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Abstract— Attack vectors are continuously evolving in order 
to evade Intrusion Detection systems. Internet of Things (IoT) 
environments, while beneficial for the IT ecosystem, suffer 
from inherent hardware limitations, which restrict their ability 
to implement comprehensive security measures and increase 
their exposure to vulnerability attacks. This paper proposes a 
novel Network Intrusion Prevention System that utilises a Self-
Organizing Incremental Neural Network along with a Support 
Vector Machine. Due to its structure, the proposed system 
provides a security solution that does not rely on signatures or 
rules and is capable to mitigate known and unknown attacks in 
real-time with high accuracy. Based on our experimental results 
with the NSL KDD dataset, the proposed framework can 
achieve on-line updated incremental learning, making it suitable 
for efficient and scalable industrial applications. 

Keywords— Intrusion Detection, Machine Learning, Self-
Organizing Incremental Neural Network, Support Vector 
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I. INTRODUCTION  
Commercial intrusion detection/prevention systems 

typically suffer from low detection rates and high false 
positives which require substantial optimization and network 
specific fine tuning. The majority of these systems rely on 
signatures to detect potential attacks and, therefore, cannot 
detect "zero day”, unknown attacks. Despite the significant 
research effort to introduce intelligence to NIDS/NIPS by 
implementing anomaly based/machine learning detection 
methods, there has been little real-world adoption of such 
systems. A machine learning-based NIDS/NIPS partially 
addresses the above inherent limitation that signature- and 
rule-based industrial NIDS/NIPS suffer from. Beyond the lack 
of real-world machine learning-based applications, there has 
been very limited academic work focusing on incremental 
learning algorithms applied to NIDS/NIPS. Incremental 
learning algorithms allow the classifier to refine and improve 
its capabilities over time (as it processes increasing amounts 
of input data) in contrast to an offline or batch learning 
algorithm, where the classifier is assumed to be exposed to the 
input data in a batch. Network data dynamics change 
significantly over time and applying static learned models 
progressively degrades the detection performance, making 
offline algorithms unsuitable for a NIDS/NIPS. We propose a 
novel Network Intrusion Prevention System that exploits the 
benefits of incremental machine learning frameworks and 
achieves accurate results, comparable to most offline neural 
network-based NIDS. The framework is based on a modified 
version of Self Organizing Incremental Neural Network 
(SOINN) [1] to achieve on-line clustering, coupled with 
multiple SVMs to perform classification. The evaluation of 

the resulting framework  was performed on the NSL-KDD 
dataset [2], which is an improved version of well-known 
KDD'99 dataset. In spite of its age, the dataset is still the de-
facto alternative for benchmarking techniques and tools that 
aim to provide effective intrusion detection systems [2]. Given 
its widespread use, which makes it easier to provide a 
reference analysis, we have also adopted this dataset to 
initially test our method. The results show that the proposed 
framework can achieve on-line updated incremental learning 
in a fast and efficient manner. The rest of the paper is 
organized as follows: the related work is discussed in Section 
2, then Section 3 presents the proposed method. Section 4 
gives an overview of the experimental results. Section 5 
discusses the experimental results and Section 6 the provides 
a set of conclusions and future work to extend the proposed 
framework. 

