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Abstract: Smart Meters provide detailed energy consumption data and rich contextual information
that can be utilized to assist electricity providers and consumers in understanding and managing
energy use. The detection of human activity in residential households is a valuable extension
for applications, such as home automation, demand side management, or non-intrusive load
monitoring, but it usually requires the installation of dedicated sensors. In this paper, we propose
and evaluate two new metrics, namely the sliding window entropy and the interval entropy, inspired
by Shannon’s entropy in order to obtain information regarding human activity from smart meter
readings. We emphasise on the application of the entropy and analyse the effect of input parameters,
in order to lay the foundation for future work. We compare our method to other methods, including
the Page–Hinkley test and geometric moving average, which have been used for occupancy detection
on the same dataset by other authors. Our experimental results, using the power measurements
of the publicly available ECO dataset, indicate that the accuracy and area under the curve of our
method can keep up with other well-known statistical methods, stressing the practical relevance of
our approach.

Keywords: energy demand; entropy applications; privacy

1. Introduction

The smart grid is generally seen as the next-generation power system, connecting all of the actors
of the energy system and optimizing the reliability and efficiency of electricity supply and consumption.
The advent of ubiquitous IP-based data exchange in modern power grids and the availability of
residential energy measurements in low-voltage networks boosted the interest towards appropriate
data assessment for time-dependent market prices, non-intrusive load monitoring, or demand side
management.

Many of these methods ultimately aim to save energy by optimizing the customers consumption
behaviour. Other authors [1,2] provided evidence that buildings are responsible for a major part of
the global energy consumption. According to Vafeiadis et al. [3], the detection of occupancy provides
the ability to apply several automation applications that may contribute to the reduction of energy
consumption. Candanedo et al. [4] found that an accurate determination of occupancy in buildings
can save energy, up to 40%.

In this paper, we propose an effective, entropy-inspired profiling mechanism that consolidates
the temporal distribution of energy consumption in order to implement an indicator for occupancy.
The occupancy is an interesting metric for many new applications in the smart grid, e.g., monitoring
and forecast, dynamic prices, or typical load classification. Detecting when a residential household
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is occupied, is still a challenging process, which is typically solved by the intrusive deployment
of dedicated sensors, such as infrared sensors, magnetic switches, or cameras. Other authors [5,6]
generally agree that these setups require the expensive deployment, calibration, and maintenance of
hardware. Furthermore, a wide range of machine learning algorithms, which can indicate occupancy
using the energy demand, are unsuitable due to the requirement of historic data and high resolution
data. Our contribution is that we reveal this information without a priori information, which allows
its use without expensive and laborious training. Furthermore, our algorithm can also cope with low
resolution measurements.

As human activities that take place without appliances are not reflected in energy demand,
we define the term occupancy in this paper as an interaction with electrical appliances or activity
of devices. Obviously, mispredictions of occupancy in this sense are sometimes possible as, e.g., a
cleverly randomized use of time-switches cannot be distinguished from a human user doing the same
activity. While approaches that are aimed at detecting or predicting actual human presence in homes
might appear more powerful, we argue that our proposed approach is more efficient as measuring,
modelling, and predicting actual human activities, which is either intrusive or difficult. The differences
between these approaches are, in fact, negligible from a practical point of view when considering the
use of such data for non-intrusive load monitoring, anomaly detection, and energy forecasts.

The idea to use the entropy to analyse the regularity of energy demand is intuitive, but it contains
many hidden challenges. We showcase methods to use the energy demand, horizontally with a sliding
window and vertically with intervals, as input data for the entropy. We analyse the respective
parameters, such as the window size and number of intervals, and interpret the meaning of a high and
low entropy. Our aim is to create a comprehensible metric that can be used to identify or distinguish
the behaviour of residential households better than raw data.

In the remainder of this paper, we first present an overview of the statistical entropy and discuss
details of two independent metrics. We highlight their advantages and limitations regarding their
conclusiveness with respect to residential energy demand. Next, we evaluate our metrics by presenting
several practical experiments, which illustrate their functionality and features. Our experimental
results, which were obtained by applying entropy to real world smart meter data of the public
available Electricity Consumption & Occupancy (ECO) dataset, show that the proposed metric can
indeed detect occupancy. A comparison of our results with other well-known statistical methods,
followed by a summary and potential future work avenues, concludes this paper.

