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Abstract: Seed germination is a complex process during which a mature seed resumes metabolic
activity to prepare for seedling growth. In this study, we performed a comparative metabolomic anal-
ysis of the embryo and endosperm using the community standard lines of three annual Brachypodium
species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs)
that has wider ecological range than the other two species. We explored how far the metabolomic
impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after
imbibition (HAI) with water when germination was initiated. Metabolic changes during germination
were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm
metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos
showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could
have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed
higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium
endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to
the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were
not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and
monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following
the release of nutrients to the respective embryos. Amino acid changes in both the embryo and
endosperm were broadly consistent across the species. Taking our data together, the formation of
BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during
the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an
elevated sugar metabolism that played a vital role in germination. If these observations are confirmed
in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs
metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive
changes.

Keywords: Brachypodium species; metabolites; model grass; seed germination

1. Introduction

Polyploidy is an often observed phenomenon in eukaryotes, resulting in important
ecological and evolutionary processes. Many plant lineages show evidence of palaeopoly-
ploidization in their genomes. Polyploid plants usually have larger cell sizes and faster
growth, which is very significant from an evolutionary standpoint [1,2]. Polyploidization
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leads to a series of genomic, metabolomic, cellular, and physiological changes. Arabidopsis thaliana
autotetraploids have shown different metabolic profiles, indicating that polyploidization
affects metabolite accumulation [3]. Similarly, polyploidization in Hylocereus and Citrus
species induced changes in metabolite accumulation patterns [4–6]. Thus, polyploidization
is a major force in the evolution of both wild and cultivated plants for its ability to confer
high environmental adaptability [7].

Brachypodium is one of the most studied genera of monocotyledonous plants, mainly
due to Brachypodium distachyon being a model organism for temperate cereals and other
economically important grasses [8–14]. B. distachyon has been used to investigate various
aspects of grass biology [15], including cell wall composition [16–19], host–pathogen
interactions [20,21], responses to abiotic stress [22–24], the regulation of seed dormancy [25],
and seed to seedling transition [26,27]. The genus consists of ~20 species that are distributed
worldwide. Two of the diploid annual species, B. distachyon (Bd) and Brachypodium stacei
(Bs) have hybridized to produce an allotetraploid, Brachypodium hybridum (BdBs) [28]. BdBs
has been proposed as a model system to study polyploidization and grass speciation [29].
It is more widely distributed compared to its progenitors, especially Bs, and tends to
have a greater number of seeds per inflorescence and 1000 grain weights. Therefore,
allotetraploidization seems to have led to the formation of a species with increased fitness
across a range of ecological niches [30,31].

Seed germination is a fundamental step for development, and is accompanied by
substantial physiological and biochemical changes that lead to morphological events.
Germination is controlled by multiple environmental cues such as light and moisture,
and various endogenous factors, including phytohormones. Germination begins with the
uptake of water and can be sub-divided into three phases: phase I, where the seed rapidly
imbibes water, phase II sees the activation of metabolism, and in phase III, changes occur
that lead to hypocotyl emergence [8]. Crucial physiological and biochemical processes
such as the hydrolysis of storage compounds, protein biosynthesis, respiration, and cell
elongation are activated in the phase II. These metabolic changes are associated with
the catabolism of seed storage products into simpler chemical forms, such as sugars
and amino acids, that are needed for protein synthesis and bioenergy in the growing
seedling [8,9]. Distinct and time-dependent alternations in metabolism have been described
for germinating seeds in cereals such as rice [10] and wheat [11], as well as in A. thaliana [12].
In the first hour of imbibition, rapid changes in metabolism, including increases in hexose
phosphates and tricarboxylic acid cycle intermediates, occur. This phase is also typified
by significant reductions in the majority of different metabolites that had previously
accumulated during seed desiccation. For example, proteins are degraded by proteases
into amino acids during germination [13]. These primary metabolites are rapidly consumed
to support a metabolic switch towards biosynthetic processes that are needed for early
germination. Later changes in the metabolome during germination include an increase
in levels of compounds such as amino acids, sugars, and organic acids to feed hypocotyl
growth [12,14].

