n

)∥∥2
]) 1

2

≤cn + 2γL
(
cn + E

[
W2(ν̂n, ν̄n)2

] 1
2

)
+

γ√
N

[
N∑
i=1

Ei

] 1
2

+
γ√
N

[
N∑
i=1

Gi

] 1
2

where the second line follows from a simple triangular inequality and the last line is

obtained recalling that∇fµ,ν(x) is jointly 2L Lipschitz in x and ν by Proposition 63.

Here, Ei represents the error between ν̄n and νn while Gi represents the error between
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µ̂ and µ and are given by:

Ei = E
[∥∥∇fµ,ν̄n(x̄in + βnu

i
n)−∇fµ,νn(x̄in + βnu

i
n)
∥∥2
]

Gi = E
[∥∥∇fµ̂,ν̂n(xin + βnu

i
n)−∇fµ,ν̂n(xin + βnu

i
n)
∥∥2
]

We will first control the error term Ei. To simplify notations, we write yi = x̄in+βnu
i
n.

Recalling the expression of∇fµ,ν from Proposition 63 and expanding the squared

norm in Ei, it follows:

Ei = E

∥∥∥∥∥ 1

N

N∑
j=1

∇k(yi, x̄jn)−
∫
∇k(yi, x)dνn(x)

∥∥∥∥∥
2


=
1

N2

N∑
j=1

E

[∥∥∥∥∇k(yi, x̄jn)−
∫
∇k(yi, x)dνn(x)

∥∥∥∥2
]

≤ L2

N2

N∑
j=1

E

[∥∥∥∥x̄jn − ∫ xdνn(x)

∥∥∥∥2
]

=
L2

N
var(νn).

The second line is obtained using the independence of the auxiliary samples

(x̄in)1≤i≤N and recalling that they are distributed according to νn. The last line

uses the fact that∇k(y, x) is L-Lipshitz in x by Assumption (A). To control the vari-

ance var(νn) we use Lemma 62 which implies that var(νn)
1
2 ≤ (B+ var(ν0)

1
2 )eLT

for all n ≤ 2T
γ

. For Gi, it is sufficient to expand again the squared norm and recall that

∇k(y, x) is L-Lipschitz in x which then implies that Gi ≤ L2

M
var(µ). Finally, one

can observe that E[W 2
2 (ν̂n, ν̄n)] ≤ 1

N

∑N
i=1 E [‖xin − x̄in‖2] = c2

n, hence cn satisfies

the recursion:

cn+1 ≤ (1 + 4γL)cn +
γL√
N

(B + var(ν0)
1
2 )e2LT +

γL√
M
var(µ).

Using Lemma 68 to solve the above inequality, it follows that:

cn ≤
1

4

(
1√
N

(B + var(ν0)
1
2 )e2LT +

1√
M
var(µ))

)
(e4LT − 1)
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Lemma 62. Consider an initial distribution ν0 with finite variance, a sequence

(βn)n≥0 of non-negative numbers bounded by B < ∞ and define the sequence of

probability distributions νn of the process (6.14):

xn+1 = xn − γ∇fµ,νn(xn + βnun) x0 ∼ ν0

where (un)n≥0 are standard gaussian variables. Under Assumption (A), the variance

of νn satisfies for all T > 0 and n ≤ T
γ

the following inequality:

var(νn)
1
2 ≤ (B + var(ν0)

1
2 )e2TL

Proof. Let g be the density of a standard gaussian. Denote by (x, u) and (x′, u′) two

independent samples from νn ⊗ g. The idea is to find a recursion from var(νn) to

var(νn+1):

var(νn+1)
1
2 =

(
E
[
‖x− E [x′]− γ∇fµ,νn(x+ βnu) + γE [∇fµ,νn(x′ + βnu

′)]‖2
]) 1

2

≤ var(νn)
1
2 + γ

(
E
[
‖∇fµ,νn(x+ βnu)− E [∇fµ,νn(x′ + βnu

′)]‖2
]) 1

2

≤ var(νn)
1
2 + 2γLEx,x′∼νn

u,u′∼g

[
‖x+ βnu− x′ + βnu

′‖2
] 1

2

≤ var(νn)
1
2 + 2γL(var(νn)

1
2 + βn)

The second and last lines are obtained using a triangular inequality while the third

line uses that∇fµ,νn(x) is 2L-Lipschitz in x by Proposition 63. Recalling that βn is

bounded by B it is easy to conclude using Lemma 68.

A .4 Auxiliary results

Proposition 63. Under Assumption (A), the unnormalised witness function fµ,ν

between any probability distributions µ and ν in P2(X ) is differentiable and satisfies:

∇fµ,ν(z) =

∫
∇1k(z, x) dµ(x)−

∫
∇1k(z, x) dν(x) ∀z ∈ X (6.34)
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where z 7→ ∇1k(x, z) denotes the gradient of z 7→ k(x, z) for a fixed x ∈ X .

Moreover, the map (z, µ, ν) 7→ fµ,ν(z) is Lipschitz with:

‖∇fµ,ν(z)−∇fµ′,ν′(z′)‖ ≤ 2L(‖z − z′‖+W2(µ, µ′) +W2(ν, ν ′))

Finally, each component of∇fµ,ν belongs toH.

Proof. The expression of the unnormalised witness function is given in (6.1). To

establish (6.34), we simply need to apply the differentiation lemma [Klenke, 2008,

Theorem 6.28]. By Assumption (A), it follows that (x, z) 7→ ∇1k(z, x) has at most

a linear growth. Hence on any bounded neighborhood of z, x 7→ ‖∇1k(z, x)‖ is

upper-bounded by an integrable function w.r.t. µ and ν. Therefore, the differentiation

lemma applies and∇fµ,ν(z) is differentiable with gradient given by (6.34).

To prove the second statement, we will consider two optimal couplings: π1 with

marginals µ and µ′ and π2 with marginals ν and ν ′. We use (6.34) to write:

‖∇fµ,ν(z)−∇fµ′,ν′(z′)‖

= ‖Eπ1 [∇1k(z, x)−∇1k(z′, x′)]− Eπ2 [∇1k(z, y)−∇1k(z′, y′)]‖

≤Eπ1 [‖∇1k(z, x)−∇1k(z′, x′)‖] + Eπ2 [‖∇1k(z, y)−∇1k(z′, y′)‖]

≤L (‖z − z′‖+ Eπ1 [‖x− x′‖] + ‖z − z′‖+ Eπ2 [‖y − y′‖])

≤L(2‖z − z′‖+W2(µ, µ′) +W2(ν, ν ′))

The second line is obtained by convexity while the third one uses Assumption (A)

and finally the last line relies on π1 and π2 being optimal. The desired bound is

obtained by further upper-bounding the last two terms by twice their amount.

Lemma 64. Let U be an open set, q a probability distribution in P2(X × U) and ψ

and φ two measurable maps from X × U to X which are square-integrable w.r.t q.

Consider the path ρt from (ψ)#q and (ψ + φ)#q given by: ρt = (ψ + tφ)#q ∀t ∈

[0, 1]. Under Assumption (A), F(ρt) is differentiable in t with

Ḟ(ρt) =

∫
∇fµ,ρt(ψ(x, u) + tφ(x, u))φ(x, u) dq(x, u)
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where fµ,ρt is the unnormalised witness function between µ and ρt as defined in (6.1).

Moreover:

∣∣∣Ḟ(ρt)− Ḟ(ρs)
∣∣∣ ≤ 3L |t− s|

∫
‖φ(x, u)‖2 dq(x, u)

Proof. For simplicity, we write ft instead of fµ,ρt and denote by st(x, u) = ψ(x, u)+

tφ(x, u) The function h : t 7→ k(st(x, u), st(x
′, u′))−k(st(x, u), z)−k(st(x

′, u′), z)

is differentiable for all (x, u),(x′, u′) in X × U and z ∈ X . Moreover, by Assump-

tion (A), a simple computation shows that for all 0 ≤ t ≤ 1:∣∣∣∣dhdt
∣∣∣∣ ≤L [(‖z − φ(x, u)‖+ ‖ψ(x, u)‖) ‖φ(x′, u′)‖]

+ L [(‖z − φ(x′, u′)‖+ ‖ψ(x′, u′)‖) ‖φ(x, u)‖]

The right hand side of the above inequality is integrable when z, (x, u) and (x′, u′)

are independent and such that z ∼ µ and both (x, u) and (x′, u′) are distributed

according to q. Therefore, by the differentiation lemma [Klenke, 2008, Theorem

6.28] it follows that F(ρt) is differentiable and:

Ḟ(ρt) = E [(∇1k(st(x, u), st(x
′, u′))−∇1k(st(x, u), z)).φ(x, u)] .

By Proposition 63, we directly get Ḟ(ρt) =
∫
∇fµ,ρt(ψ(x, u)+tφ(x, u))φ(x, u) dq(x, u).

We shall control now the difference |Ḟ (ρt) − Ḟ(ρt′)| for 0 ≤ t, t′ ≤ 1. Using As-

sumption (A) and recalling that st(x, u) − st′(x, u) = (t − t′)φ(x, u) a simple

computation shows:

∣∣∣Ḟ(ρt)− Ḟ(ρt′)
∣∣∣ ≤ L |t− t′|E [(2‖φ(x, u)‖+ ‖φ(x′, u′)‖) ‖φ(x, u)‖]

≤ L|t− t′|(2E
[
‖φ(x, u)‖2

]
+ E [‖φ(x, u)‖]2)

≤ 3L|t− t′|
∫
‖φ(x, u)‖2 dq(x, u).

which gives the desired upper-bound.

We denote by (x, y) 7→ H1k(x, y) the Hessian of x 7→ k(x, y) for all y ∈ X
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and by (x, y) 7→ ∇1∇2k(x, y) the upper cross-diagonal block of the hessian of

(x, y) 7→ k(x, y).

Lemma 65. Let q be a probability distribution in P2(X × X ) and ψ and φ two

measurable maps from X × X to X which are square-integrable w.r.t q. Consider

the path ρt from (ψ)#q and (ψ + φ)#q given by: ρt = (ψ + tφ)#q ∀t ∈ [0, 1].

Under Assumptions (A) and (B), F(ρt) is twice differentiable in t with

F̈(ρt) =E
[
φ(x, y)T∇1∇2k(st(x, y), st(x

′, y′))φ(x′, y′)
]

+ E
[
φ(x, y)T (H1k(st(x, y), y′t)−H1k(st(x, y), z))φ(x, y)

]
where (x, y) and (x′, y′) are independent samples from q, z is a sample from µ and

st(x, y) = ψ(x, y) + tφ(x, y). Moreover, if Assumption (C) also holds then:

F̈(ρt) ≥E
[
φ(x, y)T∇1∇2k(st(x, y), st(x

′, y′))φ(x′, y′)
]

−
√

2λdF(ρt)
1
2E[‖φ(x, y)‖2]

where we recall that X ⊂ Rd.

Proof. The first part is similar to Lemma 64. In fact we already know by Lemma 64

that Ḟ(ρt) exists and is given by:

Ḟ(ρt) = E [(∇1k(st(x, y), st(x
′, y′))−∇1k(st(x, y), z)).φ(x, y)]

Define now the function Ξ : t 7→ (∇1k(st(x, y), st(x
′, y′))−∇1k(st(x, y), z)).φ(x, y)

which is differentiable for all (x, y),(x′, y′) in X ×X and z ∈ X by Assumption (B).

Moreover, its time derivative is given by:

Ξ̇ =φ(x′, y′)T∇2∇1k(st(x, y), st(x
′, y′))φ(x, y)

+ φ(x, y)T (H1k(st(x, y), st(x
′, y′))−H1k(st(x, y), z))φ(x, y)

By Assumption (A) it follows in particular that∇2∇1k and H1k are bounded hence

|Ξ̇| is upper-bounded by (‖φ(x, y)‖ + ‖φ(x′, u′)‖)‖φ(x, y)‖ which is integrable.
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Therefore, by the differentiation lemma [Klenke, 2008, Theorem 6.28] it follows that

Ḟ(ρt) is differentiable and F̈(ρt) = E
[
Ξ̇
]
. We prove now the second statement. Bu

the reproducing property, it is easy to see that the last term in the expression of Ξ̇

can be written as:

〈φ(x, y)TH1k(st(x, y), .)φ(x, y), k(st(x
′, y′), .)− k(z, .)〉H

Now, taking the expectation w.r.t x′ ,y′ and z which can be exchanged with the

inner-product inH since (x′, y′, z) 7→ k(st(x
′, y′), .)− k(z, .) is Bochner integrable

[Retherford, 1978, Definition 1, Theorem 6] and recalling that such integral is given

by fµ,ρt one gets the following expression:

〈φ(x, y)TH1k(st(x, y), .)φ(x, y), fµ,ρt〉H

Using Cauchy-Schwartz and Assumption (C) it follows that:

|
〈
φ(x, y)TH1k(st(x, y), .)φ(x, y), fµ,ρt

〉
H | ≤ λd‖φ(x, y)‖2‖fµ,ρt‖

We conclude using the expression of F̈(ρt) and recalling thatF(ρt) = 1
2
‖fµ,ρt‖2.

Lemma 66. Assume that for any geodesic (ρt)t∈[0,1] between ρ0 and ρ1 in P(X )

with velocity vectors (Vt)t∈[0,1] the following holds:

F̈(ρt) ≥ Λ(ρt, Vt)

for some admissible functional Λ as defined in Definition 3, then:

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds

with G(s, t) = s(1− t)1{s ≤ t}+ t(1− s)1{s ≥ t} for 0 ≤ s, t ≤ 1.

Proof. This is a direct consequence of the general identity (Villani [2009], Proposi-

tion 16.2). Indeed, for any continuous function φ on [0, 1] with second derivative φ̈
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that is bounded below in distribution sense the following identity holds:

φ(t) = (1− t)φ(0) + tφ(1)−
∫ 1

0

φ̈(s)G(s, t)ds.

This holds a fortiori for F(ρt) since F is smooth. By assumption, we have that

F̈(ρt) ≥ Λ(ρt, Vt), hence, it follows that:

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds.

Lemma 67. [Mixture convexity] The functional F is mixture convex: for any proba-

bility distributions ν1 and ν2 and scalar 1 ≤ λ ≤ 1:

F(λν1 + (1− λ)ν2) ≤ λF(ν1) + (1− λ)F(ν2)

Proof. Let ν and ν ′ be two probability distributions and 0 ≤ λ ≤ 1. Expanding the

RKHS norm in F it follows directly that:

F(λν + (1− λ)ν ′)− λF(ν)− (1− λ)F(ν ′) = −1

2
λ(1− λ)MMD(ν, ν ′)2 ≤ 0.

which concludes the proof.

Lemma 68. [Discrete Gronwall lemma] Let an+1 ≤ (1 + γA)an + b with γ > 0,

A > 0, b > 0 and a0 = 0, then:

an ≤
b

γA
(enγA − 1).

Proof. Using the recursion, it is easy to see that for any n > 0:

an ≤ (1 + γA)na0 + b

(
n−1∑
i=0

(1 + γA)k

)

One concludes using the identity
∑n−1

i=0 (1+γA)k = 1
γA

((1+γA)n−1) and recalling

that (1 + γA)n ≤ enγA.
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B A simple example when Lojasiewicz holds

Consider a gaussian target distribution µ(x) = N (a,Σ) and initial distribution

ν0 = N (a0,Σ0). In this case it is sufficient to use a kernel that captures the first

and second moments of the distribution. We simply consider a kernel of the form

k(x, y) = (x>y)2 + x>y. In this case, it is easy to see by simple computations that

the following equation holds:

Ẋt = −(Σt − Σ + ata
>
t − aa>)Xt − (at − a), ∀t ≥ 0 (6.35)

Where at and Σt are the mean and covariance matrix of νt and satisfy the equations:

Σ̇t = −(StΣt + ΣtSt)

ȧt = −Stat − (at − a).

Where we introduced St = Σt − Σ + ata
>
t − aa> for simplicity. (6.35) implies

that νt is in fact a gaussian distribution since Xt is obtained by summing gaussian

increments. The same conclusion can be reached by solving the corresponding

continuity equation. Thus we will be only interested in the behavior of at and Σt.

First we can express the squared MMD in terms of those parameters:

MMD2(µ, νt) = ‖St‖2 + ‖at − a‖2. (6.36)

Since at and Σt are obtained from the gradient flow of the MMD, it follows that

‖at − a‖2 and ‖St‖2 remain bounded. Moreover, the Negative Sobolev distance is

obtained by solving a finite dimensional quadratic problem and can be simply written

as:

D(µ, νt) = tr(QtΣtQt) + ‖at − a‖2
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where Qt is the unique solution of the Lyapounov equation:

ΣtQt +QtΣt = Σt − Σ + (at − a)(at − a)> := Gt. (6.37)

We first consider the one dimensional case, for which (6.37) has a particularly simple

solution and allows to provide a closed form expression for the negative Sobolev

distance:

Qt =
Gt

2Σt

, D(µ, νt) =
G2
t

4Σt

+ (at − a)2.

Recalling (6.36) and that MMD2(µ, νt) is bounded at all times by definition of νt,

it follows that both Gt and at − a are also bounded. Hence, it is easy to see that

D(µ, νt) will remain bounded iff Σt remains bounded away from 0. This analysis

generalizes the higher dimensions using [Behr et al., 2018, Lemma 3.2 (iii)] which

provides an expression for Qt in terms of Gt and the singular value decomposition

of Σt = UtDtU
>
t :

Qt = Ut

((
1

(Dt)i + (Dt)j

)
� U>t GtUt

)
U>t .

Here, � denotes the Hadamard product of matrices. It is easy to see from this

expression that D(µ, νt) will be bounded if all singular values ((Dt)i)1≤i≤d of Σt

remain bounded away from 0.

C Connection to Neural Networks optimization

In this sub-section we establish a formal connection between the MMD gradient

flow defined in (6.5) and neural networks optimization. Such connection holds in

the limit of infinitely many neurons and is based on the formulation in Rotskoff

and Vanden-Eijnden [2018]. To remain consistent with the rest of this chapter, the

parameters of a network will be denoted by x ∈ X while the input and outputs

will be denoted as z and y. Given a neural network or any parametric function

(z, x) 7→ ψ(z, x) with parameter x ∈ X and input data z we consider the supervised
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learning problem:

min
(x1,...,xm)∈X

1

2
E(y,z)∼p

∥∥∥∥∥y − 1

m

m∑
i=1

ψ(z, xi)

∥∥∥∥∥
2
 (6.38)

where (y, z) ∼ p are samples from the data distribution and the regression function

is an average of m different networks. The formulation in (6.38) includes any type

of networks. Indeed, the averaged function can itself be seen as one network with

augmented parameters (x1, ..., xm) and any network can be written as an average of

sub-networks with potentially shared weights. In the limit m→∞, the average can

be seen as an expectation over the parameters under some probability distribution ν.