2. Related Work

Many authors agree that residential energy demand can provide unique insights into household
characteristics or individual behaviours. An energy provider can use these information to better
monitor the complex consumption behaviour, improve the prediction of certain consumer profiles,
and suggest optimal energy pricing for particular groups. In particular, Anderson et al. [7] discussed
and examined a great many of literature that suggests that we can use residential energy demand to
indicate household characteristics and associate consumption patterns to particular consumer groups.

Previous studies of Molina et al. [8] used density-based clustering and supervised learning
to identify private information about consumers. Research conducted by Carroll et al. [9] and
Mcloughlin et al. [10] suggests that there is a relationship between load curves and the employment
status as well as the presence of children. Kolter et al. [11] analysed the relation between demand and
building properties, such as the number of rooms and the building value. Beckel et al. [12] extracted
the number of occupants from energy demand. Newing et al. [13] associated energy consumption
patterns with particular dwellings, income, and number of children.

Nguyen and Aiello [14] as well as Labeodan et al. [15] provide a comprehensive list of approaches
to capture occupancy, which are mostly based on sensor data. Kleiminger et al. [5], who provided
the Electricity Consumption & Occupancy (ECO) dataset, implemented a method that was based
on supervised machine learning algorithms to detect human presence. Jin et al. [6] performed
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occupancy detection on both residential and commercial buildings. Becker et al. [16] computed the
occupancy with unsupervised occupancy detection algorithms on three public datasets. Peng et al. [17]
used unsupervised and supervised learning machine learning methods to predict the occupancy of
office buildings.

The major contributions of this paper include the application of an entropy-inspired metric to
profile energy demand. The entropy has been extensively applied in other areas such as health care [18],
biodiversity assessment [19], or network monitoring [20].

Some of the authors applied the entropy to topics related to the smart grid, but not occupancy
detection. E.g., Iranmanesh et al. [21] used the entropy based mutual information method in order to
select relevant input features for energy forecasting. Ruiz et al. [22] used the entropy to measure the
volatility of energy price markets and relate them to historical events or climatic factors. Gao et al. [23]
used the entropy to assess risks of the electricity market. Hock et al. [24] used the entropy to detect
energy theft by comparing multiple households.

In contrast to most conventional methods, our metric does not require large amounts of historical
data to build a statistical model and it is relatively simple to compute. To the best of our knowledge,
an entropy-inspired metric has not been proposed to analyse energy demand before.

3. Method

In the following, we will briefly outline the rationale behind our approach to use a somewhat
complex metric to reliably detect events, such as changes in demand and energy usage pattern.
Our objective is to detect electric events pointing to occupancy. Due to appliances with high demand,
typical statistical ratios are insufficient for reflecting occupancy, because the amplitude of energy
intensive or energy saving appliances do not necessarily translate into different human activities.
Hence, we propose using regularity or randomness, in other words temporal changes of demand,
as a benchmark for occupancy.

Energy demand is not random—the patterns of human activity, given by the stacked load shapes
of individual appliances, are often gathered in a few periods per day and repeat daily according to the
consumption habits of the household. We aim to observe these sections, which appear due to a high
variability as outlier, through measuring entropy.

The entropy is a convenient way to detect outliers in the regularity of energy demand.
The distribution of energy demand can be measured horizontally or vertically. By analysing the
distribution of demand over time (x-axis), we may find out that most of the demand appears at a
specific time, which is an outlier. By analysing the distribution of measurements (y-axis), we may find
out that there are only few measurements with high power, which also is an outlier.

Although entropy originated in thermodynamics, Shannon argued with his application of
the entropy to information theoretic problems—as a quantitative and qualitative technique for
understanding ’uncertainty’—that entropy has a deeper meaning. It is well known in coding theory
that the entropy of a discrete random variable quantifies the average length of the encoding of the
random variable. Moreover, Shannon’s entropy measures the average uncertainty, also referred to as
information content. The uncertainty is maximized when the outcomes of the random variable are
equally likely, which corresponds to a uniform distribution. As will be shown later, entropy-based
measures capturing the entropy of energy-consumption over time are useful in detecting occupancy.

