
 A Novel Online Incremental Learning Intrusion
Prevention System

Christos Constantinides

School of Pure and Applied Sciences
Open University of Cyprus

Nicosia, Cyprus
christos.constantinides@st.ouc.ac.cy

Stavros Shiaeles, Bogdan Ghita

School of Computing, Electronics and
Mathematics

University of Plymouth
Plymouth, UK

stavros.shiaeles@plymouth.ac.uk,
bogdan.ghita@plymouth.ac.uk

Nicholas Kolokotronis
Department of Informatics and

Telecommunications
University of Peloponnese

Tripolis, Greece
nkolok@uop.gr

Abstract— Attack vectors are continuously evolving in order
to evade Intrusion Detection systems. Internet of Things (IoT)
environments, while beneficial for the IT ecosystem, suffer
from inherent hardware limitations, which restrict their ability
to implement comprehensive security measures and increase
their exposure to vulnerability attacks. This paper proposes a
novel Network Intrusion Prevention System that utilises a Self-
Organizing Incremental Neural Network along with a Support
Vector Machine. Due to its structure, the proposed system
provides a security solution that does not rely on signatures or
rules and is capable to mitigate known and unknown attacks in
real-time with high accuracy. Based on our experimental results
with the NSL KDD dataset, the proposed framework can
achieve on-line updated incremental learning, making it suitable
for efficient and scalable industrial applications.

Keywords— Intrusion Detection, Machine Learning, Self-
Organizing Incremental Neural Network, Support Vector
Machine, Distributed Denial of Service, Online Incremental
Learning

I. INTRODUCTION
Commercial intrusion detection/prevention systems

typically suffer from low detection rates and high false
positives which require substantial optimization and network
specific fine tuning. The majority of these systems rely on
signatures to detect potential attacks and, therefore, cannot
detect "zero day”, unknown attacks. Despite the significant
research effort to introduce intelligence to NIDS/NIPS by
implementing anomaly based/machine learning detection
methods, there has been little real-world adoption of such
systems. A machine learning-based NIDS/NIPS partially
addresses the above inherent limitation that signature- and
rule-based industrial NIDS/NIPS suffer from. Beyond the lack
of real-world machine learning-based applications, there has
been very limited academic work focusing on incremental
learning algorithms applied to NIDS/NIPS. Incremental
learning algorithms allow the classifier to refine and improve
its capabilities over time (as it processes increasing amounts
of input data) in contrast to an offline or batch learning
algorithm, where the classifier is assumed to be exposed to the
input data in a batch. Network data dynamics change
significantly over time and applying static learned models
progressively degrades the detection performance, making
offline algorithms unsuitable for a NIDS/NIPS. We propose a
novel Network Intrusion Prevention System that exploits the
benefits of incremental machine learning frameworks and
achieves accurate results, comparable to most offline neural
network-based NIDS. The framework is based on a modified
version of Self Organizing Incremental Neural Network
(SOINN) [1] to achieve on-line clustering, coupled with
multiple SVMs to perform classification. The evaluation of

the resulting framework was performed on the NSL-KDD
dataset [2], which is an improved version of well-known
KDD'99 dataset. In spite of its age, the dataset is still the de-
facto alternative for benchmarking techniques and tools that
aim to provide effective intrusion detection systems [2]. Given
its widespread use, which makes it easier to provide a
reference analysis, we have also adopted this dataset to
initially test our method. The results show that the proposed
framework can achieve on-line updated incremental learning
in a fast and efficient manner. The rest of the paper is
organized as follows: the related work is discussed in Section
2, then Section 3 presents the proposed method. Section 4
gives an overview of the experimental results. Section 5
discusses the experimental results and Section 6 the provides
a set of conclusions and future work to extend the proposed
framework.