II. RELATED WORKS 

Intrusion Detection Systems can be categorized based on the 
detection method used. According to Liao et al [3], detection 
methodologies are classified in two categories: signature-
based and anomaly-based. The signature-based detection 
methodology is using patterns previously defined by known 
attacks and is distributed as a set of signatures. The signatures 
are then compared against patterns found in the network 
traffic to discover possible attacks. While effective for known 
threats, such a method cannot discover or prevent unknown 
attacks and is unable to maintain and update signatures for 
known or  newly discovered attacks. In contrast, anomaly-
based detection typically establishes a baseline/normal level 
using statistically significant traffic. Depending on the data 
analysis technique used, the training/testing process can use 
either classification or clustering. There has been substantial 
work and research towards improving the classification 
techniques for Intrusion Detection Systems, mostly focusing 
on evaluating alternative solutions for the core analysis, 
including neural networks [4] [5], fuzzy logic [5] [6], genetic 
algorithms [8], and support vector machines [9]. At the same 
time, clustering techniques mainly exploited the k-means and 
outlier detection algorithms [10], [11]. As explored in our 
proposed approach, prior research demonstrated the benefits 
of combining both stages in a hybrid approach. In their papers 
[2] [12] combined anomaly and misuse detection to propose 
a novel solution for an IDS. Following a different 
combination, the authors in [13] extended a neural based 
technique with SVMs to propose a solution for an IDS that 
could recognize both anomalies and known intrusions. 
Artificial Neural Networks were also evaluated as a possible 
analysis tool for Intrusion Detection Systems; in [13], the 
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authors proposed a user behaviour model where each user is 
represented by a neural network, essentially a complement of 
a statistical model. Later, in [14], the authors used the back 
propagation algorithm to train the neural network for an IDS 
proposal with a 96% detection accuracy and a 7% false alarm; 
Zhang et al, 2001 in [15] built a Hierarchical Network 
Intrusion Detection system using statistical pre-processing 
and neural network classification. Following from prior 
studies, [16] showed that Multilayer Perceptron neural 
networks used for offline analysis could be applied in 
intrusion detection not only to recognise attacks but also to 
classify types of attacks. This approach, using two hidden 
layers, led to a 91% accuracy. Authors in [17] used a 
distributed time delay neural network to solve a similar multi 
class problem but with improved accuracy results of 97.24%. 
Xiang et al used a modification of SOINN [2] and applied it 
to intrusion detection [18]. With a semi-supervised learning-
based IDS proposal, they demonstrated that the user input 
could be minimized by combining a modified SOINN and 
SVM to achieve semi-supervised learning with the same 
space efficiency as a supervised SVM.  

A number of more recent studies extended the SOINN 
approach for a range of IDS-related tasks. To begin with, in 
[19], the authors proposed an Improved Incremental Learning 
SOINN for cloud-based environments. While the work aimed 
to detect functionality anomalies, it also provided a starting 
point for this work. SOINN can also be successfully applied 
to visualisation, as demonstrated in [20]. SOINN was also 
tested on an older dataset (KDD 99) in [21] and led to 
relatively good accuracy with only minimal pre-processing 
and feature extraction. On the implementation side, [22] 
demonstrated the efficiency of using TensorFlow towards 
analysing the NSL-KDD dataset and detecting malicious 
traffic with 96% accuracy.  

As highlighted by prior research, SOINN and Incremental 
Learning are indeed very effective methods to tackle the 
challenges of intrusion detection. We aim in this paper to 
extend prior work by using incremental machine learning to 
overcome the issues from using static (offline) machine 
learning models applied to Network Intrusion 
Detection/Prevention Systems designs.  

 

III. PROPOSED METHOD 
Throughout the evolution of IDS, it became apparent that a 
hybrid approach leads to better results due to its ability to 
discriminate using initially statistical-based approaches to 
improve the formulation and formatting of inputs, then apply 
them onto an artificial intelligence-based engine. Based on 
this approach, this paper proposes a conceptual framework 
designed to monitor inline the observed traffic and process 
the raw traffic to extract a set of statistical parameters that can 
then be passed through a detection engine. Once the detection 
engine determines whether the traffic is part of an attack, the 
packets can be logged/dropped or passed to the recipient 
devices. The following subsections present the overall 
architecture and encompassing blocks. 

A. n-SOINN-WTA-SVM 

The framework, as seen in Fig. 1, consists of a detection 
engine that represents the core of the framework, a 
preprocessing module for the incoming traffic that feeds the 
detection engine, a validation module to evaluate the results 
of the detection engine and an update module that feeds back 
the failed results to the detection engine 

FIG.  1: MACHINE LEARNING NETWORK INTRUSION PREVENTION SYSTEM 

At the core of the architecture is the detection engine, named 
"n-SOINN-WTA-SVM". The pre-processing module 
captures, extracts, and calculates the TCP-related parameters 
that are used as inputs for the detection engine. The validation 
module evaluates (either manually or automatically) the 
results of the detection engine and saves them in order to feed 
the detection engine in the update phase, whether correct or 
incorrect. After the initial training, the system switches 
between two different phases: the live phase, where the input 
traffic is categorized as normal or attack, allowing the system 
to take appropriate action, and the updating phase, where the 
system is incrementally updating its machine learning 
capabilities by learning from new input data, more 
specifically failed classifications. Our dataset included four 
different categories of attacks fed to the detection engine 
during experimentation and evaluation. 

1) Concept.  