Formally, let L = {a1, a2, ..., an} be a dataset where n is the cardinality of L. Moreover,
let x1, x2, ..., xn denote the frequency of each element in L in some sequence X of elements from
the set and m = ∑n

i=1 xi implies the number of all observations. Subsequently, the entropy H(X) is
defined by

H(X) = −
n

∑
i=1

xi
m
· log2

( xi
m

)
(1)
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Please note that 0 ≤ H(X) ≤ log2(n) where H(X) = 0 is assumed if only one element of L occurs
in X (by convention, 0 · log2(0) = 0) and H(X) = log2(n) if all elements of L occur in X with the same
frequency. As xi

m is synonymous for the occurrence probability, we can extend the interpretation to the
statistical distribution of the underlying data: an entropy that is close to log2(n) reads as ‘random’,
because the elements appear almost equally often, whereas an entropy that is close to zero reads as
‘skewed’, because few elements appear more frequent.

As we use the entropy not in a traditional sense, but as a metric to mathematically trace outliers in
a distribution of measurements, the practical function as a metric, which encodes distributions without
losing information on outliers, is the most important aspect for us.

Figure 1 illustrates the entropy (top) for a corresponding distribution (bottom) with a generated
example. The two figures at the bottom show bar plots with 10 different bars, called (a–j), each
visualising a distributions. The distributions are from left to right more and more skewed to showcase
the resulting entropy, which decreases with the skewness. The left-hand side focuses on multiple
outliers, while the right-hand side focuses on single outliers.

Figure 1. Entropy for uniform and heavily skewed distributions.
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Apart from the entropy-inspired metric, other distance functions may also work in order to detect
outlier in the distribution. Our metrics result looks strongly correlated to the standard deviation
(σ). However, the σ of a vector increases with the distance between values, while the entropy only
considers the number of unique values. E.g., for a vector v1 = (1W, 1W, 1000W, 1000W) and v2 =

(1W, 250W, 750W, 1000W). The σ for v1 is higher than for v2. However, the entropy for v2 is higher
than for v1.

4. Application

Subsequently, we illustrate metrics that are based on Shannon’s entropy, as a unified analytic
approach to discover changes of energy demand over time. As previously explained, the range of
the entropy is profoundly affected by the size of the dataset. In our case, it coincides with the finite
amount of energy demands n, which, in turn influence its range [0, log2(n)]. Hence, we will discretise
continuous sets, such as R, in order to use them as input parameter for our entropy-measure.

Following the reasoning of the previous chapter, we introduce two independent methods to
observe the uniformity of energy demand vertically and horizontally resulting in two opposite
interpretations, different from the information theoretic interpretation, aiming to significantly mirror
the changes in energy demand pattern. While our first method sliding window entropy employs the
probability to see demand during a certain time, the second method interval entropy conducts the
probability to see demand in a certain range. We aim to explain the different interpretation of the result,
in contrast to the traditional Shannon entropy, and choose the best approach to detect occupancy.

Human activity stands out due to energy demand peaks. The sliding window entropy can
detect such a peak if a single time window contains most of the total demand. Alternatively, human
activity stands out due to high variance. The interval entropy can detect this variance if the power
measurements are equally distributed over the measurement range.

4.1. Sliding Window Entropy

To summarize the sliding window entropy, we utilize the proportion of energy demand in a time
window as input for the entropy to obtain a metric that explains the distribution of energy demand
over one day. In contrast to the information theoretic entropy, our metric is maximized if the demand
in all of the time windows is equal and the consumption is distributed uniformly throughout the
day and minimized when the consumption is concentrated in a single interval. Hence, we assume
occupancy when the entropy is minimized.

