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The 3D analysis of plants has become increasingly effective in modeling the relative

structure of organs and other traits of interest. In this paper, we introduce a novel

pattern-based deep neural network, Pattern-Net, for segmentation of point clouds of

wheat. This study is the first to segment the point clouds of wheat into defined organs

and to analyse their traits directly in 3D space. Point clouds have no regular grid and thus

their segmentation is challenging. Pattern-Net creates a dynamic link among neighbors

to seek stable patterns from a 3D point set across several levels of abstraction using the

K-nearest neighbor algorithm. To this end, different layers are connected to each other

to create complex patterns from the simple ones, strengthen dynamic link propagation,

alleviate the vanishing-gradient problem, encourage link reuse and substantially reduce

the number of parameters. The proposed deep network is capable of analysing and

decomposing unstructured complex point clouds into semantically meaningful parts.

Experiments on awheat dataset verify the effectiveness of our approach for segmentation

of wheat in 3D space.

Keywords: 3D analysis, segmentation, convolutional neural network, deep learning, pattern, point cloud, wheat

1. INTRODUCTION

Three- and four-dimensional phenotyping has the potential to provide reliable, comprehensive
information on morphological and developmental traits in plants. With recent improvements in
image acquisition and 3D reconstruction, future studies would benefit from rapidly assessing 3D
models (Chaudhury et al., 2018; Bernotas et al., 2019; Chaudhury and Godin, 2020; Artzet et al.,
under review). Accurate 3D models enable quantitative analyses of various traits, and a high-
throughput spatial and temporal 3D analysis tool could monitor impacts of different treatments in
experiments and, ultimately, management decisions in production conditions. 3D or higher-order
data, however, requires complex processes for both acquisition and computation while quality can
vary due to numerous factors such as imaging noise, occlusion, spikes, holes, lack of homogeneity,
and interference from cluttered backgrounds. Despite the obvious attractions, few segmentation
techniques have been reported for 3D point clouds of plants and they tend to require specific
conditions that cannot easily be generalized.

Wheat is globally important with more than 700 million tonnes of grain produced annually
(FAO report 2020)1. The grain-filling period of wheat is a key growth period that directly
influences yield. There is widespread interest in estimating the number of ears per unit area

1http://www.fao.org/worldfoodsituation/csdb/en/
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(Ferrante et al., 2017) and other traits crucial for determining
yield from images. Ear segmentation is therefore critical in
estimating yield in wheat (Bi et al., 2010; Kun et al., 2011;
Chen et al., 2016; Alharbi et al., 2018; Tan et al., 2020). Manual
data collection, involving visual inspection of the standing crop,
is labor intensive and time-consuming. Image processing and
computer vision techniques facilitate high-throughput counting
of ears. Such techniques can rapidly estimate yield, potentially
accurately and with minimal human intervention.

Deep learning has been invaluable for the development of
high-throughput pipelines that undertake 2D image analysis of
wheat and many other plants (Qiongyan et al., 2017; Hasan
et al., 2018; Wang X. et al., 2019; Hamidinekoo et al., 2020).
Learning methods capable of extracting high-level features from
raw input data with minimal human intervention would be
useful for high-throughput pipelines. Lack of depth information
is a major drawback of current 2D imaging, limiting the
accurate quantitative evaluation of many traits. In this study,
we demonstrate that deep learning techniques can also be
used to directly segment 3D geometric wheat data, acquired
using standard 3D structure from motion techniques (Furukawa
and Ponce, 2010; Jay et al., 2015; Schönberger and Frahm,
2016; Schönberger et al., 2016). In this report, we propose a
novel network that efficiently handles highly complex 3D point
clouds. Unlike most segmentation techniques that heavily rely
on data and its distribution, our proposed network extracts
stable patterns from point clouds across different levels of
features obtained through the K-nearest neighbor algorithm. Our
network is thus more robust to variation in the density of point
cloud data, typical imaging distortions, and noise. To the best
of our knowledge, this paper is the first study to segment and
analyse ears directly within the point cloud domain via deep
learning. The proposed framework has been validated using 690
wheat point clouds, captured at different times during the growth
cycle. The results indicate that our deep learningmethod is robust
and can accommodate irregular point clouds that are noisy and
contain irrelevant outliers.

In section 2, we review previously reported segmentation
techniques in plant science. The proposed pattern-based deep
neural network (Pattern-Net) is detailed in section 3. Section 4
reports and discusses the experimental results of Pattern-Net
on the wheat dataset. Section 5 relates our findings to previous
studies and, finally, conclusions and future work are provided in
section 6.

2. BACKGROUND

Segmentation of ears is challenging due to their highly
complicated and varied shapes and numbers and unpredictable
interaction with their background.Most studies to date have been
carried out in the 2D domain using standard images (Chopin
et al., 2016; Zhou et al., 2018; Misra et al., 2020). A hybrid
approach (Chopin et al., 2016) uses a-priori information about
the shape of leaves and local image orientations to fit active
contour models to features that are missed during the initial
segmentation. Mohanty et al. (2016) applied a deep learning

method for plant disease detection. Madec et al. (2019) employed
a CNN to identify ears from low-spatial-resolution RGB images.
Ubbens and Stavness (2017) implemented deep convolutional
neural networks (CNNs), successfully estimating leaf number
from an image database of Arabidopsis rosettes. Sadeghi-
Tehran et al. (2019) developed a deep CNN-based classification
technique to automatically identify and count the number of ears
in images taken under natural field conditions. Recently, a 2D
CNN model (Xu et al., 2020) extracted the contour features of
ears using a K-means clustering algorithm and then classified
the segmented images using a five-layered CNN. These examples
clearly demonstrate the potential of these approaches to extract
useful biologically relevant information from images and the
feasibility of scaling to accommodate very large datasets.

Previous methods for segmenting point clouds considered
constraints and used learning-based optimization techniques
such as clustering, support vector machine (SVM) etc. (Paulus
et al., 2013; Li et al., 2018). Gélard et al. (2017) segmented
leaves using a geometrical constraint and Euclidean cluster
extraction method. Liu et al. (2018) exploited a revised version of
Euclidean distance and spectral clustering to segment individual
leaves from a variety of plants including wheat. Multi-view
vision segmentation techniques (Guo and Xu, 2017; Shi et al.,
2019) have been applied to stereo multi-view 2D images. The
performance of three learningmethods including SVM, boosting,
and K-means clustering in the segmentation of soybean plants
were compared in Zhou et al. (2019), where K-means clustering
outperformed the other methods in terms of processing
efficiency and segmentation accuracy. We previously used a
semi-automatic method for segmentation of leaf and petiole in
Grapevine to quantify drought responses from images (Briglia
et al., 2020). Jin et al. (2018) proposed an indirect method for
3D object detection and segmentation, whereby a region-based
CNN (RCNN) is used to detect objects in 2D images projected
from 3D points.

Since traditional point cloud-based segmentation methods
consider some constraints that depend on traits of interest,
the generalization of such methods is not straightforward.
The efficiency of previous methods is also questionable
in highly complex noisy 3D models. To address these
drawbacks, a tensor-based technique has been developed that
represents highly-complex models by their first- and second-
order tensors without requiring pre-defined shape assumptions
and constraints (Elnashef et al., 2019). Most recently, Li
et al. (2019) employed a 3D joint filtering operator for
leaf segmentation. Here, we introduce a new procedure for
segmentation of 3D point cloud data from plants using deep
neural networks.

