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SiamCDA: Complementarity- and distractor-aware
RGB-T tracking based on Siamese network

Tianlu Zhang, Xueru Liu, Qiang Zhang* and Jungong Han*

Abstract—Recent years have witnessed the prevalence of us-
ing the Siamese network for RGB-T tracking because of its
remarkable success in RGB object tracking. Despite their faster
than real-time speeds, existing RGB-T Siamese trackers suffer
from low accuracy and poor robustness, compared to other
state-of-the-art RGB-T trackers. To address such issues, a new
complementarity- and distractor-aware RGB-T tracker based on
Siamese network (referred to as SiamCDA) is developed in this
paper. To this end, several modules are presented, where the
feature pyramid network (FPN) is incorporated into the Siamese
network to capture the cross-level information within unimodal
features extracted from the RGB or the thermal images. Next, a
complementarity-aware multi-modal feature fusion module (CA-
MF) is specially designed to capture the cross-modal informa-
tion between RGB features and thermal features. In the final
bounding box selection phase, a distractor-aware region proposal
selection module (DAS) further enhances the robustness of our
tracker. On top of the technical modules, we also build a large-
scale, diverse synthetic RGB-T tracking dataset, containing more
than 4831 pairs of synthetic RGB-T videos and 12K synthetic
RGB-T images. Extensive experiments on three RGB-T tracking
benchmark datasets demonstrate the outstanding performance
of our proposed tracker with a tracking speed over 37 frames
per second (FPS).

Index Terms—RGB-T tracking, Siamese network,
Complementarity-aware fusion, Distractor-aware region
proposal selection, Large-scale synthetic dataset

I. INTRODUCTION

V ISUAL object tracking aims to estimate the position
of an arbitrary target in a video sequence, given only

its location in the first frame. It is a fundamental research
task in computer vision, and facilitates numerous practical
applications such as visual surveillance [1], unmanned vehicles
[2] and human-computer interactions [3]. With the exploration
of mathematical modeling techniques, especially deep neural
networks, recently advanced tracking approaches focus on
employing large labeled video datasets to train an end-to-end
network in an offline way. Their performance has witnessed
a continuous improvement with the aid of more effective
network architectures and more publicly available tracking
datasets. Despite remarkable advances, most visual tracking
algorithms focus on unimodal tracking, especially on RGB
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Fig. 1. Illustration of the complementary information between multi-modal
images. (a) and (b) are two examplar frames from RGB modality and thermal
modality, respectively. As shown in the regions marked by the red boxes,
obvious complementary information exists between the two modality images,
which will benefit the subsequent tracking task.

tracking, which remains challenging due to many factors
such as heavy occlusion, large deformation, and illumination
variations.

Recently, some researchers attempt to apply multi-modal
data, such as RGB-thermal (RGB-T) images [4] and RGB-
depth (RGB-D) images [5], to improve the performance of
trackers. Among them, RGB-T tracking has attracted more
attention because of the complementarity between RGB im-
ages and thermal images. RGB images can capture rich target
information but are susceptible to environments. Thermal
images are not sensitive to illumination change and have
strong ability to penetrate the haze but they lack the detailed
texture information of the targets [6], [7]. As shown in Fig. 1,
RGB and thermal images can be applied together to provide
complementary information for object tracking. In light of it,
we focus on RGB-T tracking in this paper, to address some
issues arising from unimodal RGB tracking.

So far, many RGB-T trackers have been put forward. Early
works [8]–[10] are based on manually extracted features.
Generally, these methods cannot well adapt to challenging
environments, such as drastic appearance changes, clutter
backgrounds, rapid movements of targets and occlusion. In-
spired by the success of Convolution Neural Networks (CNNs)
in RGB tracking, there are several attempts [11]–[13], using
CNNs to improve the performance of RGB-T trackers. Owing
to the robust feature extraction and representation ability of
deep CNNs, these newly developed RGB-T trackers usually
outperform those traditional ones by a clear margin. Therefore,

Copyright © 2021 IEEE. Personal use of this material is permitted. However, permission to use this mate-
rial for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
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Fig. 2. Comparison of performance and speed for some state-of-the-art track-
ing methods on VOT-RGBT2019 [15]. We visualize the Expected Average
Overlap (EAO) with respect to the Frames-Per Second (FPS). Closer to the
top means higher precision, and closer to right means faster. SiamCDA is able
to rank the 1st in EAO while running at 37 FPS.

some trackers [12], [13] based on Multi-Domain Network [14]
appeared in recent years. However, such trackers have to be
put on the shelf because of their far slower than the real-time
speeds.

To remedy this situation, inspired by the success of Siamese
network in unimodal object tracking, recent research has
shifted to apply the Siamese network [16] to speed up the
RGB-T tracking algorithms. Zhang et al. [17] took the first
attempt in applying the fully convolutional Siamese network to
RGB-T tracking. Their experiments demonstrate that the run-
ning speed of the proposed RGB-T Siamese tracker, dubbed
SiamFT, can reach around 30 FPS, thus meeting the real-time
requirement. Although they have achieved faster speed, there
continues to be a huge gap in performance compared to most
state-of-the-art RGB-T tracker, as shown in Fig. 2.

In this paper, we design a unified RGB-T tracking frame-
work based on Siamese network, referred to as SiamCDA,
which can achieve high performance, while maintaining real-
time running speed. As shown in Fig. 2, our tracker can
achieve equivalent performance to some state-of-the-art RGB-
T trackers with much more effective tracking speed. The
proposed multi-modal Siamese tracking algorithm carries out
the following four steps:

(1) Siamese network for unimodal feature extraction
Most of the existing RGB-T trackers have built their networks
upon tailored AlexNet [18] or VGGNet [19], which usually
contains no more than five convolutional layers. Deeper neural
networks, such as ResNet [20], ResNeXt [21] and MobileNet
[22], have been proven to be effective in unimodal trackers
based on Siamese network by virtue of a spatial-aware sam-
pling strategy [23]. Motivated by that, in our proposed method,
we also adopt the modified ResNet-50 [20] as our backbone
network for the unimodal RGB and thermal image feature
extraction. As well, different levels of the extracted unimodal
features usually contain varieties of spatial or semantic infor-
mation for tracking. Taking full advantage of the low-level
and high-level features may improve the tracking accuracy to
some extent. Considering that, we will append several feature
pyramid networks (FPNs) [24] on the backbone network to
capture the cross-level features within the extracted unimodal
RGB and thermal features.

(2) Multi-modal feature fusion
For the RGB-T tracking task, how to effectively fuse the

RGB and thermal information is one of the most impor-
tant issues. Several methods have been proposed, such as
element-wise summation [25], concatenation [26] and content-
dependency weighting based fusion strategies [12] [17]. How-
ever, most of these existing fusion strategies do not consider
the feature differences between the input RGB and thermal
images during fusion. In fact, RGB images and thermal images
have different imaging mechanisms and their features have
large differences (e.g., polarity reverse). Directly fusing the
original or weighted unimodal RGB and thermal features
will reduce the discriminability of the fused features, thus
degrading the subsequent tracking performance. In order to
fully exploit the cross-modal features within the input RGB
and thermal images, a complementarity-aware multi-modal
feature fusion module (CA-MF) will be designed in our
tracker. In CA-MF, the differences between unimodal RGB
features and thermal features are first reduced by introducing
complementary (or additional) information from one modality
data to the other modality data. Then the enhanced RGB and
thermal features are further combined to obtain the final fused
features via some fusion strategies (e.g., concatenation).

(3) Siamese region proposal
Similar to the RGB Siamese trackers, RGB-T Siamese

trackers also formulate the tracking problem as the cross-
correlation between the fused multi-modal features of template
images and those of detection images. In addition, as discussed
in [23] and [27], the application of regional proposal network
(RPN) may make the Siamese trackers have a great advantage
in generating accurate bounding boxes. Subsequently, we will
also apply several Siamese RPNs [23] in our proposed RGB-T
tracker to promote the tracking accuracy.