II. RELATED WORKS

Intrusion Detection Systems can be categorized based on the
detection method used. According to Liao et al [3], detection
methodologies are classified in two categories: signature-
based and anomaly-based. The signature-based detection
methodology is using patterns previously defined by known
attacks and is distributed as a set of signatures. The signatures
are then compared against patterns found in the network
traffic to discover possible attacks. While effective for known
threats, such a method cannot discover or prevent unknown
attacks and is unable to maintain and update signatures for
known or newly discovered attacks. In contrast, anomaly-
based detection typically establishes a baseline/normal level
using statistically significant traffic. Depending on the data
analysis technique used, the training/testing process can use
either classification or clustering. There has been substantial
work and research towards improving the classification
techniques for Intrusion Detection Systems, mostly focusing
on evaluating alternative solutions for the core analysis,
including neural networks [4] [5], fuzzy logic [5] [6], genetic
algorithms [8], and support vector machines [9]. At the same
time, clustering techniques mainly exploited the k-means and
outlier detection algorithms [10], [11]. As explored in our
proposed approach, prior research demonstrated the benefits
of combining both stages in a hybrid approach. In their papers
[2] [12] combined anomaly and misuse detection to propose
a novel solution for an IDS. Following a different
combination, the authors in [13] extended a neural based
technique with SVMs to propose a solution for an IDS that
could recognize both anomalies and known intrusions.
Artificial Neural Networks were also evaluated as a possible
analysis tool for Intrusion Detection Systems; in [13], the

978-1-7281-1542-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

authors proposed a user behaviour model where each user is
represented by a neural network, essentially a complement of
a statistical model. Later, in [14], the authors used the back
propagation algorithm to train the neural network for an IDS
proposal with a 96% detection accuracy and a 7% false alarm;
Zhang et al, 2001 in [15] built a Hierarchical Network
Intrusion Detection system using statistical pre-processing
and neural network classification. Following from prior
studies, [16] showed that Multilayer Perceptron neural
networks used for offline analysis could be applied in
intrusion detection not only to recognise attacks but also to
classify types of attacks. This approach, using two hidden
layers, led to a 91% accuracy. Authors in [17] used a
distributed time delay neural network to solve a similar multi
class problem but with improved accuracy results of 97.24%.
Xiang et al used a modification of SOINN [2] and applied it
to intrusion detection [18]. With a semi-supervised learning-
based IDS proposal, they demonstrated that the user input
could be minimized by combining a modified SOINN and
SVM to achieve semi-supervised learning with the same
space efficiency as a supervised SVM.

A number of more recent studies extended the SOINN
approach for a range of IDS-related tasks. To begin with, in
[19], the authors proposed an Improved Incremental Learning
SOINN for cloud-based environments. While the work aimed
to detect functionality anomalies, it also provided a starting
point for this work. SOINN can also be successfully applied
to visualisation, as demonstrated in [20]. SOINN was also
tested on an older dataset (KDD 99) in [21] and led to
relatively good accuracy with only minimal pre-processing
and feature extraction. On the implementation side, [22]
demonstrated the efficiency of using TensorFlow towards
analysing the NSL-KDD dataset and detecting malicious
traffic with 96% accuracy.

As highlighted by prior research, SOINN and Incremental
Learning are indeed very effective methods to tackle the
challenges of intrusion detection. We aim in this paper to
extend prior work by using incremental machine learning to
overcome the issues from using static (offline) machine
learning models applied to Network Intrusion
Detection/Prevention Systems designs.

III. PROPOSED METHOD
Throughout the evolution of IDS, it became apparent that a
hybrid approach leads to better results due to its ability to
discriminate using initially statistical-based approaches to
improve the formulation and formatting of inputs, then apply
them onto an artificial intelligence-based engine. Based on
this approach, this paper proposes a conceptual framework
designed to monitor inline the observed traffic and process
the raw traffic to extract a set of statistical parameters that can
then be passed through a detection engine. Once the detection
engine determines whether the traffic is part of an attack, the
packets can be logged/dropped or passed to the recipient
devices. The following subsections present the overall
architecture and encompassing blocks.

A. n-SOINN-WTA-SVM

The framework, as seen in Fig. 1, consists of a detection
engine that represents the core of the framework, a
preprocessing module for the incoming traffic that feeds the
detection engine, a validation module to evaluate the results
of the detection engine and an update module that feeds back
the failed results to the detection engine

FIG. 1: MACHINE LEARNING NETWORK INTRUSION PREVENTION SYSTEM

At the core of the architecture is the detection engine, named
"n-SOINN-WTA-SVM". The pre-processing module
captures, extracts, and calculates the TCP-related parameters
that are used as inputs for the detection engine. The validation
module evaluates (either manually or automatically) the
results of the detection engine and saves them in order to feed
the detection engine in the update phase, whether correct or
incorrect. After the initial training, the system switches
between two different phases: the live phase, where the input
traffic is categorized as normal or attack, allowing the system
to take appropriate action, and the updating phase, where the
system is incrementally updating its machine learning
capabilities by learning from new input data, more
specifically failed classifications. Our dataset included four
different categories of attacks fed to the detection engine
during experimentation and evaluation.