Brachypodium species represent a good model system to assess the possible effects
of polyploidization on the germinating seed metabolome. Previous metabolic studies
on Brachypodium species have focused on different growth stages and different stress
conditions, particularly drought [22,32,33] and the genotypic variation for seed metabolite
levels [34]. Our initial characterization of a Bd allowed comparison with what is known in
wheat [35]. This comparison suggested important differences in the extent of endosperm
development. Although similar, key grain development marker genes (histone H4, C13
endopeptidase, pyruvate orthophosphate dikinase (PPDK), α-galactosidase, and globulins
1 and 2) are expressed in both wheat and Bd, their timing appeared to be different [35].
Striking morphological differences include smaller numbers and sizes of starch grains in
Bd compared to wheat while endosperm cell walls were approximately twice as thick in Bd
as in wheat [35,36]. Additionally, the Bd cell walls become less well-stained by calcofluor
white during germination, suggesting a loss of 1-3 β and 1-4 β linked polysaccharides.
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Thus, the cell wall could be a source of sugars during germination. However, infrared
fluorescence imaging suggested that the Bd cell wall was relatively deficient in β-glucans
but potentially enriched in hemicelluloses [36].

To provide information on the metabolite profiles during seed germination in Brachy-
podium, we employed flow-infusion high-resolution electrospray mass spectroscopy (FIE–
HRMS) to describe the metabolomes of the embryo and endosperm over a 24-h period over
imbibition. We tested the hypothesis that the allotetraploidization process may have led to
overlapping metabolomes in the three Brachypodium annuals (Bd, Bs, and BdBs). However,
our data indicated that the Bs but not the Bd metabolome had considerable similarities
with that of BdBs during germination. Further, these Bs/BdBs overlapping metabolomes
indicated elevated sugar metabolism that could represent a source of increased fitness
during the germination process.

2. Materials and Methods
2.1. Plant Material and Seed Germination

Seeds of B. distachyon Bd21 (Bd), B. stacei ABR114 (Bs) and B. hybridum ABR113 (BdBs)
were obtained from the US Department of Agriculture, National Plant Germplasm System
and the Institute of Biological, Environmental and Rural Sciences, Aberystwyth University,
UK. The lemma was removed from the seeds to exclude its impact on the germination rate.
The general features of the seeds from the different species are shown in Figure 1.
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Figure 1. Grains of Brachypodium species Brachypodium distachyon Bd21 (Bd), Brachypodium stacei
ABR114 (Bs) and Brachypodium hybridum ABR113 (BdBs) compared to wheat (Triticum aestivum).
Images were from (top) grains where the lemma had been removed and (bottom) transversely
sections from seeds. Note the large starchy endosperm in wheat that is greatly diminished in each
Brachypodium species. Scale bars represent 1 mm.

Approximately 500 grains of each Brachypodium species were placed on three layers of
filter paper that had been soaked with distilled water in Petri dishes and germinated at
22–24 ◦C in the dark. The grains were collected at 4, 12, and 24 h after imbibition (HAI)
with five biological replicates. The embryos were isolated, separated from the endosperm,
and frozen in the liquid nitrogen.
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2.2. Sample Preparation and Metabolite Extraction

For metabolomic analyses, frozen embryos and endosperm were extracted using
a single-phase extraction solution (chloroform/methanol/water, 1/2.5/1, v/v/v). The
collected samples (40 mg each) of frozen embryos and endosperm were homogenized
and mixed with 1 mL of extraction solution for 20 min at 4 ◦C. Samples were centrifuged
for 30 min at 4 ◦C, and the supernatant was transferred to new tubes, from which 200 µL
were taken for further analyses. Metabolite fingerprinting was performed using flow-
infusion high-resolution electrospray mass spectroscopy (FIE–HRMS) using a Q Exac-
tive Plus mass analyzer instrument with a Dionex U300 Ultra High Performance Liquid
Chromatography (UHPLC) system (Thermo Fisher Scientific, Bremen, Germany). Mass-
ions (m/z) were generated in positive and negative ionization modes in a single run,
as described by Baptista et al. [37]. The data are provided in Supplementary Materials
Table S1.