This leads to an expected network Ψ(z, ν) =
∫
ψ(z, x) dν(x) and the optimization

problem in (6.38) can be lifted to an optimization problem in P2(X ) the space of

probability distributions:

min
ν∈P2(X )

L(ν) :=
1

2
E(y,z)∼p

[∥∥∥∥y − ∫ ψ(z, x) dν(x)

∥∥∥∥2
]

(6.39)

For convenience, we consider L̄(ν) the function obtained by subtracting the variance

of y from L(ν), i.e.: L̄(ν) = L(ν) − var(y). When the model is well specified,

there exists µ ∈ P2(X ) such that Ey∼P(.|z)[y] =
∫
ψ(z, x) dµ(x). In that case, the

cost function L̄ matches the functional F defined in (6.3) for a particular choice

of the kernel k. More generally, as soon as a global minimizer for (6.39) exists,

Proposition 69 relates the two losses L̄ and F .

Proposition 69. Assuming a global minimizer of (6.39) is achieved by some µ ∈

P2(X ), the following inequality holds for any ν ∈ P2(X ):

(
L̄(µ)

1
2 + F

1
2 (ν)

)2

≥ L̄(ν) ≥ F(ν) + L̄(µ) (6.40)

where F(ν) is defined by (6.3) with a kernel k constructed from the data as an
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expected product of networks:

k(x, x′) = Ez∼P
[
ψ(z, x)Tψ(z, x′)

]
(6.41)

Moreover, L̄ = F iif L̄(µ) = 0, which means that the model is well-specified.

The framing (6.40) implies that optimizing F can decrease L and vice-versa.

Moreover, in the well specified case, optimizing F is equivalent to optimizing

L. Hence one can use the gradient flow of the MMD defined in (6.5) to solve

(6.39). One particular setting when (6.39) is well-specified is the student-teacher

problem as in Chizat and Bach [2018b]. In this case, a teacher network of the form

ΨT (z, µ) produces a deterministic output y = ΨT (z, µ) given an input z while a

student network ΨS(z, ν) tries to learn the mapping z 7→ ΨT (z, µ) by minimizing

(6.39). In practice µ and ν are given as empirical distributions on some particles

Ξ = (Ξ1, ...,ΞM) and X = (x1, ..., xN) with µ = 1
M

∑M
j=1 δΞj and ν = 1

N

∑N
i=1 δxi .

The particles (xi)1≤i≤N are then optimized using gradient descent starting from an

initial configuration (xi0)1≤i≤N . This leads to the update equation:

xin+1 = xin − γEz∼p

[(
1

N

N∑
j=1

ψ(z, xjn)− 1

M

M∑
j=1

ψ(z,Ξj)

)
∇xin

ψ(z, xin)

]
,

(6.42)

where (xin)1≤i≤N are the particles at iteration n with empirical distribution νn. Here,

the gradient is rescaled by the number of particles N . Re-arranging terms and

recalling that k(x, x′) = Ez∼p[ψ(z, x)Tψ(z, x′)], equation (6.42) becomes:

xin+1 = xin − γ∇fµ,νn(xin).

with ∇fµ,νn(xin) =
(

1
N

∑N
j=1∇2k(xjn, x

i
n)− 1

M

∑M
j=1∇2k(Ξj, xin)

)
. The above

equation is a discretized version of the gradient flow of the MMD defined in (6.5).

Such discretization is obtained from (6.17) by setting the noise level βn to 0. Hence,

in the limit when N →∞ and γ → 0, one recovers the gradient flow defined in (6.9).

In general the kernel k is intractable and can be approximated using nb samples
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(z1, ..., znb) from the data distribution: k̂(x, x′) = 1
nb

∑nb
b=1 ψ(zb, x)Tψ(zb, x

′). This

finally leads to an approximate update:

xin+1 = xin − γ∇f̂µ,νn(xin).

where∇f̂µ,νn is given by:

∇f̂µ,νn(xin) =
1

nb

nb∑
b=1

(
1

N

N∑
j=1

ψ(zb, x
j
n)− 1

M

M∑
j=1

ψ(zb,Ξ
j)

)
∇xin

ψ(zb, x
i
n)).

We provide now a proof for Proposition 69:

Proof of Proposition 69. Let Ψ(z, ν)=
∫
ψ(z, x) dν(x). By (6.41), we have:

k(x, x′) =
∫
z
ψ(z, x)Tψ(z, x′) ds(z) where s denotes the distribution of z. It

is easy to see that F(ν) = 1
2

∫
‖Ψ(z, ν) − Ψ(z, µ)‖2 ds(z). Indeed expanding the

square in the l.h.s and exchanging the order of integrations w.r.t p and (µ⊗ ν) one

gets F(ν). Now, introducing Ψ(z, µ) in the expression of L(ν), it follows by a

simple calculation that:

L(ν) = L(µ) + F(ν) +

∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉 dp(z) (6.43)

wherem(z) is the conditional mean of y, i.e.: m(z) =
∫
y dp(y|z). On the other hand

we have that 2L(µ) = var(y) +
∫
‖Ψ(z, µ)−m(z)‖2 dp(z), so that

∫
‖Ψ(z, µ)−

m(z)‖2 dp(z) = 2L̄(µ). Hence, using Cauchy-Schwartz for the last term in (6.43),

one gets the upper-bound:

L(ν) ≤ L(µ) + F(ν) + 2L̄(µ)
1
2F(ν)

1
2 .

This in turn gives an upper-bound on L̄(ν) after subtracting var(y)/2 on both sides

of the inequality. To get the lower bound on L̄ one needs to use the global optimality

condition of µ for L from [Chizat and Bach, 2018a, Proposition 3.1]. Indeed, for
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any 0 < ε ≤ 1 it is easy to see that:

ε−1(L(µ+ε(ν−µ))−L(µ)) =

∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉 dp(z)+o(ε).

Taking the limit ε→ 0 and recalling that the l.h.s is always non-negative by optimality

of µ, it follows that
∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉 dp(z) must also be non-

negative. Therefore, from (6.43) one gets that L(ν) ≥ L(µ)+F(ν). The final bound

is obtained by subtracting var(y)/2 again from both sides of the inequality.

Algorithm 4 Noisy gradient flow of the MMD
1: Input N , niter, β0, γ

2: Output (xiniter)1≤i≤N

3: Initialize N particles from initial distribution ν0 : xi0
i.i.d∼ ν0

4: Initialize the noise level: β = β0

5: for n = 0, . . . , niter do

6: Sample M points from the target µ: {y1, ..., yM}.
7: Sample N gaussians : {u1

n, ..., u
N
n }

8: for i = 1, . . . , N do

9: Compute the noisy values: x̃in = xin + βnu
i
n

10: Evaluate vector field:∇fµ̂,ν̂n(x̃in) = 1
N

N∑
j=1

∇2k(xjn, x̃
i
n) −

1
M

M∑
m=1

∇2k(ym, x̃in)

11: Update the particles: xin+1 = xin − γ∇fµ̂,ν̂n(x̃in)

12: end for

13: Update the noise level using an update rule h: βn+1 = h(βn, n).

14: end for

D Connection to Sobolev descent Mroueh et al.

[2019]: The equilibrium condition
We discuss here the equilibrium condition (6.10) and relate it to [Mroueh et al.,

2019, Assumption A]. Recall that (6.10) is given by:
∫
‖∇fµ,ν∗(x)‖2 dν∗(x) = 0.

Under some mild assumptions on the kernel which are states in [Mroueh et al., 2019,
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Algorithm 5 Noisy gradient flow of the MMD for student-teacher learning

1: Input N , niter, β0, γ, nb, Ξ = (Ξj)1≤j≤M .

2: Output (xiniter)1≤i≤N .

3: Initialize N particles from initial distribution ν0 : xi0
i.i.d∼ ν0.

4: Initialize the noise level: β = β0.

5: for n = 0, ..., niter do

6: Sample minibatch of nb data points: {z1, ..., znb}.
7: for b = 1, ..., nb do

8: Compute teacher’s output: ybT = 1
M

∑M
j=1 ψ(zb,Ξj).

9: Compute students’s output: ybS = 1
N

∑N
i=1 ψ(zb, xin).

10: end for

11: Sample N gaussians : {u1
n, ..., u

N
n }.

12: for i = 1, ..., N do

13: Compute noisy particles: x̃in = xin + βnu
i
n

14: Evaluate vector field: ∇f̂νΞ,νXn
(x̃in) = 1

nb

∑nb
b=1(ybS − ybT )∇xin

ψ(zb, x̃in)

15: Update particle i: xin+1 = xin − γ∇f̂νΞ,νXn
(x̃in)

16: end for

17: Update the noise level using an update rule h: βn+1 = h(βn, n).

18: end for

Appendix C.1] it is possible to write (6.10) as:

∫
‖∇fµ,ν∗(x)‖2 dν∗(x) = 〈fµ,ν∗ , Dν∗fµ,ν∗〉H = 0

where Dν∗ is a Hilbert-Schmidt operator given by:

Dν∗ =

∫ d∑
i=1

∂ik(x, .)⊗ ∂ik(x, .) dν∗(x)

Hence (6.10) is equivalent to say that fµ,ν∗ belongs to the null space of Dν∗ . In

[Mroueh et al., 2019, Theorem 2], a similar equilibrium condition is derived by

considering the time derivative of the MMD along the KSD gradient flow:

1

2

d

dt
MMD2(µ, νt) = −λ〈fµ,νt , (

1

λ
I − (Dνt + λI)−1)fµ,νt〉H
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The r.h.s is shown to be always negative and thus the MMD decreases in time. Hence,

as t approaches∞, the r.h.s tends to 0 since the MMD converges to some limit value

l. This provides the equilibrium condition:

λ〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H = 0

It is further shown in [Mroueh et al., 2019, Lemma 2] that the above equation is also

equivalent to having fµ,ν∗ in the null space of Dν∗ in the case when Dν∗ has finite

dimensions. We generalize this statement to infinite dimension in Proposition 70.

In [Mroueh et al., 2019, Assumption A], it is simply assumed that if fµ,ν∗ 6= 0 then

Dν∗fµ,ν∗ 6= 0 which exactly amounts to assuming that local optima which are not

global don’t exist.

Proposition 70.

〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H = 0 ⇐⇒ fµ,ν∗ ∈ null(Dν∗)

Proof. This follows simply by recalling Dν∗ is a symmetric non-negative Hilbert-

Schmidt operator it has therefore an eigen-decomposition of the form:

Dν∗ =
∞∑
i=1

λiei ⊗ ei

where ei is an ortho-norrmal basis of H and λi are non-negative. Moreover, fµ,ν∗

can be decomposed in (ei)1≤i in the form:

fµ,ν∗ =
∞∑
i=0

αiei

where αi is a squared integrable sequence. It follows that 〈fµ,ν∗ , ( 1
λ
I − (Dν∗ +

λI)−1)fµ,ν∗〉H can be written as:

〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H =

∞∑
i=1

λi
λi + λ

α2
i
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Hence, if fµ,ν∗ ∈ null(Dν∗) then 〈fµ,ν∗ , Dν∗fµ,ν∗〉H = 0, so that
∑∞

i=1 λiα
2
i = 0.

Since λi are non-negative, this implies that λiα2
i = 0 for all i. Therefore, it must

be that 〈fµ,ν∗ , ( 1
λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H = 0. Similarly, if 〈fµ,ν∗ , ( 1

λ
I − (Dν∗ +

λI)−1)fµ,ν∗〉H = 0 then λiα
2
i

λi+λ
= 0 hence 〈fµ,ν∗, Dν∗fµ,ν∗〉H = 0. This means that

fµ,ν∗ belongs to null(Dν∗).

E Connection to the birth-death dynamics Rotskoff

et al. [2019]
The Wasserstein gradient flow of F can be seen as the continuous-time limit of the

so called minimizing movement scheme Ambrosio et al. [2008]. Such proximal

scheme is defined using an initial distribution ν0, a step-size τ , and an iterative update

equation:

νn+1 ∈ arg min
ν
F(ν) +

1

2τ
W 2

2 (ν, νn). (6.44)

In Ambrosio et al. [2008], it is shown that the continuity equation ∂tνt =

div(νt∇fµ,νt) can be obtained as the limit when τ → 0 of (6.44) using suitable

interpolations between the elements νn. In Rotskoff et al. [2019], a different trans-

port equation that includes a birth-death term is considered:

∂tνt = βdiv(νt∇fµ,νt) + α(fµ,νt −
∫
fµ,νt(x) dνt(x))νt (6.45)

When β = 0 and α = 1, it is shown formally in Rotskoff et al. [2019] that the above

dynamics corresponds to the limit of a proximal scheme using the KL instead of

the Wasserstein distance. For general β and α, (6.45) corresponds to the limit of a

different proximal scheme where W 2
2 (ν, νn) is replaced by the Wasserstein-Fisher-

Rao distance d2
α,β(ν, νn) (see Chizat et al. [2015], Liero et al. [2016], Kondratyev et al.

[2016]). d2
α,β(ν, νn) is an interpolation between the squared Wasserstein distance

(β = 1 and α = 0) and the squared Fisher-Rao distance as defined in [Chizat et al.,

2015, Definition 6] (β = 0 and α = 1). Such scheme is consistent with the one

proposed in Rotskoff et al. [2019] and which uses the KL. In fact, as we will
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show later, both the KL and the Fisher-Rao distance have the same local behavior

therefore both proximal schemes are expected to be equivalent in the limit when

τ → 0.

Under (6.45), the time evolution of F is given by [Rotskoff et al., 2019, Propo-

sition 3.1]:

Ḟ(νt) = −β
∫
‖∇fµ,νt‖2 dνt(x)− α

∫ ∣∣∣∣fµ,νt(x)−
∫
fµ,νt(x

′) dνt(x
′)

∣∣∣∣2 dνt(x)

We would like to apply the same approach as in Section 3 .2 to provide a condition

on the convergence of (6.45). Hence we first introduce an analogue to the Negative

Sobolev distance in Definition 7 by duality:

Dν(p, q) = sup
g∈L2(ν)

β‖∇g‖2
L2(ν)

+α‖g−ḡ‖2
L2(ν)

≤1

∣∣∣∣∫ g(x) dp(x)−
∫
g(x) dq(x)

∣∣∣∣
where ḡ is simply the expectation of g under ν. Such quantity defines a distance,

since it is the dual of a semi-norm. Now using the particular structure of the MMD,

we recall that fµ,ν ∈ L2(ν) and that β‖∇f‖2
L2(ν) + α‖f − f̄‖2

L2(ν) <∞. Hence for

a particular g of the form:

g =
fµ,ν(

β‖∇fµ,ν‖2
L2(ν) + α‖fµ,ν − f̄µ,ν‖2

L2(ν)

) 1
2

the following inequality holds:

Dν(µ, ν) ≥
∣∣∫ fµ,ν dν(x)−

∫
fµ,ν dµ(x)

∣∣(
β‖∇fµ,ν‖2

L2(ν) + α‖fµ,ν − f̄µ,ν‖2
L2(ν)

) 1
2

.

But since fµ,ν is the unnormalised witness function between µ and ν we have that

2F(ν) =
∣∣∫ fµ,ν dν(x)−

∫
fµ,ν dµ(x)

∣∣. Hence one can write that:

D2
ν(µ, ν)

(
β‖∇fµ,ν‖2

L2(ν) + α‖fµ,ν − f̄µ,ν‖2
L2(ν)

)
≥ 4F2(ν)



E . Connection to the birth-death dynamics Rotskoff et al. [2019] 240

Now provided that D2
ν(µ, νt) remains bounded at all time t by some constant C > 0

one can easily deduce a rate of convergence for F(νt) just as in Proposition 53.

In fact, in the case when β = 1 and α = 0 one recovers Proposition 53. Another

interesting case is when β = 0 and α = 1. In this case, Dν(p, q) is defined for p and

q such that the difference p− q is absolutely continuous w.r.t. ν. Moreover, Dν(p, q)

has the simple expression:

Dν(p, q) =

∫ (
p− q
ν

(x)

)2

dν(x)

where p−q
ν

denotes the radon nikodym density of p− q w.r.t. ν. More importantly,

D2
ν(µ, ν) is exactly equal to χ2(µ‖ν)

1
2 . As we will show now, (χ2)

1
2 turns out to be

a linearization of
√

2KL
1
2 and the Fisher-Rao distance.

Linearization of the KL and the Fisher-Rao distance. We first show the result for

the KL. Given a probability distribution ν ′ that is absolutely continuous w.r.t to ν

and for 0 < ε < 1 denote by G(ε) := KL(ν‖(ν + ε(ν ′ − ν)). It can be shown that

G(ε) = 1
2
χ2(ν ′‖ν)ε2 +o(ε2). To see this, one needs to perform a second order Taylor

expansion of G(ε) at ε = 0. Exchanging the derivatives and the integral, Ġ(ε) and

G̈(ε) are both given by:

Ġ(ε) = −
∫

µ− ν
ν + ε(µ− ν)

dν

G̈(ε) =

∫
(ν − µ)2

(ν + ε(µ− ν))2
dν

Hence, we have for ε = 0: Ġ(0) = 0 and G̈(0) = χ2(µ‖ν). Therefore, it follows:

G(ε) = 1
2
χ2(µ‖ν)ε2 + o(ε2), which means that

lim
ε→0

1

ε
[2KL (ν‖ν + ε(ν ′ − ν))]

1
2 = χ2(ν ′‖ν)

1
2 .

The same approach can be used for the Fisher-Rao distance d0,1(ν, ν ′). From [Chizat

et al., 2015, Theorem 3.1] we have that:

d2
0,1(ν, ν ′) = 2

∫
(
√
ν(x)−

√
ν ′(x))2 dx
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where ν and ν ′ are assumed to have a density w.r.t. Lebesgue mea-

sure. Using the exact same approach as for the KL one easily show that

limε→0
1
ε

[
2d2

0,1 (ν‖ν + ε(ν ′ − ν))
] 1

2 = χ2(ν ′‖ν)
1
2 .

Linearization of the W2. Similarly, it can be shown that the Negative weighted

Sobolev distance is a linearization of the W2 under suitable conditions. We recall

here [Villani, 2003, Theorem 7.26] which relates the two quantities:

Theorem 71. Let ν ∈ P(X ) be a probability measure with finite second mo-

ment, absolutely continuous w.r.t the Lebesgue measure and let h ∈ L∞(X ) with∫
h(x) dν(x) = 0. Then

‖h‖Ḣ−1(ν) ≤ lim inf
ε→0

1

ε
W2(ν, (1 + εh)ν).

Theorem 71 implies that for any probability distribution ν ′ that has a bounded

density w.r.t. to ν one has:

‖ν ′ − ν‖Ḣ−1(ν) ≤ lim inf
ε→0

1

ε
W2(ν, ν + ε(ν ′ − ν)).

