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Low-cost IMU Calibration with Nonlinear Scale
Factors

Xin Zhang, Changle Zhou, Fei Chao, Member, Chih-Min Lin, Fellow, Longzhi Yang, Senior Member, Changjing
Shang, and Qiang Shen

Abstract—Inertial measurement units (IMU) have been wildly
used to provide accurate location and movement measurement
solutions, along with the advances of modern manufacturing
technologies. The scale factors of accelerometers and gyroscopes
are linear when the range of the sensors are reasonably small, but
the factor becomes non-linear when the range gets much bigger.
Based on this observation, this paper presents a calibration
method for low-cost IMU, by effectively deriving the nonlinear
scale factors of the sensors. Two motion patterns of the sensor on
a rigid object are moved to collect data for calibration, one motion
pattern is to upcast and rotation the rigid object, another pattern
is to place the rigid object on a stable base in different attitudes.
The rotation motion produces centripetal and Coriolis force,
which increases the measurement range of accelerometers. Four
cost functions with different weight factors and two sets of data
are utilized to optimize the IMU parameters. The weight factor
comes from derived formula with input values which are the vari-
ance of the noise of the sampled data. The proposed approach was
validated and evaluated on both synthetic and real-world data
sets, and the experimental results demonstrated the superiority
of the proposed approach in improving the accuracy of IMU
for long range use. In particular, the errors of acceleration and
angular velocity led by our algorithm are significantly smaller
than those resulted from the existing approaches using the same
testing datasets, demonstrating a remarkable improvement of
64.12% and 47.90%, respectively.

Index Terms—IMU calibration, nonlinear scale factors, low-
cost IMU

I. INTRODUCTION

AN Inertial Measurement Unit (IMU) is often used to
detect the acceleration and angular velocity of a mov-

ing object. Such measurements provide important navigation
information (i.e., position, velocity, attitude, etc.) in aerospace
or other space exploration applications [1]. Thanks to the
advances of microelectrophoretical techniques, inertial sen-
sors can be manufactured as microelectrophoretical system
(MEMS), with considerably low cost, but with increased
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accuracy, thereby greatly improving the applicability of IMU
in many new areas, such as body activity classification [2],
sports analysis [3], and indoor localisation [4]. However,
MEMS inertial sensors still sometimes suffer from systematic
and stochastic errors [5]. Systematic errors are caused by
poorly calibrated system dynamics; thus, these errors can be
eliminated in theory by involving very careful calibration. In
contrast, stochastic errors are regarded as white noise with
zero mean that comes from measurement error; and hence
such errors cannot be eliminated. IMU calibration is therefore
a critical process in an effort to reduce the systematic errors.

Systematic errors are practically handled by a set of ad-
justable parameters, including inaccurate scaling, sensor axis
mis-alignments, cross-axis sensitivities, and non-zero biases.
These parameters are set as vectors or matrices in most of the
implementations of IMU calibration, [6], [7]. With the help
of these parameters, through matrix multiplication operations,
the original data of a sensor with systematic errors can be
transformed into more accurate data without systematic errors.
A number of optimisation algorithms, such as “least square
method” [6] and “Kalman filter” [7] [8], are often employed
to optimise these parameters. Because of the limited size of
MEMS sensor devices, the scale factor of a accelerator is a
nonlinear parameter. For instance, if the value along the x-
axis is 1g, the scale factor is 0.9; however, if the value is 5g,
the scale factor changes to 1.1; and if the value is −6g, the
scale factor is 1.2. The scale factor of the gyroscope device is
also nonlinear. Therefore, the scale factor must be non-linearly
represented, in order to better reduce the systematic errors.

Studies have attempted to non-linearly model the scale
factor of accelerometers. A method was proposed for the
calculation of a nonlinear parameter for the scale factor of an
accelerometer [9]; however, because the data for calibration is
collected only in the gravitational field, the calculated scale
factor of each axis is limited to the range of [-1g, 1g].
Such range-limited parameters thus cannot be used for the
tasks with large gravity value. To overcome this, the work
reported in [10] suggested rotating a sensor around a point to
detect centripetal and Euler acceleration, so as to expand the
detection range of IMU accelerometer [11]–[13]. This work
used a turntable platform to create the rotation, and then to
detect the accelerometer parameters, and the Kalman filter
is used to obtain non-linear parameters. However, the radius
of rotation is calculated from a linear scale factor, which
affects the accuracy of the scale factor parameters. Therefor,
the specification of the values of a radius vector remains a
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challenge.
This paper proposes a method for obtaining nonlinear scale

factors of a sensor without using high-cost instruments, to
address the aforementioned challenge. In this method, the IMU
is affixed to the surface of an object that cannot be easily
deformed. To acquire the raw data of the IMU sensor, two
types of actions are required using the object: (1) rotating the
object and then placing it on a stable base at different attitudes,
(2) throwing and rotating the object along different axes of
rotation; then letting the object to fall freely and catching it
by hand. A filter algorithm in this approach is designed to
extract useful information from the raw data. With these data,
all initial parameters of the IMU sensor are placed into four
cost functions. Weighted least squares are adopted in this work
as the cost functions, to optimize the parameters. Each cost
function weight is derived from the inverse of the variance
of the cost function, which is obtained by accumulating the
variance of the noise from the sampled data. The proposed
work has been validated and evaluated by experiments. The
main contributions of this paper are summarised as follows: (1)
A method is proposed to obtain IMU calibration parameters
that include the nonlinear scale factor. The method covers
a paradigm of data collection and algorithm for calculating
parameters. (2) The weight factors of the cost functions are
derived according to the variance of the noise of the sampled
data.

The rest of this paper is organized as follow: Section II
presents the background of the IMU error model; introduces
the four cost functions for the IMU calibration and global
cost function composed by these four cost function. Section
III describes the calibration, static detector, Runge-Kutta in-
tegration and cumulative variance, and weight parameters of
cost function. Section IV reports the experimental results of
the proposed algorithm on synthetic and real data. This paper
concludes in Section V with future work pointed out.