A deep learning-based point cloud segmentation named
PointNet (Qi et al., 2017a) has been recently proposed that is
capable of extracting high-level features from raw input data via
learning on sufficient 3D CAD models2 of various objects. The
mean accuracy of PointNet is an impressive 84% and has been
further improved byQi et al. (2017b), Shen et al. (2018), Guerrero
et al. (2018), Landrieu and Simonovsky (2018), andWang Y. et al.

23D CADmodels are online available at http://modelnet.cs.princeton.edu
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(2019). Despite poor existing segmentation methods, 3D point
cloud deep learning segmentation methods can effectively handle
complex models across a wide array of species. Applying these
techniques to typical 3Dmodels of plants (>104 points) is almost
impossible since current GPU devices are unable to process such
large models. These issues motivated us to further develop a light
deep network for point cloud segmentation (Ghahremani et al.,
2020) that is highly effective for architectural models. However,
direct application of this method to plant point cloud data did not
yield satisfactory results since plants tend to occupy volumetric
space in a very different manner from buildings for example—
with complex structures, configurations, occlusion, and often
cluttered background. Here we expand our recent segmentation
method (Ghahremani et al., 2020) to wheat point clouds. To the
best of our knowledge, the proposed network provides the first
practical segmentation of plant parts directly within the point
cloud domain. We provide thorough empirical and theoretical
analysis on the stability and efficiency of the proposed Pattern-
Net method using more than 690 wheat point clouds and
demonstrate its ability to extract biologically meaningful data in
terms of accurate ear counts and ear-length estimates.

3. PROPOSED 3D POINT CLOUD
SEGMENTATION NETWORK

The goal is to establish and train a deep neural network that
converts an input point set P = {p1, . . . , pM} into a set of
segmentation labels. Here, M denotes the total number of 3D
points and they are represented as a set of 3D coordinates. The
ground-truth label is a vector of length M, Ŵ = {γ1, . . . , γM},
where γi is the label of i-th point. Since there are N segmentation
labels, thus γi ≤ N. The output of the network is a vector
of predicted labels, i.e., Ŵ̂ = {γ̂1, . . . , γ̂M}. The principles
of the proposed Pattern-Net are explained in the following
sections. Ghahremani et al. (2020) provided more details
about implementation.

3.1. Network Properties
A segmentation network for a point cloud set must meet the
following four requirements about invariance (Qi et al., 2017a,b;
Ghahremani et al., 2020):

Property I (permutation invariance): This property states that
the segmentation labels must be invariant to changes in the order
of 3D points. If γi and γj are the segmentation labels of 3D points
pi and pj, respectively, then

[γi, γj] = [γj, γi], ∀i, j ∈ {1, . . . ,M}, (1)

where [.] indicates the order. Unlike pixels in images or voxels in
volumetric grids, a 3D point cloud set has no order and due to its
irregular format, the segmentation network must be invariant to
the order of the points.

Property II (transformation invariance): The segmentation
results must not be varied by changes in affine
transformation, i.e.,:

Ŵr[p1 ,...,pM]+t = Ŵ[p1 ,...,pM]. (2)

3D models may be captured or described under different
viewpoints (rotation) and translations (position) at different
growth time (scaling). These factors must not influence the
segmented labels when a network segments a point cloud
of interest.

Property III (3D points relations): In point cloud domain the
relationship between 3D points, denoted by R, is determined by
their distance from each other:

R{pi, pj} = D(pi, pj). (3)

The distance metrics could be Euclidean distance, Manhattan
distance, cosine distance, etc. Points in the point cloud domain
are not isolated and their neighbors represent meaningful
parts/organs that execute particular functions and produce
particular behaviors.

Property IV (resolution-invariance): The density of 3D points
(or equivalently the number of points) must not influence the
performance of the segmented regions. The density of the point
cloud influences the relationship parameter defined in Equation
(3), but the overall segmentation results must remain unchanged.

These four properties provide the foundation for the design of
our network.

3.2. Network Architecture
The basic steps of the proposed segmentation network are
depicted in Figure 1. The framework has five main layers: points
downsampler (PD), search pattern (SP), learn pattern (LP),
linkage patterns (LPs), and fully connected (FC) layers.

The input 3D point set is first decomposed into “L” levels by
the PD layer. Inside each scale level, the relationship between
each query point and its neighbors is sought by the KNN
algorithm embedded in the SP layer and then is learned as a
pattern by the LP layer. There are several interactions between
the SP and the LP layers for extracting the deep patterns from the
relationships of 3D points. The linkage features (LPs) layer links
all learnt patterns across all levels and finally an FC layer predicts
the segmentation labels. In the following, we detail these layers.

Points Downsampling (PD) Layer: Image acquisition is
undertaken at different zoom levels and growth times that
directly affect quality, density, and quantity of the point clouds.
The function of this layer is to make the deep network
independent of the quantity and distribution of points (Property
IV). To this end, we decompose the input 3D point cloud, P, into
L sets via a random downsampling operator, in such a way that all
the 3D point subsets, P{l}, l ∈ {1, . . . , L}, are completely different
while their overall schemes/abstracts are similar to each other:

P{l} ∩ P{k} = ∅ ∀l, k ∈ {1, . . . , L}, (4)

L
⋃

l=1

P{l} = P, (5)

R{l} ≃ R{k} ∀l, k ∈ {1, . . . , L}. (6)
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FIGURE 1 | Pattern-Net architecture for segmentation of a point cloud of wheat.

As illustrated in Figure 1, the segmented regions of a plant
remain unchanged across different sampling levels while none
of the decomposed point sets shares identical points. The main
idea is to enforce the network keeping patterns of a 3D point
cloud throughout all sampling levels. Similar organs/parts across
different sampling levels share similar global features and this
will assign considerable weights to such organs in the LPs layer,
while dissimilar organs have smaller weights that are removed
by a dropout operator. As will be discussed in “search pattern,”
this strategy also effectively helps the network not to be saturated
with its K nearest neighbors while keeping the radius of the
neighborhood reasonable. In short, the main advantages of using
multi-level sampling analysis are:

• Detection of hidden general patterns by decomposing a
complex point cloud into simpler ones;

• Making a balance between the searching area and K responses;
and

• Efficiently reducing the computational complexity of the KNN
algorithm.

Search Pattern (SP) Layer: The task of this layer is to search
all possible relationships between the query point/feature (fq =

(fq,x, fq,y, fq,z)) and its neighbors via the KNN algorithm
(Property III). For each of K nearest neighbor responses (fi =

(fi,x, fi,y, fi,z), i = {1, 2, ..,K}, i 6= q), we compute all three
possible edges emanating from the query point along three axes
(i.e., fi− fq), and stack it with the query point coordinates/feature
fq. Thus, there is a feature space of size K × 6 for each query
point. Adding edges to the feature space is important as KNN
sorts K nearest responses and how far KNN responses are from
the query point should be taken into account.

Learn Pattern (LP) Layer: The function of this layer is to
find and to learn a meaningful relationship/pattern between all
input 3D points via a two consecutive 2D convolution kernel
followed by a batch normalization operator. A max-pooling
operator is then applied to the output weights to get the features
of the query point. The max-pooling is a symmetric function
that guarantees that the extracted features are permutation-
invariant (Property I). The combination of 2D convolution
kernels, batch normalization and max-pooling operators is often
called multi-layer perceptron (MLP) (Qi et al., 2017a). Inside
each decomposed set, relationships between each query point and
its neighbors are sought by the SP layer and then learned by
the LP layer. This is done by applying and concatenating four
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MLPs {32, 32, 32, 32}, yielding from low-level features to high-
level ones. Hence, there is a feature vector of length 128 for each
3D point inside each decomposed set.