2.3. Metabolomic Data Analysis

Multivariate analyses were performed with MetaboAnalyst (https://www.metaboanalyst.
ca/, accessed on 28 February 2021). Differences in the metabolomic profiles of samples were
analyzed with unsupervised principal component analysis (PCA) and supervised par-
tial least squares-discriminant analysis (PLS-DA). The significance of the cross-validated
p-values were based on one-way ANOVA with Bonferroni correction for false discov-
ery rates (FDR). Multiple comparison and post hoc analyses used Tukey’s honestly sig-
nificant difference (Tukey’s HSD). The relative contributions of experimental variations
(“effects estimates”—in this case, genotype and time) to the total variation used ANOVA–
simultaneous component analysis (ASCA), a form of multivariate ANOVA. For each m/z,
annotation was made using a 5 ppm tolerance on their accurate mass. Metabolomic
annotation was made using DIMEdb (https://dimedb.ibers.aber.ac.uk, accessed on 28
February 2021). Identification was based on the MS peaks to pathway algorithm [37]
(tolerance = 5 ppm, reference library; Oryza sativa). This involved metabolites being
annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, con-
sidering the following possible adducts: [M+]+, [M+H]+, [M+NH4]+, [M+Na]+, [M+K]+,
[M-NH2+H]+, [M-CO2H+H]+, [M-H2O+H]+; [M−]−, [M−H]−, [M+Na−2H]−, [M+Cl]−,
and [M+K−2H]−. Correlations between multiple adducts of a metabolite were used in the
identification process.

Metabolite Set Enrichment Analysis (MSEA) and pathway analysis were performed
to identify biologically meaningful patterns in the metabolome data using the R-based
MetaboAnalyst platform [38]. For pathway analysis algorithms, the Fisher’s exact test
was used with a KEGG pathway library for Oryza sativa as a model reference. These
analyses considered the number of detected metabolites in individual pathways and any
alternations between samples and model reference. Pathway significance was based on
whether metabolites from a given sample were overrepresented in a given metabolite set,
while pathway impact reflected the role of a given metabolite in particular pathway.

3. Results
3.1. Metabolic Profiling of the Embryo and Endosperm

We performed the metabolic profiling of the embryo and endosperm in Bd, Bs, and
BdBs after 4, 12, and 24 HAI. PCA indicated that the major sources of variation were linked
to organ type, with separation between embryo and endosperm seen across principal
component (PC) 1 (Figure 2). The variation between the embryo samples was higher than
that between endosperm samples, as indicated by the extent of variation across PC 2, but
species-specific differences were not readily identifiable.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://dimedb.ibers.aber.ac.uk
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Figure 2. PCA (principal component analysis) of embryo (Em) and endosperm (Es) metabolites in
B. distachyon Bd21 (Bd), B. stacei ABR114 (Bs), and B. hybridum ABR113 (BdBs) at 4, 12, and 24 h after
imbibition (HAI). PC 1: the first principal component; PC 2: the second principal component.

3.2. Assessments of Embryo and Endosperm Metabolomes

To investigate variation within the two different tissue types during imbibition, each
was separately assessed. In the embryo samples, the main differences in metabolic pro-
files were seen with over time (PC 1 = 28.7%), but genotypic differences were also seen
(Figure 3). In the case of Bd, the overlap between the 12 and 24 HAI groups suggested
that metabolomic changes at these time points were not as pronounced as in Bs and BdBs.
Across the axis showing the lesser source of variation (PC 2 = 11.2%), Bd formed a distinct
group from the other species.