(4) Region proposal selection
The outputs of the Siamese RPNs are a set of bounding

boxes with their corresponding confidence scores. In order to
get the final tracking box, Siamese trackers generally apply
cosine window and scale change penalty [27] to re-rank
the proposals’ score. These may work well in most cases.
However, in some special cases, there may exist some semantic
backgrounds, such as objects having similar attributes with
targets, which are usually considered as distractors. Because
of being trained completely offline, these Siamese trackers are
generally not discriminative enough to handle such distractors,
thus easily leading to tracking drift. To solve this issue, a
distractor-aware region proposal selection module (DAS) will
be specially designed in this paper to further improve the
robustness of our proposed tracker against the distractors. In
DAS, whether there exist distractors in the current tracking
frame is first determined, according to which, the final target
box is further selected.

In addition, the training data has significant effects on
the performance of a Siamese tracker. So far, some RGB-
T tracking datasets have appeared, such as VOT-RGBT2019
[15], RGBT234 [28] and GTOT [9]. Among these datasets,
the RGBT234 dataset [28] is the largest one. In spite of
that, RGBT234 just contains 234 pairs of RGB and thermal
annotated videos. This is far from enough to train a Siamese
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tracker, thus limiting the tracking performance. For that, a
large-scale synthetic RGB-T tracking dataset, containing more
than 4831 synthetic RGB-T videos and 12K RGB-T images,
will be first constructed. Then these synthetic RGB-T videos
(or images) and several real RGB-T datasets will be simulta-
neously employed to train our tracker. This will significantly
enhance the feature representation ability of the tracking model
and further improve the tracking performance of our proposed
tracker.

In summary, this work has the following four-fold main
contributions:
• A unified RGB-T tracking framework based on Siamese

network is designed to achieve high tracking performance
but still maintain the tracking efficiency by introducing
several modules.

• A complementarity-aware multi-modal feature fusion
module (CA-MF) is presented to enhance the discrim-
inability of the fused features by first reducing the
modality-differences between unimodal features and then
fusing them. A distractor-aware region proposal selection
module (DAS) is proposed to improve the tracker’s ro-
bustness by first determining the distractors in each frame
and then selecting the final bounding box for tracking.
These two proposed modules significantly improved the
performance of RGB-T Siamese tracker.

• A large-scale synthetic RGB-T tracking dataset is built,
which contains more than 4831 pairs of synthetic RGB-
T videos and 12K synthetic RGB-T images. The newly
constructed synthetic RGB-T dataset and several existing
real RGB-T datasets are jointly employed to train our
model for further improving the tracking performance.

• Our tracker achieves new state-of-the-art performance on
VOT-RGBT2019 [15], RGBT234 [28] and GTOT [9]
with the speed of 37 FPS.

II. RELATED WORK

A. RGB Tracking methods

In the last few years, visual object tracking has made rapid
progress because of the presence of some new benchmark
datasets and advanced methodologies. Especially, with the
great success of CNNs in various computer vision tasks,
numerous trackers based on deep feature representations have
emerged [29]–[32] and obtained new state-of-the-art tracking
performance in popular tracking benchmarks.

These modern tracking algorithms or models can be roughly
categorized into two branches: discriminative trackers and
generative ones. Discriminative trackers train a classifier to
distinguish the target from the background, which ordinarily
demands to train models online. For example, in [14], a
new CNN architecture, referred to as Multi-Domain Network
(MDNet), was presented to learn the shared representation of
targets from multiple annotated video sequences for tracking.
Recently, some newly developed trackers, such as ATOM
[31] and DiMP [33], have also been presented to achieve
more outstanding performance. Usually, these discriminative
trackers achieve very promising tracking results while having
relatively slow speed.

Differently, generative trackers [16] [27] [34] find the can-
didates that match the targets the best by computing their
joint probability densities between targets and search candi-
dates. Particularly, as a typical kind of generative trackers,
the Siamese network based trackers [16] [27] have received
surging attention in that their performance have taken the lead
in various benchmarks while running at real-time speed.

B. Siamese network based RGB trackers

As one of the pioneering works, SiamFC [16] constructed
a fully convolutional Siamese network to train a tracker. The
key idea of SiamFC was to formulate the object tracking task
as a similarity learning problem. In order to achieve more
accurate target bounding boxes, SiamRPN [27] introduced the
region proposal network [35] into SiamFC. Encouraged by the
success of SiamFC and SiamRPN, many researchers [36]–[38]
follow these works and presented some improved models. Zhu
et al. [36] extended the SiamRPN by developing distractor-
aware training. C-RPN [37] proposed a multi-stage tracking
framework to make localization more accurate. However,
the performance of the Siamese network based trackers can
not move on with deeper network as the backbone. Aiming
to solve this problem, SiamRPN++ [23] employed a new
strategy during model training, i.e., randomly shifting the
training object location in the search region, and introduced
modern deep neural networks, such as ResNet [20], ResNeXt
[21] and MobileNet [22], into the Siamese network based
trackers. SiamDW [39] designed a residual network for visual
tracking with controlled receptive field size and network stride.
Owing to these modifications, better tracking accuracy can be
achieved by using a very deep network architecture. Recently,
inspired by some anchor-free detectors, such as [40] and [41],
several Siamese trackers [42]–[44] regressed the distance from
the estimated target center to its sides of a bounding box. At
the same time, some researchers [45] tried to use adversarial
attack of CNN to improve the robustness of deep learning
trackers.

C. RGB-T Tracking methods

In recent years, some RGB-T tracking algorithms [8], [12],
[13] have been presented to exploit RGB and thermal images
to boost tracking performance. The early RGB-T tracking
algorithms [8]–[10] are based on some handcrafted features.
With the development of deep learning, more and more RGB-T
trackers based on deep features [12], [13], [26] are presented.
These RGB-T trackers are usually designed on the basis of
RGB trackers. For example, in [12] and [13], MDNet was
used as their baseline trackers. Particularly, in [12], Zhu et al.
first proposed a network to aggregate features of all layers and
all modalities, and then pruned these features to reduce noise
and redundancies. In [13], Li et al. proposed a multi-adapter
architecture to learn modality-shared, modality-specific, and
instance-aware target representations, respectively. In addition,
Zhang et al. [26] introduced DiMP [33] as their baseline
tracker and investigated different levels of fusion mechanisms
to find the optimal fusion architecture. Their experimental
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Fig. 3. An overview of the proposed SiamCDA. The overall network consists of four main parts: Siamese network for unimodal feature extraction, CA-MF
module for multi-modal feature fusion, SiameseRPNs for region proposal generation and DAS module for region proposal selection.

results demonstrated that their proposed fusion tracker signif-
icantly improved the performance of the baseline tracker with
respect to unimodal tracking and achieved new state-of-the-art
results. However, these discriminative RGB-T trackers achieve
high tracking performance at a cost of huge computational
complexity. For example, the tracking speed of the MANet
[13] is only about 2 FPS.

Considering the successful application of Siamese network
in RGB tracking, some works also try to introduce the
Siamese network to RGB-T tracking to improve computational
efficiency. For instance, SiamFT [17] applied two Siamese
networks to extract the unimodal features from the input
RGB and thermal images, respectively, and used some hand-
designed modality weights to calculate the weights of different
modalities. DSiamMFT [25] designed an RGB-T tracker based
on dynamic Siamese network [46] with multi-layer fusion.
However, these works are the initial exploration of applying
Siamese network in RGB-T tracking. In addition, the lack of
large scale RGB-T training dataset also hinders the perfor-
mance of these trackers. As a result, there is still a large gap
in tracking precision between these Siamese network based
RGB-T trackers and other state-of-the arts, although they may
achieve real-time tracking speeds.

III. METHOD

In this section, we describe our proposed RGB-T tracking
model in detail. As shown in Fig. 3, the overall model consists
of four parts: Siamese networks for unimodal feature extrac-
tion, CA-MF modules for multi-modal feature fusion, region
proposal networks for proposal generation and DAS module
for region proposal selection. In the subsequent subsections,
we will discuss each part in details.