1) Concept.

The core concept of the proposed framework is to
incrementally build a network protection mechanism. In the
initial phase, the detection mechanism learns using a
relatively small sample of network data, sufficient for basic
network protection. Subsequently, as more network data
becomes available, the mechanism is incrementally updated
with input data of classes that it failed to detect, in order to
refine and advance its protective capabilities. To support the
learning process, the validation mechanism decides whether
a decision failed or not. In order to advance its capabilities,
the core detection engine must be able to categorize the
network data in a multi-class manner, not just whether a
connection is an attack or not, but what kind of attack that is
and therefore provide a solution to an incremental learning
multi-class problem.

2) SOINN.
The self-organizing and incremental neural network
(SOINN) [1] is an on-line unsupervised learning mechanism
for unlabelled data. SOINN has already been used in other
studies as a clustering method that handles supervised data.
As an online incremental clustering method, SOINN offers
relatively high computational speed with low computational

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

cost. Furthermore, the network complexity and size of
SOINN are controlled and stabilised through a "garbage
collector" technique. The technique defines an attrition
parameter called age which represents the time after which
period nodes will be removed if they are not updated for a
specified time, and thus dynamically eliminate noise in the
data. This property makes it attractive for dynamic
environments where long-term learning is required. To
ensure its scalability when expanding, the size and growth of
the network are controlled by a parameter n where multiple
pairs of SOINNs will be used as a supervised clustering
method.
SOINN, as summarised in Fig. 2, initializes the network with
an empty set of nodes, then adds the first two nodes to the list,
with weight vectors set as the two input vectors. After the
initialization, the neural network finds for every input vector
the nearest node (winner) and the second-nearest node
(second winner) of the input vector by measuring the distance
S1 and S2 from every input to every node with the equations
(1) and (2):

�� � ����	
���	����� ��� (1)
�� � ����	
��������	����� ��� (2)

Fig. 2: SOINN Algorithm Flowchart (based on [1])

If the input vector belongs to the same cluster as the winner
or second winner based on the distances calculated against a
similarity threshold criterion, SOINN updates the weight
vector of the node and its neighbours with the weight vector
of the input vector and connects it to the node by an edge. If
the input vector does not belong to the same cluster of the
winner or second winner, the mechanism adds a new node to
the network.

3) n-SOINN.
The framework proposed by this paper exploits the concept
behind n-SOINN [23], which modified the original SOINN
to utilize multiple pairs of SOINNs using a supervised
clustering approach. n-SOINN uses two significant
modifications: a global parameter that controls the topology
of the network and uses the squared (rather than the basic)
Euclidean distance to calculate the distance between the input

and the nodes. In order to control the number of output nodes
of the network, where a difference of how accurate the
compressed information will be created, a parameter named
n is introduced. This parameter dictates that any first winner
node that wins more than n times assign a win to the second
winner node. If the second winner node also has more than n
winning times, a new node is generated. For n=0, the network
behaves exactly like the original SOINN. Setting n to a very
high values reduces the number of created, stable nodes and
favours only the popular ones, which is likely to lead to
poorer accuracy. The Euclidean distance used in the original
SOINN was intended for the purpose of a single SOINN to
realize the unsupervised incremental learning task. The use
of the squared Euclidian distance in n-SOINN allows
measurement of the distance between nodes for different
SOINNs; the aging built in the SOINNs garbage collector
allows eliminating nodes of the input data whenever they
become unpopular.

4) WTA-SVM.
A Support Vector Machine (SVM) is a supervised machine
learning model that operates as a group classifier by
constructing a hyperplane or set of hyperplanes in a high
dimensional space using training data to separate data into
two groups. One of the main advantages of SVM is its
effectiveness in high dimensional spaces and its ability to
discriminate data which are not readily separable by simpler
methods. If the ‘normal’ and ‘abnormal’ data sets to be
discriminated are not linearly separable or the variations of
features for two classes overlap, the SVM maps the original
data space into much higher space to make the separation
easier. The function for mapping of features and the other
parameters should be optimized with different optimization
methods.
An SVM acts as a binary classification algorithm that solves
binary problems. In order to solve a multi-class problem with
SVMs, the common approach is to reduce the single
multiclass problem to a set of multiple binary classification
problems. Two common methods are employed to solve the
problem: the one-versus-all method, using the winner-takes-
all strategy, in which the classifier with the highest output
function gets the class assignment, and the one-versus-one
method using a max-wins voting strategy, in which the class
with the highest number of votes in every win of the two class
problem gets the class assignment. This paper uses the former
approach (one-versus-all) method and the winner-takes-all
(WTA) strategy is employed to solve the multi-class problem.