Considering the endosperm, no species-specific variation was seen across PC 1, which
was instead linked to within experimental class variation. However, some variation that
could be linked to species was apparent across PC 2 (PC 2 = 14.7%) (Figure 4A). This
suggested that Bd and Bs had distinctive metabolomes but BdBs had some overlap with
the Bs group. The use of the supervised PLS-DA allowed for the greater species-specific
variation. However, considering only component 1, there was again overlap with Bs and
BdBs, with Bd again being the most separate group (Figure 4B). Although the endosperm
was being mobilized during this phase, strong metabolomic changes linked to time were not
clearly seen. This may reflect the inability of our metabolomic approach to assess changes
in starch polymers. Taking all our observations together indicated that the metabolomes of
all three species were distinctive but Bs makes the greater metabolic contribution to the
allotetraploid BdBs.
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3.3. Species Specific Metabolite Variation

Next, we considered species-specific changes in each of the Brachypodium species in
each tissue type occurring over time. These changes were identified based on ANOVA.
These species-specific changes were compiled into a single data matrix and compared
using a heat map (Figure 5). The dendrogram with the heatmap indicated two major
clades, which are labelled “I” and “II” in Figure 5A. In II, the metabolite changes were
broadly similar in each species over the 24 HAI, but with I, the changes appeared to be
more distinctive in Bd compared to Bs and BdBs. The use of ASCA indicated that within
the “genotype” effect, Bd-linked metabolites were the major source of variation, with Bs
and BdBs being more similar (Figure 5B). For “time” effects, 4 HAI was the greater source
of metabolite variation.
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To provide potential functional differences between the Brachypodium embryo metabolomes,
pathway enrichment analyses were carried based on the key sources of variation within
each species (Figure S1). Bd showed a predominance of changes in galactose metabolism
that was not so prominent in the other two species. In both Bs and BdBs, the top path-
ways were dominated by amino acid and glyoxylate metabolism. Some pathways were
seen in each species but at differing ranks. These included those linked to bioenergy,
starch/sucrose, and nucleotide metabolism, as would be expected during the germina-
tion process. To provide some detail of these metabolomic differences, key variables
were compared across the species. Considering sugar metabolism leading to glycolysis
(Figure 6), raffinose catabolism and increase in imported sucrose-6-phosphate were sim-
ilar in all species. However, sucrose catabolism appeared to be greater in Bs and BdBs,
leading to increases in the detected hexose sugar and hexose sugar phosphates that feed
into bioenergetic metabolism. This was reflected in higher levels of pyruvate and TCA
metabolites, malate, fumarate and oxaloacetate in Bs and BdBs (Figure S2). Lactate levels
tended to be higher in Bd, suggesting relatively less efficient ATP/NADH generation
during germination. Bd also saw the greater fall in glutathione and the ratios of chemically
reduced glutathione (GSH) vs oxidized glutathione (GSSG) were consistent with the more
chemically reducing conditions in Bs and BdBs (Figure S3).
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Figure 6. Discriminatory sugar metabolites detected in Brachypodium embryos during germination. Metabolites are
arranged in accordance with the Kyoto Encyclopedia of Genes and Genomes (KEGG) starch metabolism map (https:
//www.genome.jp/kegg-bin/show_pathway?map00052+C00492, accessed on 28 February 2021). Data show box and
whisker comparison of B. distachyon Bd21 (Bd), B. stacei ABR114 (Bs), and B. hybridum ABR113 (BdBs) at 4, 12, and 24 HAI.