Consider a finite time series T = a1, a2 ... an, ai ∈ R+
0 ∀ 1 ≤ i ≤ n, with n elements - representing

energy demand. Subsequently, a sliding window X with size m, where the sliding step (1 ≤ ∆ ≤ m)

defines the number of elements by which the window slides each iteration t, can be defined as
Xt = at∆, at∆+1, ..., at∆+m−1, which results in a total of 0 ≤ t ≤ n−m

∆ + 1 windows to cover all elements.
The traditional entropy considers the occurrences xi over the data length n, which is equivalent to the
probability to see a certain element xi

n . In our energy usage context, the entropy considers the demand
probability in a sliding window P(Xt), which is equivalent to the normalised integrated area under
the demand line. We simplify the approximation of area, by dividing the demand of a window h(Xt),
which is the sum of all measurements in a window, by the total demand h(T ):

P(Xt) =
h(Xt)

h(T ) (2)

We could also interpret the probability as the proportion of daily energy used during that sliding
window. Note that the sum of all probabilities can be greater than 1, if the sliding windows overlap
(∆ < m), which results in a scaled entropy.

Figure 2 illustrates the energy demand (grey line) divided into three time window X (1 : 3),
m = 8h, ∆ = m (dotted lines), with the probability for energy demand delineated in black.
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Figure 2. Integrated demand for three time windows.

The entropy is maximized if the demand is distributed uniformly and minimized if the total
demand is only present in a single sliding window. The result ranges from [0, log( n−m

∆ + 1)].
Equation (3) illustrates how to calculate the entropy while using the above probability.

H(X ) = −
n−m

∆ +1

∑
t=0

P(Xt) · log(P(Xt)) (3)

Occupancy stands out due to the imbalance and change of energy consumption, which manifests
here in form of demand peaks. High demand concentrated in a single time window results in
a minimized sliding window entropy. Figure 3 visualizes the complete process to derive the occupancy
from raw energy demand. We first compute the probability for high demand (middle) in three different
resolutions and then compute the entropy for a time window of three hours using the probability
as input data. In the first step, we define three different sliding windows X with m1 = 15, m2 = 30,
and m3 = 60 each with ∆ = m over the total of n = 1440 measurements. Step 2 shows the resulting
24 probabilities for m1 (dot), 48 probabilities for m2 (triangle) and 96 probabilities for m3 (cross). Here,
the sum of measurements in each sliding window is divided by the sum of the complete time series,
in order to generate one probability value for each sliding window. In the last step, the probabilities
derived from the previous time windows P(Xt) are used as input value to compute an entropy. In our
example, we use three probabilities (dot), six probabilities (triangle), and 12 probabilities (cross), which
always corresponds to three hours, as input to compute the entropy. This results in eight entropy values
per day, but the amount of probabilities used to compute the entropy is of course a variable parameter.

In the resulting plot, we can clearly see the influence of several parameters, namely the number of
time windows used as input for the entropy (middle) and the size of the time window for each entropy
value (bottom). The number of probabilities changes the level of our output—the resulting entropy
is smaller the more input values we have, while the pattern of our curve is unchanged. The entropy
results in a filter operation over the energy demand and smaller time windows for the entropy would
show more detail. There is a visible drop of the entropy whenever the amplitude significantly changes
within a time window. For our decision, whether a time window represents occupancy or not, we can
simply utilize a threshold. What may look unusual is that the difference between time windows is not
considered in this metric, because the sum of probabilities of any time window result in 100%. Hence,
two time windows with (0.1W, 1W) and (1W, 100W) result in the same entropy.
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Figure 3. Probability to use energy in a certain time window.

4.2. Interval Entropy

To summarize the interval entropy, we count the amount of measurements in each interval to
compute a probability that results in a metric affected by the distribution between intervals. This metric
is maximized if the demand values are uniformly distributed over all intervals, which is the direct
opposite to our previously introduced sliding window entropy.

Consider a finite time series T = a1, a2 ... an, ai ∈ R+
0 ∀ 1 ≤ i ≤ n, with n elements. Subsequently,

a finite number m of equal-sized discrete intervals I covering a total range of r = max(T )−min(T ),
is given by Ii = [ r

m · (i− 1) + min(T ), r
m · i + min(T )], with 1 ≤ i ≤ m.

Our entropy in Equation (4) represents the probability that the demand is an element from
a certain interval I , where n is the number of elements in T and m is the number of intervals.