A. Siamese networks for unimodal feature extraction

In our proposed tracking model, two Siamese networks,
namely RGB Siamese network and Thermal Siamese network,
are employed to extract the unimodal features from the RGB
and thermal images, respectively. The two Siamese networks
share the same structure but different parameters to well
extract the unimodal features from each input image. Each
Siamese network further consists of two branches that share
the same structures and parameters. One branch (called the
template branch) is used to extract the features from template
images. The other branch (called the detection branch) is
used to extract the features from search images. Moreover, let
ϕrgb denote one of the branches (i.e., the template branch or
detection branch) in the RGB Siamese network. xrgb and zrgb
denote the template patch and the search patch for the inputs
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Fig. 4. Illustration of the template branch of RGB Siamese network. It consists
of a backbone network and a feature pyramid network (FPN).

of RGB Siamese network, respectively. Similarly, ϕt denotes
one of the branches in the thermal Siamese network. xt and
zt denote the template patch and the search patch for the cor-
responding inputs of thermal Siamese network, respectively.
The output features of the two-stream Siamese networks are
thus represented as ϕrgb(xrgb), ϕrgb(zrgb), ϕt(xt) and ϕt(zt),
respectively.

In the following contents, we will take the template branch
in the RGB Siamese network as an example to discuss
the construction of our unimodal feature extraction module,
considering that all of the four branches in the two-stream
Siamese networks share the same structure. As shown in Fig.
4, the RGB template feature extraction branch consists of a
backbone network and a feature pyramid network (FPN) [24].

Motivated by [23], we also adopt ResNet50 [20] as our
backbone network, considering that deeper networks may
significantly boost the performance of the Siamese trackers.
As well, to increase the spatial resolution of the feature maps
and preserve more detailed information about the template
patch (or detection patch), we remove the down-sampling
operations and set the stride to 1 in the last two convolutional
blocks (i.e., conv4 and conv5 blocks). We also employ the
atrous convolution with different atrous rates, instead of the
traditional convolution, in the last two blocks to increase the
receptive fields without decreasing the spatial resolutions of
the feature maps. Specifically, the atrous rates in conv4 and
conv5 blocks are set to 2 and 4, respectively. An 1 × 1
convolutional layer is further appended to each of the last three
blocks (i.e., conv3, conv4 and conv5 blocks) to reduce the
channels of the output feature maps to 256. Finally, in order
to reduce the computational burden of our proposed model,
only the features from the center 7× 7 regions are selected as
the template features. Thus, we may obtain three levels of the
template features (denoted by φrgb,3(xrgb), φrgb,4(xrgb) and
φrgb,5(xrgb), respectively) with the same sizes from the last
three blocks of the backbone network, which will be used in
the subsequent tracking task. Here, the features from the first
two blocks (i.e., conv1 and conv2) are not used considering
that they may contain much more disturbing information for
tracking.

The three levels features extracted from the backbone net-

work contain different information about the template (or de-
tection) patch. The low-level features (e.g., φrgb,3(xrgb)) may
contain more visual attributes, like edges, corners, colors and
shapes, which are indispensable for the location of the objects,
while the high-level features (e.g., φrgb,5(xrgb)) may contain
more semantic attributes that are crucial for the discrimination
of the objects. Therefore, the fusion of the low-level and high-
level features will improve the tracking accuracy to some
extent.

Considering that, we append a feature pyramid network
(FPN) on the last three blocks of our backbone network to
capture the cross-level features within the three levels features
{φrgb,i(xrgb), (i = 3, 4, 5)}. Owing to the fact that the three
levels of features {φrgb,i(xrgb), (i = 3, 4, 5)} extracted from
the backbone network have the same spatial resolutions and
the same number of channels, the output features of FPN for
each level {ϕrgb,i(xrgb), (i = 3, 4, 5)} can be obtained by a
top-down integration way, i.e.,

ϕrgb,5(xrgb) = φrgb,5(xrgb), (1)

ϕrgb,4(xrgb) = φrgb,4(xrgb)⊕ ϕrgb,5(xrgb), (2)

ϕrgb,3(xrgb) = φrgb,3(xrgb)⊕ ϕrgb,4(xrgb), (3)

where ⊕ denotes the element-wise addition. The outputs of
the FPNs are also seen as the output features of the template
branch in the RGB Siamese network, i.e., ϕrgb(xrgb) =
{ϕrgb,i(xrgb), (i = 3, 4, 5)}. The output features of the de-
tection branch in the RGB Siamese network ϕrgb(zrgb) =
{ϕrgb,i(zrgb), (i = 3, 4, 5)}, the output features of the tem-
plate and detection branches in the thermal Siamese net-
work ϕt(xt) = {ϕt,i(xt), (i = 3, 4, 5)} and ϕt(zt) =
{ϕt,i(zt), (i = 3, 4, 5)} are obtained in the similar way.

B. CA-MF modules for multi-modal feature fusion

Given the features from the RGB and thermal Siamese
networks, the next step is to obtain the fused template features
and the fused detection features for tracking. As that in the
existing RGB-T Siamese trackers [17] [25], the features from
the template branch in the RGB Siamese network and the
corresponding template features from the thermal Siamese
network are combined to obtain the fused template features
for tracking. Similarly, the RGB detection features and their
corresponding thermal detection features are combined to
obtain the fused detection features for tracking. Then, how
to fuse them to effectively capture the cross-modal comple-
mentary information between the RGB and thermal images is
an especially important issue in RGB-T tracking models.

The most straightforward and commonly used ways for the
fusion of multi-modal features are element-wise summation
[25] and concatenation [26]. However, these fusion strategies
often ignore the feature reliability from each modality and
cannot effectively leverage the cross-modal complementary
information within the multi-modal RGB and thermal im-
ages. In [12], a content-dependency weighting based fusion
strategy was presented to fuse the multi-modal RGB and
thermal features for tracking. Owing to the consideration of
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the feature reliability of each modality data, the content-
dependency weighting based fusion strategy usually achieves
better performance than those simple element-wise summation
or concatenation based ones. Despite that, most of these
existing fusion strategies do not consider the feature differ-
ences between the input multi-modal RGB and thermal images
during fusion.

Alternatively, if the differences between RGB features and
thermal features are first reduced to some extent before they
are fed into the fusion module, more complementary informa-
tion between the input multi-modal images will be preserved
into the fused features and will improve the discriminability of
fused features, thus further benefiting the subsequent tracking
task. For that, a complementarity-aware multi-modal feature
fusion module (CA-MF) is presented in this paper. In CA-
MF, the unimodal features from one modality data (e.g,
RGB images or thermal images) will be first reinforced by
introducing additional information from the other modality
data. Doing so potentially reduces the difference between the
unimodal RGB and thermal features. Afterwards, the enhanced
RGB and thermal features will be further combined to achieve
the final fused features via some fusion strategies.

As shown in Fig. 5, the proposed CA-MF consists of a
weight generation sub-network and two cross-modal residual
connections. The weight generation sub-network concatenates
the unimodal feature maps Frgb and Ft as the inputs and
outputs two weight maps Wrgb and Wt of the same spatial
size as those of Frgb (or Ft) via a convolutional layer and
a sigmoid layer. Specifically, the convolutional layer has one
filter with kernel size 3 × 3 and produces two weight maps.
The subsequent sigmoid layer is used to normalize the values
of the two weight maps to [0,1]. Mathematically, the weight
generation sub-network is expressed by

Wrgb,Wt = σ(conv(cat(Frgb,Ft), θ1)), (4)

where cat(∗) denotes the concatenation operation and

conv(∗, θ1) denotes the convolutional layer with parameters
θ1. σ(∗) denotes the sigmoid layer. It should be also noted that
the weights Wrgb and Wt, generated by using Eq.4, reflect
how much the additional information should be introduced
from one modality data to another modality data, instead of
the importance or reliability of each modality data as in [12].