Linkage Patterns (LPs) Layer: This layer contains several
MLP layers and it aims to link the patterns that are similar
across all the decomposed levels. As can be seen in the figure,
the LPs layer is fed by all the low-level and high-level features.
By applying a max-pooling operator to the features of the points
inside a sampling set, a description vector of length 128 is
obtained. We arrange all the local description vectors ψl, l ∈

{1, . . . , L} in a matrix 9 . We then apply an MLP to the whole
cube features of the points to yield a global description vector φ.
As discussed in section 3.3, the global description vector is used
as a guideline for extracting stable patterns in the feature space.

Fully-Connected (FC) Layer: This layer functions as a
decoder and maps the patterns extracted in the preceding layer
into Ŵ labels. The output of the LPs layer is decoded by three
consecutiveMLPs {256, 256,Ŵ}. The drop-rate of all the decoding
MLPs except the last one is fixed at 2

3 .

3.3. Network Loss Function
The goal of the LPs layer is to make the local vectors ψl, l ∈

{1, . . . , L} as close to the global one φ as possible for the detection
of the stable patterns inside the given point cloud. Assume that
there is a linear relationship between the cloning and global
description vectors, i.e., φ = 9ω, the estimated coefficientsω can
be computed by the Moore–Penrose inverse (Penrose, 1955), i.e.,

ω = 9†φ = (9T9)−19Tφ. (7)

The Moore–Penrose pseudo-inverse could be simply
implemented by singular value decomposition (SVD) (Brake
et al., 2019). The coefficient vector ω measures the contribution
of each local set in the resulting global one. The variance σ (ω)
of elements of ω approaches zero if all the local description
vectors are close to the global one. We add this term into the loss
function as follows:

L(θ) = −
1

n

M
∑

i=1

Ŵ
∑

k=1

�kyik log pik

︸ ︷︷ ︸

segmentation loss

+λ σ (ω)
︸︷︷︸

linear mapping loss

(8)

In the above equation, the first term is the cross-entropy function
for computing the loss of the predicted labels and the second
term forces the network to yield zero standard deviation for
the coefficients obtained by the linear mapping. yik is one-
hot encoded labels and yik is scaled softmax logits. λ is a
predetermined hyperparameter. In the segmentation of plants,
some organs are of more interest than others; for example, the
segmentation of ears is more important than those of the other
organs. To deal with imbalanced distributions of organ-specific
point clouds, we have added a dynamic coefficient vector,�, into
Equation (8), which is defined as

�k = |Ck −

∑M
i=1(γi == k)

M
|, (9)

where Ck is a probability constant that determines the
significance of the k-th segmented organ.

4. EXPERIMENTAL RESULTS

4.1. Data Acquisition and Preparation
Spring wheat (variety Paragon) was used to acquire the images
for modeling. These plants comprised part of Experiment
W048 being undertaken to benchmark wheat growth under
LED lighting. Briefly, they were grown as single plants in 1 L
capacity pots containing Levington F2 peat-based compost. After
germination, plants were grown on a conveyor based automated
watering and imaging system (Lemnatec, Germany) at National
Plant Phenomics Centre (NPPC)3 and grown under white LED
Sunblaster (Kroptek, Sussex UK) luminaries at light level of
400 µM m−2 s−1. Pots were watered daily to a target weight
equivalent to either 75% (well-watered) or 35% (droughted) of
field capacity and grown to maturity. The image acquisition
system employed a pair of freestanding DSLR cameras in
carefully calibrated locations that have been piggybacked onto
the propriety LemnaTec platform, which acts as a delivery
and lighting system for routine image collection. An in-line
turntable was used to rotate subjects through 360 degrees and
camera triggering was controlled and synchronized by prototype
software, and image collection was based on commands from
“gphoto2”4. Each image acquisition event provides 74 high-
resolution multi-view images (6,000×4,000 px.) per plant. For
the purposes of this analysis, we used images from 10 individuals
grown under well-watered conditions and 10 individuals grown
under drought, and a total of 690 point clouds were reconstructed
and selected for segmentation.

The 3D models were reconstructed from the multi-
view images by COLMAP (Schönberger and Frahm, 2016;
Schönberger et al., 2016). COLMAP includes two phases:
structure-from-motion (SfM) for sparse reconstruction and
multi-view stereo (PMVS) for dense reconstruction. SfM extracts
the calibration parameters including intrinsic and extrinsic
parameters/matrices from the multi-view images. To this end,
we detected keypoints from images by FFD (Ghahremani
et al., 2021) and then extracted features from the keypoints by
InterTex feature descriptor (Ghahremani et al., 2021). Exhaustive
matching (Codreanu et al., 2013) was applied to the features
to find corresponding keypoints in the multi-view images. The
matched keypoints were then verified by geometric verification
and finally, the structure and motion reconstruction were
extracted (Schönberger and Frahm, 2016). PMVS (Schönberger
et al., 2016) projected the 2D images into 3D space using the
transformation matrices obtained by SfM and forms point clouds
as outputs.

We annotated the point clouds using MeshLab
software (Ranzuglia et al., 2013). Regions of interest were
extracted and labeled into one of two semantic categories—ear
and non-ear. Thus, the number N of labels is equal to 2 and
examples are shown in Figure 2. The segmentation task was

3https://www.plant-phenomics.ac.uk/
4https://www.gphoto.org/
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FIGURE 2 | Samples of the captured multi-view images, their reconstructed point clouds and annotated ones. Ears in annotated point clouds are shown in red and

non-ears in green.

repeated under a different number of input points ranging
from 512 to 16,384. Final harvest measurements including plant
height, ear number, and ear length were used for independent
verification of the segmentation results.

4.2. Evaluation Metrics
The segmented point clouds were assessed by the mean
intersection-over-union (mIoU) and mean accuracy (mA). These
metrics are widely used for assessing segmentation results.
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FIGURE 3 | Computation of IoU for the predicted ears in the point cloud domain.

According to commonly accepted definition, accuracy is the ratio
of true predicted labels to the whole points and IoU is the number
of points common between the labels (Ŵ) and predicted ones (Ŵ̂)
divided by the total number of points present across both the
labels and predicted ones, i.e.,

IoUk =
Ŵk ∩ Ŵ̂k

Ŵk ∪ Ŵ̂k
, m ∈ {1, . . . ,N}. (10)

The procedure for computing IoU of ears is illustrated in

Figure 3. The average of all the organs’ IoUs, i.e.,
∑N

k=1 IoUk

N ,
yields the mIoU. We also assessed the segmentation results
using Pearson correlation coefficient (R2) and root relative mean
square (RRMSE):

RRMSE =

√
√
√
√

1

C

C
∑

i=1

(
Bi − B̂i

Bi

)2

, (11)

where Bi is the ground-truth counted ears and B̂i is the predicted
ones.C is the total number of point clouds processed and it equals
690 in this study.