To get the converse inequality, one needs to assume that the support of ν is X .

Proposition 72 provides such inequality and uses techniques from Peyre [2018].

Proposition 72. Let ν ∈ P(X ) be a probability measure with finite second moment,

absolutely continuous w.r.t the Lebesgue measure with support equal to X and let

h ∈ L∞(X ) with
∫
h(x) dν(x) = 0 and 1 + h ≥ 0. Then

lim sup
ε→0

1

ε
W2(ν, (1 + εh)ν) ≤ ‖h‖Ḣ−1(ν)

Proof. Consider the elliptic equation: νh+div(ν∇F ) = 0 with Neumann boundary

condition on ∂X . Such equation admits a unique solution F in Ḣ(ν) up to a

constant since ν is supported on all of X (see [Otto and Villani, 2000, Section 7

(Linearizations)]). Moreover, we have that
∫
F (x)h(x) dν(x) =

∫
‖∇F (x)‖2 dν(x)

which implies that ‖h‖Ḣ−1(ν) ≥ ‖F‖Ḣ(ν). Now consider the path: su = (1 + uεh)ν

for u ∈ [0, 1]. su is a probability distribution for all u ∈ [0, 1] with s0 = ν and
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s1 = (1 + εh)ν. It is easy to see that su satisfies the continuity equation:

∂usu + div(suVu) = 0

with Vu = ε∇F
1+uεh

. Indeed, for any smooth test function f one has:

d

du

∫
f(x) dsu(x) = ε

∫
f(x)h(x) dν(x)

= ε

∫
∇f(x).∇F (x) dν(x)

=

∫
∇f(x).Vu(x) dsu(x).

We used the definition of F for the second equality and that ν admits a density w.r.t.

to su provided that ε is small enough. Such density is given by 1/(1 + uεh) and is

positive and bounded when ε ≤ 1
2‖h‖∞ . Now, using the Benamou-Brenier formula

for W2(ν, (1 + εh)ν) one has in particular that:

W2(ν, (1 + εh)ν) ≤
∫
‖Vu‖L2(su) du

Using the expressions of Vu and su, one gets by simple computation:

W2(ν, (1 + εh)ν) ≤ε
∫ (∫

‖∇F (x)‖2

1− uε+ uε(h+ 1)
dν(x)

) 1
2

du

≤ ε

(∫
‖∇F (x)‖2 dν(x)

) 1
2
∫ 1

0

(1− uε)−
1
2 du.

Finally, ε
∫ 1

0
(1− uε)− 1

2 du = 2(1−
√

1− ε)→ 1 when ε→ 0, hence:

lim sup
ε→0

W2(ν, (1 + εh)) ≤ ‖F‖Ḣ(ν) ≤ ‖h‖Ḣ−1(ν).

Theorem 71 and Proposition 72 allow to conclude that limε→0
1
ε
W2(ν, ν+ε(ν ′−

ν)) = ‖ν − ν ′‖Ḣ−1(ν) for any ν ′ that has a bounded density w.r.t. ν.

By analogy, one could wonder if D is also a linearization of the the Wasserstein-
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Fisher-Rao distance. We leave such question for future work.



Chapter 7

Scalable Wasserstein natural

gradient

Many machine learning problems can be expressed as the optimization of some

cost functional over a parametric family of probability distributions. It is often

beneficial to solve such optimization problems using natural gradient methods. These

methods are invariant to the parametrization of the family, and thus can yield more

effective optimization. Unfortunately, computing the natural gradient is challenging

as it requires inverting a high dimensional matrix at each iteration. We propose a

general framework to approximate the natural gradient for the Wasserstein metric,

by leveraging a dual formulation of the metric restricted to a Reproducing Kernel

Hilbert Space. Our approach leads to an estimator for gradient direction that can

trade-off accuracy and computational cost, with theoretical guarantees. We verify its

accuracy on simple examples, and show the advantage of using such an estimator in

classification tasks on Cifar10 and Cifar100 empirically.

1 Introduction
The success of machine learning algorithms relies on the quality of an underlying

optimization method. Many of the current state-of-the-art methods rely on variants

of Stochastic Gradient Descent (SGD) such as AdaGrad [Duchi et al., 2011], RM-

SProp [Hinton et al., 2012], and Adam [Kingma and Ba, 2015]. While generally

effective, the performance of such methods remains sensitive to the curvature of the
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optimization objective. When the Hessian matrix of the objective at the optimum

has a large condition number, the problem is said to have a pathological curvature

[Martens, 2010, Sutskever et al., 2013]. In this case, the first-order optimization

methods tend to have poor performance. Using adaptive step sizes can help when

the principal directions of curvature are aligned with the coordinates of the vector

parameters. Otherwise, an additional rotation of the basis is needed to achieve this

alignment. One strategy is to find an alternative parametrization of the same model

that has a better-behaved curvature and is thus easier to optimize with standard

first-order optimization methods. Designing good network architectures [Simonyan

and Zisserman, 2014, He et al., 2015] along with normalization techniques [LeCun

et al., 2012, Ioffe and Szegedy, 2015, Salimans and Kingma, 2016] is often critical

for the success of such optimization methods.

The natural gradient method [Amari, 1998] takes a related but different per-

spective. Rather than re-parametrizing the model, the natural gradient method tries

to make the optimizer itself invariant to re-parameterizations by directly operating

on the manifold of probability distributions. This requires endowing the parameter

space with a suitable notion of proximity formalized by a metric. An important

metric in this context is the Fisher information metric [Fisher and Russell, 1922,

Rao, 1992], which induces the Fisher-Rao natural gradient [Amari, 1985]. Another

important metric in probability space is the Wasserstein metric [Villani, 2009, Otto,

2001], which induces the Wasserstein natural gradient [Li and Montufar, 2018a,b,

Li, 2018]; see similar formulations in Gaussian families [Malagò et al., 2018, Modin,

2017]. In spite of their numerous theoretical advantages, applying natural gradient

methods is challenging in practice. Indeed, each parameter update requires inverting

the metric tensor. This becomes infeasible for current deep learning models, which

typically have millions of parameters. This has motivated research into finding

efficient algorithms to estimate the natural gradient [Martens and Grosse, 2015,

Grosse and Martens, 2016, George et al., 2018, Heskes, 2000, Bernacchia et al.,

2018]. Such algorithms often address the case of the Fisher metric and either exploit

a particular structure of the parametric family or rely on a low rank decomposition
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of the information matrix. Recently, Li et al. [2019] proposed to estimate the metric

based on a dual formulation and used this estimate in a proximal method. While

this avoids explicitly computing the natural gradient, the proximal method also

introduces an additional optimization problem to be solved at each update of the

model’s parameters. The quality of the solver will thus depend on the accuracy of

this additional optimization.

In this work, we use the dual formulation of the metric to directly obtain a

closed form expression of the natural gradient as a solution to a convex functional

optimization problem. We focus on the Wasserstein metric as it has the advantage

of being well defined even when the model doesn’t admit a density. The expression

remains valid for general metrics including the Fisher-Rao metric. We leverage

recent work on Kernel methods [Sriperumbudur et al., 2017, Sutherland et al., 2018,

Mroueh et al., 2019] to compute an estimate of the natural gradient by restricting the

functional space appearing in the dual formulation to a Reproducing Kernel Hilbert

Space. We demonstrate empirically the accuracy of our estimator on toy examples,

and show how it can be effectively used to approximate the trajectory of the natural

gradient descent algorithm. We also analyze the effect of the dimensionality of the

model on the accuracy of the proposed estimator. Finally, we illustrate the benefits

of our proposed estimator for solving classification problems when the model has an

ill-conditioned parametrization.

This chapter is organized as follows. In Section 2 , after a brief description of

natural gradients, we discuss Legendre duality of metrics, and provide details on the

Wasserstein natural gradient. In Section 3 , we present our kernel estimator of the

natural gradient. In Section 4 we present experiments to evaluate the accuracy of the

proposed estimator and demonstrate its effectiveness in supervised learning tasks.

2 Natural Gradient Descent

We first briefly recall the natural gradient descent method in Section 2 .1, and its

relation to metrics on probability distribution spaces in Section 2 .2. We next present

Legendre dual formulations for metrics in Section 2 .3 where we highlight the
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Fisher-Rao and Wasserstein metrics as important examples.

2 .1 General Formulation

It is often possible to formulate learning problems as the minimization of some

cost functional ρ 7→ F(ρ) over probability distributions ρ from a parametric model

PΘ. The set PΘ contains probability distributions defined on an open sample space

Ω ⊂ Rd and parametrized by some vector θ ∈ Θ, where Θ is an open subset of Rq.

The learning problem can thus be formalized as finding an optimal value θ∗ that

locally minimizes a loss function L(θ) := F(ρθ) defined over the parameter space

Θ. One convenient way to solve this problem approximately is by gradient descent,

which uses the Euclidean gradient of L w.r.t. the parameter vector θ to produce a

sequence of updates θt according to the following rule:

θt+1 = θt − γt∇L(θt).

Here the step-size γt is a positive real number. The Euclidean gradient can be viewed

as the direction in parameter space that leads to the highest decrease of some linear

modelMt of the cost function L per unit of change of the parameter. More precisely,

the Euclidean gradient is obtained as the solution of the optimization problem:

∇L(θt) = − argmin
u∈Rq

Mt(u) +
1

2
‖u‖2. (7.1)

The linear modelMt is an approximation of the cost function L in the neighborhood

of θt and is simply obtained by a first order expansion:Mt(u) = L(θt) +∇L(θt)
>u.

The quadratic term ‖u‖2 penalizes the change in the parameter and ensures that

the solution remains in the neighborhood where the linear model is still a good

approximation of the cost function.

This particular choice of quadratic term is what defines the Euclidean gradient

descent algorithm, which can often be efficiently implemented for neural network

models using back-propagation. The performance of this algorithm is highly depen-

dent on the parametrization of the model PΘ, however [Martens, 2010, Sutskever

et al., 2013]. To obtain an algorithm that is robust to parametrization, one can take
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advantage of the structure of the cost function L(θ) which is obtained as the compo-

sition of the functional F and the model θ 7→ ρθ and define a generalized natural

gradient [Amari and Cichocki, 2010]. We first provide a conceptual description

of the general approach to obtain such gradient. The starting point is to choose a

divergence D between probability distributions and use it as a new penalization term:

− argmin
u∈Rq

Mt(u) +
1

2
D(ρθt , ρθt+u). (7.2)

Here, changes in the model are penalized directly in probability space rather than

parameter space as in (7.1). In the limit of small u, the penalization term can be

replaced by a quadratic term u>GD(θ)u where GD(θ) contains second order infor-

mation about the model as measured by D. This leads to the following expression

for the generalized natural gradient ∇DL(θt) where the dependence in D is made

explicit:

∇DL(θt) := − argmin
u∈Rq

Mt(u) +
1

2
u>GD(θt)u. (7.3)

From (7.3), it is possible to express the generalized natural gradient by means of the

Euclidean gradient: ∇DL(θt) = GD(θt)
−1∇L(θt). The parameter updates are then

obtained by the new update rule:

θt+1 = θt − γtGD(θt)
−1∇L(θt). (7.4)

Equation (7.4) leads to a descent algorithm which is invariant to parametrization

in the continuous-time limit:

Proposition 73. Let Ψ be an invertible and smoothly differentiable re-

parametrization ψ = Ψ(θ) and denote by L̄(ψ) := L(Ψ−1(ψ)). Consider the

continuous-time natural gradient flows:

θ̇s = −∇D
θ L(θs), ψ̇s = −∇D

ψ L̄(ψs), ψ0 = Ψ(θ0)
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Then ψs and θs are related by the equation ψs = Ψ(θs) at all times s ≥ 0.

This result implies that an ill-conditioned parametrization of the model has

little effect on the optimization when (7.4) is used. It is a consequence of the

transformation properties of the natural gradient by change of parametrization:

∇D
ψ L̄(ψ) = ∇θΨ(θ)∇D

θ L(θ) which holds in general for any covariant gradient. We

provide a proof of Proposition 73 in Section B .1 in the particular the case when D

is either Kullback-Leibler divergence F , or the squared Wasserstein-2 distance W

using notions introduced later in Section 2 .3 and refer to Ollivier et al. [2011] for a

detailed discussion.

The approach based on (7.2) for defining the generalized natural gradient is

purely conceptual and can be formalized using the notion of metric tensor from

differential geometry which allows for more generality. In Section 2 .2, we provide

such formal definition in the case when D is either the Kullback-Leibler divergence

F , or the squared Wasserstein-2 distance W .

2 .2 Information matrix via differential geometry

When D is the Kullback-Leibler divergence or relative entropy F , then (7.3) defines

the Fisher-Rao natural gradient ∇FL(θ) [Amari, 1985] and GF (θ) is called the

Fisher information matrix. GF (θ) is well defined when the probability distributions

in PΘ all have positive densities, and when some additional differentiability and

integrability assumptions on ρθ are satisfied. In fact, it has an interpretation in

Riemannian geometry as the pull-back of a metric tensor gF defined over the set of

probability distributions with positive densities and known as the Fisher-Rao metric

(see Definition 5 in Section 3 ; see also Holbrook et al. [2017]):

Definition 9 (Fisher information matrix). Assume θ 7→ ρθ(x) is differentiable for all

x on Ω and that
∫ ‖∇ρθ(x)‖2

ρθ(x)
dx <∞. Then the Fisher information matrix is defined

as the pull-back of the Fisher-Rao metric gF :

GF (θ)ij = gFρθ(∂iρθ, ∂jρθ) :=

∫
fi(x)fj(x)ρθ(x)dx,

where the functions fi on Ω are given by: fi = ∂iρθ
ρθ

.
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Definition 9 directly introduces GF using the Fisher-Rao metric tensor which

captures the infinitesimal behavior of the KL. This approach can be extended to any

metric tensor g defined on a suitable space of probability distributions containing PΘ.

In particular, when D is the Wasserstein-2, the Wasserstein information matrix is

obtained directly by means of the Wasserstein-2 metric tensor gW [Otto and Villani,

2000, Lafferty and Wasserman, 2008] as proposed in Li and Montufar [2018a], Chen

and Li [2018]:

Definition 10 (Wasserstein information matrix). The Wasserstein information matrix

(WIM) is defined as the pull-back of the Wasserstein 2 metric gW :

GW (θ)ij = gWρθ (∂iρθ, ∂jρθ) :=

∫
φi(x)>φj(x) dρθ(x),

where φi are vector valued functions on Ω ⊂ Rd that are solutions to the partial

differential equations with Neumann boundary condition:

∂iρθ = −div(ρθφi), ∀1 ≤ i ≤ q.

Moreover, φi are required to be in the closure of the set of gradients of smooth and

compactly supported functions in L2(ρθ)
d . In particular, when ρθ has a density,

φi = ∇xfi, for some real valued function fi on Ω.

The partial derivatives ∂iρθ should be understood in distribution sense, as

discussed in more detail in Section 2 .3. This allows to define the Wasserstein

natural gradient even when the model ρθ does not admit a density. Moreover, it

allows for more generality than the conceptual approach based on (7.2) which would

require performing a first order expansion of the Wasserstein distance in terms of

its linearized version known as the Negative Sobolev distance. We provide more

discussion of those two approaches and their differences in Section C . From now

on, we will focus on the above two cases of the natural gradient ∇DL(θ), namely

∇FL(θ) and ∇WL(θ). When the dimension of the parameter space is high, directly

using equation (7.4) becomes impractical as it requires storing and inverting the

matrix G(θ). In Section 2 .3 we will see how equation (7.3) can be exploited along
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with Legendre duality to get an expression for the natural gradient that can be

efficiently approximated using kernel methods.

2 .3 Legendre Duality for Metrics

In this section we provide an expression for the natural gradient defined in (7.3) as

the solution of a saddle-point optimization problem. It exploits Legendre duality

for metrics to express the quadratic term u>G(θ)u as a solution to a functional

optimization problem over C∞c (Ω), the set of smooth and compactly supported

functions on Ω. The starting point is to extend the notion of gradient ∇ρθ which

appears in Definitions 9 and 10 to the distributional sense of Definition 11 below.

Definition 11. Given a parametric family PΘ of probability distributions, we say

that ρθ admits a distributional gradient at point θ if there exists a linear continuous

map ∇ρθ : C∞c (Ω)→ Rq such that for any f ∈ C∞c (Ω) and u ∈ Rq:

∫
f(x) dρθ+εu(x)−

∫
f(x) dρθ(x) = ε∇ρθ(f)>u+ εδ(ε, f, u),

where δ(ε, f, u) depends on f and u and converges to 0 as ε approaches 0. ∇ρθ is

called the distributional gradient of ρθ at point θ.

When the distributions in PΘ have a density, written x 7→ ρθ(x) by abuse of

notation, that is differentiable w.r.t. θ and with a jointly continuous gradient in θ and

x then∇ρθ(f) is simply given by
∫
f(x)∇θρθ(x) dx as shown in Proposition 84 of

Section B .1. In this case, the Fisher-Rao natural gradient admits a formulation as a

saddle point solution involving ∇ρθ and provided in Proposition 74 with a proof in

Section B .1.

Proposition 74. Under the same assumptions as in Definition 9, the Fisher informa-

tion matrix admits the dual formulation:

1

2
u>GF (θ)u := sup

f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
f(x)2 dρθ(x) dx. (7.5)

Moreover, defining Uθ(f) = ∇L(θ) + ∇ρθ(f), the Fisher-Rao natural gradient
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satisfies:

∇FL(θ) = − argmin
u∈Rq

sup
f∈C∞c (Ω)∫
f(x) dρθ(x)=0

Uθ(f)>u− 1

2

∫
f(x)2 dρθ(x) dx,

Another important case is when PΘ is defined as an implicit model. In this

case, any sample x from a distribution ρθ in PΘ is obtained as x = hθ(z), where

z is a sample from a fixed latent distribution ν defined over a latent space Z and

(θ, z) 7→ hθ(z) is a deterministic function with values in Ω. This can be written in a

more compact way as the push-forward of ν by the function hθ:

PΘ := {ρθ := (hθ)#ν | θ ∈ Ω}. (7.6)

A different expression for ∇ρθ is obtained in the case of implicit models when

θ 7→ hθ(z) is differentiable for ν-almost all z and∇hθ is square integrable under ν:

∇ρθ(f) =

∫
∇hθ(z)>∇xf(hθ(z)) dν(z). (7.7)

Equation (7.7) is also known as the re-parametrization trick [Kingma et al., 2015]

and allows to derive a dual formulation of the Wasserstein natural gradient in the

case of implicit models. Proposition 75 below provides such formulation under mild

assumptions stated in Section A .2 along with a proof in Section B .1.

Proposition 75. Assume PΘ is defined by (7.6) such that ∇ρθ is given by (7.7).