Freq(Ii) =
n

∑
j=0

aj ∈ Ii

P(Ii) =
Freq(Ii)

n

(4)

Equation (4) shows the computation of the input for the entropy. For each interval Ii, we count
the number of measurements a using the function Freq() and then divide by the total number of
measurements to get the probability. The entropy is maximized if the demand distributes an equal
number of elements to each interval m and minimized if the demand involves only one interval.
The result ranges between [0, log(m)]. Equation (5) show how to utilize the probability of each interval
to compute the entropy.

H(I) = −
m

∑
i=0

P(Ii) · log(P(Ii)) (5)

We experimented with different methods to generate intervals (see Figure 4)—the top figures
show equally distributed intervals, while the bottom figures have intervals with dynamic size—namely,
logarithmically distributed and clustered to high variance sections—which enables us to also consider
small changes of energy demand. Note that this figure shows the raw data. In order to compute
the entropy, we count the number of measurements in each interval and compute the probability by
dividing through the total number of intervals. Next, we compute the entropy using the probabilities
as input data.
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Figure 4. Energy demand in different intervals.

We found that large intervals react well on changing variance and reliably show the start and end
of each phase, while many small intervals may emphasize to much on small changes. The clustering
approach might be difficult to implement in real world scenarios, since the clusters would differ for
each household and the distribution of cluster centres may show legitimate changes each month.

Overall, our method assumes human activity to fall in a certain range of the entropy and, hence,
defines a threshold to split the metric. The binary result r ∈ {0, 1} depends on a threshold ε.

r =

{
1 if H is > ε

0 if H is ≤ ε
(6)

Note that the interpretation of the sliding window entropy and interval entropy is oppositional
and, hence, the meaning of r changes. If the sliding window entropy is higher ε, then the energy
demand is equally distributed over many sliding windows and, hence, does not contain the peaks that
indicate human activity. If the interval entropy is higher ε, then the measurements are distributed over
all intervals and, hence, have a high variation, which indicates human activity.

In summary, the sliding window entropy depends upon the size and overlap of the window,
while the interval entropy depends upon the number of intervals and distribution of intervals. After
computing the probabilities with these parameters, both of the methods can be further tuned with the
number of probabilities used as input. As the values in our metric are always relative to each other, less
input values mean that an outlier that leads to a low entropy is usually more visible. The parameter
tuning can be seen as an optimization problem. In the next section, we graphically analyse the influence
of the parameters, but a detailed method to automatize this process for different households is beyond
the scope of this paper.

5. Results

In the following experiments, we aim to detect occupancy while using real world measurements
and compare our method with other well established prediction schemes. We first introduce our
method to create a ground truth by labelling occupancy using appliance level data. Next, we predict
these ground truth data without access to the appliance level data. Note that the ground truth data
cannot be reliably created without the appliance level data, which are not available for the algorithms
that aim to detect the occupancy.
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We use the ECO dataset provided by Kleiminger et al. [5], which is a comprehensive dataset for
non-intrusive load monitoring. The dataset offers individual appliance readings every second (Hz).
The measurements used here are mean-cycle-power measurements of the real power (W), as provided
by smart meters. The data are measured at the plug level for individual appliances and, apart from
declared exceptions, provides measurements in Watt with four decimal places. Because we do not
attempt to detect individual appliance signatures, we aggregated the values to one measurement every
minute, which is due to the privacy concerns a more realistic interval for measurements in real world
smart grids.

We used the appliance-level data of all six household for summer (2012 June to 2012 October) and
winter (2012 October to 2013 January) in order to create the ground truth data. We labelled events that
point to occupancy by selecting appliances with non-periodic behaviour (7c) and exclude appliances in
stand-by (7a) mode, appliances running permanently and appliances with regular energy pattern (7b)
(e.g., freezer, fridge, ...).

Consider each of the i appliances in the ECO dataset as finite time series Ti = {a0..an | a ∈ R},
with n elements. We select each appliance Ti that meets following conditions:

C1 = max(Ti) > 10 (7a)

C2 = Q2(Ti)−min(Ti) < max(Ti)−Q2(Ti) (7b)

C3 = Q3(Ti)−Q2(Ti) < max(Ti)−Q3(Ti) (7c)

Note that, Q2 denotes the second quantile, which is the median, and Q3 is the third quartile which
is the middle value between the median and max. If an appliance meets these conditions, than all
values greater than the arithmetic mean value of the appliance were labelled as occupancy.