Given paired data
{

(B1, B̂1), . . . , (Bi, B̂i)
}

consisting ofC pairs,

Pearson correlation coefficient R2 is defined as:

R2 =

∑C
i=1(Bi − B̄)(B̂i −

¯̂B)
√

∑C
i=1(Bi − B̄)2

√
∑C

i=1(B̂i −
¯̂B)2

, (12)

where

B̄ =
1

C

C
∑

i=1

Bi,
¯̂B =

1

C

C
∑

i=1

B̂i. (13)

4.3. Data Preparation for Training and
Testing
The wheat dataset was randomly split into 580 training, 30
validation and 80 test samples. The code was implemented in

TABLE 1 | Segmentation results of the proposed method on the wheat dataset.

Network #Input points Mean accuracy Mean IoU

(xyz) (mA)% (mIoU) %

Pattern-Net 512 91.17 80.19

1,024 91.76 80.85

2,048 92.07 81.26

4,096 92.20 81.34

8,192 92.27 81.74

Light Pattern-Net 10,240 87.32 76.47

12,288 87.61 76.77

14,336 87.97 77.12

16,384 88.13 77.25

TensorFlow 1.12 (Abadi et al., 2015) on a 64-bit computer with
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz processors, 48
GB RAM, and two Tesla P100-PCIE-16GB GPU devices. The
entire model was trained by minimizing the loss function stated
in Equation (8). We used the Adam optimization algorithm with
a constant learning rate of 0.001, and we reduced the learning
rate until 0.0001 using the exponential decay function. Since
there exists a direct relationship between the complexity and the
required GPU resources, we have also carried out the training
procedure on a light version of Pattern-Net, called light Pattern-
Net, where the size of MLPs is half of the Pattern-Net, i.e.,
16. The batch size, hyperparameter λ and parameter L were
set to 10, 10,000, and 8, respectively. Because of the agronomic
importance of the ear, Cear in Equation (9) was set to 1 and the
other category, i.e., Cnon−ear , was set to 0.95. During the training
step, the point clouds were augmented by randomly rotating,
scaling and translating, in order to ensure that the network was
transformation invariant, required by Property II.

4.4. Results
The results are summarized in Table 1. The light Pattern-Net
version works quite well but the most promising results are
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obtained by the Pattern-Net. Accuracy of above 91% indicates
that when we increase the number of 3D points from 512 to
8,192, both the mean accuracy and the mean IoU results of the
network are improved, as expected. Samples of results (Figure 4)
show that the difference between the predicted labels and the
reference mainly occurred in the border between the ear and
the non-ear regions. This aspect of Pattern-Net is more favorable
when we measure the dimension of attributes of interest. As seen
in the table, the mean IoU of dimensions of segmented organs
is above 80%. Deep learning-based networks can be improved
by increasing the number of input samples. So, if one needs
higher precision in the test experiments, then the network must
be trained with additional relevant samples. We also carried out
experiments for inputs with more than 8,192 points. To this
end, we had to decrease the size of MLPs to half of the original
because of a limitation in RAMavailable in our GPU. As shown in
Table 1, the light Pattern-Net still works well with mean accuracy
around 87% and achieving 88.13% mean accuracy for input
point clouds of size 16,384 points. Typically, 16,384 points is
considered to represent a densemodel for plants with dimensions
of<50 cm (height)× 50 cm (width)× 50 cm (length).

The impact of the coefficient vector,�, defined in Equation (9)
is shown in Figure 5. The network works well when the weights
are in the interval of [0.9,1] and achieves its best performance
for Cear = 1. and Cnon−ear = 0.95. The dynamic coefficients
balance between the loss of the majority non-ears points and
that of the minority ear ones during training. Since vector � is a
predetermined hyperparameter, we need to tune this parameter
just once during training and the test step does not require
the vector. The R2 and RRMSE results of the counted wheat
samples with different ear numbers for training, validation, and
test sets are reported in Figure 6. The ear number varies in the
range of {0, 1, 2, . . . , 8}. The R2 results of the counted wheat
between the automatic segmentation and themanually annotated
ones in MeshLab are all higher than 0.91 and RRMSE all <0.3.
The R2 result of the validation step is less than that of the
test one due to the lower number of wheat samples, which
is 30. The R2 of the counted wheat samples by Pattern-Net
for the test dataset is more than 0.92, indicating the reliability
of the proposed network in segmentation of the unseen test
wheat samples.

4.5. The Manually Collected Post-data
Final post-harvest measurements of the two treatments for all
20 plants were collected manually. The difference between the
predicted counted ears from Pattern-Net and the ground-truth
data from physical post-harvest counting of ears was computed
and the detailed distribution of errors is shown in Figure 7,
where the ears of the most samples were counted correctly and
the mean absolute difference of count errors is as low as 0.3.
An important aspect of our method is that the length of ears
was also predicted by the segmentation and their average results
are shown in Figure 8. We collected the ground-truth values
for ear length and plant height in MeshLab as well as by direct
physical measurement of the plant material. For facilitating the
comparison, the length of ears was normalized by the height of
plants providing relative ear length. The R2 of average relative

ear length between the segmentation and the actual ground-truth
is 0.67 for the plants grown under drought conditions, which
is on par with 0.695 of the ground-truth values annotated in
MeshLab. The difference is as small as 0.025 and this figure for
the plants grown under well water conditions is about 0.06. To
determine the basis for differences between the MeshLab ground
truth and the segmented results from Pattern-Net, we carefully
compared the two and found that the classification of the
border region between ear and non-ear regions could influence
the predicted length of ears (Figure 4). Accurate classification
of the border region remains a challenging task that needs
further investigation.

5. DISCUSSION

Geometrically accurate models of individuals that can be
computationally interrogated would be of great value in
quantifying and understanding phenotypic variation, both in
fundamental biological studies as well in commercial production
scenarios. Typical plants have a complex and variable body
shape as well as a plastic developmental programme that can
continue to alter their morphology across their entire life
cycle. Their complex and variable shape present numerous
challenges to building and analysing models at a speed and cost
appropriate to their use, while progressive developmental change
may necessitate repeated modeling of the same individual.
The potential benefits of rapid cost-effective 3D modeling
extend well beyond basic morphology, as many physiological
processes also vary across the plant body, both spatially
and temporally, so that emerging non-contact physiological
assessment methods (Dieleman et al., 2019) often require
complex correction for shape.

A number of different technologies have been developed,
including LASER, Time of Flight, and LIDAR to capture
information from living plants for modeling (Paulus, 2019).
Medical imaging approaches, such as µCT scanning, have also
been applied to plants, particularly for ears of wheat (Hughes
et al., 2019) and analogous structures from other crops such
as sorghum inflorescences (Li et al., 2020) but the trade-offs
involved in image acquisition generally mean that the approach is
applicable to either low numbers of complete plants or somewhat
larger numbers of parts of plants. The capital investment in
the scanning equipment is also substantial, putting this out of
reach of most researchers. The image acquisition method we
used is highly convenient in that it utilizes consumer-grade
cameras and can be easily transferred to other labs and situations.
The SfM method is widely used and the models produced are
composed of 3D point clouds. These are a common format and
there is much freely available software, such as MeshLab, for
converting them into virtual objects with solid surfaces that then
can be imported into CAD packages (for engineering, generally)
or other analysis pipelines where features can be extracted,
identified, and/or estimated. This approach works quite well for
geometrically simple objects that generate clean simple models
with relatively few outliers in the point cloud. However, plants are
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FIGURE 4 | Segmentation results for point clouds containing 2,048 points. (Left) The ground truth samples (ears are shown in red and non-ears in green) annotated

in MeshLab; (middle) The predicted/segmented labels; (Right) The difference between the ground truth and the segmented results is shown in dark blue.
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FIGURE 5 | The influence of the dynamic coefficient � on the segmentation results.

complex topologically and extensive occlusion tends to yield sub-
optimal models that do not lend themselves to being converted
to accurate surface-based models—on one hand, the outlying
points tend to create spurious surfaces while on the other hand,
occlusion and other imaging issues can lead to artifacts such as
“holes” where there should be “tissue.” To solve these issues,
various modifications to surface-based approaches have been
developed with some success: we previously used a projection
method to assess leaf angle during the imposition of drought
stress in grapevines (Briglia et al., 2020). Pound et al. (2016)
used an elegant patch and boundary-refinement method to
reconstruct accurate models of wheat and rice leaves that they
could extend to whole canopies.