II. IMU ERROR MODEL AND CALIBRATION COST
FUNCTION

Biases, scale factor errors, cross-coupling errors and random
noise exist in accelerometers and gyroscopes. Higher order
errors and angular rate-acceleration cross-sensitivity may also
present [14]. Nonlinearity errors in the scale factor determine
that the scale factor varies with specific force or angular
velocity. To compensate these errors, the calibration model
of the accelerometer is defined as follows:

ao + δao = T a ∗ fa(as + δas + ba,Ka). (1)

The input of this equation are the raw data of accelerometers,
which are artificially divided into two parts, true states as =
[asx, a

s
y, a

s
z]
T , and the error states δas = [δasx, δa

s
y, δa

s
z]
T . The

true states, as, are the ideal measurement values in sensor
frames. The error states, δas, are the measurement errors
that cannot be eliminated and are independent from as. Each
triad of δas is an independent white noise with a mean value
of zero. The vector, ba = [bax, b

a
y, b

a
z ]T , represents the bias

compensation. The scale factor function, fa, produces a 3×1

dimensional vector of 3-order nonlinear equations for each
axis:

fa(

axay
az

 ,Ka) =

ka11ax + ka12a
2
x + ka13a

3
x

ka21ay + ka22a
2
y + ka23a

3
y

ka31az + ka32a
2
z + ka33a

3
z

 , (2)

where, Ka = [ka11, k
a
12, k

a
13, k

a
21, k

a
22, k

a
23, k

a
31, k

a
32, k

a
33] rep-

resents the parameters of fa. The reason for choosing the 3-
order polynomial function is that the nonlinear system requires
an odd function and an even function. The theoretical basis
of this consideration comes from any continuous function
that can be expressed as a combination of an odd function
and an even function. The quadratic function is a simple
even function; in addition, the cubic function is a simple odd
function. Therefore, the scale factor function f is produced as
a 3-order polynomial nonlinear equation.

T a is a 3×3 matrix that eliminates the effects of the cross-
coupling errors and converts the data from non-orthogonal
to orthogonal. Conventionally, inspired by [15], for small
angles, a measurement aS in a non-orthogonal frame can be
transformed in the orthogonal body frame aB :

aB = TaS ,T =

 1 −θyz θzy
θxz 1 −θzx
−θxy θyx 1

 . (3)

In the presented calibration method, we employ the accelerom-
eters orthogonal frame AOF [6], where θxz , θxy , and θyx
become zero. Therefore, in the case of accelerometers, T a

becomes:

T a =

1 −αyz αzy
0 1 −αzx
0 0 1

 . (4)

The calibrated outputs of interferometers are also divided
into two parts: true states, ao = [aox, a

o
y, a

o
z]
T transformed from

as, and error states, δao = [δaox, δa
o
y, δa

o
z]
T transformed from

δas. The mean of δao is 03×1 and δao cannot be eliminated.
The superscript s, denotes the raw data from sensor; the
superscript o represents the data is in calibrated frame; the
superscript a represents the acceleration parameters.

Similarly, the calibration model of the gyroscope is defined
as:

ωo+δωo = T g∗fg(ωs+δωs+bg+Gg(ao+δao),Kg). (5)

The inputs are the true state, ωs = [ωsx, ω
s
y, ω

s
z]
T , and the

error states δωs = [δωsx, δω
s
y, δω

s
z]
T , in the sensor frames.

The gyroscope bias compensation is bg = [bgx, b
g
y, b

g
z]
T . An

additional parameter g-dependent bias, Gg [14], is defined as:

Gg =

G1 G2 G3

G4 G5 G6

G7 G8 G9

 . (6)

The low-cost IMU gyroscopes measure the Coriolis force [14]
to obtain the angular velocity. The specific force ao also affects
the oscillating mass. Therefore Gg (i.e., the g-dependent bias
matrix) is employed here to remove the effect of specific force.
The scale factor function, fg , produces 3 × 1 dimensional
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vector for each axis:

fg(

ωxωy
ωz

 ,Kg) =

kg11ωx + kg12ω
2
x + kg13ω

3
x

kg21ωy + kg22ω
2
y + kg23ω

3
y

kg31ωz + kg32ω
2
z + kg33ω

3
z

 , (7)

where, Kg = [kg11, k
g
12, k

g
13, k

g
21, k

g
22, k

g
23, k

g
31, k

g
32, k

g
33] repre-

sents the parameters of fg; and superscript g represents the
gyroscope parameters. T g guarantees that the gyroscope and
accelerometer measurement refers to the same frame in the
AOF case [6]. Therefore, in the gyroscope case, T g becomes:

T g =

 1 −γyz γzy
γxz 1 −γzx
−γxy γyx 1

 . (8)

The outputs are the true states, ωo = [ωox, ω
o
y, ω

o
z ]T , and error

states, δωo = [δωox, δω
o
y, δω

o
z ]T , in the calibrated frames; in

addition, the coordinate system of ωo are identical with that
of ao.

A. Cost Function of Accelerometer

The parameters in the matrix of the accelerometers can
be represented as a vector: θa = [αyz, αzy, αzx , bax, b

a
y, b

a
z ,

ka11, k
a
12, k

a
13, k

a
21, k

a
22, k

a
23, k

a
31, k

a
32, k

a
33]. For simplicity, the

calibration model of the accelerometer, as defined in Eq. 1,
can be restated as follows:

ao+δao = h(as, δas,θa) = T a∗f(as+δas+ba,Ka). (9)

If the sensor is in a stationary state, the resultant output force
of the corrected accelerometers is 1g. Thus the cost function
of the accelerometer calibration can be defined as follows:

La(θa) =

M∑
k=1

(‖h(ask,θ
a)‖2 − ‖g‖2)2, (10)

where the vectors, ask, measured in the sensor frame, are the
means of acceleration data in a temporal window tw; and the
acceleration data is collected from the sensor in different (M )
attitudes.

B. Cost Function of Gyroscopes

The unknown parameters for gyroscope calibration can be
represented as: θg = [γyz , γzy , γxz ,γzx, γxy ,γyx, bgx, bgy , bgz ,
kg11,kg12, kg13,kg21,kg22,kg23,kg31,kg32, kg33,G1, G2, G3, G4, G5,
G6, G7,G8,G9]. Two cost functions are employed for the
gyroscope calibration in two different states. When the sensor
is in stationary, the ideal output of the gyroscope is the vector,
03×1, which can be defiend as:

L1
g(θ

g) =

M∑
k=1

‖ωsk + bg +Ggaok‖2, (11)

where ωsk are the means of the gyroscope data in a temporal
window tw, and ωsk and ask are measured simultaneously. aok
is calibrated from ask by following Eq. 9.