We compare the entropy inspired metric with two methods provided by [16], namely the
and (GeoMa).

With the data outlined above, we compare our own method to four well-known algorithms,
namely (a) Page–Hinkley test, (b) Geometric Moving Average (c) Moving Average, (d) Seasonal
Decomposition, and the (e) Standard Deviation. Each algorithm aims to classify occupancy (true or
false) for 15 min time windows.

The first two algorithms are provided by Becker et al. [16], who performed occupancy detection
on the same dataset. The method (a) Page–Hinkley Test (PHT) is a change detection algorithm, while
(b) the Geometric Moving Average (GeoMA) detects any value higher than the average as occupied.
Method (c) detects whether a measurement has a demand higher or lower than the Moving Average
(MA), plus an adjustment value, (d) uses the trend component of Seasonal Decomposition (SD) [25] and
detects values higher than a threshold. The last method, (e) detects whether the standard deviation is
higher than the daily main. Our two original algorithms are evaluated, as follows, the sliding window
entropy is using five minutes to compute a probability for the 15 min time window, whereas the interval
entropy is using 20 uniformly distributed intervals. Note that we had to accept some limitations due to
the different input and output data of each algorithm. Namely, some of the algorithms require a time
window as input data, while others generate a decision for each input. For the latter, we aggregated
the measurements to 15 min intervals and did not find a decreased performance, which is in consensus
with Becker et al. [16]. Furthermore, we usually evaluate our algorithms with the so-called Area under
the curve (AUC) of a receiver operating characteristic (ROC) curve in order to avoid to falsify results
due to a non-optimal threshold. The curve shows the sensitivity (true positive rate) and the specificity
(true negative rate) for any possible threshold.

The sensitivity is given by TP
TP+FN , while the specificity is given by TN

TN+FP . The accuracy of
a method can be defined by the AUC. A good method can maximize both sensitivity and specificity,
which results in a big area under the curve, while a random method results in a diagonal line and AUC
of 0.5.
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However, this is not possible for all algorithms as some of them require the threshold throughout
the computation and only return a decision instead of an anomaly score. We still computed the
AUC with a boolean result, (e.g., to perform a statistical test), but had to optimize the threshold for
each function manually using linear optimization on the summer half of the first household of the
ECO dataset.

In Table 1, we computed the AUC by evaluating the 96 results per day (15 min intervals) with the
expected ground truth. A good method can maximize both sensitivity and specificity, which results in
a big area under the curve, while a random method results in a diagonal line and an AUC of 0.5. Hence,
the probability that an algorithm assigns the correct classification can be defined by the area under
the curve (AUC). Table 1 shows the performance of each algorithm. The decomposition performed
very good on this month, but we were not able to adjust the threshold for a good performance on
the complete dataset. It might be possible to increase the performance by dynamically finding a new
threshold after a fixed time period. However, this is not in the scope of this work.

Table 1. Results of all methods (AUC).

PHT GeoMa MA SA Std. Dev. Int. Ent. Win. Ent.