With the weights Wrgb and Wt, the enhanced unimodal
features F′rgb and F′t are then obtained by using cross-modal
residual connections, i.e.,

F′rgb = Frgb + Ft ⊗Wt, (5)

F′t = Ft + Frgb ⊗Wrgb, (6)

where ⊗ denotes the element-wise multiplication. As shown in
Eq. 5, the enhanced unimodal RGB features F′rgb contain some
additional thermal features in addition to the original unimodal
RGB features Frgb. Similarly, as shown in Eq. 6, the enhanced
unimodal thermal features F′t contain some additional RGB
features as well as the original unimodal thermal features
Ft. The differences between the original multi-modal features
Frgb and Ft will be reduced to some extent by using the
cross-modal residual connections.

The finally fused features Frgb−t are thus obtained by
further performing some concatenation and convolutional op-
erations on these enhanced unimodal features F′rgb and F′t,
i.e.,

Frgb−t = conv(cat(F′rgb,F
′
t), θ2). (7)

Here, conv(∗, θ2) denotes the convolutional layer with kernel
size 1×1 and parameters θ2. As shown in Eq. 7, the enhanced
unimodal features, instead of the original unimodal features,
are used to obtain the final fused features in our proposed
CA-MF. This will improve the discriminability of the fused
features for the subsequent RGB-T tracking.

Given the three levels of template features ϕrgb (xrgb) =
{ϕrgb,i (xrgb) | i = 3, 4, 5} from the RGB Siamese network
and the three levels of template features ϕt (xt) =
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{ϕt,i (xt) | i = 3, 4, 5} from the thermal Siamese net-
work, three levels of fused template features FT

rgb−t ={
FT

rgb−t,i | i = 3, 4, 5
}

are obtained by performing the pro-
posed CA-MFs on each level of RGB and thermal template
features, respectively. Similarly, three levels of fused detection
features FD

rgb−t =
{
FD

rgb−t,i | i = 3, 4, 5
}

are also obtained
by performing several CA-MFs on the RGB detection features
ϕrgb (zrgb) = {ϕrgb,i (zrgb) | i = 3, 4, 5} and the thermal detec-
tion features ϕt (zt) = {ϕt,i (zt) | i = 3, 4, 5} with the same
levels, respectively.

C. Siamese region proposal networks for proposal generation
Similar to RGB Siamese trackers, we apply three Siamese

regional proposal networks (RPNs) on the fused template
features and the fused detection features. Each Siamese RPN
is employed for one level of the fused template and detection
features and generates a set of regional proposals individually.
The outputs of the three Siamese RPNs are further combined
via a weighted fusion layer to achieve the final outputs of the
Siamese RPNs.

Specifically, each Siamese RPN has two branches, one
for foreground-background classification and the other for
proposal regression. If there are k anchors, the network outputs
2k channels for classification and 4k channels for regression.
Furthermore, as described in [23], each branch in the Siamese
RPN consists of two fully convolutional layers and a depth-
wise cross-correlation layer with a classification (or regression)
head on top.

More specifically, for the i− th(i = 3, 4, 5) level, the fused
template features FT

rgb−t,i and the fused detection features
FD

rgb−t,i are first, respectively, fed into the two fully convolu-
tional layers in the classification branch of the Siamese RPN
to modify their characteristics for classification, thus obtaining
the modified template features F̃T

rgb−t,i and detection features
F̃D

rgb−t,i. These modified features are further fed into the
depth-wise cross-correlation layer and obtain the correlation
features Fcls

i . Finally, the correlation features Fcls
i are fed into

a convolutional layer that having 2k filters with kernel size
1 × 1 and a softmax layer to achieve the final classification
score maps Scls

i ∈ Rw×h×2k. Here, w× h denotes the spatial
sizes of the score map in each channel of Scls

i . Similarly,
a set of regression maps Sreg

i ∈ Rw×h×4k(i = 3, 4, 5)
are obtained by feeding the fused template features FT

rgb−t,i
and the fused detection features FD

rgb−t,i into the regression
branch of the Siamese RPN. The final classification score maps
Scls ∈ Rw×h×2k and regression maps Sreg ∈ Rw×h×4k are
thus obtained by using a weighted summation way via a fusion
layer as in [23]. Each spatial position on Scls, containing
a 2k vector, provides the negative and positive activation of
each anchor at the corresponding location on the original map.
Correspondingly, each spatial position on Sreg, containing a
4k vector, measures the distance between each anchor and its
corresponding ground truth.

D. DAS module for region proposal selection
Based on the proposal classification maps Scls and bound-

ing box regression maps Sreg , outputs from the RPNs

w/o DAC GTw/ DAC Distractor

Fig. 6. Illustrations of the validity of the proposed DAS module. As shown
in the figure, the proposed DAS module can greatly reduce the tracking drifts
that are caused by distractors.

mentioned above, (w × h × k) bounding boxes B ={
Bi =

(
xproi , yproi , wpro

i , hproi , sclsi

)T | i ∈ (w × h× k)
}

to-
gether with their corresponding confidence scores are thus
obtained as in [27]. Here, (xproi , yproi )

T denotes the center
point of the i − th bounding box Bi. w

pro
i and hproi are its

width and height, respectively. sclsi denotes the classification
score of Bi.

In this subsection, we will discuss how to select the final
bounding box from B for the tacking task. Due to the fully
offline training strategy, Siamese trackers are not discrimina-
tive enough to distinguish two objects with similar attributes,
as shown in Fig. 6. These semantic backgrounds are usually
considered as distractors. Existing trackers based on Siamese
network, including RGB trackers and RGB-T trackers, usu-
ally first adopt the cosine window and scale change penalty
[27] to re-rank the proposal’s confidences scores and then
select the bounding box with the highest confidence score
as the final tracking one. Although they could suppress large
displacements, these existing post-processing methods cannot
effectively suppress the interference and are prone to tracking
drift when distractors are close to the target.

To improve the robustness of our tracker, we will design
a distractor-aware selection module (DAS) in this subsection.
Unlike the existing post-processing methods, which only con-
sider the re-ranked confidence scores of each bounding box,
the proposed DAS module not only considers the confidence
score of each bounding box, but also considers the influences
of distractors on object tracking as well as the continuity
of target motion between consecutive frames. The proposed
module is based on the following two characteristics in the
tracking task: (1) Distractors are usually accompanied by high
confidence scores; (2) The displacement of the target between
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two adjacent frames is usually not very far away. Specific steps
of DAS are thus as follows:

(1) Determine the distractors from the bounding box
set B. More specifically, the bounding box whose confidence
score is smaller than a threshold ve is first removed from the
bounding box set B, i.e.,

Bi =

{
preserved if sclsi > ve

removed if sclsi < ve
. (8)

Here, the threshold ve is experimentally set to 0.3. Then
the Non-maximum Suppression (NMS) is performed on those
preserved bounding boxes to further remove those bounding
boxes with smaller confidence scores, thus obtaining a new
bounding box set B

′
. In addition, those bounding boxes with

large scale or ration changes, i.e., those bounding boxes that
do not satisfy Eq.9 and Eq.10, will also be removed from B

′
,

considering that these bounding boxes could not be distractors.

(1− va) ∗ size[B∗l ] < size[Bi] < (1 + va) ∗ size[B∗l ], (9)

(1−vr)∗ratio[B∗l ] < ratio[Bi] < (1+vr)∗ratio[B∗l ], (10)

where size[·] denotes the area of a bounding box and ratio[·]
denotes the ratio of the height of a bounding box to its
width. va and vr are both experimentally set to 0.2. B∗l
denotes the tracking bounding box determined in the last
frame. Bi denotes a bounding box in B

′
. After that, another

new bounding box set B′′ that containing K bounding boxes is
obtained. In B′′, only one bounding box may be the target and
the other K−1 bounding boxes will be seen as the distractors.