Under Assumptions (B) and (C), the Wasserstein information matrix satisfies:

1

2
u>GW (θ)u = sup

f∈C∞c (Ω)

∇ρθ(f)>u− 1

2

∫
‖∇xf(x)‖2 dρθ(x) (7.8)

and the Wasserstein natural gradient satisfies:

∇WL(θ) = − argmin
u∈Rq

sup
f∈C∞c (Ω)

Aθ(f, u). (7.9)
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where Aθ(f, u) is a function from C∞c (Ω)× Rq defined as:

Aθ(f, u) := Uθ(f)>u− 1

2

∫
‖∇xf(x)‖2 dρθ(x),

with Uθ defined as in Proposition 74.

The similarity between the variational formulations provided in Propositions 74

and 75 is worth noting. A first difference however, is that Proposition 75 doesn’t

require the test functions f to have 0 mean under ρθ. This is due to the form of

the objective in (7.8) which only depends on the gradient of f . More importantly,

while (7.8) is well defined, the expression in (7.5) can be infinite when ∇ρθ is given

by (7.7). Indeed, if the ρθ doesn’t admit a density, it is always possible to find an

admissible function f ∈ C∞c (Ω) with bounded second moment under ρθ but for

which ∇ρθ(f) is arbitrarily large. This is avoided in (7.8) since the quadratic term

directly penalizes the gradient of functions instead. For similar reasons, the dual

formulation of the Sobolev distance considered in Mroueh et al. [2019] can also be

infinite in the case of implicit models as discussed in Section C although formally

similar to (7.8). Nevertheless, a similar estimator as in Mroueh et al. [2019] can be

considered using kernel methods which is the object of Section 3 .

3 Kernelized Wasserstein Natural Gradient

In this section we propose an estimator for the Wasserstein natural gradient using

kernel methods and exploiting the formulation in (7.9). We restrict to the case of

the Wasserstein natural gradient (WNG), denoted by∇WL(θ), as it is well defined

for implicit models, but a similar approach can be used for the Fisher-Rao natural

gradient in the case of models with densities. We first start by presenting the

kernelized Wasserstein natural gradient (KWNG) in Section 3 .1, then we introduce

an efficient estimator for KWNG in Section 3 .2. In Section 3 .4 we provide statistical

guarantees and discuss practical considerations in Section 3 .3.
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3 .1 General Formulation and Minimax Theorem

Consider a Reproducing Kernel Hilbert Space (RKHS)H which is a Hilbert space

endowed with an inner product 〈., .〉H along with its norm ‖.‖H. H has the additional

property that there exists a symmetric positive semi-definite kernel k : Ω× Ω 7→ R

such that k(x, .) ∈ H for all x ∈ Ω and satisfying the Reproducing property for all

functions f inH:

f(x) = 〈f, k(x, .)〉H, ∀x ∈ Ω. (7.10)

The above property is central in all kernel methods as it allows to obtain closed form

expressions for some class of functional optimization problems. In order to take

advantage of such property for estimating the natural gradient, we consider a new

saddle problem obtained by restricting (7.9) to functions in the RKHSH and adding

some regularization terms:

∇̃WL(θ) := − arg min
u∈Rq

sup
f∈H
Aθ(f, u) +

1

2
(εu>D(θ)u− λ‖f‖2

H). (7.11)

The kernelized Wasserstein natural gradient is obtained by solving (7.11) and is

denoted by ∇̃WL(θ). Here, ε is a positive real numbers, λ is non-negative while

D(θ) is a diagonal matrix in Rq with positive diagonal elements whose choice will

be discussed in Section 3 .3. The first regularization term makes the problem strongly

convex in u, while the second term makes the problem strongly concave in f when

λ > 0. When λ = 0, the problem is still concave in f . This allows to use a version

of the minimax theorem [Ekeland and Témam, 1999, Proposition 2.3, Chapter VI]

to exchange the order of the supremum and minimum which also holds true when

λ = 0. A new expression for the kernelized natural gradient is therefore obtained:

Proposition 76. Assume that ε > 0 and λ > 0, then the kernelized natural gradient

is given by:

∇̃WL(θ) =
1

ε
D(θ)−1Uθ(f ∗),
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where f ∗ is the unique solution to the quadratic optimization problem:

inf
f∈H
J (f) :=

∫
‖∇xf(x)‖2 dρθ(x) +

1

ε
Uθ(f)>D(θ)−1Uθ(f) + λ‖f‖2

H. (7.12)

When λ = 0, f ∗ might not be well defined, still, we have: ∇̃WL(θ) =

limj→∞
1
ε
D(θ)−1Uθ(fj) for any limiting sequence of (7.12).

Proposition 76 allows to compute the kernelized natural gradient directly, pro-

vided that the functional optimization (7.12) can be solved. This circumvents the

direct computation and inversion of the metric as suggested by (7.11). In Section 3

.2, we propose a method to efficiently compute an approximate solution to (7.12)

using Nyström projections. We also show in Section 3 .4 that restricting the space of

functions toH can still lead to a good approximation of the WNG provided thatH

enjoys some denseness properties.

3 .2 Nyström Methods for the Kerenalized Natural Gradient

We are interested now in finding an approximate solution to (7.12) which will allow

to compute an estimator for the WNG using Proposition 76. Here we consider N

samples (Zn)1≤n≤N from the latent distribution ν which are used to produce N

samples (Xn)1≤n≤N from ρθ using the map hθ, i.e., Xn = hθ(Zn). We also assume

we have access to an estimate of the Euclidean gradient ∇L(θ) which is denoted by

∇̂L(θ). This allows to compute an empirical version of the cost function in (7.12),

Ĵ (f) :=
1

N

N∑
n=1

‖∇xf(Xn)‖2 +
1

ε
Ûθ(f)>D(θ)−1Ûθ(f) + λ‖f‖2

H, (7.13)

where Ûθ(f) is given by: Ûθ(f) = ∇̂L(θ) + 1
N

∑N
n=1∇hθ(Zn))>∇xf(Xn). (7.13)

has a similar structure as the empirical version of the kernel Sobolev distance

introduced in Mroueh et al. [2019], it is also similar to another functional arising

in the context of score estimation for infinite dimensional exponential families as

in Chapter 3 and [Sriperumbudur et al., 2017, Sutherland et al., 2018]. It can be

shown using the generalized Representer Theorem [Schölkopf et al., 2001] that the

optimal function minimizing (7.13) is a linear combination of functions of the form
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x 7→ ∂ik(Xn, x) with 1 ≤ n ≤ N and 1 ≤ i ≤ d and ∂ik(y, x) denotes the partial

derivative of k w.r.t. yi. This requires to solve a system of size Nd × Nd which

can be prohibitive when both N and d are large. Nyström methods provide a way

to improve such computational cost by further restricting the optimal solution to

belong to a finite dimensional subspaceHM ofH called the Nyström subspace. In

the context of score estimation, Sutherland et al. [2018] proposed to use a subspace

formed by linear combinations of the basis functions x 7→ ∂ik(Ym, x):

span {x 7→ ∂ik(Ym, x) | 1 ≤ m ≤M ; 1 ≤ i ≤ d} , (7.14)

where (Ym)1≤m≤M are basis points drawn uniformly from (Xn)1≤n≤N with M ≤ N .

This further reduces the computational cost when M � N but still has a cubic

dependence in the dimension d since all partial derivatives of the kernel are consid-

ered to construct (7.14). Here, we propose to randomly sample one component of

(∂ik(Ym, .))1≤i≤d for each basis point Ym. Hence, we considerM indices (im)1≤m≤M

uniformly drawn form {1, . . . , d} and define the Nyström subspaceHM to be:

HM := span {x 7→ ∂imk(Ym, x)|1 ≤ m ≤M} .

An estimator for the kernelized Wasserstein natural gradient (KWNG) is then given

by:

∇̂WL(θ) =
1

ε
D(θ)−1Ûθ(f̂ ∗), f̂ ∗ := argmin

f∈HM
Ĵ (f). (7.15)

By definition of the Nyström subspaceHM , the optimal solution f̂ ∗ is necessarily of

the form: f̂ ∗(x) =
∑M

m=1 αm∂imk(Ym, x), where the coefficients (αm)1≤m≤M are

obtained by solving a finite dimensional quadratic optimization problem. Proposi-

tion 77 provides a closed form expression for (7.17) in terms of the derivatives of

the kernel collected in three matrices T , C and K. The matrices T and C belong to
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RM×Nd and RM×M and are given by:

Cm,(n,i) = ∂im∂i+dk(Ym, Xn), Km,m′ = ∂im∂im′+dk(Ym, Ym′) (7.16)

T :=∇τ(θ),

where T is expressed as the Jacobian of θ 7→ τ(θ) ∈ RM , i.e., T := ∇τ(θ), with

(τ(θ))m =
1

N

N∑
n=1

∂imk(Ym, hθ(Zn)).

Proposition 77. The estimator in (7.15) is given by:

∇̂WL(θ) =
1

ε

(
D(θ)−1 − Λ

)
∇̂L(θ), (7.17)

with S being a symmetric positive matrix expressed in terms of the matrices C, K

and T defined in (7.16):

Λ := D(θ)−1T>
(
TD(θ)−1T> + λεK +

ε

N
CC>

)†
TD(θ)−1.

In (7.16), we used the notation ∂i+dk(y, x) for the partial derivative of k w.r.t.

xi. A proof of Proposition 77 is provided in Section B .2 and relies on the repro-

ducing property (7.10) and its generalization for partial derivatives of functions.

The estimator in Proposition 77 is in fact a low rank approximation of the natural

gradient obtained from the dual representation of the metric (7.9). While low-rank

approximations for the Fisher-Rao natural gradient were considered in the context of

variational inference and for a Gaussian variational posterior [Mishkin et al., 2018],

(7.17) can be applied as a plug-in estimator for any family PΘ obtained as an implicit

model. We next discuss a numerically stable expression of (7.17), its computational

cost and the choice of the damping term in Section 3 .3. We then provide asymptotic

rates of convergence for (7.17) in Section 3 .4.
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3 .3 Practical Considerations

Numerically stable expression. When λ = 0, the estimator in (7.17) has an addi-

tional structure which can be exploited to get more accurate solutions. By the chain

rule, the matrix T admits a second expression of the form T = CB where B is

the Jacobian matrix of (hθ(Zn))1≤n≤N . Although this expression is impractical to

compute in general, it suggests that C can be ’simplified’. This simplification can be

achieved in practice by computing the SVD of CC> = USUT and pre-multiplying

T by S†UT . The resulting expression is given in Proposition 78 and falls into the

category of Ridgless estimators (Liang and Rakhlin [2019]).

Proposition 78. Consider an SVD decomposition of CCT of the form CC> =

USUT , then (7.17) is equal to:

∇̂WL(θ) =
1

ε

(
D(θ)−1 − Λ̃

)
∇̂L(θ), (7.18)

where Λ̃ is defined as:

Λ̃ := D(θ)−1T̃>
(
T̃D(θ)−1T̃> +

ε

N
P
)†
T̃D(θ)−1

with P := S†S and T̃ := S†UTT .

Choice of damping term. So far, we only required D(θ) to be a diagonal matrix

with positive coefficients. While a natural choice would be the identity matrix,

this doesn’t necessarily represent the best choice. As discussed by [Martens and

Sutskever, 2012, Section 8.2], using the identity breaks the self-rescaling properties

enjoyed by the natural gradient. Instead, we consider a scale-sensitive choice by

setting (D(θ))i = ‖T̃.,i‖ where T̃ is defined in Proposition 78. When the sample-size

is limited, as it is often the case when N is the size of a mini-batch, larger values

for ε might be required. That is to prevent the KWNG from over-estimating the

step-size in low curvature directions. Indeed, these directions are rescaled by the

inverse of the smallest eigenvalues of the information matrix which are harder to

estimate accurately. To adjust ε dynamically during training, we use a variant of the
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Levenberg-Marquardt heuristic as in Martens and Sutskever [2012] which seems to

perform well in practice; see Section 4 .

Computational cost. The number of basis points M controls the computational cost

of both (7.17) and (7.18) which is dominated by the cost of computing T and C,

solving an M ×M linear system and performing an SVD of CCT in the case of

(7.18). This gives an overall cost of O(dNM2 + qM2 + M3). In practice, M can

be chosen to be small (M ≤ 20) while N corresponds to the number of samples in

a mini-batch. Hence, in a typical deep learning model, most of the computational

cost is due to computing T as the typical number of parameters q is of the order

of millions. In fact, T can be computed using automatic differentiation and would

require performing M backward passes on the model to compute the gradient for

each component of τ . Overall, the proposed estimator can be efficiently implemented

and used for typical deep learning problems as shown in Section 4 .

Choice of the kernel. We found that using either a gaussian kernel or a rational

quadratic kernel to work well in practice. We also propose a simple heuristic to adapt

the bandwidth of those kernels to the data by setting it to σ = σ0σN,M , where σN,M

is equal to the average square distance between samples (Xn)1≤n≤N and the basis

points (Ym)1≤m≤M and σ0 is fixed a priori. Another choice is the median heuristic

Garreau et al. [2018].

3 .4 Theory

In this section we are interested in the behavior of the estimator in the limit of large

N and M and when λ > 0; we leave the case when λ = 0 for future work. We

work under Assumptions (A) to (G) in Section A .2 which state that Ω is a non-

empty subset, k is continuously twice differentiable with bounded second derivatives,

∇hθ(z) has at most a linear growth in z and ν satisfies some standard moments

conditions. Finally, we assume that the estimator of the euclidean gradient ∇̂L(θ)

satisfies Chebychev’s concentration inequality which is often the case in Machine

learning problem as discussed in Remark 2 of Section A .2. We distinguish two

cases: the well-specified case and the miss-specified case. In the well-specified case,

the vector valued functions (φi)1≤i≤q involved in Definition 10 are assumed to be
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gradients of functions inH and their smoothness is controlled by some parameter

α ≥ 0 with worst case being α = 0. Under this assumption, we obtain smoothness

dependent convergence rates as shown in Theorem 86 of Section B .3 using tech-

niques from Rudi et al. [2015], Sutherland et al. [2018]. Here, we will only focus on

the miss-specified which relies on a weaker assumption:

Assumption 3. There exists two constants C > 0 and c ≥ 0 such that for all κ > 0

and all 1 ≤ i ≤ q, there is a function fκi satisfying:

‖φi −∇fκi ‖L2(ρθ) ≤ Cκ, ‖fκi ‖H ≤ Cκ−c. (7.19)

The left inequality in (7.19) represents the accuracy of the approximation of φi

by gradients of functions inH while the right inequality represents the complexity

of such approximation. Thus, the parameter c characterizes the difficulty of the

problem: a higher value of c means that a more accurate approximation of φi comes

at a higher cost in terms of its complexity. Theorem 79 provides convergences rates

for the estimator in Proposition 77 under Assumption 3:

Theorem 79. Let δ be such that 0 ≤ δ ≤ 1 and b := 1
2+c

. Under Assumption 3

and Assumptions (A) to (G) listed in Section A .2, for N large enough, M ∼

(dN
1

2b+1 log(N)), λ ∼ N
1

2b+1 and ε . N−
b

2b+1 , it holds with probability at least

1− δ that:

‖∇̂WL(θ)−∇WL(θ)‖2 = O
(
N−

2
4+c

)
.

A proof of Theorem 79 is provided in Section B .3. In the best case where

c = 0, we recover a convergence rate of 1√
N

as in the well specified case for the worst

smoothness parameter value α = 0. Hence, Theorem 79 is a consistent extension

of the well-specified case. For harder problems where c > 0 more basis points are

needed, with M required to be of order dN log(N) in the limit when c → ∞ in

which case the Nyström approximation loses its computational advantage.
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4 Experiments
This section presents an empirical evaluation of (KWNG) based on (7.18).

4 .1 Synthetic Models

4 .1.1 Consistency of the estimator

Experimental setting To empirically assess the accuracy of KWNG, we consider

three choices for the parametric model PΘ: the multivariate normal model, the

multivariate log-normal model and uniform distributions on hyper-spheres. All have

the advantage that the WNG can be computed in closed form [Chen and Li, 2018,

Malagò et al., 2018]. While the first models admit a density, the third one doesn’t,

hence the Fisher natural gradient is not defined in this case. While this choice

of models is essential to obtain closed form expressions for WNG, the proposed

estimator is agnostic to such choice of family. We also assume we have access to the

exact Euclidean Gradient (EG) which is used to compute both of WNG and KWNG.

Results Figure 7.1 shows the evolution of the the relative error w.r.t. the sample-size

N , the number of basis points M and the dimension d in the case of the hyper-sphere

model. As expected from the consistency results provided in Section 3 .4, the relative

error decreases as the samples size N increases. The behavior in the number of basis

points M shows a clear threshold beyond which the estimator becomes consistent

and where increasing M doesn’t decrease the relative error anymore. This threshold

increases with the dimension d as discussed in Section 3 .4. In practice, using the

rule M =
⌊
d
√
N
⌋

seems to be a good heuristic as shown in Figure 7.1 (a). All these

observations persist in the case of the normal and log-normal model as shown in

Figure 7.2. In addition, we report in Figure 7.3 the sensitivity to the choice of the

bandwidth σ which shows a robustness of the estimator to a wide choice of σ.

4 .1.2 Optimization trajectory

We also compare the optimization trajectory obtained using KWNG with the trajecto-

ries of both the exact WNG and EG in a simple setting: PΘ is the multivariate normal

family and the loss function L(θ) is the squared Wasserstein 2 distance between ρθ

and a fixed target distribution ρθ∗ .
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Figure 7.1: Relative error of KWNG averaged over 100 runs for varying dimension form
d = 1 (yellow) to d = 10 (dark red) for the hyper-sphere model. (a): box-plot
of the relative error as d increases while N = 5000 and M =

⌊
d
√
N
⌋

. (b)

Relative error as the sample size N increases and M =
⌊
d
√
N
⌋

. (c): Relative
error as M increases and N = 5000. A gaussian kernel is used with a fixed
bandwidth σ = 1.