2012-06-01 0.837 0.765 0.648 0.868 0.754 0.897 0.912
2012-06-02 0.511 0.744 0.559 0.67 0.534 0.506 0.744
2012-06-03 0.672 0.758 0.691 0.823 0.711 0.871 0.806
2012-06-04 0.457 0.815 0.672 0.967 0.955 0.803 0.809
2012-06-05 0.747 0.794 0.688 0.824 0.763 0.793 0.831
2012-06-06 0.723 0.875 0.823 0.913 0.779 0.898 0.905
2012-06-07 0.602 0.63 0.672 0.69 0.58 0.637 0.598
2012-06-08 0.845 0.802 0.746 0.893 0.81 0.942 0.885
2012-06-09 0.477 0.744 0.749 0.824 0.861 0.917 0.718
2012-06-10 0.853 0.67 0.612 0.896 0.641 0.702 0.79
2012-06-11 0.836 0.664 0.793 0.867 0.745 0.9 0.817
2012-06-12 0.966 0.881 0.581 0.874 0.784 0.897 0.924
2012-06-13 0.618 0.821 0.669 0.875 0.685 0.779 0.769
2012-06-14 0.707 0.692 0.668 0.832 0.784 0.879 0.778
2012-06-15 0.416 0.649 0.417 0.409 0.549 0.504 0.513
2012-06-16 0.8 0.908 0.748 0.922 0.829 0.95 0.975
2012-06-17 0.824 0.548 0.499 0.5 0.952 0.537 0.702
2012-06-18 0.831 0.789 0.682 0.923 0.717 0.856 0.885
2012-06-19 0.716 0.846 0.677 0.9 0.752 0.837 0.91
2012-06-20 0.699 0.793 0.622 0.896 0.637 0.692 0.919
2012-06-21 0.735 0.656 0.579 0.712 0.588 0.626 0.756
2012-06-22 0.592 0.626 0.523 0.532 0.516 0.51 0.479
2012-06-23 0.79 0.763 0.693 0.943 0.823 0.868 0.769

Total (Avg.) 0.707 0.749 0.653 0.807 0.728 0.774 0.791

Figure 5 shows the results on a larger time scale and for all households. Each bar visualizes
the result of an algorithm in summer and winter. The results are given in Accuracy (ACC), which
is computed with a confusion matrix, given by (tp + tn)/(tp + tn + f p + f n), which returns the
performance in percentage.

Next, we perform a pairwise bootstrap test (see Table 2) with the results of two methods, in order
to evaluate the significance of the AUC over the summer in household 1. The bootstrap test re-samples
the original results repeatedly (N = 2000), which approximately follows a normal distribution, in
order to perform a hypothesis test. Here, the null hypothesis is that both methods perform equally
and the alternative hypothesis is that the AUC of both methods are different. A small p-value shows
that the null hypothesis can be rejected.
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Figure 5. Accuracy for each household of the ECO dataset.

Table 2. Bootstrap test for all methods (AUC).