(2) Determine the initial candidate box Binit from
the original bounding box set B. For that, the confidence
scores sclsi of each bounding box Bi in B is multiplied by
a penalization term pi to suppress large changes in size and
ratio, i.e.,

pi = e
vp×max

(
ri
r∗
l

)
×max

(
zi
z∗
l

)
, (11)

s̄clsi = sclsi × pi, (12)

where s̄cls denotes the new confidence score for the current
bounding box. vp is a hyper parameter that controls the
magnitude of the penalization. ri represents the ratio of the
height of Bi to its width and r∗l represents that of the tracking
bounding box B∗l in the last frame. zi and z∗l represents the
areas of Bi and B∗l , respectively. Then, a cosine window
ω ∈ Rw×h×k with a window influence coefficient Ω is further
performed on the new confidence scores s̄clsi to suppress the
large displacement since smooth motion is assumed, i.e.,

s̃clsi = s̄clsi · (1− Ω) + ωi · Ω. (13)

After that, the bounding box with the highest confidence score
is selected as the initial candidate bounding box Binit.

(3) Determine the final tracking box B∗c for the current
frame. If there is no distractor, i.e., K = 1, in the first
step, the initial candidate box Binit obtained in the second
step is directly selected as the final tracking box B∗c for the
current frame. Differently, if there are some distractors in the
current frame, i.e., K > 1, in the first step, according to the
displacements of the target between two adjacent frames, two

different selection strategies are further considered to select
the final tracking box in our tracker. If the Intersection over
Union (IoU) between Binit and the final tracking box B∗l in
the last frame is larger than a threshold vo, the initial candidate
box Binit obtained in the second step is still selected as the
final tracking box B∗c for the current frame. Otherwise, those
bounding boxes whose IoU with the final tracking box B∗l in
the last frame is larger than a threshold vs are first selected
as the candidate boxes, and then the box with the highest
confidence score scls in these candidates are selected as the
final tracking box B∗c for the current frame. Here, vo and vs
are experimentally set to 0.2 and 0.7, respectively.

Despite its simplicity, DAS can improve the tracking robust-
ness of our tracker to some extent. As shown in Fig. 6, our
tracker with DAS can still accurately track the objects when
distractors appear.

IV. RGB-T DATA GENERATION

The lack of large-scale labeled RGB-T tracking data will
greatly reduce the performance of the RGB-T Siamese track-
ers, including our proposed tracker. Building a large scale
RGB-T dataset is a time-consuming and energy-consuming
task. Considering that, we will build a new large-scale syn-
thetic RGB-T dataset (called LSS Dataset1) in this section,
where some synthetic thermal images will be generated from
real RGB images by using a newly proposed semantic-aware
image-to-image translation method and some synthetic RGB
videos will be generated from real thermal videos by using a
video colorization method [47]. The newly built LSS dataset
and several existing real RGB-T datasets will be simultane-
ously employed to train our proposed tracker for high tracking
performance.

(a) (b) (c)

187

127

187

127

187

127

Fig. 7. Illustrations of some synthetic thermal images generated from RGB
images by using different methods. (a) Original RGB images that are taken
from the training set of VID [48]; (b) Generated thermal images by using
pix2pix [49]; (c) Generated thermal images by using our proposed method.

A. Generate thermal images from RGB images

As in [26], the problem of generating thermal videos from
RGB videos can be regarded as a problem of image-to-image
translation. Many more image translation methods can be used
to generate thermal images (or videos) from RGB videos
in a frame-independent way. For example, in [26], pix2pix
[49] was used to generate a large amount of thermal images
from RGB images. However, most existing methods simply

1LSS dataset is available at https://github.com/RaymondCover/LSS-Dataset
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treat the generation of thermal images from RGB images
as an image style translation problem, without considering
the imaging mechanism of thermal images. As a result, the
generated thermal images could not well reflect the thermal
infrared characteristics of an object in general. For example, as
shown in Fig. 7, the objects are not obvious in some synthetic
thermal images generated from the RGB videos. Obviously,
by using such training data, the RGB-T tracker could not well
learn how to fully exploit complementary information between
RGB images and thermal images.

Thermal images are obtained by measuring the heats radi-
ated from the objects. Different categories of objects usually
show different gray values in thermal images. For example,
people usually have higher gray values, while trees usually
have lower gray values. Therefore, generating thermal images
from RGB images may be regarded as a problem of setting
different gray values for different categories of objects in the
image. In addition, some existing RGB datasets provide more
labeled information about the objects, such as category and
location, which can also be used for image translation. Based
on such information provided by these existing labeled RGB
datasets and the imaging mechanism of thermal images, we
propose a new semantics-aware image-to-image translation
method to generate thermal images from RGB images, which
can be divided into the following steps.

TABLE I
STATISTICAL AVERAGING VALUES AND VALUE RANGES FOR DIFFERENT

CATEGORIES OF OBJECTS.

Category Sub-categories
in VID and COCO Average value Value range

animals and food

antelope; bear; bird;
cattle; dog; domestic
cat; elephant; fox;
giant panda; hamster;
horse; lion; lizard;
monkey; rabbit; red
panda; sheep; snake;
squirrel; tiger; turtle;
whale; zebra; person;
food

141.46 110-175

vehicles
airplane; bicycle; bus;
car; motorcycle; train;
watercraft;

99.84 95-135

appliances appliance; electronics unkonwn 45-85

backgrounds

accessory; sports;
outdoor objects; fur-
niture;kitchenware;
indoor objects

100.02 65-105

First, as shown in Fig. 8, we employ SiamMask [50] to
convert the labels from bounding box level to pixel level, since
the RGB tracking datasets usually annotate targets in the form
of bounding boxes. Secondly, we set the gray value ranges
of different objects according to their category information
provided by the labeled dataset. Especially, we classify the
targets in the VID dataset [48] and COCO dataset [51] into
four categories, i.e., animals and food, vehicles, appliances,
and backgrounds, as shown in Table I. Then we calculate
the averaging gray values of different categories of targets

in some other existing RGB-T datasets, such as RGBT234
[28] and GTOT [9], and experimentally set the gray value
ranges of different categories of objects as shown in Table I.
Lastly, for each object in the original RGB image, including
the background area, its corresponding gray value range is
assigned as follows, thus obtaining a synthesized thermal
image:
(1) Get the initial gray value range for each object according

to Table I. Specifically, for an RGB image to be trans-
formed, we first get the pixel-level labels MASK =
{maski | i ∈ (1, N)} of all objects in the image, in-
cluding the background region. Here, maski denotes the
segmentation mask for the i − th object in the image
and N denotes the total number of objects (including
background region) in the image. Then, according to
Table I, we get the initial value range (vmini, vmaxi)
for the i − th (i = 1, 2, . . . , N) object. For example,
the initial gray value range for the object ‘bull’ in Fig. 8
is (110, 175).

id1 id2

SiamMaskid1

id2

mask1

mask2

background

Original RGB image

Ⅰ. Convert the labels from bounding 

box level to pixel level.

id2id1

background

Ⅲ. Assign new gray values to 

different objects.

Synthesized infrared 

image

Ⅱ.  Set 

the gray 

value 

ranges of 

different 

objects.
id2: bull

id1: bull

id2: animal

id1: animal

Fig. 8. Visualized process of the proposed semantics-aware image-to-image
translation method.

(2) In order to improve the diversity of generated im-
age scenes, we reset the gray value range from
(vmini, vmaxi) to (vmin

′

i, vmax
′

i) for each of the
i − th (i = 1, 2, . . . , N) object in the image. Here,
the values of the two numbers vmin

′

i and vmax
′

i are
randomly determined by satisfying vmini < vmin

′

i <
vmax

′

i < vmaxi.
(3) Assign a new value I ′i,j for the j − th pixel pi,j that

belonging to the i−th object maski in the RGB image by
using the following Eq. 14 and obtain the final synthetic
thermal image. In Eq. 14, Ii,j denotes the original gray
value for pixel pi,j . By using Eq. 14, the gray values for
the i−th object in the original RGB image are re-assigned
within the range of

(
vmin

′

i, vmax
′

i

)
.