However, Pattern-Net bypasses many of these issues by
undertaking much of the analysis directly in the point cloud
domain. Our results indicate that Pattern-Net can detect, classify,
and measure features directly in the 3D point clouds with
sufficient accuracy to compare with manual phenotyping. Also,
and notwithstanding the current limitations on GPU resources,
Pattern-Net can already be scaled to accommodate the analyses
of many 100’s of individual models.With access tomore powerful
facilities, we envisage that Pattern-Net would be capable of
supporting longitudinal phenotyping of large genetically defined
populations, such as MAGIC and diversity mapping populations
(Camargo et al., 2016).

We and others have previously reported methods to produce
models based on 3D point clouds and to identify biologically
relevant features, including from wheat (Liu et al., 2018) and
from diverse other species (Lou et al., 2014; Briglia et al.,
2020). Different published ear detection methods compared
with manual counting indicate Pattern-Net has a high level of
correct feature identification (R2 > 0.9). Fernandez-Gallego
et al. (2018) achieved correlations of up to R2 = 0.75 between
their computer vision method using 2D images of field grown

wheat and manual counting. Sadeghi-Tehran et al. (2019) used
superpixels and CNN pretrained by a VGG16 model5 to achieve
R2 of 0.94 on 126 test images. TasselNetV2+ (Lu and Cao, 2020)
achieved R2 = 0.91 on the WEDD6 dataset (Madec et al.,
2019).We tested TasselNetV2+ on ourmulti-viewwheat samples.
We used the pre-trained model released by the authors7 and
the images were resized to 1,280 × 720 px. Since each sample
consists of 74 multi-view images which are highly occluded,
we ran TasselNetV2+ over all 74 images for each individual
plant and took the maximum values as the predicted number
of ears. The performance of TasselNetV2+ is shown in Figure 7.
We also developed an image-based CNN using Faster RCNN
ResNet1018. Faster RCNN was trained on the WEDD dataset.
In both cases, the image-based techniques show lower accuracy
compared to our 3D-based pipeline (Figure 7). The presence
of occlusion in 2D images is inevitable, and the 3D-based
pipeline can better deal with this problem. 3D models provide
realistic depth that allows one to explore more accurately and
enrich our understanding of the plant structures. The high cost
of computing memory, however, is still a big challenge for
processing in 3D space. Pattern-Net and its light version need
1.1M and 514K parameters, respectively. Our network gets to
92.3% test accuracy in 300 epochs of training, where the running-
time for input 8,192 points is 253 seconds per epoch. The training
time for the light Pattern-Net is 406 seconds per epoch for the
input of 16,384 points.

It should be noted here that we used only a single variety
of wheat, Paragon, whereas some of the 2D performance is

5https://keras.io/api/applications/vgg/
6https://github.com/simonMadec/Wheat-Ears-Detection-Dataset
7https://github.com/poppinace/tasselnetv2plus
8https://docs.openvinotoolkit.org/2020.2/_models_intel_faster_rcnn_resnet101_

coco_sparse_60_0001_description_faster_rcnn_resnet101_coco_sparse_60_0001.

html
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FIGURE 6 | Comparison between the counted wheat samples with different ear numbers predicted by the Pattern-Net (vertical axis) and the ground-truth values

(horizontal axis). We used MeshLab for collecting the ground-truth measurements in this experiment. The training, validation, and test experiments contain 580, 30,

and 80 3D models with 1,024 points, respectively.

given over many varieties and under less constrained imaging
conditions (outdoors). Therefore, it is likely that Pattern-Net
would require additional training before applying to other
wheat cultivars or related cereals. Also, the definition of the
boundary zone between ear and non-ear could be improved. This
issue has arisen previously in the 2D analysis of rice panicles
(the equivalent grain bearing structure to ears in wheat) and
been solved by dual imaging with higher and lower resolution
cameras followed by co-registration and a bespoke analysis
pipeline (Huang et al., 2013). While many computer vision
methods, in both 2D and 3D domains, can provide accurate

feature recognition and counting, measurement of those features
remains a challenge for plant phenotyping. We previously
used an indirect RCNN to detect leaves in the 2D images
projected from 3D point cloud models of grapevines subjected
to drought and successfully quantified leaf angle to estimate a
plant’s response to stress (Briglia et al., 2020). Pattern-Net is
capable of not only recognizing and counting ears accurately
but also estimating their length, all within the 3D domain.
Notwithstanding the issues associated with accurate recognition
of the ear-non ear boundary in the point cloud, the output
from Pattern-Net was well correlated (R2 > 0.6) with manual
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FIGURE 7 | Histogram of count errors between the ears predicted by our 3D-based pipeline and 2D image-based approaches and the corresponding physical

ground-truth measurements collected post-harvest; the image-based techniques include TasselNetV2+ (Lu and Cao, 2020) and Faster RCNN. The results of the

individuals grown under well-watered and drought conditions are shown in red and in blue, respectively. 3D models with 2,048 points were used here. 2D images with

1,280 × 720 px were used for the image-based techniques.

measurements for both well-watered and droughted plants.
An innovation that may have helped modeling was additional
viewpoints provided by the cameras. An interesting emerging
approach is active imaging (Gibbs et al., 2018) where the
camera(s), on a robotic arm, is relocated as required to overcome
occlusion and to optimize the 3D model in a re-iterative manner.
Such a system could be integrated into the conveyor system, in
a similar manner to the dual-camera system used in this study.
However, there are likely to be additional costs either in terms
of image acquisition time, or computing power to ensure rapid
real-time modeling and analysis.

To justify the additional costs, the 3D domain must add
additional value and Pattern-Net begins to achieve this objective
by providing quantification of a key morphological feature,
ear length. This varies between cultivars and Siddique and
Whan (1993) proposed that the ear to stem ratio might

be a better indicator of yield potential than harvest index
(HI) because the ratio is largely unperturbed by post-anthesis
drought. They conceded that ear to stem ratio could only
be used in early generations due to its labor-intensive data
acquisition. Image-based approaches have the potential to reduce
that labor burden, and Pattern-Net provides this metric as
one of its outputs. As expected, the value of the ear: total
plant height, manually measured or computationally inferred,
increases slightly in the drought treatment and therefore Pattern-
Net may be able to contribute to emerging Speed-Breeding
(Watson et al., 2019).