The core concept of the proposed framework is to 
incrementally build a network protection mechanism. In the 
initial phase, the detection mechanism learns using a 
relatively small sample of network data, sufficient for basic 
network protection. Subsequently, as more network data 
becomes available, the mechanism is incrementally updated 
with input data of classes that it failed to detect, in order to 
refine and advance its protective capabilities. To support the 
learning process, the validation mechanism decides whether 
a decision failed or not. In order to advance its capabilities, 
the core detection engine must be able to categorize the 
network data in a multi-class manner, not just whether a 
connection is an attack or not, but what kind of attack that is 
and therefore provide a solution to an incremental learning 
multi-class problem.  

2) SOINN.   
The self-organizing and incremental neural network 
(SOINN) [1] is an on-line unsupervised learning mechanism 
for unlabelled data. SOINN has already been used in other 
studies as a clustering method that handles supervised data. 
As an online incremental clustering method, SOINN offers 
relatively high computational speed with low computational 
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cost. Furthermore, the network complexity and size of 
SOINN are controlled and stabilised through a "garbage 
collector" technique. The technique defines an attrition 
parameter called age which represents the time after which 
period nodes will be removed if they are not updated for a 
specified time, and thus dynamically eliminate noise in the 
data. This property makes it attractive for dynamic 
environments where long-term learning is required. To 
ensure its scalability when expanding, the size and growth of 
the network are controlled by a parameter n where multiple 
pairs of SOINNs will be used as a supervised clustering 
method. 
SOINN, as summarised in Fig. 2, initializes the network with 
an empty set of nodes, then adds the first two nodes to the list, 
with weight vectors set as the two input vectors. After the 
initialization, the neural network finds for every input vector 
the nearest node (winner) and the second-nearest node 
(second winner) of the input vector by measuring the distance 
S1 and S2 from every input to every node with the equations 
(1) and (2): 
 

�� � ����	
���	����� ���  (1) 
�� � ����	
��������	����� ���  (2) 

 

 
Fig.  2: SOINN Algorithm Flowchart (based on [1]) 

 
If the input vector belongs to the same cluster as the winner 
or second winner based on the distances calculated against a 
similarity threshold criterion, SOINN updates the weight 
vector of the node and its neighbours with the weight vector 
of the input vector and connects it to the node by an edge. If 
the input vector does not belong to the same cluster of the 
winner or second winner, the mechanism adds a new node to 
the network.  
 

3) n-SOINN.  
The framework proposed by this paper exploits the concept 
behind n-SOINN [23], which modified the original SOINN 
to utilize multiple pairs of SOINNs using a supervised 
clustering approach. n-SOINN uses two significant 
modifications: a global parameter that controls the topology 
of the network and uses the squared (rather than the basic) 
Euclidean distance to calculate the distance between the input 

and the nodes. In order to control the number of output nodes 
of the network, where a difference of how accurate the 
compressed information will be created, a parameter named 
n is introduced. This parameter dictates that any first winner 
node that wins more than n times assign a win to the second 
winner node. If the second winner node also has more than n 
winning times, a new node is generated. For  n=0, the network 
behaves exactly like the original SOINN. Setting n to a very 
high values reduces the number of created, stable nodes and 
favours only the popular ones, which is likely to lead to 
poorer accuracy. The Euclidean distance used in the original 
SOINN was intended for the purpose of a single SOINN to 
realize the unsupervised incremental learning task. The use 
of the squared Euclidian distance in n-SOINN allows 
measurement of the distance between nodes for different 
SOINNs; the aging built in the SOINNs garbage collector 
allows eliminating nodes of the input data whenever they 
become unpopular.   
 

4) WTA-SVM.  
A Support Vector Machine (SVM) is a supervised machine 
learning model that operates as a group classifier by 
constructing a hyperplane or set of hyperplanes in a high 
dimensional space using training data to separate data into 
two groups. One of the main advantages of SVM is its 
effectiveness in high dimensional spaces and its ability to 
discriminate data which are not readily separable by simpler 
methods. If the ‘normal’ and ‘abnormal’ data sets to be 
discriminated are not linearly separable or the variations of 
features for two classes overlap, the SVM maps the original 
data space into much higher space to make the separation 
easier. The function for mapping of features and the other 
parameters should be optimized with different optimization 
methods.  
An SVM acts as a binary classification algorithm that solves 
binary problems. In order to solve a multi-class problem with 
SVMs, the common approach is to reduce the single 
multiclass problem to a set of multiple binary classification 
problems. Two common methods are employed to solve the 
problem: the one-versus-all method, using the winner-takes-
all strategy, in which the classifier with the highest output 
function gets the class assignment, and the one-versus-one 
method using a max-wins voting strategy, in which the class 
with the highest number of votes in every win of the two class 
problem gets the class assignment. This paper uses the former 
approach (one-versus-all) method and the winner-takes-all 
(WTA) strategy is employed to solve the multi-class problem.  
 