I ′i,j =
(
vmax

′

i − vmin
′

i

)
/255× Ii,j + vmin

′

i. (14)

Fig. 9 illustrates some synthetic thermal images generated
from RGB images and some real thermal images taken from



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

similar scenes. As shown in Fig. 9, these synthetic thermal
images can well reflect the thermal infrared characteristics of
an object and achieves similar visual results with those real
thermal images.

Fig. 9. More examples of our synthetic thermal images generated by our
proposed method. The first and third rows are original RGB images, and the
second and fourth rows are synthetic thermal images generated by our method.
The fifth row is real thermal images corresponding to the third row of RGB
images.

B. Generate RGB images from thermal images

Considering the existence of large-scale thermal datasets
[52], generating synthetic RGB data from thermal data can
also further expand the training data. Moreover, the real ther-
mal data is helpful for the model to learn the effective feature
representation of thermal images. Different from generating
thermal images from RGB images, which may be seen as
a style translation problem, generating RGB images from
thermal images is treated as an image colorization task here,
since thermal images lack color information. Furthermore, in
order to maintain the good color consistency among different
frames in a video, we employ the video colorization method
in [47] to covert the thermal videos into RGB videos in a
video translation way. Examples shown in Fig. 10 demonstrate
that the generated RGB images (or videos) have good color
consistency and achieve satisfactory visual qualities.

Totally, the newly built LSS dataset contains 12K synthetic
thermal images and 3862 synthetic thermal videos generated
from COCO dataset [51] and VID dataset [48] by using the
proposed semantic-aware image-to-image translation method
as well as 969 synthetic RGB videos generated from [52] by
using the video colorization method [47].

V. EXPERIMENTS

In this section, we will first specify the implementation
details and experimental setup, then we will compare our pro-
posed tracking algorithm with some states-of-the-arts on three

tracking benchmarks, i.e., VOT-RGBT2019 [15], RGBT234
[28] and GTOT [9]. Finally, some ablation studies are made to
verify the effectiveness of each proposed component on VOT-
RGBT2019 [15]. As in [23], the input size of the template
patches and search patches are set to 127 pixels and 255 pixels,
respectively. Our tracker is implemented by using Pytorch on
PC with Intel-Xeon(R) 4214 CPU (2.2GHz), 64 GB RAM and
Nvidia RTX-2080Ti GPUs (11 GB memory).

A. Implementation Details

1) Data augmentation: We apply several data augmentation
strategies including blur, scale change and spatial aware sam-
pling strategy in [23]. Following [36], we also apply distractor-
aware training to increase the semantic negative samples. In
addition, in order to take full advantage of the complementary
information between the input RGB and thermal images, we
have made some additional image augmentations on the syn-
thetic RGB-T videos. We apply brightness adjustment, contrast
adjustment and Gaussian blur, respectively, to randomly reduce
the image quality from a certain modality.

2) Anchors setting: For each point, our anchor boxes have
5 aspect ratios, i.e., [0.33, 0.5, 1, 2, 3], and the anchor
scale is set to 8. In Siamese-RPN blocks, we determine the
correspondences between the anchors and groundtruth boxes
based on IoU. Specifically, if the IoU between the anchor and
ground-truth box is larger than 0.6, the anchor is determined
as a positive one. Meanwhile, if the IoU between the anchor
and ground-truth box is less than 0.3, the anchor is determined
as a negative one. We collect at most 16 positive samples and
48 negative samples from one image pair.

3) Optimization: Our model is trained in an end-to-end
fashion, where the training loss is a weighted combination of
multiple loss functions applied in SiamRPN++ [23]. Specifi-
cally, we apply the cross-entropy loss as our classification loss
and the smooth L1 loss as our regression loss. We use the
SGD optimization algorithm with 0.9 momentum and 0.0005
weight decay to train our model. Notably, the proposed model
is trained in two stages. In the first stage, we disable the
thermal Siamese network and multi-modal fusion network
to construct an unimodal tracking network. We adopt RGB
tracking datasets, including ImageNet VID [48], Youtube-BB
[54], COCO [51] and ImageNet Det [48], as our basic training
datasets. We use a warmup learning rate of 0.001 for the first 5
epochs to train the Siamese Region Proposal networks. For the
last 15 epochs, the whole network is end-to-end trained with
learning rate exponentially decayed from 0.005 to 0.0005.

In the second stage, we adopt RGB-T tracking datasets
and our newly built LSS dataset to train the whole model.
The real RGB-T datasets include KAIST [55], RGBT234
[28] and GTOT [9]. In order to keep the real RGB-T data
in the training dataset as much as possible and avoid over-
fitting, we train our network by using LSS, RGBT234 and
KAIST when conducting evaluations on GTOT. When testing
our tracker on RGBT234, we train the network by using
LSS, GTOT and KAIST. We employ LSS, KAIST and 174
videos in RGBT234 as the training dataset when testing our
trackers on VOT-RGBT2019 [15]. We fix all the parameters
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(a) (b)

Fig. 10. More examples of our generated RGB images. (a) In each row, we present two pairs of RGB-T images spaced 30 frames apart in the same video;
(b) The first column is original thermal images, the second column is synthetic RGB images, and the third column is real RGB images corresponding to the
first column of thermal images.

TABLE II
TRACKING PERFORMANCE OF DIFFERENT TRACKERS ON VOT BENCHMARK. ’A’ AND ’R’ DENOTE ACCURACY AND ROBUSTNESS. EAO STANDS FOR

EXPECTED AVERAGE OVERLAP. THE NUMBERS WITH RED, GREEN AND BLUE INDICATE THE BEST, SECOND BEST AND THIRD BEST RESULTS,
RESPECTIVELY.

Trackers ATOM DiMP SiamRPN++ SiamBAN GESBTT CISRDCF SGT SiamFT MPAT MANet FSRPN mfDiMP SiamDW-T JMMAC Ours

A 0.587 0. 601 0.641 0.622 0.616 0.522 0.518 0.630 0.572 0.582 0.636 0.602 0.616 0.665 0.682

R 0.695 0.709 0.648 0.706 0.635 0.690 0.723 0.639 0.724 0.701 0.708 0.804 0.784 0.821 0.757

EAO 0.321 0.327 0.329 0.333 0.290 0.292 0.297 0.310 0.318 0.346 0.355 0.388 0.393 0.482 0.424

FPS 32 40 48 52 - - 5 43 18 2 33 22 14 4 37

in the RGB Siamese network and train the thermal Siamese
network with the learning rate exponentially decayed from
0.0005 to 0.00005. The multi-modal fusion network is trained
with the learning rate exponentially decayed from 0.005 to
0.0005. Other parameters are trained with the learning rate
exponentially decayed from 0.0005 to 0.00005.

B. Evaluation on Tracking Dataset

In order to evaluate the overall performance, we compare
our method with 4 state-of-the-art RGB trackers, including
SiamRPN++ [23], SiamBAN [43], ATOM [31] and Dimp [33],
as well as 4 RGB-T trackers, including SGT [53], MANet
[13], SiamFT [17] and mfDiMP [26], on three challenging
datasets, i.e, VOT-RGB2019 [15], GTOT [9] and RGB234
[28]. In addition, we compare our method with nine recent
trackers in the official VOT-RGB2019 [15] challenge report.
Specifically, for RGB trackers, we only use RGB data to test
their performance.

1) VOT-RGBT2019 dataset: VOT-RGBT2019 [15] contains
60 testing sequences. Targets are annotated by rotated rectan-
gles to enable a more thorough localization accuracy. We adopt
Accuracy (A), Robustness (R) and Expected Average Overlap
(EAO) as in [15] to evaluate different trackers. Accuracy and
Robustness reflect the accuracy and robustness of the tracker,
while Expected Average Overlap reflects the overall perfor-
mance of the tracker. Higher values of Accuracy, Robustness
and Expected Average Overlap are more desirable for a tracker.