6. CONCLUSION AND FUTURE WORK

In this study, we have developed a CNN method for direct
segmentation of 3D point clouds that is less susceptible to
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FIGURE 8 | Results on the ear length of two treatments including 10 individuals grown under well water conditions (in red) and 10 individuals grown under drought

conditions (in blue). (Left) Comparison between the average relative ear length identified by the Pattern-Net and the corresponding ground-truth values measured in

MeshLab. (Right) Comparison between the relative ear length identified by the Pattern-Net and the corresponding physical ground-truth measurements collected

post-harvest. 3D models with 2,048 points were used here.

outliers. It is also invariant to changes in translation, rotation
and scale. The key idea is to decompose the wheat point
clouds into multiple subsets with similar structural information
and then to force the network to learn and identify stable
patterns. The network could successfully cope with the large-
scale input point clouds ranging from 10,240 to 16,384 points
and the results indicate that it is less prone to overfitting. This
methodology provides a promising direction for robust analysis
and understanding of plant point clouds although accurate
estimation of ear length needs further improvement. While we
have applied Pattern-Net to the relatively constrained datasets
obtained from pot-grown wheat, this or similar approaches
could be applied to field crops and canopies. The rapid and
accurate assessment of the reproductive parts of many crops
can be facilitated by image-based methods. For example, a dual-
camera system has been developed for measuring harvested rice
panicles (Huang et al., 2013). We expect that the principles
developed within Pattern-Net can be applied tomany other cereal
crops, but in the context of intact plants.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MG, BT, YL, and JD designed the experiment. KW and FC
undertook data acquisition, experimental design, and plant
treatments. MG developed the deep learning and data analysis,
testing and evaluation tasks, and drafted the manuscript. All
authors have read and revised the manuscript.

FUNDING

This project was supported by BBSRC under grant
numbers BB/S016538/1, BB/R02118X/1, BB/CCG1730/1,
and BB/M0666/1. MG acknowledges DCDS and President
scholarships from Aberystwyth University.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the HPC resources provided
by Supercomputing Wales (SCW) and Aberystwyth University.
We also thank Jason Brook and Karen Askew for technical
assistance and Katie L. Awty-Carroll for allowing us to use the
multi-view camera system prior to publication. We thank the
Editor and two reviewers for their constructive comments that
have improved the quality of the paper.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org.

Alharbi, N., Zhou, J., and Wang, W. (2018). “Automatic counting

of wheat spikes from wheat growth images,” in Proceedings of the

7th International Conference on Pattern Recognition Applications

and Methods - Volume 1: ICPRAM (Funchal: SCITEPRESS-Science

and Technology Publications), 346–355. doi: 10.5220/00065804034

60355

Bernotas, G., Scorza, L. C., Hansen, M. F., Hales, I. J., Halliday, K. J., Smith, L. N.,

et al. (2019). A photometric stereo-based 3d imaging system using computer

vision and deep learning for tracking plant growth. GigaScience 8:giz056.

doi: 10.1093/gigascience/giz056

Bi, K., Jiang, P., Li, L., Shi, B., andWang, C. (2010). Non-destructive measurement

of wheat spike characteristics based on morphological image processing. Trans.

Chin. Soc. Agric. Eng. 26, 212–216. doi: 10.3969/j.issn.1002-6819.2010.12.036

Frontiers in Plant Science | www.frontiersin.org 13 March 2021 | Volume 12 | Article 608732

tensorflow.org
https://doi.org/10.5220/0006580403460355
https://doi.org/10.1093/gigascience/giz056
https://doi.org/10.3969/j.issn.1002-6819.2010.12.036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ghahremani et al. 3D Segmentation of Wheat

Brake, D. A., Hauenstein, J. D., Schreyer, F.-O., Sommese, A. J., and Stillman, M.

E. (2019). Singular value decomposition of complexes. SIAM J. Appl. Algeb.

Geomet. 3, 507–522. doi: 10.1137/18M1189270

Briglia, N., Williams, K., Wu, D., Li, Y., Tao, S., Corke, F., et al. (2020). Image-

based assessment of drought response in grapevines. Front. Plant Sci. 11:595.

doi: 10.3389/fpls.2020.00595

Camargo, A. V., Mott, R., Gardner, K. A., Mackay, I. J., Corke, F., Doonan, J.

H., et al. (2016). Determining phenological patterns associated with the onset

of senescence in a wheat magic mapping population. Front. Plant Sci. 7:1540.

doi: 10.3389/fpls.2016.01540

Chaudhury, A., and Godin, C. (2020). Skeletonization of plant point cloud

data using stochastic optimization framework. Front. Plant Sci. 11:773.

doi: 10.3389/fpls.2020.00773

Chaudhury, A., Ward, C., Talasaz, A., Ivanov, A. G., Brophy, M., Grodzinski,

B., et al. (2018). Machine vision system for 3d plant phenotyping.

IEEE/ACM Trans. Comput. Biol. Bioinformatics 16, 2009–2022.

doi: 10.1109/TCBB.2018.2824814

Chen, Z.-Z., Feng, Q., Shen, C., Wang, J., and Wang, L. (2016). Algorithms

for pedigree comparison. IEEE/ACM Trans. Comput. Biol. Bioinformatics 15,

422–431. doi: 10.1109/TCBB.2016.2550434

Chopin, J., Laga, H., and Miklavcic, S. J. (2016). A hybrid approach for improving

image segmentation: application to phenotyping of wheat leaves. PLoS ONE

11:e0168496. doi: 10.1371/journal.pone.0168496

Codreanu, V., Dong, F., Liu, B., Roerdink, J. B., Williams, D., Yang, P., et al.

(2013). “GPU-asift: a fast fully affine-invariant feature extraction algorithm,” in

2013 International Conference on High Performance Computing & Simulation

(HPCS) (Helsinki), 474–481. doi: 10.1109/HPCSim.2013.6641456

Dieleman, J. A., De Visser, P. H. B., Meinen, E., Grit, J. G., and Dueck, T. A.

(2019). Integratingmorphological and physiological responses of tomato plants

to light quality to the crop level by 3d modeling. Front. Plant Sci. 10:839.

doi: 10.3389/fpls.2019.00839

Elnashef, B., Filin, S., and Lati, R. N. (2019). Tensor-based classification

and segmentation of three-dimensional point clouds for organ-level plant

phenotyping and growth analysis. Comput. Electron. Agric. 156, 51–61.

doi: 10.1016/j.compag.2018.10.036

Fernandez-Gallego, J. A., Kefauver, S. C., Gutiérrez, N. A., Nieto-Taladriz, M.