5) n-SOINN-WTA-SVM.
The detection engine and the core of the framework, as seen
in Fig. 3, is initialized with a dataset of k attack classes where
x is a d-dimensional TCP feature vector of the connection and
y is an attack class category label. A network connection
attack category is modelled by two n-SOINNs, one with a
high n value and another with a low n value. For each class k,
a pair of two n-SOINNs and one SVM binary classifier are
created. The n-SOINN with the low n value is supposed to
hold more accurate compressed information than the n-
SOINN with the high n value, making it a binary problem.

For every pair of n-SOINNs, the positive n-SOINN is
considered to be the one with the low n value and the negative

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

one with the high n value. The input vector of every SVM
binary classifier is constructed by the output of the positive k
n-SOINN and all other negative n-SOINNs. The output class
along with its score of every binary SVM is then compared
with all other binary SVMs in order to choose the top m
classes. After choosing the top m classes, the output of their
respective n-SOINNs is combined as an input to a multi-class
SVM to get the final class.

Fig. 3: n-SOINN-WTA-SVM

B. Framework modules
1) Pre-processing.

This module captures and process incoming traffic in real
time. The captured TCP connections are processed in order
to extract the relevant features that are made available as an
input vector to the detection engine - n-SOINN-WTA-SVM.
For our research, the validation was performed using the 41
attributes names of NSL-KDD dataset and all attributes
information are available in [2]. The framework is based on
the premise that TCP characteristics of a connection suggest
whether a connection is defined as an attack or not and
evermore if it is defined as an attack what kind of an attack
that is.

2) Detection Engine.
The core module of the framework consists of two main parts
as seen in Fig. 3: a clustering block and a classifier. The
clustering block includes a pair of n-SOINNs there are used
for each class to compress the information given from the
TCP connections by the pre-processing module and achieve
incremental learning. The classifying part takes the output of
the n-SOINNs nodes constructs an input for an SVM
classifier for each class to perform the preliminary
classification. Subsequently, the top m classes of
classification pairs of each classifier sorted by score are then
classified by a multiclass SVM for the final decision (m is

user defined according to the classes available). The score is
based on the distance of the samples to the separating
hyperplane.

3) Validation Module.
The validation module serves the purpose of improving and
advance the accuracy of the framework by confirming the
predicted label manually or automatically. The manual
method could be a user interaction in real time or
automatically with the predictions saved for later use and
compared against known and confirmed predictions. After
confirmation, the module forwards the failed predictions to
the updating module.

4) Updating Module.
The framework operates in two phases: ,live and updating. In
the live phase, it is making decisions based on what its
capabilities where at that time and an update phase where the
update module is updating the system with failed predictions
to improve its capabilities. The phases could run in parallel if
needed in production or alternating, according to the network
traffic.

IV. EXPERIMENTAL RESULTS
Experimentation and evaluation were performed with the
NSL-KDD dataset, which is an improved version of well-
known KDD'99 dataset, a very good candidate dataset to
evaluate the performance of any IDS and thus our framework.
For the negative SOINN we used n=2 and for the positive
SOINN we used n=100. As the dataset included a mixture of
normal traffic and four attacks, five binary classes were
created for this experiment - a normal class and four attack
classes (Denial of Service, Probe, R2L and U2R). For the top
m classes, we choose m=3 (the smallest possible number
higher than 2). The implementation used LIBSVM [24],
which is the best performer in a multi-class SVM out of the
box; we also used the RBF kernel in both binary and multi-
class SVMs.

The dataset used included two different subsets, one with
125973 records and the other one with 22544 records. The
second subset is not from the same probability distribution as
the first one and it also contains specific types of attacks not
present in the first one. For the framework evaluation and in
order to show that incremental learning is achieved we have
divided the first subset into five smaller subsets used for the
test/update rounds and used the second subset with 22544
records for the initial training. It should be noted that after the
initial training for every update round, the subset is tested
against the trained n-SOINN-WTA-SVM and only the failed
predictions are fed back to the system.