When the sensor is moving, the gyroscopes record changes
in the attitudes as the gravity vector changes along with the
attitude of the sensor. this means the accelerometers detect

𝜔

𝑃

𝑥

𝑦

𝑧𝑂

𝑟

(a)

 𝜔

𝑃

𝑥

𝑦

𝑧
𝑂

𝑟

(b)

Fig. 1. (a) Centrifugal force in IMU. Red arrow represents Centripetal force,
that is in a plane with angular velocity ω and radius r simultaneously vertical
to angular velocity ω. (b) Euler acceleration in IMU. Green point represents
Euler acceleration, that is a arrow vertical to angular velocity ω and radius
r and point to paper inside.

different gravity vectors at different attitudes in the moving
state, which can be concisely represented as:

aok + δaok = (Rk−1,k + δRk−1,k)(aok−1 + δaok−1), (12)

where the initial gravity vector is aok−1 ,and δaok−1 is the
measurement errors of aok−1; aok is the gravity vector after
the change of attitude, and δaok is the measurement errors
of aok; Rk−1,k represents the rotation matrix, indicating the
transformation from the k − 1 attitude to the k attitude, and
δRk−1,k is the measurement errors of Rk−1,k that come form
the error in angular velocity measurement. Rotation matrix
Rk−1,k is derived from the quaternion q = [q0, q1, q2, q3]T

using the following:

R =

1− 2q22 − 2q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1− 2q21 − 2q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2q21 − 2q22

 .
(13)

The quaternion, q, represents the attitude. The updating of
quaternion, qn, is achieved from the accumulation of the se-
quence of n angular velocity, ωoi . Therefore, the cost function
for the gyroscope calibration in moving state is defended as:

L2
g(θ

g) =
M∑
k=2

‖aok −Rk−1,ka
o
k−1‖2. (14)

C. Cost Function of Weightless IMU
As the three axes of the accelerometer are capsuled in a

3× 3× 1mm3 cubic space, for simplicity, it is presumed that
the sensitive axes of the accelerometer triad meet at one point
in this work. The error led by this presumption is neglectable
in comparison to the errors that arise from nonlinearity [16].
IMU is always attached to a rigid ball when utilised. When
the rigid ball rotates, the acceleration as detected in the sensor
frame can be defined as [14]:

as = ab+ωb×ωb×rbs+ 2ωb× ṙbs+ ω̇b×rbs+ r̈bs (15)

where ab denotes the inertial acceleration of the rigid body;
rbs is the radius from the center of gravity to the origin of
sensor frame; ṙbs and r̈bs are the first and second derivatives
of rbs, respectively; ωb is the vector of angular velocity in the
rigid body frame; ω̇b is the first derivative of ωb. The term,
ωb×ωb×rbs, represents a centripetal acceleration. The term,
2ωb×ṙbs, is known as Coriolis acceleration [14] and the term,
ω̇b× rbs, is an Euler acceleration (or tangential acceleration).
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The term, ab, is the combined force of all the forces received
by the rigid body. ab includes gravity and air resistance of the
rigid body during vertical movement. Gravity accelerates the
rigid ball downward. If ignoring the air resistance, the vertical
force felt by the sensor is 03×1. Since the air resistance in the
direction of motion is related to the velocity of the rigid body;
it is necessary reduce the impact of air resistance. If the rigid
body is thrown at the highest point, the vertical speed is 0, and
the air resistance is also 0. Controlling the height of the tossed
rigid ball will effectively reduce the vertical movement speed
of the rigid ball. The radius of the rigid ball is 0.1 meters.
If the height of the rigid body tossed is 0.1m, the maximum
speed is 1.40m/s, and the maximum air resistance is 0.012N .

As the rigid body rbs is a constant, ṙbs and r̈bs are 03×1.
The Coriolis acceleration, 2ωb×ṙbs, are 03×1. When the rigid
body is at the highest point after tossed, the sensor can only
detect centripetal acceleration and Euler acceleration:

as = ωs × ωs × rbs + ω̇s × rbs. (16)

1) Centripetal acceleration: The centrifugal force of IMU
is illustrated in Fig. 1-a, where ω represents the angular
velocity; P is the center of gravity of the rigid body; O is the
origin of sensor frame. The radius, r, is the vector from O to
P . The centripetal acceleration fC(ω, r), is calculated as:

fC(ω, r) =

 (ω2
y + ω2

z)rx − ωxωyry − ωxωzrz
−ωxωyrx + (ω2

x + ω2
z)ry − ωyωzrz

−ωxωzrx − ωyωzry + (ω2
x + ω2

y)rz

 , (17)

where ω = [ωx, ωy, ωz]
T and r = [rx, ry, rz]

T .
2) Euler acceleration: If a subject throw a rigid body to

rotate in the air, the resultant force from the hand does not
completely act on the rigid center of gravity. The resultant
force causes the rigid body’s rotation axis to precess around a
certain axis. The change in the rotation axis produces the Euler
acceleration. Due to the conservation of energy, the combined
speed of rotation is constant, so that the combined speed will
be used in the determination of weightlessness of rigid bodies.

The Euler acceleration is illustrated in Fig. 1-b, where ω̇ is
the first derivative of ω. Note that the directions of ω and ω̇
are not in parallel in most cases; then the Euler acceleration
is calculated as follows:

fE(ω̇, r) =

ω̇zry − ω̇yrzω̇xrz − ω̇zrx
ω̇yrx − ω̇xry

 , (18)

where ω̇ = [ω̇x, ω̇y, ω̇z]
T . Using Eq.17 and Eq.18 to rewrite

Eq. 16, the cost function of the IMU in weightless situation
is then defined as follows:

Lweightless(θ
a,θg, r) =

N∑
j=1

‖aoj − fC(ωoj , r)− fE(ω̇oj , r)‖2,

(19)

where, N is the number of frames of data in the weightless
state detected by the static detector operator; ω̇ in the term,
fE(ω̇, r), can be calculated using:

ω̇j =
ωj−2

12∆t
− 2ωj−1

3∆t
+

2ωj+1

3∆t
− ωj+2

12∆t
+O(∆t4), (20)

where ωj−2, ωj−1, ωj , ωj+1, ωj+2 are samples of the

gyroscope in interval, ∆t.

D. Global Cost Function

The weights of the cost functions are used to constitute a
global cost function, which can be defined as:

L(θa,θg, r) =
M∑
k=1

C1(‖h(ask,θ
a)‖2 − ‖g‖2)2

+
M∑
k=1

C2‖ωsk + bg +Ggaok‖2

+
M∑
k=2

C3‖aok −Rk−1,ka
o
k−1‖2

+
N∑
j=1

C4‖aoj − fC(ωoj , r)− fE(ω̇oj , r)‖2,

(21)
where, the weight coefficients C1,C2,C3, and C4 enable the
cost functions to have the same contribution to the global cost
function during parameter optimisation. The weight coeffi-
cients are the reciprocals of the variances of the cost functions,
which will be detailed in Section III-C. The following section
introduces the procedure of the calibration algorithm.