As amino acid metabolism appeared to differ between the species (Figure S1), this
was also examined (Figure S4). As expected, the levels of most amino acids appeared
to increase with HAI. However, although the changing levels of some amino acids were
broadly similar amongst the species (valine, iso/leucine, glycine; Figure S4A), the contents
tended to be greater in Bd for most (Figure S4B). Glyoxylate/oxalate metabolism was also
ranked highly on the Bs and BdBs enhanced pathway list, and the box and whisker plots
of some key metabolites showed that these were increased in those species compared to Bd
(Figure 7).
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Metabolite changes over time in endosperm for each of the Brachypodium species were
also identified. These changes were compiled and compared in a heat map (Figure 8A).
The dendrogram with the heatmap indicated three major clades, labelled “I,” “II,” and “III”
in Figure 8. Clade I contained metabolites that were generally at low levels in Bd during
the imbibition period but in Bs and BdBs, after initially high levels at 4 HAI, were reduced
with time. In clade II, metabolites were higher in Bd, but they tended not to increase at any
time in the other species. In clade III, metabolites were at very high levels in Bd at 4 HAI
but were at variable levels in Bs and BdBs. This was consistent with Bd being a major
source of variation, as also suggested by ASCA (Figure 8B).
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Figure 8. Metabolomic variation in Brachypodium endosperm during germination. (A) Heatmap of major sources of
metabolite variation and (B) ANOVA–simultaneous component analysis showing effect estimates (genotype and time) in
B. distachyon Bd21 (Bd), B. stacei ABR114 (Bs), and B. hybridum ABR113 (BdBs) at 4, 12, and 24 HAI.

To provide functional information, pathway enrichment assessments were undertaken
for each species (Figure S5). In each species, metabolites that contributed to the variation
were associated with a range of pathways. To ease interpretation, some sources of variation
are presented as box and whisker plots. In examining bioenergetic changes compared to
embryo, there were fewer sources of variation in the endosperm (Figure S6). Raffinose
levels proved to vary over the imbibition period, with each species showing that levels
at 4 HAI tended to fall over time. Similarly, pyruvate and the TCA metabolites reduced
from high levels at 4 HAI over time. This was consistent with a rapid mobilization of
bioenergy-associated metabolites to the embryo. Amino acid metabolism was prominent in
the pathway enrichment assessment from each metabolism. Plotting changes in individual
amino acids overtime showed various patterns of change (Figure S7). Generally, patterns
revealed a reduction in amino acid levels from at 12 HAI from those at 4 HAI, with a
recovery in levels at 24 HAI. In Figure 8, we note changes in hydroxycinnamates (caffeate
and ferulate) and monolignol metabolites. These were plotted because they could reflect
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cell wall changes through processing as a source of nutrients [35] (Figure 9). Over time, Bd
showed increases in coumarate, caffeate, and (marginally) coumaryl and coniferyl alcohols,
which were likely to reflect changes occurring at the cell wall. However, in the cases
of ferulate, coniferyl, and 5-hydroxyconferyl alcohol, the changes in cell wall-associated
metabolites were greater in Bs and BdBs.
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4. Discussion

Seed imbibition and germination represents a key initial stage in plant development,
the relative success of which will govern whether a plant will thrive in a given environment.
A key aspect of the germination process is the mobilization of stored nutrients from the
endosperm to the embryo and include amino acids, lipids, and sugars. As a result, this
process particularly lends itself to metabolomic analyses. Our studies of germinating B.
distachyon seeds have focused on the changes in metabolites that occur phases of active cell
cycle [26], global histone modifications, and DNA methylation changes during embryonic
and post-embryonic growth [27,39]. Future studies may link the metabolomic changes we
describe in this paper with epigenetic and transcriptional changes during germination.

The germination metabolomes have been described in barley and wheat [40] or, in
a more focused study, in wheat seeds exhibiting different levels of dormancy [41]. In
tomato, metabolomics was used to define biochemical quantitative trait loci (QTL) in
Solanum lycopersicum and Solanum pimpinellifolium recombinant inbreed lines (RIL popu-
lation linked to germination [42]. A more practical application involved metabolomic
approaches to detect the early stages of sprouting in cereal seeds, which is relevant to the
grain industry [43].