5) n-SOINN-WTA-SVM.  
The detection engine and the core of the framework, as seen 
in Fig. 3, is initialized with a dataset of k attack classes where 
x is a d-dimensional TCP feature vector of the connection and 
y is an attack class category label. A network connection 
attack category is modelled by two n-SOINNs, one with a 
high n value and another with a low n value. For each class k, 
a pair of two n-SOINNs and one SVM binary classifier are 
created. The n-SOINN with the low n value is supposed to 
hold more accurate compressed information than the n-
SOINN with the high n value, making it a binary problem. 
 
For every pair of n-SOINNs, the positive n-SOINN is 
considered to be the one with the low n value and the negative 
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one with the high n value. The input vector of every SVM 
binary classifier is constructed by the output of the positive k 
n-SOINN and all other negative n-SOINNs. The output class 
along with its score of every binary SVM is then compared 
with all other binary SVMs in order to choose the top m 
classes. After choosing the top m classes, the output of their 
respective n-SOINNs is combined as an input to a multi-class 
SVM to get the final class. 
 

 
Fig.  3: n-SOINN-WTA-SVM 
 

B. Framework modules 
1) Pre-processing.   

This module captures and process incoming traffic in real 
time. The captured TCP connections are processed in order 
to extract the relevant features that are made available as an 
input vector to the detection engine - n-SOINN-WTA-SVM. 
For our research, the validation was performed using the 41 
attributes names of NSL-KDD dataset and all attributes 
information are available in [2]. The framework is based on 
the premise that TCP characteristics of a connection suggest 
whether a connection is defined as an attack or not and 
evermore if it is defined as an attack what kind of an attack 
that is. 
 

2) Detection Engine.  
The core module of the framework consists of two main parts 
as seen in Fig. 3: a clustering block and a classifier. The 
clustering block includes a pair of n-SOINNs there are used 
for each class to compress the information given from the 
TCP connections by the pre-processing module and achieve 
incremental learning. The classifying part takes the output of 
the n-SOINNs nodes constructs an input for an SVM 
classifier for each class to perform the preliminary 
classification. Subsequently, the top m classes of 
classification pairs of each classifier sorted by score are then 
classified by a multiclass SVM for the final decision (m is 

user defined according to the classes available). The score is 
based on the distance of the samples to the separating 
hyperplane. 
 

3) Validation Module.  
The validation module serves the purpose of improving and 
advance the accuracy of the framework by confirming the 
predicted label manually or automatically. The manual 
method could be a user interaction in real time or 
automatically with the predictions saved for later use and 
compared against known and confirmed predictions. After 
confirmation, the module forwards the failed predictions to 
the updating module.  
 

4) Updating Module.   
The framework operates in two phases: ,live and updating. In 
the live phase, it is making decisions based on what its 
capabilities where at that time and an update phase where the 
update module is updating the system with failed predictions 
to improve its capabilities. The phases could run in parallel if 
needed in production or alternating, according to the network 
traffic. 

IV. EXPERIMENTAL RESULTS 
Experimentation and evaluation were performed with the 
NSL-KDD dataset, which is an improved version of well-
known KDD'99 dataset, a very good candidate dataset to 
evaluate the performance of any IDS and thus our framework. 
For the negative SOINN we used n=2 and for the positive 
SOINN we used n=100. As the dataset included a mixture of 
normal traffic and four attacks, five binary classes were 
created for this experiment - a normal class and four attack 
classes (Denial of Service, Probe, R2L and U2R). For the top 
m classes, we choose m=3 (the smallest possible number 
higher than 2). The implementation used LIBSVM [24], 
which is the best performer in a multi-class SVM out of the 
box; we also used the RBF kernel in both binary and multi-
class SVMs.  
 