IMU remains at one attitude for a 
period of time, 𝑇"#"$ seconds

transfers to another gesture and 
remains at a new attitude for a 

period of time, 𝑡& seconds

Static detector

Stationary 
data

Movement 
data

Minimize 
Eq.10

'𝜃) '𝜃*

Get weight parameter 𝐶,, 𝐶-, 𝐶., 𝐶/, then minimize Eq.21

𝜎)-,𝜎*-

Minimize 
Eq.11

Minimize 
Eq.14

𝜃), 𝜃*,𝑟

IMU is affixed to the basketball

throws ball into the air and 
catches it, while it’s spinning,

and repeats  N times

Weightless 
data

Minimize 
Eq.19

�̂�

RD1 RD2

Step 1

Step 2

Data collection

Parameters  calculation

Fig. 2. Diagram of calibration protocol

III. CALIBRATION PROCEDURE

The proposed calibration protocol is shown in Fig. 2, which
consists of a data collection part and a parameter calculation
part. In the data collection stage, two types of raw IMU
data (RD1 and RD2) must be collected from different sensor
motions. For RD1, the sensor is set at M different poses.
Each pose is stably placed for at least tw seconds. In addition,
the time of the first pose placed is set to Tinit seconds,
longer than tw. The transition from a pose to another pose
is manually controlled. Thus, data of the sensor in stationary
and movement can be then acquired.

The parameter calculation is performed in two steps: Step
1 initialises the parameters θa, θg and r. Through filtering, the
raw data RD1 is divided into stationary data and movement
data; the raw data RD2 is for the presumption of weightless
IMU (denoted as “weightless data”). The stationary data are
fed into the cost functions as specified in Eqs. 10 and 11, with
T̂ a,K̂a,b̂a, b̂g and Ĝg being the output. The movement data
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and T̂ a, K̂a, b̂a, b̂g , Ĝg are substituted into the cost function
defined in Eq. 14, leading to the pre-estimated parameters
T̂ g and K̂g . Note that, for simplicity, only the first column
k11, k21, k31 of K̂a and K̂g are calculated; the other items
are set as 0. Then, the weightless data and T̂ a,K̂a,b̂a, b̂g ,Ĝg

T̂ g ,K̂g are used to calculate the radius r̂ from the center of
the sensor to the center of the rigid object. Step 2 optimise
the initialised parameters set in Sept 1 in an effort to optimize
the global cost function as defined in Eq. 21.

The Levenberg-Marquardt (LM) algorithm is employed here
to minimize these cost functions as demonstrated by Eqs. 10,
11, 14, 19, and 21. After several iterations, if the difference
between the cost function of the current parameters and the
cost function of the previous step parameters is less than a
preset threshold; then, the parameters have reached the optimal
values. Note that, the LM algorithm is merely used as an
optimization tool, which solves the optimization problem of 45
parameters in the cost function. It is difficult to simultaneously
optimize 45 parameters for general problems. If the initial
values are not selected properly, it is easy to fall into local
optimums, which makes the calibration failed. The calibration
algorithm proposed in this work might fall into the local
optimum only in setting the initial value.

For the convergence issue, first of all, IMU has an absolute
calibration parameter, in the case of excluding random walks.
Second, the absolute calibration parameter has the minimum
value under each sub-cost functions Eqs. 10, 11, 14, 19, and
global cost function Eqs. 21. In the calculation of the initial
value, if the initial parameters, θ̂a, θ̂g , and r̂a, satisfy the
minimum sub-cost function value, the estimation is close to the
absolute calibration parameter. Therefore, substituting these
initial values into the global cost function can obtain a closer
estimation of the absolute calibration parameters.

A. Static Detector
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Fig. 3. An example of static detector for RD2. The red line represents the
static detector.

As discussed earlier, the streams of raw data RD1 and
RD2 are divided into three forms: stationary, movement and
weightless data. In the static state, although a bias is existing,
the resultant velocity of rotation does not change. Conversely,
the gyroscope’s value will change during the movement. In the
weightless state, the resultant velocity of rotation is constant.

The variance based static detector operator as reported in
the work of [17] is used here as a shear. From this, the variance

of the gyroscopes, [ωtx;ωty;ωtz] is defined as:

ς(t) = vartw(
√

(ωtx)2 + (ωty)2 + (ωtz)
2), (22)

where vartw() is an operator to compute the variance in a
time window, tw seconds, and t represents a time point which
is the center of the time window.

A threshold is defined as the multiplication of the square of
the variance magnitude ςinit from Eq. 22 and n for all data
captured in the initialization period of Tinit. The length of
Tinit is calculated by Allan variance [18]. To classify data, a
simple check is built to determine whether the value of ς(t) is
less or greater than the threshold nςinit. The result of the static
detector is separated into M segments of stationary data and
M-1 segments of movement data. Fig. 3 shows the segment
of three-axis angular velocity in RD2. The static detector is
shown by a red line, which indicates that the sensor is in a
weightless state.

B. Attitude Integration and Cumulative Variance
The attitude of the sensor is expressed in the form of a

quaternion q. The differential of q describes the quaternion
kinematics, which can be expressed as [19]:
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(23)

where [θx, θy, θz] = [ωx, ωy, ωz]∆t is 3-axes angule
in unit time from 3-axes angular velocity, and θ =√
θx

2 + θy
2 + θz

2.
In the presence of noise δω in angular velocity measure-

ment, the attitude update of IMU is similar to Gaussian
process. Then calculate the variance of the accumulated error,
assuming that the variance of the cumulative altitude error
of the kth time is D[qk + δqk] = [σ2

qk0
, σ2
qk1
, σ2
qk2
, σ2
qk2

]T . The
derivation of he cumulative altitude error of the k + 1th time
is as follows:
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C. Weight Parameters of Cost Function