1 2 3 4 5 6 7 8 9 10
d

0%

2%

4%

6%

8%

10%

Re
la

tiv
e 

er
ro

r

0 1000 2000 3000 4000 5000
 N 

0%

2%

4%

6%

8%

10% (b)

101 102 103

 M 
0%

2%

4%

6%

8%

10% (c)
d = 10
d = 9
d = 8
d = 7
d = 6
d = 5
d = 4
d = 3
d = 2
d = 1

1 2 3 4 5 6 7 8 9 10
d

0%

2%

4%

6%

8%

10%

Re
la

tiv
e 

er
ro

r

(a)

0 1000 2000 3000 4000 5000
 N 

0%

2%

4%

6%

8%

10% (b)

101 102 103

 M 
0%

2%

4%

6%

8%

10% (c)
d = 10
d = 9
d = 8
d = 7
d = 6
d = 5
d = 4
d = 3
d = 2
d = 1

Figure 7.2: Evolution of the relative error of KWNG averaged over 100 runs for varying
dimension form d = 1 (yellow) to d = 10 (dark red). For each run, a random
value for the parameter θ and for the Euclidean gradient∇L(θ) is sampled from
a centered Gaussian with variance 0.1. In all cases, λ = 0 and ε = 10−5. Top
row: multivariate normal model, bottom row: multivariate log-normal. Left (a):
box-plot of the relative error as d increases with N = 5000 and the number
of basis points is set to M =

⌊
d
√
N
⌋

. (b) Relative error as the sample size

N increases and the number of basis points is set to M =
⌊
d
√
N
⌋

. Right (c):
Relative error as M increases and N fixed to 5000.
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Figure 7.3: Relative error of the KWNG for varying bandwidth of the kernel. Results
are averaged over 100 runs for varying dimension form d = 1 (yellow) to
d = 10 (dark red). For each run, a random value for the parameter θ and for the
Euclidean gradient ∇L(θ) is sampled from a centered Gaussian with variance
0.1. In all cases, λ = ε = 10−10. The sample size is fixed to N = 5000 and the
number of basis points is set to M =

⌊
d
√
N
⌋

. Left: uniform distributions on a
hyper-sphere, middle: multivariate normal, and right: multivariate log-normal.

Figure 7.4: Left (a): Training error per iteration for KWNG, WNG, and EG. Right (b):
projection of the sequence of updates obtained using KWNG, WNG and EG
along the first two PCA directions of the WNG trajectory. The dimension of the
sample space is fixed to d = 10. Exact valued for the gradient are used for EG
and WNG. For KWNG, N = 128 samples and M = 100 basis points are used.
The regularization parameters are set to: λ = 0 and ε = 10−10. An optimal
step-size γt is used: γt = 0.1 for both KWNG and WNG while γt = 0.0001 for
EG.

Figure 7.4 (a), shows the evolution of the loss function at every iteration. There

is a clear advantage of using the WNG over EG as larger step-sizes are allowed

leading to faster convergence. Moreover, KWNG maintains this properties while

being agnostic to the choice of the model. Figure 7.4 (b) shows the projected

dynamics of the three methods along the two PCA directions of the WNG trajectory

with highest variance. The dynamics of WNG seems to be well approximated by the

one obtained using KWNG.
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4 .2 Approximate Invariance to Parametrization

4 .2.1 Experimental setting.

We illustrate now the approximate invariance to parametrization of the KWNG and

show its benefits for training deep neural networks when the model is ill-conditioned.

We consider a classification task on two datasets Cifar10 and Cifar100 with a

Residual Network He et al. [2015].

To use the KWNG estimator, we view the input RGB image as a latent variable

z with probability distribution ν and the output logits of the network x := hθ(z) as

a sample from the model distribution ρθ ∈ PΘ where θ denotes the weights of the

network. The loss function L is given by:

L(θ) :=

∫
y(z)> log(SM(Uhθ(z))) dν(z),

where SM is the Softmax function, y(z) denotes the one-hot vector representing the

class of the image z and U is a fixed invertible diagonal matrix which controls how

well the model is conditioned.

We consider two cases, the Well-conditioned case (WC) in which U is the

identity and the Ill-conditioned case (IC) where U is chosen to have a condition

number equal to 107.

We compare the performance of the proposed method with several variants

of SGD: plain SGD, SGD + Momentum, and SGD + Momentum + Weight decay.

We also compare with Adam Kingma and Ba [2015], KFAC optimizer [Martens

and Grosse, 2015, Grosse and Martens, 2016] and eKFAC [George et al., 2018]

which implements a fast approximation of the empirical Fisher Natural Gradient.

We emphasize that gradient clipping by norm was used for all experiments and was

crucial for a stable optimization using KWNG.

4 .2.2 Experimental details

Architecture. We use a residual network with one convolutional layer followed by 8

residual blocks and a final fully connected layer. Each residual block consists of two

3× 3 convolutional layers each and ReLU nonlinearity. We use batch normalization



4 . Experiments 265

Kernel size Output shape
z 32× 32× 3
Conv 3× 3 64
Residual block [3× 3]× 2 64
Residual block [3× 3]× 2 128
Residual block [3× 3]× 2 256
Residual block [3× 3]× 2 512
Linear - Number of classes

Table 7.1: Network architecture.

for all methods. Details of the intermediate output shapes and kernel size are provided

in Table 7.1.

Hyper-parameters. For all methods, we used a batch-size of 128. The optimal

step-size γ was selected in {10, 1, 10−1, 10−2, 10−3, 10−4} for each method. In the

case of SGD with momentum, we used a momentum parameter of 0.9 and a weight

decay of either 0 or 5× 10−4. For KFAC and EKFAC, we used a damping coefficient

of 10−3 and a frequency of reparametrization of 100 updates. For KWGN we set

M = 5 and λ = 0 while the initial value for ε is set to ε = 10−5 and is adjusted using

an adaptive scheme based on the Levenberg-Marquardt dynamics as in [Martens and

Grosse, 2015, Section 6.5]. More precisely, we use the following update equation

for ε after every 5 iterations of the optimizer:

ε← ωε, if r >
3

4

ε← ω−1ε, if r <
1

4
.

Here, r is the reduction ratio:

r = max
tk−1≤t≤tk

(
2
L(θt))− L(θt+1)

∇WL(θ)>∇L(θ)>

)

where (tk)k are the times when the updates occur. and ω is the decay constant chosen

to ω = 0.85.

4 .2.3 Results.
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Cifar10 Figure 7.5 shows the training and test accuracy at each epoch on Cifar10

in both (WC) and (IC) cases. While all methods achieve a similar test accuracy in the

(WC) case on both datasets, methods based on the Euclidean gradient seem to suffer

a drastic drop in performance in the (IC) case. This doesn’t happen for KWNG (red

line) which achieves a similar test accuracy as in (WC) case. Moreover, a speed-up

in convergence in number of iterations can be obtained by increasing the number of

basis points M (brown line). The time cost is also in favor of KWNG as shown in

Figure 7.6.

Cifar100 On Cifar100, KWNG is also less affected by the ill-conditioning, albeit

to a lower extent. Indeed, the larger number of classes in Cifar100 makes the

estimation of KWNG harder as discussed in Section 4 .1. In this case, increasing

the batch-size can substantially improve the training accuracy (pink line). Moreover,

methods that are used to improve optimization using the Euclidean gradient can

also be used for KWNG. For instance, using Momentum leads to an improved

performance in the (WC) case (grey line).

Effect of the damping Interestingly, KFAC seems to also suffer a drop in perfor-

mance in the (IC) case. This might result from the use of an isotropic damping term

D(θ) = I which would be harmful in this case. We also observe a drop in perfor-

mance when a different choice of damping is used for KWNG. More importantly,

using only a diagonal pre-conditioning of the gradient doesn’t match the performance

of KWNG as shown in Figure 7.7.



4 . Experiments 267

0 100 200 300
Epochs

40

60

80

100

%
 a

cc
ur

ac
y

(b) Test accuracy: (IC)

0 100 200 300
Epochs

40

60

80

100

%
 a

cc
ur

ac
y

(a) Training accuracy: (IC)

0 100 200 300
Epochs

80

85

90

95

100

%
 a

cc
ur

ac
y

(d) Test accuracy: (WC)

0 100 200 300
Epochs

80

85

90

95

100

%
 a

cc
ur

ac
y

(c) Training accuracy: (WC)

KWNG(M=5)
KWNG(M=20)
Adam
SGD
SGD+M
SGD+M+WD
KFAC
eKFAC

0 100 200 300
Epochs

0

20

40

60

80

%
 a

cc
ur

ac
y

(b) Test accuracy: (IC)

0 100 200 300
Epochs

0

20

40

60

80

100

%
 a

cc
ur

ac
y

(a) Training accuracy, (IC)

0 100 200 300
Epochs

30

40

50

60

70

80

%
 a

cc
ur

ac
y

(d) Test accuracy: (WC)

0 100 200 300
Epochs

40

60

80

100

%
 a

cc
ur

ac
y

(c) Training accuracy: (WC)

KWNG(M=5)
KWNG(M=5)+M
SGD+M+WD
SGD
SGD+M
KFAC
eKFAC
KWNG(N=512)

Figure 7.5: Test accuracy and Training accuracy for classification on Cifar10 (top)
and Cifar100 (bottom) in both the ill-conditioned case (left side) and well-
conditioned case (right side) for different optimization methods. on Cifar10
Results are averaged over 5 independent runs except for KFAC and eKFAC.
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(d) Test accuracy: (WC)

Figure 7.6: Training accuracy (left) and test accuracy (right) as a function of time for
classification on Cifar10 in both the ill-conditioned case (top) and well-
conditioned case (bottom) for different optimization methods.
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(b) Test accuracy: (IC)
Diagonal conditioning: D = T  
Diagonal conditioning: D = T  
KWNG: D = I 
KWNG: D = T
KWNG: D = T
KWNG: D = T  (rq-kernel)

Figure 7.7: KWNG vs Diagonal conditioning in the ill-conditioned case on Cifar10. In
red and blue, the euclidean gradient is preconditioned using a diagonal matrix
D either given by Di = ‖T.,i‖ or Di = ‖T̃.,i‖, where T and T̃ are defined in
Propositions 77 and 78. The rest of the traces are obtained using the stable
version of KWNG in Proposition 78 with different choices for the damping term
D = I , D = ‖T.,i‖ and ‖T̃.,i‖. All use a gaussian kernel except the yellow
traces which uses a rational quadratic kernel.



Supplementary

A Preliminaries

A .1 Notation

We recall that Ω is an open subset of Rd while Θ is an open subset of parameters in

Rq. Let Z ⊂ Rp be a latent space endowed with a probability distribution ν over Z .

Additionally, (θ, z) 7→ hθ(z) ∈ Ω is a function defined over Θ×Z . We consider a

parametric set of probability distributions PΘ over Ω defined as the implicit model:

PΘ := {ρθ := (hθ)#ν ; θ ∈ Θ},

where by definition, ρθ = (hθ)#ν means that any sample x from ρθ can be written as

x = hθ(z) where z is a sample from ν. We will write B to denote the jacobian of hθ

w.r.t. θ viewed as a linear map from Rq to L2(ν)d without explicit reference to θ:

Bu(z) = ∇hθ(z).u; ∀u ∈ Rq.

As in the main text, L : Θ → R is a loss functions which is assumed to be of the

form L = F(ρθ), with F being a real valued functional over the set of probability

distributions. ∇L(θ) denotes the euclidean gradient of L w.r.t θ while ∇̂L(θ) is an

estimator of∇L(θ) using N samples from ρθ.

We also consider a Reproducing Kernel Hilbert SpaceH of functions defined

over Ω with inner product 〈., .〉H and norm ‖.‖H and with a kernel k : Ω× Ω→ R.

The reproducing property for the derivatives [Steinwart and Christmann, 2008,

Lemma 4.34] will be important: ∂if(x) = 〈f, ∂ik(x, .)〉H for all x ∈ Ω. It holds as



A . Preliminaries 270

long as k is differentiable.

C∞b (Ω) denotes the space of smooth bounded real valued functions on Ω, and

C∞c (Ω) ⊂ C∞b (Ω) denotes the subset of compactly supported functions. For any

measured space Z with probability distribution ν, we denote by L2(ν) the space

of real valued and square integrable functions under ν and by L2(ν)d the space of

square integrable vector valued functions under ν and with values in Rd.

A .2 Assumptions

We make the following set of assumptions:

(A) Ω is a non-empty open subset of Rd.

(B) There exists positive constants ζ and σ such that
∫
‖z‖p dν(z) ≤ 1

2
p!ζp−2σ2

for any p ≥ 2.

(C) For all θ ∈ Θ there exists C(θ) such that ‖∇θhθ(z)‖ ≤ C(θ)(1 + ‖z‖) for all

z ∈ Z .

(D) k is twice continuously differentiable on Ω× Ω.

(E) For all θ ∈ Θ it holds that
∫
∂i∂i+dk(x, x) dpθ(x) <∞ for all 1 ≤ i ≤ d.

(F) The following quantity is finite: κ2 = sup x∈Ω
1≤i≤q

∂i∂i+qk(x, x).

(G) For all 0 ≤ δ ≤ 1, it holds with probability at least 1 − δ that ‖∇̂L(θ) −

∇L(θ)‖ . N−
1
2 .

Remark 2. Assumption (G) holds if for instance ∇̂L(θ) can be written as an empir-

ical mean of i.i.d. terms with finite variance:

∇̂L(θ) =
1

N

N∑
i=1

∇θl(hθ(Zi))

whereZi are i.i.d. samples from the latent distribution ν where
∫
∇θl(hθ(z)) dν(z) =

L(θ). This is often the case in the problems considered in machine-learning. In, this
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case, the sum of variances of the vector ∇̂L(θ) along its coordinates satisfies:

∫
‖∇̂L(θ)−∇L(θ)‖2 dν(z) =

1

N

∫
‖∇θl(hθ(z))‖2 dν(z) :=

1

N
σ2

One can then conclude using Cauchy-Schwarz inequality followed by Chebychev’s

inequality that with probability 1− δ:

‖∇̂L(θ)−∇L(θ)‖ ≤ σ√
δN

Moreover, Assumption (C) is often satisfied when the implicit model is chosen

to be a deep networks with ReLU non-linearity.

A .3 Operators definition

Differential operators. We introduce the linear L operator and its adjoint L>:

L :H → L2(ν)d L> :L2(ν)d → H

f 7→ (∂if ◦ hθ)1≤i≤d v 7→
∫ d∑

i=1

∂ik(hθ(z), .)vi(z) dν(z)

This allows to obtain the linear operator A defined in Assumption 4 in the main text

by composition A := L>L. We recall here another expression for A in terms of

outer product ⊗ and its regularized version for a given λ > 0,

A =

∫ d∑
i=1

∂ik(hθ(z), .)⊗ ∂ik(hθ(z), .) dν(z) Aλ := A+ λI.

It is easy to see that A is a symmetric positive operator. Moreover, it was established

in Sriperumbudur et al. [2017] that A is also a compact operator under Assump-

tion (E).

Assume now we have access to N samples (Zn)1≤n≤N as in the main text. We

define the following objects:

Â :=
1

N

N∑
n=1

d∑
i=1

∂ik(hθ(Zn), .)⊗ ∂ik(hθ(Zn), .), Âλ := Â+ λI.
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Furthermore, if v is a continuous function in L2(ν)d, then we can also consider an

empirical estimator for L>v:

L̂>v :=
1

N

N∑
n=1

d∑
i=1

∂ik(hθ(Zn), .)vi(Zn).

Subsampling operators. We consider the operator QM defined fromH to RM by:

QM :=

√
q

√
M

M∑
m=1

em ⊗ ∂imk(Ym, .) (7.20)

where (em)1≤m≤M is an orthonormal basis of RM . QM admits a singular value

decomposition of the form QM = UΣV >, with V V > := PM being the orthogonal

projection operator on the Nyström subspaceHM . Similarly to Rudi et al. [2015],

Sutherland et al. [2018], we define the projected inverse function GM(C) as:

GM(C) = V (V >CV )−1V >.

We recall here some properties of GM from [Sutherland et al., 2018, Lemma 1]:

Lemma 80. Let A : H → H be a positive operator, and define Aλ = A + λI for

any λ > 0. The following holds:

1. GM(A)PM = GM(A)

2. PMGM(A) = GM(A)

3. GM(Aλ)AλPM = PM

4. GM(Aλ) = (PMAPM + λI)−1PM

5. ‖A
1
2
λGM(Aλ)A

1
2
λ‖

Estimators of the Wasserstein information matrix. Here we would like to express

the estimator in Proposition 77 in terms of the operators introduced previously. We

have the following proposition:
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Proposition 81. The estimator defined in Proposition 77 admits the following repre-

sentation:

∇̂WL(θ) = (εD(θ) +GM,N)−1∇̂L(θ)

where GM,N is given by:

GM,N := (L̂>B)>GM(Âλ)L̂>B.

Proof. This a direct consequence of the minimax theorem [Ekeland and Témam,

1999, Proposition 2.3, Chapter VI] and applying [Sutherland et al., 2018, Lemma

3].

The matrix GM,N is in fact an estimator of the Wasserstein information matrix

defined in Definition 10. We will also need to consider the following population

version of GM,N defined as :

GM := (L>B)>GM(Aλ)L
>B (7.21)

B Proofs

B .1 Preliminary results

Here we provide a proof of the invariance properties of the Fisher and Wasserstein

natural gradient descent in the continuous-time limit as stated in Proposition 73.

Consider an invertible and smoothly differentiable re-parametrization Ψ, satisfying

ψ = Ψ(θ). Denote by ρ̄ψ = ρΨ−1(ψ) the re-parametrized model and ḠW (ψ) and

ḠF (ψ) their corresponding Wasserstein and Fisher information matrices whenever

they are well defined.

Proof of Proposition 73. Here we only consider the case when ∇DL(θ) is either

given by the Fisher natural gradient ∇FL(θ) or the Wasserstein Natural gradient

∇WL(θ). We will first define ψ̃s := Ψ(θs) and show that in fact ψ̃s = ψs at all times
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s > 0. First, let’s differentiate ψ̃s in time:

˙̃
ψs = −∇θΨ(θs)

>GD(θs)
−1∇θL(θs)

By the chain rule, we have that∇θL(θs) = ∇θΨ(θs)∇ψL̄(ψ̃s), hence:

˙̃
ψs = −∇θΨ(θs)

>GD(θs)
−1∇θΨ(θs)∇ψL̄(ψ̃s).

It is easy to see that∇θΨ
−1(ψ̃s) = (∇ψΨ−1(ψs))

−1 by definition of Ψ and ψ̃s, hence

by Lemma 82 one can conclude that:

˙̃
ψs = −GD(ψ̃s)

−1∇ψL̄(ψ̃s).

Hence, ψ̃s satisfies the same differential equation as ψs. Now keeping in mind that

ψ0 = ψ̃0 = Ψ(θ0), it follows that ψ0 = ψ̃0 = Ψ(θ0) by uniqueness of differential

equations.