T., and Araus, J. L. (2018). Wheat ear counting in-field conditions: high

throughput and low-cost approach using RGB images. Plant Methods 14, 1–12.

doi: 10.1186/s13007-018-0289-4

Ferrante, A., Cartelle, J., Savin, R., and Slafer, G. A. (2017). Yield determination,

interplay between major components and yield stability in a traditional and a

contemporary wheat across a wide range of environments. Field Crops Res. 203,

114–127. doi: 10.1016/j.fcr.2016.12.028

Furukawa, Y., and Ponce, J. (2010). Accurate, dense, and robust multi-

view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376.

doi: 10.1109/TPAMI.2009.161

Gélard, W., Devy, M., Herbulot, A., and Burger, P. (2017). “Model-based

segmentation of 3d point clouds for phenotyping sunflower plants,” in

Proceedings of the 12th International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications - Volume 4 VISAPP

(Porto), 459–467. doi: 10.5220/0006126404590467

Ghahremani, M., Liu, Y., and Tiddeman, B. (2021). Ffd: Fast feature detector. IEEE

Trans. Image Process. 30, 1153–1168. doi: 10.1109/TIP.2020.3042057

Ghahremani, M., Tiddeman, B., Liu, Y., and Behera, A. (2020). “Orderly disorder

in point cloud domain,” in European Conference on Computer Vision (Glasgow:

Springer), 494–509. doi: 10.1007/978-3-030-58604-1_30

Ghahremani, M., Zhao, Y., Tiddeman, B., and Liu, Y. (2021). Interwoven texture-

based description of interest points in images. Pattern Recogn. 2021:107821.

doi: 10.1016/j.patcog.2021.107821

Gibbs, J. A., Pound, M., French, A. P., Wells, D. M., Murchie, E., and Pridmore,

T. (2018). Plant phenotyping: an active vision cell for three-dimensional plant

shoot reconstruction. Plant Physiol. 178, 524–534. doi: 10.1104/pp.18.00664

Guerrero, P., Kleiman, Y., Ovsjanikov,M., andMitra, N. J. (2018). PCPNet learning

local shape properties from raw point clouds. Geometry Learning. 37, 75–85.

doi: 10.1111/cgf.13343

Guo, J., and Xu, L. (2017). Automatic segmentation for plant leaves

via multiview stereo reconstruction. Math. Probl. Eng. 2017:9845815.

doi: 10.1155/2017/9845815

Hamidinekoo, A., Garzón-Martínez, G. A., Ghahremani, M., Corke, F. M.,

Zwiggelaar, R., Doonan, J. H., et al. (2020). Deeppod: a convolutional neural

network based quantification of fruit number in arabidopsis. GigaScience

9:giaa012. doi: 10.1093/gigascience/giaa012

Hasan, M. M., Chopin, J. P., Laga, H., and Miklavcic, S. J. (2018). Detection and

analysis of wheat spikes using convolutional neural networks. Plant Methods

14:100. doi: 10.1186/s13007-018-0366-8

Huang, C., Yang, W., Duan, L., Jiang, N., Chen, G., Xiong, L., et al. (2013).

Rice panicle length measuring system based on dual-camera imaging. Comput.

Electron. Agric. 98, 158–165. doi: 10.1016/j.compag.2013.08.006

Hughes, N., Oliveira, H. R., Fradgley, N., Corke, F. M., Cockram, J., Doonan, J.

H., et al. (2019). µ ct trait analysis reveals morphometric differences between

domesticated temperate small grain cereals and their wild relatives. Plant J. 99,

98–111. doi: 10.1111/tpj.14312

Jay, S., Rabatel, G., Hadoux, X., Moura, D., and Gorretta, N. (2015). In-field crop

row phenotyping from 3d modeling performed using structure from motion.

Comput. Electron. Agric. 110, 70–77. doi: 10.1016/j.compag.2014.09.021

Jin, S., Su, Y., Gao, S., Wu, F., Hu, T., Liu, J., et al. (2018). Deep learning:

individual maize segmentation from terrestrial lidar data using faster r-CNN

and regional growth algorithms. Front. Plant Sci. 9:866. doi: 10.3389/fpls.2018.

00866

Kun, B., Pan, J., Chongwei, T., Feifei, H., and Cheng, W. (2011). The design of

wheat variety bp classifier based on wheat ear feature. Chinese Agric. Sci. Bull.

6, 465–467. Available online at: https://en.cnki.com.cn/Article_en/CJFDTotal-

ZNTB201106094.htm

Landrieu, L., and Simonovsky, M. (2018). “Large-scale point cloud semantic

segmentation with superpoint graphs,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Salt Lake City, UT), 4558–4567.

doi: 10.1109/CVPR.2018.00479

Li, D., Cao, Y., Shi, G., Cai, X., Chen, Y., Wang, S., et al. (2019). An

overlapping-free leaf segmentation method for plant point clouds. IEEE Access

7, 129054–129070. doi: 10.1109/ACCESS.2019.2940385

Li, D., Cao, Y., Tang, X.-S., Yan, S., and Cai, X. (2018). Leaf segmentation

on dense plant point clouds with facet region growing. Sensors 18:3625.

doi: 10.3390/s18113625

Li, M., Shao, M.-R., Zeng, D., Ju, T., Kellogg, E. A., and Topp, C. N. (2020).

Comprehensive 3d phenotyping reveals continuous morphological variation

across genetically diverse sorghum inflorescences.New Phytol. 226, 1873–1885.

doi: 10.1111/nph.16533

Liu, J., Liu, Y., and Doonan, J. (2018). “Point cloud based iterative segmentation

technique for 3d plant phenotyping,” in 2018 IEEE International

Conference on Information and Automation (ICIA) (Fujian), 1072–1077.

doi: 10.1109/ICInfA.2018.8812589

Lou, L., Liu, Y., Han, J., and Doonan, J. H. (2014). “Accurate multi-view

stereo 3d reconstruction for cost-effective plant phenotyping,” in International

Conference Image Analysis and Recognition (Vilamoura: Springer), 349–356.

doi: 10.1007/978-3-319-11755-3_39

Lu, H., and Cao, Z. (2020). Tasselnetv2+: A fast implementation for high-

throughput plant counting from high-resolution RGB imagery. Front. Plant Sci.

11:1929. doi: 10.3389/fpls.2020.541960

Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear density

estimation from high resolution RGB imagery using deep learning technique.

Agric. For. Meteorol. 264, 225–234. doi: 10.1016/j.agrformet.2018.10.013

Misra, T., Arora, A., Marwaha, S., Chinnusamy, V., Rao, A. R., Jain, R., et al. (2020).

Spikesegnet-a deep learning approach utilizing encoder-decoder network with

hourglass for spike segmentation and counting in wheat plant from visual

imaging. Plant Methods 16, 1–20. doi: 10.1186/s13007-020-00582-9

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning

for image-based plant disease detection. Front. Plant Sci. 7:1419.

doi: 10.3389/fpls.2016.01419

Paulus, S. (2019). Measuring crops in 3d: using geometry for plant phenotyping.

Plant Methods 15, 1–13. doi: 10.1186/s13007-019-0490-0

Paulus, S., Dupuis, J., Mahlein, A.-K., and Kuhlmann, H. (2013). Surface

feature based classification of plant organs from 3d laserscanned point clouds

for plant phenotyping. BMC Bioinformatics 14:238. doi: 10.1186/1471-2105-

14-238

Penrose, R. (1955). A generalized inverse for matrices.Math. Proc. Cambrid. Philos.