The weight coefficients C1, C2, C3 and C4 are derived
from the reciprocals of the variances of the cost functions.
When the calibration parameters are accurate, the variance
of the cost functions is originated from the white noise of
the measurement data. The variances [σ2

asx
, σ2
asy
, σ2
asz

]T and
[σ2
ωs

x
, σ2
ω2

y
, σ2
ωs

z
]T in the sensor frame are obtained by the

statistics of RD1 at the beginning Tinit interval. The vari-
ance σ2

ao of δao in calibrated frame is [σ2
aox
, σ2
aox
, σ2
aoz

]T =

[ka11
2σ2
asx
, ka21

2σ2
asy
, ka31

2σ2
asz

]T , whilst the variance σ2
ωo of δωo

is [σ2
ωo

x
, σ2
ωo

x
, σ2
ωo

z
]T = [kg11

2
σ2
ωs

x
, kg21

2
σ2
ωs

y
, kg31

2
σ2
ωs

z
]T . The pa-

rameters such as ka11 and kg11 are obtained from the pre-
estimation of θ̂

a
and θ̂

g
. The effect of T a and T g are ignored,

when calculating the calibrated frame variances. For the con-
venience of calculation and expression, the three components

of σ2
ao are replaced by their mean values σ̄2

ao =
σ2
ao
x
+σ2

ao
y
+σ2
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z

3 ,

σ̄2
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3 and σ̄2
ωo =
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x
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y
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z

3 , respectively.
The variance of the cost function as specified in Eq. 10 is:

D[‖h(as, δas,θa)‖2 − ‖g‖2]

=2(σ4
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+ σ4
aoy

+ σ4
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) + 4[aox
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2σ2
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].
(25)

The variance of the cost function Eq. 11 is:

D[ωsk + δωsk + bg +Gg(aok + δaok)]
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The variance of the cost function Eq. 14 can be expressed
as:

D[aok + δaok − (Rk−1,k + δRk−1,k)(aok−1 + δaok−1)]

=

g2(4σ2
qm + 8σ4

qm) + 2σ̄2
ao

g2(4σ2
qm + 8σ4

qm) + 2σ̄2
ao

g2(4σ2
qm + 8σ4

qm) + 2σ̄2
ao

 . (27)

In this equation, the cumulative error σ2
qm is led by the angular

velocity error. For the convenience of calculation, the variance
of each component of qm is set as a common value, and
the variance iteration formula of a single component can be
expressed as:
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4
σ̄2
ωo ,

(28)

where ω̄ is the average of the absolute value of the angular
velocity in the movement data.

The variance of the cost function Eq. 19 is:

D[ao + δao − fC(ωo + δωo, r)− fE(ω̇o + δω̇o, r)]

=
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(29)

where ωmax is obtained by counting the weightless data,

which is the maximum absolute value of the angular velocity
of the three axes; r̂x, r̂y , and r̂z are the three components of
the pre-estimated r̂.

From Eqs. 25-29, to summarise, the weight coefficients can
be obtained by:

C1 =
1

6σ̄4
ao + 4g2σ̄2

ao

C2 =
1

σ̄2
ωs + 3(Ĝmax)2σ̄2

ao

C3 =
1

2σ̄2
ao + g2(4σ2

qm + 8σ4
qm))

C4 =
1

max(Eq. 29)
,

(30)

where Ĝmax is the largest absolute number in the matrix Ĝ.

IV. EXPERIMENTS

The proposed algorithm was validated and evaluated on
both synthetic data and real-world data. In particular, the
synthetic data was generated to simulate the sensors under
different motions with artificial parameters. The parameters
led by the proposed algorithm were then compared with the
artificial parameters, and the variance of difference values
between the two set of parameters was presented and analysed.
The proposed algorithm has also been applied to real-world
benchmark data set for a comparative study in reference to
the results resulted from the existing algorithms using same
IMU data. The comparative study was conducted using two
measurement approaches, including the measurement of the
accuracy of centripetal acceleration for accelerometer, and the
measurement of the accuracy of the attitude updating for the
gyroscopes. In the third part of the experiments, the calculated
parameters are applied to the real application scene, and a state
detector is designed to detect whether the rigid body with an
IMU device is in a falling state.

A. Experiment on Synthetic Data
The synthetic data contains two sets of data streams: RD1

is the sensor static-movement data, RD2 is the sensor data on
rigid body in free fall with spinning. At first noise-free data in
the two sets is generated. Secondly, distort parameters of T ,K
and b are added to transform the generated data. Thirdly, the
Gaussian noise ν with 0 mean and σa for accelerometers and
σg for gyroscopes is added. The following equations complete
the conversion process for the accelerometers and gyroscopes.

assyn = f−1
a ((T a)−1aosyn,K

a)− ba + νa (31)

ωssyn = f−1
g ((T g)−1ωosyn,K

g)− bg −Gga
o + νg (32)

In RD1 generation, n1 = 40 different accelerometer vectors
are randomly created under the condition that all norms of
these vectors are ‖g‖. Expand each of accelerometer vectors
with [0, 0, 0] gyroscope vector to be a sequence data in time
t1 = 3sec as stationary data. Calculate the angular velocity by
divide the angle between accelerometer vectors aoi−1,syn and
aoi,syn in t2 = 2sec. Meanwhile the accelerometer vector area
gradual linear transformation process from aoi−1,syn to aoi,syn
in t2 = 2sec. The time varying data accelerometer vector and
angular velocity is the movement data. The stationary data and
movement data are alternately connected.
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In RD2 generation, n2 = 100 set of accelerometer vectors
and angular velocity ωo under weightlessness in t = 1secis
obtained by the following Eq.33. This equation describe two
combination movements: rotation and coning motion.ωox,synωoy,syn

ωoz,syn

 =
R(qrand)√
ω2
set + 802

sin(ψ(t))ωset
cos(ψ(t))ωset

80

 (33)

where R(qrand) is a rotation matrix, which is obtained by
substituting a randomly generated quaternion qrand in Eq. 13.
ωset = 2π[ 14rand() + 3

4 ]Vspin is used to randomly generate
angular velocity vectors, here rand() is function to obtain a
random number with a mean of 0 and a variance of 1. Vspin
is the velocity of the rigid body when it is rotating in the air,
Vspin is set to 7. ψ(t)) = 0.8t+ 2πrand() is a function that
generates a sequence of rotation axes. The angular acceleration
ω̇syn is derived from the Eq. 33. The aosyn is obtained by
substituting ωsyn and ω̇syn into Eqs.17 and 18. The sampling
frequency of the entire synthetic data is fixed to 100 Hz.

Twenty sets of RD1 and RD2 are randomly generated using
the above method, so as to obtains 40 sets of parameters for
the proposed algorithm. Then, the means and variances of each
parameters are calculated for the linear model and nonlinear
model. The experimental results are listed in Table I, for each
calibration parameter, the three sub-tables in the upper part are:
set values, calculated mean of the linear model, and calculated
means of the nonlinear model; the two sub-tables of the lower
part are: standard deviations of the linear model, and standard
deviations of the nonlinear model.

The calculation results show that: under the conditions of
the data generated by the nonlinear model, the calculation
results of the nonlinear parameters are closer to the true values
than those of the linear model; in addition, the variances of
our method are also smaller than those of the linear model.