Brachypodium distachyon has been exploited in temperate grass-seed research. For
example, like the Triticeae, it displays a gene duplication in high-molecular-weight (HMW)

https://www.genome.jp/kegg-bin/show_module?M00039
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glutenin genes that are important in conferring bread-making properties [44]. Considering
its distinct features, some key studies have compared B. distachyon seeds versus other
grasses and cereals [15,35,36,45]. Briefly, B. distachyon seeds are relatively large compared
to the size of the entire plant, and the endosperm represents around 75% of the dehulled
grain weight, which is nearly equivalent to domesticated grasses (~80%). The aleurone
layer appears to lack major transfer tissues, which are used in endosperm filling in major
temperate cereals but appears to be similar to rice. The grain has a very high level of
proteins—amongst the highest detected in grasses. Most striking are the thick cell walls in
the endosperm, and, correspondingly, only 10% of the seed is starch as opposed to 35–40%
in non-domesticated wheat species [35]. Instead of starch, it appears that the storage
polymers in B. distachyon are primarily (1,3; 1,4)-β-glucans, with glucose being the main
saccharide monomer with lesser contributions from arabinose and xylose. These have been
suggested to be mobilized to provide the nutrients during germination in B. distachyon [36].

In this study, we explored the metabolic differences of three Brachypodium species
at three stages of seed germination by using a comparative metabolomics approach. We
focused on the use of community standard lines for each species, namely Bd21 (Bd), ABR114
(Bs), and ABR113 (BdBs). These three species comprise a valuable model to investigate the
impact of polyploidization on the organization and evolution of plant genomes, as well as
grass biology. Polyploidy has a significant influence on the morphology and physiology
of newly formed offspring. Compared with the corresponding diploids, autopolyploids
tend to have larger cells, which may result in the enlargement of single organs, such as
leaves, flowers, and seeds. Physiological traits such as plant height, growth rate, flowering
time, and fertility also can be altered by polyploidization [46,47]. Polyploidization might
significantly increase stress tolerance [48,49]. Studies on metabolic changes caused by
polyploidization have indicated its role in the induction of considerable changes in primary
and secondary metabolite accumulation in induced tetraploids compared to their diploid
parents [4–6]. Similarly, metabolite changes were found in intergeneric hybrids between
Brassica rapa and Raphanus sativus [50]. However, the effect of polyploidization on metabolic
changes during seed germination needs to be more fully characterized. A comparative
investigation of seed germination, metabolism, and seedling growth between tetraploid,
Triticum durum (AABB), and the hexaploid, T. aestivum (AABBDD), suggested that each
species was distinctive [51].

We separated metabolomic assessments of the endosperm from that of the embryo
to discriminate source and sink tissue during germination. Metabolomic changes after
imbibition appeared to be greater in the embryo than in the endosperm (Figure 3 vs.
Figure 4). This should not be taken to indicate that the endosperm is less metabolically
active, as these data could reflect the metabolomic approach that we employed. FIE-HRMS
is biased towards small metabolites (<1500 m/z) so that changes in large polymers may not
be readily captured. It may also be that the breakdown products are rapidly transported
out of the endosperm and so were below our detection limits.

Results from both embryo and endosperm suggest that the Bs and BdBs metabolomes
were similar to each other, but that Bd was distinctive. Therefore, in defining the actual
metabolite changes occurring on imbibition, it was relevant to consider what features were
common to the Brachypodium and what elements of the Bs metabolome were conserved in
the allotetraploid BdBs.

Sugar metabolism was detected in the embryos of all three species. Each showed
that from 4 HAI, the trisaccharide raffinose and sucrose levels were reduced with increas-
ing imbibition time. This was complemented by increases in monosaccharide hexose
sugars (“hexose-sugars”; Figure 6) and sugar phosphates, all of which feed into glycol-
ysis/gluconeogenesis. As photosynthesis does not occur during seed germination, the
energy for physiological processes and seedling development depends on glycolysis [52],
and the availability of phosphorylated sugars play a key role in this process [12]. FIE-HRMS
cannot easily distinguish between glucose, fructose, and (for instance) galactose, so the
“hexose-sugar” designation was used in this study. However, the literature suggests that