TABLE I. N-SOINN-WTA-SVM RESULTS

Round Accuracy [%] Time [s] # samples
Initial training 78.23 986 22544

Round 1 84.44 1065 28028
Round 2 87.98 1647 31948
Round 3 88.88 2328 34975
Round 4 88.96 2801 37776
Round 5 89.67 3285 40557

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

The results, as shown in Table I, indicate that the framework
can utilise incremental learning to gain substantive
improvement. The samples shown in the table are the
accumulated samples from the previous round. For example,
for the initial training, a dataset containing 22544 records was
used and for the first round of updates 5484 records was used,
the number of failed predictions of the first subset out of five,
accumulating the number of samples to 28028.

Fig. 5: Increasing Accuracy vs Sampled Feedback Chart

The accuracy chart, shown in Fig. 5, presents the relationship
between the number of records accumulating and the
accuracy of the system. The accuracy trend is pointing
upwards with a 89.67% prediction result. The framework
training samples accumulated by the end of Round 5
represented 27.30% of the total dataset; this makes it suitable
for scaling applications because of its efficiency. Instead of
feeding the complete dataset to the model, in our
experimentation the SOINNs kept only a fraction of the
information available for the whole dataset. In contrast, static
models are trained with the full data available without the
ability to adapt to the dynamic nature of network data over
time. The time cost in seconds for the initial training was 986
seconds and after that, each update round the time cost
incrementally increased with the last round costing 3285
seconds, as shown in Fig. 6.

Fig. 6: Time Cost vs Samples Chart

Although the time increases over input samples of data, these
are in essence rounds of updates which increase the number
of feedback samples for the model. To compare the online -
incremental learning method with the offline method, the
framework was trained once in one batch with the same
amount of input sample data. The results were 82.59%
accuracy classification with a time cost of 2857 seconds.

The fact that the offline method achieved less accurate results
only make the case stronger that the incremental learning

roposed framework could be a competitive candidate for an
industrial application.

Fig. 7: Online vs Offline Method Chart

V. DISCUSSION
The incremental learning property of the proposed
framework and the evaluation results indicate that our
proposal can adapt to the dynamic profile nature of network
data for both normal and attacks categories. The framework
utilizes less resources, is faster and it has higher detection rate
than the offline method. By only feeding the system with
failed predictions, not only we achieve incremental learning
with promising accuracy but the framework is also efficient,
meaning that, instead of feeding it the complete dataset, the
SOINNs kept only a fraction of the dataset, making the
framework a very good candidate for scaling systems.
Although the framework training time increases as the update
data input grows, the framework update and live modes could
either work in parallel (simultaneously) or the update mode
could switch when the framework live phase is idle (i.e. no
incoming data to detect).

VI. CONCLUSION AND FUTURE WORK
The security of the Internet of Things environments is the
subject of research for almost two decades now and the rate
of devices connected to the internet is growing exponentially.
Each connected device is a potential target for an attack and
IoT connected devices, excluding smartphones tablets and
computers, have limited hardware resources which makes it
even harder to apply proper security measures, increasing the
exposure to vulnerabilities. The initial evaluation results
shown that the proposed framework can achieve on-line
updated incremental learning in a fast and efficient manner,
making it suitable for an incrementally improve Network
Intrusion Protection System. Our next steps are to improve
the performance of the system, evaluate the proposed method
with more recent datasets and attacks and finally to compare
our results with state-of-the-art methods in terms of
performance, False Positive and False Negative detection
rate. Moreover, a possible combination of the technique with
the emerging epidemic-based analysis to efficiently assess
the probability of infection of a device in a network[25].

ACKNOWLEDGMENT
This project has received funding from the
European Union’s Horizon 2020 research and

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

innovation programme under grant agreement no. 786698.
This work reflects authors’ view and Agency is not
responsible for any use that may be made of the information it
contains.

REFERENCES

[1] S. Furao and O. Hasegawa, “An incremental network

for on-line unsupervised classification and topology
learning,” Neural Networks, vol. 19, no. 1, pp. 90–
106, 2006.

[2] L. Dhanabal and D. S. P. Shantharajah, “A Study on
NSL-KDD Dataset for Intrusion Detection System
Based on Classification Algorithms,” 2015.

[3] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y.
Tung, “Intrusion detection system: A comprehensive
review,” J. Netw. Comput. Appl., vol. 36, no. 1, pp.
16–24, 2013.

[4] Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson,
and J. L. Ucles, “HIDE: a Hierarchical Network
Intrusion Detection System Using Statistical
Preprocessing and Neural Network Classification,”
2001.

[5] J. J. Stephan, S. Mohammed, and M. K. Abbas,
“Neural Network Approach to Web Application
Protection,” Int. J. Inf. Educ. Technol., vol. 5, no. 4,
2015.