Fig. 4. Hollow steel ball and IMU sensor. The IMU sensor is fixed on the
hollow steel ball.

B. Experiment on Real-World Data

So far, IMU calibration does not have a consensus public
data set. In this paper, we try to use the most simple tools
without the dependency of the accuracy of the tools to obtain
more accurate calibration parameters through calibrations.
However, we can find only one method, i.e., Tedaldi et al.’s
work [6], which does not depend on the accuracy of tools.
Moreover, Tedaldi et al.’s work has the most citations on the

TABLE I
COMPARE PARAMETERS

Cross-Coupling-Accelerometer T a

1 0.03 -0.04 1 0.02963 -0.03952 1 0.03001 -0.04000
0 1 0.035 0 1 0.03523 0 1 0.03502
0 0 1 0 0 1 0 0 1

0 2.2e-6 1.4e-6 0 2.4e-8 2.1e-8
0 0 1.6e-6 0 0 1.5e-8
0 0 0 0 0 0

Cross-Coupling-Gyroscope T g

1 -0.02 0.04 1 -0.02023 0.03979 1 -0.02002 0.04002
0.02 1 -0.02 0.02027 1 -0.01980 0.01998 1 -0.01999

-0.026 0.03 1 -0.02705 0.03014 1 -0.02606 0.02995 1

0 8.5e-6 5.1e-6 0 3.1e-8 3.1e-8
7.0e-6 0 6.8e-6 2.6e-8 0 2.6e-8
7.4e-6 9.6e-6 0 4.2e-8 2.5e-8 0

Scale Factor-Accelerometer Ka

9.81 -0.03 0.04 9.83011 0 0 9.80983 -0.02998 0.03996
9.79 0.04 0.04 9.8108 0 0 9.78998 0.03971 0.03998
9.76 0.03 0.06 9.7962 0 0 9.76000 0.03003 0.05992

5.2e-5 0 0 7.6e-7 3.1e-6 6.8e-8
5.4e-5 0 0 1.0e-6 4.6e-6 6.4e-8
3.6e-5 0 0 9.3e-7 4.6e-6 1.4e-7

Scale Factor-Gyroscope Kg

3.12 0.015 0.023 3.12091 0 0 3.12003 0.01498 0.02300
3.15 -0.027 0.021 3.15932 0 0 3.14993 -0.02701 0.02101
3.09 0.02 0.03 3.09132 0 0 3.08993 0.01997 0.03000

5.7e-5 0 0 1.7e-7 2.4e-8 2.4e-9
3.6e-5 0 0 1.9e-7 2.1e-8 2.1e-9
7.1e-5 0 0 1.7e-7 9.2e-8 3.8e-9

Bias-Accelerometer ba

0.04 0.5 -0.35 0.03850 0.50216 -0.34845 0.03999 0.50004 -0.35000

2.6e-7 3.9e-7 2.0e-7 1.3e-8 1.5e-8 2.2e-8

Bias-Gyroscope bg

0.04 -0.15 0.55 0.40006 -0.15014 0.55010 0.40000 -0.15000 0.55000

1.8e-8 1.6e-8 1.4e-8 1.2e-10 1.7e-10 1.4e-10

g-dependent Bias Matrix Gg(10−4)

1 2 -1 0 0 0 1.00290 1.99882 -1.00738
-1 2 1 0 0 0 -1.00012 1.99770 1.00605
2 3 1 0 0 0 1.99540 3.00467 1.00001

0 0 0 8.8e-12 5.9e-12 7.0e-12
0 0 0 5.5e-12 7.2e-12 6.9e-12
0 0 0 8.0e-12 6.1e-12 9.6e-12

Radius r

0.07 0.07 0.07 0.09595 0.09530 0.09034 0.06998 0.06997 0.06997

1.4e-6 1.8e-6 1.2e-6 1.3e-8 1.3e-8 1.3e-8

IMU calibration during recent years. Other methods must rely
on precise equipment, such as [20], [21]. Several methods
must use instruments designed by themselves, [22], [23]. It is
extremely difficult for us to reproduce these devices. Hence,
our method is only compared with Tedaldi et al.’s work in
real-world data.

In this experiment, the IMU sensor ICM42605 from In-
vensense was used for calibration. The full scale range of
ICM42605 is ±2000dps (degrees per second) for gyroscope
and ±16g for accelerometer. The parameters are set as: for
RD1,M = 20, Tinit = 60sec, Tw = 2sec and n = 6; for
RD2, N = 100, tw = 0.05sec and n = 1000. A hollow steel
ball was used as the rigid body in the experiment. The IMU
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sensor was mounted on the surface of the ball, as shown in
Fig. 4. To collect RD1, the ball was manually switched to a
different posture for a period tw. To collect RD2, the ball was
thrown vertically and rotated, the rotation axis is random, and
200 sets of data were collected under such conditions.

The accuracy of the algorithm was accessed by a indirect
method, to aovid the use of a professional measuring instru-
ment. The test data RD3 was collected by throwing the hollow
steel ball vertically, catching the ball and placing it on the
stable base; This was repeated for ten times and then ten
data sets were collected. The accuracy of the acceleration cal-
ibration was determined by calculating the difference between
the acceleration measurement and the centripetal force and
the Euler force. The accuracy of the gyroscope calibration
was accessed by examining the angle between the gravity
calculated by the attitude and the true gravity. Note that the
more accurate the gyroscope is calibrated, the smaller the
angle becomes.

The acquisition of RD1 is also applicable to the calibration
algorithm of Tedaldi D [6], which is a linear model. In this
experiment, a set of calibration parameters is calculated by
the algorithm Tedaldi D. Four combinations of the parameters,
including Linear, Quadratic, Cube and All are calculated
using the proposed algorithm. Here, Linear indicates that the
scale factors of the calibration model is linear and the g-
dependent bias Gg is ignored; and in the calculation process
only RD1 is used and, C4 in the global cost function is
set to 0; Quadratic and Cube respectively indicate that the
scale factors of the calibration model are quadratic and cube,
and the g-dependent bias Gg is ignored. All indicate that
all parameters mentioned in this paper are calculated. The
calculated parameters that are obtained by Tedaldi D and the
proposed algorithms are summarised in Table II.

The accuracies of the acceleration calibration from different
sets of parameters as listed Table II are summarised in Table
III. In particular, the RD3 is extracted by the static detector
operator, and the error is calculated by:

L(θa,θg, r) =

S∑
j=1

‖aoj − fC(ωoj , r)− fE(ω̇oj , r)‖2. (34)

Note that a smaller error indicates better accuracy of the
calibration parameters. S represents the number of frames of
RD3 in a weightless state.