Table II shows the performance of different trackers on
VOT-RGBT2019 dataset. SiamCDA improves the second best
Siamese tracker, i.e., SiamDW-T [15], by an absolute gain
of 3.1% in terms of EAO. In addition, the proposed method
achieves the top-ranked performance in terms of Accuracy and
the second position in terms of EAO among these trackers.
Although in terms of Robustness, the proposed method is
still inferior to some RGB-T trackers, such as JMMAC [15],
SiamDW-T [15] and mfDiMP [26], but our proposed tracker
is much faster, which turns out to be important for real-time
applications.

2) GTOT dataset: GTOT [9] contains 50 RGB-T video
sequences annotated with seven challenging attributes, in-
cluding occlusion (OCC), large scale variation (LSV), fast
motion (FM), low illumination (LI), thermal crossover (TC),
small object (SO) and deformation (DEF). We adopt the
precision rate (PR) and success rate (SR) as in [13] for
quantitative performance evaluation. PR is the percentage of
frames whose output locations are within a threshold distance
to the groundtruth. We set the threshold to be 5 here because
the target objects are generally small in GTOT. SR is the
percentage of the frames whose overlap ratios between the
output bounding boxes and their groundtruth bounding boxes
are larger than a threshold, and we compute the SR score by
the area under curves.

The attribute-based comparisons also show the capability of
our proposed tracker in handling those challenging situations.
As shown in Table III, our tracker obtains the best performance
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TABLE III
ATTRIBUTE-BASED PRECISION RATE AND SUCCESS RATE (PR/SR) OBTAINED BY USING DIFFERENT TRACKERS ON GTOT DATASET. THE NUMBERS

WITH RED, GREEN AND BLUE COLOR INDICATE THE BEST, SECOND BEST AND THIRD BEST RESULTS, RESPECTIVELY.

Method SiamBAN [43] SiamRPN++ [23] ATOM [31] DiMP [33] SiamFT [17] SGT [53] mfDiMP [26] MANet [13] Ours

OCC 67.2/54.9 70.3/58.7 67.4/55.1 75.7/63.8 75.3/58.6 81.0/56.7 80.7/64.3 88.2/69.6 82.2/69.4
LSV 78.3/64.2 76.5/64.3 78.9/64.2 81.4/69.0 79.7/61.4 84.2/54.7 90.5/73.9 86.9/70.6 91.5/74.8
FM 74.3/62.0 75.9/65.9 74.8/63.0 78.9/68.0 72.1/60.1 79.9/55.9 81.3/68.7 87.9/69.4 86.6/72.0
LI 66.8/56.0 68.9/58.3 68.3/58.4 69.8/61.1 78.6/63.6 88.4/65.1 83.0/70.4 91.4/73.6 92.4/76.4
TC 76.3/61.0 76.6/64.0 79.0/63.3 84.2/68.7 76.0/59.3 84.8/61.5 80.4/65.2 88.9/70.2 82.6/68.5

DEF 66.1/55.5 71.0/59.3 69.1/58.8 69.9/59.9 72.5/61.9 91.9/73.3 80.7/67.1 92.3/75.2 87.9/72.7
SO 79.3/59.3 82.2/64.7 83.7/62.9 84.2/64.0 79.3/59.3 91.7/61.8 87.4/69.1 93.2/70.0 88.4/71.3

ALL 71.7/59.3 72.5/61.7 72.6/61.2 75.7/64.9 75.8/62.3 85.1/62.8 83.6/69.7 89.4/72.4 87.7/73.2
FPS 52 48 32 40 43 5 22 2 37

TABLE IV
ATTRIBUTE-BASED PRECISION RATE AND SUCCESS RATE (PR/SR) OBTAINED BY USING DIFFERENT TRACKERS ON RGBT234 DATASET. THE NUMBERS

WITH RED, GREEN AND BLUE COLOR INDICATE THE BEST, SECOND BEST AND THIRD BEST RESULTS, RESPECTIVELY.

Method SiamBAN [43] SiamRPN++ [23] ATOM [31] DiMP [33] SiamFT [17] SGT [53] MANet [13] mfDiMP [26] Ours

NO 82.3/61.3 83.8/64.2 81.3/61.7 83.2/63.8 84.8/62.0 87.7/55.5 88.7/64.6 88.5/65.0 88.4/66.4
PO 72.7/53.2 73.5/54.3 77.9/55.9 80.4/58.5 72.7/50.6 77.9/51.3 81.6/56.6 83.7/59.9 84.2/63.9
HO 57.0/39.5 59.4/43.4 63.5/43.3 64.2/45.0 57.6/40.7 59.2/39.4 68.9/46.5 69.6/46.6 66.2/48.7
LI 59.0/41.3 59.3/42.4 63.4/44.7 62.9/44.5 68.8/47.4 70.5/46.2 76.9/51.3 78.0/54.1 81.8/61.2
LR 63.5/44.2 66.4/46.5 66.1/44.0 66.0/44.8 69.6/46.5 75.1/47.6 75.7/51.5 75.9/49.2 70.9/49.9
TC 71.0/50.1 70.6/53.0 78.3/57.2 81.7/60.4 70.7/50.3 76.0/47.0 75.4/54.3 75.7/52.7 67.4/47.7

DEF 68.5/51.1 69.5/53.2 70.4/52.1 73.3/54.5 69.7/51.8 73.7/53.5 72.0/52.4 77.0/56.0 77.9/59.2
FM 56.8/39.1 65.3/46.9 70.3/48.0 69.0/48.2 62.0/42.2 67.7/40.2 69.4/44.9 73.5/50.2 61.4/45.3
SV 72.3/53.5 72.7/55.5 78.8/57.2 77.8/58.2 71.1/50.5 69.2/43.4 77.7/54.2 81.7/58.7 77.7/59.3
MB 61.2/44.2 64.5/48.7 71.1/51.6 72.2/53.0 59.0/43.3 64.7/43.6 72.6/51.6 74.2/52.4 63.6/47.9
CM 64.3/47.0 66.4/49.9 66.1/48.7 70.1/52.2 63.2/45.7 66.7/45.2 71.9/50.8 76.4/54.2 73.3/54.7
BC 57.8/38.0 57.8/39.3 58.0/38.3 59.2/39.4 60.5/40.3 65.8/41.8 73.9/48.6 71.8/45.4 74.0/52.9

ALL 68.1/49.1 69.7/51.7 72.7/51.8 74.3/54.0 68.8/48.6 72.0/47.2 77.7/53.9 78.9/55.4 76.0/56.9

with 73.2% in success score and the second best performance
with 87.7% in precision score. Compared with the second
best Siamese tracker, i.e., SiamFT, our algorithm achieves
10.9% improvement in success and 11.9% improvements in
precision. Compared with the most recent tracker, i.e., MANet,
our tracker achieves the tracking performance of 1.7% lower
in PR but 0.8% higher in SR. This demonstrates that we have
reduced and even eliminated the gap in tracking performance
between the RGB-T Siamese trackers and some other state-
of-the art RGB-T trackers. Moreover, our proposed tracker
achieves much efficient running speed. As shown in Table III,
our tracker achieves the leading performance at a real-time
running speed of 37 FPS.

3) RGBT234 dataset: RGBT234 [28] is a large-scale RGB-
T tracking dataset. It contains 234 pairs of visible and thermal
videos. RGBT234 contains 12 annotated attributes, including
no occlusion (NO), partial occlusion (PO), heavy occlusion
(HO), low illumination (LI), low resolution (LR), thermal
crossover (TC), deformation (DEF), fast motion (FM), scale
variation (SV), motion blur (MB), camera moving (CM) and
background clutter (BC). Here, we still adopt the precision
rate (PR) and success rate (SR) to quantitatively evaluate the
performance.