Soc. 51, 406–413. doi: 10.1017/S0305004100030401

Frontiers in Plant Science | www.frontiersin.org 14 March 2021 | Volume 12 | Article 608732

https://doi.org/10.1137/18M1189270
https://doi.org/10.3389/fpls.2020.00595
https://doi.org/10.3389/fpls.2016.01540
https://doi.org/10.3389/fpls.2020.00773
https://doi.org/10.1109/TCBB.2018.2824814
https://doi.org/10.1109/TCBB.2016.2550434
https://doi.org/10.1371/journal.pone.0168496
https://doi.org/10.1109/HPCSim.2013.6641456
https://doi.org/10.3389/fpls.2019.00839
https://doi.org/10.1016/j.compag.2018.10.036
https://doi.org/10.1186/s13007-018-0289-4
https://doi.org/10.1016/j.fcr.2016.12.028
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.5220/0006126404590467
https://doi.org/10.1109/TIP.2020.3042057
https://doi.org/10.1007/978-3-030-58604-1_30
https://doi.org/10.1016/j.patcog.2021.107821
https://doi.org/10.1104/pp.18.00664
https://doi.org/10.1111/cgf.13343
https://doi.org/10.1155/2017/9845815
https://doi.org/10.1093/gigascience/giaa012
https://doi.org/10.1186/s13007-018-0366-8
https://doi.org/10.1016/j.compag.2013.08.006
https://doi.org/10.1111/tpj.14312
https://doi.org/10.1016/j.compag.2014.09.021
https://doi.org/10.3389/fpls.2018.00866
https://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201106094.htm
https://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201106094.htm
https://doi.org/10.1109/CVPR.2018.00479
https://doi.org/10.1109/ACCESS.2019.2940385
https://doi.org/10.3390/s18113625
https://doi.org/10.1111/nph.16533
https://doi.org/10.1109/ICInfA.2018.8812589
https://doi.org/10.1007/978-3-319-11755-3_39
https://doi.org/10.3389/fpls.2020.541960
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1186/s13007-020-00582-9
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1186/s13007-019-0490-0
https://doi.org/10.1186/1471-2105-14-238
https://doi.org/10.1017/S0305004100030401
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ghahremani et al. 3D Segmentation of Wheat

Pound, M. P., French, A. P., Fozard, J. A., Murchie, E. H., and Pridmore, T. P.

(2016). A patch-based approach to 3d plant shoot phenotyping.Mach. Vis. Appl.

27, 767–779. doi: 10.1007/s00138-016-0756-8

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). “Pointnet: Deep learning

on point sets for 3d classification and segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Honolulu, HI),

652–660.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). “Pointnet++: Deep hierarchical

feature learning on point sets in a metric space,” in Advances in Neural

Information Processing Systems (California), 5099–5108.

Qiongyan, L., Cai, J., Berger, B., Okamoto,M., andMiklavcic, S. J. (2017). Detecting

spikes of wheat plants using neural networks with laws texture energy. Plant

Methods 13:83. doi: 10.1186/s13007-017-0231-1

Ranzuglia, G., Callieri, M., Dellepiane, M., Cignoni, P., and Scopigno, R. (2013).

“Meshlab as a complete tool for the integration of photos and color with

high resolution 3d geometry data,” in CAA 2012 Conference Proceedings

(Southampton: Pallas Publications; Amsterdam University Press), 406–416.

Sadeghi-Tehran, P., Virlet, N., Ampe, E. M., Reyns, P., and Hawkesford, M. J.

(2019). Deepcount: In-field automatic quantification of wheat spikes using

simple linear iterative clustering and deep convolutional neural networks.

Front. Plant Sci. 10:1176. doi: 10.3389/fpls.2019.01176

Schönberger, J. L., and Frahm, J.-M. (2016). “Structure-from-motion revisited,” in

Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas,

NV), 4104–4113. doi: 10.1109/CVPR.2016.445

Schönberger, J. L., Zheng, E., Pollefeys, M., and Frahm, J.-M. (2016).

“Pixelwise view selection for unstructured multi-view stereo,” in

European Conference on Computer Vision (ECCV) (Amsterdam), 501–518.

doi: 10.1007/978-3-319-46487-9_31

Shen, Y., Feng, C., Yang, Y., and Tian, D. (2018). “Mining point cloud local

structures by kernel correlation and graph pooling,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),

4548–4557. doi: 10.1109/CVPR.2018.00478

Shi, W., van de Zedde, R., Jiang, H., and Kootstra, G. (2019). Plant-part

segmentation using deep learning and multi-view vision. Biosyst. Eng. 187,

81–95. doi: 10.1016/j.biosystemseng.2019.08.014

Siddique, K., and Whan, B. (1993). Ear: stem ratios in breeding populations

of wheat: significance for yield improvement. Euphytica 73, 241–254.

doi: 10.1007/BF00036703

Tan, C., Zhang, P., Zhang, Y., Zhou, X., Wang, Z., Du, Y., et al. (2020).

Rapid recognition of field-grown wheat spikes based on a superpixel

segmentation algorithm using digital images. Front. Plant Sci. 11:259.

doi: 10.3389/fpls.2020.00259

Ubbens, J. R., and Stavness, I. (2017). Deep plant phenomics: a deep learning

platform for complex plant phenotyping tasks. Front. Plant Sci. 8:1190.

doi: 10.3389/fpls.2017.01190

Wang, X., Xuan, H., Evers, B., Shrestha, S., Pless, R., and Poland, J. (2019).

High-throughput phenotyping with deep learning gives insight into the

genetic architecture of flowering time in wheat. GigaScience 8:giz120.

doi: 10.1101/527911

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.

(2019). Dynamic graph cnn for learning on point clouds. ACM Trans. Graph.

38:146. doi: 10.1145/3326362

Watson, A., Hickey, L. T., Christopher, J., Rutkoski, J., Poland, J., and Hayes,

B. J. (2019). Multivariate genomic selection and potential of rapid indirect

selection with speed breeding in spring wheat. Crop Sci. 59, 1945–1959.

doi: 10.2135/cropsci2018.12.0757

Xu, X., Li, H., Yin, F., Xi, L., Qiao, H., Ma, Z., et al. (2020). Wheat ear

counting using k-means clustering segmentation and convolutional

neural network. Plant Methods 16, 1–13. doi: 10.1186/s13007-020-

00648-8

Zhou, C., Liang, D., Yang, X., Xu, B., and Yang, G. (2018). Recognition of wheat

spike from field based phenotype platform using multi-sensor fusion and

improved maximum entropy segmentation algorithms. Remote Sens. 10:246.

doi: 10.3390/rs10020246

Zhou, J., Fu, X., Zhou, S., Zhou, J., Ye, H., and Nguyen, H. T. (2019).

Automated segmentation of soybean plants from 3d point cloud using machine

learning. Comput. Electron. Agric. 162, 143–153. doi: 10.1016/j.compag.2019.

04.014

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ghahremani, Williams, Corke, Tiddeman, Liu and Doonan. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 March 2021 | Volume 12 | Article 608732

https://doi.org/10.1007/s00138-016-0756-8
https://doi.org/10.1186/s13007-017-0231-1
https://doi.org/10.3389/fpls.2019.01176
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1109/CVPR.2018.00478
https://doi.org/10.1016/j.biosystemseng.2019.08.014
https://doi.org/10.1007/BF00036703
https://doi.org/10.3389/fpls.2020.00259
https://doi.org/10.3389/fpls.2017.01190
https://doi.org/10.1101/527911
https://doi.org/10.1145/3326362
https://doi.org/10.2135/cropsci2018.12.0757
https://doi.org/10.1186/s13007-020-00648-8
https://doi.org/10.3390/rs10020246
https://doi.org/10.1016/j.compag.2019.04.014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Deep Segmentation of Point Clouds of Wheat
	1. Introduction
	2. Background
	3. Proposed 3D Point Cloud Segmentation Network
	3.1. Network Properties
	3.2. Network Architecture
	3.3. Network Loss Function

	4. Experimental Results
	4.1. Data Acquisition and Preparation
	4.2. Evaluation Metrics
	4.3. Data Preparation for Training and Testing
	4.4. Results
	4.5. The Manually Collected Post-data

	5. Discussion
	6. Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