The accuracies of the gyroscopes calibration from different
sets of parameters are listed in Table IV. A performance
indicator is designed as the cos value of the angle between
the two vectors aoj and Rj−1,ja

o
j−1:

L(θa,θg) =
S+1∑
j=2

aoj
TRj−1,ja

o
j−1

‖aoj‖‖aoj−1‖
. (35)

The closer the cos value to 1, the more accurate the calibration
parameters are. The parameter r was not used in the models
in Tedaldi D and Linear in the process of calculating the
performance indicator, but r was used when calculating All.

The ranking of the precisions from low to high of different
parameters are summarised in Tables III and IV, including

TABLE II
CALCULATED PARAMETERS

Tedaldi D Our Method
linear quadratic cube all

αyz 1.4387e-04 1.5988e-03 1.3055e-03 1.4718e-03 1.4910e-03
αzy -1.6944e-03 -3.8875e-03 -3.3402e-03 -3.3564e-03 -3.3904e-03
αzx 4.5197e-04 3.5809e-03 3.7436e-03 3.6216e-03 3.6206e-03

bax(m/s
2) 1.5359e-03 5.6602e-04 1.1061e-03 9.7759e-04 9.9456e-04

bay(m/s
2) 1.8357e-03 2.8507e-03 3.0009e-03 3.0966e-03 3.0840e-03

baz(m/s
2) -3.575e-03 -3.8443e-03 -4.0922e-03 -3.8634e-03 -3.8754e-03

γyz -4.4878e-03 -5.2886e-04 -5.998e-04 -5.2218e-04 -4.9946e-04
γzy -2.3963e-03 -1.0262e-02 -1.0011e-02 -1.0019e-02 -1.0046e-02
γxz 7.1768e-03 5.8778e-03 5.8353e-03 5.8536e-03 5.8725e-03
γzx 4.1875e-03 2.1119e-03 2.3471e-03 2.276e-03 2.2758e-03
γxy 1.1272e-02 9.1793e-03 1.0216e-02 1.02e-02 1.0138e-02
γyx 4.0622e-04 2.652e-03 2.8927e-03 2.8124e-03 2.8249e-03

bgx(rad/s) -1.2961e-03 -1.4304e-03 -1.3405e-03 -1.3435e-03 -1.3494e-03
bgx(rad/s) -1.2349e-03 -1.6229e-03 -1.3244e-03 -1.3271e-03 -1.3124e-03
bgz(rad/s) 1.9384e-05 1.0797e-04 4.5239e-05 4.8474e-05 6.8465e-05
rx(m) 1.4096e-03 1.4057e-03 1.4045e-03 1.4082e-03
ry(m) 5.8362e-03 5.852e-03 5.8415e-03 5.8413e-03
rz(m) -1.0941e-01 -1.0942e-01 -1.0937e-01 -1.0938e-01

ka11(m/s
2) 9.7882e+00 9.7958e+00 9.7935e+00 9.7976e+00 9.7976e+00

ka12 -9.7025e-03 -9.3689e-03 -9.3256e-03
ka13 -6.7377e-04 -7.2719e-04

ka21(m/s
2) 9.7926e+00 9.7964e+00 9.7945e+00 9.7976e+00 9.7974e+00

ka22 -6.8205e-04 7.2986e-04 7.9315e-04
ka23 -7.5889e-04 -7.7014e-04

ka31(m/s
2) 9.7848e+00 9.7855e+00 9.7885e+00 9.7856e+00 9.7857e+00

ka32 1.8747e-03 2.3233e-05 1.1308e-04
ka33 -1.5299e-04 -1.4873e-04

kg11(rad/s) 3.1351e+00 3.1323e+00 3.1327e+00 3.1346e+00 3.1345e+00
kg12 -3.1524e-05 -3.6341e-05 -2.3754e-05
kg13 -1.6504e-05 -1.5991e-05

kg21(rad/s) 3.1125e+00 3.1183e+00 3.119e+00 3.1181e+00 3.1181e+00
kg22 -3.955e-05 -2.1107e-05 -5.1553e-05
kg23 2.7426e-05 2.6358e-05

kg31(rad/s) 3.1228e+00 3.1196e+00 3.1222e+00 3.1183e+00 3.1183e+00
kg32 -2.9493e-04 -2.3602e-04 -2.3978e-04
kg33 1.1842e-04 1.1732e-04

G1(rad ∗ s/m) -3.4576e-06
G2(rad ∗ s/m) -3.1213e-06
G3(rad ∗ s/m) 2.1329e-06
G4(rad ∗ s/m) -8.7706e-06
G5(rad ∗ s/m) -3.5515e-07
G6(rad ∗ s/m) -7.1096e-06
G7(rad ∗ s/m) -1.6885e-05
G8(rad ∗ s/m) -8.1315e-07
G9(rad ∗ s/m) -2.4591e-06

TABLE III
PARAMETERS USED TO COMPARE ACCELEROMETERS

Tedaldi D Our Method
linear quadratic cube all

66.31 15.96 14.37 13.70 13.62
43.68 20.60 17.27 13.31 12.24
34.88 17.35 15.63 15.92 15.12

151.10 89.81 88.65 89.34 87.50
114.52 45.41 32.88 30.12 30.37
123.58 48.95 45.54 37.02 36.72
197.54 60.41 58.26 52.61 52.28
362.41 230.00 204.44 191.81 192.14
201.92 68.36 59.41 56.67 56.86
342.84 177.00 140.16 131.85 132.35

Tedaldi D, Linear, Quadratic, Cube and All. In particular,
Linear and Tedaldi D shared identical data and model param-
eters, but Linear has achieved relatively better performances
for the global cost function for the overall optimization of the
parameters. Quadratic shown a better performance than Linear
for the accelerator and angular velocity. Compared with Linear
and Quadratic, Cube had an essential improvement in the ac-
celeration and angular velocity. All has one more parameter, g-
dependent bias Gg , than Cube. The average reduction percent-
age of the acceleromters error is 64.12% in Table III, obtained
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TABLE IV
PARAMETERS USED TO COMPARE GYROSCOPES