Lemma 82. Under conditions of Propositions 74 and 75, the informations matrices

ḠW (ψ) and ḠF (ψ) are related to GW (θ) and GF (θ) by the relation:

ḠW (ψ) = ∇ψΨ−1(ψ)>GW (θ)∇ψΨ−1(ψ)

ḠF (ψ) = ∇ψΨ−1(ψ)>GF (θ)∇ψΨ−1(ψ)

Proof. Let v ∈ Rq and write u = ∇θΨ
−1(ψ)v, then by the dual formulations of

GW (θ) and GF (θ) in Proposition 74 we have that:

1

2
v>∇ψΨ−1(ψ)>GF (θ)∇ψΨ−1(ψ)v

= sup
f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ρθ(f)>∇θΨ
−1(ψ)v − 1

2

∫
f(x)2 dρθ(x) dx,
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Now recalling that∇ψρ̄ψ = ∇θρθ∇ψΨ−1(ψ) by Lemma 83, it follows that:

1

2
v>∇ψΨ−1(ψ)>GF (θ)∇ψΨ−1(ψ)v

= sup
f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ψρ̄ψ(f)>v − 1

2

∫
f(x)2 dρθ(x) dx,

Using again Proposition 74 for the reparametrized model ρ̄ψ, we directly have that:

1

2
v>GF (ψ)v = sup

f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ψρ̄ψ(f)>v − 1

2

∫
f(x)2 dρθ(x) dx,

The result follows by equating both expression. The same procedure can be applied

for the case the Wasserstein information matrix using Proposition 75.

Lemma 83. The distributional gradients ∇ψρ̄ψ and ∇θρθ are related by the expres-

sion:

∇ψρ̄ψ = ∇θρθ∇ψΨ−1(ψ)

Proof. The proof follows by considering a fixed direction u ∈ Rq and a test function

f ∈ C∞c (Ω) and the definition of distributional gradient in Definition 11:

∇ρ̄ψ(f)>u = lim
ε→0

1

ε

∫
f(x) dρ̄ψ+εu(x)−

∫
f(x) dρ̄ψ(x)

= lim
ε→0

1

ε

∫
f(x) dρΨ−1(ψ+εu)(x)−

∫
f(x) dρΨ−1(ψ)(x)

Now by differentiability of Ψ−1, we have the following first order expansion:

Ψ−1(ψ + εu) = Ψ−1(ψ) + ε∇Ψ−1(ψ)>u+ ευ(ε)

where υ(ε) converges to 0 when ε→ 0. Now using again the definition Definition 11
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for ρΨψ one has:

1

ε

∫
f(x) d

(
ρΨ−1(ψ+εu) − ρΨ−1(ψ)

)
(x) =∇ρΨ−1(ψ)(f)>∇Ψ−1(ψ)>u

+ ευ(ε) + δ(ε, f, (∇Ψ−1(ψ)u+ υ(ε)))

The last two terms converge to 0 as ε→ 0, hence leading to the desired expression.

Proposition 84. When ρθ admits a density that is continuously differentiable w.r.t θ

and such that x 7→ ∇ρθ(x) is continuous, then the distributional gradient is of the

form:

∇ρθ(f) =

∫
f(x)∇ρθ(x) dx, ∀f ∈ C∞c (Ω)

where ∇ρθ(x) denotes the gradient of the density of ρθ(x) at x.

Proof. Let ε > 0 and u ∈ Rq, we define the function ν(ε, u, f) as follows:

ν(ε, u, f) =

∫
f(x)

(
1

ε
(ρθ+εu)− ρθ −∇ρ>θ u

)
dx

we just need to show that ν(ε, u, f) → 0 as ε → 0. This follows form the differ-

entiation lemma [Klenke, 2008, Theorem 6.28] applied to the function (θ, x) 7→

f(x)ρθ(x). Indeed, this function is integrable in x for any θ′ in a neighborhood U of

θ that is small enough, it is also differentiable on that neighborhood U and satisfies

the domination inequality:

|f(x)∇ρθ(x)>u| ≤ |f(x)| sup
x∈Supp(f),θ∈U

∇ρθ(x)>u|.

The inequality follows from continuity of (θ, x)∇ρθ(x) and recalling that f is com-

pactly supported. This concludes the proof.

We fist provide a proof of the dual formulation for the Fisher information matrix.
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Proof of Proposition 74 . Consider the optimization problem:

sup
f∈C∞c (Ω)∫
f(x) dρθ(x)=0

(∫
f(x)∇ρθ(x) dx

)>
u− 1

2

∫
f(x)2ρθ(x) dx (7.22)

Recalling that the set of smooth and compactly supported functions C∞c (∞) is dense

in L2(ρθ) and that the objective function in (7.22) is continuous and coercive in

f , it follows that (7.22) admits a unique solution f ∗ in L2(ρθ) which satisfies the

optimality condition:

∫
f(x)(∇ρθ(x))>u dx =

∫
f(x)f ∗(x)ρθ(x) dx ∀f ∈ L2(ρθ)

Hence, it is easy to see that f ∗ = (∇ρθ)>u/ρθ and that the optimal value of (7.22) is

given by:
1

2

∫
((∇ρθ(x))>u)2

ρθ(x)
dx.

This is equal to u>GF (θ)u by Definition 9.

The next proposition ensures that the Wasserstein information matrix defined in

Definition 10 is well-defined and has a dual formulation.

Proposition 85. Consider the model defined in (7.6) and let (es)1≤s≤q be an or-

thonormal basis of Rq. Under Assumptions (B) and (C), there exists an optimal

solution Φ = (φs)1≤s≤q with φs in L2(ρθ)
d satisfying the PDE:

∂sρθ = −div(ρθφs)

The elliptic equations also imply that L>∇hθ = L>(Φ ◦ hθ). Moreover, the Wasser-

stein information matrix GW (θ) on PΘ at point θ can be written as GW (θ) = Φ>Φ

where the inner-product is in L2(ρθ)
d and satisfies:

1

2
u>GW (θ)u = sup

f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
‖∇xf(hθ(z))‖2 dν(z).

for all u ∈ Rq.
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Proof. Let (es)1≤s≤q be an orthonormal basis of Rq. For all 1 ≤ s ≤ q, we will

establish the existence of an optimal solution φs in L2(ρθ)
d satisfying the PDE:

∂sρθ = −div(ρθφs) (7.23)

Consider the variational problem:

sup
φ∈S

∫
φ(hθ(z))>∂θshθ(z)− 1

2
‖φ‖2

L2(ρθ) (7.24)

where S is a Hilbert space obtained as the closure in L2(ρθ)
d of functions of the

form φ = ∇xf with f ∈ C∞c (Ω):

S := {∇xf | f ∈ C∞c (Ω)}L2(ρdθ).

We have by Assumption (C) that:

∫
φ(hθ(z))>∂θshθ(z) dν(z) ≤≤ C(θ)

√∫
(1 + ‖z‖2) dν(z)

∫
‖φ‖L2(ρθ).

Moreover, by Assumption (B), we know that
√∫

(1 + ‖z‖2) dν(z) < ∞. This

implies that the objective in (7.24) is continuous in φ while also being convex.s It

follows that (7.24) admits a unique solution φ∗s ∈ S which satisfies for all φ ∈ S:

∫
φ(hθ(z))>φ∗s(hθ(z)) dν(z) =

∫
φ(hθ(z))>∂θshθ(z)) dν(z)

In particular, for any f ∈ C∞c (Ω), it holds that:

∫
∇xf(hθ(z))>φ∗s(hθ(z)) dν(z) =

∫
∇xf(hθ(z))>∂θshθ(z)) dν(z)

which is equivalent to (7.23) and implies directly that LT∇hθ = LTΦ ◦ hθ where

Φ := (φ∗s)1≤s≤q. The variational expression for 1
2
u>GWu follows by noting that
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(7.24) admits the same optimal value as

sup
f∈C∞c (Ω)∫
f(x) dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
‖∇xf(hθ(z))‖2 dν(z).

That is because S is by definition the closure in L2(ρθ)
d of the set of gradients of

smooth and compactly supported functions on Ω.

Proof of Proposition 75. This is a consequence of Proposition 85.

B .2 Expression of the Estimator

We provide here a proof of Proposition 77

Proof of Proposition 77. Here, to simplify notations, we simply write D instead of

D(θ). First consider the following optimization problem:

inf
f∈HM

1

N

N∑
n=1

‖∇f(Xn)‖2 + λ‖f‖2
H +

1

ε
R(f)>D−1R(f) +

2

ε
R(f)>D−1∇̂L(θ)

with R(f) given by R(f) = 1
N

∑N
n=1∇f(Xn)>B(Zn). Now, recalling that any

f ∈ HM can be written as f =
∑M

m=1 αm∂imk(Ym, .), and using the reproducing

property ∂if(x) = 〈f, ∂ik(x, .)〉H [Steinwart and Christmann, 2008, Lemma 4.34] ,

it is easy to see that:

1

N

N∑
n=1

‖∇f(Xn)‖2 =
1

N

∑
1≤n≤N
1≤i≤d

(
M∑
m=1

αm∂im∂i+dk(Ym, Xn))2.

‖f‖2
H =

∑
1≤m,m′≤M

αmαm′∂im∂im′+dk(Ym, Ym′)

R(f) =
1

N

∑
1≤n≤N
1≤i≤d

1≤m≤M

αm∂im∂i+dk(Ym, Xn)Bi(Zn)

The above can be expressed in matrix form using the matrices defined in Proposi-



B . Proofs 280

tion 77:

1

N

N∑
n=1

‖∇f(Xn)‖2 = α>CC>α; ‖f‖2
H = α>Kα; R(f) = α>CB.

Hence the optimal solution f̂ ∗ is of the form f̂ ∗ =
∑M

m=1 α
∗
m∂imk(Ym, .), with α∗

obtained as a solution to the finite dimensional problem in RM :

min
α∈RM

α>(εCC> + ελK + CBD−1B>C>)α + 2α>CBD−1∇̂L(θ)

It is easy to see that α∗ are given by:

α∗ = −(εCCT + ελK + CBD−1BTCT )†CBD−1∇̂L(θ).

Now recall that the estimator in Proposition 77 is given by: ∇̂WL(θ) = 1
ε
D−1Uθ(f̂ ∗).

Hence, 1
ε
D−1(∇̂L(θ)−BTCTα∗) The desired expression is obtained by noting that

CB = T using the chain rule.

B .3 Consistency Results

Well-specified case. Here, we assume that the vector valued functions (φi)1≤i≤q

involved in Definition 10 can be expressed as gradients of functions in H. More

precisely:

Assumption 4. For all 1 ≤ i ≤ q, there exits functions fi ∈ H such that φi =

∇fi. Additionally, fi are of the form fi = Aαvi for some fixed α ≥ 0, with

vi ∈ H and A being the differential covariance operator defined onH by A : f 7→∫ ∑d
i=1 ∂ik(hθ(z), .)∂if(hθ(z)) dν(z).

The parameter α characterizes the smoothness of fi and therefore controls the

statistical complexity of the estimation problem. Using a similar analysis as Suther-

land et al. [2018] we obtain a convergence rate for the estimator in Proposition 77

the following convergence rates for the estimator in Proposition 77:
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Theorem 86. Let δ be such that 0 ≤ δ ≤ 1 and b := min(1, α + 1
2
). Under

Assumption 4 and Assumptions (A) to (G) listed in Section A .2, for N large enough,

M ∼ (dN
1

2b+1 log(N)), λ ∼ N−
1

2b+1 and ε . N−
b

2b+1 , it holds with probability at

least 1− δ that:

‖∇̂WL(θ)−∇WL(θ)‖2 = O
(
N−

2b
2b+1

)
.

In the worst case where α = 0, the proposed estimator needs at most M ∼

(d
√
N log(N)) to achieve a convergence rate of N−

1
2 . The smoothest case requires

only M ∼ (dN
1
3 log(N)) to achieve a rate of N−

2
3 . Thus, the proposed estimator

enjoys the same statistical properties as the ones proposed by Sriperumbudur et al.

[2017], Sutherland et al. [2018] while maintaining a computational advantage1 tNow

we provide a proof for Theorem 86 which relies on the same techniques used by

Rudi et al. [2015], Sutherland et al. [2018].

Proof of Theorem 86 . The proof is a direct consequence of Proposition 87 under

Assumption 4.

Proof of Theorem 79. The proof is a direct consequence of Proposition 87 under

Assumption 3.

Proposition 87. Under Assumptions (A) to (G) and for 0 ≤ δ ≤ 1 and N large

enough, it holds with probability at least 1− δ:

‖∇̂WL −∇WL‖ = O(N−
b

2b+1 )

provided that M ∼ dN
1

2b+1 logN , λ ∼ N
1

2b+1 and ε . N−
b

2b+1 where b :=

min(1, α + 1
2
) when Assumption 4 holds and b = 1

2+c
when Assumption 3 holds

instead.

Proof. Here for simplicity we assume that D(θ) = I without loss of generality and

we omit the dependence in θ and write∇WL and∇L instead of∇WL(θ) and∇L(θ)

1 The estimator proposed by Sutherland et al. [2018] also requires M to grow linearly with the
dimension d although such dependence doesn’t appear explicitly in the statement of [Sutherland et al.,
2018, Theorem 2].



B . Proofs 282

and∇WL(θ). We also define Ĝε = εI+GM,N andGε = εI+GW . By Proposition 81,

we know that ∇̂WL = Ĝ−1
ε ∇̂L. We use the following decomposition:

‖∇̂WL −∇WL‖ ≤‖Ĝ−1
ε (∇̂L −∇L)‖+ ε‖Ĝ−1

ε G−1
W ∇L‖

+ ‖Ĝ−1
ε (GM,N −GW )G−1

W ∇L‖

To control the norm of Ĝ−1
ε we write Ĝ−1

ε = G
− 1

2
ε (H + I)−1G

− 1
2

ε , where H is given

by H := G
− 1

2
ε (GM,N −GW )G

− 1
2

ε . Hence, provided that µ := λmax(H), the highest

eigenvalue of H , is smaller than 1, it holds that:

‖(H + I)−1‖ ≤ (1− µ)−1.

Moreover, since GW is positive definite, its smallest eigenvalue η is strictly positive.

Hence, ‖G−1
ε ‖ ≤ (η+ ε)−1. Therefore, we have ‖Ĝ−1

ε ‖ ≤ (η+ ε)(1− µ))−1, which

implies:

‖∇̂WL −∇WL‖ ≤(η + ε)−1

(
‖∇̂L −∇L‖

1− µ
+ εη−1‖∇L‖

)
+ η−1(η + ε)−1‖∇L‖‖GM,N −GW‖

Let 0 ≤ δ ≤ 1. We have by Assumption (G) that ‖∇̂L − ∇L‖ = O(N−
1
2 ) with

probability at least 1− δ. Similarly, by Proposition 88 and for N large enough, we

have with probability at least 1 − δ that ‖GM,N − GW‖ = O(N−
b

2b+1 ) where b is

defined in Proposition 88. Moreover, for N large enough, one can ensure that µ ≤ 1
2

so that the following bound holds with probability at least 1− δ:

‖∇̂WL −∇WL‖ . (η + ε)−1
(

2N−
1
2 + η−1‖∇L‖(N−

b
2b+1 + ε)

)
.

Thus by setting ε . N−
b

2b+1 we get the desired convergence rate.

Proposition 88. For any 0 ≤ δ ≤ 1, we have with probability as least 1− δ and for
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N large enough that:

‖GM,N −GW‖ = O(N−
b

2b+1 ).

provided that M ∼ dN
1

2b+1 logN where b := min(1, α + 1
2
) when Assumption 4

holds and b = 1
2+c

when Assumption 3 holds instead.

Proof. To control the error ‖GM,N −GW‖ we decompose it into an estimation error

‖GM,N −GM‖ and approximation error ‖GM −GW‖:

‖GM,N −GW‖ ≤ ‖GM −GW‖+ ‖GM −GM,N‖

were GM is defined in (7.21) and is obtained by taking the number of samples N to

infinity while keeping the number of basis points M fixed.

The estimation error ‖GM−GM,N‖ is controlled using Proposition 89 where, for

any 0 ≤ δ ≤ 1, we have with probability at least 1−δ and as long asN ≥M(1, λ, δ):

‖GM,N −GM‖ ≤
‖B‖√
Nλ

(aN,δ +
√

2γ1κ+ 2γ1
λ+ κ√
Nλ

) +
1

Nλ
a2
N,δ.

In the limit where N → ∞ and λ → 0, only the dominant terms in the above

equation remain which leads to an error ‖GM,N −GM‖ = O((Nλ)−
1
2 ). Moreover,

the condition on N can be expressed as λ−1 log λ−1 . N .

To control the error approximation error ‖GM −GW‖ we consider two cases:

the well-specified case and the miss-specified case.

• Well-specified case. Here we work under Assumption 4 which allows to use

Proposition 91. Hence, for any 0 ≤ δ ≤ 1 and if M ≥ M(d, λ, δ), it holds

with probability at least 1− δ:

‖GM −GW‖ . λmin(1,α+ 1
2

)

• Miss-specified case. Here we work under Assumption 3 which allows to use

Proposition 90. Hence, for any 0 ≤ δ ≤ 1 and if M ≥ M(d, λ, δ), it holds
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with probability at least 1− δ:

‖GM −GW‖ . λ
1

2+c

Let’s set b := min(1, α + 1
2
) for the well-specified case and b = 1

2+c
for the miss-

specified case. In the limit where M →∞ and λ→ 0 the condition on M becomes:

M ∼ dλ−1 log λ−1. Hence, when M ∼ dλ−1 log λ−1 and λ−1 log λ−1 . N it holds

with probability as least 1− δ that

‖GM,N −GW‖ = O(λb + (λN)−
1
2 ).

One can further choose λ of the form λ = N−θ. This implies a condition on M

of the form dN θ log(N) . M and N θ log(N) . N . After optimizing over θ to

get the tightest bound, the optimal value is obtained when θ = 1/(2b+ 1) and the

requirement on N is always satisfied once N is large enough. Moreover, one can

choose M ∼ dN
1

2b+1 logN so that the requirement on M is satisfied for N large

enough. In this case we get the following convergence rate:

‖GM,N −GW‖ = O(N−
b

2b+1 ).

Proposition 89. For any 0 ≤ δ ≤ 1, provided that N ≥ M(1, λ, δ), we have with

probability as least 1− δ:

‖GM,N −GM‖ ≤
‖B‖√
Nλ

(2aN,δ +
√

2γ1κ+ 2γ1
λ+ κ√
Nλ

) +
1

Nλ
a2
N,δ.

with:

aN,δ :=

√
2σ2

1 log
2

δ
+

2a log 2
δ√

N

Proof. For simplicity, we define E = L̂>B − L>B. By definition of GM,N and GM
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we have the following decomposition:

GM,N −GM =E>GM(Âλ)E︸ ︷︷ ︸
E0

+E>GM(Âλ)L
>B︸ ︷︷ ︸

E1

+B>LGM(Âλ)E︸ ︷︷ ︸
E2

−B>LGM(Aλ)PM(Â− A)PMGM(Âλ)L
>B︸ ︷︷ ︸

E3

The first three terms can be upper-bounded in the following way:

‖E0‖ = ‖E>Â−
1
2

λ Â
1
2
λGM(Âλ)Â

1
2
λ Â
− 1

2
λ E‖

≤ ‖E‖2 ‖Â−1
λ ‖︸ ︷︷ ︸

≤1/λ

‖Â
1
2
λGM(Âλ)Â

1
2
λ‖︸ ︷︷ ︸

≤1

‖E1‖ = ‖E2‖ = ‖E>A−
1
2

λ A
1
2
λGM(Aλ)A

1
2
λA
− 1

2
λ L>B‖

≤ ‖B‖‖E‖ ‖Â−
1
2

λ ‖︸ ︷︷ ︸
≤1/
√
λ

‖Â
1
2
λGM(Âλ)Â

1
2
λ‖︸ ︷︷ ︸

≤1

‖A−
1
2

λ L>‖︸ ︷︷ ︸
≤1

‖Â−
1
2

λ A
1
2
λ‖

For the last term E3 , we first recall that by definition of GM(Aλ) we have:

GM(Aλ)PM(Â− A)PMGM(Aλ) = GM(Aλ)(Â− A)GM(Aλ).