Tracking results are shown in Table IV, which indicate

that our tracker achieves 76.0%/56.9% in PR/SR, and has
6.3%/5.2% promotion over the second best Siamese tracker,
i.e., SiamRPN++. To further demonstrate the effectiveness of
our tracker, we provide the attribute-based performance on
RGBT234 in Table IV. From Table IV, we can observe that
the proposed method significantly outperforms other trackers
in most cases. First, most of these trackers perform very well
in cases of no occlusions, but drop a lot when partial or
heavy occlusions happen. Our tracker still keeps high tracking
performance in these cases. This may owe to the full use of the
complementary information between RGB and thermal images
in our proposed tracker. Second, in cases of low illumination
and low resolution, our tracker outperforms most trackers,
especially significantly outperforms those RGB trackers. This
further demonstrates the effectiveness of our proposed model
on using multi-modal information to some extent. Third, in the
cases of thermal crossover, our tracker does not perform well
enough, which indicates that some differences may still exist
between the synthetic RGB-T videos we have generated and
real RGB-T videos. Finally, in the cases of fast motion and
motion blur, those Siamese trackers, including our proposed
tracker, do not achieve satisfactory tracking results, because
these trackers entirely rely on offline training and local search.
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Fig. 11. Visual comparisons of our proposed tracker with another three state-of-the-art trackers on four video sequences, i.e., baketballwaliking, carLight,
elelckbike10 and WalingNig.

4) Qualitative performances: The visual comparisons be-
tween our proposed method and other state-of-the-art trackers,
including DiMP [33], MANet [13] and mfDiMP [26], are
shown in Fig. 11. Our approach performs obviously better
than other methods in various challenging scenarios, including
heavy occlusion, light influence, low illumination and low
resolution. For instance, in Fig. 11 (a), our method performs
well in presence of heavy occlusions, while other trackers
lose the target when occlusion happens. In Fig. 11 (b) and
Fig. 11 (c), targets are invisible in RGB image but visible
in the thermal images. Compared to those RGB trackers, our
approach performs obviously better. This demonstrates that
our tracker may make full use of multi-modal information. In
Fig. 11 (d), which has low resolution attributes, our tracker
also performs better than other methods.

C. Ablation Study

TABLE V
TRACKING RESULTS OBTAINED BY USING DIFFERENT MODULES IN OUR

TRACKER.

Fine-tune FPN CA-MF DAS EAO A R 4EAO

0.346 0.670 0.651 0
√

0.364 0.668 0.685 +0.018
√ √

0.365 0.690 0.709 +0.001
√ √ √

0.375 0.682 0.724 +0.010
√ √ √ √

0.424 0.682 0.757 +0.049

1) Model Architecture: To validate the effectiveness of
different components (or modules) in our proposed model,
we first construct a simplified version of our proposed tracker
as the baseline by retaining the feature extractor and region
proposal networks and by replacing the CA-MF module with
some simple convolutional layers. The thermal Siamese net-
work and RGB Siamese network also share the same weights
in the simplified version. Then, different modules or strategies
are added into the baseline. Table V provides the tracking
performance of our tracker by using different modules on

VOT-RGBT2019 [15]. As shown in Table V, the baseline
tracker can achieve an EAO of 0.346. When we fine-tune
the thermal Siamese network, the EAO score is increased
to 0.364. By further adding FPNs to the baseline tracker,
the EAO can be improved to 0.365. When we subsequently
use the CA-MF modules, the EAO is increased to 0.375 and
the robustness is increased from 0.709 to 0.724. In the end,
we achieve an EAO score of 0.424 by using the proposed
DAS module, which surpasses the baseline by a large margin
of 7.8%. This indicates that jointly exploring these modules
makes our method not only robust but also accurate.

2) Multi-modal fusion: To further validate the effectiveness
of our proposed CA-MF module, we employ 4 fusion strate-
gies in our tracker to fuse multi-modal features, construct 4
different versions of our approach for comparative analysis,
including: 1) Element-wise summation. 2) Concatenation. 3)
Contented-based fusion strategy. 4) The proposed CA-MF
module. The only difference between the last two methods
is that the contented-based fusion strategy directly fused the
weighted unimodal RGB and thermal features via concatena-
tion. According to the experimental data in Table VI, it can be
seen that the proposed CA-MF module outperforms the other
fusion modules significantly.

TABLE VI
TRACKING RESULTS OBTAINED BY USING DIFFERENT FUSION MODULES.

Fusion module EAO A R 4EAO

Element-wise summation 0.375 0.682 0.724 0
Concatenation 0.379 0.686 0.720 +0.004

Content-based fusion strategy 0.383 0.680 0.727 +0.004
CA-MF module 0.424 0.682 0.757 +0.041

3) Training Data: We also verify the validity of training
data, including the proposed two-stage training strategy and
synthetic data augmentation strategy in this subsection. Firstly,
we only use real RGB-T videos to train our model. Our
tracker can achieve an EAO of 0.329. Secondly, the proposed
two-stage training strategy described in Subsection V-A3 can
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TABLE VII
IMPACTS OF DIFFERENT TRAINING STRATEGIES ON VOT2019RGBT.

Real RGB-T data Pretrain Synthetic RGB-T data Data augmentation EAO A R 4EAO
√

0.329 0.661 0.623 0
√ √

0.336 0.655 0.671 +0.007
√ √ √

0.396 0.686 0.720 +0.060
√ √ √ √

0.424 0.682 0.757 +0.028

improve the tracking performance to some extent. As shown
in Table VII, the EAO score is increased to 0.336. Thirdly, by
enlarging the training data with our synthetic data, the perfor-
mance is increased by a margin of 6.0%. Finally, performing
some additional data enhancements on the synthetic videos
makes the synthetic data closer to the real data and thus further
improves tracking performance.

VI. CONCLUSION

In this paper, we present a new RGB-T Siamese tracker.
Owing to the collaboration of some newly designed modules,
our proposed tracker achieves state-of-art performance with
real-time running speed. Especially, by virtue of the proposed
CA-MF, our tracker can make full use of the complementary
advantages of multi-modal features, thus able to achieve satis-
factory results in some challenging conditions, such as heavy
occlusion and illumination variations. Thanks to the proposed
DAS, our tracker shows good robustness against some distrac-
tors, i.e., semantic backgrounds. Finally, the feature represen-
tation ability of our tracker is significantly enhanced by jointly
employing the newly built synthetic RGB-T tracking dataset
and some real RGB-T tracking datasets during the training
phase. This further improves the tracking performance of our
proposed tracker. Extensive experiments on three benchmark
datasets demonstrate that our proposed tracker significantly
outperforms those existing RGB-T Siamese trackers. Com-
pared with some other state-of-the-arts, our proposed tracker
performs competitively and even slightly better in tracking
accuracy but shows obvious superiorities in tracking speed.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61773301.

REFERENCES

[1] K. Lee and J. Hwang, “On-road pedestrian tracking across multiple
driving recorders,” IEEE Transactions on Multimedia, vol. 17, no. 9,
pp. 1429–1438, 2015.

[2] D. R. Magee, “Tracking multiple vehicles using foreground, background
and motion models,” Image and Vision Computing, vol. 22, no. 2, pp.
143–155, 2004.

[3] T. Darrell, G. Gordon, M. Harville, and J. Woodfill, “Integrated person
tracking using stereo, color, and pattern detection,” International Journal
of Computer Vision, vol. 37, no. 2, pp. 175–185, 2000.

[4] C. Li, C. Zhu, J. Zhang, B. Luo, X. Wu, and J. Tang, “Learning
local-global multi-graph descriptors for RGB-T object tracking,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 29,
no. 10, pp. 2913–2926, 2018.

[5] M. Munaro, F. Basso, and E. Menegatti, “Tracking people within groups
with RGB-D data,” in Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, 2012, pp. 2101–2107.

[6] Q. Zhang, N. Huang, L. Yao, D. Zhang, C. Shan, and J. Han, “Rgb-
t salient object detection via fusing multi-level cnn features,” IEEE
Transactions on Image Processing, vol. 29, pp. 3321–3335, 2020.

[7] Q. Zhang, T. Xiao, N. Huang, D. Zhang, and J. Han, “Revisiting feature
fusion for rgb-t salient object detection,” IEEE Transactions on Circuits
and Systems for Video Technology, 2020.
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