Tedaldi D Our Method angle(π)linear quadratic cube all
0.99962 0.99813 0.99924 0.99913 0.99932 30.6
0.96867 0.95936 0.97081 0.98862 0.98881 55.9
0.87617 0.84341 0.88079 0.95506 0.95282 77.7
0.94326 0.95452 0.98280 0.99450 0.99546 99.8
0.95350 0.95584 0.98621 0.98905 0.99092 115.6
0.95631 0.95619 0.97603 0.94215 0.94735 128.7
0.60969 0.67034 0.79010 0.94798 0.94109 140.2
0.68052 0.73106 0.85015 0.97835 0.97443 148.0
0.71950 0.72965 0.84653 0.98860 0.98521 154.8
0.72404 0.79269 0.90238 0.99922 0.99828 159.0

TABLE V
PARAMETERS OF IMU IN IPHONE

T a T g

1 -1.9609e-03 5.3115e-03 1 3.1193e-04 6.8747e-03
0 1 1.4379e-03 2.2605e-03 1 8.7853e-04
0 0 1 2.6503e-03 -2.4195e-03 1

Ka Kg

1.0018 -2.0349e-04 -2.9115e-05 0.99827 6.2259e-05 -7.4481e-06
1.0015 -5.3635e-05 -2.2143e-05 1.0070 1.6163e-04 -2.9095e-05
0.99638 -1.2255e-04 5.1980e-05 0.99831 -8.1644e-04 8.3276e-06

Ba(m/s2) Bg(rad/s)

-7.6651e-03 2.0240e-02 9.0172e-02 -9.4971e-05 7.2700e-05 1.7860e-04

r(m) Gg

-1.4174e-02 -2.0610e-02 1.9555e-03 -8.7428e-07 -1.8119e-05 -2.5090e-06
8.6587e-07 -1.4582e-05 -1.1737e-05
-1.8528e-05 2.7332e-05 1.8225e-05

by:
∑

(1−L(θaall,θ
g
all, rall)/L(θaTedaldi,θ

g
Tedaldi, rall))/N .

Also, The average reduction percentage of the gyro-
scopes error is 47.90% in Table IV, obtained by:

∑
(1 −

arccos(L(θaall,θ
g
all))/ arccos(L(θaTedaldi,θ

g
Tedaldi)))/N .

By observing Tables III and IV, The g-dependent bias
Gg , does not substantially improve the accuracy of the IMU
calibration, compared to Cube. The reason is that the accuracy
of the MEMS sensor used in this experiment cannot accurately
calculate the true g-dependent bias Gg . To summarise, the
nonlinear scale factor has led to better performance over a
larger range of the sensor, and the global cost function further
improved the accuracy.

The models and algorithms presented in this paper out-
performed those referenced approaches utilised in the experi-
ments. In the calibration model, the scale factor of the sensor
conforms to a linear property in a small range, that is a fixed
value, but the scale factor varies if a larger range of the sensor
is used, which led to the necessity of a nonlinear scale factor.
This is achieved by globally optimising the cost function such
that all parameters are optimised in the same time. In addition,
the weights of the sub cost functions also ensure that the
calibrated parameters are achieved for an optimal solution.

C. Experiment on Application Scene

In the experiment, a state detector is designed to detect
whether a rigid body (a mobile phone) with an IMU device is
in the falling state. The rigid body in the experiment is chosen
as “iphone 8”, and the “Phyposx App” in the iphone is utilized
to collect the IMU data.

Using the algorithm mentioned above, we calculate the
parameters of the IMU. In the collection of RD1, the iphone
was placed in different attitudes for 20 times. In the collection
of RD2, the iphone was thrown up by different rotation axis
and different rotation speeds. The iphone was thrown for 12
times in the experiment. Note that a soft bed surface was
chosen for the throwing place to avoid breaking the iphone.

The parameters present in Table V are the processed results
by our IMU calibration method. Our method successfully
generated the parameters for T a, T g , Ka, Kg , Ba,Bg , Gg

and r. The position of the iphone’s gravity center in the IMU
coordinate system is [−14.174,−20.610, 1.9555]mm.

[14.17,
20.61,
-1.96]mm
IMU

Fig. 5. The position of IMU in the phone’s coordinate system. On the left side
the pink point is the calculated IMU position. On the right side, the position
pointed by the red arrow is the real position of the IMU in an iphone 8.

Fig. 5 illustrates the position of IMU in the phone’s coordi-
nate system. The origin is the gravity center, assuming that the
gravity center of the iphone is in the device’s physical center.

The IMU data and parameters calculated by our algorithm
are substituted into Equation 19 to obtain the loss. A threshold
was set at 2.5m/s2. If the loss is less than the threshold, the
rigid body is judged as in a falling state, (if an object is static,
the result of Eq. 19 should be 9.8m/s2).

Fig. 6 illustrates the falling state detector results of the IMU
data, which was collected when the iphone was thrown up for
other 8 times. The detector’s data is shown on the top and
IMU raw data is on the bottom of the figure. In the top of
Fig. 6, the red line is the acceleration of the resultant force
that removes centripetal force and Euler force. The blue line
is acceleration that comes from normalizing the raw data of
accelerometers. The black line is a falling state detector. If the
line is on the value 100, this situation indicates the iphone is
in a falling state. This figure illustrates that our method can
successfully detect almost all the falling states. However, in
Fig. 6, the second and fifth falling states were not detected.
The reason is that the original angular velocity data of the Y-
axis of the gyroscope went beyond the measurement range of
the iphone, i.e., the detector device has not obtained the real
angular velocity data, thus the judgment fails.
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Fig. 6. Falling state detector and the raw data of IMU. The upper part is
the falling state detector. The middle and bottom parts are the raw data of
accelerometers and gyroscopes respectively.

V. CONCLUSION

This paper presents a method for the calculation of the
parameters of IMUs when they are used in a large range, in
which the scale factors are nonlinear. By placing the IMU in
a rigid object in free fall and rotation states, a large amount of
data from the accelerometer and gyroscopes can be obtained,
which provides the necessary data for calculating nonlinear
scale factors of the IMU. In the calibration process, the global
cost function is used, and each of the sub cost functions is
weighted to ensure the global optimum. The experiments on
the synthesis and real-world data sets showed that the proposed
model and algorithm are feasible; and the performance of this
method is better than that of Tedaldi’s method: the errors of
acceleration and angular velocity led by our algorithm are
significantly smaller than those resulted from the existing ap-
proaches, demonstrating a remarkable improvement of 64.12%
and 47.90%, respectively. In the application scene, a falling
state detector with the proposed IMU calibration was designed
and demonstrated our approach’s effectiveness.

There is still room for improving this work. For example,
the calibrated IMU can be integrated with a camera to create
a brush writing motion capturing system. Thus, a data set in-
cluding the handwriting trajectories of the Chinese characters
or English letter can be conveniently obtained.
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