H1 AUC1 AUC2 p-Value

PHT vs. GeoMA 0.718 0.779 5.28× 10−26

PHT vs. MA 0.718 0.639 8.83× 10−46

PHT vs. SD 0.718 0.661 3.28× 10−21

PHT vs. Std. Dev. 0.718 0.722 5.70× 10−1

PHT vs. Int. Ent. 0.718 0.745 2.15× 10−5

PHT vs. Win. Ent. 0.718 0.714 5.61× 10−1

GeoMA vs. MA 0.779 0.639 2.24× 10−136

GeoMA vs. SD 0.779 0.661 1.88× 10−70

GeoMA vs. Std. Dev. 0.779 0.722 2.84× 10−20

GeoMA vs. Int. Ent. 0.779 0.745 9.83× 10−11

GeoMA vs. Win. Ent. 0.779 0.714 3.60× 10−29

MA vs. SD 0.639 0.661 7.30× 10−4

MA vs. Std. Dev. 0.639 0.722 8.44× 10−33

MA vs. Int. Ent. 0.639 0.745 3.45× 10−58

MA vs. Win. Ent. 0.639 0.714 3.87× 10−29

SD vs. Std. Dev. 0.661 0.722 1.59× 10−16

SD vs. Int. Ent. 0.661 0.745 7.48× 10−33

SD vs. Win. Ent. 0.661 0.714 4.40× 10−11

Std. Dev. vs. Int. Ent. 0.722 0.745 1.12× 10−8

Std. Dev. vs. Win. Ent. 0.722 0.714 2.65× 10−1

Int. Ent. vs. Win. Ent. 0.745 0.714 4.88× 10−6

Last but not least, we evaluated the parameters for the interval entropy and sliding window
entropy. Here, we used the same input parameters as above to compute the AUC, but for different
time windows and in the case of the interval entropy also for different numbers and types of intervals
(note that, a time window of 60 Minutes means that we compute the entropy 24 times per day).
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In Figure 6, we can see the influence of parameters on the AUC of the interval entropy in detail.
The output varies depending on the number of intervals (left plot), where each line shows a different
type to distribute the intervals. Here, the uniform distribution showed the best results and it is
maximized with about 20 intervals and time windows of 30 min. Next, we compare the AUC of the
interval entropy (20 uniform intervals) and sliding window entropy with different window sizes.
The sliding window entropy performs better with larger time windows, while the AUC of the interval
entropy is slowly decreasing with greater window sizes. The interval entropy works on time periods
of arbitrary length. Although using it on long periods is possible (e.g., to detect absence on vacation or
incoming tenants), we did not test the metric for such parameters. We think that it is more desirable
to have an higher output resolution and repeat the process several times until the complete data is
covered. When adjusting parameters, such as the length of input and output, for both the interval and
sliding window entropy, it is intuitive to think of entropy as the probability that all input values are
similar. If more probabilities are used as input values, we have more similar values and the entropy is
generally higher. Hence, the difference between a normal and anomalous entropy is smaller, which
makes it challenging to define a good threshold. The parameter tuning obviously depends on the
actual household and slightly changes every time. However, we can clearly see that especially the
sliding window entropy does not depend on fine granular data, as one measurement per time window
is theoretically enough for this method to work.

(a) Different intervals with a window size of 15 min. (b) Different window sizes with 20 intervals.

Figure 6. Effect of parameters on the interval entropy.

6. Conclusions and Outlook

In this paper, we presented a non-intrusive approach to detect occupancy without a priori data.
Our first results compared the feasibility of an entropy inspired metric while using different parameter.
Our results showed a significantly reduced noise, outlier resilience and clearly visible usage patterns.
Both of the methods reflect changes in energy demand with slightly different purpose. The sliding
window entropy accurately shows on-/off behaviour and peaks of appliances while hiding less
interesting absolute values. The interval entropy highlights high variance sections of a time-series
while masking static behaviour. Both of the methods appear to behave well with a moderate number
of input values. Our experiments utilizing the ECO dataset motivated the real world suitability.

In the graphical representation of the accuracy for all households, the results vary for all
households as well as winter and summer. The differences for winter and summer were very different
for each household, only ‘house 3’ performed clearly better during winter. Altogether, we received
results varying from 0.7 to above 0.9. For ‘house 1’, which used the set of the parameters for all methods,
we reached an accuracy higher 0.9. This is an indicator that future approaches can improve the results
by tuning the parameter for a certain household, distinguish seasons, and perhaps distinguish weekend
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and weekdays. In our experiments, the PHT and SA also performed good and similar to the entropy
look at the randomness of the energy demand. The interval entropy performed better then the sliding
window entropy, but the parameter tuning was more difficult, and we experienced more noise in the
performance depending on the type and number of intervals.

In the experimental evaluation, the entropy could not clearly exceed the results of all other
methods. However, we had to accept many restrictions in order to compare our methods to other
methods (e.g., the resolution, window sizes, and required boolean output) and think it is possible
to further increase the performance by fine-tuning some parameters. Here, our focus was set on
the entropy as a metric, which is intuitive to interpret and valuable as a numeric value to analyse
and understand energy demand. We aimed to presented the fundamental knowledge necessary to
apply this new metric to other applications of energy demand, such as energy theft detection and
non-intrusive load monitoring.

We believe that the ’information content’ is profoundly affected by many energy related events
and, hence, the entropy should be generally suitable for an an eclectic range of classification and
identification tasks when combined with appropriate parameters. As future prospects, we would like
combine our metric with tasks, such as non-intrusive load monitoring, anomaly detection, and energy
demand forecasting.
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Abbreviations

The following abbreviations are used in this manuscript:

H Entropy
σ Standard Deviation (Std. Dev.)
∆ Sliding Step
T Time Series
X Sliding Window
I Interval
R Real Numbers
Hz Hertz (unit frequency)
W Watt (unit power)
P Probability
TP True Positive
TN True Negative
FP False Positive
FN False Negative
PHT Page-Hinkley Test
AUC Area under the curve
ROC Receiver Operating Characteristic
ECO Electricity Consumption & Occupancy
GeoMA Geometric Moving Average
MA Moving Average
SA Seasonal Decomposition
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