Cells 2021, 10, 828 12 of 16

the hexose sugar changing during germination is primarily glucose [35]. Correspondingly,
sugar-phosphates feed into increases in pyruvate. The central metabolic pathway that is
known to provide the energy for the cells and anabolic precursors for proliferation and
survival is the TCA cycle [6]. However, examination of the embryo TCA cycle metabolite
highlighted differences between the species. These differences were seen in elevated levels
of hexose sugars and hexose sugar phosphates in Bs and BdBs compared to Bd, and this
was also seen in the important TCA intermediates (fumarate, malate, and oxaloacetate).
Indeed, TCA metabolites did not greatly change in Bd, and it may be that pyruvate was
being diverted to lactate (which was significantly higher in Bd compared to Bs and BdBs).
If the less-bioenergetic lactate pathway is more utilized during Bd germination, this could
have consequences in terms of relative germinative fitness. This may also be reflected in the
slightly more oxidized conditions seen in Bd, as indicated by the ratios of reduced/oxidized
glutathione ratios (Figure S3). Many studies have suggested that doubling of the genome
size may be associated with the increased accumulation of primary metabolites [4–6],
especially the intermediates of TCA cycle—malate, fumarate, citrate, and succinate. This
would align with our observations for BdBs, but because it was also seen in Bs (234 Mb [29],
compared with that of 272 Mb for Bd [53]), it could suggest that this property was inherited
from Bs in the formation of the allopolyploid. Yi et al. [50] demonstrated altered sugar
metabolism alteration in Brassicoraphanus hybrids. There were higher levels of sugars and
utilization in hybrids compared to the parental lines. These results supported similar
changes observed in A. thaliana and rice, which shown the shift in sugar metabolism in
hybrids [54–56] which could also be relevant to polyploidization.

In addition to bioenergetic metabolism, amino acid processing is a key aspect of ger-
mination and the expected progressive increases in their levels were seen in Brachypodium.
The changes were similar in each species with only minor differences, e.g., glutamate
levels tended to be higher in Bd. In amide processing, aminotransferases transfer the
amino group from glutamate to catalyze the formation of amino acids, a notable example
being asparagine synthetase which forms asparagine [57]. It is therefore of interest that
asparagine is also elevated in Bd. Whatever the potential selective advantages this could
represent in terms of improved amide processing, this is not a metabolomic feature of the
allotetraploid embryo.

Oxalates that accumulate to high levels in wheat embryos are substrates for oxalate
oxidase (a member of the germin family of proteins) to generate H2O2. Within the context
of a germinating seed, the generated H2O2 could initiate programmed cell death to com-
promise cellular permeability barriers, and/or the peroxidative cross-linking of the cell
wall. The latter would increase cell wall rigidity and counter the release of nutrients that
could be important for germination in Brachypodium [35]. In the case of Bs and BdBs, both
were shown to exhibit increased levels of oxalate and its precursor, glyoxylate, compared
to Bd at 24 HAI. These increased oxalate levels were features of the embryo rather than
endosperm where one might expect to detect oxalate released from the degradation of
thickened cell walls (Figure 8). Thus, the increased H2O2 generation may be involved in
nutrient acquisition, as seen most obviously in the increased levels of hexose sugars in Bs
and BdBs.