The dataset used included two different subsets, one with 
125973 records and the other one with 22544 records. The 
second subset is not from the same probability distribution as 
the first one and it also contains specific types of attacks not 
present in the first one. For the framework evaluation and in 
order to show that incremental learning is achieved we have 
divided the first subset into five smaller subsets used for the 
test/update rounds and used the second subset with 22544 
records for the initial training. It should be noted that after the 
initial training for every update round, the subset is tested 
against the trained n-SOINN-WTA-SVM and only the failed 
predictions are fed back to the system. 

TABLE I.  N-SOINN-WTA-SVM RESULTS 

Round Accuracy [%] Time [s] # samples 
Initial training 78.23 986 22544 

Round 1 84.44 1065 28028 
Round 2 87.98 1647 31948 
Round 3 88.88 2328 34975 
Round 4 88.96 2801 37776 
Round 5 89.67 3285 40557 
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The results, as shown in Table I, indicate that the framework 
can utilise incremental learning to gain substantive 
improvement. The samples shown in the table are the 
accumulated samples from the previous round. For example, 
for the initial training, a dataset containing 22544 records was 
used and for the first round of updates 5484 records was used, 
the number of failed predictions of the first subset out of five, 
accumulating the number of samples to 28028. 
 

 
Fig.  5: Increasing Accuracy vs Sampled Feedback Chart 
 
The accuracy chart, shown in Fig. 5, presents the relationship 
between the number of records accumulating and the 
accuracy of the system. The accuracy trend is pointing 
upwards with a 89.67% prediction result. The framework 
training samples accumulated by the end of Round 5 
represented 27.30% of the total dataset; this makes it suitable 
for scaling applications because of its efficiency. Instead of 
feeding the complete dataset to the model, in our 
experimentation the SOINNs kept only a fraction of the 
information available for the whole dataset. In contrast, static 
models are trained with the full data available without the 
ability to adapt to the dynamic nature of network data over 
time. The time cost in seconds for the initial training was 986 
seconds and after that, each update round the time cost 
incrementally increased with the last round costing 3285 
seconds, as shown in Fig. 6. 
 

 
Fig. 6: Time Cost vs Samples Chart 

 
Although the time increases over input samples of data, these 
are in essence rounds of updates which increase the number 
of feedback samples for the model. To compare the online - 
incremental learning method with the offline method, the 
framework was trained once in one batch with the same 
amount of input sample data. The results were 82.59% 
accuracy classification with a time cost of 2857 seconds. 

The fact that the offline method achieved less accurate results 
only make the case stronger that the incremental learning 

roposed framework could be a competitive candidate for an 
industrial application. 
 

 
Fig.  7: Online vs Offline Method Chart 

 

V. DISCUSSION 
The incremental learning property of the proposed 
framework and the evaluation results indicate that our 
proposal can adapt to the dynamic profile nature of network 
data for both normal and attacks categories. The framework 
utilizes less resources, is faster and it has higher detection rate 
than the offline method. By only feeding the system with 
failed predictions, not only we achieve incremental learning 
with promising accuracy but the framework is also efficient, 
meaning that, instead of feeding it the complete dataset, the 
SOINNs kept only a fraction of the dataset, making the 
framework a very good candidate for scaling systems. 
Although the framework training time increases as the update 
data input grows, the framework update and live modes could 
either work in parallel (simultaneously) or the update mode 
could switch when the framework live phase is idle (i.e. no 
incoming data to detect). 
 

VI. CONCLUSION AND FUTURE WORK 
The security of the Internet of Things environments is the 
subject of research for almost two decades now and the rate 
of devices connected to the internet is growing exponentially. 
Each connected device is a potential target for an attack and 
IoT connected devices, excluding smartphones tablets and 
computers, have limited hardware resources which makes it 
even harder to apply proper security measures, increasing the 
exposure to vulnerabilities. The initial evaluation results 
shown that the proposed framework can achieve on-line 
updated incremental learning in a fast and efficient manner, 
making it suitable for an incrementally improve Network 
Intrusion Protection System. Our next steps are to improve 
the performance of the system, evaluate the proposed method 
with more recent datasets and attacks and finally to compare 
our results with state-of-the-art methods in terms of 
performance, False Positive and False Negative detection 
rate. Moreover, a possible combination of the technique with 
the emerging epidemic-based analysis to efficiently assess 
the probability of infection of a device in a network[25]. 
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