Therefore, one can introduce the matricesA
1
2
λ , Â

1
2
λ and their inverses in the expression

of ‖E3‖ and write:

‖E3‖

=‖B>LGM(Aλ)(Â− A)GM(Âλ)L
>B‖

≤‖B‖2 ‖LA−
1
2

λ ‖
2︸ ︷︷ ︸

≤1

‖A
1
2
λGM(Aλ)A

1
2
λ‖︸ ︷︷ ︸

≤1

‖A−
1
2

λ (Â− A)A
− 1

2
λ ‖ ‖Â

1
2
λGM(Âλ)Â

1
2
λ‖︸ ︷︷ ︸

≤1

‖A
1
2
λ Â

1
2
λ‖

2

≤‖B‖2‖A
1
2
λ Â

1
2
λ‖

2‖A−
1
2

λ (Â− A)A
− 1

2
λ ‖

We recall now [Rudi et al., 2015, Proposition 7.] which allows to upper-bound

‖A
1
2
λ Â

1
2
λ‖ by (1 − η)−

1
2 where η = λmax(A

1
2
λ (A − Â)A

1
2
λ ) provided that η < 1.

Moreover, [Rudi et al., 2015, Proposition 8.] allows to control both η and ‖A−
1
2

λ (Â−

A)A
− 1

2
λ ‖ under Assumption (F). Indeed, for any 0 ≤ δ ≤ 1 and provided that
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0 < λ ≤ ‖A‖ it holds with probability 1− δ that:

‖A−
1
2

λ (Â− A)A
− 1

2
λ ‖ ≤ 2γ1

1 + κ/λ

3N
+

√
2γ1κ

Nλ
; η ≤ 2γ2

3N
+

√
2γ2κ

Nλ

where γ1 and γ2 are given by:

γ1 = log(
8Tr(A)

λδ
); γ2 = log(

4Tr(A)

λδ
).

Hence, for N ≥M(1, λ, δ) we have that (1− η)−
1
2 ≤ 2 and one can therefore write:

‖E3‖ ≤ 4‖B‖2(2γ1
1 + κ/λ

3N
+

√
2γ1κ

Nλ
)

‖E1‖ = ‖E1‖ ≤
2‖B‖√
λ
‖E‖

The error ‖E‖ is controlled by Proposition 94 where it holds with probability greater

or equal to 1− δ that:

‖E‖ ≤ 1√
N

(

√
2σ2

1 log
2

δ
+

2a log 2
δ√

N
) :=

1√
N
aN,δ.

Finally, we have shown that provided that N ≥ M(1, λ, δ) then with probability

greater than 1− δ one has:

‖GM,N −GM‖ ≤
‖B‖√
Nλ

(2aN,δ +
√

2γ1κ+ 2γ1
λ+ κ√
Nλ

) +
1

Nλ
a2
N,δ.

Proposition 90. Let 0 ≤ λ ≤ ‖A‖ and define M(d, λ, δ) := 128
9

log 4Tr(A)
λδ

(dκλ−1 +

1). Under Assumption 3 and Assumption (F), for any δ ≥ 0 such that M ≥

M(d, λ, δ) the following holds with probability 1− δ:

‖GM −GW‖ . λ
1

2+c

Proof. We consider the error ‖GM −GW‖. Recall that GW is given by GW = Φ>Φ

with Φ defined in Proposition 85. Let κ be a positive real number, we know by
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Assumption 3 that there exists F κ := (fκs )1≤s≤q with fκs ∈ H such that ‖Φ −

F κ‖L2(ρθ) ≤ Cκ and ‖fκs ‖H ≤ Cκ−c for some fixed positive constant C. Therefore,

we use F κ to control the error ‖GM − GW‖. Let’s call E = Φ ◦ hθ − LF κ We

consider the following decomposition:

GM −GW =(L>Φ ◦ hθ)>GM(Aλ)L
>Φ ◦ hθ − Φ>Φ

=E>LGM(Aλ)L
>E︸ ︷︷ ︸

E1

−E>E︸ ︷︷ ︸
E2

+ F>κ
(
L>LGM(Aλ)− I

)
L>Φ ◦ hθ︸ ︷︷ ︸

E3

+E>L
(
GM(Aλ)L

>L− I
)
F κ︸ ︷︷ ︸

E4

First we consider the term E1 one simply has:

‖E1‖ ≤ κ2 ‖LA−
1
2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2
λGM(Aλ)A

1
2
λ‖︸ ︷︷ ︸

≤1

‖A−
1
2

λ L>‖︸ ︷︷ ︸
≤1

≤ κ2

The second term also satisfies ‖E1‖ ≤ κ2 by definition of Fκ. For the last two

terms E3 and E4 we use Lemma 92 which allows to control the operator norm of

L(GM(Aλ)L
>L− I). Hence, for any δ ≥ 0 and M such that M ≥ M(d, λ, δ) and

for κ ≤ 1 it holds with probability 1− δ that:

‖E3‖ .
√
λκ−c; ‖E4‖ .

√
λκ−c

We have shown so far that ‖GM−GW‖ . (κ2 +2κ−c
√
λ). One can further optimize

over κ on the interval [0, 1] to get a tighter bound. The optimal value in this case is

κ∗ = min(1, (cλ
1
2 )

1
2+c ). By considering λ > 0 such that (cλ

1
2 )

1
2+c ) ≤ 1, it follows

directly that ‖GM −GW‖ . λ
1

2+c which shows the desired result.

Proposition 91. Let 0 ≤ λ ≤ ‖A‖ and define M(d, λ, δ) := 128
9

log 4Tr(A)
λδ

(dκλ−1 +

1). Under Assumption 4 and Assumption (F), for any δ ≥ 0 such that M ≥

M(d, λ, δ) the following holds with probability 1− δ:

‖GM −GW‖ . λmin(1,α+ 1
2

)
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Proof. Recall that GW is given by GW = Φ>Φ with Φ defined in Proposition 85.

By Assumption 4, we have that Φ = ∇(AαV ) with V := (vs)1≤s≤q ∈ Hq. Hence,

one can write

GM −GW = (L>Φ ◦ hθ)>GM(Aλ)L
>Φ ◦ hθ − Φ>Φ

= V >(Aα(AGM(Aλ)A− A)AαV

we can therefore directly apply Lemma 92 and get ‖GM −GW‖ . λmin(1,α+ 1
2

) with

probability 1− δ for any δ ≥ 0 such that M ≥M(d, λ, δ).

Lemma 92. Let 0 ≤ λ ≤ ‖A‖, α ≥ 0 and define M(d, λ, δ) :=

128
9

log 4Tr(A)
λδ

(dκλ−1 + 1). Under Assumption (F), for any δ ≥ 0 such that

M ≥M(d, λ, δ) the following holds with probability 1− δ:

‖L(GM(Aλ)L
>L− I)Aα‖ . λmin(1,α+ 1

2
)

Proof. We have the following identities:

L(GM(Aλ)L
>L− I)Aα =L(GM(Aλ)Aλ − I − λGM(Aλ))A

α

=LA
− 1

2
λ A

1
2
λ (GM(Aλ)AλPM − I)Aα︸ ︷︷ ︸

E1

− λLA−
1
2

λ A
1
2
λGM(Aλ)A

1
2
λA
− 1

2
λ Aα︸ ︷︷ ︸

E3

+ LA
− 1

2
λ A

1
2
λGM(Aλ)A

1
2
λA

1
2
λ (I − PM)Aα︸ ︷︷ ︸

E2

.

For the first E1 we use [Sutherland et al., 2018, Lemma 1 (iii)] which implies that

GM(Aλ)AλPM = PM . Thus E1 = LA
− 1

2
λ A

1
2
λ (PM − I)Aα. Moreover, by Lemma 93

we have that ‖A
1
2
λ (I − PM)‖ ≤ 2

√
λ with probability 1 − δ for M > M(d, λ, δ).

Therefore, recalling that (I − PM)2 = I − PM since PM is a projection, one can
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further write:

‖E1‖ ≤ ‖LA
− 1

2
λ ‖︸ ︷︷ ︸
≤1

‖A
1
2
λ (PM − I)‖2︸ ︷︷ ︸

≤λ

‖A−
1
2

λ Aα‖

‖E2‖ ≤ ‖LA
− 1

2
λ ‖︸ ︷︷ ︸
≤1

‖A
1
2
λGM(Aλ)A

1
2
λ‖︸ ︷︷ ︸

≤1

‖A
1
2
λ (PM − I)‖2︸ ︷︷ ︸
≤4λ

‖A−
1
2

λ Aα‖

‖E3‖ ≤ λ ‖LA−
1
2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2
λGM(Aλ)A

1
2
λ‖︸ ︷︷ ︸

≤1

‖A−
1
2

λ Aα‖

It remains to note that ‖A−
1
2

λ Aα‖ ≤ λα−
1
2 when 0 ≤ α ≤ 1

2
and that ‖A−

1
2

λ Aα‖ ≤

‖A‖α− 1
2 for α > 1

2
which allows to conclude.

B .4 Auxiliary Results

Lemma 93. Let 0 ≤ λ ≤ ‖A‖. Under Assumption (F), for any δ ≥ 0 such that

M ≥ M(d, λ, δ) := 128
9

log 4Tr(A)
λδ

(κλ−1 + 1) the following holds with probability

1− δ:

‖A
1
2
λ (I − PM)‖ ≤ 2

√
λ

Proof. The proof is an adaptation of the results in Rudi et al. [2015], Sutherland

et al. [2018]. Here we recall QM defined in (7.20). Its transpose Q>M sends vectors

in RM to elements in the span of the Nyström basis points, hence PM and Q>M have

the same range, i.e.: range(PM) = ¯range(Q>M). We are in position to apply [Rudi

et al., 2015, Proposition 3.] which allows to find an upper-bound on A
1
2
λ (PM − I) in

terms of QM :

‖A
1
2
λ (PM − I)‖ ≤

√
λ‖A

1
2
λ (Q>MQM + λI)−

1
2‖.

For simplicity we write ÂM := Q>MQM and E2 := A
− 1

2
λ (A − ÂM)A

− 1
2

λ . We also

denote by β = λmax(E2) the highest eigenvalue of E2. We can therefore control

‖A
1
2
λ (ÂM + λI)−

1
2‖ in terms of β using [Rudi et al., 2015, Proposition 7] provided

that β < 1:

‖A
1
2
λ (PM − I)‖ ≤

√
λ

1√
1− β

.
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Now we need to make sure that β < 1 for M large enough. To this end, we will

apply [Rudi et al., 2015, Proposition 8.] to ÂM . Denote by vm =
√
d∂imk(Ym, .).

Hence, by definition of ÂM it follows that ÂM = 1
M

∑M
m=1 vm ⊗ vm. Moreover,

(vm)1≤m≤M are independent and identically distributed and satisfy:

E[vm ⊗ vm] =

∫ q∑
i=1

∂ik(y, .)⊗ ∂ik(y, .) dpθ(y) = A.

We also have by Assumption (F) that 〈vm, A−1
λ vm〉 ≤ dκ

λ
almost surely and for all

λ > 0. We can therefore apply [Rudi et al., 2015, Proposition 8.] which implies that

for any 1 ≥ δ ≥ 0 and with probability 1− δ it holds that:

β ≤ 2γ

3M
+

√
2γdκ

Mλ

with γ = log 4Tr(A)
λδ

provided that λ ≤ ‖A‖. Thus by choosingM ≥ 128γ
9

(dκλ−1+1)

we have that β ≤ 3
4

with probability 1− δ which allows to conclude.

Proposition 94. There exist a > 0 and σ1 > 0 such that for any 0 ≤ δ ≤ 1, it holds

with probability greater of equal than 1− δ that:

‖L̂>B − L>B‖ ≤
2a log 2

δ

N
+

√
2σ2

1 log 2
δ

N

Proof. denote by vn =
∑d

i=1 ∂ik(Xn, .)Bi(Zn), we have that E[vn] = L>B. We

will apply Bernstein’s inequality for sum of random vectors. For this we first need

to find a > 0 and σ1 > 0 such that E[‖zn − L>B‖pH] ≤ 1
2
p!σ2

1a
p−2. To simplify
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notations, we write x and x′ instead of hθ(z) and hθ(z′). We have that:

E[‖zn − L>B‖pH] =

∫ ∥∥∥∥∥
d∑
i=1

∂ik(x, .)Bi(z)−
∫ d∑

i=1

∂ik(x′, .)Bi(z
′) dν(z′)

∥∥∥∥∥
p

dν(z)

≤2p−1

∫ ∥∥∥∥∥
d∑
i=1

∫
(∂ik(x, .)− ∂ik(x′, .))Bi(z) dν(z′)

∥∥∥∥∥
p

dν(z)︸ ︷︷ ︸
E1

+ 2p−1

∫ ∥∥∥∥∥
∫ d∑

i=1

∂ik(x, .) (Bi(z)−Bi(z
′)) dν(z′)

∥∥∥∥∥
p

dν(z)︸ ︷︷ ︸
E2

We used the convexity of the norm and the triangular inequality to get the last line.

We introduce the notation γi(x) := ∂ik(x, .) −
∫
∂ik(hθ(z

′), .) dν(z′) and by Γ(x)

we denote the matrix whose components are given by Γ(x)ij := 〈γi(x), γj(x)〉H.

The first term E1 can be upper-bounded as follows:

E1 =

∫ ∣∣Tr(B(z)B(z)>Γ(x))
∣∣ p2

≤
∫ ∣∣∣‖B(z)‖2 Tr(Γ(x)2)

1
2

∣∣∣ p2 .
Moreover, we have that Tr(Γ(x)2)

1
2 = (

∑
1≤i,j≤d〈γi(x), γj(x)〉2H)

1
2 ≤

∑d
i=1 ‖γi(x)‖2.

We further have that ‖γi(x)‖ ≤ ∂i∂i+dk(x, x)
1
2 +

∫
∂i∂i+dk(hθ(z), hθ(z))

1
2 dν(z)

and by Assumption (F) it follows that ‖γi(x)‖ ≤ 2
√
κ. Hence, one can directly

write that: E1 ≤ (2
√
κd)p

∫
‖B(z)‖p dν(z). Recalling Assumptions (B) and (C) we

get:

E1 ≤ 2p−1(2
√
κd)pC(θ)p(1 +

1

2
p!ζp−2σ2)

Similarly, we will find an upper-bound on E2. To this end, we introduce the matrix

Q(x′, x”) whose components are given by Q(x′, x”)i,j = ∂i∂i+dk(x′, x”). One,
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therefore has:

E2 =

∫ ∣∣∣∣∫ ∫ Tr((B(z)−B(z′)) (B(z)−B(z”))>Q(x′, x”) dν(z′) dν(z”)

∣∣∣∣ p2 dν(z)

≤
∫ ∣∣∣∣∫ ∫ ‖B(z)−B(z′)‖ ‖B(z)−B(z”)‖Tr(Q(x′, x”)2)

1
2 dν(z′) dν(z”)

∣∣∣∣ p2 dν(z)

Once again, we have that

Tr(Q(x′, x”)2)
1
2 ≤ (

d∑
i=1

∂i∂i+dk(x′, x′))
1
2 (

d∑
i=1

∂i∂i+dk(x”, x”))
1
2 ≤ dκ

thanks to Assumption (F). Therefore, it follows that:

E2 ≤ (
√
dκ)p

∫
|
∫
‖B(z)−B(z′)‖ dν(z)|p dν(z)

≤ 3p−1(
√
dκ)pC(θ)p(2p +

∫
‖z‖p dν(z) +

(∫
‖z‖ dν(z)

)p
)

≤ 3p−1(
√
dκ)pC(θ)p(2p +

1

2
p!ζp−2σ2 +

(∫
‖z‖ dν(z)

)p
).

The second line is a consequence of Assumption (C) while the last line is due

to Assumption (B). These calculations, show that it is possible to find constants

a and σ1 such that E[‖zn − L>B‖pH] ≤ 1
2
p!σ2

1a
p−2. Hence one concludes using

Bernstein’s inequality for a sum of random vectors [see for instance Rudi et al., 2015,

Proposition 11].

C Connection to the Negative Sobolev distance
To obtain the Wasserstein natural gradient, one can exploit a Taylor expansion of W

which is given in terms of the Negative Sobolev distance ‖ρθ+u− ρθ‖H−1(ρθ) as done

in Mroueh et al. [2019]:

W 2
2 (ρθ, ρθ+u) = ‖ρθ+u − ρθ‖2

H−1(ρθ) + o(‖u‖2).

Further performing a Taylor expansion of ‖ρθ+u−ρθ‖H−1(ρθ) in u leads to a quadratic

term u>GW (θt)u where we call GW (θt) the Wasserstein information matrix. This
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two steps approach is convenient conceptually and allows to use the dual formulation

of the Negative Sobolev distance to get an estimate of the quadratic term u>GW (θt)u

using kernel methods as proposed in Mroueh et al. [2019] for learning non-parametric

models. However, with such approach, ‖ρθ+u − ρθ‖H−1(ρθ) needs to be well defined

for u small enough. This requirement does not exploit the parametric nature of the

problem and can be restrictive if ρθ+u and ρθ do not share the same support as we

discuss now.

As shown in [Villani, 2003, Theorem 7.26] and discussed in Theorem 71

and Proposition 72, the Wasserstein distance between two probability distributions ρ

and ρ′ admits a first order expansion in terms of the Negative Sobolev Distance:

lim
ε→0

1

ε
W2(ρ, ρ+ ε(ρ′ − ρ)) = ‖ρ− ρ′‖H−1(ρ)

when ρ′ admits a bounded density w.r.t. ρ. When such assumption fails to hold, there

are cases when this first order expansion is no longer available. For instance, in the

simple case when the parametric family consists of dirac distributions δθ located at a

value θ, the Wasserstein distance admits a closed form expression of the form:

W2(δθ, δθ + ε(δθ′ − δθ)) =
√
ε‖θ − θ′‖

Hence, 1
ε
W2(δθ, δθ + ε(δθ′ − δθ)) diverges to infinity. One can consider a different

perturbation of the model δθ+εu for some vector u which the one we are interested

in here. In this case, the Wasserstein distance admits a well-defined asymptotic

behavior:

lim
ε→

1

ε
W2(δθ, δθ+εu) = ‖u‖.