Comparing the patterns seen with the embryo with those in endosperm, metabolites
linked to sugar mobilization did not give a clear trend. Monosaccharide hexose sugars were
not found to be amongst the major sources of variation between genotypes or timepoints.
Furthermore, changes seen in raffinose content did not appear to have a time or genotype
specific pattern (Figure S6). It may be that the limited starch in the Brachypodium endosperm
was mobilized within 4 HAI, and this was not captured by our experimental design. Having
said that, the levels of raffinose tended to be greater in Bs and BdBs. Pyruvate and the TCA
metabolites—cis-acontiate, malate, and fumarate—were also elevated in BdBs at 4 HAI but
not in Bs (Figure S6). If the cell wall is a major source of sugars, we may have seen changes
in such as xylans and mannans, as well as glucose, arising from cellulose and hemicellulose
polymer processing. These sugars were also not amongst the major sources of variation.
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However, hydroxycinnamic acids and monolignol metabolites, which are linked with cell
wall modification, were prominent (Figure 9). As noted by Gullion et al. [36], the major
hydroxy cinnamic acids detected were ferulic acid and para-coumarate, whilst sinapic
acid was not detected. Compared to Bd, the coumarate and caffeate in Bs and BdBs were
reduced whilst ferulate and 5-hydroxy/coniferyl alcohols were increased. Such alterations
could be consistent with changes aiming to reinforce the cell wall after a possible rapid (i.e.,
<4 HAI) processing of associated sugars. Such rapid processing correlated with increased
levels of, e.g., hexose sugars in the embryo (Figure 6). Therefore, this monolignol processing
in Bs and BdBs may be an echo of more efficient cell wall sugar mobilization to the embryo
compared to Bd. Such a feature could be an important trait of Bs that was selected for in
the ancestral allotetraploidization to form BdBs. By way of comparison, whilst amino acid
changes were seen within each species, which would indicate protein processing, no clear
difference between the species was observed (Figure S7). Therefore, amino acid processing
patterns from either Bd or Bs do not dominate that seen in BdBs.

5. Conclusions

The processes underlying seed germination are fundamental to plant fitness and in
driving agricultural yield. These have been understandably extensively characterized in
cereals but not to the same degree in other grasses. The Brachypodium seed is distinctive
from those of domesticated temperate cereals, with thick cell walls likely to be the source
of sugars as opposed to starch in the endosperm. Our metabolomic approach sought to
characterize how metabolites were mobilized out of the endosperm to embryo. The results
were consistent with a rapid mobilization for sugars out of the endosperm, with evidence
for cell wall remodeling based on hydroxycinnamic acid and monolignol changes. More
importantly, our comparative metabolomic approach allowed us to compare these changes
in the seeds of Bd and Bs, the parents of the allotetraploid BdBs. In the Mediterranean basin,
Bs is comparatively rare compared to Bd and BdBs, so the importance of Bs as a parent is
unclear. In our metabolomic studies, the Bs metabolome was most similar to that of BdBs,
suggesting that the Bs metabolome was retained during the allotetraploidization process.
The conserved Bs metabolome is likely to reflect more efficient mobilization of sugars out
of the endosperm than occurs in Bd, and this could have been instrumental in driving an
environmentally fit BdBs species. As our observations were based on single examples of
each species (albeit established community standards), they require confirmation by more
expansive studies involving more genotypes including de novo hybrids. Finally, a logical
extension of our approach is to consider what the metabolomic contributions of Bd are in
deriving BdBs. If not in germination, it may be that Bd is important in conferring other
traits, such as stress tolerance, to BdBs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10040828/s1. Table S1: Metabolomic matrices for the Brachypodium species embryo
and endosperm. Figure S1: Pathway enrichment metabolic pathway analysis of major sources of
metabolite variation in (A) Brachypodium distachyon (Bd), (B) B. stacei (Bs), and (C) B. hybridum (BdBs)
embryos. Figure S2: Discriminatory bioenergy metabolites detected in Brachypodium embryos during
germination. Figure S3: Reduced (GSH) and oxidized (GSSG) glutathione levels in Brachypodium
embryos during germination. Figure S4: Discriminatory amino acid metabolites detected in Brachy-
podium embryos during germination. Figure S5: Pathway enrichment metabolic pathway analysis
of major sources of metabolite variation in (A) Brachypodium distachyon (Bd), (B) B. stacei (Bs), and
(C) B. hybridum (BdBs) endosperms. Figure S6: Discriminatory bioenergy metabolites detected in
Brachypodium endosperm during germination. Figure S7: Discriminatory amino acid metabolites
detected in Brachypodium embryos during germination.
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