[6] S. N. Shiaeles, V. Katos, A. S. Karakos, and B. K.
Papadopoulos, “Real time DDoS detection using
fuzzy estimators,” Comput. Secur., vol. 31, no. 6, pp.
782–790, 2012.

[7] S. N. Shiaeles and M. Papadaki, “FHSD: An
Improved IP Spoof Detection Method for Web DDoS
Attacks,” Comput. J., vol. 58, no. 4, pp. 892–903,
2014.

[8] S. Bridges, R. B. Vaughn, and A. Professor, “Fuzzy
Data Mining And Genetic Algorithms Applied To
Intrusion Detection,” 2002.

[9] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai,
“An efficient intrusion detection system based on
support vector machines and gradually feature
removal method,” Expert Syst. Appl., vol. 39, no. 1,
pp. 424–430, 2012.

[10] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“A multi-step outlier-based anomaly detection
approach to network-wide traffic,” Inf. Sci. (Ny)., vol.
348, pp. 243–271, 2016.

[11] T. Bakhshi and B. Ghita, “User traffic profiling,” in
2015 Internet Technologies and Applications (ITA),
2015, pp. 91–97.

[12] G. Kim, S. Lee, and S. Kim, “A novel hybrid
intrusion detection method integrating anomaly
detection with misuse detection,” Expert Syst. Appl.,
vol. 41, no. 4, Part 2, pp. 1690–1700, 2014.

[13] H. Debar, M. Becker, and D. Siboni, “A neural
network component for an intrusion detection
system,” in Proceedings 1992 IEEE Computer

Society Symposium on Research in Security and
Privacy, 1992, pp. 240–250.

[14] J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion
Detection With Neural Networks,” in Advances in
Neural Information Processing Systems 10, 1998, pp.
943–949.

[15] Z. Zhang, C. Manikopoulos, J. A. Y. Jorgenson, and
J. Ucles, “Comparison of Wavelet Compression
Algorithms in Network Intrusion Detection”,
Computing and Information Technologies. WORLD
SCIENTIFIC, 2001.

[16] I. H. Witten, E. Frank, and M. A. Hall, “Embedded
Machine Learning,” Data Mining: Practical
Machine Learning Tools and Techniques. Elsevier,
pp. 531–538, 2011.

[17] L. M. IBRAHIM, “Anomaly network intrusion
detection system based on distributed time-delay
neural network (DTDNN),” J. Eng. Sci. Technol.,
vol. 5, no. 4, pp. 457–463, 2010.

[18] Z. Xiang, Z. Xiao, D. Wang, and H. M. Georges,
“Incremental semi-supervised kernel construction
with self-organizing incremental neural network and
application in intrusion detection,” J. Intell. Fuzzy
Syst., vol. 31, pp. 815–823, 2016.

[19] H. Zhang, S. Chen, J. Liu, Z. Zhou, and T. Wu, “An
incremental anomaly detection model for virtual
machines,” PLoS One, vol. 12, no. 11, pp. 1–23,
2017.

[20] X. Fan, C. Li, and X. Dong, “A real-time network
security visualization system based on incremental
learning (ChinaVis 2018),” J. Vis., vol. 22, no. 1, pp.
215–229, Feb. 2019.

[21] W. Chen, F. Kong, F. Mei, G. Yuan, and B. Li, “A
Novel Unsupervised Anomaly Detection Approach
for Intrusion Detection System,” in 2017 IEEE 3rd
Bigdatasecurity, IEEE HPSC, and IEEE IDS, 2017,
pp. 69–73.

[22] L.-D. Chou et al., “Classification of Malicious
Traffic Using TensorFlow Machine Learning,” in
International Conference on Information and
Communication Technology Convergence, 2018, pp.
186–190.

[23] P. Kankuekul, A. Kawewong, S. Tangruamsub, and
O. Hasegawa, “Online incremental attribute-based
zero-shot learning,” 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE,
2012.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for
Support Vector Machines,” ACM Trans. Intell. Syst.
Technol., vol. 2, no. 3, p. 27:1--27:27, May 2011.

[25] E.Bellini, F. Bagnoli, A. A. Ganin, I. Linkov, "Cyber
Resilience in IoT network: Methodology and
example of assessment through epidemic spreading
approach", IEEE Service Workshop on Cyber
Security and Resilience in IoT, 2019

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 13:01:52 UTC from IEEE Xplore. Restrictions apply.