On the other hand the Negative Sobolev Distance is infinite for any value of ε. To

see this, we consider its dual formulation as in Mroueh et al. [2019]:

1

2
‖ρ− ρ′‖H−1(ρ) = sup

f∈C∞c (Ω)∫
f(x) dρ(x)=0

∫
f(x) d (ρ− ρ′) (x)− 1

2

∫
‖∇xf(x)‖2 dρ(x)
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Evaluating this expression for δθ and δθ+εu for any value ε > 0 and for any u that is

non zero, on has:

1

2ε
‖δθ − δθ+εu‖H−1(δθ) = sup

f∈C∞c (Ω)
f(θ)=0

1

ε
(f(θ)− f(θ + εu))− 1

2
‖∇xf(θ)‖2 (7.25)

One can always find a function f such that ∇f(θ) = 0, f(θ) = 0 and −f(θ + εu)

can be arbitrarily large, thus the Negative Sobolev distance is infinite. This is not the

case of the metric u>GW (θ)u which can be computed in closed form:

1

2
u>GW (θ)u = sup

f∈C∞c (Ω)
f(θ)=0

∇f(θ)>u− 1

2
‖∇xf(θ)‖2 (7.26)

In this case, choosing f(θ) = 0 and ∇f(θ) = u achieves the supremum which is

simply given by 1
2
‖u‖2. Equation (7.26) can be seen as a limit case of (7.25) when

ε→ 0:

1

2
u>GW (θ)u := sup

f∈C∞c (Ω)
f(θ)=0

lim
ε→0

1

ε
(f(θ)− f(θ + εu))− 1

2
‖∇xf(θ)‖2

However, the order between the supremum and the limit cannot be exchanged in this

case, which makes the two objects behave very differently in the case of singular

probability distributions.

D Expression of WNG for the Multivariate Gaussian

Multivariate Gaussian. Consider a multivariate gaussian with mean µ ∈ Rd and

covariance matrix Σ ∈ Rd × Rd parametrized using its lower triangular components

s = T (Σ). We denote by Σ = T−1(s) the inverse operation that maps any vector

s ∈ R
d(d+1)

2 to its corresponding symmetric matrix in Rd × Rd. The concatenation

of the mean µ and s will be denoted as θ : θ = (µ, s). Given two parameter vectors

u = (m,T (S)) and v = (m′, T (S ′)) where m and m′ are vectors in Rd and S and
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S ′ are symmetric matrices in Rd × Rd the metric evaluated at u and v is given by:

u>G(θ)v = m>m′ + Tr(AΣA′)

where A and A′ are symmetric matrices that are solutions to the Lyapunov equation:

S = AΣ + ΣA, S ′ = A′Σ + ΣA′.

A and A′ can be computed in closed form using standard routines making the

evaluation of the metric easy to perform. Given a loss function L(θ) and gradient

direction ∇θL(θ) = ∇µL(θ),∇sL(θ), the corresponding natural gradient ∇W
θ L(θ)

can also be computed in closed form:

∇W
θ L(θ) = (∇µL(θ), T (Σ(A+ diag(A)) + (A+ diag(A))Σ)),

where A = T−1(∇sL(θ)). To use the estimator proposed in Proposition 77 we take

advantage of the parametrization of the Gaussian distribution as a push-forward of a

standard normal vector:

X ∼ N (µ,Σ) ⇐⇒ X = Σ
1
2Z + µ, Z ∼ N (0, Id)
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In this chapter, we summarize our contributions and propose directions for

future research.

Conditional score estimation
In Chapter 3, we have proposed a framework for conditional density estimation using

a non-parametric class of models. These models take the form of an exponential

family with natural parameters belonging to a vector-valued RKHS. We then ex-

tended the score matching procedure from Sriperumbudur et al. [2017] to estimate

these natural parameters by solving a finite-dimensional convex problem. Finally,

we provided convergence rates of the resulting estimators in the well-specified set-

ting where the data distribution belongs to the class defined by the model. This

work resulted in a general and flexible framework for estimating joint densities that

factorize according to a graph, and has a clear computational advantage when the

graph is space. When the graph is dense, this framework can still exploit a smooth

dependence on the conditional variables, often resulting in an improved empirical

performance over direct estimation of the joint density. In the following, we discuss

two extensions of this framework.

Future works

Scalable conditional score estimation. To approximate a conditional density

p(y|x), the proposed estimator requires solving a linear system of size N × dy with

dy being the dimension of y. Hence, the memory and time complexities are N2 × d2
y

and N3 × d3
y, which is still prohibitive for large sample size N and even moderate

dimensions dy. This cost could be reduced without compromising the convergence

rate using Nyström method as done in Chapter 7 and Sutherland et al. [2018]. This

method would reduce the complexity in memory and in time to O(NMd2
y) and

O(NM2d3
y). The dependence in the dimension dy results from evaluating all partial

derivatives of the kernel. Using an approach similar to Chapter 7, this dependence in

the dimension dy can become linear by randomly subsampling the partial derivatives

with respect to the M Nyström points. We expect these improvements to come

without compromising the convergence rate, provided the number of basis points M
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scales with the sample size as a suitable optimal rate, usually between N
1
2 and N

1
3

in the well-specified setting.

Learning graphical structure under sparsity constraints. The framework of

Chapter 3 assumes the graphical structure to be known. Moreover, unless the

graph is directed and acyclic, the procedure doesn’t guarantee that estimating each

conditional density independently results in a consistent probability distribution. A

possible extension is to learn a graphical structure by imposing sparsity constraints

similarly to Sun et al. [2015]. In this case the logarithm of the density can be

decomposed as a sum of a constant term C and unary and pairwise terms:

log p(x) = C +
∑

1≤i≤d

Ti(xi) +
∑

1≤i,j≤d
i 6=j

Tij(xi, xj).

The unary function Ti would belong to an RKHS Hi, while the pairwise function

xj 7→ Ti,j(., xj) would belong to a particular vector-valued RKHS taking values in

Hi. Hence, similarly to Chapter 3, it is possible to fit each conditional distribution

using the conditional score. However, instead of the usual ridge regression, using a

joint sparsity-inducing penalty as in Rakotomamonjy et al. [2011] would encourage

only a small number of non-trivial functions Tij(xi, xj) while setting the others to 0.

Independently learning each conditional would still result in a computational gain

compared to Sun et al. [2015]. However, further investigation is needed to provide

guarantees for the estimation and recovery of the sparsity structure.

Structuring and Regularizing implicit models
We considered the problem of estimating distributions under a low-intrinsic dimen-

sion assumption and using Implicit Generative models (IGMs). To address the

stability problem in IGMs, we introduced a self-regularizing loss for learning these

models using the Maximum Mean Discrepancy in Chapter 4. We then provided

practical conditions on the kernel’s parametrization that ensure continuity of the

loss in the models’ parameters. We empirically showed that this loss increases

training stability and yields state-of-the-art results in image generation tasks. This
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method resulted in a robust and generic approach to learning IGMs. In Chapter 5,

we introduced a new model that augments IGMs with an explicit model using an

importance sampling strategy. This hybrid model enables the use of expressive latent

noise distributions at the same training cost compared to IGMs. We have shown how

to train the explicit component using a generalized maximum likelihood relative to

the support of the IGM, thus taking advantage of a stronger topology of convergence

during training. We then proposed a simple MCMC scheme in latent space to sample

from such models. This resulted in a flexible class of models generalizing both

IGMs and Energy-Based Models, that is suited for modeling data with low intrinsic

dimension.

Future work

Regularity of the loss. We have shown in Chapter 4 the self-regularizing loss

to be continuous in the weak topology of convergence of measures when viewed

as a divergence between probability distributions. However, when using gradient

methods during optimization, this condition is insufficient to guarantee convergence

towards a local optimum. In Chapter 5, we established the loss to be L-Lipschitz and

weakly convex under practical conditions on the critic functions and IGM models.

The resulting regularity of the loss is enough to guarantee convergence of gradient

methods to local optima. However, this weak regularity of the loss can result in

slower convergence compared to losses that are L-smooth.

The recent work of Chu et al. [2020] proposed a general framework for regu-

larizing the discriminator used for adversarial training so that the loss used to learn

the IGM is L-smooth. This framework guarantees local convergence of gradient

descent methods provided the optimal discriminator is computed exactly. Most of

the proposed regularizations can be practically achieved using existing methods such

as spectral normalization Miyato et al. [2018]. However, one of these conditions

in [Chu et al., 2020, Section 6] requires the set of critic functions to belong to a

smooth RKHS space such as the one defined by a gaussian kernel and to control

their RKHS norm. Unfortunately, this condition is rarely satisfied in practice when

the critic function is parameterized by a Deep Neural network, as often done in
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practice. Identifying more practical conditions to ensure the L-smoothness of the

loss would result in faster convergence guarantees. The work of Bietti et al. [2018],

Bietti and Mairal [2017] provides a first insight on this question by viewing deep

neural networks as functions in an abstract RKHS space whose smoothness can

be controlled by their RKHS norm. Further investigation is required to understand

if such RKHS penalty could yield L-smooth losses for IGMs and devise efficient

methods for estimating it.

Model miss-specification. The support defined by an IGM is, in general, a rec-

tifiable set Federer [2014], a notion that extends smooth manifolds to piecewise

smooth sets and thus also possesses a tangent structure defined almost everywhere.

However, it remains unclear whether this notion can correctly represent the support

of distributions such as images for which the geometrical properties are not yet fully

understood [Bartholdi et al., 2012, Introduction].

Generalization in implicit models. We focused on developing models for data

with a low intrinsic dimension and methods for learning them without accounting

for their generalization capabilities. The work of Uppal et al. [2019] considered the

question of generalization under Integral Probability Metrics. It provided a minimax

optimal statistical rate of convergence that depends on both smoothness of the target

distribution and the smoothness of the critic functions. However, their analysis

deals only with distributions with a well-defined density. Therefore, extending it to

distributions with a low intrinsic dimension would better reflect the practical setting.

In the context of regression using Deep Neural Networks, the encouraging result in

Nakada and Imaizumi [2020] shows their proposed estimator to converge at rates

that depend only on the Minkowski dimension of the data support. Extending such

result to the case of IGMs or GEBMs is a promising avenue for future research.

Optimization of implicit generative models

We now discuss the contributions in Chapters 6 and 7 along with possible future

work directions.
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Wasserstein Gradient flow of weak divergence functionals

Contribution. We considered the Wasserstein gradient flow of the MMD functional

as a simplified setting for analyzing the optimization properties in the context of

learning IGMs. Our study showed that even this simplified setting is highly non-

convex and convergence to a global solution can fail dramatically. We provided

a criterion on the smoothness of the optimization trajectories that ensured global

convergence of the flow and introduced an algorithm based on noise-injection to

improve convergence.

Trajectory-independent criteria for convergence. Further investigation is re-

quired to understand if the trajectory dependent criterion for global convergence can

be relaxed into a criterion depending only on the initial condition:

If ρ0 ∈ P? ⇒ ρt → ν?,

here, P? would represent a basin of attraction by analogy to finite dimensional

optimization. To the best of our knowledge, identifying such a set is still an open

question.

Choice of the kernel. As shown in the experiments of Section 5 .2, using an MMD

with a Gaussian kernel yields optimization trajectories that are likely to fail reaching

the global solution. Hence, another interesting question would be to identify well-

behaved characteristic kernels for which the Wasserstein gradient flow has better

convergence properties.

Wasserstein natural gradient

Contribution. We introduced a scalable estimator of the Wasserstein natural gradi-

ent in Chapter 7. To the best of our knowledge, this is the first time a practical and

consistent estimator of the Wasserstein Natural Gradient is derived. This estimator is

scalable to large models and allows to exploit the Wasserstein geometry. This work

results in optimization methods that are robust to the model’s parametrization and

that do not require a well-defined density, thus making them particularly well suited

for IGMs. We discuss below a few avenues for future work.
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High dimensional distributions. We provided convergence rates in Section 3 .4 for

the estimator of the Wasserstein natural gradient that is adaptive to the smoothness

of the transport map. However, it remains open what regularity assumptions on the

model can guarantee a smooth transport map.

The effect of the dimension on the estimator’s quality also appears in the

minimal number of basis points and samples that yield a consistent estimator. Such

a number exhibits a polynomial dependence on the dimension regardless of the

smoothness of the transport map. A possible research direction is to mitigate this

dependence when an additional structure in the model is available, such as conditional

independence between the dimension as done in Chapter 3.

Significance.

We showed the benefit of using the WNG to be even more crucial when the opti-

mization problem is ill-conditioned, as illustrated in an artificial setting (Section 4 ).

An important question is to identify more natural settings where WNG is beneficial.

Recent developments already hint to use cases in the context of Reinforcement

Learning in Moskovitz*, Ted et al. [2021]. However, a precise quantification of the

speed of convergence of the optimization remains open.

Wasserstein Natural gradient for Reinforcement Learning. In [Moskovitz*, Ted

et al., 2021], we proposed a framework for using the Wasserstein natural gradient

in the context of reinforcement learning. This framework takes inspiration from

Pacchiano et al. [2019] and introduces a Policy Optimization algorithm based on

the Wasserstein Natural gradient to capture the ’behavioral’ geometry of a policy.

This approach resulted in improved learning efficiency compared to well-established

algorithms such as TRPO Schulman et al. [2015] or Proximal Policy Optimization

Schulman et al. [2017] both based on the Kullback-Liebler divergence between

policies as a proximity measure. The proposed method relies on a pre-defined

representation of the ’behavior’ of a policy to compute the natural gradient. Defin-

ing general principle for learning such representations could result in improved

efficiency.
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Mikołaj Bińkowski*, Danica J. Sutherland*, Arbel, Michael, and Arthur Gretton.

Demystifying MMD GANs. In International Conference on Learning Representa-

tions, 2018.

Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Measure based regularization.

In NIPS. 2004.

Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus

Odena. Discriminator rejection sampling. In International Conference on Learning

Representations, 2019.

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. Metropolis-

Hastings generative adversarial networks. In Proceedings of the 36th International

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 6345–6353, Long Beach, California, USA, 09–15 Jun 2019.

PMLR.

Kirill Neklyudov, Evgenii Egorov, and Dmitry Vetrov. The implicit metropolis-

hastings algorithm. 2019.

HE Daniels. The asymptotic efficiency of a maximum likelihood estimator. In Fourth

Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages

151–163. University of California Press Berkeley, 1961.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Shun-ichi Amari. Differential-Geometrical Methods in Statistics. Lecture Notes in

Statistics. Springer-Verlag, New York, 1985. ISBN 978-0-387-96056-2.

Andrew Holbrook, Shiwei Lan, Jeffrey Streets, and Babak Shahbaba. The nonpara-

metric Fisher geometry and the chi-square process density prior. arXiv:1707.03117

[stat], July 2017. arXiv: 1707.03117.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of

the fokker–planck equation. SIAM journal on mathematical analysis, 29(1):1–17,

1998.



BIBLIOGRAPHY 308

F. Otto and C. Villani. Generalization of an Inequality by Talagrand and Links

with the Logarithmic Sobolev Inequality. Journal of Functional Analysis, 173(2):

361–400, June 2000. ISSN 00221236. doi: 10.1006/jfan.1999.3557.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows with metric

and differentiable structures, and applications to the Wasserstein space. Atti

della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e

Naturali. Rendiconti Lincei. Matematica e Applicazioni, 15(3-4):327–343, 2004.

ISSN 1120-6330.

Filippo Santambrogio. Gradient flows in wasserstein spaces and applications to

crowd movement. Séminaire Équations aux dérivées partielles (Polytechnique),

pages 1–16, 2010.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for

over-parameterized models using optimal transport. NIPS, 2018a.

José A. Carrillo, Robert J. McCann, and Cédric Villani. Contractions in the 2-

Wasserstein Length Space and Thermalization of Granular Media. Archive for

Rational Mechanics and Analysis, 179(2):217–263, February 2006. ISSN 1432-

0673. doi: 10.1007/s00205-005-0386-1.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the

landscape of two-layer neural networks. Proceedings of the National Academy of

Sciences, 115(33):E7665–E7671, 2018.

Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle

systems: Asymptotic convexity of the loss landscape and universal scaling of the

approximation error. arXiv preprint arXiv:1805.00915, 2018.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, G. R. G. Lanckriet, and B. Schölkopf.

Kernel choice and classifiability for RKHS embeddings of probability distributions.

In NIPS, 2009.



BIBLIOGRAPHY 309

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Com-

putation, 10(2):251–276, February 1998. ISSN 0899-7667. doi: 10.1162/

089976698300017746.

Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational infer-

ence: Converting variational inference in non-conjugate models to inferences in

conjugate models. arXiv preprint arXiv:1703.04265, 2017.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy

natural gradient as variational inference. In International Conference on Machine

Learning, pages 5852–5861. PMLR, 2018.

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-

geometric optimization algorithms: A unifying picture via invariance principles. J.

Mach. Learn. Res., 18:18:1–18:65, 2011.

Wuchen Li and Guido Montufar. Natural gradient via optimal transport.

arXiv:1803.07033 [cs, math], March 2018a. arXiv: 1803.07033.

Wuchen Li and Guido Montufar. Ricci curvature for parametric statistics via optimal

transport. arXiv:1807.07095 [cs, math, stat], July 2018b. arXiv: 1807.07095.

Wuchen Li. Geometry of probability simplex via optimal transport.

arXiv:1803.06360 [math], March 2018. arXiv: 1803.06360.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-

factored Approximate Curvature. arXiv:1503.05671 [cs, stat], March 2015. arXiv:

1503.05671.

Roger Grosse and James Martens. A Kronecker-factored Approximate Fisher Matrix

for Convolution Layers. In Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48, ICML’16, pages

573–582. JMLR.org, 2016. event-place: New York, NY, USA.



BIBLIOGRAPHY 310

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal

Vincent. Fast Approximate Natural Gradient Descent in a Kronecker-factored

Eigenbasis. arXiv:1806.03884 [cs, stat], June 2018. arXiv: 1806.03884.

Tom Heskes. On “Natural” Learning and Pruning in Multilayered Perceptrons.

Neural Computation, 12(4):881–901, April 2000. ISSN 0899-7667. doi: 10.1162/

089976600300015637.

Alberto Bernacchia, Mate Lengyel, and Guillaume Hennequin. Exact natural gradient

in deep linear networks and its application to the nonlinear case. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,

Advances in Neural Information Processing Systems 31, pages 5941–5950. Curran

Associates, Inc., 2018.

Wuchen Li, Alex Tong Lin, and Guido Montufar. Affine natural proximal learning.

February 2019.

Rémi Peyre. Comparison between W2 distance and Ḣ−1 norm, and localisation of
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